Note: This page contains sample records for the topic space shuttle experiment from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

SKIRT Space Shuttle glow experiment  

NASA Technical Reports Server (NTRS)

This paper describes a spectrometer/radiometer experiment to obtain infrared, visible, and ultraviolet measurements of Space Shuttle glow. The payload, Spacecraft Kinetic Infrared Test (SKIRT), is a cryogenic circular variable filter infrared spectrometer with a number of infrared, visible, and ultraviolet radiometers covering the spectral range of 0.2-5.4 microns and 9.9-10.3 microns. It will measure Shuttle glow as a function of mission elapsed time, orbiter attitude, temperature, and orbiter events such as thruster firings. The measured data should have sufficient spectral resolution and sensitivity to identify molecular species contributing to Shuttle glow emissions. SKIRT is manifested on STS-39.

Ahmadjian, M.; Jennings, D. E.; Mumma, M. J.; Green, B. D.; Dix, B. D.; Russell, R. W.

1992-01-01

2

Space Shuttle Experiments Take Flight.  

ERIC Educational Resources Information Center

Describes a primarily volunteer project that was developed with private industry to contribute to the research on space-grown vegetables and to promote science as a career. Focuses on the effects of microgravity and space travel on the germination and growth of plants. (DDR)

Mohler, Robert R. J.

1997-01-01

3

Requirements for space shuttle scatter radar experiments  

NASA Technical Reports Server (NTRS)

The feasibility of carrying out scatter radar experiments on the space shuttle was analyzed. Design criteria considered were the required average transmitter power, frequency resolution, spatial resolution, and statistical accuracy. Experiments analyzed were measurement of the naturally enhanced plasma line and the ion component of the incoherent scatter spectrum, and the plasma line artificially enhanced by an intense HF radio wave. The ion component measurement does not appear feasible, while the other two appear reasonable for short ranges only.

Harker, K. J.

1975-01-01

4

Requirements for Space Shuttle incoherent scatter experiments  

NASA Technical Reports Server (NTRS)

The feasibility of carrying out incoherent-scatter experiments on the Space Shuttle has been analyzed. Design criteria considered were the required average transmitter power, frequency resolution, spatial resolution, and statistical accuracy. Experiments analyzed were measurement of the naturally enhanced plasma line and the ion component of the incoherent-scatter spectrum, as well as the plasma line artificially enhanced by an intense HF radiowave. The ion-component measurement does not appear feasible, while the other two appear reasonable for short ranges only.

Harker, K. J.

1976-01-01

5

Space shuttle/mesoscale lightning experiment  

NASA Technical Reports Server (NTRS)

A payload integration plan (PIP) is now being developed with Johnson Space Center integration personnel which covers management, structural thermal, electrical power/avionics, training, ground operations, safety requirements, etc., in support of this experiment. If a Shuttle flight can be identified, researchers hope to conduct the experiment in the late summer or fall of 1985. Some preliminary TV lightning data has been collected by Shuttle crews on 41D and 51D and researchers are doing an analysis of it. Additional flights will be conducted to obtain data on Mesoscale Lightning Observations. Researchers will continue to study how to improve the data collection using the onboard TV cameras. By more interaction with the crews who have used the TV camera to obtain TV of lightning, they are planning to optimize the crew time and have better TV camera operations management to produce more useful data. As the crews are better trained in the use of the gain control settings and/or camera iris operations, the quality of the TV data will be improved.

Vaughan, O. H., Jr.; Vonnegut, B.; Brook, M.

1985-01-01

6

Analysis of microgravity space experiments Space Shuttle programmatic safety requirements  

NASA Technical Reports Server (NTRS)

This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

Terlep, Judith A.

1996-01-01

7

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

8

Space Shuttle.  

National Technical Information Service (NTIS)

The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent a...

1974-01-01

9

Space shuttle recommendations based on aircraft maintenance experience  

NASA Technical Reports Server (NTRS)

Space shuttle design recommendations based on aircraft maintenance experience are developed. The recommendations are specifically applied to the landing gear system, nondestructive inspection techniques, hydraulic system design, materials and processes, and program support.

Spears, J. M.; Fox, C. L.

1972-01-01

10

NASDA aquatic animal experiment facilities for Space Shuttle and ISS.  

PubMed

National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). PMID:12530375

Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

2002-01-01

11

Large area emulsion chamber experiments for the Space Shuttle  

NASA Technical Reports Server (NTRS)

Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

Parnell, T. A.

1985-01-01

12

Project Explorer - Student experiments aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.

Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.

1979-01-01

13

Battery selection for Space Shuttle experiments  

NASA Technical Reports Server (NTRS)

This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

Francisco, David R.

1993-01-01

14

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

15

Space Shuttle  

NASA Technical Reports Server (NTRS)

A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

1975-01-01

16

Space shuttle  

NASA Technical Reports Server (NTRS)

The transportation cost associated with space materials processing were studied to determine the feasibility of space manufacturing. The assumptions use to determining the cost estimates for a 12 year planning period are listed, and the orbitor is described in terms of payloads. Shuttle operational costs, ground operational costs, and nonrecurring investment and development costs were analyzed.

1975-01-01

17

Forced Forward Smoldering Experiments Aboard The Space Shuttle  

NASA Technical Reports Server (NTRS)

Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity data to determine the effect of gravity on smolder.

Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.

2003-01-01

18

Atmospheric science experiments applicable to Space Shuttle Spacelab missions  

NASA Technical Reports Server (NTRS)

The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: (1) spatial structure of mesoscale cloud and precipitation systems, (2) lightning and storm development, and (3) cyclone intensification over oceanic regions. Examples of space sensors availab le to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

Wilson, G. S.; Christian, H. J., Jr.; Fichtl, G. H.; Vaughan, W. W.; Goodman, S. J.; Robertson, F. R.

1984-01-01

19

Space flight experience with the Shuttle Orbiter control system  

NASA Technical Reports Server (NTRS)

Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

Cox, K. J.; Daly, K. C.; Hattis, P. D.

1983-01-01

20

Use of the Space Shuttle for communications and navigation experiments  

NASA Technical Reports Server (NTRS)

It is seen that a Shuttle laboratory will provide a facility for meeting the continuing need for planning frequency and orbit utilization and specialized radio interference measurements. The Shuttle could be used for placing communications and navigation satellites into the desired orbit, and also for conducting laser communications tests with the aim of developing the required technology and acquisition techniques for space-to-space and space-to-ground telecommunications. Other uses include the proof-testing of large spacecraft antenna structures and their erection mechanisms, and the testing of high-voltage high-current communications satellite components and subsystems.

Marsten, R. B.

1973-01-01

21

Space shuttle electromagnetic environment experiment. Phase A: Definition study  

NASA Technical Reports Server (NTRS)

A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

1974-01-01

22

Simulation of an experiment pointing system for the space shuttle  

NASA Technical Reports Server (NTRS)

The pointing and control of experiments during sortie missions are examined from the standpoint of accuracy and performance. The effect of gimbal characteristics, pallet stiffness, and variation in the servo control loop are described. Simulation results are shown for a number of pointing options under the disturbing influences of man motion, thruster firings, and experiment operations. One option of particular interest is the suspended pallet which offers the possibility of high accuracy pointing of very large payloads without using conventional gimbals. The pallet is suspended within the payload bay by nonrigid attachments such as springs, thereby isolating experiments from most shuttle disturbances. Control moment gyros apply torques directly to the pallet to maintain pointing accuracy within the arc second range. Spring torques constrain shuttle attitude so thruster operation is not required. The suspended pallet approach will meet the base stability requirements of any sortie experiment and offers the possibility of a standardized low weight, low cost alternative to gimbaled mounts.

Nicaise, P. D.

1973-01-01

23

Early experiments in charged particle beams from the Space Shuttle  

NASA Technical Reports Server (NTRS)

Characteristics of studies on board the Shuttle involving the interaction of particle beams with the atmosphere and the ionosphere, and the effects of the beams on the electrical potential of the platform, are discussed. Noting that the Shuttle allows greater weight and power demands by scientific payloads than previous satellite launches, the OSS-1 Vehicle Charging and Potential experiment and the Spacelab 1 Particle Accelerator and Phenomena Induced by Charged Particle Beams are described. Instrumentation details are provided, including charge and current probes, the Spherical Retarding Potential Analyzer, the Fast Pulse Electron Generator, and digital control and interface units. The SEPAC equipment, which comprises an electron beam accelerator, and MPD plasma jet, and diagnostic units are detailed, and operating procedures and experiment objectives are outlined.

Raitt, W. J.; Banks, P. M.; Williamson, P. R.; Baker, K. D.; Obayashi, T.; Burch, J. L.

1982-01-01

24

Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

1983-01-01

25

Space shuttle electromagnetic environment experiment. Phase A: Definition study  

NASA Technical Reports Server (NTRS)

Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.

Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.

1976-01-01

26

Experiments with suspended cells on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Spaceflight experiments since 1981 have demonstrated that certain cell functions are altered by micro-g. Biophysical models suggest that cell membranes and organelles should not be affected directly by gravity, however, the chemical microenvironment surrounding the cell and molecular transport could be altered by reduced gravity. Most experiments have used suspended live cells in small chambers without stirring or medium exchange. Flight results include increased attachment of anchorage-dependent human cells to collagen coated microcarriers, reduced secretion of growth hormone from pituitary cells, decreased mitogenic response of lymphocytes, increased Interferon-alpha by lymphocytes, increased Interleukin-1 and Tumor Necrosis Factor secretion by macrophages. Related experiments on cells immediately postflight and on procaryotic cells have shown significant changes in secretory capacity, cell proliferation, differentiation and development. Postulated mechanism include altered cell-cell interactions, altered calcium ion transport, effects on cell cytoskeleton, transport of transmitters and interactions with receptors. The discussion includes use of new molecular methods, considerations for cell environmental control and a preview of several experiments planned for the Shuttle and Spacelab flights to study the basic effects of microgravity on cellular physiology and potential interactions of spaceflight with radiation damage and cellular repair mechanisms.

Morrison, D. R.; Chapes, S. K.; Guikema, J. A.; Spooner, B. S.; Lewis, M. L.

1992-01-01

27

Space Shuttle separation mechanisms  

NASA Technical Reports Server (NTRS)

The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work to be accomplished before an operational system becomes a reality.

Rogers, W. F.

1979-01-01

28

Space shuttle separation mechanisms  

NASA Technical Reports Server (NTRS)

The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the Orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work required to produce an operational system.

Rogers, W. F.

1978-01-01

29

Space Shuttle.  

ERIC Educational Resources Information Center

Presents an elementary teaching unit on NASA's space program, including teacher background information, suggested student activities, and a list of resources. Appended is a transcript of an interview conducted by elementary children with astronaut candidate Sherwood (Woody) Spring. (SJL)

Bierly, Ken; Dalheim, Mary

1981-01-01

30

Tank pressure control experiment on the space shuttle  

NASA Technical Reports Server (NTRS)

The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

1989-01-01

31

Space Shuttle Debris Transport  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

Gomez, Reynaldo J., III

2010-01-01

32

Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments  

NASA Technical Reports Server (NTRS)

Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

DeBell, L.; Paulsen, A.; Spooner, B.

1992-01-01

33

Space shuttle descent flight control design requirements and experiments Learned, Pt. 1 p 617-628  

NASA Technical Reports Server (NTRS)

Some of the lessons learned during the development of the Space Shuttle descent flight control system (FCS) are reviewed. Examples confirm the importance for requirements definition, systems level analyses, and testing. In sounding these experiences may have implication for future designs or suggest the discipline required in this engineering art.

Kafer, G.; Wilson, D.

1983-01-01

34

The Space Shuttle  

NASA Technical Reports Server (NTRS)

As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

Moffitt, William L.

2003-01-01

35

Space shuttle main engine monitoring experience and advanced monitoring systems development  

NASA Technical Reports Server (NTRS)

Advanced space transportation systems must provide improved availability, reliability, safety, and reduced cost in order to make a new, more vigorous level of space activity economically feasible. Earth-to-Orbit (ETO) propulsion monitoring systems are a major factor in progress toward these improvements, and in the success of current systems. Operational experience with the Space Shuttle Main Engine (SSME), the first reusable ETO rocket engine, is valuable for examining current rocket engine monitoring capability and technology developments. Here, Space Shuttle Main Engine (SSME) monitoring practice and experience are surveyed. Unique aspects of rocket engine mission requirements are highlighted to provide improved understanding of engine monitoring practices and technology needs. Current ETO engine transportation systems mission needs are outlined. With this foundation, the techniques and components addressed within current technology programs are discussed to complete a picture of ETO propulsion monitoring status and development.

Cikanek, Harry A.

1988-01-01

36

The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle  

NASA Technical Reports Server (NTRS)

The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.

Cipriano, Leonard F.; Ballard, Rodney W.

1988-01-01

37

System level verification applying the Space Shuttle experience to the Space Station  

NASA Technical Reports Server (NTRS)

The applicability of the verification process for the Shuttle guidance, navigation and control (GNC) and data management system (DMS) for the development of the Space Station are described. Shuttle avionics hardware/software integration was delayed to finalize the hardware design before detailed definition and testing of the software. A block diagram is provided of the flight simulation laboratory used to test the GNC programs before flight data were available. The Station will have distributed computers, unlike the Orbiter, and will only be assembled fully in space. Standardized integration simulation test equipment are being defined to guide the development of hardware and software. The simulation capability may become part of nominal in-flight operations to initiate new capabilities as they are added to the Station. The Station GNC and DMS systems development will be somewhat simplified relative to those of the Shuttle because ascent and reentry will not be considered for the Station.

Gilbert, David W.

1986-01-01

38

Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments.  

National Technical Information Service (NTIS)

Southern Research Institute tested the feasibility of making biodegradable, time-release, pharmaceutical microspheres in space. Based on experiments conducted on Space Shuttle Discovery (Mission STS-53: December, 1992), we modified, built, safety tested, ...

T. R. Tice R. L. Holl G. A. Winchester

1996-01-01

39

Preliminary design of two Space Shuttle fluid physics experiments  

NASA Technical Reports Server (NTRS)

The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

Gat, N.; Kropp, J. L.

1984-01-01

40

Flight hardware and tele-operations supporting the Isothermal Dendritic Growth Experiment aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

The Isothermal Dendritic Growth Experiment, which is expected to fly on the Space Shuttle to study dendritic solidification of molten metals such as iron and aluminum, is examined. Succinonitrile and pivalic acid are substitued for metals to permit visualiztion of dendritic growth. The technical features of the apparatus are described, including temperature control, the photographic system, and slow scan television. The teleoperations techniques for the experiment are discussed in detail.

Winsa, E.; Kraft, G.; Glicksman, M.; Miller, D.; Abramczyk, R.

1989-01-01

41

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

42

Arc discharge convection studies: A Space Shuttle experiment  

NASA Technical Reports Server (NTRS)

Three mercury vapor arc lamps were tested in the microgravity environment of one of NASA's small, self-contained payloads during STS-41B. A description of the payload structural design, photographic and optical systems, and electrical system is provided. Thermal control within the payload is discussed. Examination of digital film data indicates that the 175 watt arc lamp has a significant increase in light output when convection is removed in the gravity-free environment of space.

Bellows, A. H.; Feuersanger, A. E.

1984-01-01

43

Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

1992-01-01

44

Space Shuttle cloud detection and earth feature classification experiment  

NASA Technical Reports Server (NTRS)

The Feature Identification and Location Experiment (FILE) that is being designed for the detection and classification of four primary earth features (water, vegetation, bare land, and the clouds-snow-ice class) is described. Consideration is given to the FILE classification technology concept and the FILE instrument, which will use two solid-state CCD cameras operating at 0.65 and 0.85-micron center frequency wavelengths, with the camera outputs being functions of the earth surface material radiance. The classification is based on camera output radiance ratio values. The preliminary analysis of the data collected on the STS 41-G mission is discussed. The results demonstrated the suitability of using the two-channel-ratio detection technology and a simple (y = mx) algorithm to autonomously classify the four earth surface features. The technology is especially attractive as a cloud sensor, where, in advance of or during a mission, a threshold value for cloud cover percentage can be programmed and/or adaptively modified for use in the control of other remote sensors.

Sivertson, W. E., Jr.

1986-01-01

45

Space Shuttle management issues  

NASA Technical Reports Server (NTRS)

This paper describes the many management methods being implemented on the Space Shuttle Program. Management attention to cost reduction and the techniques being used to meet the Shuttle cost commitment are described. A detailed explanation is given for the NASA Performance Measurement System but all other major management tools being used are also discussed.

Roseman, H. M.

1975-01-01

46

Space Shuttle astrodynamical constants  

NASA Technical Reports Server (NTRS)

Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

Cockrell, B. F.; Williamson, B.

1978-01-01

47

Space Shuttle Avionics System.  

National Technical Information Service (NTIS)

The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technolo...

J. F. Hanaway R. W. Moorehead

1989-01-01

48

Space Shuttle-Illustration  

NASA Technical Reports Server (NTRS)

The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

2001-01-01

49

Space Shuttle Vehicle Illustration  

NASA Technical Reports Server (NTRS)

The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

1975-01-01

50

US Space Shuttle evolution  

NASA Technical Reports Server (NTRS)

The long term systematic series of upgrades and enhancements needed to insure that the Space Shuttle remains a viable, cost-effective transportation system are discussed. A candidate Space Shuttle evolution strategy is presented. It emphasizes enhanced reliability, crew safety, reduced operations costs and enhanced capabilities required to meet projected long-range requirements. The strategy includes definition of long-term goals and requirements, potential hardware and operation enhancements, and addresses the issues of fleet size and utilization.

Teixeira, Charles

1989-01-01

51

Space shuttle revitalization system  

NASA Technical Reports Server (NTRS)

The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

Quattrone, P. D.

1985-01-01

52

Space Shuttle Abort Evolution  

NASA Technical Reports Server (NTRS)

This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

Henderson, Edward M.; Nguyen, Tri X.

2011-01-01

53

Space Shuttle Familiarization  

NASA Technical Reports Server (NTRS)

This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

Mellett, Kevin

2006-01-01

54

Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission  

NASA Technical Reports Server (NTRS)

A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight.

Wilson, R. G.; Davis, R. E.; Wright, R. E., Jr.; Sivertson, W. E., Jr.; Bullock, G. F.

1986-01-01

55

ESA takes part in Earth observation and space science experiments on board the Space Shuttle  

NASA Astrophysics Data System (ADS)

The ATLAS-2 mission is focusing on Earth observation and space science; three out of the seven instruments have been developed by scientific institutes in Belgium, France and Germany, with support from ESA. Four experiments have been provided by NASA and US scientists. The three European instruments have already shown an excellent performance during the first Atlas mission in March 1992, when they were tended by payload specialist Dirk Frimout, a Belgian astronaut and ESA staff member. Although the main scientific objective of the series of Atlas missions is to achieve continuity of annual measurements over a period as long as a decade, the first scientific results from Atlas can already be considered as a contribution to critical research topics, in particular the environment. The data from ATLAS-2 will add to this achievement. Two European instruments, Solcon and Solspec, are measuring to a very high degree of precision the total irradiation the Earth receives from the Sun - the "solar constant" -and the spectral distribution of this radiation over a wide range of wavelengths. Knowledge of the solar constant and the solar radiation spectrum matters not only for a better understanding of the Sun, but also for improving numerical models of climate and climate change. SOLCON was developed under the responsibility of Dr. Dominique Crommelynck of the Royal Meteorological Institute of Brussels, Belgium. SOLSPEC was instead developed under the responsibility of Dr. Gerard Thuillier of the CNRS, Verrieres le Buisson, France. One of these instruments will be fully remote-controlled by scientists from a laboratory in Belgium, via telecommunications links to the Shuttle, and the data of another will be transmitted to Belgium in real time to follow the results obtained. This approach is known as telescience: using telescience, a scientist can monitor his experiment in real-time, repeat it with different settings, consult his team, process data and adapt his measurements when interesting phenomena show up. The third European instrument, called MAS (Millimeter Wave Atmospheric Sounder) will be measuring the absorption spectra of water vapour and trace gases in the upper atmosphere. The measurement programme includes most notably ozone and chlorine monoxide, which plays an important role in the ozone cycle. MAS was developed under the responsibility of Dr. Gerd Hartmann of the Max-Planck- Institute fuer Aeronomy, Lindau, Germany. The complex space-to-ground communications links and the tools to control the instruments from the laboratories in Europe have been designed to be as flexible and user-friendly as possible. The series of Atlas missions is enabling ESA to gain valuable experience for the future utilisation of its Columbus Attached Laboratory; its science results are at the same time a contribution to today's advances in space science and environmental research, complementing a number of dedicated ESA satellites currently under development, such as SOHO, ERS-2 and ENVISAT-1. Note to Editors : At the invitation of the Belgian Minister for Science Policy a press conference will be held on 22 March 1993 at 16.00 hours at the Belgian Royal Meteorological Institute in Brussels (IRMB). The press conference will be followed by the inauguration of the Space Remote Operations Centre, from where the telescience operations for the ATLAS-2 mission will be carried out. Apart from the Minister, those participating will include: Dirk Frimout, Belgian astronaut and ESA staff member Dominique Crommelynck, IRMB, Principal Investigator for SOLCON Gerard Thuillier, CNRS France, Principal Investigator for SOLSPEC Further information can be obtained from the Belgian Science Policy Office, Mrs. M.C. Limbourg or Mr. J. Bernard : Tel : +32.2.238.34.11 - Fax : +32.2.230.59.12

1993-03-01

56

Space Shuttle Aging Elastomers  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

Curtis, Cris E.

2007-01-01

57

Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94  

NASA Technical Reports Server (NTRS)

A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

Coho, William K.; Weiland, Karen J.; VanZandt, David M.

1998-01-01

58

Space Shuttle news reference  

NASA Technical Reports Server (NTRS)

A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

1981-01-01

59

Electrical design of Space Shuttle payload G-534: The pool boiling experiment  

NASA Technical Reports Server (NTRS)

Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

Francisco, David R.

1993-01-01

60

Space Shuttle ascent aborts  

NASA Astrophysics Data System (ADS)

Specific guidance functions and trajectory design of return to launch site (RTLS) and transoceanic abort landing (TAL) intact abort profiles, as well as the increasing emphasis on contingency aborts, are presented. Various systems failures including Space Shuttle main engine failures and detailed technical analyses, including the design of powered flight abort trajectories, are considered. The most critical of flight abort situations is the RTLS, while TAL is the preferred abort when uphill capability is no longer available. It is concluded that one principle must remain to ensure continuing success of Space Shuttle flights: namely that intact and contingency aborts necessitate development to ensure safe return of the vehicle, payload, and crew whenever possible.

Schmidgall, Richard A.

1989-09-01

61

Space Shuttle Orbiter  

NSDL National Science Digital Library

Students learn how orbits are created by a force pulling toward the center in this Moveable Museum unit, in which they build a paper model of a Space Shuttle. This activity simulates an object in orbit. A paper Space Shuttle is swung in a circle on a string. The string provides a pull toward the center of the orbit, simulating the force of gravity. The four-page PDF guide includes suggested background readings for educators, activity notes, and step-by-step directions with suggested discussion questions for older students.

62

Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

1973-01-01

63

Study of airborne science experiment management concepts for application to space shuttle, volume 2  

NASA Technical Reports Server (NTRS)

Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

1973-01-01

64

Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle  

NASA Technical Reports Server (NTRS)

Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

Vogl, J. L.

1973-01-01

65

Liquid Dispersal Study: A Proposed Space Shuttle Liquid Release Experiment. (Reannouncement with New Availability Information).  

National Technical Information Service (NTIS)

An important component of the low earth orbit environment is the presence of sub to millimeter diameter particles resulting in part from routine space shuttle liquid releases (waste management, fuel cell by-products). The scattering of solar radiation and...

J. A. Gardner D. L. Rall I. L. Kofsy A. Setayesh E. Murad

1992-01-01

66

Aboard the Space Shuttle.  

ERIC Educational Resources Information Center

This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

Steinberg, Florence S.

67

Aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

Steinberg, F. S.

1980-01-01

68

Space Shuttle Cockpit  

NASA Technical Reports Server (NTRS)

Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

2000-01-01

69

Space Shuttle Cockpit exhibit  

NASA Technical Reports Server (NTRS)

Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

2000-01-01

70

STS-63 Space Shuttle report  

NASA Technical Reports Server (NTRS)

The STS-63 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during this sixty-seventh flight of the Space Shuttle Program, the forty-second since the return to flight, and twentieth flight of the Orbiter vehicle Discovery (OV-103). In addition to the OV-103 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-68; three SSME's that were designated 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-070. The RSRM's that were an integral part of the SRB's were designated 360Q042A for the left SRB and 360L042B for the right SRB. The STS-63 mission was planned as an 8-day duration mission with two contingency days available for weather avoidance or Orbiter contingency operations. The primary objectives of the STS-63 mission were to perform the Mir rendezvous operations, accomplish the Spacehab-3 experiments, and deploy and retrieve the Shuttle Pointed Autonomous Research Tool for Astronomy-204 (SPARTAN-204) payload. The secondary objectives were to perform the Cryogenic Systems Experiment (CSE)/Shuttle Glo-2 Experiment (GLO-2) Payload (CGP)/Orbital Debris Radar Calibration Spheres (ODERACS-2) (CGP/ODERACS-2) payload objectives, the Solid Surface Combustion Experiment (SSCE), and the Air Force Maui Optical Site Calibration Tests (AMOS). The objectives of the Mir rendezvous/flyby were to verify flight techniques, communication and navigation-aid sensor interfaces, and engineering analyses associated with Shuttle/Mir proximity operations in preparation for the STS-71 docking mission.

Fricke, Robert W., Jr.

1995-01-01

71

]Space Shuttle Independent Assessment Team  

NASA Technical Reports Server (NTRS)

The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

2000-01-01

72

Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment  

NASA Technical Reports Server (NTRS)

Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

2001-01-01

73

Space Shuttle Era: Main Engines  

NASA Video Gallery

Producing 500,000 pounds of thrust from a package weighing only 7,500 pounds, the Space Shuttle Main Engines are one of the shining accomplishments of the shuttle program. The success did not come ...

74

Space Shuttle Endeavour Heads West  

NASA Video Gallery

NASA's Shuttle Carrier Aircraft, a modified 747, flew retired shuttle Endeavour from Kennedy Space Center in Florida to Houston on Sept. 19, 2012, to complete the first leg of Endeavour's trip to L...

75

Space Shuttle Main Engine Public Test Firing  

NASA Technical Reports Server (NTRS)

A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

2000-01-01

76

Space Shuttle operational logistics plan  

NASA Technical Reports Server (NTRS)

The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

Botts, J. W.

1983-01-01

77

Space shuttle navigation analysis  

NASA Technical Reports Server (NTRS)

A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

1976-01-01

78

Space Shuttle System progress report  

Microsoft Academic Search

The Shuttle System is being designed to routinely carry payloads of up to 29 510 kilograms into earth orbit. Manned orbital test flights are scheduled to start in 1979. The Shuttle System is to be operational in 1980. The Space Shuttle flight system and mission profile is discussed along with questions of current system configuration and the development status. Attention

R. F. Thompson

1975-01-01

79

Space shuttles: A pyrotechnic overview  

NASA Technical Reports Server (NTRS)

Pyrotechnic components specified in Shuttle system designs to accomplish varied tasks during all mission phases are described. The function of these pyrotechnics in the operation of the space shuttle vehicle is discussed. Designs are presented for pyrotechnics with innovative features of those meeting unique shuttle requirements for safety and reliability. A rationale for the qualification and certification of these devices is developed. Maintenance of this qualified system in production hardware is explained through a description of shuttle flight certification review process.

Graves, T. J.

1980-01-01

80

Space Shuttle Wireless Crew Communications  

NASA Technical Reports Server (NTRS)

The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

Armstrong, R. W.; Doe, R. A.

1982-01-01

81

Food packages for Space Shuttle  

NASA Technical Reports Server (NTRS)

The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

1978-01-01

82

Space Shuttle: The Renewed Promise.  

National Technical Information Service (NTIS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only ...

N. McAleer

1989-01-01

83

NASA space shuttle lightweight seat  

NASA Technical Reports Server (NTRS)

The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

1996-01-01

84

Space Shuttle solid rocket booster initial water impact loads and dynamics - Analysis, tests, and flight experience  

NASA Technical Reports Server (NTRS)

A series of scale model tests, finite element dynamic response analyses and full scale segment tests have been performed for purposes of developing design criteria for the initial water impact loading conditions applied to the internal stiffener rings located in the aft skirt portion of the Space Shuttle Solid Rocket Booster (SRB). In addition, flight experience has yielded information relative to structural reinforcement requirements. This paper discusses the test and analysis methods and summarizes significant results. It is noted that, although scale model test data are valuable for identifying trends, they have shortcomings concerning definition of full scale design loads criteria. Also, the frequently used static equivalent loads definition approach is not applicable for this type impact loading condition applied to an aft skirt type structure. Various types of ring structural fixes, including the addition of selected types of foam, are presented as well as associated full scale segment test results. Depending on the type and contour shape of the foam, reductions on applied pressures and peak measured strains over 50 percent are noted.

Kross, D. A.; Kiefling, L. A.; Murphy, N. C.; Rawls, E. A.

1983-01-01

85

ITOS/space shuttle study  

NASA Technical Reports Server (NTRS)

The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.

1971-01-01

86

Space Shuttle Program Update  

NASA Technical Reports Server (NTRS)

Bruce Buckingham, from NASA Public Affairs, introduces Wayne Hale, Space Shuttle Program Manager, and Mike Leinbach, NASA launch Director. Wayne Hale begins discussing the Flight Readiness Review (FRR) that has just occurred to see if they were ready to fly. He points out that the review was a debris verification review (DVR). This review was done to ascertain how well they have done to eliminate the potential for debris to come off of the External Tank (ET), or any other part of the launch vehicle. He expresses that they have made significant improvements to the ET. He gives a description of the ET that is presently on the launch pad. Mike Leinbach discusses hardware processing and the condition of the launch vehicle. Questions from the news media about possible modifications to the ice frost ramp, Solid Rocket Booster (SRB) electrical problems, ET foam loss, amount of debris loss expectation during ascent, and return to flight costs are all addressed.

2006-01-01

87

Space shuttle operational risk assessment  

Microsoft Academic Search

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated

Joseph R. Fragola; Gaspare Maggio

1996-01-01

88

History of Space Shuttle Rendezvous  

NASA Technical Reports Server (NTRS)

This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

Goodman, John L.

2011-01-01

89

Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience  

NASA Technical Reports Server (NTRS)

The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

Charles, John B.; Platts, S. H.

2011-01-01

90

Planned development of the space shuttle vehicle  

NASA Technical Reports Server (NTRS)

Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

1972-01-01

91

Space shuttle operational risk assessment  

NASA Astrophysics Data System (ADS)

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

Fragola, Joseph R.; Maggio, Gaspare

1996-03-01

92

Evaluation of certain material films flown on the Space Shuttle Mission 46, EOIM-3 experiment  

NASA Technical Reports Server (NTRS)

Nine film samples were carried aboard the STS-46 Atlantis shuttle to complement the 'Evaluation of Oxygen Interaction with Materials (EOIM-III)' experiment to evaluate the effects of atomic oxygen on materials and to monitor the gaseous environment in the shuttle bay. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07E-20 atoms/sq cm have been reported. The changes have been verified using X-ray Photoelectron Spectrometer (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurements, microscopic observations and thermo-optical measurements. The samples including Kapton, Tefzel, Aclar, Polyacrylonitrile film, and Llumalloy films have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the fluence. Those efficiencies have been compared with results from other similar experiments, when available. The efficiencies of the samples are all in the range of E-24 gm/atom.

Scialdone, John; Clatterbuck, Carroll; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

1995-01-01

93

The ocean color experiment (OCE) on the second orbital flight test of the Space Shuttle (OSTA-1)  

NASA Technical Reports Server (NTRS)

The Ocean Color Experiment was one of the six remote-sensing experiments which for the first time were launched and successfully operated on board of the second flight of the Space Shuttle during November 1981. The experiment consists of a multispectral image scanner dedicated to the measurement of water color and its interpretation in terms of major water constituents and circulation patterns. The objectives of the experiment, the test site selection, and associated activities are described. The actual mission and results of an initial data analysis is discussed.

Van Der Piepen, H.; Amann, V.; Helbig, H.; Kim, H. H.; Hart, W. D.; Fiuza, A. F. G.; Viollier, M.; Doerffer, R.

1983-01-01

94

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Norbraten, Gordon L.; Henderson, Edward M.

2007-01-01

95

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Henderson, Edward M.; Norbraten, Gordon L.

2006-01-01

96

Space Shuttle program risk management  

Microsoft Academic Search

The authors describe how NASA appears to be undergoing a paradigm shift in its approach to Space Shuttle risk management. At least in some quarters, there appears to be a recognition that advances in the state-of-the-art have now made quantitative risk assessments powerful risk management tools, especially for programs such as the Shuttle with its ever increasing flight and test

J. R. Fragola

1996-01-01

97

America's shuttle returns to space  

NASA Technical Reports Server (NTRS)

The Shuttle management structure, streamlined since the Challenger accident, is outlined. The associate administrators for space flight are identified and their responsibilities clearly spelled out. The NASA policy of assigning astronauts to management positions is described. A spaceflight safety panel is described. Non-managerial safety enhancement programs are outlined. These include: solid rocker booster changes, shuttle crew escape systems, and landing improvements.

Moorehead, Robert W.

1989-01-01

98

Space Shuttle Orbiter-Illustration  

NASA Technical Reports Server (NTRS)

This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

2001-01-01

99

Student Experiments Fly with the Shuttle.  

ERIC Educational Resources Information Center

Describes various experiments which high school students are preparing, to be carried on NASA's 500 or more Space Shuttle flights in the 1980s. The project is intended to stimulate superior secondary school students. (SA)

Saunders, Walter; And Others

1979-01-01

100

Shuttle-era experiments in the area of plasma flow interactions with bodies in space  

NASA Technical Reports Server (NTRS)

A new experimental approach is discussed that can be adopted for studies in the area of plasma flow interactions with bodies in space. The potential use of the Space Shuttle/Orbiter as a near-earth plasma laboratory for studies in space plasma physics and particularly in solar system plasmas is discussed. This new experimental approach holds great promise for studies in the supersonic and sub-Alfvenic flow regime which has applications to the motion of natural satellites around their mother planets in the solar-system (e.g., the satellite Io around the planet Jupiter). A well conceived experimental and theoretical program can lead to a better physical understanding regarding the validity and range of applicability of using gasdynamic, kinetic, and fluid approaches in describing collisionless plasma flow interactions with bodies in a variety of flow regimes. In addition to the above scientific aspects of the program, significant technological advances can be achieved regarding the interaction of space probes in planetary atmospheres/ionospheres and the reliability of using various plasma diagnostic devices on board spacecraft and large space platforms.

Samir, U.; Stone, N. H.

1980-01-01

101

Lightning observations from space shuttle  

NASA Technical Reports Server (NTRS)

The experimental program of the Earth Sciences and Applications Division at NASA/MSFC includes development of the Lightning Imaging Sensor (LIS) for the NOAA Earth Observing System (EOS) Polar Platform. The research plan is to use existing lightning information to generate simulated data for the LIS experiment. Navigation algorithms were used to transform pixel locations to latitude and longitude values. The simulated data would then be used to test and develop algorithms for the analysis of LIS data. Individual frames of video imagery obtained from Space Shuttle Missions provide the raw data for the simulation. Individual video frames were digitized to get the pixel locations of lightning flashes. The pixel locations will be used to locate the geographical position of the event. Because of a lack of detailed knowledge of camera orientation with respect to the Space Shuttle, video scenes that contain identifiable city lights were chosen for analysis. A method for locating the payload bay camera axis was developed and tested. Two measurements are needed: the pixel location of the apparent horizon and a timed siting of a known location passing the principal line of the image. Individual video frames were navigated and lightning illuminated clouds were located on the map. Satisfactory agreement in location was achieved for cities and LLP lightning locations. Ground truth measurements were compared to satellite observations. A vertical lightning event was identified on the horizon. Very low frequency (VLF) transmission on this particular occassion shows a strong response to negative cloud to cloud flashes.

Boeck, William L.

1990-01-01

102

Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments  

NASA Technical Reports Server (NTRS)

Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

2007-01-01

103

The Space Shuttle in perspective  

NASA Technical Reports Server (NTRS)

Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

Hosenball, S. N.

1981-01-01

104

Release mechanism for releasing and reattaching experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The release mechanism (REM) unlatches an experiment so that it can be moved about inside and outside the shuttle bay by the remote manipulator system (RMS), and then reattaches it to the REM base. Operated from the crew compartment after the RMS has been attached to the experiment, the REM releases the experiment by an electric motor driving a gear train and linkage which extracts four pins from holes in four plates. Electrical connectors on the REM are disengaged by the mechanical action of the structural pins retracting from the plates. When the REM releases the experiment, an unlatched indicator is actuated in the crew compartment, and then the experiment can be moved by using the RMS. To reattach the experiment to the REM, the RMS places the experiment with REM attachment angles against the flat, smooth surface of the REM; then the RMS moves the experiment into position for latchup. Actuation of an electric motor drives the four pins into the four holes in the plates. When fully latched, a switch actuated by the motion of the linkage, shuts the electric motor off and gives an indication to the crew compartment that the REM is latched.

Clark, A. V.

1980-01-01

105

Rocket propulsion hazard summary: Safety classification, handling experience and application to space shuttle payload  

NASA Technical Reports Server (NTRS)

The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.

Pennington, D. F.; Man, T.; Persons, B.

1977-01-01

106

Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing  

NASA Technical Reports Server (NTRS)

Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

Modesitt, Kenneth L.

1990-01-01

107

International Space Station from Space Shuttle Endeavour  

NASA Technical Reports Server (NTRS)

The crew of the Space Shuttle Endeavour took this spectacular image of the International Space Station during the STS118 mission, August 8-21, 2007. The image was acquired by an astronaut through one of the crew cabin windows, looking back over the length of the Shuttle. This oblique (looking at an angle from vertical, rather than straight down towards the Earth) image was acquired almost one hour after late inspection activities had begun. The sensor head of the Orbiter Boom Sensor System is visible at image top left. The entire Space Station is visible at image bottom center, set against the backdrop of the Ionian Sea approximately 330 kilometers below it. Other visible features of the southeastern Mediterranean region include the toe and heel of Italy's 'boot' at image lower left, and the western coastlines of Albania and Greece, which extend across image center. Farther towards the horizon, the Aegean and Black Seas are also visible. Featured astronaut photograph STS118-E-9469 was acquired by the STS-118 crew on August 19, 2007, with a Kodak 760C digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science and Analysis Laboratory at Johnson Space Center.

2007-01-01

108

The space shuttle at work  

NASA Technical Reports Server (NTRS)

The concept of the orbital flight of the space shuttle and the development of the space transportation system are addressed. How the system came to be, why it is designed the way it is, what is expected of it, and how it may grow are among the questions considered. Emphasis is placed on the effect of the space transportation system on U.S. space exploration in the next decade, including plans to make space an extension of life on the Earth's surface.

Allaway, H.

1979-01-01

109

STS-64 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

Fricke, Robert W., Jr.

1995-01-01

110

Space Shuttle flight test results of the Cosmic Ray Upset Experiment  

NASA Technical Reports Server (NTRS)

CRUX is the first engineering flight experiment designed to test for the incidence of upsets in microcircuits by energetic particles. Harris HM 6504 4K x 1 static CMOS RAM's were used as the test device types in a 1.3 megabit memory which flew on two Shuttle flights. Ground (cyclotron) test information led to a prediction of about one error every 1000 days. No errors were experienced in 10 days of flight. While data were not in conflict with the error prediction and do support it, quantitative validation of the modeling for upsets is not statistically possible. Follow-on hardware (CRUX III) incorporates five different state-of-the-art microcircuits, and is scheduled for flight in October 1984.

Adolphsen, J. W.; Yagelowich, J. J.; Sahu, K.; Stassinopoulos, E. G.; Kolasinski, W. A.; Koga, R.; Benton, E. V.

1984-01-01

111

Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays  

NASA Technical Reports Server (NTRS)

The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions.

Levis, C. A.

1976-01-01

112

Thunderstorm observations from Space Shuttle  

NASA Technical Reports Server (NTRS)

Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more.

Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.

1983-01-01

113

Space Shuttle Launch: STS-129  

NASA Video Gallery

STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

114

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

115

Signal-to-Noise Ratio Prediction and Validation for Space Shuttle GPS Flight Experiment  

NASA Technical Reports Server (NTRS)

A deterministic method for Space Station Global Positioning System (GPS) Signal-To- Noise Ratio (SNR) predictions is proposed. The complex electromagnetic interactions between GPS antennas and surrounding Space Station structures are taken into account by computational electromagnetic technique. This computer simulator is capable of taking into account multipath effects from dynamically changed solar panels and thermal radiators. A comparison with recent collected Space Station GPS system flight experiment data is presented. The simulation results are in close agreement with flight data.

Hwu, Shian U.; Adkins, Antha A.; Loh, Yin-Chung; Brown, Lisa C.; Sham, Catherine C.; Kroll, Quin D.

2002-01-01

116

Scientific uses of the space shuttle  

NASA Technical Reports Server (NTRS)

A survey was conducted to determine the possible missions which could be accomplished by the space shuttle. The areas of scientific endeavor which were considered are as follows: (1) atmospheric and space physics, (2) high energy astrophysics, (3) infrared astronomy, (4) optical and ultraviolet astronomy, (5) solar physics, (6) life sciences, and (7) planetary exploration. Specific projects to be conducted in these broader areas are defined. The modes of operation of the space shuttle are analyzed. Instruments and equipment required for conducting the experiments are identified.

1974-01-01

117

Exploiting operational vehicles for in-flight research - Space Shuttle and Space Station Freedom  

NASA Technical Reports Server (NTRS)

Five Orbiter Experiments in which NASA's Langley Research Center has had significant involvement are described. These experiments are the Shuttle Infrared Leeside Temperature Sensing experiment, the Shuttle Upper Atmosphere Mass Spectrometer experiment, the High Resolution Accelerometer Package experiment, the Orbital Acceleration Research experiment, and the Space Station structural characterization experiment. The Shuttle Entry Air Data System is also described.

Holloway, Paul F.; Breckenridge, Roger A.

1989-01-01

118

Seismic excitation by Space Shuttles  

NASA Astrophysics Data System (ADS)

The feasibility of determining quantitatively the seismic response of the earth's surface with different surface conditions to the shock waves generated by Space Shuttles was investigated using data obtained by three broadband seismic networks on shock waves from the Space Shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991), and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California. It is shown that the spatial pattern of the arrival times exhibited hyperbolic shock fronts from which the path, the velocity, and the altitude of the Space Shuttle could be determined. The shock wave was acoustically coupled to the ground and converted to a seismic wave, with the acoustic coupling occurring differently depending on the characteristics the earth surface surrounding the station. The paper interprets the obtained data in terms of the difference in acoustic coupling and demonstrates that, with well calibrated seismic instruments, it is possible to estimate the shock wave pressures accurately.

Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D. L.; Heaton, T.

1992-06-01

119

Space Shuttle with Improved External Propellant Tank.  

National Technical Information Service (NTIS)

The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank ha...

G. L. Vonpragenau

1982-01-01

120

STS-39 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

Fricke, Robert W.

1991-01-01

121

Space Shuttle Missions Summary  

NASA Technical Reports Server (NTRS)

This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

Bennett, Floyd V.; Legler, Robert D.

2011-01-01

122

STS-62 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-01-01

123

STS-62 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

Fricke, Robert W., Jr.

1994-05-01

124

Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program  

NASA Technical Reports Server (NTRS)

Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive exercisers, and four subjects taking alendronate (a bisphoshonate that inhibits osteoclastic resorption of bone) have completed 17 weeks bed rest. In contrast to information currently available from space flight (n=28) and bed rest (n= 12) in which all individuals experienced bone loss in at least one region, one of four subjects taking alendronate and one of five subjects performing heavy resistive exercise at bed rest fully maintained bone density in all regions of the spine and lower extremities. Overall results of both countermeasures which will be presented are encouraging. The study will be completed by mid to late 2000 with 10 subjects in each of three groups.

Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

1999-01-01

125

Space Shuttle Main Engine. Overview  

NASA Astrophysics Data System (ADS)

An overview of the Space Shuttle Main Engine (SSME) is presented. The Space Shuttle propulsion system consists of two large solid booster motors, three SSME's, two orbital maneuvering system engines, and 44 reaction control system thrusters. The three SSME's burn liquid hydrogen and liquid oxygen from the external tank and are sequentially started at launch. Engine thrust is throttleable. The major components and some of their key features and operational parameters are outlined. The life and reliability being achieved by the SSME are presented.

Jackson, Eugene D.

126

STS-59 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1994-01-01

127

STS-52 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-12-01

128

STS-52 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

Fricke, Robert W., Jr.

1992-01-01

129

STS-60 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

Fricke, Robert W., Jr.

1994-01-01

130

STS-40 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

Fricke, Robert W.

1991-01-01

131

Space Shuttle RTOS Bayesian Network.  

National Technical Information Service (NTIS)

A Bayesian network scoring methodology has been used to select the best Real-time operating system (RTOS) for the Space Shuttle Cockpit Avionics Upgrade (CAU). The process obtained scores for various RTOS measures using a Bayesian network and then perform...

A. T. Morris

2004-01-01

132

Space Shuttle solid rocket booster  

Microsoft Academic Search

Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a

G. B. Hardy

1979-01-01

133

Space Shuttle Propulsion System Reliability  

NASA Technical Reports Server (NTRS)

This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.

Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David

2011-01-01

134

STS-47 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

Fricke, Robert W., Jr.

1992-01-01

135

STS-41 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

136

Modeling the Space Shuttle Liquid Hydrogen Subsystem.  

National Technical Information Service (NTIS)

This paper describes experiences with modeling the liquid hydrogen subsystem of the space shuttle. The Symbolic Model Verifier tool and the Software Cost Reduction tool set were used to model and specify the behavior of the system. The tools were then use...

B. Atanacio

2000-01-01

137

Space Shuttle Overview  

NASA Technical Reports Server (NTRS)

Many students are not even aware of the many activities related to the US Space Program. The intent of this presentation is to introduce students to the world of space exploration and encourage them to pursue math, science, and engineering careers. If this is not their particular interest, I want to encourage them to pursue their dream.

McNutt, Leslie

2006-01-01

138

Designing the Space Shuttle Propulsion System.  

National Technical Information Service (NTIS)

The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both t...

D. Moore D. Wood J. Owen K. VanHooser K. Wlzyn

2011-01-01

139

Large Deployable Antenna Shuttle Experiment  

NASA Technical Reports Server (NTRS)

An experiment designed to use the Space Shuttle in tests of the mechanical and electrical properties of spaceborne deployable antennas under zero-gravity conditions is outlined. Space-erectable 20-meter diameter phased arrays or reflector/feed systems, and self-deploying mechanisms, are to be tested. Reflector surface integrity will be tested by an AM laser technique, and electrical behavior will be tested by a spin-stabilized RF beacon injected into orbit prior to unfurlment of the antenna. Focusing and gain measurements, static pattern measurements, dynamic RF gain measurements, and measurements of cross-polarized signals will be conducted, and the reflector will be illuminated by separate feeds for the S-, X-, and K-bands. Mechanical features of the mesh-wrapped rib furlable antenna design are described.

Freeland, R. E.; Smith, J. G.; Springett, J. C.; Woo, K. E.

1975-01-01

140

STS-72 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

141

Space shuttle flying qualities and criteria assessment  

NASA Technical Reports Server (NTRS)

Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

1987-01-01

142

Microbiology studies in the Space Shuttle  

NASA Technical Reports Server (NTRS)

Past space microbiology studies have evaluated three general areas: microbe detection in extraterrestrial materials; monitoring of autoflora and medically important species on crewmembers, equipment, and cabin air; and in vitro evaluations of isolated terrestrial species carried on manned and unmanned spaceflights. These areas are briefly reviewed to establish a basis for presenting probable experiment subjects applicable to the Space Shuttle era. Most extraterrestrial life detection studies involve visitations to other heavenly bodies. Although this is not applicable to the first series of Shuttle flights, attempts to capture meteors and spores in space could be important. Human pathogen and autoflora monitoring will become more important with increased variety among crewmembers. Inclusion of contaminated animal and plant specimens in the space lab will necessitate inflight evaluation of cross-contamination and infection potentials. The majority of Shuttle microbiology studies will doubtless fall into the third study area. Presence of a space lab will permit a whole range of experimentation under conditions similar to these experienced in earth-based laboratories. The recommendations of various study groups are analyzed, and probable inflight microbiological experiment areas are identified for the Life Sciences Shuttle Laboratory.

Taylor, G. R.

1976-01-01

143

Solidification experiment in mirror furnaces flown in a GAS payload on space shuttle STS-108  

NASA Astrophysics Data System (ADS)

The experiment was excellent performed in the self-contained GAS payload G-730, flown on STS-108 Endeavour in December 2001. The payload was designed and developed by Swedish Space Corporation. The intention with the experiment was to investigate the influence of weak convection, caused by surface tension forces, on radial segregation occurring in crystals grown under microgravity conditions. The geometry studied was a Bridgman configuration with a partially coated surface. Seven mirror furnaces were used to process glass-coated samples with slots in the coating of different widths. The furnaces were controlled by a PC/104 computer system where also all data from the flight was stored.

Holm, P.; Löth, K.; Larsson, B.; Carlberg, T.

2003-08-01

144

Space Shuttle Corrosion Protection Performance  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

Curtis, Cris E.

2007-01-01

145

STS-45 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

Fricke, Robert W.

1992-01-01

146

Space Shuttle Projects Overview to Columbia Air Forces War College  

NASA Technical Reports Server (NTRS)

This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

Singer, Jody; McCool, Alex (Technical Monitor)

2000-01-01

147

The Space Shuttle as an educational tool  

NASA Technical Reports Server (NTRS)

The paper discusses the impact of the Space Transportation System (STS) and the Space Shuttle on the science educational community and gives an overview of past space education programs. Construction of four flight 'Orbiters' (Columbia, Challenger, Discovery, and Atlantis) is being planned, with each Orbiter containing an External Tank (ET) to power the Orbiter's main engines, and two solid rocket boosters (SRB). Each Orbiter can carry a crew of seven, has a cargo bay for 65,000 lb of satellites and scientific equipment, and has an average flight duration of up to 7 days. NASA educational programs reviewed are the Skylab Student Program, the 'Getaway Special' Program, and the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), as well as ESA programs including the Educational Physics Experiments in Spacelab and the Access to Spacelab for Young Europeans Program. A 'Classroom in Space' and 'Space University' have been proposed for the future.

David, L. W.; Irons, J. J.; Wilson, G. P.

1980-01-01

148

Space Shuttle payload interrogator  

NASA Astrophysics Data System (ADS)

The design and development of a dedicated, highly diversified RF subsystem, the payload interrogator (PI), for communication between the orbiter and detached DOD/NASA payloads are described. The PI supports not only spaceflight tracking and data network, deep space network, and space satellite control facility compatible payloads, but also scientific, commercial, or foreign payloads which use up to a 4.3-MHz baseband and up to 200 kHz for command transmission. Detailed descriptions of the PI modules and their functions are provided for the triplexer assembly, receiver, baseband, synthesizer, transmitter, and interface circuitry. The PI's quick-setting response for any mode and configuration selected permits its operation manually by the flight crew and/or remotely with minimum impact on the mission.

Zelon, M.

149

Space Shuttle aft propulsion system enhancements  

NASA Technical Reports Server (NTRS)

The characteristics of an aft propulsion system for the Space Shuttle Orbiter that would combine the propellant storage and pressurization systems of the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) are discussed. The paper describes the current OMS and RCS design development, the operation and flight experience, and the status of the aft propulsion system study (which is a part of the NASA Assured Shuttle Availability Program). Diagrams of the OMS, the RCS, and the integrated aft propulsion system are presented.

Hooper, John C., III; Riccio, Joseph R., III

1990-01-01

150

Holography on the NASA Space Shuttle  

NASA Technical Reports Server (NTRS)

The SL-3 flight on the Space Shuttle will carry a 25 mW He-Ne laser holographic recorder for recording the solution growth of triglycine sulfate (TGS) crystals under low-zero gravity conditions. Three hundred holograms (two orthogonal views) will be taken (on SO-253 film) of each growth experiment. Processing and analysis (i.e., reconstructed imagery, holographic schlieren, reverse reference beam microscopy, and stored beam interferometry) of the holographic records will be done at NASA/MSFC. Other uses of the recorder on the Shuttle have been proposed.

Wuerker, R. F.; Heflinger, L. O.; Flannery, J. V.; Kassel, A.; Rollauer, A. M.

1980-01-01

151

Shuttle Imaging Radar Experiment  

Microsoft Academic Search

The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean

C. Elachi; J. B. Cimino; T. Dixon; D. L. Evans; J. P. Ford; R. S. Saunders; C. Breed; H. Masursky; J. F. McCauley; G. Schaber; L. Dellwig; A. England; H. MacDonald; P. Martin-Kaye; F. Sabins

1982-01-01

152

STS-78 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

153

Space Shuttle Propulsion Finishing Strong  

NASA Technical Reports Server (NTRS)

Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

Owen, James W.; Singer, Jody

2011-01-01

154

Space Shuttle Star Tracker Challenges  

NASA Technical Reports Server (NTRS)

The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

Herrera, Linda M.

2010-01-01

155

STS-65 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

Fricke, Robert W., Jr.

1994-01-01

156

STS-44 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

Fricke, Robert W.

1992-01-01

157

STS-67 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-01-01

158

STS-67 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

Fricke, Robert W., Jr.

1995-05-01

159

Shuttle imaging radar experiment  

NASA Technical Reports Server (NTRS)

The Shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea.

Elachi, C.; Brown, W. E.; Cimino, J. B.; Dixon, T.; Evans, D. L.; Ford, J. P.; Saunders, R. S.; Breed, C.; Masursky, H.; England, A.

1982-01-01

160

Validating Metrics for Ensuring Space Shuttle Flight Software Quality  

Microsoft Academic Search

In this article, we cover the validation of software quality metrics for the Space Shuttle. Experiments with Space Shuttle flight software show that the Boolean OR discriminator function can successfully validate metrics for controlling and predicting quality. Further, we found that statement count and node count are the metrics most closely associated with the discrepancy reports count, and that with

Norman F. Schneidewind

1994-01-01

161

Shuttle Hitchhiker Experiment Launcher System (SHELS)  

NASA Technical Reports Server (NTRS)

NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

Daelemans, Gerry

1999-01-01

162

STS-50 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-50 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-eighth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of the following: an ET which was designated ET-50 (LUT-43); three SSME's which were serial numbers 2019, 2031, and 2011 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-051. The lightweight/redesigned RSRM's installed in each SRB were designated 360L024A for the left RSRM and 360M024B for the right RSRM. The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment 2 (SAREX-2) payloads. An additional secondary objective was to meet the requirements of the Ultraviolet Plume Instrument (UVPI), which was flown as a payload of opportunity.

Fricke, Robert W.

1992-01-01

163

Space Shuttle Status News Conference  

NASA Technical Reports Server (NTRS)

Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

2005-01-01

164

Space Shuttle Columbia views the world with imaging radar: The SIR-A experiment  

NASA Technical Reports Server (NTRS)

Images acquired by the Shuttle Imaging Radar (SIR-A) in November 1981, demonstrate the capability of this microwave remote sensor system to perceive and map a wide range of different surface features around the Earth. A selection of 60 scenes displays this capability with respect to Earth resources - geology, hydrology, agriculture, forest cover, ocean surface features, and prominent man-made structures. The combined area covered by the scenes presented amounts to about 3% of the total acquired. Most of the SIR-A images are accompanied by a LANDSAT multispectral scanner (MSS) or SEASAT synthetic-aperture radar (SAR) image of the same scene for comparison. Differences between the SIR-A image and its companion LANDSAT or SEASAT image at each scene are related to the characteristics of the respective imaging systems, and to seasonal or other changes that occurred in the time interval between acquisition of the images.

Ford, J. P.; Cimino, J. B.; Elachi, C.

1983-01-01

165

Space Shuttle: The Renewed Promise  

NASA Technical Reports Server (NTRS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only four small satellites and no American astronaut had yet flown in space. In the three decades since, four generations of manned spacecraft have been built and flown, twelve men have walked on the Moon, more than 100 Americans have flown and worked in space, and communications satellites and other Space-Age technologies have transformed life on planet Earth. When NASA's Golden Anniversary is celebrated in 2008, it is likely that men and women will be permanently living and working in space. There may be a base on the Moon, and a manned mission to Mars may only be years away. If a brief history of the first half-century of the Space Age is written for that event, it will show clearly how the exploration of space has altered the course of human history and allowed us to take a better hold of our destiny on and off planet Earth.

McAleer, Neil

1989-01-01

166

Space Shuttle STS-87 Columbia launch  

NASA Technical Reports Server (NTRS)

Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia (STS-87) soared from Launch Pad 39B on the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite which were managed by scientists and engineers from the Marshall Space Flight Center. During the 16-day mission, the crew oversaw experiments in microgravity; deployed and retrieved a solar satellite; and tested a new experimental camera, the AERCam Sprint. Two crew members, Dr. Takao Doi and Winston Scott also performed a spacewalk to practice International Space Station maneuvers.

1997-01-01

167

Space Shuttle and Hypersonic Entry  

NASA Technical Reports Server (NTRS)

Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight regimes will be a key enabler to facilitate the consolidation of the new emerging scenarios. The objective of this symposium is therefore to focus on lesson learned, to then analyze the main elements of those new scenarios, both from Institutional and Private sectors; and finally provide the leads for future collaboration opportunities between Italy, the United States and international partners, so to join profitably the opportunities offered by this new era of the aerospace technologies.

Campbell, Charles H.; Gerstenmaier, William H.

2014-01-01

168

Earth Resources Survey and the Space Shuttle  

NASA Technical Reports Server (NTRS)

The impact that the shuttle is expected to have on the Earth Resources Program and several concepts for exploiting the shuttle characteristics are discussed. The utilization of the space shuttle in its sortie mode for earth resources and the application of an earth observations standard package to earth resources missions were studied.

Stow, W. K.; Andryczyk, R. W.

1975-01-01

169

Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle.  

PubMed

Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully. PMID:11541156

Burkhalter, B B; McLean, J E; Curtis, J P; James, G S

1991-12-01

170

STS-74 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

171

The Chinese student space shuttle get-way-special program  

NASA Technical Reports Server (NTRS)

The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.

Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen

1989-01-01

172

Space Operations Center: Shuttle interaction study  

NASA Technical Reports Server (NTRS)

The implication of using the Shuttle with the Space Operation Center (SOC), including constraints that the Shuttle will place upon the SOC design. The study identifies the considerations involved in the use of the Shuttle as a part of the SOC concept, and also identifies the constraints to the SOC imposed by the Shuttle in its interactions with the SOC, and on the design or technical solutions which allow satisfactory accomplishment of the interactions.

1981-01-01

173

STS-80 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

Fricke, Robert W., Jr.

1997-01-01

174

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

175

Space Shuttle aerothermodynamic data report, phase C  

NASA Technical Reports Server (NTRS)

Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

1985-01-01

176

Space Shuttle UHF communications performance evaluation  

Microsoft Academic Search

Computational investigations and experimental measurements were performed to evaluate the Space Shuttle UHF communication system performance for payload bay antenna at the proposed new location. To insure adequate communication coverage at relocated new location, the link margin for the Extravehicular Activity (EVA) astronauts and between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous were analyzed. The multipath effects

S. U. Hwu; Y. C. Loh; J. A. Dobbins; Q. D. Kroll; C. C. Sham

2005-01-01

177

STS-75 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

178

Space Shuttle RTOS Bayesian Network  

NASA Technical Reports Server (NTRS)

With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

Morris, A. Terry; Beling, Peter A.

2001-01-01

179

The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments  

NASA Technical Reports Server (NTRS)

Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.

Budney, T. J.; Stone, R. W.

1982-01-01

180

Legacy of Biomedical Research During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

Hayes, Judith C.

2011-01-01

181

STS-102 Space Shuttle Discovery Liftoff  

NASA Technical Reports Server (NTRS)

The STS-102 mission blasts off from launch pad 39B at Kennedy Space Center at dawn on March 8, 2001 aboard the Space Shuttle Discovery. STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

2001-01-01

182

Space shuttle experiments on Al-In liquid phase miscibility gap (LPMG) alloys  

NASA Technical Reports Server (NTRS)

Massive phase separation observed at low-g was studied during the phase separation process while cooling through the miscibility gap under a controlled thermal gradient was investigated. The molten drops which form during the phase separation process appear to move in a direction opposite to that predicted by the theory of thermocapillary droplet motion. A second experiment utilized a plunger arrangement designed to eliminate the surface tension driven convection currents originating at a free surface. This experiment suggests that the free surface does contribute to the coalescence process but that there are other mechanisms which are more important.

Gelles, S. H.; Markworth, A. J.

1984-01-01

183

Space Shuttle solid rocket booster  

NASA Technical Reports Server (NTRS)

Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

Hardy, G. B.

1979-01-01

184

Space Shuttle Trace Gas Analyzer  

NASA Technical Reports Server (NTRS)

A Trace Gas Analyzer (TGA) with the ability to detect the presence of toxic contaminants in the Space Shuttle atmosphere within the subparts-per-million range is under development. The design is a modification of the miniaturized Gas Chromatograph-Mass Spectrometer (GCMS) developed for the Viking Mars Lander. An ambient air sample is injected onto the GC column from a constant volume sample loop and separated into individual compounds for identification by the MS. The GC-MS interface consists of an effluent divider and a silver-paladium separator, an electrochemical cell which removes more than 99.99% of the hydrogen carrier gas. The hydrogen is reclaimed and repressurized without affecting the separator efficiency, a feature which enables a considerable weight reduction in the carrier gas supply system.

Dencker, W.

1975-01-01

185

Space Shuttle - Now and later  

NASA Technical Reports Server (NTRS)

The Space Shuttle System consisting of four major elements, the orbiter, three main engines, an expendable external tank, and solid rocket boosters is examined. Dimensions, thrust and payload capacity are observed, noting cost reduction through recovery and subsequent reuse of some components. Return of the solid rocket boosters (SRB's) via parachute and recovery from the ocean for refurbishment is covered. Objectives for the first mission scheduled for November 1979 include achieving a 150 nautical mile orbit and carrying a payload consisting of development flight instrumentation (DFI), the induced environment contamination monitor (IECM), and the aerodynamic coefficients identification package (ACIP). A section devoted to performance enhancement, discusses weight reduction on the orbiter, external tanks and thrust augmentation through the use of strap on solid motors (SOSM).

Malkin, M. S.

1979-01-01

186

Space shuttle main engine controller  

NASA Technical Reports Server (NTRS)

A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

Mattox, R. M.; White, J. B.

1981-01-01

187

Space shuttle wheels and brakes  

NASA Technical Reports Server (NTRS)

The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

Carsley, R. B.

1985-01-01

188

STS-36 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the...

J. E. Mechelay D. M. Germany L. S. Nicholson

1990-01-01

189

STS-35 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle...

D. W. Camp D. M. Germany L. S. Nicholson

1991-01-01

190

STS-38 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle,...

D. W. Camp D. M. Germany L. S. Nicholson

1991-01-01

191

STS-31 Space Shuttle Mission Report.  

National Technical Information Service (NTIS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, t...

D. W. Camp D. M. Germany L. S. Nicholson

1990-01-01

192

Space Shuttle communications and tracking system  

NASA Technical Reports Server (NTRS)

This paper is intended to provide a comprehensive description of the Space Shuttle communications and tracking system design, development, and system operations. Areas of special innovative communications techniques implemented by the Space Shuttle such as source encoding, channel encoding, spread spectrum, and digital modulation are emphasized. In addition, the role of the Electronics Systems Test Laboratory in the development of the system is discussed.

Tu, Kwei; Cravey, Donald N.; Kuo, Yeng S.; Johnson, John H.; Teasdale, William E.

1987-01-01

193

STS-55 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

Fricke, Robert W., Jr.

1993-01-01

194

Space shuttle orbiter test flight series  

NASA Technical Reports Server (NTRS)

The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

Garrett, D.; Gordon, R.; Jackson, R. B.

1977-01-01

195

STS-102 Space Shuttle Discovery Liftoff  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.

2003-01-01

196

STS-38 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

197

X-ray telescope module for the LAMAR Space Shuttle experiment  

NASA Technical Reports Server (NTRS)

The first of eight X-ray telescopes is under construction for the LAMAR experiment. Each consists of two orthogonal sets of nested confocal one-dimensional parabolic plates of gold-coated float glass, selected for flatness from commercial stock. Each is initially bent to a cylinder by bonding a thin, highly curved titanium sheet to its inactive surface. The final parabolic figure is produced by an automated system which includes seven diode arrays that detect a visible-light line image. Eight precise motorized linear translators operating under the control of a computer, tune the plate to the optimum figure. The plate is then fixed in position by epoxy bonds. The precision of the system is several arcsec, but the intrinsic flatness of the glass is expected to limit the half-power diameter (HPD) of the telescope to about 25 arcsec.

Gorenstein, P.; Cohen, L.; Fabricant, D.

1986-01-01

198

The design and development of a release mechanism for space shuttle life-science experiments  

NASA Technical Reports Server (NTRS)

The design, development, and testing of a release mechanism for use in two life science experiments on the Spacelab 1, 4, and D1 missions is described. The mechanism is a self latching ball lock device actuated by a linear solenoid. An unusual feature is the tapering of the ball lock plunger to give it a near constant breakout force for release under a wide range of loads. The selection of the design, based on the design requirements, is discussed. A number of problems occurred during development and test, including problems caused by human factors that became apparent after initial delivery for crewtraining sessions. These problems and their solutions are described to assist in the design and testing of similar mechanisms.

Jones, H. M.; Daniell, R. G.

1984-01-01

199

Access to space: The Space Shuttle's evolving rolee  

NASA Astrophysics Data System (ADS)

Access to space is of extreme importance to our nation and the world. Military, civil, and commercial space activities all depend on reliable space transportation systems for access to space at a reasonable cost. The Space Transportation System or Space Shuttle was originally planned to provide transportation to and from a manned Earth-orbiting space station. To justify the development and operations costs, the Space Shuttle took on other space transportation requirements to include DoD, civil, and a growing commercial launch market. This research paper or case study examines the evolving role of the Space Shuttle as our nation's means of accessing space. The case study includes a review of the events leading to the development of the Space Shuttle, identifies some of the key players in the decision-making process, examines alternatives developed to mitigate the risks associated with sole reliance on the Space Shuttle, and highlights the impacts of this national space policy following the Challenger accident.

Duttry, Steven R.

1993-04-01

200

Space Shuttle Documentary (Narrated by William Shatner)  

NASA Video Gallery

This feature-length documentary looks at the history of the most complex machine ever built. For 30 years, NASA's space shuttle carried humans to and from space, launched amazing observatories, and...

201

Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts  

NASA Technical Reports Server (NTRS)

NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.

Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff

2006-01-01

202

Skylab, Space Shuttle, Space Benefits Today and Tomorrow.  

ERIC Educational Resources Information Center

The pamphlet "Skylab" describes very generally the kinds of activities to be conducted with the Skylab, America's first manned space station. "Space Shuttle" is a pamphlet which briefly states the benefits of the Space Shuttle, and a concise review of present and future benefits of space activities is presented in the pamphlet "Space Benefits…

National Aeronautics and Space Administration, Washington, DC.

203

Space Shuttle wind tunnel testing program  

NASA Technical Reports Server (NTRS)

A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

Whitnah, A. M.; Hillje, E. R.

1984-01-01

204

STS-54 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1993-01-01

205

Space Shuttle GN and C Development History and Evolution  

NASA Technical Reports Server (NTRS)

Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

2011-01-01

206

Space Shuttle Usage of z/OS  

NASA Technical Reports Server (NTRS)

This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

Green, Jan

2009-01-01

207

The SIR-A radar of the American Space Shuttle - Technical characteristics and overview of French experiments  

NASA Technical Reports Server (NTRS)

The scientific instruments comprising the OSTA-1 package flown on the second Shuttle mission (November 12-14, 1981) are listed, and the Shuttle Imaging Radar (SIR-A) experiments are examined in detail: SIR-A operated for 8 h and obtained images covering more than 10 million sq km at 40-m resolution. The images were recorded on photographic film and processed in holographic form at JPL, and data for Southern Europe and parts of Africa were distributed to French scientists by the Groupement pour le Developpement de la Teledetection Aerospatiale. The main areas of research were environmental studies and geology, and the SIR-A images were used in combination with aerial photography, thematic maps, and Landsat images. The technical specifications of the SIR-B radar planned for STS-17 in 1984 are compared with those of SIR-A and Seasat SAR in tables.

Elachi, CH.; Laidet, L.; Weecksteen, G.

1983-01-01

208

STS-66 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

Fricke, Robert W., Jr.

1995-01-01

209

An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment  

NASA Technical Reports Server (NTRS)

In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal d

Fragomeni, James M.

1996-01-01

210

Space shuttle plume/simulation application  

NASA Technical Reports Server (NTRS)

An analysis of pressure and strain-gage data from space shuttle wind tunnel test IA119 and IA138 was performed to define the influence on aerodynamic characteristics resulting from the main propulsion system and solid rocket booster plumes. Aerodynamic characteristics of each of the elements, the components and total vehicle of the space shuttle vehicle during ascent flight was considered. Pressure data were obtained over the aft portions of the space shuttle wind tunnel model in addition to wing and elevon gage data.

Boyle, W.; Conine, B.; Bell, G.

1979-01-01

211

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

212

Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings  

NASA Technical Reports Server (NTRS)

A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

2008-01-01

213

Airbreathing Engines for Space Shuttle.  

National Technical Information Service (NTIS)

The requirements imposed on the airbreathing engines by the shuttle mission and some results from engine design studies are discussed. In particular, some of the engine system weight study results are presented, potential problem areas and required engine...

A. J. Glassman S. M. Nosek W. L. Stewart

1972-01-01

214

Designing the Space Shuttle Propulsion System  

NASA Technical Reports Server (NTRS)

The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. Both the solid rocket motors and the space shuttle main engine throttle during early ascent flight to limit aerodynamic loads on the structure. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, and the SSME's continue operation to achieve orbital velocity approximately eight and a half minutes after liftoff. Design and performance challenges were numerous, beginning with development work in the 1970 s. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper discusses a number of the system level technical challenges including development and operations.

Owen, James; Moore, Dennis; Wood, David; VanHooser, Kathrine; Wlzyn, Ken

2011-01-01

215

STS-43 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

Fricke, Robert W.

1991-01-01

216

Legacy of the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.

Sullivan, Steven J.

2010-01-01

217

A Celebration of the Space Shuttle Program  

NASA Video Gallery

On September 23, 2011, NASA Langley hosted a Shuttle Celebration at the Virginia Air & Space Center in Hampton, Va. More than 650 guests attended, including STS-135 Commander Chris Ferguson and NAS...

218

Computed Flow About The Integrated Space Shuttle  

NASA Technical Reports Server (NTRS)

Report discusses numerical simulations of flow of air about integrated Space Shuttle in ascent. Goal: to improve understanding of, and ability to predict, how integrated Space Shuttle will perform during both nominal and aborted ascent under various conditions. These and other numerical simulations intended both to supplement wind-tunnel data, corrupted to some extent by scaling and wall-interference effects, and to compensate for scarcity of valid flight data.

Buning, P. G.; Chiu, I. T.; Obayashi, S.; Rizk, Y. M.; Steger, J. L.

1991-01-01

219

Space Experiment Module (SEM)  

NASA Technical Reports Server (NTRS)

The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

Brodell, Charles L.

1999-01-01

220

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

221

NASA focusing beyond space shuttle era  

NASA Astrophysics Data System (ADS)

Although the NASA space shuttle Atlantis is set to close out the space shuttle era in July with the STS-135 mission, this final shuttle mission will not mark the end of America's leadership in human spaceflight, NASA administrator Charles Bolden said in a 1 July speech at the National Press Club in Washington, D. C. “When I hear people say, or listen to media reports [that indicate], that the final shuttle flight marks the end of U.S. human spaceflight, I have to say, ‘these folks must be living on another planet.’ We are not ending human spaceflight; we are recommitting ourselves to it and taking the necessary and difficult steps today to ensure America's preeminence in human space exploration for years to come.”

Showstack, Randy

2011-07-01

222

Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings  

NASA Technical Reports Server (NTRS)

A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for a 2-bearing shaft assembly in each body flap actuator established a reliability level of 99.6 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erin V.

2007-01-01

223

Space Shuttle Orbiter Endeavour STS-47 Launch  

NASA Technical Reports Server (NTRS)

A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

1992-01-01

224

Space Shuttle Discovery lifts off successfully  

NASA Technical Reports Server (NTRS)

As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

1998-01-01

225

Space Shuttle flying qualities and flight control system assessment study  

NASA Technical Reports Server (NTRS)

The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter.

Myers, T. T.; Johnston, D. E.; Mcruer, D.

1982-01-01

226

The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment  

NASA Technical Reports Server (NTRS)

Fungal contamination is a significant problem in the use of sucrose-enriched agar-based media for plant culture, especially in closed habitats such as the Space Shuttle. While a variety of fungicides are commercially available, not all are equal in their effectiveness in inhibiting fungal contamination. In addition, fungicide effectiveness must be weighed against its phytotoxicity and in this case, its influence on transgene expression. In a series of experiments designed to optimize media composition for a recent shuttle mission, the fungicide benomyl and the biocide "Plant Preservative Mixture" (PPM) were evaluated for effectiveness in controlling three common fungal contaminants, as well as their impact on the growth and development of arabidopsis seedlings. Benomyl proved to be an effective inhibitor of all three contaminants in concentrations as low as 2 ppm (parts per million) within the agar medium, and no evidence of phytotoxicity was observed until concentrations exceeded 20 ppm. The biocide mix PPM was effective as a fungicide only at concentrations that had deleterious effects on arabidopsis seedlings. As a result of these findings, a concentration of 3 ppm benomyl was used in the media for experiment PGIM-01 which flew on shuttle Columbia mission STS-93 in July 1999.

Paul, A. L.; Semer, C.; Kucharek, T.; Ferl, R. J.

2001-01-01

227

Space Shuttle Underside Astronaut Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2005-01-01

228

STS-31 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1990-01-01

229

Simulating Avionics Upgrades to the Space Shuttles  

NASA Technical Reports Server (NTRS)

Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

2008-01-01

230

Interactive Space Education and Space Shuttle Mission 51-L.  

National Technical Information Service (NTIS)

Shuttle mission 51-L launched an interactive promotion of education direct from space. Emphasis on use of actual video scenes of space mission and astronomical phenomena are encouraged as tools in the classroom. Observation and prediction of Earth satelli...

P. D. Maley

1986-01-01

231

Space Shuttle Orbital Drag Parachute Design  

NASA Technical Reports Server (NTRS)

The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

Meyerson, Robert E.

2001-01-01

232

STS-113 Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, FLA. -Space Shuttle Endeavour roars into the black sky on columns of fire as it lifts off Launch Pad 39A on mission STS-113. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey. [Photo by Scott Andrews

2002-01-01

233

Space Shuttle Main Engine (SSME) Options for the Future Shuttle  

NASA Technical Reports Server (NTRS)

The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.

Jue, Fred; Kuck, Fritz; McCool, Alex (Technical Monitor)

2002-01-01

234

Seedling growth and development on space shuttle  

NASA Technical Reports Server (NTRS)

Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

Cowles, J.; Lemay, R.; Jahns, G.

1994-01-01

235

Seedling growth and development on space shuttle  

NASA Astrophysics Data System (ADS)

Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

Cowles, J.; Lemay, R.; Jahns, G.

1994-11-01

236

STS-57 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

Fricke, Robert W., Jr.

1993-01-01

237

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

Lights on the Fixed Service Structure give a holiday impression at Launch Pad 39A where Space Shuttle Atlantis is poised for launch. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

238

OSTA-1 - The Space Shuttle's first scientific payload  

NASA Technical Reports Server (NTRS)

The capabilities of the first Space Shuttle scientific payload for remote sensing observations of the earth are evaluated, and the instruments used are from the Office of Space and Terrestrial Applications (OSTA-1). The payload gathered 10 million square kilometers of data over the earth's oceans, 6 million square kilometers of data over land masses, and global atmospheric data on carbon monoxide concentration. Shuttle imaging radar collected data over a 10,000 km sweep from Spain to Australia, a Shuttle multispectral infrared radiometer obtained 400,000 ten-channel spectra in clear weather conditions over four continents, and the Ocean Color Experiment detected water color for interpretation of major water constituents. The mission is considered to be a success based on the amount of data collected, and scientific and technical insight gained for the development of Shuttle flight instruments.

Moore, J. W.

1982-01-01

239

Space Shuttle Main Engine Test Firing  

NASA Technical Reports Server (NTRS)

On the 25th Anniversary of the Apollo 11 (the first moon landing mission) launch, Marshall Space & Flight Center celebrated with a test firing of the Space Shuttle Main Engine (SSME) at the Technology Test Bed (TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.

1994-01-01

240

Launch of STS-58 Space Shuttle Columbia  

NASA Technical Reports Server (NTRS)

A distant shot shows the Space Shuttle Columbia, with a crew of seven and a science module aboard, as it lifts off from Launch Complex 39 at Kennedy Space Center (KSC). Its image reflects in nearby marsh waters. Launch occured at 10:53 a.m., October 18, 1993.

1993-01-01

241

SILENCING NASA'S SPACE SHUTTLE CRAWLER TRANSPORTER  

Microsoft Academic Search

The crawler transporter (CT) is the world's second largest known tracked vehicle, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960's, maintained and retrofitted for use in the Space Shuttle program. As a

R. MacDonald; R. Margasahayam

242

Space Shuttle Solid Rocket Booster Debris Assessment  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

Kendall, Kristin; Kanner, Howard; Yu, Weiping

2006-01-01

243

STS-51 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

244

STS-49: Space shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

Fricke, Robert W.

1992-01-01

245

Infrared spectral measurement of Space Shuttle glow  

NASA Technical Reports Server (NTRS)

The USAF and NASA successfully conducted infrared spectral measurements of the Space Shuttle glow during STS-39. Preliminary analysis indicates that NO, NO(+), OH, and CO produce infrared glow during quiescent orbiter conditions. During orbiter thruster firings the glow intensities in the infrared are enhanced by factors of 10X and 100X with significant changes in spectral distribution. These measurements were obtained with the Spacecraft Kinetic Infrared Test payload which included a cryogenic infrared circular variable filter infrared spectrometer covering the 0.7 to 5.4 microns wavelength region. Approximately 14,000 spectra of Shuttle glow, airglow, aurora, and the orbiter environment were obtained during the eight day mission. The STS-39 Space Shuttle Discovery was launched from the NASA Kennedy Space Center on 28 April, 1991 into a 57-deg inclination circular orbit at an altitude of 260 km.

Ahmadjian, Mark; Jennings, D. E.; Mumma, M. J.; Espenak, F.; Rice, C. J.; Russell, R. W.; Green, B. D.

1992-01-01

246

Space Shuttle payloads and data handling accommodations  

NASA Technical Reports Server (NTRS)

The Space Transportation System, which includes the Space Shuttle, will reduce the costs of earth orbital operations while improving operational capabilities and flexibility. The Shuttle can deliver payloads up to 65,000 pounds to a 150-nmi circular orbit at a substantially lower operational cost per flight than the Titan III-C system, which has a payload delivery capability of only 30,000 pounds. In addition, the Space Shuttle can return to earth with up to 32,000 pounds of payload, a capability not provided by expendable launch vehicles. Typical payload missions are considered along with aspects of satellite placement and recovery, typical free-flying payloads, attached scientific payloads, and the typical nature of payload data.

Teasdale, W. E.

1978-01-01

247

STS-58 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB.

Fricke, Robert W., Jr.

1994-01-01

248

Orbital impacts and the Space Shuttle windshield  

NASA Technical Reports Server (NTRS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-01-01

249

Orbital impacts and the space shuttle windshield  

NASA Astrophysics Data System (ADS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have chnaged over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures, and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-06-01

250

Orbital impacts and the Space Shuttle windshield  

NASA Astrophysics Data System (ADS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-03-01

251

STS-48 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

Fricke, Robert W.

1991-01-01

252

STS-56 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

Fricke, Robert W., Jr.

1993-01-01

253

OSS-1: A Pathfinder Mission for Space Science on Shuttle.  

National Technical Information Service (NTIS)

The Space Shuttle scientific payload of nine instruments designed to demonstrate the usefulness of the Shuttle for research in space plasma physics, solar physics, astronomy, life sciences, and space technology is discussed. These instruments will also ev...

W. M. Neupert P. M. Banks G. E. Brueckner E. G. Chipman J. Cowles

1982-01-01

254

Pitch control of the space shuttle training aircraft  

Microsoft Academic Search

A set of shuttle training aircrafts (STAs) are used by NASA to train astronaut pilots to land the space shuttle after returning from orbit. The STA simulates the dynamics of the much larger and heavier space shuttle with the help of some hardware and software modifications. We present a STA controller that tracks the shuttle pitch trajectory. Our control system

Hamid R. Berenji; Sujit Saraf; Ping-Wei Chang; Steven R. Swanson

2001-01-01

255

Space Shuttle Navigation in the GPS Era  

NASA Technical Reports Server (NTRS)

The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

Goodman, John L.

2001-01-01

256

STS-61 Space Shuttle mission report  

NASA Astrophysics Data System (ADS)

The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

Fricke, Robert W., Jr.

1994-02-01

257

Space Shuttle: Emphasis for the 1970's  

NASA Technical Reports Server (NTRS)

The space shuttle is described as a vehicle which combines the advantages of airplanes and spacecraft, capable of repeatedly flying to space and back to earth. It will takeoff vertically, powered by two solid propellant boosters, which will be parachuted to earth at an altitude of about 40 km, for retrieval. New uses of space flight are anticipated as costs decrease, turn-around times shorten, and operations simplified. Color illustrations of the concepts are included.

1972-01-01

258

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis's cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

259

European sensors on the Space Shuttle  

NASA Astrophysics Data System (ADS)

Four remote sensors being developed in Western Europe for use in Space Shuttle missions are described. The sensors include a high-resolution camera to be carried on the first Spacelab flight, a two-channel modular optoelectronic multispectral scanner to be flown on the West German Shuttle pallet satellite, an X-band microwave remote sensor for use from Spacelab pallets, and a dual-frequency dual-polarization SAR facility for optimizing the design of a land-use remote sensing system. It is noted that, owing to the relatively short duration of Space Shuttle flights, reflights of the sensors will be necessary to achieve most of the remote-sensing mission objectives.

Schlude, F.

260

Overview of the Evaluation of Oxygen Interactions with Materials III Experiment: Space Shuttle Mission 46; July--August, 1992.  

National Technical Information Service (NTIS)

The flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS 46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-III and the results of...

S. L. Koontz L. J. Leger J. T. Visentine D. E. Hunton J. B. Cross

1993-01-01

261

Flight Planning Branch Space Shuttle Lessons Learned  

NASA Technical Reports Server (NTRS)

Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

2011-01-01

262

Technology organizations and incrementalism: the space shuttle  

Microsoft Academic Search

This paper is part of a wider research programme which aims at understanding the organizational factors that promote inflexible technology. The technology of the Space Shuttle's performance has been poor in many areas; that the technology was chosen throught a centralized process dominated by a few like-minded organizations with little debate and compromise, and with risk falling on public pockets;

David Collingridge

1990-01-01

263

Space Shuttle Plasma/Flowfield Interactions.  

National Technical Information Service (NTIS)

Plasma phenomena around large space structures operating in low earth orbit are examined. Our particular emphasis is on phenomena that may lead to enhanced plasmas as a result of gas injections. The ultimate goal is the design of a Shuttle-borne experimen...

A. T. Lintz D. Resendes G. Weyl G. E. Caledonia J. C. Person

1987-01-01

264

Heat pipe system for Space Shuttle TWTA.  

NASA Technical Reports Server (NTRS)

Description of the design of a heat pipe system built to dissipate and reject the waste heat from the Space Shuttle communications implementing traveling-wave tube amplifier (TWTA). The heat pipe system proved itself as an effective tool for TWTA thermal control.

Basiulis, A.; Eallonardo, C. M.; Kendall, B. M.

1973-01-01

265

Space Shuttle Light Weight External Tank Illustration  

NASA Technical Reports Server (NTRS)

This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.

1976-01-01

266

Space Shuttle Mission Sequence-Illustration  

NASA Technical Reports Server (NTRS)

This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.

1975-01-01

267

ALT space shuttle barometric altimeter altitude analysis  

Microsoft Academic Search

The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully

R. Killen

1978-01-01

268

Space shuttle orbiter fracture control plan  

NASA Technical Reports Server (NTRS)

The criteria are presented for preventing space shuttle structural failure associated with crack initiation or propagation during fabrication, test, handling, and the operational life of the vehicle. The criteria discussed include: engineering responsibilities, assurance management, production, operation and test, procurement, critical parts selection, design, and structural analysis.

1973-01-01

269

Space shuttle rudder/speedbrake subsystem analysis  

NASA Technical Reports Server (NTRS)

The Continuous System Modeling Program (CSMP) is described with its uses, its limitations, and its application to the rudder/speedbrake (R/SB) subsystem. The space shuttle R/SB is analyzed using the CSMP. Areas of analysis emphasized include: step response, ramp response, and the delay time or deadspace observed in system response. Results are presented and discussed.

Duke, H. G.

1975-01-01

270

Space shuttle program: Lightning protection criteria document  

NASA Technical Reports Server (NTRS)

The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.

1975-01-01

271

Space Shuttle Technical Conference, part 1  

NASA Technical Reports Server (NTRS)

Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.

Chaffee, N. (compiler)

1985-01-01

272

Space Shuttle Galley Water System Test Program.  

National Technical Information Service (NTIS)

A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and...

1975-01-01

273

The Space Shuttle Program and Its Support for Space Bioresearch  

ERIC Educational Resources Information Center

The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)

Mason, J. A.; Heberlig, J. C.

1973-01-01

274

Scintillation Effects on Space Shuttle GPS Data  

NASA Technical Reports Server (NTRS)

Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

Goodman, John L.; Kramer, Leonard

2001-01-01

275

Space shuttle orbiter rudder/speedbrake actuation system  

NASA Technical Reports Server (NTRS)

A mechanical hydraulic actuation system for control of the rudder and speedbrake aerosurfaces of the space shuttle orbiter was developed to meet the strict operational requirements imposed on this flight critical function. The requirements, hardware configuration, development experience, and test program accomplished in the evolution of this system are described.

Woolhouse, D.

1981-01-01

276

Noise Control in Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

Goodman, Jerry R.

2009-01-01

277

Study of alternate space shuttle concepts  

NASA Technical Reports Server (NTRS)

A study of alternate space shuttle concepts was conducted to examine the stage-and-one-half concept and its potential for later conversion and use in the two stage reusable shuttle system. A study of external hydrogen tank concepts was conducted to determine the issues involved in the design and production of a low-cost expendable tank system. The major objectives of the study were to determine: (1) realistic drop tank program cost estimates, (2) estimated drop tank program cost for selected specific designs, and (3) change in program cost due to variations in design and manufacturing concepts and changes in program assumptions.

1971-01-01

278

Space shuttle horizontal flight test plan  

NASA Technical Reports Server (NTRS)

A horizontal takeoff flight test concept for testing space shuttle vehicles is presented. The guidelines used in planning and support requirements for the flight tests are developed. Details of the test program are provided. The instrumentation requirements are defined. The limitations imposed by the short flight endurance and restricted maneuvering capability of the shuttle booster/orbiter in the horizontal mode are described. The test program covers the following investigations. (1) stall and lift boundary tests, (2)takeoff and landing tests, (3) level flight speed power tests, (4) longitudinal and laterial directional dynamic stability, and (5) static directional stability.

Mosley, R. L.

1972-01-01

279

Space Shuttle UHF Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.

Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2004-01-01

280

Toward a history of the space shuttle. An annotated bibliography  

NASA Technical Reports Server (NTRS)

This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

Launius, Roger D. (compiler); Gillette, Aaron K. (compiler)

1992-01-01

281

Aerodynamic and base heating studies on space shuttle configurations  

NASA Technical Reports Server (NTRS)

Heating rate and pressure measurements were obtained on a 25-O space shuttle model in a vacuum chamber. Correlation data on windward laminar and turbulent boundary layers and leeside surfaces of the space shuttle orbiter are included.

1974-01-01

282

Toward a history of the space shuttle. An annotated bibliography  

NASA Astrophysics Data System (ADS)

This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

Launius, Roger D.; Gillette, Aaron K.

1992-12-01

283

Space shuttle L-tube radiator testing  

NASA Technical Reports Server (NTRS)

A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.

Phillips, M. A.

1976-01-01

284

Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission  

NASA Technical Reports Server (NTRS)

The preliminary design of two series of simple experiments the objectives of which are to determine the effect of an absence of gravity on (1) the general morphology of the structure, (2) location of ullage space, and (3) magnitude of surface tension driven convection, during the solidification of several metallic and nonmetallic systems is described. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given.

Bailey, J. A.; Whitfield, J. K.

1976-01-01

285

Space shuttle: Structural integrity and assessment study. [development of nondestructive test procedures for space shuttle vehicle  

NASA Technical Reports Server (NTRS)

A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented.

Pless, W. M.; Lewis, W. H.

1974-01-01

286

Computed Flow About The Integrated Space Shuttle, Revisited  

NASA Technical Reports Server (NTRS)

Report discusses numerical simulations of flow of air about integrated space shuttle (complete space shuttle assembly including orbiter, solid rocket boosters, and external tank) in ascent. Updated version of report described in "Computed Flow About The Integrated Space Shuttle" (ARC-12685). Goal of studies to improve understanding of, and ability to predict how integrated space shuttle performs during both nominal and aborted ascent under various conditions.

Buning, P. G.; Obayashi, S.; Steger, J. L.; Chiu, I. T.; Martin, F. W., Jr.; Meakin, R. L.; Rizk, Y. M.; Yarrow, M.

1996-01-01

287

Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances  

NASA Technical Reports Server (NTRS)

In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

Gradl, Paul R.; Stephens, Walter

2005-01-01

288

Phased array antenna for space shuttle orbiter  

NASA Astrophysics Data System (ADS)

The National Aeronautics and Space Administration is developing a distributed phased array antenna at the Lyndon B. Johnson Space Center as a possible upgrade for the Space Shuttle Orbiter S-band phase modulation communications system. The antenna consists of an eight-element transmit section, eight-element receive section, and a single L-band receive element. The antenna design is constrained by the existing Orbiter system and space environment. The solution to the interface design problems led to an antenna system which provides improved link margins and yet supports previous operational configurations. This paper describes the system development, antenna hardware, and the interface consideration which led to the final design.

Davidson, Shayla E.

1987-02-01

289

Phased array antenna for space shuttle orbiter  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration is developing a distributed phased array antenna at the Lyndon B. Johnson Space Center as a possible upgrade for the Space Shuttle Orbiter S-band phase modulation communications system. The antenna consists of an eight-element transmit section, eight-element receive section, and a single L-band receive element. The antenna design is constrained by the existing Orbiter system and space environment. The solution to the interface design problems led to an antenna system which provides improved link margins and yet supports previous operational configurations. This paper describes the system development, antenna hardware, and the interface consideration which led to the final design.

Davidson, Shayla E.

1987-01-01

290

Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning  

NASA Technical Reports Server (NTRS)

Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

Bailey, J. A.

1976-01-01

291

Space Shuttle Endeavor Stands Ready for Launch  

NASA Technical Reports Server (NTRS)

Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

2000-01-01

292

Space Shuttle security policies and programs  

NASA Astrophysics Data System (ADS)

The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

Keith, E. L.

293

Probabilistic Modeling of Space Shuttle Debris Impact  

NASA Technical Reports Server (NTRS)

On Feb 1, 2003, the Shuttle Columbia was lost during its return to Earth. As a result of the conclusion that debris impact caused the damage to the left wing of the Columbia Space Shuttle Vehicle (SSV) during ascent, the Columbia Accident Investigation Board recommended that an assessment be performed of the debris environment experienced by the SSV during ascent. A flight rationale based on probabilistic assessment is used for the SSV return-to-flight. The assessment entails identifying all potential debris sources, their probable geometric and aerodynamic characteristics, and their potential for impacting and damaging critical Shuttle components. A probabilistic analysis tool, based on the SwRI-developed NESSUS probabilistic analysis software, predicts the probability of impact and damage to the space shuttle wing leading edge and thermal protection system components. Among other parameters, the likelihood of unacceptable damage depends on the time of release (Mach number of the orbiter) and the divot mass as well as the impact velocity and impact angle. A typical result is visualized in the figures below. Probability of impact and damage, as well as the sensitivities thereof with respect to the distribution assumptions, can be computed and visualized at each point on the orbiter or summarized per wing panel or tile zone.

Huyse, Luc J.; Asce, M.; Waldhart, Chris J.; Riha, David S.; Larsen, Curtis E.; Gomez, Reynaldo J.; Stuart, Phillip C.

2007-01-01

294

Photometric analysis of a space shuttle water venting  

NASA Technical Reports Server (NTRS)

Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.

Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.

1991-01-01

295

Microbiological Lessons Learned from the Space Shuttle  

NASA Technical Reports Server (NTRS)

After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.

Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

2011-01-01

296

Space shuttle natural environment analysis  

NASA Technical Reports Server (NTRS)

Five major tasks are briefly outlined: development of detailed wind profile measurements for Kennedy Space Center (KSC) and Vandenberg Air Force Base (VAFB): development of software to construct meteorological data tapes for use in the STS Post Ascent Analysis; development of storage, access, and utilization codes for Global Cloud Cover data; development of software and meteorological data bases to establish launch delay risks at KSC and VAFB; and development of the meteorological tower 301 climatological data base at VAFB.

Batts, Wade

1988-01-01

297

DMA Modulus as a Screening Parameter for Compatibility of Polymeric Containment Materials with Various Solutions for use in Space Shuttle Microgravity Protein Crystal Growth (PCG) Experiments  

NASA Technical Reports Server (NTRS)

Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.

Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

2002-01-01

298

STS-70 Space Shuttle Mission Report - September 1995  

NASA Technical Reports Server (NTRS)

The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

Fricke, Robert W., Jr.

1995-01-01

299

Space Shuttle Software Development and Certification  

NASA Technical Reports Server (NTRS)

Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools

Orr, James K.; Henderson, Johnnie A

2000-01-01

300

Evaluation of beryllium for space shuttle components  

NASA Technical Reports Server (NTRS)

Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

Trapp, A. E.

1972-01-01

301

Portable Oxygen Subsystem (POS). [for space shuttles  

NASA Technical Reports Server (NTRS)

Concept selection, design, fabrication, and testing of a Portable Subsystem (POS) for use in space shuttle operations are described. Tradeoff analyses were conducted to determine the POS concept for fabrication and testing. The fabricated POS was subjected to unmanned and manned tests to verify compliance with statement of work requirements. The POS used in the development program described herein met requirements for the three operational modes -- prebreathing, contaminated cabin, and personnel rescue system operations.

1975-01-01

302

Hydrazine Gas Generator Program. [space shuttles  

NASA Technical Reports Server (NTRS)

The design and fabrication of a flight gas generator for the space shuttle were investigated. Critical performance parameters and stability criteria were evaluated as well as a scaling laws that could be applied in designing the flight gas generator. A test program to provide the necessary design information was included. A structural design, including thermal and stress analysis, and two gas generators were fabricated based on the results. Conclusions are presented.

Kusak, L.; Marcy, R. D.

1975-01-01

303

Space shuttle galley water system test program  

NASA Technical Reports Server (NTRS)

A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.

1975-01-01

304

Space shuttle main engine vibration data base  

NASA Technical Reports Server (NTRS)

In order to evaluate Space Shuttle Main Engine (SSME) vibration data without having to constantly replay analog tapes, the SSME Vibration Data Base was developed. This data base contains data that have been digitized at a high sample rate for the entire test duration. It provides quick and efficient recall capabilities for numerious computation and display routines. The data base components are described as well as some of the compution and display features.

Lewallen, Pat

1987-01-01

305

Monitoring tropical environments with Space Shuttle photography  

NASA Technical Reports Server (NTRS)

Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.

Helfert, Michael R.; Lulla, Kamlesh P.

1989-01-01

306

Mesoscale observations of lightning from Space Shuttle  

NASA Technical Reports Server (NTRS)

Motion pictures have been taken at night by astronauts on the space shuttle showing lightning discharge that spread horizontally at speeds of 100,000/msec for distances over 60 km. Tape recordings have been made of the accompanying optical pulses detected with a photocell optical system. The observations show that lightning is often a mesoscale phenomena that can convey large amounts of electric charge to Earth from an extensive cloud system via a cloud to ground discharge.

Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.; Krehbiel, P.

1984-01-01

307

Acoustic emission monitoring of Space Shuttle tiles  

NASA Technical Reports Server (NTRS)

Late in the development of the Space Shuttle thermal protection system (TPS), a major problem was encountered with the attachment of the tiles to the spacecraft's exterior skin. To insure an adequate margin, each tile had to be proof tested. The risk of damaging a tile during proof test was quite high. For this reason, an acoustic emission system was developed and used in conjunction with the proof test to insure no significant damage occurred.

Castner, W. L.; Crockett, L. K.; Sugg, F. E.

1985-01-01

308

Space shuttle main engine plume radiation model  

NASA Technical Reports Server (NTRS)

The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

Reardon, J. E.; Lee, Y. C.

1978-01-01

309

Space shuttle/food system study  

NASA Technical Reports Server (NTRS)

This document establishes the Functional, physical and performance interface requirements are studied between the space shuttle orbiter and the galley water system, the orbiter and the galley electrical system, and the orbiter and the galley structural system. Control of the configuration and design of the applicable interfacing items is intended to maintain compatibility between co-functioning and physically mating items and to assure those performance criteria that are dependent upon the interfacing items.

1974-01-01

310

Electrophoresis experiments for space  

NASA Astrophysics Data System (ADS)

It has long been hoped that space could alleviate the problems of large-scale, high-capacity electrophoresis. Support media and reduced chamber dimensions of capillary electrophoresis have established the physical boundaries for Earth-based systems. Ideally, electrophoresis conducted in a virtual weightless environment in an unrestricted ``free'' fluid should have great potential. The electrophoresis and isoelectric focusing experiments done in the reduced gravity over the past twenty-five years have demonstrated the absence of thermal convection and sedimentation as well as the presence of electrohydrodynamics that requires careful control. One commercial venture produced gram amounts of an electrophoretically purified protein during seven Space Shuttle flights but the market disappeared in the six years between experiment conception and performance on the Space Shuttle. Our accumulated experience in microgravity plus theoretical models predict improvements that should be possible with electrophoresis if past problems are considered and both invention of new technologies and innovation of procedures on the Space Station are encouraged. .

Snyder, Robert S.; Rhodes, Percy H.

2000-01-01

311

STS-35 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

1991-01-01

312

STS-73 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-73 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-second flight of the Space Shuttle Program, the forty-seventh flight since the return-to-flight, and the eighteenth flight of the Orbiter Columbia (OV-102). STS-73 was also the first flight of OV-102 following the vehicle's return from the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-73; three SSME's that were designated as serial numbers 2037 (Block 1), 2031 (PH-1), and 2038 (Block 1) in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-075. The RSRM's, designated RSRM-50, were installed in each SRB and the individual RSRM's were designated as 36OL050A for the left SRB, and 36OW050B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML)-2 payload.

Fricke, Robert W., Jr.

1995-01-01

313

The Shuttle and its importance to space medicine  

NASA Technical Reports Server (NTRS)

The physiological effects of space flights on humans are reviewed, and the opportunities offered by frequent and repetitive Space Shuttle flights for space medical research are discussed. The most significant changes encountered in the vestibular, cardiopulmonary, musculoskeletal and hematopoietic systems during and after past space missions are indicated, and the time courses of the physiological shifts associated with space acclimatization and readaptation to a 1-g environment are summarized. Effects directly attributable to the absence of gravity, including postural changes and fluid shifts, are considered, and additional contributing factors to physiological changes imposed by the spacecraft operational environment are pointed out. Differences between the Space Shuttle missions and all previous missions in the areas of reentry profiles and varied crew composition are discussed, and results of experiments on the relative acceleration tolerances of men and women of different ages and the usefulness of the anti-g suit are presented. Directions for future research in space medicine available with the Shuttle are examined, with particular emphasis on the neurovestibular system cardiopulmonary dynamics, calcium metabolism, the erythropoietic system and the effects of space radiation.

Nicogossian, A.; Pool, S.; Rambaut, P.

1980-01-01

314

Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida  

NASA Technical Reports Server (NTRS)

NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now

1991-01-01

315

Report of the Space Shuttle Management Independent Review Team  

NASA Technical Reports Server (NTRS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-01-01

316

Report of the Space Shuttle Management Independent Review Team  

NASA Astrophysics Data System (ADS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-02-01

317

Space shuttle exhaust cloud properties  

NASA Technical Reports Server (NTRS)

A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

Anderson, B. J.; Keller, V. W.

1983-01-01

318

The space shuttle payload planning working groups. Volume 10: Space technology  

NASA Technical Reports Server (NTRS)

The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.

1973-01-01

319

An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education  

NASA Astrophysics Data System (ADS)

This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

Lulla, Kamlesh

2012-07-01

320

Maintaining space shuttle safety within an environment of change  

NASA Astrophysics Data System (ADS)

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

Greenfield, Michael A.

1999-09-01

321

Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida  

NASA Technical Reports Server (NTRS)

NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site

1991-01-01

322

Phase C aerothermodynamic data base. [for space shuttle program  

NASA Technical Reports Server (NTRS)

Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.

Moser, M., Jr.

1974-01-01

323

Preliminary investigations of protein crystal growth using the Space Shuttle  

NASA Technical Reports Server (NTRS)

Four preliminary Shuttle experiments are described which have been used to develop prototype hardware for a more advanced system that will evaluate effects of gravity on protein crystal growth. The first phase of these experiments has centered on the development of micromethods for protein crystal growth by vapor-diffusion techniques (using a space version of the hanging-drop method) and on dialysis using microdialysis cells. Results suggest that the elimination of density-driven sedimentation can effect crystal morphology. In the dialysis experiment, space-grown crystals of concanavalin B were three times longer and 1/3 the thickness of earth-grown crystals.

Delucas, L. J.; Suddath, F. L.; Snyder, R.; Naumann, R.; Broom, M. B.; Pusey, M.; Yost, V.; Herren, B .; Carter, D.

1986-01-01

324

Cost prediction model for various payloads and instruments for the Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

The following cost parameters of the space shuttle were undertaken: (1) to develop a cost prediction model for various payload classes of instruments and experiments for the Space Shuttle Orbiter; and (2) to show the implications of various payload classes on the cost of: reliability analysis, quality assurance, environmental design requirements, documentation, parts selection, and other reliability enhancing activities.

Hoffman, F. E.

1984-01-01

325

The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing  

NASA Technical Reports Server (NTRS)

The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

1973-01-01

326

STS-46 Space Shuttle mission report  

NASA Technical Reports Server (NTRS)

The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

Fricke, Robert W.

1992-01-01

327

An overview of the Evaluation of Oxygen Interactions with Materials 3 Experiment: Space Shuttle Mission 46; July-August, 1992  

NASA Astrophysics Data System (ADS)

The flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS 46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-III and the results of the materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C(sup 13) labeled Kapton revealed CO, CO2, H2O, NO and NO2. By operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere and detected the gaseous reaction products formed when ambient ions interacted with the C(sup 13) Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A 'line-of-centers' reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to within 50 to 100 Angstroms of the surface.

Koontz, Steven L.; Leger, Lubert J.; Visentine, James T.; Hunton, Don E.; Cross, Jon B.; Hakes, Charles L.

1993-04-01

328

An overview of the Evaluation of Oxygen Interactions with Materials III Experiment: Space Shuttle Mission 46; July--August, 1992  

SciTech Connect

The flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS 46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-III and the results of the materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C{sup 13} labeled Kapton revealed CO, CO{sub 2}, H{sub 2}O, NO and NO{sub 2}. By operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere and detected the gaseous reaction products formed when ambient ions interacted with the C{sup 13} Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A ``line-of-centers`` reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to within 50 to 100 Angstroms of the surface.

Koontz, S.L.; Leger, L.J.; Visentine, J.T. [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center; Hunton, D.E. [USAF Phillips Lab., Hanscomb AFB, MA (United States); Cross, J.B. [Los Alamos National Lab., NM (United States); Hakes, C.L. [Lockheed Engineering and Sciences Co., Inc., Houston, TX (United States)

1993-12-31

329

Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis  

NASA Technical Reports Server (NTRS)

This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

2005-01-01

330

Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels  

NASA Technical Reports Server (NTRS)

Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

2006-01-01

331

From Lindbergh to Columbia - The Space Shuttle  

NASA Technical Reports Server (NTRS)

An effort to gage the level of maturation of space transportation development signalled by the advent of the Shuttle is attempted. Analogy is drawn to the successful crossing of the Atlantic Ocean by Charles Lindbergh, an event which established the feasibility of routine air transport over long distances. A positive shift in public confidence is expected to arrive by recalling the favorable news coverage which resulted after two or three flights by the Wright brothers at Kitty Hawk in 1908. The evolution of modern airports is taken as an indication of the kind of growth in facilities which may shortly be required due to operational space transportation systems. The arrival of normal operations of humans-to-space and return in reuseable vehicles is seen as a benchmark for a time when certain global assessments of social and technical requirements for the continued existence and progress of human civilization on earth and into space must be made.

Lovelace, A.

1982-01-01

332

Space Shuttle Crawler Transporter Sound Attenuation Study  

NASA Technical Reports Server (NTRS)

The crawler transporter (CT) is the world's largest tracked vehicle known, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960's, maintained and retrofitted for use in the Space Shuttle program. As a key element of the Space Shuttle ground systems, the crawler transports the entire 12-million-pound stack comprising the orbiter, the mobile launch platform (MLP), the external tank (ET), and the solid rocket boosters (SRB) from the Vehicle Assembly Building (VAB) to the launch pad. This rollout, constituting a 3.5-5.0-mile journey at a top speed of 0.9 miles-per-hour, requires over 8 hours to reach either Launch Complex 39A or B. This activity is only a prelude to the spectacle of sound and fury of the Space Shuttle launch to orbit in less than 10 minutes and traveling at orbital velocities of Mach 24. This paper summarizes preliminary results from the Crawler Transporter Sound Attenuation Study, encompassing test and engineering analysis of significant sound sources to measure and record full frequency spectrum and intensity of the various noise sources and to analyze the conditions of vibration. Additionally, data such as ventilation criteria, plus operational procedures were considered to provide a comprehensive noise suppression design for implementation. To date, sound attenuation study and results on Crawler 2 have shown significant noise reductions ranging from 5 to 24 dBA.

Margasahayam, Ravi N.; MacDonald, Rod; Faszer, Clifford

2004-01-01

333

Space station and space shuttle studies of ocean dynamics and coastal resources  

Microsoft Academic Search

Based on our experience with the space shuttle, we plan to use the U.S. Laboratory Window Observational Research Facility (WORF) of the International Space Station (ISS) to study ocean dynamics and resources using high resolution color cameras, such as the NASA modified Hasselblad 500 EL\\/M camera with a 250 mm lens, and spectrometers. A major advantage will be the ability

Quanan Zheng; Victor Klemas; Xiao-Hai Yan; Richard Field

2000-01-01

334

Space Shuttle Main Engine (SSME) Options for the Future Shuttle.  

National Technical Information Service (NTIS)

The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements tha...

F. Jue F. Kuck

2002-01-01

335

2009 Space Shuttle Probabilistic Risk Assessment Overview  

NASA Technical Reports Server (NTRS)

Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

2010-01-01

336

Environmental analysis of the chemical release module. [space shuttle payload  

NASA Technical Reports Server (NTRS)

The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

Heppner, J. P.; Dubin, M.

1980-01-01

337

Space Shuttle Orbiter windshield bird impact analysis  

NASA Technical Reports Server (NTRS)

The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

Edelstein, Karen S.; Mccarty, Robert E.

1988-01-01

338

LARC-13 adhesive development. [for space shuttle  

NASA Technical Reports Server (NTRS)

The paper reports the results of a program whose objective was to modify physically and chemically LARC-13 resin in order to obtain an improved adhesive for 589 K applications. The project was directed, in particular, toward Space Shuttle applications such as the body flap in which the designers could take the advantage of the excellent strength-to-weight ratio of advanced composites. Improved resins were obtained by substitution of m, m-prime-diaminodiphenylmethane with metaphenylene diamine in the original LARC-13 chemistry. Test results for the new adhesives are presented.

Hill, S. G.; Sheppard, C. H.

1980-01-01

339

Shuttle-launch triangular space station  

NASA Technical Reports Server (NTRS)

A triangular space station deployable in orbit is described. The framework is comprized of three trusses, formed of a pair of generally planar faces consistine of foldable struts. The struts expand and lock into rigid structural engagement forming a repetition of equilater triangles and nonfolding diagonal struts interconnecting the two faces. The struts are joined together by node fittings. The framework can be packaged into a size and configuration transportable by a space shuttle. When deployed, the framework provides a large work/construction area and ample planar surface area for solar panels and thermal radiators. A plurity of modules are secured to the framework and then joined by tunnels to make an interconnected modular display. Thruster units for the space station orientation and altitude maintenance are provided.

Schneider, W. C. (inventor); Berka, R. B. (inventor); Kavanaugh, C. (inventor); Nagy, K. (inventor); Parish, R. C. (inventor); Schliesing, J. A. (inventor); Smith, P. D. (inventor); Stebbins, F. J. (inventor); Wesselski, C. J. (inventor)

1986-01-01

340

Hydrogen leak detection in the Space Shuttle  

NASA Technical Reports Server (NTRS)

This study focuses on a helium gas jet flowing into room air. Measurements of helium concentration and velocity in the jet-air mixture are reported. The objective is to learn about jet characteristics so that dynamically similar hydrogen leaks may be located in the Space Shuttle. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers to monitor the shuttle environment for leaks. The mass spectrometers are fed by long sample tubes which draw gas from the payload bay, mid body, aft engine compartment and external tank. The overall purpose of this study is to improve the HGDS especially in its potential for locating hydrogen leaks. A rapid-response leak detection experiment was designed, built, and tested, following on the work done in this program last summer. The apparatus included a Perkin Elmer MGA-1200 mass spectrometer and air velocity transducer, both monitored by a Macintosh IIFX computer using LabVIEW software. A jet of helium flowing into the lab air simulated a gas leak. Steady helium or hydrogen-nitrogen jets were logged for concentration and velocity, and the power spectral density of each was computed. Last year, large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MGA-1200 was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MGA data. No peaks were detected in the power spectrum, so in the present study, 10 Hz bandwidth-averaged power levels were examined at regular frequency intervals. The practical consequences of last year's study are as follows: sampling frequency should be increased above the present rate of 1 sample per second so that transients could be observed and analyzed with frequency response methods. Many more experiments and conditions were observed in this second summer, including the effects of orifice diameter, jet velocity, sample tube design, radial effects, vertical flow, and low hydrogen concentrations (1 percent). A frequent observation was that the power spectrum, calculated from the Fourier transform of concentration fluctuations, gives a separate piece of information from concentration. Many of the tests suggest that power is high where mixing occurs at the helium-air interface. This fact is apparently independent of the concentration level, which could be high or low, but depends on the sample location relative to the jet (leak) origin, whereas high concentration may be due to a strong leak far away or a small leak close to the sample tube. If the power is low for any concentration level, this would signify helium is arriving at the sample tube by diffusion, not chaotic mixing caused by the jet interaction with air. The practical result is to propose a modification of the HGDL mass spectrometer data sampling and software so that sampling rates could be capable of observing at least 25 Hz fluctuations.

Barile, Ronald G

1992-01-01

341

Hydrogen leak detection in the Space Shuttle  

NASA Astrophysics Data System (ADS)

This study focuses on a helium gas jet flowing into room air. Measurements of helium concentration and velocity in the jet-air mixture are reported. The objective is to learn about jet characteristics so that dynamically similar hydrogen leaks may be located in the Space Shuttle. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers to monitor the shuttle environment for leaks. The mass spectrometers are fed by long sample tubes which draw gas from the payload bay, mid body, aft engine compartment and external tank. The overall purpose of this study is to improve the HGDS especially in its potential for locating hydrogen leaks. A rapid-response leak detection experiment was designed, built, and tested, following on the work done in this program last summer. The apparatus included a Perkin Elmer MGA-1200 mass spectrometer and air velocity transducer, both monitored by a Macintosh IIFX computer using LabVIEW software. A jet of helium flowing into the lab air simulated a gas leak. Steady helium or hydrogen-nitrogen jets were logged for concentration and velocity, and the power spectral density of each was computed. Last year, large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MGA-1200 was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MGA data. No peaks were detected in the power spectrum, so in the present study, 10 Hz bandwidth-averaged power levels were examined at regular frequency intervals. The practical consequences of last year's study are as follows: sampling frequency should be increased above the present rate of 1 sample per second so that transients could be observed and analyzed with frequency response methods. Many more experiments and conditions were observed in this second summer, including the effects of orifice diameter, jet velocity, sample tube design, radial effects, vertical flow, and low hydrogen concentrations (1 percent). A frequent observation was that the power spectrum, calculated from the Fourier transform of concentration fluctuations, gives a separate piece of information from concentration. Many of the tests suggest that power is high where mixing occurs at the helium-air interface.

Barile, Ronald G.

1992-09-01

342

Space Shuttle externally induced environment compared with Skylab's natural environment  

NASA Technical Reports Server (NTRS)

Electret measurements obtained of the particulate contamination environment within the Space Shuttle Orbiter's cargo bay are presently compared with ground measurements of the particulates emitted by the Shuttle's SRBs, as well as with the expected natural particulate environment as measured by Skylab. Chemical analysis is shown to reveal the difference between natural and anthropogenic space debris; the most probable primary source of the Space Shuttle's particulate environment is the SRB exhaust.

Susko, Michael

1990-01-01

343

STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight  

NASA Technical Reports Server (NTRS)

The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

1981-01-01

344

Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology  

NASA Technical Reports Server (NTRS)

Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

1976-01-01

345

The Hawaii to Tahiti Shuttle Experiment  

Microsoft Academic Search

The Shuttle Experiment conducted between Hawaii and Tahiti from January 1979 to June 1980 was designed to observe the changing equatorial ocean structure and circulation, to study the variations and interactions of the four major equatorial ocean currents, and to develop a scientific basis for their monitoring by simple observations of thermal structure and sea level. Preliminary analyses of the

Klaus Wyrtki; Eric Firing; David Halpern; Robert Knox; G. J. McNally; W. C. Patzert; E. D. Stroup; B. A. Taft; R. Williams

1981-01-01

346

Research and technology. [in development of space shuttle  

NASA Technical Reports Server (NTRS)

Summaries are presented of the research in the development of the space shuttle. Propulsion, materials, spacecraft and thermal control, payloads, instrumentation, data systems, and mission planning are included.

1973-01-01

347

Liftoff of Space Shuttle Endeavour on mission STS-97  

NASA Technical Reports Server (NTRS)

Blue mach diamonds signal the speed and force at which Space Shuttle Endeavour roars into space after a perfect launch. Liftoff occurred on time at 10:06:01 p.m. EST. The Shuttle and its five-member crew will deliver U.S. solar arrays to the International Space Station and be the first Shuttle crew to visit the Station'''s first resident crew. The 11-day mission includes three spacewalks. This marks the 101st mission in Space Shuttle history and the 25th night launch. Endeavour is expected to land at KSC Dec. 11 at 6:19 p.m. EST.

2000-01-01

348

Space shuttle propellant constitutive law verification tests  

NASA Technical Reports Server (NTRS)

As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

Thompson, James R.

1995-01-01

349

ALT space shuttle barometric altimeter altitude analysis  

NASA Technical Reports Server (NTRS)

The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

Killen, R.

1978-01-01

350

Stennis Holds Last Planned Space Shuttle Engine Test  

NASA Technical Reports Server (NTRS)

With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

2009-01-01

351

The Space Shuttle Payload Planning Working Groups: Executive Summaries.  

National Technical Information Service (NTIS)

The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications pro...

1973-01-01

352

Coordinating "Execute" Data for ISS and Space Shuttle  

NASA Technical Reports Server (NTRS)

The Joint Execute Package Development and Integration tool is a Web utility program that provides an integrated capability to generate and manage messages and execute package data for members of a space shuttle and the International Space Station (ISS). (An execute package consists of flight plans, short-term plans, procedure updates, data needed to operate the space-shuttle and ISS systems, in-flight maintenance procedures, inventory-stowage data, software upgrades, flight notes, scripts for publicized events, and other instructions.) This program is a third-generation "execute"-package Web tool, built on experience gained from two programs used previously to support realtime operations. This program provides integration and synchronization between the space-shuttle and ISS teams during joint operations. Hundreds of messages per week must be uplinked as "joint" messages; that is, messages for crewmembers of both spacecraft. The program includes configuration-management components that ensure that the same message goes to both crews and spacecraft, effectively eliminating the potential for error in manual direction of messages. The program also controls the format and layout of the crews Web pages, ensuring consistency between uplinks. If the crews Web pages were edited manually, hyperlink and formatting errors would be common.

Whitney, Greg; Melendrez, David; Hadlock, Jason

2010-01-01

353

The Space Shuttle Payload Planning Working Groups. Volume 1: Astronomy.  

National Technical Information Service (NTIS)

The space astronomy missions to be accomplished by the space shuttle are discussed. The principal instrument is the Large Space Telescope optimized for the ultraviolet and visible regions of the spectrum, but usable also in the infrared. Two infrared tele...

1973-01-01

354

Legacy of Operational Space Medicine During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

2011-01-01

355

Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar  

Microsoft Academic Search

The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit

Jack Bufton; Bryan Blair; John Cavanaugh; James Garvin

1995-01-01

356

The potential impact of the space shuttle on space benefits to mankind  

NASA Technical Reports Server (NTRS)

The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

Rattinger, I.

1972-01-01

357

The Space Shuttle Payload Planning Working Groups. Volume 7: Earth Observations.  

National Technical Information Service (NTIS)

The findings of the Earth Observations working group of the space shuttle payload planning activity are presented. The objectives of the Earth Observation experiments are: (1) establishment of quantitative relationships between observable parameters and g...

1973-01-01

358

The Space Shuttle Payload Planning Working Groups. Volume 5: Solar Physics.  

National Technical Information Service (NTIS)

The findings of the Solar Physics working group of the space shuttle payload planning activity are presented. The areas to be investigated by the solar physics experiments are: (1) the production of mechanical energy in the subphotospheric layers and its ...

1973-01-01

359

STS-114 Space Shuttle Discovery Landed on Runway  

NASA Technical Reports Server (NTRS)

The sun rises on the Space Shuttle Discovery as it rests on the runway at Edward's Air Force Base in California after a safe landing at 5:11 am (PDT) on August 9, 2005. The STS-114 landing concluded a historic 14 day return to flight mission to the International Space Station (ISS) after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003. Three successful space walks performed during the mission included a demonstration of repair techniques to the Shuttle's thermal tiles known as the Thermal Protection System, the replacement of a failed Control Moment Gyroscope which helps keep the station oriented properly, and the installation of the External Stowage Platform, a space 'shelf' for holding spare parts during Station construction. The shuttle's heat shield repair was a first for Shuttle repair while still in space.

2005-01-01

360

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis erupts from Launch Pad 39A amid billows of smoke and steam as it climbs into the early evening sky. Nearby, pelicans also launch from their perches at the roar of the liftoff. Launch occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:00 p.m. EST.

2001-01-01

361

Space Shuttle to deploy Magellan planetary science mission  

NASA Technical Reports Server (NTRS)

The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

1989-01-01

362

NASDA next generation aquatic habitat for space shuttle and ISS  

NASA Astrophysics Data System (ADS)

The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grewto adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad ( Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Ishioka, N.; Uchida, S.; Kono, Y.; Sakimura, T.

2003-10-01

363

Energy management during the space shuttle transition  

NASA Technical Reports Server (NTRS)

An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.

Stengel, R. F.

1972-01-01

364

Space Shuttle food galley design concept  

NASA Technical Reports Server (NTRS)

A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.

Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.

1974-01-01

365

Space shuttle entry and landing navigation analysis  

NASA Technical Reports Server (NTRS)

A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

Jones, H. L.; Crawford, B. S.

1974-01-01

366

Radar error statistics for the space shuttle  

NASA Technical Reports Server (NTRS)

Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

Lear, W. M.

1979-01-01

367

Recent Space Shuttle crew compartment design improvements  

NASA Technical Reports Server (NTRS)

Significant design changes to the Space Shuttle waste management system (WMS) and its related personal hygiene support provisions (PHSP) have been made recently to improve overall operational performance and human factors interfaces. The WMS design improvements involve increased urinal flow, individual urinals, and provisions for manually compacting feces and cleanup materials to ensure adequate mission capacity. The basic arrangement and stowage of the PHSP used during waste management operations were extensively changed to better serve habitability concerns and operations needs, and to improve the hygiene of WMS operations. This paper describes these changes and the design, development, and flight test evaluation. In addition, provisions for an eighth crewmember and a new four-tier sleep station are described.

Goodman, Jerry R.

1986-01-01

368

Space Shuttle response to atmospheric turbulence.  

NASA Technical Reports Server (NTRS)

A fully reusable Space Shuttle configuration has been analyzed during ascent flight to determine its response to atmospheric turbulence. Propellant sloshing, gust penetration, and automatic control system effects were included. The steady-state aerodynamic method of Woodward was used to derive the generalized aerodynamic forces, using the standard quasi-steady assumption. Aerodynamic interference effects between adjacent wings and bodies were found to be significant, with symmetric responses generally higher than antisymmetric. The stability augmentation system tended to lower booster response while increasing orbiter response. Loads due to 9 m/s quasi-square-wave gusts were considerably higher than the 3 sigma random turbulence loads. The elastic portion of the response accounted for about 15% of the total wing load in the discrete gust analysis, while in the random case the elastic effect was small.

Huntington, R. G.

1973-01-01

369

SRB dewatering set. [space shuttle boosters revcovery  

NASA Technical Reports Server (NTRS)

The system components and operation of the space shuttle solid rocket booster (SRB) dewatering set are described. The SRB dewatering set consists of a nozzle plug, control console, remote control unit, power distribution unit, umbilical cable, interconnect cables, and various handling and storage items. The nozzle plug (NP) is a remotely controlled, tethered underwater vehicle that is launched from the retrieval vessel (RV) by a crane, descends down the side of the SRB, and is positioned below the SRB nozzle. A TV camera mounted at the top of the NP central core is used by the control console operator to visually guide the NP during descent and docking. The NP is then driven up and locked into the nozzle. Compressed air is passed through the umbilical from the RV, through the NP and into the SRB motor. The water inside the SRB is expelled causing the SRB to rotate to a near horizontal attitude on the surface of the water.

Wickham, R. E.

1981-01-01

370

Space Shuttle solid rocket booster dewatering system  

NASA Technical Reports Server (NTRS)

After the launch of the Space Shuttle, the two solid rocket boosters (SRB's) are jettisoned into the ocean where they float in a spar (vertical) mode. It is cost effective to recover the SRB's. A remote controlled submersible vehicle has been developed to aid in their recovery. The vehicle is launched from a support ship, maneuvered to the SRB, then taken to depth and guided into the rocket nozzle. It then dewaters the SRB, using compressed air from the ship, and seals the nozzle. When dewatered, the SRB floats in a log (horizontal) mode and can be towed to port for reuse. The design of the remote controlled vehicle and its propulsion system is presented.

Fishel, K. R.

1982-01-01

371

Methods of assessing structural integrity for space shuttle vehicles  

NASA Technical Reports Server (NTRS)

A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.

Anderson, R. E.; Stuckenberg, F. H.

1971-01-01

372

Space Shuttle GN and C Development History and Evolution.  

National Technical Information Service (NTIS)

Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development an...

D. Gavert D. Zimpfer J. Ruppert P. Hattis

2011-01-01

373

Advanced Health Management System for the Space Shuttle Main Engine.  

National Technical Information Service (NTIS)

Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrop...

M. Davidson J. Stephens

2004-01-01

374

Thermoacoustic fatigue testing facility for space shuttle thermal protection system  

NASA Technical Reports Server (NTRS)

The development of a reusable space shuttle by NASA in the next decade depends in part on the design of a satisfactory thermal protection system (TPS). The booster and orbiter parts of the shuttle require TPS panels which will withstand thermoacoustic fatigue. The Langley Research Center has begun tests on early panel designs in a new acoustic fatigue facility which is capable of simulating the combined elevated temperature and acoustic environments which these panels are expected to experience. The capabilities of the facility and computer system are outlined, and problems encountered in establishing the test methods are discussed. Tests of a Haynes 25 TPS panel are described, and representative data from tests of the panel at 650 C are included.

Rucker, C. E.; Grandle, R. E.

1973-01-01

375

Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

Jarrell, George

2010-01-01

376

Auxiliary Payload Power System thermal control. [for space shuttle  

NASA Technical Reports Server (NTRS)

The Auxiliary Payload Power System (APPS) provides supplementary power and cooling to Space Processing Application (SPA) experiments to be mounted in the APPS and the Spacelab in the Shuttle Payload Bay. SPA experiment operations are planned for early Shuttle flights. This paper presents thermal control study results for preliminary analysis and design definition of the APPS. A 100/sq m, three-wing, pumped-fluid, deployable radiator with separate APPS equipment and SPA experiments coolant loops was selected as the baseline. The system is capable of rejecting the heat (approximately 26 kw) associated with the production and consumption of approximately 16 kw of electrical power produced by the APPS fuel cells for a worst case radiator orientation. For the most favorable orientation, the heat rejection and power capability approach 38 and 24 kw, respectively. Alternate approaches were evaluated, such as heat pipes for the radiator and alternate fluids for the coolant loops. Emphasis was placed on using Shuttle developed hardware: coolant pumps, heat exchangers, fluids, and radiator technology.

Nagel, R. G.

1976-01-01

377

Study of space shuttle environmental control and life support problems  

NASA Technical Reports Server (NTRS)

Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.

Dibble, K. P.; Riley, F. E.

1971-01-01

378

Thermal Image Test of Space Shuttle Main Engine  

NASA Technical Reports Server (NTRS)

Thermal imaging is part of ongoing technology development research at the John C. Stennis Space Center. A thermal image of a Space Shuttle Main Engine (SSME) during a test firing detects eroding baffling evidenced in the exhaust plume.

1985-01-01

379

Case Study of the Space Shuttle Cockpit Avionics Upgrade Software  

NASA Technical Reports Server (NTRS)

The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

Ferguson, Roscoe C.; Thompson, Hiram C.

2005-01-01

380

Animation graphic interface for the space shuttle onboard computer  

NASA Technical Reports Server (NTRS)

Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

Wike, Jeffrey; Griffith, Paul

1989-01-01

381

The space shuttle payload planning working groups: Executive summaries  

NASA Technical Reports Server (NTRS)

The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.

1973-01-01

382

Rollback of the Rotating Service Structure from Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

Rollback of the Rotating Service Structure on Launch Pad 39B reveals the Space Shuttle Discovery, scheduled to launch on mission STS-96 at 6:49 a.m. EDT on May 27. Above the top of the external tank is the external tank gaseous oxygen vent arm, with a vent hood, known as the 'beanie cap,' at the outer end. Below it up against Discovery is the orbiter access arm, which allows entry into the orbiter crew compartment. through an environmental chamber or 'white room' at the outer end. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station, for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. The mission will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch on May 27 at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

383

STS-96 Rollback of the RSS from Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

Rollback of the Rotating Service Structure on Launch Pad 39B reveals the Space Shuttle Discovery, scheduled to launch on mission STS-96 at 6:49 a.m. EDT on May 27. Above the top of the external tank is a vent hood, known as the 'beanie cap,' at the end of the external tank gaseous oxygen vent arm. STS-96 is a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station, for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. The mission will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch on May 27 at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

384

Rollback of the Rotating Service Structure from Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

The Rotating Service Structure is rolled back at Launch Pad 39B to reveal the Space Shuttle Discovery, scheduled to launch on mission STS-96 at 6:49 a.m. EDT on May 27. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station, for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. The mission will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch on May 27 at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

385

Space Shuttle Upgrades Advanced Hydraulic Power System  

NASA Technical Reports Server (NTRS)

Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.

2004-01-01

386

Space Shuttle Discovery is launched on mission STS-96  

NASA Technical Reports Server (NTRS)

In the early dawn, the brilliant flames from the launch of Space Shuttle Discovery light up the billows of steam below. Mission STS-96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

387

Space Shuttle Discovery is launched on mission STS-96  

NASA Technical Reports Server (NTRS)

Competing with the sunrise, the brilliant flames from the launch of Space Shuttle Discovery light up the morning sky. Mission STS- 96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

388

Space radiation shielding analysis and dosimetry for the Space Shuttle program  

NASA Technical Reports Server (NTRS)

Active and passive radiation dosimeters have been flown on every Space Shuttle mission to measure the naturally-occurring, background Van Allen and galactic cosmic radiation doses that astronauts and radiation-sensitive experiments and payloads receive. A review of the various models utilized at the NASA/Johnson Space Center, Radiation Analysis and Dosimetry is presented. An analytical shielding model of the Shuttle was developed as an engineering tool to aid in making premission radiation dose calculations and is discussed in detail. The anatomical man models are also discussed. A comparison between the onboard dosimeter measurements for the 24 Shuttle missions to date and the dose calculations using the radiation environment and shielding models is presented.

Atwell, William; Beever, E. R.; Hardy, A. C.; Richmond, R. G.; Cash, B. L.

1989-01-01

389

Conceptual design of liquid droplet radiator shuttle-attached experiment technical requirements document  

NASA Technical Reports Server (NTRS)

The technical requirements of a shuttle-attached Liquid Droplet Radiator (LDR) experiment are discussed. The Liquid Droplet Radiator is an advanced lightweight heat rejection concept that can be used to reject heat from future high powered space platforms. In the LDR concept, submillimeter sized droplets are generated, pass through space, and radiate heat before they are collected and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. Shuttle integration and safety design issues are discussed. An overview of the conceptual design of the experiment is presented. Details of the conceptual design are not discussed here, but rather in a separate Final Report.

Pfeiffer, Shlomo L.

1989-01-01

390

Space Shuttle Program Manifest Process & Flight Opportunities for Small Payloads  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program has, since the early flights, exerted great effort to maximize the cargo complement for each individual mission. Historically, because of the capabilities of the Space Shuttle, there have almost always been opportunities to fly what are termed secondary payloads on every mission. However, with the challenges associated with assembling the International Space Station, accommodations for secondary payloads are significantly limited. In an attempt to deal with this situation, the Space Shuttle Program has developed techniques that will identify and utilize flight opportunities, as well as policies that may create opportunities.

Swalin, Richard M.; Sweet, Anne E.

1999-01-01

391

Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration  

NASA Technical Reports Server (NTRS)

Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

2009-01-01

392

H2O2 space shuttle APU  

NASA Technical Reports Server (NTRS)

A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

1975-01-01

393

The evolution of the WPI Advance Space Design Program-an evolving program of technical and social analysis using the NASA Space Shuttle for engineering education  

Microsoft Academic Search

In December of 1982, Worcester Polytechnic Institute, with the cooperation and support of the Mitre Corporation, initiated a primarily undergraduate educational program to develop experiments to be flown onboard a NASA Space Shuttle. Christened the MITRE WPI Space Shuttle Program, it sponsored the development of five educationally meritorious experiments over a period of four years. Although the experiments were ready

Fred J. Looft; Robert C. Labonte; William W. Durgin

1991-01-01

394

Infrasound Signals from the Space Shuttle Columbia  

NASA Astrophysics Data System (ADS)

Infrasound signals from the shuttle Columbia were observed at the TXAR infrasound array on 1 February 2003. TXAR is in far Southwest Texas about 6oo km south of the shuttle's track across the panhandle of Texas. The signals were compared with those from STS 78 (7 July 1996) which had on almost identical track to Columbia (STS 107). Whereas the STS 78 signals had the characteristics of acoustic arrivals from a decaying N-Wave, the signals from STS 107 showed a number of sharp peaks superimposed on a background similar to the STS 78 data. Using a cross-correlation method, we estimated the back azimuths for eight of the peaks, and they agreed within +/-1 degree. We thus concluded that the peaks were multiple arrivals from a single explosive source. By crossing the mean back azimuth with the well known track of STS 107 we were able to determine the following parameters for the explosion. Location : 33.85 N, 101.92 W +/-20 km Time: 13 56.65 Z +/- 0.1 min Height: 63.3 km Speed: Mach 16. Z Having the source location and time we were able to simulate the signals expected at TXAR using the InfraMAP program from BBN. This simulation showed arrivals that agreed with several of the observed impulsive signals to within a few seconds out of a total travel time of about 2000 seconds. The yield of the explosion was estimated using on AFTAC empirical formula based upon the dominant period of the signals, corrected for the elevation of 63.3 km. The estimated yield is 2 lbs. (0.9 kgm) HE (TNT). Because the signal to noise ratios for the observed arrivals at TXAR were large, we conclude that rocket experiments at White Sands involving explosions with yields of the order of 10 lbs at a height of 60 km should provide controlled infrasound sources that could be observed at a number of infrasound arrays.

Herrin, E. T.; Negraru, P. T.; McKenna, M.

2003-12-01

395

An Engineering Look at Space Shuttle and ISS Operations  

NASA Technical Reports Server (NTRS)

This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

Hernandez, Jose M.

2004-01-01

396

Liquid Hydrogen Consumption During Space Shuttle Program  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

Partridge, Jonathan K.

2011-01-01

397

Modification and updating of the Manned Activity Scheduling System (MASS) for shuttle and shuttle payloads analysis. Volume 2: Space shuttle sortie payload analysis  

NASA Technical Reports Server (NTRS)

Space shuttle operations include a significant number of launches with a sortie laboratory serving as a facility for manned experimentation in space. Planning a program of space experiments for a facility of this type requires that both the composition of the laboratory payload and the schedule of experiment operations for each payload be carefully selected. Experiment operations are investigated using the manned activity scheduling system (MASS). Schedules provided by these models assist in selecting experiment groups that efficiently use the laboratory resources and yield the desired experiment accomplishment at the program level. An alternate use of the MASS models provides for establishing the time-dependent supporting resources required for a specified candidate payload. A procedure for defining and analyzing shuttle sortie payloads was developed. This procedure was then applied to the definition of mixed-discipline experiment payloads for an advanced technology laboratory (ATL) supported by two-and three-man crews. The ATL payloads, including schedules of experiment operations, were defined to realize a high percentage of experiment accomplishment. The study considers the sensitivity of experiment accomplishment rate to variations of system parameters such as crew cross training, crew operations, shuttle and laboratory resources, ground target systems, and operational orbits.

Huyett, R. C.; Ring, R. C.

1973-01-01

398

Development of control systems for space shuttle vehicles, volume 1  

NASA Technical Reports Server (NTRS)

Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems.

Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Skelley, E. D.; Stein, G.; Ward, M. D.; Skelton, G. B.; Yore, E. E.; Rupert, J. G.; Phelps, R. K.

1971-01-01

399

Space Shuttle probabilistic risk assessment: methodology and application  

Microsoft Academic Search

This paper describes the methodology and processes used for the probabilistic risk assessment of the Space Shuttle vehicle to systematically quantify the risk incurred during a nominal Shuttle mission and rank the risk driving components to allow for a concerted risk and cost reduction effort. This year-long effort represents a development resulting from seven years of application of risk technology

G. Maggio

1996-01-01

400

Considerations for Life Science experimentation on the Space Shuttle  

NASA Technical Reports Server (NTRS)

The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.

Souza, K. A.; Davies, P.; Rossberg Walker, K.

1992-01-01

401

Structural Health Monitoring of the Space Shuttle's Wing Leading Edge  

NASA Astrophysics Data System (ADS)

In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

2006-03-01

402

The degradation of space shuttle TPS metals in dissociated oxygen.  

NASA Technical Reports Server (NTRS)

The interaction of space shuttle orbiter Thermal Protection System (TPS) metals with the chemical environment to which it is exposed during reentry is considered with emphasis on the effects of dissociated oxygen. Experimental results comparing the interactions of atomic (dissociated) and molecular oxygen with five candidate shuttle TPS metals, Ni-20Cr-2ThO2, Ni-20Cr-3.5Al-2ThO2, Ni-16Cr-15Fe-2Mn-.5Si-.3La-2ThO2, Haynes Alloy Number 188, and Ti-6Al-4V at their maximum planned use temperature are presented. As measured by metal recession, weight change, rate of oxide scale formation, and scale spalling, the first four metals show enhanced degradation in a dissociated oxygen environment. The enhanced degradation appears to result from differing rates of alloy constituent reactions in the two environments. The dissociated oxygen environmental tests are found to better assess the usefulness of shuttle skin materials for the planned mission than do conventional molecular (either flowing or static) oxidation experiments.-

Gilbreath, W. P.

1972-01-01

403

Space Shuttle Discovery rolls out to the launch pad  

NASA Technical Reports Server (NTRS)

Space Shuttle Discovery sits on Launch Pad 39B against a backdrop of blue sky and the blue-green Atlantic Ocean. At the top left is the 290-foot-high water tank that holds 300,000 gallons of water for the sound suppression system during liftoff. At the bottom, on the Rotating Service Structure, is photographer John Sexton, taking photos for a book. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.- built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

1999-01-01

404

Space Shuttle orbiter approach and landing test  

NASA Technical Reports Server (NTRS)

The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

1978-01-01

405

Wing optimization for space shuttle orbiter vehicles  

NASA Technical Reports Server (NTRS)

The results were presented of a parametric study performed to determine the optimum wing geometry for a proposed space shuttle orbiter. The results of the study establish the minimum weight wing for a series of wing-fuselage combinations subject to constraints on aerodynamic heating, wing trailing edge sweep, and wing over-hang. The study consists of a generalized design evaluation which has the flexibility of arbitrarily varying those wing parameters which influence the vehicle system design and its performance. The study is structured to allow inputs of aerodynamic, weight, aerothermal, structural and material data in a general form so that the influence of these parameters on the design optimization process can be isolated and identified. This procedure displays the sensitivity of the system design of variations in wing geometry. The parameters of interest are varied in a prescribed fashion on a selected fuselage and the effect on the total vehicle weight is determined. The primary variables investigated are: wing loading, aspect ratio, leading edge sweep, thickness ratio, and taper ratio.

Surber, T. E.; Bornemann, W. E.; Miller, W. D.

1972-01-01

406

Space Shuttle ET Friction Stir Weld Machines  

NASA Technical Reports Server (NTRS)

NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.

Thompson, Jack M.

2003-01-01

407

Space shuttle prototype check valve development  

NASA Technical Reports Server (NTRS)

Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

Tellier, G. F.

1976-01-01

408

Space shuttle heat pipe thermal control systems  

NASA Technical Reports Server (NTRS)

Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

Alario, J.

1973-01-01

409

Space LOX vent system. [for space shuttle orbiter  

NASA Technical Reports Server (NTRS)

This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

Erickson, R. C.

1975-01-01

410

Space vehicle acoustics prediction improvement for payloads. [space shuttle  

NASA Technical Reports Server (NTRS)

The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

Dandridge, R. E.

1979-01-01

411

Line Replaceable Unit (LRU) Analysis in the Space Shuttle Orbiter Electrical Power System  

Microsoft Academic Search

The National Aeronautics and Space Administration (NASA) Space Shuttle orbiter, as a test bed for low-orbit space laboratory experiments, needs an orbiter voltage analysis on all orbiter line replaceable units (LRU's). This analysis should use a mathematical model to predict voltages at the various LRU's so that voltage drops from a bus to an LRU can then be computed based

Tedja Oepomo

1985-01-01

412

Recovery of Space Shuttle Columbia and Return to Flight of Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

NASA has come a long way in our journey to reduce the risks of operating the Spse Shuttle system. The External Tank bipod Thermal Protection System has been redesigned to eliminate the proximate cause of the Columbia accident. In all areas, we have applied the collective knowledge and capabilities of our Nation to comply with the Columbia Accident Investigation Board recommendations and to raise the bar beyond that. We have taken prudent technical action on potential threats to review and verify the material condition of all critical areas where failure could result in catastrophic loss of the crew and vehicle. We are satisfied that critical systems and elements should operate as intended-safely and reliably. While we will never eliminate all the risks from our human space flight programs, we have eliminated those we can and reduced, controlled, and/or mitigated others. The remaining identified risks will be evaluated for acceptance. Our risk reduction approach has its roots in the system safety engineering hierarchy for hazard abatement long employed in aerospace systems engineering. The components of the hierarchy are, in order of precedence, to: design/redesign; eliminate the hazard/risk; reduce the hazard/risk; and control the hazard/risk and/or mitigate the consequence of the remaining hazard/risk through warning devices, special procedures/capabilities, and/or training. This proven approach to risk reduction has been applied to potential hazards and risks in all critical areas of the Space Shuttle and has guided us through the technical challenges, failures, and successes present in return to flight endeavors. This approach provides the structured deliberation process required to verify and form the foundation for accepting any residual risk across the entire Space Shuttle Program by NASA leadership.

Rudolphi, Michael U.

2007-01-01

413

Tribology Experiments in Space  

NASA Astrophysics Data System (ADS)

Brief history of tribology experiments in space is described. Tribological performance in a high vacuum was a great concern in early stage of space development, and it was urgent task to verify whether the actual space environment can be simulated using ground-based vacuum facilities from tribological viewpoint. Some friction tests as well as bearing tests were carried out on board satellites in 1960s, and the conclusion was that the results of space experiments was very similar to those of ground-based comparison experiments. In 1980s, however, Space Shuttle flown in Low Earth Orbit (LEO) revealed a new problem; oxidization by active atomic oxygen, which is more than 90% constituent in the environment. Some types of solid lubricants might be oxidized, and thus lost tribological effectiveness. Efforts to clarify the effect of LEO environment on solid lubricants, as well as to simulate LEO environment properly, have been devoted including space experiments. Recent tribology-related space experiments are briefly reviewed.

Suzuki, Mineo

414

Dual Liquid Flyback Booster for the Space Shuttle  

NASA Technical Reports Server (NTRS)

Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

Blum, C.; Jones, Patti; Meinders, B.

1998-01-01

415

Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle  

NASA Technical Reports Server (NTRS)

The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

1971-01-01

416

A guide for space lawyers to understanding the NASA Space Shuttle and the ESA Spacelab  

NASA Technical Reports Server (NTRS)

An investigation is conducted concerning the appropriate characterization of the Space Shuttle, taking into account appearance, functions, and purpose. It is concluded that in terms of purely technological criteria, the Shuttle can best be described as an 'aerospace vehicle'. Questions related to the legal characterization of the Shuttle are considered. On the basis of the Shuttle's purpose as the most important criterion, it is suggested that the Shuttle should be considered basically as a 'spacecraft', 'space vehicle', or 'space object'. Attention is given to the Shuttle's relationship to multilateral space conventions, the possibility that the Shuttle could be legally defined as an 'aircraft' under certain circumstances, the Shuttle and the Chicago Convention, and the status of Spacelab as only one part of a U.S. flag spacecraft.

Sloup, G. P.

1977-01-01

417

Operational Use of GPS Navigation for Space Shuttle Entry  

NASA Technical Reports Server (NTRS)

The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

Goodman, John L.; Propst, Carolyn A.

2008-01-01

418

STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B  

NASA Technical Reports Server (NTRS)

Both Space Shuttle Discovery (left) and Launch Pad 39B (right) are reflected in nearby water as the Shuttle makes its slow crawl to the pad aboard a crawler transporter. Earlier in the week, the Shuttle was rolled back from the pad to the Vehicle Assembly Building to repair hail damage on the the external tank's foam insulation. The 4.2-mile trek takes about five hours at the 1-mph speed of the crawler. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

1999-01-01

419

STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B  

NASA Technical Reports Server (NTRS)

Viewed from the top of the rotating service structure, Space Shuttle Discovery rests on the mobile launcher platform and towers over the landscape after rollout to Launch Pad 39B. In the background are portions of the Banana River and the Atlantic Ocean. The lighter spots on the top of the external tank are areas of hail damage that was recently repaired. The Shuttle had to be returned to the VAB for the repairs, making this the second rollout for the Shuttle. Discovery is scheduled for liftoff May 27 at 6:48 a.m. EDT on mission STS-96, the 94th launch in the Space Shuttle Program. A logistics and resupply mission for the International Space Station, STS-96 is carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

1999-01-01

420

Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses  

Microsoft Academic Search

Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket

Joseph R. Fragola; Gaspare Maggio; Michael V. Frank; Luis Gerez; Richard H. McFadden; Erin P. Collins; Jorge Ballesio; Peter L. Appignani; James J. Karns

1995-01-01

421

Space transportation system shuttle turnabout analysis report  

NASA Technical Reports Server (NTRS)

The progress made and the problems encountered by the various program elements of the shuttle program in achieving the 160 hour ground turnaround goal are presented and evaluated. Task assessment time is measured against the program allocation time.

Reedy, R. E.

1979-01-01

422

Space shuttle phase B study plan  

NASA Technical Reports Server (NTRS)

Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

Hello, B.

1971-01-01