These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Large Space Shuttle Flight Experiment  

Microsoft Academic Search

It appears practical to challenge the Orbiter DAP with a large, attached structure. The definition of this capability is a fundamental step in the development of nearly all large space systems currently under consideration. Experiment features may be incorporated that apply to control systems for large space systems such as modal damping devices. In a relatively simple deployable structure, the

L. M. Jenkins

1982-01-01

2

Space shuttle based microgravity smoldering combustion experiments  

Microsoft Academic Search

Results from four microgravity smoldering combustion experiments conducted aboard the NASA Space Shuttle are presented in this work. The experiments are part of the NASA funded Microgravity Smoldering Combustion (MSC) research program, aimed to study the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling

David C. Walther; A. Carlos Fernandez-Pello; David L. Urban

1999-01-01

3

Requirements for space shuttle scatter radar experiments  

NASA Technical Reports Server (NTRS)

The feasibility of carrying out scatter radar experiments on the space shuttle was analyzed. Design criteria considered were the required average transmitter power, frequency resolution, spatial resolution, and statistical accuracy. Experiments analyzed were measurement of the naturally enhanced plasma line and the ion component of the incoherent scatter spectrum, and the plasma line artificially enhanced by an intense HF radio wave. The ion component measurement does not appear feasible, while the other two appear reasonable for short ranges only.

Harker, K. J.

1975-01-01

4

Space Shuttle Experiments Take Flight.  

ERIC Educational Resources Information Center

Describes a primarily volunteer project that was developed with private industry to contribute to the research on space-grown vegetables and to promote science as a career. Focuses on the effects of microgravity and space travel on the germination and growth of plants. (DDR)

Mohler, Robert R. J.

1997-01-01

5

Analysis of microgravity space experiments Space Shuttle programmatic safety requirements  

NASA Technical Reports Server (NTRS)

This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

Terlep, Judith A.

1996-01-01

6

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

7

Space Shuttle  

NASA Technical Reports Server (NTRS)

The space shuttle flight system and mission profile are briefly described. Emphasis is placed on the economic and social benefits of the space transportation system. The space shuttle vehicle is described in detail.

1976-01-01

8

Large area emulsion chamber experiments for the Space Shuttle  

NASA Technical Reports Server (NTRS)

Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

Parnell, T. A.

1985-01-01

9

Project Explorer - Student experiments aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.

Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.

1979-01-01

10

Onboard experiment data support facility, task 1 report. [space shuttles  

NASA Technical Reports Server (NTRS)

The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

1975-01-01

11

Battery selection for Space Shuttle experiments  

NASA Technical Reports Server (NTRS)

This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

Francisco, David R.

1993-01-01

12

Biological and Medical Experiments on the Space Shuttle, 1981 - 1985  

NASA Technical Reports Server (NTRS)

This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

Halstead, Thora W. (editor); Dufour, Patricia A. (editor)

1986-01-01

13

A lidar technology experiment from Space Shuttle - Lidar In-Space Technology Experiment (LITE)  

NASA Technical Reports Server (NTRS)

Plans to conduct a technology experiment with a Shuttle-based lidar instrument are described. The design of the Lidar In-Space Technology Experiment (LITE) is presented, including performance goals for the laser transmitter, telescope, optical receiver, and associated electronics. Experimental results from space flight of the LITE instrument are used to define performance criteria and designs for future atmospheric sounding experiments planned for the Space Station, Earth Observing System platform, and for more complex scientific lidar experiments.

Poole, H. E.; Cox, J. W.; Couch, R. H.; Fuller, W. H., Jr.

1986-01-01

14

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

15

Space Shuttle  

NASA Technical Reports Server (NTRS)

A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

1975-01-01

16

Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle  

NASA Technical Reports Server (NTRS)

Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

Sheppard, Albert P.; Wood, Joan M.

1976-01-01

17

Space flight experience with the Shuttle Orbiter control system  

NASA Technical Reports Server (NTRS)

Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

Cox, K. J.; Daly, K. C.; Hattis, P. D.

1983-01-01

18

Space shuttle electromagnetic environment experiment. Phase A: Definition study  

NASA Technical Reports Server (NTRS)

A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

1974-01-01

19

Space Shuttle Orbiter thermal protection system design and flight experience  

NASA Technical Reports Server (NTRS)

The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

Curry, Donald M.

1993-01-01

20

Shuttle wave experiments. [space plasma investigations: design and instrumentation  

NASA Technical Reports Server (NTRS)

Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

Calvert, W.

1976-01-01

21

Simulation of an experiment pointing system for the space shuttle  

NASA Technical Reports Server (NTRS)

The pointing and control of experiments during sortie missions are examined from the standpoint of accuracy and performance. The effect of gimbal characteristics, pallet stiffness, and variation in the servo control loop are described. Simulation results are shown for a number of pointing options under the disturbing influences of man motion, thruster firings, and experiment operations. One option of particular interest is the suspended pallet which offers the possibility of high accuracy pointing of very large payloads without using conventional gimbals. The pallet is suspended within the payload bay by nonrigid attachments such as springs, thereby isolating experiments from most shuttle disturbances. Control moment gyros apply torques directly to the pallet to maintain pointing accuracy within the arc second range. Spring torques constrain shuttle attitude so thruster operation is not required. The suspended pallet approach will meet the base stability requirements of any sortie experiment and offers the possibility of a standardized low weight, low cost alternative to gimbaled mounts.

Nicaise, P. D.

1973-01-01

22

Experiments with suspended cells on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Spaceflight experiments since 1981 have demonstrated that certain cell functions are altered by micro-g. Biophysical models suggest that cell membranes and organelles should not be affected directly by gravity, however, the chemical microenvironment surrounding the cell and molecular transport could be altered by reduced gravity. Most experiments have used suspended live cells in small chambers without stirring or medium exchange. Flight results include increased attachment of anchorage-dependent human cells to collagen coated microcarriers, reduced secretion of growth hormone from pituitary cells, decreased mitogenic response of lymphocytes, increased Interferon-alpha by lymphocytes, increased Interleukin-1 and Tumor Necrosis Factor secretion by macrophages. Related experiments on cells immediately postflight and on procaryotic cells have shown significant changes in secretory capacity, cell proliferation, differentiation and development. Postulated mechanism include altered cell-cell interactions, altered calcium ion transport, effects on cell cytoskeleton, transport of transmitters and interactions with receptors. The discussion includes use of new molecular methods, considerations for cell environmental control and a preview of several experiments planned for the Shuttle and Spacelab flights to study the basic effects of microgravity on cellular physiology and potential interactions of spaceflight with radiation damage and cellular repair mechanisms.

Morrison, D. R.; Chapes, S. K.; Guikema, J. A.; Spooner, B. S.; Lewis, M. L.

1992-01-01

23

Space Shuttle Program Status  

E-print Network

1 Space Shuttle Program Status John Casper Associate Manager Space Shuttle Program September 13, 2010 NAC Space Operations Committee #12;2 Operations #12;3 Flown Manifest March 2009 ­ May 2010 #12, 2010 · 132nd Space Shuttle mission · 32nd Flight of Atlantis (120,650,907 statute miles) · 294 Total

Waliser, Duane E.

24

A search for experiments to exploit the space shuttle environment, volume 2  

NASA Technical Reports Server (NTRS)

Institutions and laboratories in India, Japan, and Western Europe which were visited during a search for experiments to exploit the space shuttle environment are described. The facilities and current research interests of the various centers are discussed with particular emphasis given to the Indian Space Research Organization.

Fenn, J. B.

1979-01-01

25

Space shuttle descent flight control design requirements and experiments Learned, Pt. 1 p 617-628  

NASA Technical Reports Server (NTRS)

Some of the lessons learned during the development of the Space Shuttle descent flight control system (FCS) are reviewed. Examples confirm the importance for requirements definition, systems level analyses, and testing. In sounding these experiences may have implication for future designs or suggest the discipline required in this engineering art.

Kafer, G.; Wilson, D.

1983-01-01

26

STARNAV I: Star Tracker Experiment on the Space Shuttle Mission STS107  

Microsoft Academic Search

We report the results of a flight experiment aboard the ill-fated STS-107 Columbia Space Shuttle. Our results were telemetered during the first 10 days of the mission. The main purpose of the experiment was to test an advanced star pattern recognition algorithm. While the overall experiment was a success, we experienced un-anticipated difficulties. Due to the scattered light reflections off

Malak A. Samaan; Anup Katake; Thomas C. Pollock; John L. Junkins

27

Ion beam plume and efflux characterization flight experiment study. [space shuttle payload  

NASA Technical Reports Server (NTRS)

A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

1977-01-01

28

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

29

Preliminary design of two Space Shuttle fluid physics experiments  

NASA Technical Reports Server (NTRS)

The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

Gat, N.; Kropp, J. L.

1984-01-01

30

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC)  

E-print Network

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville, Alabama January 9, 2003 1 STS-107/ET-93 Flight Readiness Review External Tank Project #12;SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville

Christian, Eric

31

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC)  

E-print Network

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center;SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville, Alabama Presenter Date Page 2September 17, 2002 J. Pilet / LMSSC-ET Overview Limited Life Component

Christian, Eric

32

Arc discharge convection studies: A Space Shuttle experiment  

NASA Technical Reports Server (NTRS)

Three mercury vapor arc lamps were tested in the microgravity environment of one of NASA's small, self-contained payloads during STS-41B. A description of the payload structural design, photographic and optical systems, and electrical system is provided. Thermal control within the payload is discussed. Examination of digital film data indicates that the 175 watt arc lamp has a significant increase in light output when convection is removed in the gravity-free environment of space.

Bellows, A. H.; Feuersanger, A. E.

1984-01-01

33

Autonomous Space Shuttle  

NASA Technical Reports Server (NTRS)

The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

Siders, Jeffrey A.; Smith, Robert H.

2004-01-01

34

Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments  

NASA Technical Reports Server (NTRS)

The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

1981-01-01

35

Space Shuttle Drawing  

NASA Technical Reports Server (NTRS)

The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

2004-01-01

36

Space Shuttle astrodynamical constants  

NASA Technical Reports Server (NTRS)

Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

Cockrell, B. F.; Williamson, B.

1978-01-01

37

The Space Shuttle and Its Operations 53 Shuttle and  

E-print Network

The Space Shuttle and Its Operations 53 The Space Shuttle and Its Operations The Space Shuttle Shuttle Builds the International Space Station #12;The Space Shuttle design was remarkable. The idea Space Telescope through refurbishments. The most impressive product that resulted from the shuttle

38

Space shuttle revitalization system  

NASA Technical Reports Server (NTRS)

The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

Quattrone, P. D.

1985-01-01

39

A decade on board America's Space Shuttle  

NASA Technical Reports Server (NTRS)

Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.

1991-01-01

40

Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission  

NASA Technical Reports Server (NTRS)

A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight.

Wilson, R. G.; Davis, R. E.; Wright, R. E., Jr.; Sivertson, W. E., Jr.; Bullock, G. F.

1986-01-01

41

Autonomous space shuttle  

Microsoft Academic Search

The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall strategic plan. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires shuttle to fly through at least the middle of the next decade to complete assembly of the station, provide crew transport, and to provide heavy lift up

J. A. Siders; R. H. Smith

2004-01-01

42

Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94  

NASA Technical Reports Server (NTRS)

A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

Coho, William K.; Weiland, Karen J.; VanZandt, David M.

1998-01-01

43

Space Shuttle Familiarization  

NASA Technical Reports Server (NTRS)

This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

Mellett, Kevin

2006-01-01

44

Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment  

NASA Technical Reports Server (NTRS)

As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

Larsen, Curtis E.

2012-01-01

45

Electrical design of Space Shuttle payload G-534: The pool boiling experiment  

NASA Technical Reports Server (NTRS)

Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

Francisco, David R.

1993-01-01

46

Study of airborne science experiment management concepts for application to space shuttle, volume 2  

NASA Technical Reports Server (NTRS)

Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

1973-01-01

47

Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

1973-01-01

48

Space Shuttle Aging Elastomers  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

Curtis, Cris E.

2007-01-01

49

Space Shuttle news reference  

NASA Technical Reports Server (NTRS)

A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

1981-01-01

50

Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle  

NASA Technical Reports Server (NTRS)

Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

Vogl, J. L.

1973-01-01

51

Toward a History Space Shuttle  

E-print Network

Shuttle in building and servicing the Hubble Space Telescope and the International Space Station; science CHAPTER 7--THE SPACE SHUTTLE AND THE HUBBLE SPACE TELESCOPE ............. 34 CHAPTER 8--SCIENCEToward a History of the Space Shuttle An Annotated Bibliography Part 2, 19922011 Monographs

52

Space Shuttle ascent aborts  

NASA Astrophysics Data System (ADS)

Specific guidance functions and trajectory design of return to launch site (RTLS) and transoceanic abort landing (TAL) intact abort profiles, as well as the increasing emphasis on contingency aborts, are presented. Various systems failures including Space Shuttle main engine failures and detailed technical analyses, including the design of powered flight abort trajectories, are considered. The most critical of flight abort situations is the RTLS, while TAL is the preferred abort when uphill capability is no longer available. It is concluded that one principle must remain to ensure continuing success of Space Shuttle flights: namely that intact and contingency aborts necessitate development to ensure safe return of the vehicle, payload, and crew whenever possible.

Schmidgall, Richard A.

1989-09-01

53

The Ocean Color Experiment (OCE) on the Second Orbital Flight Test of the Space Shuttle (OSTA-I)  

Microsoft Academic Search

The Ocean Color Experiment was one of the six remote-sensing experiments which for the first time were launched and success fully operated on board of the second flight of the Space Shuttle during November 1981. The experiment consists of a multispectral image scanner dedicated to the measurement of water color and its interpretation in terms of major water constituents and

Heinz Vab Der Piepen; H. H. Kim; W. D. Hart; V. Amann; H. Helbig; Armando F. G. Fiuza; Michel Viollier; R. Doerffer

1983-01-01

54

Space Shuttle Endeavour Rollout  

NASA Technical Reports Server (NTRS)

NASA Administrator Richard H. Truly addresses the audience in attendance at the rollout ceremonies of the Space Shuttle Orbiter Endeavour which occured on April 25, 1991, at the Rockwell International facility, Palmdale, Calif. Endeavour, the fourth Orbiter to join the fleet, replacing the lost Challenger, can be seen in the background.

1991-01-01

55

Aboard the Space Shuttle.  

ERIC Educational Resources Information Center

This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),

Steinberg, Florence S.

56

STS-63 Space Shuttle report  

NASA Technical Reports Server (NTRS)

The STS-63 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during this sixty-seventh flight of the Space Shuttle Program, the forty-second since the return to flight, and twentieth flight of the Orbiter vehicle Discovery (OV-103). In addition to the OV-103 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-68; three SSME's that were designated 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-070. The RSRM's that were an integral part of the SRB's were designated 360Q042A for the left SRB and 360L042B for the right SRB. The STS-63 mission was planned as an 8-day duration mission with two contingency days available for weather avoidance or Orbiter contingency operations. The primary objectives of the STS-63 mission were to perform the Mir rendezvous operations, accomplish the Spacehab-3 experiments, and deploy and retrieve the Shuttle Pointed Autonomous Research Tool for Astronomy-204 (SPARTAN-204) payload. The secondary objectives were to perform the Cryogenic Systems Experiment (CSE)/Shuttle Glo-2 Experiment (GLO-2) Payload (CGP)/Orbital Debris Radar Calibration Spheres (ODERACS-2) (CGP/ODERACS-2) payload objectives, the Solid Surface Combustion Experiment (SSCE), and the Air Force Maui Optical Site Calibration Tests (AMOS). The objectives of the Mir rendezvous/flyby were to verify flight techniques, communication and navigation-aid sensor interfaces, and engineering analyses associated with Shuttle/Mir proximity operations in preparation for the STS-71 docking mission.

Fricke, Robert W., Jr.

1995-01-01

57

Aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

Steinberg, F. S.

1980-01-01

58

]Space Shuttle Independent Assessment Team  

NASA Technical Reports Server (NTRS)

The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

2000-01-01

59

A search for experiments to exploit the space shuttle environment, volume 1  

NASA Technical Reports Server (NTRS)

A search for worthwhile experiments in pure and applied physics and chemistry which might take advantage of conditions achievable aboard the space shuttle is documented. Of particular interest were the very large pumping speeds at high or ultra high vacuum, the highly nonequilibrium composition of the ambient atmosphere, and the relative absence of gravitational effects. Ideas and suggestions were solicated in the course of visits to 31 research establishments in Western Europe, India, and Japan; conversations with over 90 scientists; and presentations at 3 international meetings. Intriguing possibilities emerged in the following arenas: (1) spectroscopy of the transition state in chemical reactions; (2) flame structure and analysis; (3) solid propellant combustion; (4) analysis of atmospheric composition; (5) turbulence effects on aerosol coagulation.

Fenn, J. B.

1979-01-01

60

Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment  

NASA Technical Reports Server (NTRS)

Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

2001-01-01

61

Space shuttle lightning protection  

NASA Technical Reports Server (NTRS)

The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.

Suiter, D. L.; Gadbois, R. D.; Blount, R. L.

1979-01-01

62

Space Shuttle Main Engine Public Test Firing  

NASA Technical Reports Server (NTRS)

A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

2000-01-01

63

Shuttle infrared imaging experiment  

NASA Astrophysics Data System (ADS)

The Infrared Imaging Experiment (IRIE) flown on Shuttle Mission 6 lC is reported. The infrared camera, which was operated in the 3.5- to 5-micron spectral band, replaced one of the visible CCTV cameras on the Shuttle. The camera employed a 160 x 244-element monolithic platinum-silicide area focal-plane array; array characteristics, camera electronics, optics, and focal plane cooling are summarized. The preplanned scenes for the IRIE are listed. A total of about 2.5 hours of data, including some preplanned scenes and unscheduled operation, were recorded. Several of the recorded scenes are mentioned specifically.

Aronson, A.; Cenker, R.; Gilmartin, H.

1986-01-01

64

Space Shuttle operational logistics plan  

NASA Technical Reports Server (NTRS)

The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

Botts, J. W.

1983-01-01

65

Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment  

Microsoft Academic Search

A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra

Basudhara Basu; D. P. Bhattacharyya; S. Biswas; D. O'Sullivan; A. Thompson

1998-01-01

66

Space shuttles: A pyrotechnic overview  

NASA Technical Reports Server (NTRS)

Pyrotechnic components specified in Shuttle system designs to accomplish varied tasks during all mission phases are described. The function of these pyrotechnics in the operation of the space shuttle vehicle is discussed. Designs are presented for pyrotechnics with innovative features of those meeting unique shuttle requirements for safety and reliability. A rationale for the qualification and certification of these devices is developed. Maintenance of this qualified system in production hardware is explained through a description of shuttle flight certification review process.

Graves, T. J.

1980-01-01

67

Space shuttle navigation analysis  

NASA Technical Reports Server (NTRS)

A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

1976-01-01

68

Space shuttle avionics system  

NASA Technical Reports Server (NTRS)

The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

Hanaway, John F.; Moorehead, Robert W.

1989-01-01

69

Space Shuttle Payload Information Source  

NASA Technical Reports Server (NTRS)

The Space Shuttle Payload Information Source Compact Disk (CD) is a joint NASA and USA project to introduce Space Shuttle capabilities, payload services and accommodations, and the payload integration process. The CD will be given to new payload customers or to organizations outside of NASA considering using the Space Shuttle as a launch vehicle. The information is high-level in a visually attractive format with a voice over. The format is in a presentation style plus 360 degree views, videos, and animation. Hyperlinks are provided to connect to the Internet for updates and more detailed information on how payloads are integrated into the Space Shuttle.

Griswold, Tom

2000-01-01

70

Food packages for Space Shuttle  

NASA Technical Reports Server (NTRS)

The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

1978-01-01

71

The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions  

Microsoft Academic Search

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 349N and 6572S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration,

M. R. Gunson; M. M. Abbas; M. C. Abrams; M. Allen; L. R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; E. Mahieu; G. L. Manney; H. A. Michelsen; M. J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Y. L. Yung; R. Zander

1996-01-01

72

The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: Deployment on the ATLAS Space Shuttle missions  

Microsoft Academic Search

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3-49N and 65-72S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration,

M. R. Gunson; M. M. Abbas; M. C. Abrams; M. Allen; L. R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; E. Mahieu; G. L. Manney; H. A. Michelsen; M. J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Y. L. Yung; R. Zander

1996-01-01

73

Space shuttle operational risk assessment  

Microsoft Academic Search

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated

Joseph R. Fragola; Gaspare Maggio

1996-01-01

74

Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience  

NASA Technical Reports Server (NTRS)

The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

Charles, John B.; Platts, S. H.

2011-01-01

75

History of Space Shuttle Rendezvous  

NASA Technical Reports Server (NTRS)

This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

Goodman, John L.

2011-01-01

76

Evaluation of certain material films flown on the Space Shuttle Mission 46, EOIM-3 experiment  

NASA Technical Reports Server (NTRS)

Nine film samples were carried aboard the STS-46 Atlantis shuttle to complement the 'Evaluation of Oxygen Interaction with Materials (EOIM-III)' experiment to evaluate the effects of atomic oxygen on materials and to monitor the gaseous environment in the shuttle bay. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07E-20 atoms/sq cm have been reported. The changes have been verified using X-ray Photoelectron Spectrometer (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurements, microscopic observations and thermo-optical measurements. The samples including Kapton, Tefzel, Aclar, Polyacrylonitrile film, and Llumalloy films have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the fluence. Those efficiencies have been compared with results from other similar experiments, when available. The efficiencies of the samples are all in the range of E-24 gm/atom.

Scialdone, John; Clatterbuck, Carroll; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

1995-01-01

77

Planned development of the space shuttle vehicle  

NASA Technical Reports Server (NTRS)

Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

1972-01-01

78

The ocean color experiment (OCE) on the second orbital flight test of the Space Shuttle (OSTA-1)  

NASA Technical Reports Server (NTRS)

The Ocean Color Experiment was one of the six remote-sensing experiments which for the first time were launched and successfully operated on board of the second flight of the Space Shuttle during November 1981. The experiment consists of a multispectral image scanner dedicated to the measurement of water color and its interpretation in terms of major water constituents and circulation patterns. The objectives of the experiment, the test site selection, and associated activities are described. The actual mission and results of an initial data analysis is discussed.

Van Der Piepen, H.; Amann, V.; Helbig, H.; Kim, H. H.; Hart, W. D.; Fiuza, A. F. G.; Viollier, M.; Doerffer, R.

1983-01-01

79

Space shuttle operational risk assessment  

NASA Astrophysics Data System (ADS)

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

Fragola, Joseph R.; Maggio, Gaspare

1996-03-01

80

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Norbraten, Gordon L.; Henderson, Edward M.

2007-01-01

81

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Henderson, Edward M.; Norbraten, Gordon L.

2006-01-01

82

America's shuttle returns to space  

NASA Technical Reports Server (NTRS)

The Shuttle management structure, streamlined since the Challenger accident, is outlined. The associate administrators for space flight are identified and their responsibilities clearly spelled out. The NASA policy of assigning astronauts to management positions is described. A spaceflight safety panel is described. Non-managerial safety enhancement programs are outlined. These include: solid rocker booster changes, shuttle crew escape systems, and landing improvements.

Moorehead, Robert W.

1989-01-01

83

Toward a History of the Space Shuttle  

E-print Network

. Space Shuttle Testing and Evaluation 29 6. Space Shuttle Operations 32 7. Challenger AccidentToward a History of the Space Shuttle An Annotated Bibliography Compiled by Roger D. Launius. Initially, the Space Shuttle was envisioned as a fully reusable, commercial spaceplane. During the early

84

Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments  

NASA Technical Reports Server (NTRS)

Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

2007-01-01

85

Space Shuttle Orbiter-Illustration  

NASA Technical Reports Server (NTRS)

This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

2001-01-01

86

Release mechanism for releasing and reattaching experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The release mechanism (REM) unlatches an experiment so that it can be moved about inside and outside the shuttle bay by the remote manipulator system (RMS), and then reattaches it to the REM base. Operated from the crew compartment after the RMS has been attached to the experiment, the REM releases the experiment by an electric motor driving a gear train and linkage which extracts four pins from holes in four plates. Electrical connectors on the REM are disengaged by the mechanical action of the structural pins retracting from the plates. When the REM releases the experiment, an unlatched indicator is actuated in the crew compartment, and then the experiment can be moved by using the RMS. To reattach the experiment to the REM, the RMS places the experiment with REM attachment angles against the flat, smooth surface of the REM; then the RMS moves the experiment into position for latchup. Actuation of an electric motor drives the four pins into the four holes in the plates. When fully latched, a switch actuated by the motion of the linkage, shuts the electric motor off and gives an indication to the crew compartment that the REM is latched.

Clark, A. V.

1980-01-01

87

STS-64 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

Fricke, Robert W., Jr.

1995-01-01

88

Rocket propulsion hazard summary: Safety classification, handling experience and application to space shuttle payload  

NASA Technical Reports Server (NTRS)

The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.

Pennington, D. F.; Man, T.; Persons, B.

1977-01-01

89

Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment  

NASA Astrophysics Data System (ADS)

A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra heavy nuclei of charges of Z ranging from 72 to 96 compatible with the expected results from restricted energy loss calculations. The estimated actinide sub-actinide flux ratio has been found to be 0.06360.0248 which is comparable to the earlier observations by Fowler et al., Thompson et al. and O'Sullivan.

Basu, Basudhara; Bhattacharyya, D. P.; Biswas, S.; O'Sullivan, D.; Thompson, A.

90

The Space Shuttle in perspective  

NASA Technical Reports Server (NTRS)

Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

Hosenball, S. N.

1981-01-01

91

Space Shuttle critical function audit  

NASA Technical Reports Server (NTRS)

A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.

Sacks, Ivan J.; Dipol, John; Su, Paul

1990-01-01

92

Space Shuttle flight test results of the Cosmic Ray Upset Experiment  

NASA Technical Reports Server (NTRS)

CRUX is the first engineering flight experiment designed to test for the incidence of upsets in microcircuits by energetic particles. Harris HM 6504 4K x 1 static CMOS RAM's were used as the test device types in a 1.3 megabit memory which flew on two Shuttle flights. Ground (cyclotron) test information led to a prediction of about one error every 1000 days. No errors were experienced in 10 days of flight. While data were not in conflict with the error prediction and do support it, quantitative validation of the modeling for upsets is not statistically possible. Follow-on hardware (CRUX III) incorporates five different state-of-the-art microcircuits, and is scheduled for flight in October 1984.

Adolphsen, J. W.; Yagelowich, J. J.; Sahu, K.; Stassinopoulos, E. G.; Kolasinski, W. A.; Koga, R.; Benton, E. V.

1984-01-01

93

Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays  

NASA Technical Reports Server (NTRS)

The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions.

Levis, C. A.

1976-01-01

94

The space shuttle at work  

NASA Technical Reports Server (NTRS)

The concept of the orbital flight of the space shuttle and the development of the space transportation system are addressed. How the system came to be, why it is designed the way it is, what is expected of it, and how it may grow are among the questions considered. Emphasis is placed on the effect of the space transportation system on U.S. space exploration in the next decade, including plans to make space an extension of life on the Earth's surface.

Allaway, H.

1979-01-01

95

International Space Station from Space Shuttle Endeavour  

NASA Technical Reports Server (NTRS)

The crew of the Space Shuttle Endeavour took this spectacular image of the International Space Station during the STS118 mission, August 8-21, 2007. The image was acquired by an astronaut through one of the crew cabin windows, looking back over the length of the Shuttle. This oblique (looking at an angle from vertical, rather than straight down towards the Earth) image was acquired almost one hour after late inspection activities had begun. The sensor head of the Orbiter Boom Sensor System is visible at image top left. The entire Space Station is visible at image bottom center, set against the backdrop of the Ionian Sea approximately 330 kilometers below it. Other visible features of the southeastern Mediterranean region include the toe and heel of Italy's 'boot' at image lower left, and the western coastlines of Albania and Greece, which extend across image center. Farther towards the horizon, the Aegean and Black Seas are also visible. Featured astronaut photograph STS118-E-9469 was acquired by the STS-118 crew on August 19, 2007, with a Kodak 760C digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science and Analysis Laboratory at Johnson Space Center.

2007-01-01

96

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

97

Scientific uses of the space shuttle  

NASA Technical Reports Server (NTRS)

A survey was conducted to determine the possible missions which could be accomplished by the space shuttle. The areas of scientific endeavor which were considered are as follows: (1) atmospheric and space physics, (2) high energy astrophysics, (3) infrared astronomy, (4) optical and ultraviolet astronomy, (5) solar physics, (6) life sciences, and (7) planetary exploration. Specific projects to be conducted in these broader areas are defined. The modes of operation of the space shuttle are analyzed. Instruments and equipment required for conducting the experiments are identified.

1974-01-01

98

Signal-to-Noise Ratio Prediction and Validation for Space Shuttle GPS Flight Experiment  

NASA Technical Reports Server (NTRS)

A deterministic method for Space Station Global Positioning System (GPS) Signal-To- Noise Ratio (SNR) predictions is proposed. The complex electromagnetic interactions between GPS antennas and surrounding Space Station structures are taken into account by computational electromagnetic technique. This computer simulator is capable of taking into account multipath effects from dynamically changed solar panels and thermal radiators. A comparison with recent collected Space Station GPS system flight experiment data is presented. The simulation results are in close agreement with flight data.

Hwu, Shian U.; Adkins, Antha A.; Loh, Yin-Chung; Brown, Lisa C.; Sham, Catherine C.; Kroll, Quin D.

2002-01-01

99

Large Deployable Antenna Shuttle Experiment  

NASA Technical Reports Server (NTRS)

An experiment designed to use the Space Shuttle in tests of the mechanical and electrical properties of spaceborne deployable antennas under zero-gravity conditions is outlined. Space-erectable 20-meter diameter phased arrays or reflector/feed systems, and self-deploying mechanisms, are to be tested. Reflector surface integrity will be tested by an AM laser technique, and electrical behavior will be tested by a spin-stabilized RF beacon injected into orbit prior to unfurlment of the antenna. Focusing and gain measurements, static pattern measurements, dynamic RF gain measurements, and measurements of cross-polarized signals will be conducted, and the reflector will be illuminated by separate feeds for the S-, X-, and K-bands. Mechanical features of the mesh-wrapped rib furlable antenna design are described.

Freeland, R. E.; Smith, J. G.; Springett, J. C.; Woo, K. E.

1975-01-01

100

STS-39 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

Fricke, Robert W.

1991-01-01

101

STS-62 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-01-01

102

Rotating-unbalanced-mass devices and methods for scanning balloon-borne-experiments, free-flying spacecraft, and space shuttle/space station attached experiments  

NASA Technical Reports Server (NTRS)

A method and apparatus for scanning balloon-borne experiments, free-flying spacecraft, or gimballed experiments mounted on a space shuttle or space station, makes use of one or more rotating unbalanced mass devices for selectively generating circular, line, or raster scan patterns for the experiment line of sight. An auxiliary control system may also be used in combination with the rotating unbalanced mass device, for target acquisition, keeping the scan centered on the target, or for producing complementary motion for raster scanning. The rotating unbalanced mass makes use of a mass associated with a drive shaft, such mass having a center of gravity which is displaced from the drive shaft rotation axis. The drive shaft is driven with a substantially constant angular velocity, thereby resulting in relatively low power requirements since no acceleration or deceleration of the mass is generally involved during steady state operations. The resulting centrifugal force of the rotating unbalanced mass is used to generate desired reaction forces on the experiment or spacecraft to create a desired scan pattern for the experiment line of sight.

Polites, Michael E. (inventor)

1992-01-01

103

STS-59 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1994-01-01

104

Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program  

NASA Technical Reports Server (NTRS)

Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive exercisers, and four subjects taking alendronate (a bisphoshonate that inhibits osteoclastic resorption of bone) have completed 17 weeks bed rest. In contrast to information currently available from space flight (n=28) and bed rest (n= 12) in which all individuals experienced bone loss in at least one region, one of four subjects taking alendronate and one of five subjects performing heavy resistive exercise at bed rest fully maintained bone density in all regions of the spine and lower extremities. Overall results of both countermeasures which will be presented are encouraging. The study will be completed by mid to late 2000 with 10 subjects in each of three groups.

Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

1999-01-01

105

STS-52 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-01-01

106

STS-60 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

Fricke, Robert W., Jr.

1994-01-01

107

Space Shuttle Missions Summary  

NASA Technical Reports Server (NTRS)

This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

Bennett, Floyd V.; Legler, Robert D.

2011-01-01

108

STS-40 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

Fricke, Robert W.

1991-01-01

109

STS-41 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

110

STS-47 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

Fricke, Robert W., Jr.

1992-01-01

111

Space shuttle baseline accommodations for payloads  

NASA Technical Reports Server (NTRS)

The space shuttle system as it relates to payloads is described. This study provides potential users of the space shuttle with a uniform base of information on the accommodations between the payload and the shuttle. By utilizing this information, preliminary payload planning and design studies can be evaluated and compared against a common set of shuttle/payload accommodations. This information also minimizes the necessity for each payload study to develop information on the shuttle configuration.

1972-01-01

112

NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative  

NASA Technical Reports Server (NTRS)

The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.

Glover, Steve E.; McCool, Alex (Technical Monitor)

2002-01-01

113

Space shuttle flying qualities and criteria assessment  

NASA Technical Reports Server (NTRS)

Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

1987-01-01

114

Living aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

The crew habitat of the Space Shuttle is briefly characterized. Subjects discussed include the overall layout of the crew quarters; the air-purification and climate-control facilities; menus and food-preparation techniques; dishwashing, laundry, toilet, bathing, and shaving procedures; and recreation and sleeping accommodations. Drawings and a photograph are provided.

1984-01-01

115

Space Shuttle Propulsion System Reliability  

NASA Technical Reports Server (NTRS)

This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.

Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David

2011-01-01

116

Space-Shuttle Emulator Software  

NASA Technical Reports Server (NTRS)

A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.

Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram; Thompson, James C.; Walter, Patrick; Brummel, David; Weismuller, Steven P.; Aadsen, Ron; Hurley, Keith; Ruhle, Chris

2007-01-01

117

STS-72 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

118

Microbiology studies in the Space Shuttle  

NASA Technical Reports Server (NTRS)

Past space microbiology studies have evaluated three general areas: microbe detection in extraterrestrial materials; monitoring of autoflora and medically important species on crewmembers, equipment, and cabin air; and in vitro evaluations of isolated terrestrial species carried on manned and unmanned spaceflights. These areas are briefly reviewed to establish a basis for presenting probable experiment subjects applicable to the Space Shuttle era. Most extraterrestrial life detection studies involve visitations to other heavenly bodies. Although this is not applicable to the first series of Shuttle flights, attempts to capture meteors and spores in space could be important. Human pathogen and autoflora monitoring will become more important with increased variety among crewmembers. Inclusion of contaminated animal and plant specimens in the space lab will necessitate inflight evaluation of cross-contamination and infection potentials. The majority of Shuttle microbiology studies will doubtless fall into the third study area. Presence of a space lab will permit a whole range of experimentation under conditions similar to these experienced in earth-based laboratories. The recommendations of various study groups are analyzed, and probable inflight microbiological experiment areas are identified for the Life Sciences Shuttle Laboratory.

Taylor, G. R.

1976-01-01

119

STS-45 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

Fricke, Robert W.

1992-01-01

120

Shuttle Hitchhiker Experiment Launcher System (SHELS)  

NASA Technical Reports Server (NTRS)

NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

Daelemans, Gerry

1999-01-01

121

Solidification experiment in mirror furnaces flown in a GAS payload on space shuttle STS-108  

NASA Astrophysics Data System (ADS)

The experiment was excellent performed in the self-contained GAS payload G-730, flown on STS-108 Endeavour in December 2001. The payload was designed and developed by Swedish Space Corporation. The intention with the experiment was to investigate the influence of weak convection, caused by surface tension forces, on radial segregation occurring in crystals grown under microgravity conditions. The geometry studied was a Bridgman configuration with a partially coated surface. Seven mirror furnaces were used to process glass-coated samples with slots in the coating of different widths. The furnaces were controlled by a PC/104 computer system where also all data from the flight was stored.

Holm, P.; Lth, K.; Larsson, B.; Carlberg, T.

2003-08-01

122

Space Shuttle Overview  

NASA Technical Reports Server (NTRS)

Many students are not even aware of the many activities related to the US Space Program. The intent of this presentation is to introduce students to the world of space exploration and encourage them to pursue math, science, and engineering careers. If this is not their particular interest, I want to encourage them to pursue their dream.

McNutt, Leslie

2006-01-01

123

Space Shuttle Corrosion Protection Performance  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

Curtis, Cris E.

2007-01-01

124

STS-78 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

125

Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57  

NASA Technical Reports Server (NTRS)

The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives.

Dominick, S. M.; Tegart, J. R.; Driscoll, S. L.; Sledd, J. D.; Hastings, L. J.

2011-01-01

126

STS-65 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

Fricke, Robert W., Jr.

1994-01-01

127

Assessing the legacy of the Space Shuttle  

Microsoft Academic Search

This article reviews the core legacies of the Space Shuttle program after 25 years and suggests that, while it was not an unadulterated success, on balance the Shuttle served a valuable role in the development of spaceflight and deserves an overall positive assessment in history. There are five core legacies that deserve discussion. First, the Space Shuttle has a reputation

Roger D. Launius

2006-01-01

128

STS-44 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

Fricke, Robert W.

1992-01-01

129

Formalizing Space Shuttle Software Requirements  

NASA Technical Reports Server (NTRS)

This paper describes two case studies in which requirements for new flight-software subsystems on NASA's Space Shuttle were analyzed, one using standard formal specification techniques, the other using state exploration. These applications serve to illustrate three main theses: (1) formal methods can complement conventional requirements analysis processes effectively, (2) formal methods confer benefits regardless of how extensively they are adopted and applied, and (3) formal methods are most effective when they are judiciously tailored to the application.

Crow, Judith; DiVito, Ben L.

1996-01-01

130

Seismic excitation by space shuttles  

Microsoft Academic Search

Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of

H. Kanamori; J. Mori; B. Sturtevant; D. L. Anderson; T. Heaton

1992-01-01

131

STS-67 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

132

Space Shuttle Star Tracker Challenges  

NASA Technical Reports Server (NTRS)

The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

Herrera, Linda M.

2010-01-01

133

Onboard Experiment Data Support Facility (OEDSF): Conceptual design study. [for space shuttle  

NASA Technical Reports Server (NTRS)

The Onboard Experimental Data Support Facility (OEDSF) is an inflight data processor based on a totally new architecture specifically developed to cost-effectively process the data of Shuttle payloads sensors. Processing data onboard fills the following needs: (1) reduction of data bulk by conversion to information (2)quick-look for evaluation, interactive operation, etc. (3) real-time computation of engineering representation of sensed phenomena. For example: Value of backscatter coefficient (sigma) of a scatterometer as a function of latitude and longitude (4) exploitation of the real-time availability of ancillary data, thereby obviating the need for time-tagging, recording, and recorrelation and (5) providing data or information immediately usable by the experimenter or user. The OEDSF is made up of modular and cascadable matrix processors. Each matrix has been sized to process the data of a full typical shuttle payload. Cost analyses indicate that significant savings are realized by processing data with the OEDSF compared with conventional ground facilities.

1976-01-01

134

STS-50 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-50 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-eighth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of the following: an ET which was designated ET-50 (LUT-43); three SSME's which were serial numbers 2019, 2031, and 2011 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-051. The lightweight/redesigned RSRM's installed in each SRB were designated 360L024A for the left RSRM and 360M024B for the right RSRM. The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment 2 (SAREX-2) payloads. An additional secondary objective was to meet the requirements of the Ultraviolet Plume Instrument (UVPI), which was flown as a payload of opportunity.

Fricke, Robert W.

1992-01-01

135

Active Control Technology Experience with the Space Shuttle in the Landing Regime  

NASA Technical Reports Server (NTRS)

The shuttle program took on the challenge of providing a manual landing capability for an operational vehicle returning from orbit. Some complex challenges were encountered in developing the longitudinal flying qualities required to land the orbiter manually in an operational environmental. Approach and landing test flights indicated a tendency for pilot-induced oscillation near landing. Changes in the operational procedures reduced the difficulty of the landing task, and an adaptive stick filter was incorporated to reduce the severity of any pilot-induced oscillatory motions. Fixed-base, moving-base, and in-flight simulations were used for the evaluations, and in general, flight simulation was the only reliable means of assessing the low-speed longitudinal flying qualities problems. Overall, the orbiter control system and operational procedures have produced a good capability for routinely performing precise landings in a large, unpowered vehicle with a low lift-to-drag ratio.

Powers, B. G.

1984-01-01

136

Space Shuttle Columbia views the world with imaging radar: The SIR-A experiment  

NASA Technical Reports Server (NTRS)

Images acquired by the Shuttle Imaging Radar (SIR-A) in November 1981, demonstrate the capability of this microwave remote sensor system to perceive and map a wide range of different surface features around the Earth. A selection of 60 scenes displays this capability with respect to Earth resources - geology, hydrology, agriculture, forest cover, ocean surface features, and prominent man-made structures. The combined area covered by the scenes presented amounts to about 3% of the total acquired. Most of the SIR-A images are accompanied by a LANDSAT multispectral scanner (MSS) or SEASAT synthetic-aperture radar (SAR) image of the same scene for comparison. Differences between the SIR-A image and its companion LANDSAT or SEASAT image at each scene are related to the characteristics of the respective imaging systems, and to seasonal or other changes that occurred in the time interval between acquisition of the images.

Ford, J. P.; Cimino, J. B.; Elachi, C.

1983-01-01

137

Earth Resources Survey and the Space Shuttle  

NASA Technical Reports Server (NTRS)

The impact that the shuttle is expected to have on the Earth Resources Program and several concepts for exploiting the shuttle characteristics are discussed. The utilization of the space shuttle in its sortie mode for earth resources and the application of an earth observations standard package to earth resources missions were studied.

Stow, W. K.; Andryczyk, R. W.

1975-01-01

138

Space Shuttle Status News Conference  

NASA Technical Reports Server (NTRS)

Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

2005-01-01

139

The first Chinese student space shuttle getaway special program  

NASA Technical Reports Server (NTRS)

The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.

Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen

1988-01-01

140

Space Operations Center: Shuttle interaction study  

NASA Technical Reports Server (NTRS)

The implication of using the Shuttle with the Space Operation Center (SOC), including constraints that the Shuttle will place upon the SOC design. The study identifies the considerations involved in the use of the Shuttle as a part of the SOC concept, and also identifies the constraints to the SOC imposed by the Shuttle in its interactions with the SOC, and on the design or technical solutions which allow satisfactory accomplishment of the interactions.

1981-01-01

141

STS-74 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

142

Space Shuttle and Hypersonic Entry  

NASA Technical Reports Server (NTRS)

Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight regimes will be a key enabler to facilitate the consolidation of the new emerging scenarios. The objective of this symposium is therefore to focus on lesson learned, to then analyze the main elements of those new scenarios, both from Institutional and Private sectors; and finally provide the leads for future collaboration opportunities between Italy, the United States and international partners, so to join profitably the opportunities offered by this new era of the aerospace technologies.

Campbell, Charles H.; Gerstenmaier, William H.

2014-01-01

143

Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle  

NASA Astrophysics Data System (ADS)

Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

Burkhalter, Bettye B.; McLean, James E.; Curtis, James P.; James, George S.

144

Space Shuttle: The Renewed Promise  

NASA Technical Reports Server (NTRS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only four small satellites and no American astronaut had yet flown in space. In the three decades since, four generations of manned spacecraft have been built and flown, twelve men have walked on the Moon, more than 100 Americans have flown and worked in space, and communications satellites and other Space-Age technologies have transformed life on planet Earth. When NASA's Golden Anniversary is celebrated in 2008, it is likely that men and women will be permanently living and working in space. There may be a base on the Moon, and a manned mission to Mars may only be years away. If a brief history of the first half-century of the Space Age is written for that event, it will show clearly how the exploration of space has altered the course of human history and allowed us to take a better hold of our destiny on and off planet Earth.

McAleer, Neil

1989-01-01

145

Planning Space Shuttle's maiden voyage  

NASA Technical Reports Server (NTRS)

NASA's first Space Shuttle, Columbia, whose technological advances include a space laboratory, navigational and communication satellites, and planetary explorers, is examined, and the first few flights, scheduled for 1980, are described. The Shuttle employs an all-digital, all-electronic, computer-operated avionics system. The onboard data processing and software subsystem, encompassing five computers (four online and one backup), a data-bus network, bus terminals, and software, is analyzed in detail. Attention is given to the basic structure of the Orbiter (37.19 m in length and 23.77 m wingspan), its main engines, and the payload and cargo capacities (29,500 kg). A two-step program that could increase the power and duration of spaceflights is presented. The first step is the creation of a power extension package, using solar arrays, generating electricity to extend the basic five-day flight to 20 days, while the second step uses the same design to create a 25-kW power model capable of providing energy for a 50-day flight. Plans for construction of a manned space construction base and a larger power platform of 250 kW are also presented.

Malkin, M. S.; Freitag, R. F.

1979-01-01

146

STS-80 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

Fricke, Robert W., Jr.

1997-01-01

147

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

148

STS-75 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

149

STS-42 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

Fricke, Robert W.

1992-01-01

150

Legacy of Biomedical Research During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

Hayes, Judith C.

2011-01-01

151

The alloy undercooling experiment on the Columbia STA 61-C space shuttle mission  

NASA Technical Reports Server (NTRS)

An Alloy Undercooling experiment was performed in an electromagnetic levitator during the Columbia STS 61-C mission in January 1986. One eutectic nickel-tin alloy specimen was partially processed before an equipment failure terminated the experiment. Examination of the specimen showed evidence of undercooling and some unusual microstructural features.

Harf, Fredric H.; Piccone, Thomas J.; Wu, Yanzhong; Flemings, Merton C.; Shiohara, Yuh; Gardner, Lloyd B.; Winsa, Edward A.

1987-01-01

152

Space Shuttle RTOS Bayesian Network  

NASA Technical Reports Server (NTRS)

With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

Morris, A. Terry; Beling, Peter A.

2001-01-01

153

Experimental payloads - Inception to integration. [space shuttle payload management  

NASA Technical Reports Server (NTRS)

Space payload management concepts previously outlined (Bader and Farlow, 1971) are reviewed and are extended to include the aircraft research management scheme. The application of this scheme to the Space Shuttle, both as an orbiting laboratory and as a launch vehicle for unmanned spacecraft is discussed. It is shown that low-cost short-lead-time procedures, based on experience with the use of ordinary laboratory equipment aboard aircraft, are for the most part directly transferable to the Space Shuttle.

Bader, M.

1973-01-01

154

Conceptual design of liquid droplet radiator shuttle-attached experiment  

NASA Technical Reports Server (NTRS)

The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

Pfeiffer, Shlomo L.

1989-01-01

155

STS-55 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

Fricke, Robert W., Jr.

1993-01-01

156

Space shuttle orbiter test flight series  

NASA Technical Reports Server (NTRS)

The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

Garrett, D.; Gordon, R.; Jackson, R. B.

1977-01-01

157

STS-38 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

158

Space Shuttle Trace Gas Analyzer  

NASA Technical Reports Server (NTRS)

A Trace Gas Analyzer (TGA) with the ability to detect the presence of toxic contaminants in the Space Shuttle atmosphere within the subparts-per-million range is under development. The design is a modification of the miniaturized Gas Chromatograph-Mass Spectrometer (GCMS) developed for the Viking Mars Lander. An ambient air sample is injected onto the GC column from a constant volume sample loop and separated into individual compounds for identification by the MS. The GC-MS interface consists of an effluent divider and a silver-paladium separator, an electrochemical cell which removes more than 99.99% of the hydrogen carrier gas. The hydrogen is reclaimed and repressurized without affecting the separator efficiency, a feature which enables a considerable weight reduction in the carrier gas supply system.

Dencker, W.

1975-01-01

159

Space shuttle main engine controller  

NASA Technical Reports Server (NTRS)

A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

Mattox, R. M.; White, J. B.

1981-01-01

160

Space shuttle wheels and brakes  

NASA Technical Reports Server (NTRS)

The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

Carsley, R. B.

1985-01-01

161

Space Shuttle solid rocket booster  

NASA Technical Reports Server (NTRS)

Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

Hardy, G. B.

1979-01-01

162

Space Shuttle Main Engine Test Firing  

NASA Technical Reports Server (NTRS)

A cloud of extremely hot steam boils out of the flame deflector at the A-1 test stand during a test firing of a Space Shuttle Main Engine (SSME) at the John C. Stennis Space Center, Hancock County, Mississippi.

1988-01-01

163

Space Shuttle GN and C Development History and Evolution  

NASA Technical Reports Server (NTRS)

Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

2011-01-01

164

Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts  

NASA Technical Reports Server (NTRS)

NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.

Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff

2006-01-01

165

Space Shuttle wind tunnel testing program  

NASA Technical Reports Server (NTRS)

A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

Whitnah, A. M.; Hillje, E. R.

1984-01-01

166

STS-54 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

167

STS-69 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-69 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-first flight of the Space Shuttle Program, the forty-sixth flight since the return-to-flight, and the ninth flight of the Orbiter Endeavour(OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-72; three SSME's that were designated as serial numbers 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-074. The RSRMS, designated RSRM-44, were installed in each SRB and the individual RSRM's were designated as 36OL048A for the left SRB, and 36OW048B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirments of Wake Shield Facility (WSF) and SPARTAN-201. The secondary objectives were to perform the operation of the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/GAS Bridge Assembly (CAPL-2/GBA), Thermal Energy Storage (TES), Auroral Photography Experiment-B (APE-B) and the Extravehicular Activity (EVA) Development Flight Test 02 (EDFT-02), the Biological Research in Canister (BRIC) payload, the Commercial Generic Bioprocessing Apparatus (CGBA) payload, the Electrolysis Performance Improvement Concept Study (EPICS) payload, the Space Tissue Loss, National Institute of Health-Cells (STL/NIH-CS) payload, and the Commercial Middeck Instrumentation Technology Associates Experiment (CMIX). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1995-01-01

168

STS-54 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-03-01

169

Space Shuttle Usage of z/OS  

NASA Technical Reports Server (NTRS)

This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

Green, Jan

2009-01-01

170

Access to space: The Space Shuttle's evolving rolee  

NASA Astrophysics Data System (ADS)

Access to space is of extreme importance to our nation and the world. Military, civil, and commercial space activities all depend on reliable space transportation systems for access to space at a reasonable cost. The Space Transportation System or Space Shuttle was originally planned to provide transportation to and from a manned Earth-orbiting space station. To justify the development and operations costs, the Space Shuttle took on other space transportation requirements to include DoD, civil, and a growing commercial launch market. This research paper or case study examines the evolving role of the Space Shuttle as our nation's means of accessing space. The case study includes a review of the events leading to the development of the Space Shuttle, identifies some of the key players in the decision-making process, examines alternatives developed to mitigate the risks associated with sole reliance on the Space Shuttle, and highlights the impacts of this national space policy following the Challenger accident.

Duttry, Steven R.

1993-04-01

171

STS-77 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-77 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 11. The Government Fumished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table II. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET). The six-person crew for STS-77 consisted of John H. Casper, Col., U. S. Air Force, Commander; Curtis L. Brown, Jr., Lt. Col., U. S. Air Force, Pilot; Andrew S. W. Thomas, Civilian, Ph.D., Mission Specialist 1; Daniel W. Bursch, CDR., U. S. Navy, Mission Specialist 2; Mario Runco, Jr., Civilian, Mission Specialist 3; and Marc Gameau, Civilian, PhD, Mission Specialist 4.

Fricke, Robert W., Jr.

1996-01-01

172

STS-66 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

Fricke, Robert W., Jr.

1995-01-01

173

STS-76 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

174

Skylab, Space Shuttle, Space Benefits Today and Tomorrow.  

ERIC Educational Resources Information Center

The pamphlet "Skylab" describes very generally the kinds of activities to be conducted with the Skylab, America's first manned space station. "Space Shuttle" is a pamphlet which briefly states the benefits of the Space Shuttle, and a concise review of present and future benefits of space activities is presented in the pamphlet "Space Benefits

National Aeronautics and Space Administration, Washington, DC.

175

National Aeronautics and Space Administration Space Shuttle Transition and Retirement  

E-print Network

National Aeronautics and Space Administration NASAfacts Space Shuttle Transition and Retirement.S. Space and Rocket Center of Huntsville,Ala., National Air and Space Museum in Washington, and Evergreen Three NASA space shuttles are undergoing an extensive transition and retirement (T&R) phase

176

Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings  

NASA Technical Reports Server (NTRS)

A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

2008-01-01

177

Electromagnetic Compatibility for the Space Shuttle  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

Scully, Robert C.

2004-01-01

178

An Assessment of the Axial and Radial Dilation of a DPIMS Tantalum Cartridge for Space Shuttle Flight Experiments  

NASA Technical Reports Server (NTRS)

Ground-based heat treatment tests are planned on an argon gas-filled tantalum cartridge developed as pan of a Diffusion Processes in Molten Semiconductors (DPIMS) experiment conducted on NASA's Space Shuttle. The possibility that the cartridge may creep during testing and touch the furnace walls is of real concern in this program. The present paper discusses the results of calculations performed to evaluate this possibility. Deformation mechanism maps were constructed using literature data in order to identify the creep mechanism dominant under the appropriate stresses and temperatures corresponding to the test conditions. These results showed that power-law creep was dominant when the grain size of the material exceeded 55 gm but Coble creep was the important mechanism below this value of grain size. Finite element analysis was used to analyze the heat treatment tWs assuming a furnace run away condition (which is a worst case scenario) using the appropriate creep parameters corresponding to grain sizes of 1 and 100 gm. Calculations were also conducted to simulate the effect of an initial 3 tilt of the cartridge assembly, the maximum possible tilt angle. The von Mises stress and su-ain distributions were calculated assuming that the cartridge was fixed at one end as it was heated from ambient temperature to 1823 K in 1.42 h, maintained at 1823 K for 9.5 h and then further heated to an over temperature condition of 2028 K in 0.3 h. The inelastic axial and radial displacements of the cartridge walls were evaluated by resolving the von Mises strain along the corresponding directions. These calculations reveal that the maximum axial and radial displacements are expected to be about 2.9 and 0.25 mm, respectively, for both fine and coarse-grained materials at 2028 K. It was determined that these displacements occur during heat-up to temperature and creep of the cartridge is likely to be relatively insignificant irrespective of grain size. Furthermore, with a 3' tilt of the cartridge, the deflection is increased by only 0.39 gm which is negligible. Since the gap between the furnace heating elements and the cartridge is about 7.5 mm and less than the maximum radial dilation of 0.25 mm at 2028 K, it is concluded that the cartridge is unlikely to touch the furnace walls during the experiments.

Raj, S.V.; Ghosn, L. J.

1998-01-01

179

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

180

Legacy of the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.

Sullivan, Steven J.

2010-01-01

181

Composite reinforced propellant tanks. [space shuttles  

NASA Technical Reports Server (NTRS)

Design studies involving weight and cost were carried out for several structural concepts applicable to space shuttle disposable tankage. An effective design, a honeycomb stabilized pressure vessel, was chosen. A test model was designed and fabricated.

Brown, L. D.; Martin, M. J.; Aleck, B. J.; Landes, R.

1975-01-01

182

STS-43 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

Fricke, Robert W.

1991-01-01

183

Designing the Space Shuttle Propulsion System  

NASA Technical Reports Server (NTRS)

The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. Both the solid rocket motors and the space shuttle main engine throttle during early ascent flight to limit aerodynamic loads on the structure. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, and the SSME's continue operation to achieve orbital velocity approximately eight and a half minutes after liftoff. Design and performance challenges were numerous, beginning with development work in the 1970 s. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper discusses a number of the system level technical challenges including development and operations.

Owen, James; Moore, Dennis; Wood, David; VanHooser, Kathrine; Wlzyn, Ken

2011-01-01

184

The space shuttle Atlantis and its seven-  

E-print Network

Center at 7:38 p.m. EDT to continue construction of the International Space Station. Atlantis' crew is and Olivas worked outside the space station to activate the S3/S4. The spacewalk was the first of three Kennedy Space Center. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th

185

Space shuttle maintenance program planning document  

NASA Technical Reports Server (NTRS)

A means for developing a space shuttle maintenance program which will be acceptable to the development centers, the operators (KSC and AF), and the manufacturer is presented. The general organization and decision processes for determining the essential scheduled maintenance requirements for the space shuttle orbiter are outlined. The development of initial scheduled maintenance programs is discussed. The remaining maintenance, that is non-scheduled or non-routine maintenance, is directed by the findings of the scheduled maintenance program and the normal operation of the shuttle. The remaining maintenance consists of maintenance actions to correct discrepancies noted during scheduled maintenance tasks, nonscheduled maintenance, normal operation, or condition monitoring.

Brown, D. V.

1972-01-01

186

Computed Flow About The Integrated Space Shuttle  

NASA Technical Reports Server (NTRS)

Report discusses numerical simulations of flow of air about integrated Space Shuttle in ascent. Goal: to improve understanding of, and ability to predict, how integrated Space Shuttle will perform during both nominal and aborted ascent under various conditions. These and other numerical simulations intended both to supplement wind-tunnel data, corrupted to some extent by scaling and wall-interference effects, and to compensate for scarcity of valid flight data.

Buning, P. G.; Chiu, I. T.; Obayashi, S.; Rizk, Y. M.; Steger, J. L.

1991-01-01

187

Shuttle Views the Earth: Clouds from Space  

NSDL National Science Digital Library

This set of slides shows imagery of clouds as seen from above, in space, by various satellites and space shuttle missions. Each slide is accompanied by a brief caption describing the feature being shown and the satellite or shuttle mission from which the photo was taken. The slides are available as downloadable high-resolution TIF files, or they can be purchased from Lunar and Planetary Institiute's online store.

188

Space shuttle main engine: Hydraulic system  

NASA Technical Reports Server (NTRS)

The hydraulic actuation system of the space shuttle main engine is discussed. The system consists of five electrohydraulic actuators and a single engine filter used to control the five different propellant valves, which in turn control thrust and mixture ratio of the space shuttle main engine. The hydraulic actuation system provides this control with a precision of 98.7 percent or an error in position no greater than 1.3 percent of full scale rotational travel for critical positions.

Geller, G.; Lamb, C. D.

1981-01-01

189

Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings  

NASA Technical Reports Server (NTRS)

A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for a 2-bearing shaft assembly in each body flap actuator established a reliability level of 99.6 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erin V.

2007-01-01

190

STS-53 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

191

Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere  

Microsoft Academic Search

Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200

P. A. Bernhardt; R. F. Pfaff; P. W. Schuck; D. E. Hunton; M. R. Hairston

2010-01-01

192

Shuttle orbit flight control design lessons - Direction for Space Station  

NASA Technical Reports Server (NTRS)

The Space Shuttle orbit flight control system, which operates during all exo-atmospheric flight phases, has successfully met operational requirements. Many design integration and operational issues that required resolution during development and testing provide an experience base that will benefit the development of future space systems, particularly the Space Station. To this end, the applicable Shuttle and Space Station hardware/software is reviewed with some perspective provided on how current design groundrules were derived and how issues that affected the Shuttle orbit control system design are a pathway for the Space Station. Some of the most significant lessons learned from the Shuttle are summarized, with a discussion of the effect of performance and design of hardware, including the data processing system on software structures and usage procedures. Crew interface issues and important results from man-in-the-loop tests are summarized. Problems resulting from trying to meet difficult orbital operational objectives, including some sophisticated payload operations are characterized. Several proposed Shuttle flight control design improvements, developed in response to some of the lessons learned so far, are identified. Potential application of the Shuttle design lessons and new control technologies to the Space Station are discussed.

Cox, Kenneth J.; Hattis, Philip D.

1987-01-01

193

The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment  

NASA Technical Reports Server (NTRS)

Fungal contamination is a significant problem in the use of sucrose-enriched agar-based media for plant culture, especially in closed habitats such as the Space Shuttle. While a variety of fungicides are commercially available, not all are equal in their effectiveness in inhibiting fungal contamination. In addition, fungicide effectiveness must be weighed against its phytotoxicity and in this case, its influence on transgene expression. In a series of experiments designed to optimize media composition for a recent shuttle mission, the fungicide benomyl and the biocide "Plant Preservative Mixture" (PPM) were evaluated for effectiveness in controlling three common fungal contaminants, as well as their impact on the growth and development of arabidopsis seedlings. Benomyl proved to be an effective inhibitor of all three contaminants in concentrations as low as 2 ppm (parts per million) within the agar medium, and no evidence of phytotoxicity was observed until concentrations exceeded 20 ppm. The biocide mix PPM was effective as a fungicide only at concentrations that had deleterious effects on arabidopsis seedlings. As a result of these findings, a concentration of 3 ppm benomyl was used in the media for experiment PGIM-01 which flew on shuttle Columbia mission STS-93 in July 1999.

Paul, A. L.; Semer, C.; Kucharek, T.; Ferl, R. J.

2001-01-01

194

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

195

Space Shuttle booster thrust imbalance analysis  

NASA Technical Reports Server (NTRS)

An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

Bailey, W. R.; Blackwell, D. L.

1985-01-01

196

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

197

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

198

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Thousands of gallons of water released as part of the sound suppression system at the launch pad create clouds of steam and exhaust as Space Shuttle Discovery lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

199

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

200

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

201

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Clouds of exhaust fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

202

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

203

Space Shuttle Program Tin Whisker Mitigation  

NASA Technical Reports Server (NTRS)

The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

Nishimi, Keith

2007-01-01

204

Space shuttle operations integration plan  

NASA Technical Reports Server (NTRS)

The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

1975-01-01

205

STS-31 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

206

Space Shuttle Underside Astronaut Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2005-01-01

207

Simulating Avionics Upgrades to the Space Shuttles  

NASA Technical Reports Server (NTRS)

Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

2008-01-01

208

Access to space: The Space Shuttle's evolving rolee  

Microsoft Academic Search

Access to space is of extreme importance to our nation and the world. Military, civil, and commercial space activities all depend on reliable space transportation systems for access to space at a reasonable cost. The Space Transportation System or Space Shuttle was originally planned to provide transportation to and from a manned Earth-orbiting space station. To justify the development and

Steven R. Duttry

1993-01-01

209

Seedling growth and development on space shuttle  

NASA Astrophysics Data System (ADS)

Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

Cowles, J.; Lemay, R.; Jahns, G.

1994-11-01

210

Seedling growth and development on space shuttle.  

PubMed

Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers. PMID:11540197

Cowles, J; LeMay, R; Jahns, G

1994-11-01

211

Seedling growth and development on space shuttle  

NASA Technical Reports Server (NTRS)

Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

Cowles, J.; Lemay, R.; Jahns, G.

1994-01-01

212

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Against a curtain of blue sky, the Space Shuttle Discovery spews clouds of exhaust as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on the 9-day mission STS-95. On board Discovery are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

213

STS-57 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

Fricke, Robert W., Jr.

1993-01-01

214

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

Lights on the Fixed Service Structure give a holiday impression at Launch Pad 39A where Space Shuttle Atlantis is poised for launch. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

215

Advanced Space Shuttle simulation model  

NASA Technical Reports Server (NTRS)

A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

Tatom, F. B.; Smith, S. R.

1982-01-01

216

Space Shuttle Main Engine Test Firing  

NASA Technical Reports Server (NTRS)

On the 25th Anniversary of the Apollo 11 (the first moon landing mission) launch, Marshall Space & Flight Center celebrated with a test firing of the Space Shuttle Main Engine (SSME) at the Technology Test Bed (TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.

1994-01-01

217

Launch site payload test configurations for Space Shuttle scientific payloads  

NASA Astrophysics Data System (ADS)

This paper provides an overview of the test configurations which are utilized in prelaunch testing at the John F. Kennedy Space Center (KSC) for those scientific payloads which are flown in the National Space Transportation System (NSTS) Space Shuttle. A generalized view of the payload prelaunch processing is provided and the major types of payload configurations are described. The majority of the prelaunch test activity involves the verification of experiment functions, compatibility of experiment-to-carrier interfaces and payload-to-orbiter interfaces. The Shuttle's avionics system is presented as it relates to payloads. The testing of Spacelab experiments and the experiment-to-Spacelab compatibility verification is described as is the test activity for partial payloads and their experiments. Test operations which involve simulated orbiter interface verification and actual payload-to-orbiter testing are discussed. An overview of the Space Station payload processing concept is presented.

Schuiling, Roelof L.; Mayer, Maynette S.

1989-01-01

218

Antenna Technology Shuttle Experiment (ATSE)  

Microsoft Academic Search

Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range

R. E. Freeland; E. Mettler; L. J. Miller; Y. Rahmet-Samii; W. J. Weber III

1987-01-01

219

Space Shuttle Solid Rocket Booster Debris Assessment  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

Kendall, Kristin; Kanner, Howard; Yu, Weiping

2006-01-01

220

Economic analysis of the space shuttle system, volume 1  

NASA Technical Reports Server (NTRS)

An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.

1972-01-01

221

STS-51 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

222

STS-49: Space shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

Fricke, Robert W.

1992-01-01

223

STS-48 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

Fricke, Robert W.

1991-01-01

224

STS-36 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.

Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

225

STS-56 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

226

STS-58 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB.

Fricke, Robert W., Jr.

1994-01-01

227

Antenna Technology Shuttle Experiment (ATSE)  

NASA Technical Reports Server (NTRS)

Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

1987-01-01

228

Antenna Technology Shuttle Experiment (ATSE)  

NASA Astrophysics Data System (ADS)

Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

1987-06-01

229

Nowcasting for Space Shuttle Landings at Kennedy Space Center, Florida.  

NASA Astrophysics Data System (ADS)

Space shuttle launches and landings at Kennedy Space Center (KSC) are subject to strict weather-related launch commit criteria and landing weather flight rules. Complex launch commit criteria and end-of-mission landing weather flight rules demand very accurate forecasts and nowcasts (short-term forecasts of less than 2 h) of cloud, wind, visibility, precipitation, turbulence, and thunderstorms prior to shuttle launches and landings.The challenges to the National Weather Service Spaceflight Meteorology Group forecasters at Johnson Space Center to nowcast and forecast for space shuttle landings and evaluate the landing weather flight rules are discussed. This paper focuses on the forecasts and nowcasts required for a normal end-of-mission and three scenarios for abort landings of a space shuttle at KSC. Specific weather requirements for a potential emergency landing are the dominant cause of weather-related delays to space shuttle launches. Some examples of meteorological techniques and technologies in support of space shuttle landing operations are reviewed. Research to improve nowcasting convective activity in the Cape Canaveral vicinity is discussed, and the particular forecast problem associated with landing a space shuttle during easterly flow regimes is addressed.

Bauman, William H., III; Businger, Steven

1996-10-01

230

Toward large space systems. [Space Construction Base development from shuttles  

NASA Technical Reports Server (NTRS)

The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.

Daros, C. J.; Freitag, R. F.; Kline, R. L.

1977-01-01

231

STS-61 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

Fricke, Robert W., Jr.

1994-01-01

232

A Shuttle based laser system for space communication  

NASA Technical Reports Server (NTRS)

A key element of NASA-Goddard's plan for future laser space communications is the Space Shuttle-based Laser Technology Experiments Facility (LTEF), which will be designed to communicate with a cooperative laser system under development for the Advanced Communication Technology Satellite (ACTS) and will conduct a comprehensive set of acquisition, tracking, and communication experiments. Attention is presently given to the challenges faced by designers in achieving LTEF acquisition of the ACTS downlink beacon laser.

Fitzmaurice, Michael W.; Bruno, Ronald C.

1988-01-01

233

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis's cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

234

Space shuttle program: Lightning protection criteria document  

NASA Technical Reports Server (NTRS)

The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.

1975-01-01

235

Computer Program for Space-Shuttle Testing  

NASA Technical Reports Server (NTRS)

Demand on Space Shuttle general-purpose computers reduced. Simulations Testbed and Scenario Pre-processor (STB&SPP) system reduces need for use of GPC's in hardware and software development and testing. System consists of computer program, SPP, and set of utility subroutines, STB, which incorporates Interface Simulator (ISIM). STB&SPP system written in FORTRAN V and Assembler.

Hyman, M. D.; Fine, G. H.; Hollombe, G. J.

1986-01-01

236

Space shuttle visual simulation system design study  

NASA Technical Reports Server (NTRS)

A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

1973-01-01

237

Space shuttle visual simulation system design study  

NASA Technical Reports Server (NTRS)

The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

1973-01-01

238

Space Shuttle Technical Conference, part 1  

NASA Technical Reports Server (NTRS)

Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.

Chaffee, N. (compiler)

1985-01-01

239

Space shuttle structural integrity and assessment study  

NASA Technical Reports Server (NTRS)

Potential nondestructive evaluation (NDE) requirements for the space shuttle vehicle during structural inspection in the refurbishment/turnaround period, are defined. Data are given on NDE limitations and defect characterization by the process. Special attention was given to the determination of fatigue cracks, stress corrosion cracks, corrosion, and adhesive disbonds of airframes.

1974-01-01

240

Aerodynamic and base heating studies on space shuttle configurations  

NASA Technical Reports Server (NTRS)

Heating rate and pressure measurements were obtained on a 25-O space shuttle model in a vacuum chamber. Correlation data on windward laminar and turbulent boundary layers and leeside surfaces of the space shuttle orbiter are included.

1974-01-01

241

Toward a history of the space shuttle. An annotated bibliography  

NASA Technical Reports Server (NTRS)

This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

Launius, Roger D. (compiler); Gillette, Aaron K. (compiler)

1992-01-01

242

Launch of space shuttle Challenger on the 41-C mission  

NASA Technical Reports Server (NTRS)

Wide angle view of the launch of the space shuttle Challenger on the 41-C mission from the Kennedy Space Center (KSC) launch pad. This view was taken from the Shuttle training aircraft by Astronaut John Young.

1984-01-01

243

Toward a history of the space shuttle. An annotated bibliography  

NASA Astrophysics Data System (ADS)

This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

Launius, Roger D.; Gillette, Aaron K.

1992-12-01

244

Scintillation Effects on Space Shuttle GPS Data  

NASA Technical Reports Server (NTRS)

Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

Goodman, John L.; Kramer, Leonard

2001-01-01

245

Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances  

NASA Technical Reports Server (NTRS)

In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

Gradl, Paul R.; Stephens, Walter

2005-01-01

246

Study of alternate space shuttle concepts  

NASA Technical Reports Server (NTRS)

A study of alternate space shuttle concepts was conducted to examine the stage-and-one-half concept and its potential for later conversion and use in the two stage reusable shuttle system. A study of external hydrogen tank concepts was conducted to determine the issues involved in the design and production of a low-cost expendable tank system. The major objectives of the study were to determine: (1) realistic drop tank program cost estimates, (2) estimated drop tank program cost for selected specific designs, and (3) change in program cost due to variations in design and manufacturing concepts and changes in program assumptions.

1971-01-01

247

Computed Flow About The Integrated Space Shuttle, Revisited  

NASA Technical Reports Server (NTRS)

Report discusses numerical simulations of flow of air about integrated space shuttle (complete space shuttle assembly including orbiter, solid rocket boosters, and external tank) in ascent. Updated version of report described in "Computed Flow About The Integrated Space Shuttle" (ARC-12685). Goal of studies to improve understanding of, and ability to predict how integrated space shuttle performs during both nominal and aborted ascent under various conditions.

Buning, P. G.; Obayashi, S.; Steger, J. L.; Chiu, I. T.; Martin, F. W., Jr.; Meakin, R. L.; Rizk, Y. M.; Yarrow, M.

1996-01-01

248

Space Shuttle UHF Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.

Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2004-01-01

249

Introduction to the Space Transportation System. [space shuttle cost effectiveness  

NASA Technical Reports Server (NTRS)

A new space transportation concept which is consistent with the need for more cost effective space operations has been developed. The major element of the Space Transportation System (STS) is the Space Shuttle. The rest of the system consists of a propulsive stage which can be carried within the space shuttle to obtain higher energy orbits. The final form of this propulsion stage will be called the Space Tug. A third important element, which is not actually a part of the STS since it has no propulsive capacity, is the Space Laboratory. The major element of the Space Shuttle is an aircraft-like orbiter which contains the crew, the cargo, and the liquid rocket engines in the rear.

Wilson, R. G.

1973-01-01

250

Noise Control in Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

Goodman, Jerry R.

2009-01-01

251

The Space Shuttle Program and Its Support for Space Bioresearch  

ERIC Educational Resources Information Center

The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)

Mason, J. A.; Heberlig, J. C.

1973-01-01

252

Space shuttle: Structural integrity and assessment study. [development of nondestructive test procedures for space shuttle vehicle  

NASA Technical Reports Server (NTRS)

A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented.

Pless, W. M.; Lewis, W. H.

1974-01-01

253

Space Shuttle Main Engine radio frequency emissions  

NASA Technical Reports Server (NTRS)

Several approaches to develop a diagnostics system for monitoring the operational health of the Space Shuttle Main Engine (SSME) are being evaluated. The ultimate goal is providing protection for the SSME as well as improving ground and flight test techniques. One scenario with some potential is measuring radio frequency (RF) emissions (if present) in the exhaust plume and correlating the data to engine health. An RF emissions detection system was therefore designed, the equipment leased, and the components integrated and checked out to conduct a quick-look investigation of RF emissions in the SSME exhaust plume. The system was installed on the A-1 Test Stand at Stennis Space Center, MS, and data were successfully acquired during SSME firings from May 3 to September 15, 1988. The experiments indicated that emitted radiation in the RF (20 to 470 MHz) spectrum definitely exists in the SSME exhaust plume, and is of such magnitude that it can be distinguished during the firing from background noise. Although additional efforts are necessary to assess the merit of this approach as a health monitoring technique, the potential is significant, and additional studies are recommended.

Rester, A. W.; Valenti, E. L.; Smith, L. R.

1988-01-01

254

Space Shuttle Pinhole Formation Mechanism Studies  

NASA Technical Reports Server (NTRS)

Pinholes have been observed to form on the wing leading edge of the space shuttle after about 10-15 flights. In this report we expand upon previous observations by Christensen (1) that these pinholes often form along cracks and are associated with a locally zinc-rich area. The zinc appears to come from weathering and peeling paint on the launch structure. Three types of experimental examinations are performed to understand this issue further: (A) Detailed microstructural examination of actual shuttle pinholes (B) Mass spectrometric studies of coupons containing, actual shuttle pinholes and (C) Laboratory furnace studies of ZnO/SiC reactions and ZnO/SiC protected carbon/carbon reaction. On basis of these observations we present a detailed mechanism of pinhole formation due to formation of a corrosive ZnO-Na-2-O-SiO2 ternary glass, which flows into existing cracks and enlarges them.

Jacobson, Nathan S.

1998-01-01

255

Toward a history of the space shuttle. An annotated bibliography  

Microsoft Academic Search

This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other

Roger D. Launius; Aaron K. Gillette

1992-01-01

256

Cytopathologic observations of the lung of adult newts (Cynops pyrrhogaster) on-board the space shuttle, Columbia, during the Second International Microgravity Laboratory experiments.  

PubMed

Four adult female Japanese newts, Cynops pyrrhogaster, were carried for 15 days aboard the orbiting space shuttle, Columbia, in July of 1994, as part of the Second International Microgravity Laboratory, IML-2 aquatic animal experiments. These previously fertilized newts, after stimulation with chorionic gonadotropin by a spaceflight adapted injection procedure, deposited numerous eggs for study of early development during weightlessness. The primitive saccular lungs of the two newts which survived the spaceflight revealed by TEM marked pulmonary cytopathologic changes including basal laminar separation, microvillar degeneration, and cytoplasmic granular changes in the primary granulated pneumocytes. Also, intracellular edema in the pulmonary collagenous matrix and vacuolar changes in the ciliated pulmonary lining cell type and in vascular endothelial cells were observed. These changes, triggered by the spaceflight, and not seen in controls also relying on respiration via the skin, may reflect a chronic mild hypoxia as it is known that newts undergoing oviposition are subject to increased oxygen demand. PMID:11536733

Pfeiffer, C J; Yamashita, M; Izumi-Kurotani, A; Koike, H; Asashima, M

1995-10-01

257

Nowcasting for Space Shuttle Landings at Kennedy Space Center, Florida  

Microsoft Academic Search

Space shuttle launches and landings at Kennedy Space Center (KSC) are subject to strict weather-related launch commit criteria and landing weather flight rules. Complex launch commit criteria and end-of-mission landing weather flight rules demand very accurate forecasts and nowcasts (short-term forecasts of less than 2 h) of cloud, wind, visibility, precipitation, turbulence, and thunderstorms prior to shuttle launches and landings.The

William H. Bauman III; Steven Businger

1996-01-01

258

The partnership: Space shuttle, space science, and space station  

NASA Technical Reports Server (NTRS)

An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

Culbertson, Philip E.; Freitag, Robert F.

1989-01-01

259

Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning  

NASA Technical Reports Server (NTRS)

Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

Bailey, J. A.

1976-01-01

260

Phased array antenna for space shuttle orbiter  

NASA Astrophysics Data System (ADS)

The National Aeronautics and Space Administration is developing a distributed phased array antenna at the Lyndon B. Johnson Space Center as a possible upgrade for the Space Shuttle Orbiter S-band phase modulation communications system. The antenna consists of an eight-element transmit section, eight-element receive section, and a single L-band receive element. The antenna design is constrained by the existing Orbiter system and space environment. The solution to the interface design problems led to an antenna system which provides improved link margins and yet supports previous operational configurations. This paper describes the system development, antenna hardware, and the interface consideration which led to the final design.

Davidson, Shayla E.

1987-02-01

261

SEP solar array Shuttle flight experiment  

NASA Technical Reports Server (NTRS)

An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

1981-01-01

262

Space Shuttle security policies and programs  

NASA Technical Reports Server (NTRS)

The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

Keith, E. L.

1985-01-01

263

STS-68 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

264

STS-70 Space Shuttle Mission Report - September 1995  

NASA Technical Reports Server (NTRS)

The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

Fricke, Robert W., Jr.

1995-01-01

265

Microbiological Lessons Learned from the Space Shuttle  

NASA Technical Reports Server (NTRS)

After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.

Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

2011-01-01

266

Shuttle Atlantis Returning to Kennedy Space Center after 10-Month Refurbishment  

NASA Technical Reports Server (NTRS)

The Space Shuttle orbiter Atlantis, framed by the California mountains, as it rides on the back of one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) en route from California to the Kennedy Space Center, Florida. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1998-01-01

267

Shuttle Atlantis Returning to Kennedy Space Center after 10-Month Refurbishment  

NASA Technical Reports Server (NTRS)

The Space Shuttle Atlantis rides on the back of one of NASA's Boeing 747 Shuttle Carrier Aircraft en route from California to the Kennedy Space Center, Florida. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1998-01-01

268

Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment  

NASA Technical Reports Server (NTRS)

The Space Shuttle orbiter Atlantis is seen here in flight on the back of one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs California for the Kennedy Space Center, Florida. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1998-01-01

269

Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment  

NASA Technical Reports Server (NTRS)

A look-down view on the Space Shuttle orbiter Atlantis piggy-backed on top of one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs California for the Kennedy Space Center, Florida in September 1998. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1998-01-01

270

Space Shuttle inflatable training articles  

NASA Technical Reports Server (NTRS)

The design, development, construction, and testing of the Long Duration Exposure Facility inflatable and the space telescope training articles are discussed. While these articles are of similar nature, materials, and construction, they vary in size and present different problems with regards to size, shape, gross/net lift, and balance.

West, M. L.

1984-01-01

271

Report of the Space Shuttle Management Independent Review Team  

NASA Astrophysics Data System (ADS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-02-01

272

Report of the Space Shuttle Management Independent Review Team  

NASA Technical Reports Server (NTRS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-01-01

273

Space shuttle configuration accounting functional design specification  

NASA Technical Reports Server (NTRS)

An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

1974-01-01

274

Thermal environments for Space Shuttle payloads  

NASA Technical Reports Server (NTRS)

The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.

Fu, J. H.; Graves, G. R.

1985-01-01

275

Space shuttle main engine computed tomography applications  

NASA Technical Reports Server (NTRS)

For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

Sporny, Richard F.

1990-01-01

276

Evaluation of beryllium for space shuttle components  

NASA Technical Reports Server (NTRS)

Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

Trapp, A. E.

1972-01-01

277

Occupant safety in the Space Shuttle  

NASA Technical Reports Server (NTRS)

The nature of Space Shuttle missions, i.e., the inclusion of non-pilot payload specialists in addition to military test pilots, necessitates a greater attention to built in safety features than on previous spacecraft. Basic systems such as fire protection, anti-depressurization, toxicity control, and protection from radiation are handled in a manner similar to that of past missions, but some important deviations are noted, most importantly those pertaining to the provisions for on-orbit rescue. A Personnel Rescue System (PRS) is outlined, describing EVA operations whereby the pilots are able to don pressure suits and the crew can be transferred to another vehicle in balloon-like enclosures, which provide one hour's worth of life support and protection from the space environment. Also mentioned are provisions for the quick abort and reentry of the Shuttle Orbiter, as well as passive safety provisions for the Spacelab module.

Schulze, N. R.; Prichard, R. P.

1978-01-01

278

Understanding the Columbia Space Shuttle Accident  

SciTech Connect

On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

Osheroff, Doug (Stanford University) [Stanford University

2004-06-16

279

An overview of the Evaluation of Oxygen Interaction with Materials-third phase (EOIM-3) experiment: Space Shuttle Mission 46  

NASA Technical Reports Server (NTRS)

The interaction of the atomic oxygen (AO) component of the low earth orbit (LEO) environment with spacecraft materials has been the subject of several flight experiments over the past 11 years. The effect of AO interactions with materials has been shown to be significant for long-lived spacecraft such as Space Station Freedom and has resulted in materials changes for externally exposed surfaces. The data obtained from previous flight experiments, augmented by limited ground-based evaluation, have been used to evaluate hardware performance and select materials. Questions pertaining to the accuracy of this data base remain, resulting from the use of long-term ambient density models to estimate the O-atom fluxes and fluences needed to calculate materials reactivity in short-term flight experiments. The EOIM-3 flight experiment was designed to produce benchmark AO reactivity data and was carried out during STS-46. Ambient density measurements were made with a quadrupole mass spectrometer which was calibrated for AO measurements in a unique ground-based test facility. The combination of these data with the predictions of ambient density models allows an assessment of the accuracy of measured reaction rates on a wide variety of materials, many of which had never been tested in LEO before. The mass spectrometer is also used to obtain a better definition of the local neutral and plasma environments resulting from interaction of the ambient atmosphere with various spacecraft surfaces. In addition, the EOIM-3 experiment was designed to produce information on the effects of temperature, mechanical stress, and solar exposure on the AO reactivity of a wide range of materials. An overview of the EOIM-3 methods and results are presented.

Leger, Lubert J.; Koontz, Steven L.; Visentine, James T.; Hunton, Donald

1993-01-01

280

Space shuttle galley water system test program  

NASA Technical Reports Server (NTRS)

A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.

1975-01-01

281

Space shuttle/food system study  

NASA Technical Reports Server (NTRS)

This document establishes the Functional, physical and performance interface requirements are studied between the space shuttle orbiter and the galley water system, the orbiter and the galley electrical system, and the orbiter and the galley structural system. Control of the configuration and design of the applicable interfacing items is intended to maintain compatibility between co-functioning and physically mating items and to assure those performance criteria that are dependent upon the interfacing items.

1974-01-01

282

Local Winds: Oceanography from the Space Shuttle  

NSDL National Science Digital Library

The major wind systems of the earth determine much of the large scale oceanography with which we are familiar. The local winds modify the ocean and the overlying atmosphere on a minute-to-minute and day-to-day basis. This site consists of imagery of different types of local winds taken by the Space Shuttle. It also features text descriptions of local winds such as katabatic winds in Europe, the harmattan in Africa, and the most common type, diurnal sea breezes.

283

Space shuttle main engine plume radiation model  

NASA Technical Reports Server (NTRS)

The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

Reardon, J. E.; Lee, Y. C.

1978-01-01

284

Space shuttle holddown post blast shield  

NASA Technical Reports Server (NTRS)

The original and subsequent designs of the Solid Rocket Booster/Holddown Post blast shield assemblies and their associated hardware are described. It presents the major problems encountered during their early use in the Space Shuttle Program, during the Return-to-Flight Modification Phase, and during their fabrication and validation testing phases. The actions taken to correct the problems are discussed, along with the various concepts now being considered to increase the useful life of the blast shield.

Larracas, F. B.

1991-01-01

285

Space Shuttle S-band antenna system  

Microsoft Academic Search

The NASA Space Shuttle Orbiter presents some very challenging antenna design problems for the S-band Orbiter to ground and Orbiter to relay satellite communications links. The line of sight to the ground and\\/or relay satellite during the various mission phases dictates an almost omni-directional coverage requirement, but the circuit margins require at least a 3 dB gain over this same

M. D. Walton; H. D. Cubley

1974-01-01

286

Seismic excitation by the space shuttle Columbia  

Microsoft Academic Search

Seismic stations in southern California recorded the atmospheric shock waves generated by the Space Shuttle Columbia on its return to the Edwards Air Force base on August 13, 1989. In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of about 2-3 seconds, which arrived 12.5 seconds before the shock wave.

Hiroo Kanamori; Don L. Anderson; Jim Mori; Thomas H. Heaton

1991-01-01

287

Space Shuttle Discovery rolls out to the launch pad  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39B. Traveling at 1 mph, the crawler-transporter takes about five hours to cover the 4.2 miles from the Vehicle Assembly Building to the launch pad. Special levelers on the crawler- transporter keep the Space Shuttle vertical within plus or minus 10 minutes of arc about the dimensions of a basketball. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

1999-01-01

288

Space Shuttle Endeavour Heads West - Duration: 111 seconds.  

NASA Video Gallery

NASA's Shuttle Carrier Aircraft, a modified 747, flew retired shuttle Endeavour from Kennedy Space Center in Florida to Houston on Sept. 19, 2012, to complete the first leg of Endeavour's trip to L...

289

Space Shuttle Flyout: Landing Convoy - Duration: 4:51.  

NASA Video Gallery

A team of trained technicians and specialized trucks and equipment is vital for getting a space shuttle safed after landing, helping the astronauts off the spacecraft and returning the shuttle to i...

290

Space Shuttle Era: Main Engines - Duration: 8:01.  

NASA Video Gallery

Producing 500,000 pounds of thrust from a package weighing only 7,500 pounds, the Space Shuttle Main Engines are one of the shining accomplishments of the shuttle program. The success did not come ...

291

Maintaining space shuttle safety within an environment of change  

NASA Astrophysics Data System (ADS)

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

Greenfield, Michael A.

1999-09-01

292

STS-73 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-73 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-second flight of the Space Shuttle Program, the forty-seventh flight since the return-to-flight, and the eighteenth flight of the Orbiter Columbia (OV-102). STS-73 was also the first flight of OV-102 following the vehicle's return from the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-73; three SSME's that were designated as serial numbers 2037 (Block 1), 2031 (PH-1), and 2038 (Block 1) in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-075. The RSRM's, designated RSRM-50, were installed in each SRB and the individual RSRM's were designated as 36OL050A for the left SRB, and 36OW050B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML)-2 payload.

Fricke, Robert W., Jr.

1995-01-01

293

STS-35 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

294

STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center  

NASA Technical Reports Server (NTRS)

The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1990-01-01

295

Phase C aerothermodynamic data base. [for space shuttle program  

NASA Technical Reports Server (NTRS)

Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.

Moser, M., Jr.

1974-01-01

296

The space shuttle payload planning working groups. Volume 10: Space technology  

NASA Technical Reports Server (NTRS)

The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.

1973-01-01

297

An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education  

NASA Astrophysics Data System (ADS)

This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

Lulla, Kamlesh

2012-07-01

298

Preliminary investigations of protein crystal growth using the Space Shuttle  

NASA Technical Reports Server (NTRS)

Four preliminary Shuttle experiments are described which have been used to develop prototype hardware for a more advanced system that will evaluate effects of gravity on protein crystal growth. The first phase of these experiments has centered on the development of micromethods for protein crystal growth by vapor-diffusion techniques (using a space version of the hanging-drop method) and on dialysis using microdialysis cells. Results suggest that the elimination of density-driven sedimentation can effect crystal morphology. In the dialysis experiment, space-grown crystals of concanavalin B were three times longer and 1/3 the thickness of earth-grown crystals.

Delucas, L. J.; Suddath, F. L.; Snyder, R.; Naumann, R.; Broom, M. B.; Pusey, M.; Yost, V.; Herren, B .; Carter, D.

1986-01-01

299

Space Shuttle Exhaust Modifications of the MidLatitude Ionospheric Plasma As Diagnosed By Ground Based Radar  

Microsoft Academic Search

The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used since the early days of the STS program for active ionospheric modification experiments designed to be viewed by ground based ionospheric radar systems. In 1995, the Naval Research Laboratory initiated the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) Program using dedicated Space Shuttle OMS burns scheduled through the

F. D. Lind; P. J. Erickson; A. Bhatt; P. A. Bernhardt

2009-01-01

300

Space shuttle exhaust cloud properties  

NASA Technical Reports Server (NTRS)

A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

Anderson, B. J.; Keller, V. W.

1983-01-01

301

Space Shuttle solid rocket motor exposure monitoring  

NASA Technical Reports Server (NTRS)

During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

Brown, S. W.

1993-01-01

302

The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing  

NASA Technical Reports Server (NTRS)

The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

1973-01-01

303

Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels  

NASA Technical Reports Server (NTRS)

Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

2006-01-01

304

An overview of the Evaluation of Oxygen Interactions with Materials 3 experiment: Space Shuttle Mission 46, July-August 1992  

NASA Technical Reports Server (NTRS)

The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS-46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-3 and the results of the Lyndon B. Johnson Space Center (JSC) materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C(13) labeled Kapton revealed CO, CO2, H2O, NO, and NO2. Finally, by operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere at various times during EOIM-3 and detected the gaseous reaction products formed when ambient ions interacted with the C(13) Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, which provide known O-atom fluences and translational energies, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A 'line-of-centers' reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms at high atom kinetic energies while a Beckerle-Ceyer model provided an accurate description of O-atom reactivity over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to the near-surface region of the sample, i.e. within 50 to 100 A of the surface.

Koontz, Steven L.; Leger, Lubert J.; Visentine, James T.; Hunton, Don E.; Cross, Jon B.; Hakes, Charles L.

1995-01-01

305

An overview of the Evaluation of Oxygen Interactions with Materials III Experiment: Space Shuttle Mission 46; July--August, 1992  

SciTech Connect

The flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS 46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-III and the results of the materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C{sup 13} labeled Kapton revealed CO, CO{sub 2}, H{sub 2}O, NO and NO{sub 2}. By operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere and detected the gaseous reaction products formed when ambient ions interacted with the C{sup 13} Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A ``line-of-centers`` reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to within 50 to 100 Angstroms of the surface.

Koontz, S.L.; Leger, L.J.; Visentine, J.T. [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center; Hunton, D.E. [USAF Phillips Lab., Hanscomb AFB, MA (United States); Cross, J.B. [Los Alamos National Lab., NM (United States); Hakes, C.L. [Lockheed Engineering and Sciences Co., Inc., Houston, TX (United States)

1993-12-31

306

STS-46 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W.

1992-01-01

307

Experiment definition phase shuttle laboratory LDRL 10.6 experiment  

NASA Technical Reports Server (NTRS)

System optimization is reported along with mission and parameter requirements. Link establishment and maintenance requirements are discussed providing an acquisition and tracking scheme. The shuttle terminal configurations are considered and are included in the experiment definition.

1974-01-01

308

Thousands gather to watch a Space Shuttle Main Engine Test  

NASA Technical Reports Server (NTRS)

Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

2001-01-01

309

Closeup view looking into the nozzle of the Space Shuttle ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

310

Space Shuttle Crawler Transporter Sound Attenuation Study  

NASA Technical Reports Server (NTRS)

The crawler transporter (CT) is the world's largest tracked vehicle known, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960's, maintained and retrofitted for use in the Space Shuttle program. As a key element of the Space Shuttle ground systems, the crawler transports the entire 12-million-pound stack comprising the orbiter, the mobile launch platform (MLP), the external tank (ET), and the solid rocket boosters (SRB) from the Vehicle Assembly Building (VAB) to the launch pad. This rollout, constituting a 3.5-5.0-mile journey at a top speed of 0.9 miles-per-hour, requires over 8 hours to reach either Launch Complex 39A or B. This activity is only a prelude to the spectacle of sound and fury of the Space Shuttle launch to orbit in less than 10 minutes and traveling at orbital velocities of Mach 24. This paper summarizes preliminary results from the Crawler Transporter Sound Attenuation Study, encompassing test and engineering analysis of significant sound sources to measure and record full frequency spectrum and intensity of the various noise sources and to analyze the conditions of vibration. Additionally, data such as ventilation criteria, plus operational procedures were considered to provide a comprehensive noise suppression design for implementation. To date, sound attenuation study and results on Crawler 2 have shown significant noise reductions ranging from 5 to 24 dBA.

Margasahayam, Ravi N.; MacDonald, Rod; Faszer, Clifford

2004-01-01

311

From Lindbergh to Columbia - The Space Shuttle  

NASA Technical Reports Server (NTRS)

An effort to gage the level of maturation of space transportation development signalled by the advent of the Shuttle is attempted. Analogy is drawn to the successful crossing of the Atlantic Ocean by Charles Lindbergh, an event which established the feasibility of routine air transport over long distances. A positive shift in public confidence is expected to arrive by recalling the favorable news coverage which resulted after two or three flights by the Wright brothers at Kitty Hawk in 1908. The evolution of modern airports is taken as an indication of the kind of growth in facilities which may shortly be required due to operational space transportation systems. The arrival of normal operations of humans-to-space and return in reuseable vehicles is seen as a benchmark for a time when certain global assessments of social and technical requirements for the continued existence and progress of human civilization on earth and into space must be made.

Lovelace, A.

1982-01-01

312

2009 Space Shuttle Probabilistic Risk Assessment Overview  

NASA Technical Reports Server (NTRS)

Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

2010-01-01

313

Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis  

NASA Technical Reports Server (NTRS)

This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

2005-01-01

314

Space Shuttle Main Engine reaches milestoneSpace Shuttle Main Engine reaches milestone One in a million . . .  

E-print Network

the long-term effects of space travel on humans, preparing for the longer journeys of the future. After in a million . . . A milestone in human spaceflight was achieved Wednesday, Jan. 21, at NASA Stennis SpaceSpace Shuttle Main Engine reaches milestoneSpace Shuttle Main Engine reaches milestone One

315

Space Shuttle Orbiter windshield bird impact analysis  

NASA Technical Reports Server (NTRS)

The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

Edelstein, Karen S.; Mccarty, Robert E.

1988-01-01

316

Space shuttle lightning protection criteria document  

NASA Technical Reports Server (NTRS)

The lightning environment for design is defined and imposes the requirements that the design must satisfy to insure the protection of the space shuttle vehicle system from the direct and indirect effects of lightning. Specifications, criteria, and guidelines provide a practical and logical approach to the protection problems. Protection against the indirect effects of lightning is intimately involved with the electromagnetic compatibility and electromagnetic interference functions. While this document does not deal specifically with electromagnetic compatibility and electromagnetic interference, it does deal with the interactions between lightning protection measures and measures employed for electromagnetic compatibility and control of electromagnetic interference.

1973-01-01

317

Langley's Space Shuttle Technology: A bibliography  

NASA Technical Reports Server (NTRS)

This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

Champine, G. R.

1981-01-01

318

SSME failure detection. [Space Shuttle Main Engine  

NASA Technical Reports Server (NTRS)

During ground testing of the Space Shuttle Main Engine (SSME), there have been twenty-six major incidents resulting in substantial hardware damage and loss. Historical characteristics, advances in detection technology, and advances in computing technology led to plans for study of an advanced real time SSME test stand failure detection system which would reduce damage and preserve evidence when a failure with major incident potential occurs. This detection system will speed recognition of dangerous engine operation, and quicken the shutdown decision. The scope of this study, SSME characteristics, SSME test history, the problem definition, and some technical issues will be addressed herein.

Cikanek, H. A., III

1985-01-01

319

NASA management of the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.

Peters, F.

1975-01-01

320

Space shuttle slidewire emergency egress system  

NASA Technical Reports Server (NTRS)

The slidewire emergency egress system is designed to provide a fast and safe egress means for the shuttle flight crew, passengers, and ground closeout crew in the event of imminent danger while the space vehicle is still on the launch pad. Egress is from the 195 ft. level of the fixed service structure (FSS) to a ground landing area 1200 ft. away from the launch site. The slidewire design is such that the flight crew and passengers can be evacuated to a safe area within two minutes with winds as high as 34 knots from any direction.

Jeffcoat, G. B.; Stephan, E. S.

1981-01-01

321

Space Shuttle externally induced environment compared with Skylab's natural environment  

NASA Technical Reports Server (NTRS)

Electret measurements obtained of the particulate contamination environment within the Space Shuttle Orbiter's cargo bay are presently compared with ground measurements of the particulates emitted by the Shuttle's SRBs, as well as with the expected natural particulate environment as measured by Skylab. Chemical analysis is shown to reveal the difference between natural and anthropogenic space debris; the most probable primary source of the Space Shuttle's particulate environment is the SRB exhaust.

Susko, Michael

1990-01-01

322

Space Shuttle Main Engine (SSME) Pogo testing and results  

NASA Technical Reports Server (NTRS)

To effectively assess the Pogo stability of the space shuttle vehicle, it was necessary to characterize the structural, propellant, and propulsion dynamics subsystems. Extensive analyses and comprehensive testing programs were established early in the project as an implementation of management philosophy of Pogo prevention for space shuttle. The role of the space shuttle main engine (SSMF) in the Pogo prevention plans, the results obtained from engine ground testing with analysis, and measured data from STS-1 flight are discussed.

Fenwick, J. R.; Jones, J. H.; Jewell, R. E.

1982-01-01

323

Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology  

NASA Technical Reports Server (NTRS)

Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

1976-01-01

324

Shuttle-launch triangular space station  

NASA Technical Reports Server (NTRS)

A triangular space station deployable in orbit is described. The framework is comprized of three trusses, formed of a pair of generally planar faces consistine of foldable struts. The struts expand and lock into rigid structural engagement forming a repetition of equilater triangles and nonfolding diagonal struts interconnecting the two faces. The struts are joined together by node fittings. The framework can be packaged into a size and configuration transportable by a space shuttle. When deployed, the framework provides a large work/construction area and ample planar surface area for solar panels and thermal radiators. A plurity of modules are secured to the framework and then joined by tunnels to make an interconnected modular display. Thruster units for the space station orientation and altitude maintenance are provided.

Schneider, W. C. (inventor); Berka, R. B. (inventor); Kavanaugh, C. (inventor); Nagy, K. (inventor); Parish, R. C. (inventor); Schliesing, J. A. (inventor); Smith, P. D. (inventor); Stebbins, F. J. (inventor); Wesselski, C. J. (inventor)

1986-01-01

325

Research and technology. [in development of space shuttle  

NASA Technical Reports Server (NTRS)

Summaries are presented of the research in the development of the space shuttle. Propulsion, materials, spacecraft and thermal control, payloads, instrumentation, data systems, and mission planning are included.

1973-01-01

326

Stennis Holds Last Planned Space Shuttle Engine Test  

NASA Technical Reports Server (NTRS)

With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

2009-01-01

327

Extending AMLCD technology into the Space Shuttle cockpit  

Microsoft Academic Search

A challenging and exciting program is underway to develop an active matrix liquid crystal display for the National Aeronautics and Space Administration--Rockwell Space Shuttle cockpit upgrade. The Multifunction Electronic Display Subsystem program greatly enhances operational capabilities of the Space Shuttle and improves overall system reliability, replacing multiple electromechanical and obsolete cathode ray tubes with 11 flat-panel displays.

Scott V. Thomsen; William R. Hancock

1994-01-01

328

Ignition transient modelling for the Space Shuttle Advanced Solid Rocket Motor  

Microsoft Academic Search

Prediction of the ignition transient for the Advanced Solid Rocket Motor (ASRM) for the Space Shuttle presents an unusual set of modelling challenges because of its high length-to-diameter ratio and complex internal flow environment. A review of ignition modelling experience on the Shuttle Redesigned Solid Rocket Motor (RSRM), which is similar in size and configuration to the ASRM, reveals that

M. A. Eagar; G. D. Luke; L. W. Stockham

1993-01-01

329

Space shuttle propellant constitutive law verification tests  

NASA Technical Reports Server (NTRS)

As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

Thompson, James R.

1995-01-01

330

ALT space shuttle barometric altimeter altitude analysis  

NASA Technical Reports Server (NTRS)

The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

Killen, R.

1978-01-01

331

Conceptual design of liquid droplet radiator shuttle-attached experiment technical requirements document  

NASA Technical Reports Server (NTRS)

The technical requirements of a shuttle-attached Liquid Droplet Radiator (LDR) experiment are discussed. The Liquid Droplet Radiator is an advanced lightweight heat rejection concept that can be used to reject heat from future high powered space platforms. In the LDR concept, submillimeter sized droplets are generated, pass through space, and radiate heat before they are collected and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. Shuttle integration and safety design issues are discussed. An overview of the conceptual design of the experiment is presented. Details of the conceptual design are not discussed here, but rather in a separate Final Report.

Pfeiffer, Shlomo L.

1989-01-01

332

Measurements of the ionospheric reaction to exhaust from dedicated burns of the space shuttle's orbital maneuvering system engines over Kwajalein  

Microsoft Academic Search

In a continuation of the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) experiment, a series of Orbiting Maneuver Subsystem (OMS) engine burns from the space shuttle have been carried out over Kwajalein Atoll in the Republic of the Marshall Islands. Exhaust from the shuttle's two OMS engines consists of CO, CO2, H2, H20, and N2, each of which interact

R. G. Caton; K. M. Groves; T. R. Pedersen; D. L. Hysell; C. S. Carrano; P. A. Bernhardt; R. T. Tsunoda; A. J. Coster

2009-01-01

333

Launching a dream: A teachers guide to a simulated space shuttle mission  

NASA Technical Reports Server (NTRS)

Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.

1989-01-01

334

Legacy of Operational Space Medicine During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

2011-01-01

335

The potential impact of the space shuttle on space benefits to mankind  

NASA Technical Reports Server (NTRS)

The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

Rattinger, I.

1972-01-01

336

Lightning protection design external tank /Space Shuttle/  

NASA Technical Reports Server (NTRS)

The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.

Anderson, A.; Mumme, E.

1979-01-01

337

Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

Jarrell, George

2010-01-01

338

Auxiliary Payload Power System thermal control. [for space shuttle  

NASA Technical Reports Server (NTRS)

The Auxiliary Payload Power System (APPS) provides supplementary power and cooling to Space Processing Application (SPA) experiments to be mounted in the APPS and the Spacelab in the Shuttle Payload Bay. SPA experiment operations are planned for early Shuttle flights. This paper presents thermal control study results for preliminary analysis and design definition of the APPS. A 100/sq m, three-wing, pumped-fluid, deployable radiator with separate APPS equipment and SPA experiments coolant loops was selected as the baseline. The system is capable of rejecting the heat (approximately 26 kw) associated with the production and consumption of approximately 16 kw of electrical power produced by the APPS fuel cells for a worst case radiator orientation. For the most favorable orientation, the heat rejection and power capability approach 38 and 24 kw, respectively. Alternate approaches were evaluated, such as heat pipes for the radiator and alternate fluids for the coolant loops. Emphasis was placed on using Shuttle developed hardware: coolant pumps, heat exchangers, fluids, and radiator technology.

Nagel, R. G.

1976-01-01

339

Methods of assessing structural integrity for space shuttle vehicles  

NASA Technical Reports Server (NTRS)

A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.

Anderson, R. E.; Stuckenberg, F. H.

1971-01-01

340

Space shuttle lift-off dynamic model  

NASA Technical Reports Server (NTRS)

Previously developed dynamic models for the calculation of lift-off dynamic response of the space shuttle vehicle can handle only response of the vehicle with eight holddown arms attached or with all holddown arms detached. The new model developed in the referenced report takes into account the transition period between holddown and lift-off by giving the model the ability to vary holddown point separation as a function of vehicle flexible body and rigid body motion. This report documents a study made to verify the new model's capability to simulate vehicle response at lift-off. To do this, a finite element model of the skirt is made and coupled to the free-free modes of the vehicle and cantilevered modes calculated and compared with the previously developed model. Results indicate that the new model will be able to predict accurate vehicle loads.

Christian, D.

1976-01-01

341

Notch sensitivity of space shuttle tile materials  

NASA Technical Reports Server (NTRS)

Tests were conducted at room temperature to determine the notch sensitivity of the thermal protection tile for the space shuttle. Two types of RSI tile were studied: LI-900 and LI-2200. Three point bend specimens were cut from discarded tiles in the in-plane (ip) and through-the-thickness (ttt) directions. They were tested with or without a sharp notch. The LI-900 (ip and ttt) specimens were not very notch sensitive, but the LI-2200 (ip and ttt) specimens were. The LI-2200 material showed about a 35 percent reduction in strength due to the presence of the notch. This reduction in strength should be considered in the design of mechanically fastened tile concepts.

Newman, J. C., Jr.

1980-01-01

342

Characteristics of Space Shuttle Main Engine failures  

NASA Technical Reports Server (NTRS)

During development and operation of the Space Shuttle Main Engine (SSME), 27 ground test failures of sufficient severity to be termed 'major incident' have occurred. Resourecs including NASA Failure Investigation Board reports, contractor failure reports, originally recorded data, along with engineering notes, data bases, and presentations connected with the failures were available for compilation into the engine failure review presented in this paper. Most SSME failures were a result of design deficiencies stemming from inadequate definition of dynamic loads. High cycle fatigue was the most frequent mechanism leading to failure. Eighteen of the 27 failures occurred during constant power level operation. Formal board reports were not available for all failures. Therefore, the failure history presented in this paper is not complete or of uniform quality.

Cikanek, Harry A., III

1987-01-01

343

Space Shuttle SRM metal case component fabrication  

NASA Technical Reports Server (NTRS)

The 146 in. diam metal case components of the Space Shuttle Solid Rocket Motor (SRM) being developed have been successfully static-tested. The limitations placed on the program included current practice and facilities at the steel mills, forging suppliers, heat treaters, and machining operations. In addition, Thiokol had not previously fabricated metal components of this size with a minimum fracture toughness of 90 ksi-in. to 1/2 power. To insure that the SRM was producible within the established guidelines, it was necessary to coordinate all data heat by heat, forging by forging, and heat treat run by heat treat run. The basic fabrication sequences are outlined, and the data from the heat treat programs are presented.

Krummel, C. H.; Thompson, O. N.

1978-01-01

344

Radar error statistics for the space shuttle  

NASA Technical Reports Server (NTRS)

Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

Lear, W. M.

1979-01-01

345

Space Shuttle solid rocket booster dewatering system  

NASA Technical Reports Server (NTRS)

After the launch of the Space Shuttle, the two solid rocket boosters (SRB's) are jettisoned into the ocean where they float in a spar (vertical) mode. It is cost effective to recover the SRB's. A remote controlled submersible vehicle has been developed to aid in their recovery. The vehicle is launched from a support ship, maneuvered to the SRB, then taken to depth and guided into the rocket nozzle. It then dewaters the SRB, using compressed air from the ship, and seals the nozzle. When dewatered, the SRB floats in a log (horizontal) mode and can be towed to port for reuse. The design of the remote controlled vehicle and its propulsion system is presented.

Fishel, K. R.

1982-01-01

346

SRB dewatering set. [space shuttle boosters revcovery  

NASA Technical Reports Server (NTRS)

The system components and operation of the space shuttle solid rocket booster (SRB) dewatering set are described. The SRB dewatering set consists of a nozzle plug, control console, remote control unit, power distribution unit, umbilical cable, interconnect cables, and various handling and storage items. The nozzle plug (NP) is a remotely controlled, tethered underwater vehicle that is launched from the retrieval vessel (RV) by a crane, descends down the side of the SRB, and is positioned below the SRB nozzle. A TV camera mounted at the top of the NP central core is used by the control console operator to visually guide the NP during descent and docking. The NP is then driven up and locked into the nozzle. Compressed air is passed through the umbilical from the RV, through the NP and into the SRB motor. The water inside the SRB is expelled causing the SRB to rotate to a near horizontal attitude on the surface of the water.

Wickham, R. E.

1981-01-01

347

Space shuttle entry and landing navigation analysis  

NASA Technical Reports Server (NTRS)

A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

Jones, H. L.; Crawford, B. S.

1974-01-01

348

Space Shuttle Program: STS-1 Medical Report  

NASA Technical Reports Server (NTRS)

The necessity for developing medical standards addressing individual classes of Shuttle crew positions is discussed. For the U.S. manned program the conclusion of the Apollo era heralded the end of water recovery operations and the introduction of land-based medical operations. This procedural change marked a significant departure from the accepted postflight medical recovery and evaluation techniques. All phases of the missions required careful re-evaluation, identification of potential impact on preexisting medical operational techniques, and development of new methodologies which were carefully evaluated and tested under simulated conditions. Significant coordination was required between the different teams involved in medical operations. Additional dimensions were added to the concepts of medical operations, by the introduction of different toxic substances utilized by the Space Transportation Systems especially during ground operations.

1981-01-01

349

Space Shuttle food galley design concept  

NASA Technical Reports Server (NTRS)

A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.

Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.

1974-01-01

350

An Overview of Quantitative Risk Assessment of Space Shuttle Propulsion Elements  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Challenger accident in 1986, NASA has been working to incorporate quantitative risk assessment (QRA) in decisions concerning the Space Shuttle and other NASA projects. One current major NASA QRA study is the creation of a risk model for the overall Space Shuttle system. The model is intended to provide a tool to estimate Space Shuttle risk and to perform sensitivity analyses/trade studies, including the evaluation of upgrades. Marshall Space Flight Center (MSFC) is a part of the NASA team conducting the QRA study; MSFC responsibility involves modeling the propulsion elements of the Space Shuttle, namely: the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). This paper discusses the approach that MSFC has used to model its Space Shuttle elements, including insights obtained from this experience in modeling large scale, highly complex systems with a varying availability of success/failure data. Insights, which are applicable to any QRA study, pertain to organizing the modeling effort, obtaining customer buy-in, preparing documentation, and using varied modeling methods and data sources. Also provided is an overall evaluation of the study results, including the strengths and the limitations of the MSFC QRA approach and of qRA technology in general.

Safie, Fayssal M.

1998-01-01

351

Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

Willsey, Mark; Bailey, Brad

2011-01-01

352

The Legacy of Space Shuttle Flight Software  

NASA Technical Reports Server (NTRS)

The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

2011-01-01

353

Animation graphic interface for the space shuttle onboard computer  

NASA Technical Reports Server (NTRS)

Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

Wike, Jeffrey; Griffith, Paul

1989-01-01

354

The evolution of the WPI Advance Space Design Program-an evolving program of technical and social analysis using the NASA Space Shuttle for engineering education  

Microsoft Academic Search

In December of 1982, Worcester Polytechnic Institute, with the cooperation and support of the Mitre Corporation, initiated a primarily undergraduate educational program to develop experiments to be flown onboard a NASA Space Shuttle. Christened the MITRE WPI Space Shuttle Program, it sponsored the development of five educationally meritorious experiments over a period of four years. Although the experiments were ready

Fred J. Looft; Robert C. Labonte; William W. Durgin

1991-01-01

355

Case Study of the Space Shuttle Cockpit Avionics Upgrade Software  

NASA Technical Reports Server (NTRS)

The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

Ferguson, Roscoe C.; Thompson, Hiram C.

2005-01-01

356

Hubble Space Telescope and the space shuttle problems  

NASA Astrophysics Data System (ADS)

Hearings before the Subcommittee on Science, Technology, and Space of the Senate Committee on Commerce, Science, and Transportation are presented on oversight on recent problems with the Hubble space telescope and the space shuttle. The question of testing versus a test's costs, risks, and information yield are discussed as well as, lessons learned in management. The Subcommittee reviewed NASA's quality control procedures, the adequacy of Congressional and Office of Management and Budget support, and government's verification responsibilities. Oral and written testimony from NASA management and pertinent contractors is included.

357

Study of space shuttle environmental control and life support problems  

NASA Technical Reports Server (NTRS)

Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.

Dibble, K. P.; Riley, F. E.

1971-01-01

358

TDRS inside the cargo bay of the Space Shuttle Challenger  

NASA Technical Reports Server (NTRS)

Trick photography was used to show the Tracking Data and Relay Satellite (TDRS) and its inertial upper stage inside the cargo bay of the Space Shuttle Challenger on the launch pad at the Kennedy Space Center.

1983-01-01

359

Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

Meinhold, Anne

2013-01-01

360

Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration  

NASA Technical Reports Server (NTRS)

Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

2009-01-01

361

Modification and updating of the Manned Activity Scheduling System (MASS) for shuttle and shuttle payloads analysis. Volume 2: Space shuttle sortie payload analysis  

NASA Technical Reports Server (NTRS)

Space shuttle operations include a significant number of launches with a sortie laboratory serving as a facility for manned experimentation in space. Planning a program of space experiments for a facility of this type requires that both the composition of the laboratory payload and the schedule of experiment operations for each payload be carefully selected. Experiment operations are investigated using the manned activity scheduling system (MASS). Schedules provided by these models assist in selecting experiment groups that efficiently use the laboratory resources and yield the desired experiment accomplishment at the program level. An alternate use of the MASS models provides for establishing the time-dependent supporting resources required for a specified candidate payload. A procedure for defining and analyzing shuttle sortie payloads was developed. This procedure was then applied to the definition of mixed-discipline experiment payloads for an advanced technology laboratory (ATL) supported by two-and three-man crews. The ATL payloads, including schedules of experiment operations, were defined to realize a high percentage of experiment accomplishment. The study considers the sensitivity of experiment accomplishment rate to variations of system parameters such as crew cross training, crew operations, shuttle and laboratory resources, ground target systems, and operational orbits.

Huyett, R. C.; Ring, R. C.

1973-01-01

362

Student's experiment to fly on third Shuttle mission  

NASA Technical Reports Server (NTRS)

A spaceborne student experiment on insect motion during weightlessness scheduled to fly on the third flight of the space shuttle is described. The experiment will focus on the flight behavior in zero gravity of two species of flying insects with differing ratios of body mass to wing area, the velvetbean caterpillar moth and the honeybee drone. Ten insects of each species will be carried in separate canisters. The crew will remove the canisters from the storage locker and attach them to the mid-deck wall, where the insects will be observed and filmed by a data acquisition camera.

1982-01-01

363

Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center  

NASA Technical Reports Server (NTRS)

Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

1973-01-01

364

Space Shuttle Orbiter Drag Chute Summary  

NASA Technical Reports Server (NTRS)

This paper summarizes the development history and technical highlights of the Space Shuttle Orbiter Drag Chute Program. Data and references are given on the design, development, and testing of the system, plus several interesting operational issues and solutions. The last Shuttle flight was completed in 2011 and all the Orbiters have now become museum pieces. Before all the data from system development and the 86 Orbiter Drag Chute (ODC) operational landings is lost or forgotten, it may be useful to summarize it here and to identify data sources for future reference. Much has been written about various aspects of the program, and this summary has attempted to cite many such references to make available more detailed information. The ODC program was a high-visibility NASA program that afforded the opportunity to thoroughly engineer and test the chute system, far beyond so many of today s tight-budget programs. So the ODC program was extremely informative--it provided a wide scope of information including protective door jettison issues and solutions, wind tunnel data and analyses on chute stability and drag behind a huge and rather blunt forebody, component and system reuse, and chute cleaning methods. Technology and data created have aided several current and past parachute programs, and will continue to do so in the future. The original Orbiter preliminary design included a drag parachute-- it was deleted early to save weight. But after the 1987 Challenger accident and during the program redefinition phase that followed, Astronaut John Young presented a strong case for enhancing landing safety by adding nosegear steering, brake improvements, and reviving the drag chute.

Lowry, Charles H.

2013-01-01

365

Space Shuttle Upgrades Advanced Hydraulic Power System  

NASA Technical Reports Server (NTRS)

Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.

2004-01-01

366

H2O2 space shuttle APU  

NASA Technical Reports Server (NTRS)

A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

1975-01-01

367

An Engineering Look at Space Shuttle and ISS Operations  

NASA Technical Reports Server (NTRS)

This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

Hernandez, Jose M.

2004-01-01

368

Structural Health Monitoring of the Space Shuttle's Wing Leading Edge  

NASA Astrophysics Data System (ADS)

In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

2006-03-01

369

Development of control systems for space shuttle vehicles, volume 1  

NASA Technical Reports Server (NTRS)

Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems.

Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Skelley, E. D.; Stein, G.; Ward, M. D.; Skelton, G. B.; Yore, E. E.; Rupert, J. G.; Phelps, R. K.

1971-01-01

370

Space shuttle navigation analysis. Volume 1: GPS aided navigation  

NASA Technical Reports Server (NTRS)

Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

1980-01-01

371

Space Shuttle probabilistic risk assessment: methodology and application  

Microsoft Academic Search

This paper describes the methodology and processes used for the probabilistic risk assessment of the Space Shuttle vehicle to systematically quantify the risk incurred during a nominal Shuttle mission and rank the risk driving components to allow for a concerted risk and cost reduction effort. This year-long effort represents a development resulting from seven years of application of risk technology

G. Maggio

1996-01-01

372

The corrosion and restoration of Space Shuttle Challenger's flight computers  

Microsoft Academic Search

Shortly after the Space Shuttle Challenger incident on January 28, 1986, IBM Federal Systems Division personnel were requested to formulate and be prepared to implement a data recovery program to access the information retained within the Shuttle's flight computers. These efforts began on March 11, 1987, with retrieval of the onboard computers from 90 feet below the surface of the

P. Schuessler

1988-01-01

373

Verification of JEM Structural Compatibility with the Space Shuttle  

Microsoft Academic Search

The JEM elements are delivered to the ISS on three Shuttle flights and are assembled on orbit subsequently. The verification of JEM structural compatibility with the Space Shuttle was performed to certify its flight readiness. Structural compatibilities are required on weight and center of gravity, stiffness and structural damping, strength, and dynamic clearance. Verification results should be reviewed at several

Masaru Wada; Takayuki Shimoda; Shigeru Imai

2010-01-01

374

Considerations for Life Science experimentation on the Space Shuttle.  

PubMed

The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions. PMID:11537654

Souza, K A; Davies, P; Rossberg Walker, K

1992-10-01

375

Considerations for Life Science experimentation on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.

Souza, K. A.; Davies, P.; Rossberg Walker, K.

1992-01-01

376

President and Mrs. Clinton watch launch of Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

From the roof of the Launch Control Center, U.S. President Bill Clinton and First Lady Hillary Rodham Clinton track the plume and successful launch of Space Shuttle Discovery on mission STS-95. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on the mission.

1998-01-01

377

Liquid Hydrogen Consumption During Space Shuttle Program  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

Partridge, Jonathan K.

2011-01-01

378

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

2001-01-01

379

Materials International Space Station Experiment  

NASA Technical Reports Server (NTRS)

Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

2001-01-01

380

Operational Use of GPS Navigation for Space Shuttle Entry  

NASA Technical Reports Server (NTRS)

The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

Goodman, John L.; Propst, Carolyn A.

2008-01-01

381

Space shuttle SRM interim contract, part 1  

NASA Technical Reports Server (NTRS)

Essential studies and analyses required to integrate the SRM into the booster and overall space shuttle system. Emphasis was placed on the case, nozzle, insulation, and propellant components with resulting performance, weight, and structural load characteristics being generated. Effort conducted during the time period of this contract included studies, analyses, planning, and preliminary design activities. Technical requirements identified in the SRM Project Request for Proposal No. 8-1-4-94-98401 and Thiokol's proposed SRM design (designated Configuration 0) established the basis for this effort. The requirements were evaluated jointly with MSFC and altered where necessary to incorporate new information that evolved after issuance of the RFP and during the course of this interim contract. Revised water impact loads and load distributions were provided based on additional model test data and analytical effort conducted by NASA subsequent to the RFP release. Launch pad peaking loads into the SRM aft skirt were provided which also represented a change from RFP requirements. A modified SRM/External Tank (ET) attachment configuration with new structural load data was supplied by NASA, and direction was received to include a 2 percent inert weight contingency.

1974-01-01

382

Geologic applications of Space Shuttle photography  

NASA Technical Reports Server (NTRS)

Space Shuttle astronauts have used handheld cameras to take about 30,000 photographs of the earth as seen from orbit. These pictures provide valuable, true-color depictions of many geologically significant areas. While the photographs have areal coverages and resolutions similar to the more familiar Landsat MSS and TM images, they differ from the latter in having a wide variety of solar illumination angles and look angles. Astronaut photographs can be used as very small scale aerial photographs for geologic mapping and planning logistical support for field work. Astronaut photography offers unique opportunities, because of the intelligence and training of the on-orbit observer, for documenting dynamic geologic activity such as volcanic eruptions, dust storms, etc. Astronauts have photographed more than 3 dozen volcanic eruption plumes, some of which were not reported otherwise. The stereographic capability of astronaut photography also permits three-dimensional interpretation of geologic landforms which is commonly useful in analysis of structural geology. Astronauts have also photographed about 20 known impact craters as part of project to discover presently unknown examples in Africa, South America, and Australia.

Wood, Charles A.

1989-01-01

383

Space shuttle heat pipe thermal control systems  

NASA Technical Reports Server (NTRS)

Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

Alario, J.

1973-01-01

384

Space Shuttle ET Friction Stir Weld Machines  

NASA Technical Reports Server (NTRS)

NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.

Thompson, Jack M.

2003-01-01

385

Space Shuttle orbiter approach and landing test  

NASA Technical Reports Server (NTRS)

The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

1978-01-01

386

Space shuttle prototype check valve development  

NASA Technical Reports Server (NTRS)

Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

Tellier, G. F.

1976-01-01

387

Loads and low frequency dynamics data base: Version 1.1 November 8, 1985. [Space Shuttles  

NASA Technical Reports Server (NTRS)

Structural design data for the Shuttle are presented in the form of a data base. The data can be used by designers of Shuttle experiments to assure compliance with Shuttle safety and structural verification requirements. A glossary of Shuttle design terminology is given, and the principal safety requirements of Shuttle are summarized. The Shuttle design data are given in the form of load factors.

Garba, J. A. (editor)

1985-01-01

388

A guide for space lawyers to understanding the NASA Space Shuttle and the ESA Spacelab  

NASA Technical Reports Server (NTRS)

An investigation is conducted concerning the appropriate characterization of the Space Shuttle, taking into account appearance, functions, and purpose. It is concluded that in terms of purely technological criteria, the Shuttle can best be described as an 'aerospace vehicle'. Questions related to the legal characterization of the Shuttle are considered. On the basis of the Shuttle's purpose as the most important criterion, it is suggested that the Shuttle should be considered basically as a 'spacecraft', 'space vehicle', or 'space object'. Attention is given to the Shuttle's relationship to multilateral space conventions, the possibility that the Shuttle could be legally defined as an 'aircraft' under certain circumstances, the Shuttle and the Chicago Convention, and the status of Spacelab as only one part of a U.S. flag spacecraft.

Sloup, G. P.

1977-01-01

389

The Shuttle Imaging Spectrometer Experiment (SISEX)  

NASA Astrophysics Data System (ADS)

The concept of the imaging spectrometer is becoming established as a major new thrust in remote sensing of the Earth. For several years, JPL has operated the Airborne Imaging Spectrometer on a NASA C-130; this instrument has demonstrated the direct identification of surface materials using imaging spectrometry. An advanced aircraft instrument, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), began operation on a NASA U-2 in 1987. The Shuttle Imaging Spectrometer Experiment (SISEX) was conceived as the next step in the sequence, and would provide a relatively inexpensive demonstration of the concept in Earth orbit. This paper will describe the design and development status of SISEX, and the status of the enabling technology.

Herring, Mark

1987-01-01

390

The Shuttle Imaging Spectrometer Experiment (SISEX)  

NASA Astrophysics Data System (ADS)

The concept of the imaging spectrometer is becoming established as a major new thrust in remote sensing of the earth. For several years, JPL has operated the airborne imaging spectrometer on a NASA C-130; this instrument has demonstrated the direct identification of surface materials using imaging spectrometry. An advanced aircraft instrument, the airborne visible/infrared imaging spectrometer (AVIRIS), began operation on a NASA U-2 in 1987. The Shuttle Imaging Spectrometer Experiment (SISEX) was conceived as the next step in the sequence, and would provide a relatively inexpensive demonstration of the concept in earth orbit. This paper describes the design and development status of SISEX and the status of the enabling technology.

Herring, Mark

391

Science and technology results from the OSS-1 payload on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The OSS-1 Payload of nine experiments was carried on the STS-3 Space Shuttle flight in March of 1982. The OSS-1 Payload contained four instruments that evaluated specific aspects of the Orbiter's environment, including the levels of particulate, gaseous and electromagnetic emissions given off by the Orbiter, and the interactions between the Orbiter and the surrounding plasma. In addition to these environmental observations, these instruments performed scientific investigations in astronomy and in space plasma physics, including active experiments in electron beam propagation. Other experiments were in the areas of solar physics, plant growth, micrometeorite studies and the technology of actively controlled heat pipes. We present the initial results from these experiments, with some implications of these results for future operation of space experiments from the Shuttle payload bay. One major result was the unexpected discovery of a faint surface-induced optical glow created near the Shuttle surfaces by impacts of ambient atmospheric atoms and molecules.

Chipman, E. G.

1983-01-01

392

Science and technology results from the OSS-1 Payload on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The OSS-1 Payload of nine experiments was carried on the STS-3 Space Shuttle flight in March of 1982. The OSS-1 Payload contained four instruments that evaluated specific aspects of the Orbiter's environment, including the levels of particulate, gaseous and electromagnetic emissions given off by the Orbiter, and the interactions between the Orbiter and the surrounding plasma. In addition to these environmental observations, these instruments performed scientific investigations in astronomy and in space plasma physics, including active experiments in electron beam propagation. Other experiments were in the areas of solar physics, plant growth, micrometeorite studies and the technology of actively controlled heat pipes. A description is given of the initial results from these experiments, with some implications of these results for future operation of space experiments from the Shuttle payload bay. One major result was the unexpected discovery of a faint surface-induced optical glow created near the Shuttle surfaces by impacts of ambient atmospheric atoms and molecules.

Chipman, E.

1982-01-01

393

Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle  

NASA Technical Reports Server (NTRS)

The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

1971-01-01

394

14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.  

Code of Federal Regulations, 2014 CFR

...and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander 1214.702...

2014-01-01

395

14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.  

Code of Federal Regulations, 2013 CFR

...and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander 1214.702...

2013-01-01

396

14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.  

Code of Federal Regulations, 2012 CFR

...and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander 1214.702...

2012-01-01

397

14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.  

Code of Federal Regulations, 2011 CFR

...and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander 1214.702...

2011-01-01

398

Latent Virus Reactivation in Space Shuttle Astronauts  

NASA Technical Reports Server (NTRS)

Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

2011-01-01

399

Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight  

NASA Technical Reports Server (NTRS)

Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.

OFarrell, J. M.; Rieckhoff, T. J.

2011-01-01

400

Shuttle considerations for the design of large space structures  

NASA Technical Reports Server (NTRS)

Shuttle related considerations (constraints and guidelines) are compiled for use by designers of a potential class of large space structures which are transported to orbit and, deployed, fabricated or assembled in space using the Space Shuttle Orbiter. Considerations of all phases of shuttle operations from launch to ground turnaround operations are presented. Design of large space structures includes design of special construction fixtures and support equipment, special stowage cradles or pallets, special checkout maintenance, and monitoring equipment, and planning for packaging into the orbiter of all additional provisions and supplies chargeable to payload. Checklists of design issues, Shuttle capabilities constraints and guidelines, as well as general explanatory material and references to source documents are included.

Roebuck, J. A., Jr.

1980-01-01

401

Space shuttle auxiliary power unit study, phase 2  

NASA Technical Reports Server (NTRS)

A study was performed to establish the preliminary design of the space shuttle auxiliary power unit. Details of the analysis, optimizations, and design of the components, subsystems and systems are presented.

Binsley, R. L.; Krause, A. A.; Maddox, R. D.; Marcy, R. D.; Siegler, R. S.

1972-01-01

402

Space LOX vent system. [for space shuttle orbiter  

NASA Technical Reports Server (NTRS)

This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

Erickson, R. C.

1975-01-01

403

Space transportation system shuttle turnabout analysis report  

NASA Technical Reports Server (NTRS)

The progress made and the problems encountered by the various program elements of the shuttle program in achieving the 160 hour ground turnaround goal are presented and evaluated. Task assessment time is measured against the program allocation time.

Reedy, R. E.

1979-01-01

404

Space shuttle phase B study plan  

NASA Technical Reports Server (NTRS)

Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

Hello, B.

1971-01-01

405

Mechanics, impact loads and EMG on the space shuttle treadmill  

NASA Technical Reports Server (NTRS)

The ability of astronauts to egress the Shuttle, particularly during emergency conditions, is likely to be reduced following physiological adaptation in space. It is well established that effective application of exercise counter measures requires the exercise to be applied specifically. The problem is that objective scientific evidence is not available to validate the Space Shuttle treadmill with respect to in its role in diminishing the deleterious effects of a prolonged exposure to the microgravity environment.

Squires, William G.

1990-01-01

406

Research study on antiskid braking systems for the space shuttle  

NASA Technical Reports Server (NTRS)

A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

1973-01-01

407

Space shuttle solid rocket booster redesign and testing  

NASA Technical Reports Server (NTRS)

The redesigned solid rocket motor of the Space Shuttle is described. Improvements over the model that led to the loss of the Space Shuttle Challenger are outlined. Scale and full-size tests carried out to verify the quality of the redesign are described. A unique feature of the test program is the introduction of deliberate flaws into some test articles. Post-flight evaluation of the redesigned boosters show excellent results.

Mitchell, R. E.

1989-01-01

408

Interaction of the space shuttle control system with pogo  

NASA Technical Reports Server (NTRS)

The asymmetric configuration of the space shuttle results in coupled pitch and axial vibration modes. This coupling results in interaction between the pogo and control systems. A detailed model of representative space shuttle structure, feedline, control, and engine systems revealed the coupled system may be unstable even though the pogo and control systems are stable individually. A method is developed for predicting the coupled system stability in terms of the stability of the separate systems.

Hopkins, A. S.; Davis, W. F.

1972-01-01

409

Atmospheric constraint statistics for the Space Shuttle mission planning  

NASA Technical Reports Server (NTRS)

The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constrants for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing.

Smith, O. E.; Batts, G. W.; Willett, J. A.

1982-01-01

410

Atmospheric constraint statistics for the Space Shuttle mission planning  

NASA Technical Reports Server (NTRS)

The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constraints for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch operations, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing. Previously announced in STAR as N82-33417

Smith, O. E.

1983-01-01

411

Ignition Transient Calculations in the Space Shuttle Solid Rocket Motor  

NASA Technical Reports Server (NTRS)

The work presented is part of an effort to develop a multidimensional ignition transient model for large solid propellant rocket motors. On the Space Shuttle, the ignition transient in the slot is induced when the igniter, itself a small rocket motor, is fired into the head-end portion of the main rocket motor. The computational results presented in this paper consider two different igniter configurations. The first configuration is a simulated Space Shuttle RSRM igniter which has one central nozzle that is parallel to the centerline of the motor. The second igniter configuration has a nozzle which is canted at an angle of 45 deg from the centerline of the motor. This paper presents a computational fluid dynamic (CFD) analyses of certain flow field characteristics inside the solid propellant star grain slot of the Space Shuttle during the ignition transient period of operation for each igniter configuration. The majority of studies made to date regarding ignition transient performance in solid rocket motors have concluded that the key parameter to be determined is the heat transfer rate to the propellant surface and hence the heat transfer coefficient between the gas and the propellant. In this paper the heat transfer coefficients, pressure and velocity distributions are calculated in the star slot. In order to validate the computational method and to attempt to establish a correlation between the flow field characteristics and the heat transfer rates a series of cold flow experimental investigations were conducted. The results of these experiments show excellent qualitative and quantitative agreement with the pressure and velocity distributions obtained from the CFD analysis. The CFD analysis utilized a classical pipe flow type correlation for the heat transfer rates. The experimental results provide an excellent qualitative comparison with regard to spatial distribution of the heat transfer rates as a function of nozzle configuration and igniter pressure. The results indicate that from a quantitative point of view that the pipe flow correlation gives reasonably good results. Furthermore, there appears to be a direct correlation between igniter pressure and an average Reynolds number in the star grain slot. This may lead to a simple method for modifying the convection heat transfer correlation. Calculated results of pressure-vs-time for the first 200 msec of motor firing of the Space Shuttle RSRM support the trends shown for the heat transfer rate comparisons between the cold flow CFD and experimental data.

Jenkins, Rhonald M.; Foster, Winfred A., Jr.

1993-01-01

412

Ignition transient calculations in the Space Shuttle solid rocket motor  

NASA Astrophysics Data System (ADS)

The work presented is part of an effort to develop a multidimensional ignition transient model for large solid propellant rocket motors. On the Space Shuttle, the ignition transient in the slot is induced when the igniter, itself a small rocket motor, is fired into the head-end portion of the main rocket motor. The computational results presented in this paper consider two different igniter configurations. The first configuration is a simulated Space Shuttle RSRM igniter which has one central nozzle that is parallel to the centerline of the motor. The second igniter configuration has a nozzle which is canted at an angle of 45 deg from the centerline of the motor. This paper presents a computational fluid dynamic (CFD) analyses of certain flow field characteristics inside the solid propellant star grain slot of the Space Shuttle during the ignition transient period of operation for each igniter configuration. The majority of studies made to date regarding ignition transient performance in solid rocket motors have concluded that the key parameter to be determined is the heat transfer rate to the propellant surface and hence the heat transfer coefficient between the gas and the propellant. In this paper the heat transfer coefficients, pressure and velocity distributions are calculated in the star slot. In order to validate the computational method and to attempt to establish a correlation between the flow field characteristics and the heat transfer rates a series of cold flow experimental investigations were conducted. The results of these experiments show excellent qualitative and quantitative agreement with the pressure and velocity distributions obtained from the CFD analysis. The CFD analysis utilized a classical pipe flow type correlation for the heat transfer rates. The experimental results provide an excellent qualitative comparison with regard to spatial distribution of the heat transfer rates as a function of nozzle configuration and igniter pressure. The results indicate that from a quantitative point of view that the pipe flow correlation gives reasonably good results. Furthermore, there appears to be a direct correlation between igniter pressure and an average Reynolds number in the star grain slot. This may lead to a simple method for modifying the convection heat transfer correlation. Calculated results of pressure-vs-time for the first 200 msec of motor firing of the Space Shuttle RSRM support the trends shown for the heat transfer rate comparisons between the cold flow CFD and experimental data.

Jenkins, Rhonald M.; Foster, Winfred A., Jr.

1993-07-01

413

Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center  

NASA Technical Reports Server (NTRS)

This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1996-01-01

414

Space vehicle acoustics prediction improvement for payloads. [space shuttle  

NASA Technical Reports Server (NTRS)

The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

Dandridge, R. E.

1979-01-01

415

Shuttle/Agena study. Annex C: Space shuttle candidate insulator/propellant  

NASA Technical Reports Server (NTRS)

The problem associated with the absorption of space tug propellants by the thermal insulation of the space shuttle orbiter during an emergency propellant dump was investigated. A test program was conducted to determine the compatibility of two space shuttle candidate insulation samples with earth-storable propellants. The propellant combinations used were placed in contact with the thermal insulation for two hours. Following exposure to propellants, the insulation samples were heated to 850 F for five minutes. A thermal conductivity index was determined before and after testing to evaluate possible degradation of sample chemical conductivity.

1972-01-01

416

Replication of Space-Shuttle Computers in FPGAs and ASICs  

NASA Technical Reports Server (NTRS)

A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.

Ferguson, Roscoe C.

2008-01-01

417

STS-98 Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is revealed after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room is an environmentally controlled area that provides entry for the crew into Atlantis'''s cockpit. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

2001-01-01

418

Tailoff thrust and impulse imbalance between pairs of Space Shuttle solid rocket motors  

NASA Technical Reports Server (NTRS)

The tailoff thrust and impulse imbalance between pairs of solid rocket motors is of particular interest for the Space Shuttle Vehicle because of the potential control problems that exist with this asymmetric configuration. Although a similar arrangement of solid rocket motors was utilized for the Titan Program, they produced less than one-half the thrust level of the Space Shuttle at web action time, and the overall vehicle was symmetric. Since the Titan Program does provide the most applicable actual test data, 23 flight pairs were analyzed to determine the actual tailoff thrust and impulse imbalance experienced. The results were scaled up using the predicted web action time thrust and tailoff time to arrive at values for the Space Shuttle. These values were then statistically treated to obtain a prediction of the maximum imbalance one could expect to experience during the Shuttle Program.

Jacobs, E. P.; Yeager, J. M.

1975-01-01

419

Space Shuttle solid rocket motor slag expulsion mechanisms  

NASA Technical Reports Server (NTRS)

A 13 psi pressure perturbation occurred at approximately 68 seconds on the right Redesigned Solid Rocket Motor (RSRM) during the STS-54 space shuttle mission. While pressure perturbations are a normal characteristic of RSRM operation, the magnitude of the STS-54 perturbation and the resulting thrust imbalance between the left and right motors was outside of flight experience. A joint Marshall Space Flight Center (MSFC) and Thiokol Corporation (RSRM manufacturer) team soon narrowed the probable cause to a temporary nozzle restriction due to slag expulsion. In support of the team, Rockwell Aerospace performed fluid finite element simulations and vehicle flight dynamic correlations to investigate possible slag expulsion mechanisms responsible for pressure perturbations. Results of the simulations and analyses provided evidence that the combination of flight induced accelerations acting on accumulated slag and nozzle vectoring were the most probable cause of RSRM slag expulsion.

Hopson, Charles B.

1995-01-01

420

Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

421

STS-81 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-81 was the fifth of nine planned missions to dock with the Russian Mir Space Station and the fourth crewmember transfer mission. The double Spacehab module was carried for the second time, and it housed experiments that were performed by the crew and logistics equipment that was transferred to the Mir.

Fricke, Robert W., Jr.

1997-01-01

422

Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses  

NASA Technical Reports Server (NTRS)

Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

1995-01-01

423

Space Shuttle Orbiter waste collection system conceptual study  

NASA Technical Reports Server (NTRS)

The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.

Abbate, M.

1985-01-01

424

Space Shuttle Columbia Aging Wiring Failure Analysis  

NASA Technical Reports Server (NTRS)

A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

McDaniels, Steven J.

2005-01-01

425

Air quality assessments for two recent Space Shuttle flights.  

PubMed

Degradation of air quality in the Space Shuttle environment through chemical contamination and high solid-particulate levels may affect crew performance and health. A comprehensive study of the Shuttle atmosphere was undertaken during the STS-40 (Spacelab Space Life Sciences 1) and STS-42 (Spacelab International Microgravity Laboratory 1) missions to determine the effectiveness of contaminant control procedures by measuring concentrations of volatile organic compounds and analyzing particulate matter trapped on air filters. Analysis of volatile contaminants showed that the air was toxicologically safe to breathe during both missions with the exception of one period during STS-40 when the Orbiter Refrigerator/Freezer was releasing noxious gases into the middeck. Chemical analyses of selected particles collected on air filters facilitated their positive identification. Trace amounts of rat hair and food particles were found in the STS-40 Spacelab filters; a trace amount of soilless plant-growth media was detected in the STS-42 Spacelab filter. The low levels of particles released from these Spacelab experiments indicate that containment measures were effective. PMID:8280047

Matney, M L; Boyd, J F; Covington, P A; Leano, H J; Limero, T F; James, J T

1993-11-01

426

Expert systems applications for space shuttle payload integration automation  

NASA Technical Reports Server (NTRS)

Expert systems technologies have been and are continuing to be applied to NASA's Space Shuttle orbiter payload integration problems to provide a level of automation previously unrealizable. NASA's Space Shuttle orbiter was designed to be extremely flexible in its ability to accommodate many different types and combinations of satellites and experiments (payloads) within its payload bay. This flexibility results in differnet and unique engineering resource requirements for each of its payloads, creating recurring payload and cargo integration problems. Expert systems provide a successful solution for these recurring problems. The Orbiter Payload Bay Cabling Expert (EXCABL) was the first expert system, developed to solve the electrical services provisioning problem. A second expert system, EXMATCH, was developed to generate a list of the reusable installation drawings available for each EXCABL solution. These successes have proved the applicability of expert systems technologies to payload integration problems and consequently a third expert system is currently in work. These three expert systems, the manner in which they resolve payload problems and how they will be integrated are described.

Morris, Keith

1988-01-01

427

Simulation of Space Shuttle neutron measurements with FLUKA.  

PubMed

FLUKA is an integrated particle transport code that has enhanced multigroup low-energy neutron transport capability similar to the well-known MORSE transport code. Gammas are produced in groups but many important individual lines are specifically included, and subsequently transported by the main FLUKA routines which use a modified version of EGS4 for electromagnetic (EM) transport. Recoil protons are also transported by the primary FLUKA transport simulation. The neutron cross-section libraries employed within FLUKA were supplied by Giancarlo Panini (ENEA, Italy) based upon the most recent data from JEF-1, JEF-2.2, ENDF/B-VI, JENDL-3, etc. More than 60 different materials are included in the FLUKA databases with temperature ranges including down to cryogenic temperatures. This code has been used extensively to model the neutron environments near high-energy physics experiment shielding. A simulation of the Space Shuttle based upon a spherical aluminum equivalent shielding distribution has been performed with reasonable results. There are good prospects for extending this calculation to a more realistic 3-D geometrical representation of the Shuttle including an accurate representation of its composition, which is an essential ingredient for the improvement of the predictions. A proposed project to develop a combined analysis and simulation package based upon FLUKA and the analysis infrastructure provided by the ROOT software is under active consideration. The code to be developed for this project will be of direct application to the problem of simulating the neutron environment in space, including the albedo effects. PMID:11855415

Pinsky, L; Carminati, F; Ferrari, A

2001-06-01

428

Enhanced radar backscatter from space shuttle exhaust in the ionosphere  

NASA Astrophysics Data System (ADS)

Enhancements in the backscatter from the 430-MHz radar at Arecibo were recorded during the Spacelab 2 mission when the space shuttle orbital maneuver system (OMS) engines were fired in the ionosphere. The modifications in the backscatter could have been the result of (1) compression of the electrons to produce higher densities, (2) generation of ion acoustic waves, (3) variations in the electron to ion temperature ratio, (4) enhanced scatter cross section by charging of ice particles in the exhaust, or (5) excitation of dust acoustic waves. Rapid cooling and condensation of the exhaust are important in determining the scattering properties of the modified ionosphere. A dusty plasma is formed when electrons are attached to ice particles in the exhaust plume. The calculated neutral temperature inside the exhaust plume is 120 K. Charge exchange between ambient O+ and the cold exhaust molecules yields low-temperature ion beams that excite weakly damped, ion acoustic waves. The enhanced radar echoes are probably the result of scatter from these waves, but the effects of the dusty plasma may be important. During future experiments, the space shuttle will fire the OMS engines over radars located at Arecibo, Puerto Rico; Jicarmarca, Peru; or Kwajalein, Marshall Islands. Measurements of the spectra from these radars will provide the means to distinguish between the various backscatter processes.

Bernhardt, P. A.; Ganguli, G.; Kelley, M. C.; Swartz, W. E.

1995-1