These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Space station group activities habitability module study  

NASA Technical Reports Server (NTRS)

This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

Nixon, David

1986-01-01

2

Space station communications using interplex modulation.  

NASA Technical Reports Server (NTRS)

Description of a multichannel PCM-PSK-PM modulation scheme called interplex which reduces cross-modulation loss and excess carrier reference power of conventional systems when the number of channels is small. In systems with equal channels, interplex is more efficient when the number of channels is not greater than four. The number of channels which can be combined efficiently with interplex increases if there are many low-power channels and only one high-power link. The scheme can be implemented in existing systems without significant hardware changes and appears to be suitable for use in a multichannel space-station telecommunications system.

Butman, S.; Lafrieda, J.; Timor, U.

1971-01-01

3

Pressurized modules for Space Station Freedom  

NASA Technical Reports Server (NTRS)

Crew workstations, storage, and facilities in the SSF Habitation module along with station housekeeping and supporting subsystems (power, thermal, and life support) are considered. The U.S. Laboratory and Habitation modules are based on a common structural design. The pressurized logistics modules (PLMs) have maximum commonality with the other pressurized modules including common ring frames and waffle grid skin; multilayer insulation and debris shield; and one common endcone.

Hopson, George D.; Grant, Richard L.

1993-01-01

4

Photovoltaic module on-orbit assembly for Space Station Freedom  

NASA Technical Reports Server (NTRS)

One of the elements of the Space Station Freedom power system is the Photovoltaic (PV) module. These modules will be assembled on-orbit during the assembly phase of the program. These modules will be assembled either from the shuttle orbiter or from the Mobile Servicing Center (MSC). The different types of assembly operations that will be used to assemble PV Modules are described.

Sours, Thomas; Lovely, R.; Clark, D.

1989-01-01

5

Conceptual design of the Space Station combustion module  

NASA Technical Reports Server (NTRS)

The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

1994-01-01

6

Conceptual Design of the Space Station Fluids Module  

NASA Technical Reports Server (NTRS)

The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

1994-01-01

7

Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility  

NASA Technical Reports Server (NTRS)

The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.

Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

1989-01-01

8

Space station group activities habitability module study: A synopsis  

NASA Technical Reports Server (NTRS)

Space station habitability was studied by investigating crew activity routines, proximities, ergonomic envelopes, and group volumes. Ten alternative schematic interior designs were proposed. Preliminary conclusions include: (1) in-service interior modifications may be necessary and should be planned for; (2) design complexity will be increased if the module cluster is reduced from five to three; (3) the increased crew circulation attendant upon enhancement of space station activity may produce human traffic bottlenecks and should be planned for; (4) a single- or two-person quiet area may be desirable to provide crew members with needed solitude during waking hours; and (5) the decision to choose a two-shift or three-shift daily cycle will have a significant impact on the design configuration and operational efficiency of the human habitat.

Nixon, David; Glassman, Terry

1987-01-01

9

Space Station Freedom photovoltaic power module design status  

NASA Technical Reports Server (NTRS)

Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

Jimenez, Amador P.; Hoberecht, Mark A.

1989-01-01

10

Space Station Freedom photovoltaic power module design status  

NASA Technical Reports Server (NTRS)

Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

Jimenez, Amador P.; Hoberecht, Mark A.

1989-01-01

11

Thermal control system for Space Station Freedom photovoltaic power module  

NASA Technical Reports Server (NTRS)

The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

Hacha, Thomas H.; Howard, Laura

1994-01-01

12

Thermal control system for Space Station Freedom photovoltaic power module  

NASA Technical Reports Server (NTRS)

The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

Hacha, Thomas H.; Howard, Laura S.

1992-01-01

13

Space modules of Phobos-Grunt complex for prospective interplanetary stations  

NASA Astrophysics Data System (ADS)

Standardized modules are considered, such as the main propulsion system, space platform, and reusable spacecraft, that were developed within the scope of the Phobos-Grunt project. It is proposed that long-term interplanetary stations for fundamental space research should be created based on these modules. A description is given of the alleged scientific space projects for the medium term.

Polishchuk, G. M.; Pichkhadze, K. M.; Efanov, V. V.; Martynov, M. B.

2011-12-01

14

Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci  

NASA Technical Reports Server (NTRS)

Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.

1999-01-01

15

Automation of the space station core module power management and distribution system  

NASA Technical Reports Server (NTRS)

Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

Weeks, David J.

1988-01-01

16

Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

1999-01-01

17

Space Station overview  

NASA Technical Reports Server (NTRS)

This paper presents an overview of the Space Station, including program guidelines, international involvement, current baseline configuration, and utilization for science and application missions. Space Station configuration and capabilities, plus methods of utilizing the Space Station for scientific and engineering investigations, are described. The Space Station is being designed as a multipurpose facility to support a number of functions, such as a laboratory in space, a transportation node, an assembly facility, a staging base, etc. The description includes the baseline configuration, location of the pressurized modules, servicing and assembly facilities, and the work package structure for Space Station management. The Space Station will accommodate a wide variety of user requirements in laboratory modules and as attached payloads. To show the utility of the Space Station, a variety of science and application missions currently being studied for NASA at the Marshall Space Flight Center are discussed.

De Sanctis, Carmine E.; Priest, C. C.; Wood, W. V.

1987-01-01

18

Battery reinitialization on the photovoltaic module of the international space station  

Microsoft Academic Search

The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power, and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage.

G. Hajela; F. Cohen

2002-01-01

19

U.S. Laboratory Module (Destiny) for the International Space Station  

NASA Technical Reports Server (NTRS)

This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

1998-01-01

20

International Space Station Alpha's bearing, motor, and roll ring module developmental testing and results  

NASA Technical Reports Server (NTRS)

This paper presents the design and developmental testing associated with the bearing, motor, and roll ring module (BMRRM) used for the beta rotation axis on International Space Station Alpha (ISSA). The BMRRM with its controllers located in the electronic control unit (ECU), provides for the solar array pointing and tracking functions as well as power and signal transfer across a rotating interface.

Obrien, David L.

1994-01-01

21

A Solid State Power Controller Module for the International Space Station EXPRESS Rack  

Microsoft Academic Search

The Solid State Power Controller Module (SSPCM) designed For the International Space Station (ISS) EXPRESS Rack is a remote-controlled power switching unit with both 120 V DC and 28 V DC solid state power controllers (SSPCs). The SSPCs distribute and protect power to the various loads within the EXPRESS Rack. The SSPCM is designed with two 120 V DC inputs

D. S. Hart; G. B. Prickett; C. R. Schwarz; M. Mohadjer

1997-01-01

22

Reuse International Space Station (ISS) Modules as Lunar Habitat  

NASA Technical Reports Server (NTRS)

NASA currently projects ending the ISS mission in approximately 2016, due primarily to the expense of re-boost and re-supply. Lunar outposts are expected to be in place in the same timeframe. In support of these mission goals, a scheme to reuse ISS modules on the moon has been identified. These modules could function as pressurized volumes for human habitation in a lunar vacuum as they have done in low-earth orbit. The ISS hull is structurally capable of withstanding a lunar landing because there is no atmospheric turbulence or friction. A compelling reason to send ISS modules to the moon is their large mass; a large portion of the ISS would survive re-entry if allowed to de-orbit to Earth. ISS debris could pose a serious risk to people or structures on Earth unless a controlled re-entry is performed. If a propulsive unit is devised to be attached to the ISS and control re-entry, a propulsion system could be used to propel the modules to the moon and land them there. ISS modules on the lunar surface would not require re-boost. Radiation protection can be attained by burying the module in lunar regolith. Power and a heat removal system would be required for the lunar modules which would need little support structure other than the lunar surface. With planetary mass surrounding the module, heat flux may be controlled by conductance. The remaining requirement is the re-supply of life-support expendables. There are raw materials on the moon to supplement these vital resources. The lunar maria is known to contain approximately 40% oxygen by mass in inorganic mineral compounds. Chemical conversion of moon rocks to release gaseous oxygen is known science. Recycling and cleaning of air and water are currently planned to be accomplished with ISS Environmental Control & Life Support Systems (ECLSS). By developing a Propulsion and Landing Module (PLM) to dock to the Common Berthing Mechanism (CBM), several identical PLMs could be produced to rescue and transfer the ISS modules to the lunar surface, one by one. The propulsion does not need to be as swift as Apollo, nor would the modules need to be manned during transportation to the moon. The trajectory from low-Earth to lunar orbit would avoid or quickly pass through the Van Allen belts to minimize radiation exposure to electronics onboard. A landing technology similar to Apollo's could be utilized to land an ISS module on the moon. Since the mission will be unmanned, system redundancy could be minimized to keep the cost down. If the mission failed and a module crashed landed on the moon, the risk of debris landing on Earth would be avoided and the raw materials could be used in future lunar missions.

Miernik, Janie; Owens, James E.; Floyd, Brian A.; Strong, Janet; Sanford, Joseph

2005-01-01

23

International Space Station: Update  

NSDL National Science Digital Library

In November 1998, Zarya was launched into space, ushering in the era of the International Space Station (featured in the November 25, 1998 Scout Report for Science & Engineering). This month, the docking of the Zvezda Service Module marks the beginning of yet another phase -- in which Zvezda will serve as living quarters to the first ever resident crew (Expedition One), scheduled to arrive at the International Space Station in early November. This site from NASA provides updated information on the International Space Station, including recent news, planned missions, and a virtual tour of the (yet-to-be-completed) station.

24

Space Station Freedom electric power system photovoltaic power module integrated launch package  

NASA Technical Reports Server (NTRS)

The launch of the Space Station Freedom solar power module requires a weight efficient structure that will include large components within the limited load capacity of the Space Shuttle cargo bay. The design iterations to meet these requirements have evolved from a proposal concept featuring a separate cradle and integrated equipment assembly (IEA), to a package that interfaces directly with the Shuttle. Size, weight, and cost have been reduced as a result.

Nathanson, Theodore H.; Clemens, Donald D.; Spatz, Raymond R.; Kirch, Luke A.

1990-01-01

25

Stability Analysis for a Large-scale Space Power Network, International Space Station and Japanese Experiment Module  

Microsoft Academic Search

The International Space Station (ISS), which is scheduled to start the operation fully in early 2000's, is being developed and assembled on orbit since 1998 with international cooperation of the USA, Russia, Europe, Canada, and Japan. Japan participates in this ISS program and will provide the Japanese Experiment Module (JEM, named ``Kibo\\

Masaaki Komatsu; Satoaki Arai

2004-01-01

26

Space station structures development  

NASA Technical Reports Server (NTRS)

A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

Teller, V. B.

1986-01-01

27

Review of the environmental effects of the Space Station Freedom photovoltaic power module  

NASA Technical Reports Server (NTRS)

An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

Nahra, Henry K.

1989-01-01

28

Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research  

NASA Technical Reports Server (NTRS)

Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

Cohen, Marc M. (editor); Eichold, Alice (editor); Heers, Susan (editor)

1987-01-01

29

International Space Station Assembly  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

1999-01-01

30

Control-structure interaction study for the Space Station solar dynamic power module  

NASA Technical Reports Server (NTRS)

The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

1991-01-01

31

Space station: Cost and benefits  

NASA Technical Reports Server (NTRS)

Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

1983-01-01

32

A Human Centred Interior Design of a Habitat Module for the International Space Station  

NASA Astrophysics Data System (ADS)

Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

Burattini, C.

33

Space station data flow  

NASA Technical Reports Server (NTRS)

The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

1972-01-01

34

Reasoning about fault diagnosis for the space station common module thermal control system  

NASA Technical Reports Server (NTRS)

The proposed common module thermal control system for the Space Station is designed to integrate thermal distribution and thermal control functions in order to transport heat and provide environmental temperature control through the common module. When the thermal system is operating in an off-normal state, due to component faults, an intelligent controller is called upon to diagnose the fault type, identify the fault location and determine the appropriate control action required to isolate the faulty component. A methodology is introduced for fault diagnosis based upon a combination of signal redundancy techniques and fuzzy logic. An expert system utilizes parity space representation and analytic redundancy to derive fault symptoms, the aggregate of which is assessed by a multivalued rule based system. A subscale laboratory model of the thermal control system designed is used as the testbed for the study.

Vachtsevanos, G.; Hexmoor, H.; Purves, B.

1988-01-01

35

Space station common module power system network topology and hardware development  

NASA Technical Reports Server (NTRS)

Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

Landis, D. M.

1985-01-01

36

Space Station propulsion system  

NASA Technical Reports Server (NTRS)

Viewgraphs on space station propulsion systems are presented. Topics covered include: space station propulsion system requirements; space station propulsion system design; space station propulsion system drivers; hydrazine technology development; waste fluid disposal system; space station propulsion system evolution; propellant selection trade study; technology needs to water electrolysis/oxygen-hydrogen propulsion system; and technology needs for bipropellant systems.

Henderson, J.

1990-01-01

37

Space station automation of common module power management and distribution, volume 2  

NASA Technical Reports Server (NTRS)

The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.

Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.

1990-01-01

38

Optimal control study for the Space Station Solar Dynamic power module  

NASA Technical Reports Server (NTRS)

The authors present the design of an optimal control system for the Space Station Freedom's Solar Dynamic Fine Pointing and Tracking (SDFPT) module. A very large state model of six rigid body modes and 272 flexible modes is used in conjunction with classical LQG optimal control to produce a full-order controller which satisfies the requirements. The results obtained are compared with those of a classically designed PID (proportional plus integral plus derivative) controller that was implemented for a six-rigid-body-mode forty-flexible-mode model. A major difficulty with designing LQG controllers for large models is solving the Riccati equation that arises from the optimal formulation. A Riccati solver based on a Pade approximation to the matrix sign function is used. A symmetric version of this algorithm is derived for the special class of Hamiltonion matrices, thereby yielding, for large problems, a nearly twofold speed increase over a previous algorithm.

Papadopoulos, P. M.; Laub, A. J.; Kenney, C. S.; Pandey, P.; Ianculescu, G.; Ly, J.

1991-01-01

39

Life cycle of Arabidopsis thaliana under microgravity condition in the International Space Station Kibo module  

NASA Astrophysics Data System (ADS)

Gravity is an important environmental factors for growth and development of plants throughout their life cycle. We have designed an experiment, which is called Space Seed, to examine the effects of microgravity on the seed to seed life cycle of plants. We have carried out this experiment using a newly developed apparatus, which is called the Plant Experiment Unit (PEU) and installed in the Cell Biology Experiment Facility (CBEF) onboard International Space Station (ISS). The CBEF is equipped with a turntable generating artificial gravity to perform 1-G control experiment as well as micro-G experiment on board. Arabidopsis thaliana seeds sown on dry rockwool in PEUs were transported from Kennedy Space Center to the ISS Kibo module by Space Shuttle Discovery in STS-128 mission. This experiment was started on Sep. 10, 2009 and terminated on Nov. 11, 2009. Arabidopsis seeds successfully germinated, and the plants passed through both vegetative and reproductive processes, such as formation of rosette leaves, bolting of inflorescence stems, flowering, formation of siliques and seeds. Vegetative and reproductive growth were compared among micro-G plants, 1-G control, and the ground control.

Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro; Yano, Sachiko; Shimazu, Toru; Tamaoki, Daisuke; Tanigaki, Fumiaki; Kasahara, Haruo; Yashiro, Umi; Suto, Takamichi; Yamaguchi, Takashi; Kasahara, Hirokazu

2012-07-01

40

Bacterial monitoring with adhesive sheet in the international space station-"Kibo", the Japanese experiment module.  

PubMed

Microbiological monitoring is important to assure microbiological safety, especially in long-duration space habitation. We have been continuously monitoring the abundance and diversity of bacteria in the International Space Station (ISS)-"Kibo" module to accumulate knowledge on microbes in the ISS. In this study, we used a new sampling device, a microbe-collecting adhesive sheet developed in our laboratory. This adhesive sheet has high operability, needs no water for sampling, and is easy to transport and store. We first validated the adhesive sheet as a sampling device to be used in a space habitat with regard to the stability of the bacterial number on the sheet during prolonged storage of up to 12 months. Bacterial abundance on the surfaces in Kibo was then determined and was lower than on the surfaces in our laboratory (10(5) cells [cm(2)](-1)), except for the return air grill, and the bacteria detected in Kibo were human skin microflora. From these aspects of microbial abundance and their phylogenetic affiliation, we concluded that Kibo has been microbiologically well maintained; however, microbial abundance may increase with the prolonged stay of astronauts. To ensure crew safety and understand bacterial dynamics in space habitation environments, continuous bacterial monitoring in Kibo is required. PMID:23603802

Ichijo, Tomoaki; Hieda, Hatsuki; Ishihara, Rie; Yamaguchi, Nobuyasu; Nasu, Masao

2013-01-01

41

Space Station MMOD Shielding  

NASA Technical Reports Server (NTRS)

This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

Christiansen, Eric

2006-01-01

42

Space Station Module Power Management and Distribution System (SSM/PMAD)  

NASA Technical Reports Server (NTRS)

This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

Miller, William (compiler); Britt, Daniel (compiler); Elges, Michael (compiler); Myers, Chris (compiler)

1994-01-01

43

Space Station Module Power Management and Distribution System (SSM/PMAD)  

NASA Astrophysics Data System (ADS)

This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

Miller, William; Britt, Daniel; Elges, Michael; Myers, Chris

1994-05-01

44

Space Station Spartan study  

NASA Technical Reports Server (NTRS)

The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

Lane, J. H.; Schulman, J. R.; Neupert, W. M.

1985-01-01

45

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station  

NASA Technical Reports Server (NTRS)

The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

2000-01-01

46

The Capabilities of Space Stations  

NASA Technical Reports Server (NTRS)

Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

1995-01-01

47

Free-free and fixed base modal survey tests of the Space Station Common Module Prototype  

NASA Technical Reports Server (NTRS)

This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

1992-01-01

48

Battery Reinitialization of the Photovoltaic Module of the International Space Station  

NASA Technical Reports Server (NTRS)

The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage. Each PV module contains two independent power channels for fault tolerance. Each power channel contains three batteries in parallel to meet its performance requirements and for fault tolerance. Each battery consists of 76 Ni-Hydrogen (Ni-H2) cells in series. These 76 cells are contained in two orbital replaceable units (ORU) that are connected in series. On-orbit data are monitored and trended to ensure that all hardware is operating normally. Review of on-orbit data showed that while five batteries are operating very well, one is showing signs of mismatched ORUs. The cell pressure in the two ORUs differs by an amount that exceeds the recommended range. The reason for this abnormal behavior may be that the two ORUs have different use history. An assessment was performed and it was determined that capacity of this battery would be limited by the lower pressure ORU. Steps are being taken to reduce this pressure differential before battery capacity drops to the point of affecting its ability to meet performance requirements. As a first step, a battery reinitialization procedure was developed to reduce this pressure differential. The procedure was successfully carried out on-orbit and the pressure differential was reduced to the recommended range. This paper describes the battery performance and the consequences of mismatched ORUs that make a battery. The paper also describes the reinitialization procedure, how it was performed on orbit, and battery performance after the reinitialization. On-orbit data monitoring and trending is an ongoing activity and it will continue as ISS assembly progresses.

Hajela, Gyan; Cohen, Fred; Dalton, Penni

2002-01-01

49

International Space Station power reinitialization  

Microsoft Academic Search

The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power, and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage.

G. Hajela; F. Cohen; P. Dalton

2003-01-01

50

Introduction to Space Station Freedom  

NASA Astrophysics Data System (ADS)

NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.

Kohrs, Richard

51

Introduction to Space Station Freedom  

NASA Technical Reports Server (NTRS)

NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.

Kohrs, Richard

1992-01-01

52

Hey] What's Space Station Freedom?  

NASA Astrophysics Data System (ADS)

This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

Vonehrenfried, Dutch

53

International Space Station United States Laboratory Module Water Recovery Management Subsystem Verification from Flight 5A to Stage ULF2  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.

Williams, David E.; Labuda, Laura

2009-01-01

54

Implementation strategies for load center automation on the space station module/power management and distribution testbed  

NASA Technical Reports Server (NTRS)

The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.

Watson, Karen

1990-01-01

55

Space Station Freedom Utilization Conference  

NASA Technical Reports Server (NTRS)

The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

1992-01-01

56

Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)  

NASA Technical Reports Server (NTRS)

The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

2000-01-01

57

Technology for space station  

NASA Astrophysics Data System (ADS)

Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

Colladay, R. S.; Carlisle, R. F.

1984-10-01

58

International Space Station Acoustics  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) presents a significant acoustics challenge considering all of the Modules and equipment that make it an on-orbit laboratory workshop and home with long-term crew occupation. This challenge is further complicated by the fact there are numerous and a wide variety suppliers of Station hardware, including International Partners. This paper addresses how ISS acoustics are managed to ensure a safe and habitable environment by establishing requirements, providing oversight and design support, sharing lessons learned and information, testing for hardware compliance, predicting future acoustic levels, and performing on-orbit measurement and monitoring of actual acoustic levels. ISS acoustic requirements are classified by the type of hardware involved, in three categories: Modules; payloads; and Government Furnished Equipment (GFE). Current status of overall ISS acoustics for each of these hardware categories will be discussed. In addition, the following items will be discussed: examples where NASA design support has been used to aid in obtaining compliance; difficulties encountered; and areas of concern.

Goodman, Jerry

2006-01-01

59

The International Space Station  

NSDL National Science Digital Library

Users can access news articles, background information and links about the International Space Station. Materials presented here include crew biographies, expedition press kits, accounts of science experiments, and imagery taken from the station. Other features include a clock/counter that logs the station's and the crew's time in orbit and information for ground-based observers who wish to view the station as it passes overhead at night.

60

Madrid space station  

NASA Technical Reports Server (NTRS)

The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

Fahnestock, R. J.; Renzetti, N. A.

1975-01-01

61

Space Station Parametric Models  

NASA Technical Reports Server (NTRS)

The development of two parametric models for a four-panel planar initial space station is described. The derivations of the distributed parameter model are presented in detail with the hope that the same method and procedures can be employed for stations with different configurations or for changes within the same configuration class. The 19-DOF finite-element model is also described. With the availability of the 19-DOF and a lower-DOF space station models, the frequency characteristics of the various dynamical systems in the space station environment are identified.

Hamidi, M.; Wang, S. J.

1985-01-01

62

Space station power system  

NASA Technical Reports Server (NTRS)

The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

Baraona, Cosmo R.

1987-01-01

63

Space station dynamics  

NASA Technical Reports Server (NTRS)

Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

Berka, Reg

1990-01-01

64

Astrophysical payload accommodation on the space station  

NASA Technical Reports Server (NTRS)

Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

Woods, B. P.

1985-01-01

65

The space station  

NASA Technical Reports Server (NTRS)

Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

Munoz, Abraham

1988-01-01

66

Space station propulsion test bed  

NASA Technical Reports Server (NTRS)

A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

Briley, G. L.; Evans, S. A.

1989-01-01

67

Space station functional relationships analysis  

NASA Technical Reports Server (NTRS)

A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

Tullis, Thomas S.; Bied, Barbra R.

1988-01-01

68

International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics  

NASA Technical Reports Server (NTRS)

The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

2013-01-01

69

Affordable Space Tourism: SpaceStationSim  

NASA Technical Reports Server (NTRS)

For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind s knowledge of science and how the body functions for extended periods of time in space all of which will prove vital on long-duration missions to Mars. On-orbit construction of the station began in November 1998, with the launch of the Russian Zarya Control Module, which provided battery power and fuel storage. This module was followed by additional components and supplies over the course of several months. In November 2000, the first ISS Expedition crew moved in. Since then, the ISS has continued to change and evolve. The space station is currently 240 feet wide, measured across the solar arrays, and 171 feet long, from the NASA Destiny Laboratory to the Russian Zvezda Habitation Module. It is 90 feet tall, and it weighs approximately 404,000 pounds. Crews inhabit a living space of about 15,000 cubic feet. To date, 90 scientific investigations have been conducted on the space station. New results from space station research, from basic science to exploration research, are being published each month, and more breakthroughs are likely to come. It is not all work on the space station, though. The orbiting home affords many of the comforts one finds on Earth. There is a weightless "weight room" and even a musical keyboard alongside research facilities. Holidays are observed, and with them, traditional foods such as turkey and cobbler are eaten, with lemonade to wash them down

2006-01-01

70

Space Station Food System  

NASA Technical Reports Server (NTRS)

A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

1986-01-01

71

Overview of space station  

NASA Technical Reports Server (NTRS)

An overview of the Space Station program for workshop participants is given. Covered here are overall program guidelines, international involvement, the present baseline configuration, and development plans for the coming year.

Priest, Claude C.

1990-01-01

72

Space Station Software Recommendations  

NASA Technical Reports Server (NTRS)

Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

Voigt, S. (editor)

1985-01-01

73

Space station technology  

NASA Astrophysics Data System (ADS)

In an evaluation of the current technological basis for a space station, the Space Station Technology Steering Committee (SSTSC) came to the conclusion that a space station could certainly be made with existing technology. It was, however, found that state-of-the-art technology would not provide for the evolutionary growth aspects of a long life system. In the process of its reviews, the SSTSC identified 10 specific disciplines to categorize the technology which was found to be relevant or potentially applicable to a future space station design. Attention is given to the objectives for the advanced development program, systems and operations, data management, crew and life support, power, thermal management, human capability, auxiliary propulsion, fluid management systems, attitude control and stabilization, structures and mechanisms, and communications.

Tumulty, W. T.

74

Space Stations: Measure Up!  

NSDL National Science Digital Library

In this activity, learners work in pairs to measure each other's ankles with lengths of string. Learners make measurements both before and after lying on their backs with their feet in the air for 1 minute. This simulates the microgravity of space, where everything--including body fluids--floats! This activity station is part of a sequence of stations that can be set up to help learners explore how space affects the human body and why.

Dr. Diane Byerly

2006-01-01

75

Space station proposed  

NASA Astrophysics Data System (ADS)

In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

76

Space Station Freedom pressurized element designs  

NASA Technical Reports Server (NTRS)

An overview is given of the pressurized modules of Space Station Freedom. The common design of the modules is described, and the unique features of the U.S. Laboratory/Habitation Module are summarized. The logistics elements and resource nodes for the modules are addressed, and the processes used to manufacture them are discussed.

Grant, Richard L.; Hopson, George D.

1990-01-01

77

Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station  

NASA Astrophysics Data System (ADS)

Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or health problems for humans. Other identified components from the MPLM are quite similar to those found from off gassing of construction material and laboratory reagents characterized in ground based studies with closed plant growth chambers.

Peterson, B.; Wheeler, R.

78

The International Space Station Habitat  

NASA Astrophysics Data System (ADS)

The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as it is constructed. The habitability resources available to the crew are the sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to use and work around. ISS assembly will continue with the truss build and the addition of the International Partner Laboratories. Prior to the addition of the International Partner Laboratories. Node 2 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The purpose of the ISS is to perform research and a major area of emphasis is on the effects of long duration space flight on humans, as result of this research the habitability requirements for the International Space Station crews will be determined.

Watson, Patricia Mendoza; Engle, Mike

2003-01-01

79

Protecting Astronaut Health at First Entry into Vehicles Visiting the international Space Station: Insights from Whole-Module Offgas Testing  

NASA Technical Reports Server (NTRS)

NASA has accumulated considerable experience in offgas testing of whole modules prior to their docking with the International Space Station (ISS). Since 1998, the Space Toxicology Office has performed offgas testing of the Lab module, both MPLM modules, US Airlock, Node 1, Node 2, Node 3, ATV1, HTV1, and three commercial vehicles. The goal of these tests is twofold: first, to protect the crew from adverse health effects of accumulated volatile pollutants when they first enter the module on orbit, and secondly, to determine the additional pollutant load that the ISS air revitalization systems must handle. In order to predict the amount of accumulated pollutants, the module is sealed for at least 1/5th the worst-case time interval that could occur between the last clean air purge and final hatch closure on the ground and the crew's first entry on orbit. This time can range from a few days to a few months. Typically, triplicate samples are taken at pre-planned times throughout the test. Samples are then analyzed by gas chromatography and mass spectrometry, and the rate of accumulation of pollutants is then extrapolated over time. The analytical values are indexed against 7-day spacecraft maximum allowable concentrations (SMACs) to provide a prediction of the total toxicity value (T-value) at the time of first entry. This T-value and the toxicological effects of specific pollutants that contribute most to the overall toxicity are then used to guide first entry operations. Finally, results are compared to first entry samples collected on orbit to determine the predictive ability of the ground-based offgas test.

Meyers, Valerie

2014-01-01

80

The International Space Station Habitat  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.

Watson, Patricia Mendoza; Engle, Mike

2003-01-01

81

The organized Space Station  

NASA Technical Reports Server (NTRS)

Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

Lew, Leong W.

1988-01-01

82

The NORSTAR Program: Space shuttle to space station  

NASA Technical Reports Server (NTRS)

The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.

Fortunato, Ronald C.

1988-01-01

83

Demonstration of rapid and sensitive module leak certification for Space Station Freedom  

NASA Technical Reports Server (NTRS)

A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 (+ or -) 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 (+ or -) 0.7, -0.4 (+ or -) 0.3, and 76 (+ or -) 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on (Delta)p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc.

Dietz, R. N.; Goodrich, R. W.

1991-01-01

84

Space station energy sizing  

SciTech Connect

A general schematic for a space station power system is described. The major items of interest in the power system are the solar array, transfer devices, energy storage, and conversion equipment. Each item will have losses associated with it and must be utilized in any sizing study, and can be used as a checklist for itemizing the various system components.

Rice, R.R.

1983-12-01

85

Panel on Space Station utilization benefits  

NASA Technical Reports Server (NTRS)

An account is given of recent changes in the NASA Space Station, under the guidance of updated user community payload requirements. The user communities are those of astronomy, the life sciences, earth observation, and international applications. Attention is given to the resolutions that will be achievable by astronomical instruments aboard the Space Station, the testing of prototype earth observation instruments aboard the Station's manned module, and the microgravity research efforts planned in conjunction with ESA.

Rubenstein, Sy Z.; Drake, Frank; White, Stanley C.; Taranik, James V.; Jordan, Hermann; Arnold, Ray

1987-01-01

86

Space Station Technology, 1983  

NASA Technical Reports Server (NTRS)

This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

Wright, R. L. (editor); Mays, C. R. (editor)

1984-01-01

87

Space Station Water Quality  

NASA Technical Reports Server (NTRS)

The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

Willis, Charles E. (editor)

1987-01-01

88

Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station  

NASA Technical Reports Server (NTRS)

The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

2001-01-01

89

Node 2 In Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

The U.S. Node 2 awaits launch in the Space Station Processing Facility at the Kennedy Space Center (KSC) since its arrival on June 1, 2003. Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Alenia built Node 2 as part of an agreement between NASA and the European Space Agency (ESA). Weighing in at approximately 30,000 pounds, the Node is more than 20-feet long and 14.5-feet wide. This centerpiece of the ISS will be the next pressurized module installed on the Station and will result in a roomier Station, allowing it to expand from the equivalent space of a 3-bedroom house to a 5-bedroom house once the Japanese and European laboratories are attached to it. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

2003-01-01

90

Space station propulsion  

NASA Technical Reports Server (NTRS)

Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

1987-01-01

91

Space station ventilation study  

NASA Technical Reports Server (NTRS)

A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

Colombo, G. V.; Allen, G. E.

1972-01-01

92

Space station commonality analysis  

NASA Technical Reports Server (NTRS)

This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

1988-01-01

93

Space station thermal control surfaces. [space radiators  

NASA Technical Reports Server (NTRS)

Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

1979-01-01

94

Space Station commercial user development  

NASA Technical Reports Server (NTRS)

The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

1984-01-01

95

International Space Station payload accommodations  

NASA Astrophysics Data System (ADS)

The International Space Station (ISS) is a low Earth orbiting facility for conducting research in life science, microgravity, Earth observations, and Engineering Research and Technology. Assembled on-orbit at a nominal altitude of 220 nautical miles, it will provide a shirt-sleeve environment for conducting research in six laboratories: the US Laboratory (US Lab), the Japanese Experiment Module (JEM), the European Columbus Orbiting Facility (COF), the Centrifuge Accommodations Module (CAM), and the Russian Research Modules. Supplies will be replenished using the Multi-Purpose Pressurized Logistics Module (MPLM), a conditioned pressurized transport carrier which will also return passive and perishable payload cargo to earth. External Earth observations can be performed by utilizing the payload attachment points on the truss, the Russian Science Power Platform, the JEM Exposed Facility (EF), and the COF backporch. The pressurized and external locations are equipped with a variety of electrical, avionics, fluids, and gas interfaces to support the experiments. ISS solar arrays, thermal radiators, communication system, propulsion, environmental control, and robotic devices provide the infrastructure to support sustained research. This paper, which reflects the design maturity of payload accommodations at the time of its submittal (10/20/98), is primarily based on the assembly complete configuration of the station. As the design matures, ISS Payload Accommodations will be updated to reflect qualification tests of components and associated analyses of the integrated performance.

Hartman, Daniel W.

1999-01-01

96

Space station electrical power system  

NASA Technical Reports Server (NTRS)

The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

Labus, Thomas L.; Cochran, Thomas H.

1987-01-01

97

Environmental monitoring for Space Station WP01  

NASA Technical Reports Server (NTRS)

External contamination monitoring instrumentation for the Space Station work package one (WP01) elements, were imposed on the contractor as deliverable hardware. The monitoring instrumentation proposed by the WP01 contractor in response to the contract requirement includes both real time measurements and passive samples. Real time measurement instrumentation consists of quartz crystal microbalances for molecular deposition, ion gaseous species identification. Internal environmental contamination monitoring for particulates is included in both Lab and HAB modules. Passive samples consists of four sample mounting plates mounted external to the Space Station modules, two on the U.S. LAB, and two on the HAB module.

Zwiener, J. M.

1988-01-01

98

Space Station lubrication considerations  

NASA Technical Reports Server (NTRS)

Future activities in space will require the use of large structures and high power availability in order to fully exploit opportunities in Earth and stellar observations, space manufacturing and the development of optimum space transportation vehicles. Although these large systems will have increased capabilities, the associated development costs will be high, and will dictate long life with minimum maintenance. The Space Station provides a concrete example of such a system; it is approximately one hundred meters in major dimensions and has a life requirement of thirty years. Numerous mechanical components will be associated with these systems, a portion of which will be exposed to the space environment. If the long life and low maintenance goals are to be satisfied, lubricants and lubrication concepts will have to be carefully selected. Current lubrication practices are reviewed with the intent of determining acceptability for the long life requirements. The effects of exposure of lubricants and lubricant binders to the space environment are generally discussed. Potential interaction of MoS2 with atomic oxygen, a component of the low Earth orbit environment, appears to be significant.

Leger, Lubert J.; Dufrane, Keith

1987-01-01

99

Space Station solar array  

NASA Technical Reports Server (NTRS)

Space station solar array configurations and power system technologies were compared. Planar silicon arrays offer low technology risk but high weight and drag area. Concentrator arrays of silicon or gallium arsenide (preferred) promise lower cost and drag area but increase technology risk. Planar and power tower require fewer control moment gyros (CMG's). Delta is more rigid but requires more CMG's. Flexible body effects are not significant. All configurations can be assembled. Power tower is preferred for proximity operations. All configurations require 6 to 8 launches. Manned operations after two to three. All configurations can accommodate all candidate electrical power systems options.

Forestieri, A. F.

1984-01-01

100

33-Foot-Diameter Space Station Leading to Space Base  

NASA Technical Reports Server (NTRS)

This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

1969-01-01

101

Boeing: International Space Station  

NSDL National Science Digital Library

Boeing, the prime contractor for the International Space Station (ISS), has developed this website to provide information on the technology of the program. The ISS will be more than four times as large as the Russian Mir when completed, and is "the largest, most complex international scientific project in history and our largest adventure into space to date." Boeing is responsible for the design, development, construction and integration of the ISS and assisting NASA in operating the orbital outpost. They provide an overview of the status of the project and describes the current configuration, components, structure, and systems with more detailed information on some sections. Visitors can follow links to also read more about the scientific research conducted by the expedition crew.

102

International Space Station: Testing times  

Microsoft Academic Search

Preparing astronauts for a journey to the red planet has become NASA's research priority for the International Space Station. But such experiments will need more than the skeleton crew now running the station. Tony Reichhardt reports.

Tony Reichhardt

2005-01-01

103

International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment  

NASA Technical Reports Server (NTRS)

On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

2014-01-01

104

NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station  

NASA Technical Reports Server (NTRS)

The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

1999-01-01

105

Space Station Engineering Design Issues  

NASA Technical Reports Server (NTRS)

Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

1989-01-01

106

Nodes packaging option for Space Station application  

NASA Technical Reports Server (NTRS)

Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

So, Kenneth T.; Hall, John B., Jr.

1988-01-01

107

Space Station Freedom Evolution Symposium  

NASA Technical Reports Server (NTRS)

Information on the Space Station Freedom Evolution Symposium is given in viewgraph form. Topics covered include industry development needs and the Office of Commercial Programs strategy, the three-phase program to develop commercial space, Centers for the Commercial Development of Space (CCDS), key provisions of the Joint Endeavor agreement, current commercial flight experiment requirements, the CCDS expendable launch vehicle program, the Commercial Experiment Transporter (COMET) program, commercial launch dates, payload sponsors, the commercial roles of the Space Station Freedom, and a listing of the Office of Commercial Programs Space Station Freedom payloads.

Ott, Richard H.

1991-01-01

108

Space station systems analysis study. Part 3: Documentation. Volume 3: Appendixes. Book 2: Supporting data. [spacecraft modules and environment  

NASA Technical Reports Server (NTRS)

The development of the module concepts are reviewed, and a number of functional elements are listed. Other areas examined include some of the following; (1) mission operations; (2) environmental control and life support subsystems concepts; (3) thermal heat rejection; (4) space radiation effect analysis; and (5) satellite power system test requirements.

1977-01-01

109

Space Stations: Bones of Contention  

NSDL National Science Digital Library

In this activity, learners make models representing bones on Earth and bones that have been in space. They discover what happens to bones without proper exercise and nutrition. This activity station is part of a sequence of stations that can be set up to help learners explore how space affects the human body and why.

2014-06-23

110

Space Station medical sciences concepts  

NASA Technical Reports Server (NTRS)

Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

Mason, J. A. (editor); Johnson, P. C., Jr. (editor)

1984-01-01

111

International Space Station Medical Operations  

NASA Technical Reports Server (NTRS)

NASA is currently the leader, in conjunction with our Russian counterpart co-leads, of the Multilateral Medical Policy Board (MMPB), the Multilateral Medical Operations Panel (MMOP), which coordinates medical system support for International Space Station (ISS) crews, and the Multilateral Space Medicine Board (MSMB), which medically certifies all crewmembers for space flight on-board the ISS. These three organizations have representatives from NASA, RSA-IMBP (Russian Space Agency- Institute for Biomedical Problems), GCTC (Gagarin Cosmonaut Training Center), ESA (European Space Agency), JAXA (Japanese Space Agency), and CSA (Canadian Space Agency). The policy and strategic coordination of ISS medical operations occurs at this level, and includes interactions with MMOP working groups in Radiation Health, Countermeasures, Extra Vehicular Activity (EVA), Informatics, Environmental Health, Behavioral Health and Performance, Nutrition, Clinical Medicine, Standards, Post-flight Activities and Rehabilitation, and Training. Each ISS Expedition has a lead Crew Surgeon from NASA and a Russian Crew Surgeon from GCTC assigned to the mission. Day-to-day issues are worked real-time by the flight surgeons and biomedical engineers (also called the Integrated Medical Group) on consoles at the MCC (Mission Control Center) in Houston and the TsUP (Center for Flight Control) in Moscow/Korolev. In the future, this may also include mission control centers in Europe and Japan, when their modules are added onto the ISS. Private medical conferences (PMCs) are conducted regularly and upon crew request with the ISS crew via private audio and video communication links from the biomedical MPSR (multipurpose support room) at MCC Houston. When issues arise in the day-to-day medical support of ISS crews, they are discussed and resolved at the SMOT (space medical operations team) meetings, which occur weekly among the International Partners. Any medical or life science issue that is not resolved at the SMOT can be taken to the Mission Management Team meeting, which occurs biweekly from MCC-Houston. This meeting includes the other International Partners and all flight support and console position representatives via teleconference. ISS Crew Surgeons have handled many medical conditions on orbit; including skin rashes, dental abscesses, lacerations, and STT segment EKG changes. Fortunately to date, there have not been any forced medical evacuations from the ISS. This speaks well for the implementation of the primary, secondary and even tertiary prevention strategies invoked by the Integrated Medical Group, as there were several medical evacuations during the previous Russian space stations.

Jones, Jeffrey A.

2008-01-01

112

Space Station Freedom common berthing mechanism  

NASA Technical Reports Server (NTRS)

The Common Berthing Mechanism (CBM) is a generic device used to join the pressurized elements of the Space Station Freedom (SSF) utilizing the Space Shuttle Orbiter Remote Manipulator System (SRMS) or the Space Station Remote Manipulator System (SSRMS). The two berthing halves, the active, and the passive, maintain a pressurized atmosphere to allow astronaut passage, as well as to provide a structural linkage between elements. The generic design of the CBM allows any Passive Berthing Mechanism to berth with any Active Berthing Mechanism, permitting a variety of pressurized module patterns to be built.

Illi, Erik

1992-01-01

113

Internal contamination in the space station  

NASA Technical Reports Server (NTRS)

Atmosphere trace contaminant control systems used in the past (Lunar Module and Skylab) and present (nuclear submarines and Shuttle) are discussed. Recommendations are made for the future Space Station contaminant control system. The prevention and control methods used are judicious material selection, detection, and specific removal equipment. Sources and effects of contamination relating to crew and equipment are also discussed.

Poythress, C.

1985-01-01

114

Vibrations and structureborne noise in space station  

NASA Technical Reports Server (NTRS)

The related literature was reviewed and a preliminary analytical model was developed for simplified acoustic and structural geometries for pressurized and unpressurized space station modules. In addition to the analytical work, an experimental program on structureborne noise generation and transmission was started. A brief review of those accomplishments is given.

Vaicaitis, R.

1985-01-01

115

Summary of Resources for the International Space Station Environmental Control and Life Support System For Core Complete Modules  

NASA Technical Reports Server (NTRS)

The Core Complete Environmental Control and Life Support (ECLS) System for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the addition of future U.S. ECLS system hardware to get to Core Complete is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.

Williams, David E.

2004-01-01

116

Materials International Space Station Experiment  

NASA Technical Reports Server (NTRS)

Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

2001-01-01

117

Space Station robotics planning tools  

NASA Technical Reports Server (NTRS)

The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

Testa, Bridget Mintz

1992-01-01

118

Space station propulsion requirements study  

NASA Technical Reports Server (NTRS)

Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

Wilkinson, C. L.; Brennan, S. M.

1985-01-01

119

Enterprise: an International Commercial Space Station Option  

NASA Astrophysics Data System (ADS)

In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

Lounge, John M.

2002-01-01

120

Propagation Characteristics of International Space Station Wireless Local Area Network  

NASA Technical Reports Server (NTRS)

This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

2005-01-01

121

Space Station Freedom user's guide  

NASA Technical Reports Server (NTRS)

This guide is intended to inform prospective users of the accommodations and resources provided by the Space Station Freedom program. Using this information, they can determine if Space Station Freedom is an appropriate laboratory or facility for their research objectives. The steps that users must follow to fly a payload on Freedom are described. This guide covers the accommodations and resources available on the Space Station during the Man-Tended Capability (MTC) period, scheduled to begin the end of 1996, and a Permanently Manned Capability (PMC) beginning in late 1999.

1992-01-01

122

Space station neutral external environment  

NASA Technical Reports Server (NTRS)

Molecular contamination levels arising from the external induced neutral environment of the Space Station (Phase 1 configuration) were calculated using the MOLFLUX model. Predicted molecular column densities and deposition rates generally meet the Space Station contamination requirements. In the doubtful cases of deposition due to materials outgassing, proper material selection, generally excluding organic products exposed to the external environment, must be considered to meet contamination requirements. It is important that the Space Station configuration, once defined, is not significantly modified to avoid introducing new unacceptable contamination sources.

Ehlers, H.; Leger, L.

1988-01-01

123

Biotechnology opportunities on Space Station  

NASA Technical Reports Server (NTRS)

Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

1987-01-01

124

Space Station Freedom food management  

NASA Technical Reports Server (NTRS)

This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

Whitehurst, Troy N., Jr.; Bourland, Charles T.

1992-01-01

125

Modular space station phase B extension: Mass properties  

NASA Technical Reports Server (NTRS)

The MSS system, capable of supporting a six-man crew, is described as consisting of four common station modules, two special modules (core and power), and a cargo module arranged in a cruciform. The station buildup, and space station subsystems including environmental control life support, electrical power, guidance and control are also described. The MSS system weights are presented for design-to-weight, closeout weights, and shuttle payload weights.

Duffey, L. A.

1971-01-01

126

Social factors in space station interiors  

NASA Technical Reports Server (NTRS)

Using the example of the chair, which is often written into space station planning but which serves no non-cultural function in zero gravity, difficulties in overcoming cultural assumptions are discussed. An experimental approach is called for which would allow designers to separate cultural assumptions from logistic, social and psychological necessities. Simulations, systematic doubt and monitored brainstorming are recommended as part of basic research so that the designer will approach the problems of space module design with a complete program.

Cranz, Galen; Eichold, Alice; Hottes, Klaus; Jones, Kevin; Weinstein, Linda

1987-01-01

127

Sighting the International Space Station  

ERIC Educational Resources Information Center

This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…

Teets, Donald

2008-01-01

128

Solar dynamic power systems for space station  

NASA Technical Reports Server (NTRS)

The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

1986-01-01

129

House sustains Space Station funds  

Microsoft Academic Search

The House of Representatives rejected an amendment on July 29 that would have eliminated funds for Space Station Freedom. The House voted 237 to 181 against an amendment by representatives Bob Traxler (D.-Mich.) and Bill Green (R.-N.Y.) that called for terminating funding for Freedom, except for $525 million to shut down the program.Opponents of the space station had criticized its

Lynn Teo Simarski

1992-01-01

130

Space Station reference configuration description  

NASA Technical Reports Server (NTRS)

The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

1984-01-01

131

OSSA Space Station waste inventory  

NASA Technical Reports Server (NTRS)

NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

1987-01-01

132

Space Station Biological Research Project  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox will accommodate use by two crew persons simultaneously and the capability for real time video down-link and data acquisition. In house testbeds and Phase B studies of the centrifuge validated the concepts of vibration isolation and autobalancing systems to meet the ISSA microgravity requirements. The vibration isolation system is effective above the centrifuge rotation frequency while the autobalancing system on the rotor removes vibration at and below the rotation rate. Torque of the Station, induced by spin-up/spindown of the centrifuge, can be minimized by controlling spin-up/spin-down rates. The SSBRP and ISSA will provide the opportunity to perform long-term, repeatable and high quality science. The long duration increments available on the Station will permit multigeneration studies of both plants and animals which have not previously been possible. The u-g habitat racks and the eight habitat centrifuge will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will, for the first time, permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of u-g from other environmental factors and to examine artificial gravity as a potential countermeasure for the physical deconditioning observed during space flight.

Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

1995-01-01

133

House sustains Space Station funds  

NASA Astrophysics Data System (ADS)

The House of Representatives rejected an amendment on July 29 that would have eliminated funds for Space Station Freedom. The House voted 237 to 181 against an amendment by representatives Bob Traxler (D.-Mich.) and Bill Green (R.-N.Y.) that called for terminating funding for Freedom, except for $525 million to shut down the program.Opponents of the space station had criticized its cost and questioned its scientific value, while supporters argued that the station would spawn over 75,000 jobs and give a boost to the aerospace industry.

Simarski, Lynn Teo

134

Space station propulsion analysis study  

NASA Technical Reports Server (NTRS)

This paper summarizes the impacts on the weight, volume and power usage of a manned space station and its 90-day resupply for three integrated, auxiliary propulsion subsystems. The study was performed in coordination with activities of the Space Staton Concept Development Group (CDG). The study focused on three space station propulsion high-low thrust options that make use of fluids that will be available on the manned space station. Specific uses of carbon dioxide, water and cryogen boiloff were considered. For each of the options the increase in station hardware mass and volume to accommodate the dual thrust option is offset by the resupply savings, relative to the reference hydrazine system, after one to several resupplies. Over the life of the station the savings in cost of logistics could be substantial. The three options are examples of alternative technology paths that, because of the opportunity they provide for integration with the environmental control life support system (ECLSS) and OTV propellant storage systems, may reduce the scarring which is required on the early station to meet the increasing propulsion requirements of the growth station.

Donovan, R. M.; Sovey, J. S.; Hannum, N. B.

1984-01-01

135

Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module  

NASA Technical Reports Server (NTRS)

Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

Reveley, W. F.; Nuccio, P. P.

1975-01-01

136

Environmental control/life support system for Space Station  

NASA Technical Reports Server (NTRS)

The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.

Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.

1986-01-01

137

Microbe-I: fungal biota analyses of the Japanese experimental module KIBO of the International Space Station before launch and after being in orbit for about 460 days.  

PubMed

In addition to the crew, microbes also find their way aboard the International Space Station (ISS). Therefore, microbial monitoring is necessary for the health and safety of the crew and for general maintenance of the facilities of this station. Samples were collected from three sites in the Japanese experimental module KIBO on the ISS (air diffuser, handrail, and surfaces) for analysis of fungal biota approximately 1 year after this module had docked with the ISS. Samples taken from KIBO before launch and from our laboratory were used as controls. In the case of KIBO, both microbe detection sheet (MDS) and swab culture tests of orbital samples were negative. The MDS were also examined by field emission-scanning electron microscopy; no microbial structures were detected. However, fungal DNAs were detected by real-time PCR and analyzed by the clone library method; Alternaria sp. and Malassezia spp. were the dominant species before launch and in space, respectively. The dominant species found in specimens from the air conditioner diffuser, lab bench, door push panel, and facility surfaces on our laboratory (ground controls) were Inonotus sp., Cladosporium sp., Malassezia spp., and Pezicula sp., respectively. The fungi in the KIBO were probably derived from contamination due to humans, while those in our laboratory came from the environment (e.g., the soil). In conclusion, the cleanliness in KIBO was equivalent to that in a clean room environment on the ground. PMID:21950271

Satoh, Kazuo; Nishiyama, Yayoi; Yamazaki, Takashi; Sugita, Takashi; Tsukii, Yuuji; Takatori, Kosuke; Benno, Yoshimi; Makimura, Koichi

2011-12-01

138

Space platforms/stations  

NASA Technical Reports Server (NTRS)

Platforms in low-earth orbit are examined as simple and cost-effective solutions to the problem of long-duration space flight, providing stability, utilities and access for a variety of Shuttle-tended replaceable payloads over extended periods of time. The requirements for space platforms, which will encompass the advantages of both the free-flying and Shuttle-Spacelab operational modes, are discussed, with consideration given to payloads, operations and platform systems, and the status of the space platform concept, which is expected to begin development in early 1983 following definition studies and design selection, is noted. Possible paths in the evolution of space platform facilities to more advanced concepts are then outlined. Finally, the concept of the Science and Applications Manned Space Platform is examined as the first step toward a permanent manned United States presence in space.

Priest, C. C.

1981-01-01

139

Space Stations: Sponge Spool Spine  

NSDL National Science Digital Library

In this activity, learners simulate what happens to a human spine in space by making Sponge Spool Spines (alternating sponge pieces and spools threaded on a pipe cleaner). This represents a human spine on Earth, with the discs (sponges) pressed between the spinal vertebrae (the wooden spools). Learners measure the spine length, dip it in a glass of water (simulating microgravity), and then re-measure the spine. They will find it has expanded, just like in space! This activity station is part of a sequence of stations that can be set up to help learners explore how space affects the human body and why.

Dr. Diane Byerly

2006-01-01

140

Space Station ECLSS Integration Analysis  

NASA Technical Reports Server (NTRS)

The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

1993-01-01

141

Solar dynamic modules for Space Station Freedom: The relationship between fine-pointing control and thermal loading of the aperture plate  

NASA Technical Reports Server (NTRS)

Dynamic simulations of Space Station Freedom (SSF) configured with solar dynamic (SD) power modules were performed. The structure was subjected to Space Shuttle docking disturbances, while being controlled with a 'natural' vibration and tracking control approach. Three control cases were investigated for the purpose of investigating the relationship between actuator effort, SD pointing, and thermal loading on the receiver aperture plate. Transient, one-dimensional heat transfer analyses were performed to conservatively predict temperatures of the multi-layered receiver aperture plate assembly and thermal stresses in its shield layer. Results indicate that the proposed aperture plate is tolerant of concentrated flux impingement during short-lived structural disturbances. Pointing requirements may be loosened and the requirement control torques lessened from that previously specified. Downsizing and simplifying the joint drive system should result in a considerable savings mass.

Quinn, Roger D.; Kerslake, Thomas W.

1992-01-01

142

Neutral Buoyancy Simulator - Space Station  

NASA Technical Reports Server (NTRS)

Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

1985-01-01

143

Materials International Space Station Experiment  

NASA Technical Reports Server (NTRS)

Backdropped by a sunrise, the newly installed Materials International Space Station Experiment (MISSE) is visible on this image. MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment. The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock during extravehicular activity (EVA) of the STS-105 mission. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

2001-01-01

144

Space station particulate contamination environment  

NASA Technical Reports Server (NTRS)

The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented.

Miller, E. R.; Clifton, K. S.

1988-01-01

145

Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook  

NASA Technical Reports Server (NTRS)

Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

1988-01-01

146

SPACE STATION RESEARCH Issue Date Title Link  

E-print Network

International Space Station Benefits For Humanity View PDF (11 Mb) 2011 Fall 2011 International Space Station Utilization Statistics View PDF (10.5 Mb) Feb. 2011 International Space Station Overview: Research and On-Orbit Facilities Non-Partner Participation View PDF (4.6 Mb) Feb. 2011 International Space Station NASA Research

147

Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station  

NASA Astrophysics Data System (ADS)

In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.

Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro

2013-03-01

148

International Space Station Capabilities and Payload Accommodations  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.

Kugler, Justin; Jones, Rod; Edeen, Marybeth

2010-01-01

149

Space station full-scale docking/berthing mechanisms development  

NASA Technical Reports Server (NTRS)

One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

Burns, Gene C.; Price, Harold A.; Buchanan, David B.

1988-01-01

150

Acceleration Environment of the International Space Station  

NASA Technical Reports Server (NTRS)

Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

McPherson, Kevin; Kelly, Eric; Keller, Jennifer

2009-01-01

151

Space Station Freedom media handbook  

NASA Technical Reports Server (NTRS)

This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

1989-01-01

152

Medical operations and life sciences activities on space station  

NASA Technical Reports Server (NTRS)

Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.

Johnson, P. C. (editor); Mason, J. A. (editor)

1982-01-01

153

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lowered into its workstand at Kennedy Space Center's Space Station Processing Facility (SSPF), where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

154

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifted from its container in Kennedy Space Center's Space Station Processing Facility (SSPF) before it is moved into its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

155

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past Node 1, seen at left, of the International Space Station (ISS) in Kennedy Space Center's Space Station Processing Facility (SSPF). The IEA will be processed at the SSPF for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the ISS. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

156

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center's Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

157

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved through Kennedy Space Center's Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

158

International Space Station's Integrated Equipment Assembly processed at KSC's Space Station Process  

NASA Technical Reports Server (NTRS)

Workers in Kennedy Space Center's Space Station Processing Facility (SSPF) observe the Photovoltaic Module 1 Integrated Equipment Assembly (IEA) as it moves past them on its way to its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF.

1998-01-01

159

Science Research Facilities - Versatility for Space Station  

NASA Technical Reports Server (NTRS)

The Space Station Science Lab Module (SLM) and its interfaces are designed to minimize complexity and maximize user accommodations. The facilities provided encompass life sciences research, the control of external payloads, the servicing of customer equipment, and general scientific investigations. The SLM will have the unprecedented ability to diagnose, service, and replace equipment while in orbit. In addition, the SLM will have significant operational advantages over previous spacecraft in terms of available volume, power, and crew interaction possibilities.

Giannovario, J. A.; Schelkopf, J. D.; Massey, K.; Solly, M.

1986-01-01

160

Space Station Freedom primary power wiring requirements  

NASA Technical Reports Server (NTRS)

The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

Hill, Thomas J.

1994-01-01

161

Space Station trash removal system  

NASA Technical Reports Server (NTRS)

A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

Petro, Andrew J. (inventor)

1993-01-01

162

Space station architectural elements model study  

NASA Technical Reports Server (NTRS)

The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.

Taylor, T. C.; Spencer, J. S.; Rocha, C. J.; Kahn, E.; Cliffton, E.; Carr, C.

1987-01-01

163

Space station molecular sieve development  

NASA Technical Reports Server (NTRS)

An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

Chang, C.; Rousseau, J.

1986-01-01

164

Evolution of the Space Station Robotic Manipulator  

NASA Technical Reports Server (NTRS)

The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that this evolution can be accomplished while conducting critical on-orbit operations with minimal hardware changes.

Razvi, Shakeel; Burns, Susan H.

2007-01-01

165

Space Station Freedom avionics technology  

NASA Technical Reports Server (NTRS)

The Space Station Freedom Program (SSFP) encompasses the design, development, test, evaluation, verification, launch, assembly, and operation and utilization of a set of spacecraft in low earth orbit (LEO) and their supporting facilities. The spacecraft set includes: the Space Station Manned Base (SSMB), a European Space Agency (ESA) provided Man-Tended Free Flyer (MTFF) at an inclination of 28.5 degrees and nominal attitude of 410 km, a USA provided Polar Orbiting Platform (POP), and an ESA provided POP in sun-synchronous, near polar orbits at a nominal altitude of 822 km. The SSMB will be assembled using the National Space Transportation System (NSTS). The POPs and the MTFF will be launched by Expendable Launch Vehicles (ELVs): a Titan 4 for the US POP and an Ariane for the ESA POP and MTFF. The US POP will for the most part use derivatives of systems flown on unmanned LEO spacecraft. The SSMB portion of the overall program is presented.

Edwards, A.

1990-01-01

166

Space Station power requirements and issues  

NASA Astrophysics Data System (ADS)

This paper provides an overview of the space station configuration and summarizes the requirements, architecture, and significant challenges associated with the Electrical Power System (EPS). The space station configuration was baselined during the Systems Design Review (SDR) process in March, 1994. The current configuration includes the addition of Russia as an international partner, resulting in major changes to the assembly sequence, pressurized module complement, and overall power architecture. The Russian contributions to the power system architecture, as well as an overview and development status of the US provided elements is presented. Finally, a planned flight demonstration of solar dynamic power system on the Mir as part of the first phase of US/Russian cooperation in human space flight is described.

Huckins, E.; Ahlf, P.

1994-12-01

167

Shuttle-launch triangular space station  

NASA Technical Reports Server (NTRS)

A triangular space station deployable in orbit is described. The framework is comprized of three trusses, formed of a pair of generally planar faces consistine of foldable struts. The struts expand and lock into rigid structural engagement forming a repetition of equilater triangles and nonfolding diagonal struts interconnecting the two faces. The struts are joined together by node fittings. The framework can be packaged into a size and configuration transportable by a space shuttle. When deployed, the framework provides a large work/construction area and ample planar surface area for solar panels and thermal radiators. A plurity of modules are secured to the framework and then joined by tunnels to make an interconnected modular display. Thruster units for the space station orientation and altitude maintenance are provided.

Schneider, W. C. (inventor); Berka, R. B. (inventor); Kavanaugh, C. (inventor); Nagy, K. (inventor); Parish, R. C. (inventor); Schliesing, J. A. (inventor); Smith, P. D. (inventor); Stebbins, F. J. (inventor); Wesselski, C. J. (inventor)

1986-01-01

168

Pointing requirements for space station science  

Microsoft Academic Search

It appears that man's next evolutionary step in spaceflight will involve his permanent presence in space with a station in earth orbit. For the purpose of discussing pointing requirements for science and applications studies, a space station with certain characteristics is considered, taking into account a low earth orbit station. It is assumed that the space station will be a

S. J. Paddack

1983-01-01

169

Space Station Planetology Experiments (SSPEX)  

SciTech Connect

A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

Greeley, R.; Williams, R.J.

1986-05-01

170

Space Station Planetology Experiments (SSPEX)  

NASA Technical Reports Server (NTRS)

A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

Greeley, R. (editor); Williams, R. J. (editor)

1986-01-01

171

Space station interior design: Results of the NASA/AIA space station interior national design competition  

NASA Technical Reports Server (NTRS)

The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

Haines, R. F.

1975-01-01

172

Space Station evolution study oxygen loop closure  

NASA Technical Reports Server (NTRS)

In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.

Wood, M. G.; Delong, D.

1993-01-01

173

Space station atmospheric monitoring systems  

NASA Astrophysics Data System (ADS)

A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

174

Space Station Freedom Solar Array design development  

NASA Technical Reports Server (NTRS)

The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.

1989-01-01

175

Space Station propulsion system technology  

NASA Technical Reports Server (NTRS)

Two propulsion systems have been selected for the Space Station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

1987-01-01

176

Space station propulsion system technology  

NASA Technical Reports Server (NTRS)

Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

1987-01-01

177

The International Space Station in Space Exploration  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

Gerstenmaier, William H.; McKay, Meredith M.

2006-01-01

178

Research centrifuge accommodations on Space Station Freedom  

NASA Technical Reports Server (NTRS)

Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

Arno, Roger D.; Horkachuk, Michael J.

1990-01-01

179

The International Space Station Assembly on Schedule  

NASA Technical Reports Server (NTRS)

As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

1997-01-01

180

The partnership: Space shuttle, space science, and space station  

NASA Technical Reports Server (NTRS)

An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

Culbertson, Philip E.; Freitag, Robert F.

1989-01-01

181

Space Station life sciences guidelines for nonhuman experiment accommodation  

NASA Technical Reports Server (NTRS)

Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.

Arno, R.; Hilchey, J.

1985-01-01

182

Space station architectural elements model study. Space station human factors research review  

NASA Technical Reports Server (NTRS)

Presentation visuals and an extended abstract represent a study to explore and analyze the interaction of major utilities distribution, generic workstation, and spatial composition of the SPACEHAB space station module. Issues addressed include packing densities vs. circulation, efficiency of packing vs. standardization, flexibility vs. diversity, and composition of interior volume as space for living vs. residual negative volume. The result of the study is expected to be a series of observations and preliminary evaluation criteria which focus on the productive living environment for a module in orbit.

Taylor, Thomas C.; Khan, Eyoub; Spencer, John; Rocha, Carlos; Cliffton, Ethan Wilson

1987-01-01

183

Space Station solar water heater  

NASA Technical Reports Server (NTRS)

The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

Horan, D. C.; Somers, Richard E.; Haynes, R. D.

1990-01-01

184

Space station protective coating development  

NASA Technical Reports Server (NTRS)

A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

Pippin, H. G.; Hill, S. G.

1989-01-01

185

Space Station tethered elevator system  

NASA Technical Reports Server (NTRS)

The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

1989-01-01

186

Space Station Freedom propulsion activities  

NASA Technical Reports Server (NTRS)

The technical highlights and accomplishments made at NASA LeRC in the development of the Space Station Freedom (SSF) propulsion system are discussed. The objectives are as follows: develop and characterize resistojet-thruster components and assemblies; develop and characterize hydrogen-oxygen thruster components; and conduct system trade studies. The research projects primarily characterize propulsion performance and life. Other tests include environmental impacts, such as exhaust gas profiles and electromagnetic interference. The technical activities that are highlighted are being conducted at LeRC within the Aerospace Technology and Space Station Freedom directorates. These activities include the following: derivation of design analysis models; trade studies of design options; propulsion system impact studies; and component testing for characterization and design verification.

Spera, David A. (editor)

1990-01-01

187

VentureStar Space Station Docking - Computer generated graphic  

NASA Technical Reports Server (NTRS)

This 42-second clip has the cargo bay doors of the hypothetical future reusable launch vehicle VentureStar opening to reveal the bay door radiators and docking module then slowly approaching the International Space Station and finally docking at Pressurized Mating Adapter #2 attached to node two of the Station.

1996-01-01

188

Survey of environmental biocontamination on board the International Space Station  

Microsoft Academic Search

The International Space Station (ISS) is an orbital living and working environment extending from the original Zarya control module built in 1998. The expected life span of the completed station is around 10 years and during this period it will be constantly manned. It is inevitable that the ISS will also be home to an unknown number of microorganisms. This

Natalia Novikova; Patrick De Boever; Svetlana Poddubko; Elena Deshevaya; Nikolai Polikarpov; Natalia Rakova; Ilse Coninx; Max Mergeay

2006-01-01

189

International Space Station -- Human Research Facility (HRF)  

NASA Technical Reports Server (NTRS)

Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

2000-01-01

190

Space Station Freedom altitude strategy  

NASA Technical Reports Server (NTRS)

The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed.

Mcdonald, Brian M.; Teplitz, Scott B.

1990-01-01

191

SPACE STATION RESEARCH Issue Date Title Link  

E-print Network

View PDF (5.1 Mb) Mar. 2012 International Space Station Benefits For Humanity View PDF (11 Mb) 2011 Fall 2011 International Space Station Utilization Statistics View PDF (10.5 Mb) Feb. 2011 International. 2011 International Space Station NASA Research: Outreach Seminar on the ISS, United Nations View PDF (1

192

Case Study of Risk Mitigation Based on Hardware/Software Integration (HSI) Testing for the International Space Station (ISS) Node 2 Module  

NASA Technical Reports Server (NTRS)

Within the pressurized elements of the International Space Station (ISS), requirements exist to ensure a safe, habitable environment for the crew. In order to provide this environment, thermal control components work in conjunction with software controls to provide heat rejection for subsystem avionics equipment, for the environmental control system and for experiment payloads. It is essential to ISS operations, mission success and crew safety that necessary testing incorporates the extreme conditions to ensure proper performance. This paper provides a general description and methodology applied to thermal related Hardware/Software Integration (HSI) tests for the ISS Node 2 module. A detailed test plan was developed and implemented with two objectives: the first was for risk mitigation of the thermal control algorithms and software qualification, and the second was for data collection which will substantiate thermalhydraulic models of the Internal Active Thermal Control System (IATCS). Analytical models are utilized to determine on-orbit performance for conditions and scenarios where the simulation of actual on-orbit system performance is limited by test configuration constraints. Node 2 IATCS HSI activities were performed at the Alenia Spazio facility in Torino, Italy with participation from the National Aeronautics and Space Administration (NASA), Alenia Spazio, Jacobs Engineering Sverdrup (JE Sverdrup) and Boeing.

Holt, James Mike; Clanton, Stephen Edward

2004-01-01

193

"Space Station" Theme: Learning to Work, and Live, in Space  

E-print Network

"Space Station" IMAX Film Theme: Learning to Work, and Live, in Space The educational value of NASM visit and afterward. See the "Alignment with Standards" table for details regarding how "Space Station in the "Space Station" program: · How astronauts train · What it is like to live and work in Space aboard

Mathis, Wayne N.

194

International Space Station technology demonstrations  

NASA Astrophysics Data System (ADS)

The International Space Station (ISS) has the capability to test and demonstrate, and otherwise assist in the development and validation, of a wide range of advanced technologies. Technology tests and demonstrations for advanced communication systems, closed-loop environmental control systems, advanced power storage and generation systems, advanced electric and electromagnetic propulsion systems, and others are being assessed for inclusion in an ISS Pre-Planned Program Improvement (P3I), Technology/Improvement Roadmap. The P3I roadmap is an integrated set of technology and improvement requirements for: (1) ISS subsystem upgrades and improvements (addressing maintenance, logistics, sustainability, and enhancement functions), (2) payload hardware technology infusion, (3) ISS/Exploration technology development and tests (dual use/benefits), and (4) Engineering Research and Technology payloads. As examples of the International Space Station's technology testbed capabilities, implementation approaches for three types of propulsion technology demonstrations and research are described: (1) electric and electromagnetic propulsion technologies and systems (NASA Lewis Research Center), (2) technologies and sub-systems for a variable specific impulse (Isp), magnetoplasma rocket (VASIMR), (Advanced Propulsion Lab, Sonny Carter Training Facility, Houston, Tx), and (3) candidates for innovative, deep space propulsion technology research and demonstrations (projections based on NASA Advanced Space Transportation Program, Propulsion Research and other R.&D activities.).

Holt, Alan C.

1998-01-01

195

Space Station propulsion system test bed  

NASA Technical Reports Server (NTRS)

The test bed to study H2/O2 propulsion technology for the Space Station is discussed. The test bed consists of propellant accumulators, valving, instrumentation, and controls configured in a 9-ft cube. A water electrolysis module was added to simulate the baseline propulsion system configuration. The activation of the test bed is described, and results are presented from tests of the system, including verification of the control system, thruster tests, electrolysis system testing, and acceptance test, oxidizer system, and fuel system blowdowns.

Norman, A. M.; Briley, G. L.; Evans, S. A.; Jones, L.; Allums, S.

1988-01-01

196

User's view of Space Station  

NASA Technical Reports Server (NTRS)

It is pointed out that the current Space Station Freedom (SSF) design is the minimum station capable of satisfying the top-level user requirements, effectively incorporating the international partners, and providing the 'hooks' and 'scars' required to cost-effectively evolve the capabilites of the SSF. Research requirements have resulted in very important design drivers on the SS: three labs, three crewmembers per shift, low microgravity in the labs, minimum disturbances, high power for users, high data rates, multiple external attach points, and clean induced environment. Also addressed are the design capabilities that allow the SSF to support the development of technologies and the operations to expand the human presence in the solar system.

Holt, Alan C.

1990-01-01

197

Space Station Facility government estimating  

NASA Technical Reports Server (NTRS)

This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 18 ways the low bidders get low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

Brown, Joseph A.

1993-01-01

198

International Space Station from Space Shuttle Endeavour  

NASA Technical Reports Server (NTRS)

The crew of the Space Shuttle Endeavour took this spectacular image of the International Space Station during the STS118 mission, August 8-21, 2007. The image was acquired by an astronaut through one of the crew cabin windows, looking back over the length of the Shuttle. This oblique (looking at an angle from vertical, rather than straight down towards the Earth) image was acquired almost one hour after late inspection activities had begun. The sensor head of the Orbiter Boom Sensor System is visible at image top left. The entire Space Station is visible at image bottom center, set against the backdrop of the Ionian Sea approximately 330 kilometers below it. Other visible features of the southeastern Mediterranean region include the toe and heel of Italy's 'boot' at image lower left, and the western coastlines of Albania and Greece, which extend across image center. Farther towards the horizon, the Aegean and Black Seas are also visible. Featured astronaut photograph STS118-E-9469 was acquired by the STS-118 crew on August 19, 2007, with a Kodak 760C digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science and Analysis Laboratory at Johnson Space Center.

2007-01-01

199

Space Station Freedom commercial infrastructure  

NASA Technical Reports Server (NTRS)

Several approaches to initiating the provision of the Space Station Freedom (SSF) commercial infrastructure are discussed, including proposals from the private sector, the commercial development of infrastructure, and the commercial operation of infrastructure. Specific options for SSF commercial infrastructure which are currently being studied by NASA are described. One candidate for commercial service is the supplemental power for SSF beyond the Assembly Complete phase. The methods which a company could use in providing supplemental power are discussed, with special attention given to the use of solar dynamic power elements attached ot the SSF evolution structure. Another option under evaluation is commercial provision of SSF logistics services using ELVs.

Barquinero, Kevin

1990-01-01

200

Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project  

NASA Astrophysics Data System (ADS)

The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment (2012 - 2014) in comparison to the data of the DOSIS experiment (2009 - 2011). The Polish contribution was supported by the National Science Centre (No DEC-2012/06/M/ST9/00423). The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232.

Berger, Thomas

201

International Space Station Acoustics - A Status Report  

NASA Technical Reports Server (NTRS)

It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

Allen, Christopher S.; Denham, Samuel A.

2011-01-01

202

Microbiology on Space Station Freedom  

NASA Technical Reports Server (NTRS)

This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.

Pierson, Duane L. (editor); Mcginnis, Michael R. (editor); Mishra, S. K. (editor); Wogan, Christine F. (editor)

1991-01-01

203

National Aeronautics and Space Administration International Space Station  

E-print Network

National Aeronautics and Space Administration NASAfacts International Space Station Clearly visible with the naked eye in the night sky, the expansive International Space Station is a working) end to end Equivalent to a U.S. football field, including the end zones International Space Station

204

A customer-friendly Space Station  

NASA Technical Reports Server (NTRS)

This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

Pivirotto, D. S.

1984-01-01

205

Interferometer for Space Station Windows  

NASA Technical Reports Server (NTRS)

Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

Hall, Gregory

2003-01-01

206

Space station operating system study  

NASA Technical Reports Server (NTRS)

The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

Horn, Albert E.; Harwell, Morris C.

1988-01-01

207

International Space Station USOS Crew Quarters Development  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.

Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

2008-01-01

208

Space Portable Spectroreflectometer (SPSR) Investigation on Mir Space Station  

NASA Technical Reports Server (NTRS)

Degradation of thermal control surface properties results from the synergistic effects of the space environment's interaction with materials. This includes the natural space environment and the contamination environment produced by the spacecraft itself. Past flight experiments have utilized small witness samples which were recovered for post flight analysis on the ground. However, reintroduction into an oxygen atmosphere can, in itself, cause a change in the properties of the material being studied. Space based measurements using video cameras were not quantifiable. Very limited experiments have previously measured material properties in-situ on a spacecraft but only using small prepared witness samples with minimal exposure to space. The only way to really determine the properties of actual spacecraft surfaces after an extended exposure to the space environment is to measure them directly, in space. The SPSR provides this capability to measure the most important thermal property which can change in the space environment, the solar absorptivity. The Mir space station provides an excellent opportunity for such experiments due to the long exposure that some of the modules have experienced. Measurements from different modules would have provided an opportunity to determine the effect of various exposure time in orbit and under different contamination environments. Due to other pressing issues only one site was measured using the SPSR.

Carruth, M. Ralph, Jr.; Wilkes, Donald R.; Zwiener, James M.; Naumov, Stanislav; Kamenetzky, Rachel R.

1999-01-01

209

Space Station Freedom: A foothold on the future  

NASA Technical Reports Server (NTRS)

An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.

1989-01-01

210

National Aeronautics and Space Administration International Space StationInternational Space Station  

E-print Network

National Aeronautics and Space Administration International Space StationInternational Space.nasa.gov #12;Current Stage National Aeronautics and Space Administration Rod Jones ISS Payloads Office 2 #12, Japan, and Russia National Aeronautics and Space Administration 3 US, Europe, Japan, and Russia #12

Christian, Eric

211

Concrete: Potential material for Space Station  

NASA Technical Reports Server (NTRS)

To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

Lin, T. D.

1992-01-01

212

Fault-Tolerance Verification of the Fluids and Combustion Facility of the International Space Station  

E-print Network

.S. Laboratory Module onboard the International Space Stations (ISS). The ability to withstand faults is vital of an experimental facility to be deployed at the International Space Station. Model checkers are designed to find), which is to become a permanent installation on board the International Space Station (ISS

Nesterenko, Mikhail

213

Survey of International Space Station Charging Events  

NASA Technical Reports Server (NTRS)

With the negative grounding of the 160V Photovoltaic (PV) arrays, the International Space Station (ISS) can experience varied and interesting charging events. Since August 2006, there has been a multi-probe p ackage, called the Floating Potential Measurement Unit (FPMU), availa ble to provide redundant measurements of the floating potential of th e ISS as well as the density and temperature of the local plasma environment. The FPMU has been operated during intermittent data campaigns since August 2006 and has collected over 160 days of information reg arding the charging of the ISS as it has progressed in configuration from one to three PV arrays and with various additional modules such as the European Space Agency?s Columbus laboratory and the Japan Aeros pace Exploration Agency's Kibo laboratory. This paper summarizes the charging of the ISS and the local environmental conditions that contr ibute to those charging events, both as measured by the FPMU.

Craven, P. D.; Wright, Kenneth H., Jr.; Minow, Joseph I.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Ferguson, Dale C.; Parker, Linda N.

2009-01-01

214

International Space Station Electric Power System Performance Code-SPACE  

NASA Technical Reports Server (NTRS)

The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; Rodriguez, Carlos

2005-01-01

215

Catastrophic Failure Modes Assessment of the International Space Station Alpha  

NASA Technical Reports Server (NTRS)

This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.

Lutz, B. E. P.; Goodwin, C. J.

1996-01-01

216

GSFC contamination monitors for Space Station  

NASA Technical Reports Server (NTRS)

This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

1988-01-01

217

International Space Station power storage upgrade planned  

Microsoft Academic Search

As the Earth-orbit International Space Station (ISS) grows, it needs more power which is generated by solar panels. For periods in which the planet Earth occults sunlight, energy is stored in the biggest set of batteries ever flown in space. Reliability of power is important in a space station because a failure requires costly launch of replacement components. Even greater

H. Oman

2003-01-01

218

Historical annotated bibliography: Space Station documents  

NASA Technical Reports Server (NTRS)

Information is presented regarding documentation which has been produced in the Space Station program. This information will enable the researcher to locate readily documents pertinent to a particular study. It is designed to give the historian the necessary data from which to compile the written histories and to preserve records of historically significant aspects of Marshall's involvement in Space Shuttle and Space Station.

Whalen, Jessie E. (compiler); Mckinley, Sarah L. (compiler); Gates, Thomas G. (compiler)

1988-01-01

219

Bioisolation on the Space Station  

NASA Technical Reports Server (NTRS)

Animal research on the Space Station presents the need for bioisolation, which is here defined as instrumental and operational provisions, which will prevent the exchange of particles greater than 0.3-micron size and microorganisms between crew and animals. Current design principles for the Biological Research Project thus call for: (1) use of specific pathogen-free animals; (2) keeping animals at all times in enclosed habitats, provided with microbial filters and a waste collection system; (3) placing habitats in a holding rack, centrifuge, and workbench, all equipped with particulate and odor filters, (4) washing dirty cage units in an equipment cleaner, with treatment and recycling of the water; (5) designing components and facilities so as to ensure maximal accessibility for cleaning; and (6) defining suitable operational procedures. Limited ground tests of prototype components indicate that proper bioisolation can thus be achieved.

Bonting, Sjoerd L.; Arno, Roger D.; Kishiyama, Jenny S.; Johnson, Catherine C.

1988-01-01

220

Space Station tethered waste disposal  

NASA Technical Reports Server (NTRS)

The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.

Rupp, Charles C.

1988-01-01

221

Space station trace contaminant control  

NASA Technical Reports Server (NTRS)

Different systems for the control of space station trace contaminants are outlined. The issues discussed include: spacecabin contaminant sources, technology base, contaminant control system elements and configuration, approach to contaminant control, contaminant load model definition, spacecraft maximum allowable concentrations, charcoal bed sizing and performance characteristics, catalytic oxidizer sizing and performance characteristics, special sorbent bed sizing, animal and plant research payload problems, and emergency upset contaminant removal. It is concluded that the trace contaminant control technology base is firm, the necessary hardware tools are available, and the previous design philosophy is still applicable. Some concerns are the need as opposed to danger of the catalytic oxidizer, contaminants with very low allowable concentrations, and the impact of relaxing materials requirements.

Olcutt, T.

1985-01-01

222

Exobiology experiment concepts for Space Station  

NASA Technical Reports Server (NTRS)

The exobiology discipline uses ground based and space flight resources to conduct a multidiscipline research effort dedicated to understanding fundamental questions about the origin, evolution, and distribution of life and life related molecules throughout the universe. Achievement of this understanding requires a methodical research strategy which traces the history of the biogenic elements from their origins in stellar formation processes through the chemical evolution of molecules essential for life to the origin and evolution of primitive and, ultimately, complex living species. Implementation of this strategy requires the collection and integration of data from solar system exploration spacecraft and ground based and orbiting observatories and laboratories. The Science Lab Module (SLM) of the Space Station orbiting complex may provide an ideal setting in which to perform certain classes of experiments which form the cornerstone of exobiology research. These experiments could demonstrate the pathways and processes by which biomolecules are synthesized under conditions that stimulate the primitive earth, planetary atmospheres, cometary ices, and interstellar dust grains. Exobiology experiments proposed for the Space Station generally fall into four classes: interactions among gases and grains (nucleation, accretion, gas-grain reactions), high energy chemistry for the production of biomolecules, physical and chemical processes occurring on an artificial comet, and tests of the theory of panspermia.

Griffiths, Lynn D.; Devincenzi, Donald L.

1987-01-01

223

Space Station Freedom Utilization Conference: Executive summary  

NASA Technical Reports Server (NTRS)

From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

1992-01-01

224

Space Station truss structures and construction considerations  

NASA Technical Reports Server (NTRS)

Although a specific configuration has not been selected for the Space Station, a gravity gradient stabilized station as a basis upon which to compare various structural and construction concepts is considered. The Space Station primary truss support structure is described in detail. Three approaches (see sketch A) which are believed to be representative of the major techniques for constructing large structures in space are also described in detail so that salient differences can be highlighted.

Mikulas, M. M., Jr.; Croomes, S. D.; Schneider, W.; Bush, H. G.; Nagy, K.; Pelischek, T.; Lake, M. S.; Wesselski, C.

1985-01-01

225

Space Station Freedom Utilization Conference. Executive summary  

NASA Technical Reports Server (NTRS)

The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

1993-01-01

226

Space Station Live: Station Communications Upgrade - Duration: 8:11.  

NASA Video Gallery

NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

227

Space Station engineering and technology development  

NASA Technical Reports Server (NTRS)

Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

1985-01-01

228

47 CFR 97.211 - Space telecommand station.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Space telecommand station. 97.211 Section 97...designated by the licensee of a space station is eligible to transmit as a telecommand station for that space station, subject to the...

2012-10-01

229

47 CFR 97.211 - Space telecommand station.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Space telecommand station. 97.211 Section 97...designated by the licensee of a space station is eligible to transmit as a telecommand station for that space station, subject to the...

2011-10-01

230

47 CFR 97.211 - Space telecommand station.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Space telecommand station. 97.211 Section 97...designated by the licensee of a space station is eligible to transmit as a telecommand station for that space station, subject to the...

2013-10-01

231

47 CFR 97.211 - Space telecommand station.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Space telecommand station. 97.211 Section 97...designated by the licensee of a space station is eligible to transmit as a telecommand station for that space station, subject to the...

2010-10-01

232

Space station communications and tracking equipment management/control system  

NASA Technical Reports Server (NTRS)

Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

Kapell, M. H.; Seyl, J. W.

1982-01-01

233

Space Station Freedom combustion research  

NASA Technical Reports Server (NTRS)

Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

Faeth, G. M.

1992-01-01

234

Space Station Biological Research Project Habitat: Incubator  

NASA Technical Reports Server (NTRS)

Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

2001-01-01

235

Space Station Freedom as an engineering experiment station: An overview  

NASA Astrophysics Data System (ADS)

In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

Rose, M. Frank

236

Space Station Freedom as an engineering experiment station: An overview  

NASA Technical Reports Server (NTRS)

In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

Rose, M. Frank

1992-01-01

237

Space station: The next logical step  

NASA Technical Reports Server (NTRS)

The following topics with respect to the space station program are discussed: (1) unmanned free-flyers; (2) recent progress; (3) the space shuttle; (4) international participation; (5) science, commerce, and technology; and (6) private sector participation.

Stofan, Andrew J.

1986-01-01

238

National Aeronautics and Space Administration International Space Station  

E-print Network

specifics. n 24 Hour Light/Dark Cycles in Humans (European Space Agency) This experiment examines Station Mission Summary n Blood Cell Testing (Canadian Space Agency) Microflow1 is a new investigationNational Aeronautics and Space Administration International Space Station [ M I S S I O N S U M M

239

A facility for training Space Station astronauts  

NASA Technical Reports Server (NTRS)

The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

Hajare, Ankur R.; Schmidt, James R.

1992-01-01

240

SAMPIE Measurements of the Space Station Plasma Current Analyzed  

NASA Technical Reports Server (NTRS)

In March of 1994, STS-62 carried the NASA Lewis Research Center's Solar Array Module Plasma Interactions Experiment (SAMPIE) into orbit, where it investigated the plasma current collected and the arcs from solar arrays and other space power materials immersed in the low-Earth-orbit space plasma. One of the important experiments conducted was the plasma current collected by a four-cell coupon sample of solar array cells for the international space station. The importance of this experiment dates back to the 1990 and 1991 meetings of the Space Station Electrical Grounding Tiger Team. The Tiger Team determined that unless the electrical potentials on the space station structure were actively controlled via a plasma contactor, the space station structure would arc into the plasma at a rate that would destroy the thermal properties of its surface coatings in only a few years of operation. The space station plasma contactor will control its potentials by emitting electrons into the surrounding low-Earth-orbit plasma at the same rate that they are collected by the solar arrays. Thus, the level at which the space station solar arrays can collect current is very important in verifying that the plasma contactor design can do its job.

1996-01-01

241

Space Station: Leadership for the Future  

NASA Technical Reports Server (NTRS)

No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

Martin, Franklin D.; Finn, Terence T.

1987-01-01

242

47 CFR 97.207 - Space station.  

Code of Federal Regulations, 2010 CFR

...retransmit the radio signals of Earth stations and other space...notification within 30 days after the date of launch...For geostationary-Earth orbit space stations...reach the surface of the Earth, as well as an estimate...Bureau no later than 90 days before integration...

2010-10-01

243

47 CFR 97.207 - Space station.  

Code of Federal Regulations, 2011 CFR

...retransmit the radio signals of Earth stations and other space...notification within 30 days after the date of launch...For geostationary-Earth orbit space stations...reach the surface of the Earth, as well as an estimate...Bureau no later than 90 days before integration...

2011-10-01

244

47 CFR 97.207 - Space station.  

Code of Federal Regulations, 2014 CFR

...retransmit the radio signals of Earth stations and other space...notification within 30 days after the date of launch...For geostationary-Earth orbit space stations...reach the surface of the Earth, as well as an estimate...Bureau no later than 90 days before integration...

2014-10-01

245

47 CFR 97.207 - Space station.  

Code of Federal Regulations, 2012 CFR

...retransmit the radio signals of Earth stations and other space...notification within 30 days after the date of launch...For geostationary-Earth orbit space stations...reach the surface of the Earth, as well as an estimate...Bureau no later than 90 days before integration...

2012-10-01

246

47 CFR 97.207 - Space station.  

Code of Federal Regulations, 2013 CFR

...retransmit the radio signals of Earth stations and other space...notification within 30 days after the date of launch...For geostationary-Earth orbit space stations...reach the surface of the Earth, as well as an estimate...Bureau no later than 90 days before integration...

2013-10-01

247

Tether implications on Space Station gravity level  

NASA Technical Reports Server (NTRS)

The use of a tether on the Space Station is discussed. The effefcts of the tether on the microgravity environment on the Space station are described. A tethered variable gravity laboratory for investigating low gravity processes using gravity magnitude and time as variables is considered.

Kroll, K. R.

1986-01-01

248

Space station wardroom habitability and equipment study  

NASA Technical Reports Server (NTRS)

Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.

Nixon, David; Miller, Christopher; Fauquet, Regis

1989-01-01

249

von Braun 1952 Space Station Concept  

NASA Technical Reports Server (NTRS)

This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

1952-01-01

250

Knowledge-based machine vision systems for space station automation  

NASA Technical Reports Server (NTRS)

Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.

Ranganath, Heggere S.; Chipman, Laure J.

1989-01-01

251

Electrical power system design for the US space station  

NASA Technical Reports Server (NTRS)

The multipurpose, manned, permanent space station will be our next step toward utilization of space. A multikilowatt electrical power system will be critical to its success. The power systems for the space station manned core and platforms that have been selected in definition studies are described. The system selected for the platforms uses silicon arrays and Ni-H2 batteries. The power system for the manned core is a hybrid employing arrays and batteries identical to those on the platform along with solar dynamic modules using either Brayton or organic Rankine engines. The power system requirements, candidate technologies, and configurations that were considered, and the basis for selection, are discussed.

Nored, Donald L.; Bernatowicz, Daniel T.

1986-01-01

252

Acoustic emissions applications on the NASA Space Station  

SciTech Connect

Acoustic emission is being investigated as a way to continuously monitor the space station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full-scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques. 4 refs., 5 figs., 1 tab.

Friesel, M.A.; Dawson, J.F.; Kurtz, R.J.; Barga, R.S.; Hutton, P.H.; Lemon, D.K.

1991-08-01

253

The space station information system and software support environment  

Microsoft Academic Search

The Space Station will be a large, permanent, multi-purpose facility with comfortable living quarters for a crew of up to eight people. It will consist of four habitable modules and a truss to which payloads which do not require human involvement can be attached. It is intended to accommodate a wide variety of science and technology projects (astronomical and geophysical

C. W. Pittman

1988-01-01

254

Microgravity Acceleration Measurement System for the International Space Station  

Microsoft Academic Search

The Microgravity Acceleration Measurement System (MAMS) is a high resolution and wide dynamic range dual sensor-based accelerometry instrumentation system to be installed within the International Space Station's (ISS) US Laboratory Module. The MAMS instrument will provide highly accurate acceleration measurement data over the nano-g to milli-g range characterizing the Lab Module environment in the frequency spectrum from 10-4 Hz to

James E. Rice; James C. Fox; William G. Lange; Robert W. Dietrich; W. O. Wagar

1999-01-01

255

Space station user development program: Future prospects  

NASA Astrophysics Data System (ADS)

The Canadian Space Agency's User Development Program (UDP) was established to ensure that Canada would be in a position to exploit its share of resources of the international space station. Objectives of the UDP include fostering research and development excellence among space station users, developing space station demonstration experiments with emphasis on commercializable technologies, assisting in development of space station hardware, and providing opportunities to access microgravity on a regular basis. At present, the scope of the UDP includes sciences and applications requiring a microgravity environment, but support for experiments in life sciences, earth observation, remote sensing, communications, and technology development is considered on a case-by-case basis. Subprograms of the UDP include the aircraft program, which provides regular access to a milligravity environment on three research aircraft: the rocket program, which provides access to microgravity conditions on the Canadian microgravity rocket, and a program supporting long-duration experiments in space.

Wilkinson, R. G.

256

Space-station crew-safety requirements  

NASA Technical Reports Server (NTRS)

Baseline rescue and survival concepts for future space station crews are described. Preliminary studies are being carried out to identify potential threats to crew safety and means to counteract the dangers. Significant factors being considered include the type of threat, the warning time, the number of crewmembers, strategies for protection of the crew (including life-support measures redundancy), and the dependence of space station crews on ground personnel. Attention is being given to the impact of safety devices on the space station geometry and cost, as well as the equipment necessary to maintain the crew in a psychological status positive enough to cope with emergencies. Typical threats would be fire, crewmember illness or injury, and abandonment of the station. A Shuttle launch could take up to 12 days, while equipping the space station with an emergency return capsule would permit return on the same day as the capsule was occupied.

Witcofski, R. D.

1983-01-01

257

47 CFR 97.211 - Space telecommand station.  

Code of Federal Regulations, 2014 CFR

(a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space station, subject to the privileges of the class of operator license held by the control...

2014-10-01

258

The role of tethers on space station  

NASA Technical Reports Server (NTRS)

The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

Vontiesenhausen, G. (editor)

1985-01-01

259

Proposal for a remotely manned space station  

NASA Technical Reports Server (NTRS)

The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.

Minsky, Marvin

1990-01-01

260

The U.S. Space Station program  

NASA Technical Reports Server (NTRS)

An overview is given of the U.S. Space Station program, beginning with President Reagan's directive to NASA 'to develop a permanently manned Space Station and to do it within a decade'. The international aspects of the project are emphasized, and fruitful cooperation between Italy and the U.S. in past and present space research is noted. The Station is to serve diverse functions, including that of a laboratory in space, a permanent observatory, a servicing facility, a transportation node, and assembly and manufacturing facility, a storage depot, and a staging base for future endeavors. Management-related and engineering-related guidelines are laid out. The plan is to make the Space Station a legacy from this century to the next, with the help of and to the benefit of all who share our goals.

Culbertson, P. E.

1985-01-01

261

Deep Space Habitat Configurations Based on International Space Station Systems  

NASA Technical Reports Server (NTRS)

A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

2012-01-01

262

Deep Space Habitat Configurations Based On International Space Station Systems  

NASA Technical Reports Server (NTRS)

A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie

2012-01-01

263

NASA's robotic servicing role for Space Station  

NASA Technical Reports Server (NTRS)

Attention is given to evaluations of the relative impacts on and benefits to the Space Station Program of various levels of robotics devices for space servicing operations. The leading robotic candidate concept for the IOC Space Station, the Smart Front End, uses a small, stiff and highly dexterous work effector controlled by a human-in-the-loop from a remote control station. This configuration offers both a quality multifunctional performance capability at the work site as well as technology transparency through the ground teleoperation control mode.

Powell, L.; Goss, R.; Spencer, R.

1986-01-01

264

Aerobrake assembly with minimum Space Station accommodation  

NASA Technical Reports Server (NTRS)

The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

1991-01-01

265

An automated deep space communications station  

Microsoft Academic Search

This paper describes an architecture being implemented for an autonomous Deep Space Tracking Station(DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation, track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture is being validated by construction of a prototype DS-T station

Forest Fisher; Steve Chien; Leslie Paal; E. Law; N. Golshan; Mike Stockett

1998-01-01

266

Robotic systems for the International Space Station  

Microsoft Academic Search

Robotic systems will play a critical role in the on-orbit assembly, external maintenance and operations of the International Space Station. This paper reviews the mission and tasks to be performed by the external robotic devices on the Station and provides an overview of the design of the mobile servicing system for the Station. The mobile servicing system represents the state-of-the-art

M. F. Stieber; C. P. Trudel; D. G. Hunter

1997-01-01

267

Remote sensing of water clouds temperature with an infrared camera on board the International Space Station in the frame of Japan Experiment Module-Extreme Universe Space Observatory mission  

NASA Astrophysics Data System (ADS)

The Extreme Universe Space Observatory (EUSO) is an astronomical telescope that will be hosted by the Japan Experiment Module (JEM) on the International Space Station. The telescope will determine ultrahigh-energy cosmic ray properties by measuring the UV fluorescence light generated in the interaction between the cosmic rays and the atmosphere. Therefore, cloud information is crucial for a proper interpretation of the data. To obtain the cloud top height, an infrared (IR) camera is being designed. The design is constrained by JEM-EUSO requirements, which have led to a bi-spectral camera option (10.8- and 12-?m bands). The bi-spectral design has allowed us to develop a split-window algorithm to correct the atmospheric effects and retrieve the cloud temperature from the brightness temperatures (BTs) in the bands aforementioned. The algorithm has been validated in synthetic scenarios at pixel level. The results show that the algorithm is able to retrieve the temperature with accuracy much better than the requirement of 3K. It has also been tested in two-dimensional scenarios by applying it to moderate resolution imaging spectroradiometer (MODIS) images of BTs in bands 31 similar to those of the IR camera. The retrieved temperatures are in a very good agreement with the temperatures given by MODIS.

Briz, Susana; de Castro, Antonio J.; Fernández-Gómez, Isabel; Rodríguez, Irene; López, Fernando

2014-01-01

268

Microdisturbances on the International Space Station during dynamic operations  

NASA Astrophysics Data System (ADS)

The results of analysis of microdisturbances on the International Space Station (ISS) at performing various dynamic operations are presented. Docking of transfer manned and cargo vehicles Progress and Soyuz to various docking modules of the ISS, docking of the Space Shuttle Discovery, the ISS orbit correction and, also, disturbances at "EVA" (Extra Vehicular Activity) operations during astronauts working on the external ISS surface are considered. The results of measuring microaccelerations by sensors of both Russian and American segments are analyzed.

Belyaev, M. Yu.; Volkov, O. N.; Ryabukha, S. B.

2013-07-01

269

A modular propulsion system required for Space Station assembly  

SciTech Connect

The U.S. Space Station Freedom Manned Base will be assembled on-orbit over the course of several years and multiple Space Shuttle flights. This paper discusses the assembly sequence evolution and its effects on the propulsion system. Relevant descriptions and parameters are given for the gaseous propellant storage, thruster quantity and orientation, and resistojet module. Specific assembly sequences are described and their most important characteristics are compared.

Morano, J.S.; Henderson, J.B.

1989-01-01

270

Crew Tension during a Space Station Simulation  

Microsoft Academic Search

Two space simulation studies for the European Space Agency found that interpersonal tension increased in the beginning, around the middle, and toward the end of the confinement. This article reports data from a third study where this issue was further examined. Three subjects were confined in the MIR space station simulator in Moscow for 135 days. Communication analysis, peer rating,

Gro M. Sandal

2001-01-01

271

Space station contamination control study: Internal combustion, phase 1  

NASA Technical Reports Server (NTRS)

Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.

Ruggeri, Robert T.

1987-01-01

272

The space station: Human factors and productivity  

NASA Technical Reports Server (NTRS)

Human factor researchers and engineers are making inputs into the early stages of the design of the Space Station to improve both the quality of life and work on-orbit. Effective integration of the human factors information related to various Intravehicular Activity (IVA), Extravehicular Activity (EVA), and teletobotics systems during the Space Station design will result in increased productivity, increased flexibility of the Space Stations systems, lower cost of operations, improved reliability, and increased safety for the crew onboard the Space Station. The major features of productivity examined include the cognitive and physical effort involved in work, the accuracy of worker output and ability to maintain performance at a high level of accuracy, the speed and temporal efficiency with which a worker performs, crewmember satisfaction with their work environment, and the relation between performance and cost.

Gillan, D. J.; Burns, M. J.; Nicodemus, C. L.; Smith, R. L.

1986-01-01

273

Accommodating life sciences on the Space Station  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

Arno, Roger D.

1987-01-01

274

Space station synergetic RAM-logistics analysis  

NASA Technical Reports Server (NTRS)

NASA's Space Station Maintenance Planning and Analysis (MP&A) Study is a step in the overall Space Station Program to define optimum approaches for on-orbit maintenance planning and logistics support. The approach used in the MP&A study and the analysis process used are presented. Emphasis is on maintenance activities and processes that can be accomplished on orbit within the known design and support constraints of the Space Station. From these analyses, recommendations for maintainability/maintenance requirements are established. The ultimate goal of the study is to reduce on-orbit maintenance requirements to a practical and safe minimum, thereby conserving crew time for productive endeavors. The reliability, availability, and maintainability (RAM) and operations performance evaluation models used were assembled and developed as part of the MP&A study and are described. A representative space station system design is presented to illustrate the analysis process.

Dejulio, Edmund T.; Leet, Joel H.

1988-01-01

275

A study of space station needs, attributes and architectural options  

NASA Technical Reports Server (NTRS)

The mission requirements, economic benefits, and time table of deployment of the space station are discussed. It is concluded that: (1) mission requirements overwhelmingly support the need for a space station; (2) a single space station is the way to begin; (3) the space station must evolve its capability; (4) the orbit transfer vehicle aspect of the space station will provide significant economic benefit; and (5) an early, affordable, effective way to start the space station program is needed.

1983-01-01

276

Vibrations and structureborne noise in space station  

NASA Technical Reports Server (NTRS)

Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

1987-01-01

277

Predictive Attitude Maintenance For A Space Station  

NASA Technical Reports Server (NTRS)

Paper provides mathematical basis for predictive management of angular momenta of control-moment gyroscopes (CMG's) to control attitude of orbiting space station. Numerical results presented for pitch control of proposed power-tower space station. Based on prior orbit history and mathematical model of density of atmosphere, predictions made of requirements on dumping and storage of angular momentum in relation to current loading state of CMG's and to acceptable attitude tolerances.

Hattis, Philip D.

1989-01-01

278

Overview of the Space Station communications networks  

NASA Technical Reports Server (NTRS)

Within the Space Station Freedom program, the communications and data-processing capabilities that will be used to handle the operational and scientific information needs will be provided by a Space Station information and communications system. This system will be composed of a variety of elements, networks, and subnetworks. The networks and how they are interconnected are described. The discussion covers communications system elements and services, elements of the onboard systems, wide-area transport network elements, and command and control elements.

Smith, Joseph F.; Willett, Daniel; Paul, Sunil

1990-01-01

279

Live from Space Station Learning Technologies Project  

NASA Technical Reports Server (NTRS)

This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

2001-01-01

280

14 CFR 1214.402 - International Space Station crewmember responsibilities.  

Code of Federal Regulations, 2011 CFR

...International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International...

2011-01-01

281

14 CFR 1214.402 - International Space Station crewmember responsibilities.  

Code of Federal Regulations, 2012 CFR

...International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International...

2012-01-01

282

14 CFR 1214.402 - International Space Station crewmember responsibilities.  

Code of Federal Regulations, 2014 CFR

...International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International...

2014-01-01

283

14 CFR 1214.402 - International Space Station crewmember responsibilities.  

Code of Federal Regulations, 2013 CFR

...International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International...

2013-01-01

284

14 CFR 1214.402 - International Space Station crewmember responsibilities.  

Code of Federal Regulations, 2010 CFR

...International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International...

2010-01-01

285

Space water electrolysis: Space Station through advance missions  

Microsoft Academic Search

Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station

Ronald J. Davenport; Franz H. Schubert; David J. Grigger

1991-01-01

286

Gravitational biology on the space station  

NASA Technical Reports Server (NTRS)

The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

Keefe, J. R.; Krikorian, A. D.

1983-01-01

287

Space Station location coding that makes sense  

NASA Technical Reports Server (NTRS)

An alphanumeric interior and exterior location coding system for elements of the Space Station is presented as an aid in identifying specific locations aboard the Station and possibly in locating specific items of loose equipment stowed in these locations. Past experience with long-duration missions has demonstrated the difficulty of tracking loose equipment aboard spacecraft. Inasmuch as over 50,000 items of loose equipment must be accounted for aboard Space Station Freedom there is a high potential for continuing difficulties in this area. It is shown that the alphanumeric location coding system described is simple, logical, and easy to use.

Lew, Leong W.; Praus, William J.

1990-01-01

288

Electrochemical Energy Storage for an Orbiting Space Station  

NASA Technical Reports Server (NTRS)

The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

Martin, R. E.

1981-01-01

289

Should the Space Station be an ark?  

PubMed

This essay explores the pros and cons of maximizing the number of species that can be maintained on the Space Station. It reviews some of the history of comparative space biology to show that different cultures have different perspectives on the study of non-traditional research organisms (ie non-rodents) in space. Despite these differences, there are simple principles that all international partners in the Space Station endeavour should be able to uphold when deciding what facilities to build and what species to fly. As an argument for maximizing the taxonomic diversity on the Space Station, examples are given to show how very similar organisms may have different reactions to microgravity. At the same time the political pressure in the USA to make the Space Station an institution specifically servicing the 'health, well-being and economic benefits of people on earth', is acknowledged. Ultimately the justification for what species will be on the Space Station should rest with the quality of the scientific questions being asked. PMID:11542222

Wassersug, R

1994-08-01

290

Life sciences utilization of Space Station Freedom  

NASA Technical Reports Server (NTRS)

Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

Chambers, Lawrence P.

1992-01-01

291

Space station thermal control surfaces. Volume 1: Interim report  

NASA Technical Reports Server (NTRS)

The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.

Maag, C. R.; Millard, J. M.

1978-01-01

292

Emergency egress requirements for Space Station Freedom  

NASA Technical Reports Server (NTRS)

There is a real concern regarding the requirements for safe emergency egress from the Space Station Freedom (SSF). The possible causes of emergency are depressurization due to breach of the station hull by space debris, meteoroids, seal failure, or vent failure; chemical toxicity; and a large fire. The objectives of the current study are to identify the tasks required to be performed in emergencies, establish the time required to perform these tasks, and to review the human equipment interface in emergencies. It was found that a fixed time value specified for egress has shifted focus from the basic requirements of safe egress, that in some situations the crew members may not be able to complete the emergency egress tasks in three minutes without sacrificing more than half of the station, and that increased focus should be given to human factors aspects of space station design.

Ray, Paul S.

1990-01-01

293

International Space Station Remote Sensing Pointing Analysis  

NASA Technical Reports Server (NTRS)

This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

Jacobson, Craig A.

2007-01-01

294

Coping with data from Space Station Freedom  

NASA Technical Reports Server (NTRS)

The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.

Johnson, Marjory J.

1991-01-01

295

National Aeronautics and Space Administration International Space Station  

E-print Network

and the European Space Agency's SOLAR. Two U.S. spacewalks are planned by NASA's Chris Cassidy and the European Space Agency's Luca Parmitano, and three Russian spacewalks are planned for Fyodor YurchikhinNational Aeronautics and Space Administration International Space Station [ M I S S I O N S U M M

296

Space station JEM design implementation and testing for orbital debris protection  

Microsoft Academic Search

The Japanese Experiment Module (JEM) is the Japanese contribution to the International Space Station (ISS) Program. The core part of JEM is a Pressurized Module where the crew conducts space experiments in a microgravity environment in space. The development of a shield design to protect against micrometeoroids and orbital debris (MM\\/OD) has been a key issue for the permanent manned

Kuniaki Shiraki; Fumio Terada; Masayuki Harada

1997-01-01

297

Infrared monitoring of the Space Station environment  

NASA Technical Reports Server (NTRS)

The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

1988-01-01

298

International Space Station lauded, debated at symposium  

NASA Astrophysics Data System (ADS)

Astronauts labored successfully in early December to unfurl solar wings on the International Space Station, which will help make that craft the third-largest object in the night sky as seen from Earth, and help power the station for at least 15 years as a continuous small scientific village in space. While astronauts from the “Endeavor” U.S. space shuttle worked on the solar panels, NASA Administrator Dan Goldin and U.S. House of Representatives Science Committee Chair James Sensenbrenner (R-Wis.) praised the International Space Station (ISS), but exchanged shots across the bow during a December 4 symposium in Washington, D.C.Sensenbrenner, a leading congressional watchdog of the project, said that the United States “should be restructuring relations with Russia on the space station” because of that country's recent, and reportedly short-lived threat to violate the international Missile Technology Control Regime (MTCR). The regime restricts the export of some delivery systems capable of carrying weapons of mass destruction. Sensenbrenner said Russia's recent announcement [of its intention] to break a secret deal not to sell conventional weapons to Iran after January 1, 2001 is a cause for reconsidering the space station working relationship.

Showstack, Randy

299

International Space Station (ISS) Expedition Five Crew  

NASA Technical Reports Server (NTRS)

Expedition Five crewmembers include (left to right) Cosmonaut Verleri Korzun, Commander; Astronaut Peggy Whitson, flight engineer; and Cosmonaut Sergei Treschev, flight engineer. Launched aboard the Space Shuttle Orbiter Endeavour, STS-111, in April 2002, Expedition Five replaced Expedition Four on the International Space Station (ISS) for a scheduled 4-month mission. Expedition Five carried several new experiments and science facilities to the ISS. The research compliment included 24 new and continuing investigations:10 human life sciences studies, 6 in microgravity, 5 in space product development, and 3 sponsored by the Office of Space Flight. The new experiments are expected to lead to new insights in the fields of materials, plant science, commercial biotechnology, and the long term effects of space flight on humans. 280 hours will be devoted to research in addition to the continuing building of the ISS. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

2002-01-01

300

Planetary mission departures from Space Station orbit  

NASA Technical Reports Server (NTRS)

The concept of orbital assembly and launch of oversized planetary (or lunar) spacecraft from a Space Station is rapidly coming of age. This prospect raises a host of new problems demanding timely resolution. The one most serious issue involved in launch from a rapidly precessing Space Station orbit (about -7.2 deg/day) is the need to cope with the generally out-of-plane orientation of the V-infinity departure vector. Methods dealing with single or multiple injection maneuvers, deep space plane changes, nodal shift caused by reboost strategy modifications, and departure window duration analysis are discussed.

Sergeyevsky, Andrey B.

1989-01-01

301

Space Station RT and E Utilization Study  

NASA Technical Reports Server (NTRS)

Descriptive information on a set of 241 mission concepts was reviewed to establish preliminary Space Station outfitting needs for technology development missions. The missions studied covered the full range of in-space technology development activities envisioned for early Space Station operations and included both pressurized volume and attached payload requirements. Equipment needs were compared with outfitting plans for the life sciences and microgravity user communities, and a number of potential outfitting additions were identified. Outfitting implementation was addressed by selecting a strawman mission complement for each of seven technical themes, by organizing the missions into flight scenarios, and by assessing the associated outfitting buildup for planning impacts.

Wunsch, P. K.; Anderson, P. H.

1989-01-01

302

Psychological health maintenance on Space Station Freedom  

NASA Technical Reports Server (NTRS)

The scheduling of crew rotations at intervals of as much as 180 days on NASA's Space Station Freedom entails that the cumulative effects of psychological, emotional, and social stressors on astronauts be monitored. The Space Station's Health Maintenance Facility (HMF) will furnish preventive, diagnostic, and therapeutic assistance for significant psychiatric and interpersonal problems. Mental health professionals must be part of the team of medical personnel charged with facilitating the physiological and phychological transition from earth to space and back. An account is presently given of the critical factors to be addressed by HMF personnel on extended-duration missions.

Santy, Patricia A.

1990-01-01

303

COSM: A Space Station EVAS test challenge  

NASA Astrophysics Data System (ADS)

The authors present the requirements that must be addressed to develop equipment that will perform the checkout, servicing, and maintenance (COSM) of the extravehicular activity system (EVAS) for manned space on the proposed US Space Station. An overview is presented of COSM operational requirements, and their relationship to an automatic COSM system. The Space Station environment, routine EVA sorties, and singular mission objectives and tasks are examined with respect to system design. The COSM system architecture and the technical approach taken are also examined.

Pullo, Frank A.; Beardsley, Anthony C.

304

Operations considerations in Space Station Freedom assembly  

NASA Technical Reports Server (NTRS)

The importance of planning the on-orbit operations inherent in the Space Station Freedom assembly sequence is discussed. Any solution to the assembly puzzle requires the simultaneous satisfaction of many diverse constraints, including: on-orbit assembly operations, NSTS (National Space Transportation System) payload bay constraints, NSTS performance capabilities, and provision of the requisite functionality for each on-orbit configuration. Because operations are in the critical path SSFP (Space Station Freedom Program) has chosen to carefully assess assembly operations as each launch manifest is developed and evaluated.

Doering, Stephen C.; Bastedo, William G., Jr.

1989-01-01

305

International Space Station Sports a New Truss  

NASA Technical Reports Server (NTRS)

This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

306

International Space Station Sports a New Truss  

NASA Technical Reports Server (NTRS)

This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

307

International Space Station Sports a New Truss  

NASA Technical Reports Server (NTRS)

This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

308

International Space Station Sports a New Truss  

NASA Technical Reports Server (NTRS)

This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

309

International Space Station Sports a New Truss  

NASA Technical Reports Server (NTRS)

This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

2002-01-01

310

Vision requirements for Space Station applications  

NASA Technical Reports Server (NTRS)

Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.

Crouse, K. R.

1985-01-01

311

EXPRESS Rack Technology for Space Station  

NASA Technical Reports Server (NTRS)

The EXPRESS rack provides accommodations for standard Mid-deck Locker and ISIS drawer payloads on the International Space Station. A design overview of the basic EXPRESS rack and two derivatives, the Human Research Facility and the Habitat Holding Rack, is given in Part I. In Part II, the design of the Solid State Power Control Module (SSPCM) is reviewed. The SSPCM is a programmable and remotely controllable power switching and voltage conversion unit which distributes and protects up to 3kW of 12OVDC and 28VDC power to payloads and rack subsystem components. Part III details the development and testing of a new data storage device, the BRP EXPRESS Memory Unit (BEMU). The BEMU is a conduction-cooled device which operates on 28VDC and is based on Boeing-modified 9GB commercial disk-drive technology. In Part IV results of a preliminary design effort for a rack Passive Damping System (PDS) are reported. The PDS is intended to isolate ISPR-based experiment racks from on-orbit vibration. System performance predictions based on component developmental testing indicate that such a system can provide effective isolation at frequencies of 1 Hz and above.

Davis, Ted B.; Adams, J. Brian; Fisher, Edward M., Jr.; Prickett, Guy B.; Smith, Timothy G.

1999-01-01

312

Artificial magnetic field for the space station (Protecting space stations in future space missions)  

Microsoft Academic Search

Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been

Ahmadi Tara

2010-01-01

313

Practical Applications of a Space Station  

NASA Technical Reports Server (NTRS)

The potential uses of a special station for civil and commercial applications is examined. Five panels of experts representing user-oriented communities, and a sixth panel which dealth with system design considerations, based their studies on the assumption that the station would be a large platform, capable of housing a wide array of diverse instruments, and could be either manned or unmanned. The Earth's Resources Panel dealt with applications of remote sensing for resource assessment. The Earth's Environment Panel dealt with the Earth's atmosphere and its impact on society. The Ocean Operations Panel looked at both science and applications. The Satellite Communications Panel assessed the potential role of a space station in the evolution of commercial telecommunication services up to the year 2000. The Materials Science and Engineering panel focused on the utility of a space station environment for materials processing.

1984-01-01

314

Space Station and the life sciences  

NASA Technical Reports Server (NTRS)

Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.

White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.

1983-01-01

315

The opportunities for space biology research on the Space Station  

NASA Technical Reports Server (NTRS)

The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).

Ballard, Rodney W.; Souza, Kenneth A.

1987-01-01

316

Comparative analyses of space-to-space central power stations  

NASA Technical Reports Server (NTRS)

The technological and economical impact of a large central power station in Earth orbit on the performance and cost of future spacecraft and their orbital transfer systems are examined. It is shown that beaming power to remote users cannot be cost effective if the central power station uses the same power generation system that is readily available for provision of onboard power and microwave transmission and reception of power through space for use in space is not cost competitive with onboard power or propulsion systems. Laser and receivers are required to make central power stations feasible. Remote power transmission for propulsion of orbital transfer vehicles promises major cost benefits. Direct nuclear pumped or solar pumped laser power station concepts are attractive with laser thermal and laser electric propulsion systems. These power stations are also competitive, on a mass and cost basis, with a photovoltaic power station.

Holloway, P. F.; Garrett, L. B.

1981-01-01

317

Space Stations: Follow the Bouncing Ball!  

NSDL National Science Digital Library

In this activity, learners predict whether a ball on Earth or a ball on the Moon bounces higher when dropped and why. They simulate the experiment by dropping high- and regular-bounce balls from their shoulder height. Learners discover that in microgravity, a little energy goes a long way! This activity station is part of a sequence of stations that can be set up to help learners explore how space affects the human body and why.

Dr. Diane Byerly

2006-01-01

318

Rendezvous missions: From ISS to lunar space station  

NASA Astrophysics Data System (ADS)

There was a lot of experience gained in the rendezvous of different vehicles in the LEO during the years of human space exploration. In the framework of the Apollo program when the astronauts landed on the surface of the Moon, the docking of the Lunar Module launched from the Moon's surface to the Apollo Command Module was successfully implemented in the near-Moon orbit. Presently many space agencies are considering a return to the Moon. It is necessary to solve the new task of docking the vehicle launched from the Earth to the long-term near-Moon orbital station taking into account specific constraints. Based on the ISS experience the author proposes a number of ballistic rendezvous strategies that provide for docking to the near-Moon orbital station with minimum propellant consumption. The trade-off analysis of the given rendezvous strategies is presented.

Murtazin, Rafail

2014-08-01

319

Space Station Freedom pressurized element interior design process  

NASA Technical Reports Server (NTRS)

The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

Hopson, George D.; Aaron, John; Grant, Richard L.

1990-01-01

320

Large space reflector technology on the Space Station  

NASA Technical Reports Server (NTRS)

This paper discusses the role of the Space Station in the evolutionary development of large space reflector technology and the accommodation of mission systems which will apply large space reflectors during the late 1990s and the early part of the next century. Reflectors which range from 10 to 100 meters in size and which span the electromagnetic spectrum for applications that include earth communications, earth observations, astrophysics and solar physics, and deep space communications are discussed. The role of the Space Station in large space reflector technology development and system performance demonstration is found to be critical; that role involves the accommodation of a wide variety of technology demonstrations and operational activities on the Station, including reflector deployment and/or assembly, mechanical performance verification and configuration refinement, systematic diagnostics of reflector surfaces, structural dynamics and controls research, overall system performance characterization and modification (including both radio frequency field pattern measurements and required end-to-end system demonstrations), and reflector-to-spacecraft integration and staging. A unique facility for Space Station-based, large space reflector research and development is proposed. A preliminary concept for such a Space Station-based Large Space Reflector Facility (LSRF) is described.

Mankins, J. C.; Dickinson, R. M.; Freeland, R. E.; Marzwell, N. I.

1986-01-01

321

Artist's Concept of International Space Station (ISS)  

NASA Technical Reports Server (NTRS)

Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

2004-01-01

322

Space station preliminary design report  

NASA Technical Reports Server (NTRS)

The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

1982-01-01

323

Tethered nuclear power for the Space Station  

SciTech Connect

A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

Bents, D.J.

1985-01-01

324

The space station integrated refuse management system  

NASA Technical Reports Server (NTRS)

The design and development of an Integrated Refuse Management System for the proposed International Space Station was performed. The primary goal was to make use of any existing potential energy or material properties that refuse may possess. The secondary goal was based on the complete removal or disposal of those products that could not, in any way, benefit astronauts' needs aboard the Space Station. The design of a continuous living and experimental habitat in space has spawned the need for a highly efficient and effective refuse management system capable of managing nearly forty-thousand pounds of refuse annually. To satisfy this need, the following four integrable systems were researched and developed: collection and transfer; recycle and reuse; advance disposal; and propulsion assist in disposal. The design of a Space Station subsystem capable of collecting and transporting refuse from its generation site to its disposal and/or recycling site was accomplished. Several methods of recycling or reusing refuse in the space environment were researched. The optimal solution was determined to be the method of pyrolysis. The objective of removing refuse from the Space Station environment, subsequent to recycling, was fulfilled with the design of a jettison vehicle. A number of jettison vehicle launch scenarios were analyzed. Selection of a proper disposal site and the development of a system to propel the vehicle to that site were completed. Reentry into the earth atmosphere for the purpose of refuse incineration was determined to be the most attractive solution.

Anderson, Loren A.

1988-01-01

325

Heavy-lift vehicle-launched Space Station method and apparatus  

NASA Astrophysics Data System (ADS)

Methods and apparatus are provided for a single heavylift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a Shuttle Orbiter using the launch vehicle of the Shuttle Orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are pre-integrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

Wade, Donald C.; Delafuente, Horatio; Berka, Reginald B.; Rickman, Steven L.; Castro, Edgar O.; Nagy, Kornel; Wesselski, Clarence J.; Pelischek, Timothy E.; Schleisling, John A.

1993-12-01

326

Heavy-lift vehicle-launched Space Station method and apparatus  

NASA Astrophysics Data System (ADS)

Methods and apparatus are provided for a single heavy-lift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a shuttle orbiter using the launch vehicle of the shuttle orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are preintegrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

Wade, Donald C.; Delafuente, Horacio M.; Berka, Reginald B.; Rickman, Steven L.; Castro, Edgar O.; Nagy, Kornel; Wesselski, Clarence J.; Pelischek, Timothy E.; Schliesing, John A.

1995-08-01

327

Space medicine policy development for the International Space Station  

Microsoft Academic Search

Providing medical care capability in a multinational setting in space is a daunting challenge. As the International Space Station (ISS) has taken shape over the last decade the space medicine community of the ISS partners has established a foundation with which to govern medical policy, medial processes, and medical care during the ISS Program. This foundation was predicated on a

Anatoly I. Grigoriev; Richard S. Williams; Jean-Marc Comtois; Volker Damann; Shoichi Tachibana; Arnauld E. Nicogossian; Valery V. Bogomolov; Sam L. Pool; Ashot E. Sargsyan; Oleg L. Knowingkov; Charles R. Doarn

2009-01-01

328

Human factors in space station architecture 1: Space station program implications for human factors research  

NASA Technical Reports Server (NTRS)

The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

Cohen, M. M.

1985-01-01

329

Cargo Assured Access to International Space Station  

NASA Technical Reports Server (NTRS)

Boeing's Cargo Assured Access logistics delivery system will provide a means to transport cargo to/from the International Space Station, Low Earth Orbit and the moon using Expendable Launch Vehicles. For Space Station, this capability will reduce cargo resupply backlog during nominal operations (e.g., supplement Shuttle, Progress, ATV and HTV) and augment cargo resupply capability during contingency operations (e.g., Shuttle delay and/or unavailability of International Partner launch or transfer vehicles). This capability can also provide an autonomous means to deliver cargo to lunar orbit, a lunar orbit refueling and work platform, and a contingency crew safe haven in support of NASA's new Exploration Initiative.

Smith, David A.

2004-01-01

330

Microbial identification system for Space Station Freedom  

NASA Technical Reports Server (NTRS)

The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.

Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.

1989-01-01

331

Space Station Freedom - Technical and management challenges  

NASA Technical Reports Server (NTRS)

The development of the Space Station is reviewed, focusing on the technical and managerial aspects of the program. The optimization of the Space Station configuration, utilization impacts on design, technical aspects of the distribution systems, and the problems of designing for a lifetime of 30 years or more are discussed. In addition, cost reduction studies, testing and verification, determining the assembly sequence, and operational communications and support systems are examined. Managerial aspects of the program include organization, program control, management tools and processes, and the integration of elements from the international partners.

Moser, Thomas L.

1988-01-01

332

Health maintenance on Space Station  

NASA Technical Reports Server (NTRS)

Medical support for extended manned missions aboard such spacecraft as the NASA Space Shuttle must encompass prevention, diagnosis, and therapy capabilities in the preflight and postflight as well as actual mission phases. An evaluation is presently made of the technological and management challenges that must be met in order to furnish an adequate inflight health care delivery system that possesses adequate inflight health care, real-time environmental monitoring, physiological countermeasures, and medical rescue/recovery facilities for ill or injured crew members.

Logan, J. S.

1987-01-01

333

Space Station accommodation of the Space Exploration Initiative  

NASA Technical Reports Server (NTRS)

It is pointed out that Space Station Freedom (SSF) will support the transportation, research, and development requirements of the Space Exploration Initiative through augmentation of its resources and initial capabilities. These augmentations include providing facilities for lunar and Mars vehicle testing, processing, and servicing; providing laboratories and equipment for such enabling research as microgravity countermeasures development; and providing for the additional crew that will be required to carry out these duties. It is noted that the best way to facilitate these augmentations is to ensure 'design-for-growth' capabilities by incorporating necessary design features in the baseline program. The critical items to be accommodated in the baseline design include provisions for future increased power-generation capability, the ability to add nodes and modules, and the ability to expand the truss structure to accommodate new facilities. The SSF program must also address the effect on nonexploration users (e.g., NASA experimenters, commercial users, university investigators, and international partners of the U.S.) of SSF facilities.

Ahlf, Peter; Peach, Lewis; Maksimovic, Velimir

1990-01-01

334

National Aeronautics and Space Administration International Space Station Photosynth Scavenger Hunt  

E-print Network

- National Aeronautics and Space Administration International Space Station Photosynth Scavenger Hunt Welcome to the International Space Station Photosynth Scavenger Hunt. I hope you have taken bell The International Space Station continues the maritime tradition of ringing the ships bell

335

Work/control stations in Space Station weightlessness  

NASA Technical Reports Server (NTRS)

An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

Willits, Charles

1990-01-01

336

Scientific Utilization Planning for Chinese Space Station  

NASA Astrophysics Data System (ADS)

The program of building Chinese Space Station (CSS) , which is planned to be launched around 2020-2022, was approved in 2010 by Chinese government. As the key task for CSS program, the scientific utilization planning started even earlier. With contribution from hundreds of scientists, the science domain for CSS is now defined at present, and the related experimental facilities are also preliminary determined. The scientific utilization plan for Chinese space station covers 9 fields, which will be human medical science, space life science and space bio-technology, microgravity fluid physics and combustion, space Material science, fundamental physics in microgravity, space physics and space environment, space astronomy, space geo-science, and new technology demonstration for space utilization. This paper will give a brief introduction about technical background of CSS, scientific utilization plan in main field, and general information of the research facilities. CSS will serve on orbit for almost 10 years, and the utilization planning for CSS is a long-term and sustained process. The utilization plan will be updated and extended in the further, and make CSS an outstanding solution for space utilization of larger scale.

Yidong, Gu

337

Radiological assessment for Space Station Freedom  

SciTech Connect

Circumstances have made it necessary to reassess the risks to Space Station Freedom crewmembers that arise from exposure to the space radiation environment. An option is being considered to place it in an orbit similar to that of the Russian Mir space station. This means it would be in a 51.6 deg inclination orbit instead of the previously planned 28.5 deg inclination orbit. A broad range of altitudes is still being considered, although the baseline is a 407 km orbit. In addition, recent data from the Japanese A-bomb survivors has made it necessary for NASA to have the exposure limits reviewed. Preliminary findings of the National Council on Radiation Protection and Measurements indicate that the limits must be significantly reduced. Finally, the Space Station will be a laboratory where effects of long-term zero gravity on human physiology will be studied in detail. It is possible that a few crewmembers will be assigned to as many as three 1-year missions. Thus, their accumulated exposure will exceed 1,000 days. Results of this radiation risk assessment for Space Station Freedom crewmembers finds that females less than 35 years old will be confined to mission assignments where the altitude is less than about 400 km. Slight restrictions may also need to be made for male crewmembers less than 35 years old.

Badhwar, G.D.; Hardy, A.C.; Robbins, D.E.; Atwell, W.

1993-01-01

338

The Canadian Space Agency's Space Station Remote Manipulator System arrives at KSC  

NASA Technical Reports Server (NTRS)

Workers guide a segment of the Canadian Space Agency's (CSA) Space Station Remote Manipulator System (SSRMS) past the Leonardo Multi-Purpose Logistics Module in the Space Station Processing Facility at KSC. The segment joins two others for a campaign of prelaunch processing activities. CSA's first contribution to the International Space Station (ISS), the SSRMS is the primary means of transferring payloads between the orbiter payload bay and the ISS for assembly. The 56-foot-long robotic arm includes two 12- foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement. Latching End Effectors are mounted on each end of the arm for grappling. Video cameras mounted on the booms and end effectors will give astronauts maximum visibility for operations and maintenance tasks on the ISS. The SSRMS is scheduled to be launched aboard Space Shuttle Endeavour on STS-100, currently planned for July 2000.

1999-01-01

339

International Space Station Medical Project  

NASA Technical Reports Server (NTRS)

The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.

Starkey, Blythe A.

2008-01-01

340

Risk analysis of space transportation during the space station era  

NASA Technical Reports Server (NTRS)

This study addresses the operational risks of manned space transportation during the era of space station deployment along with alternative launch vehicle architectures to reduce the risks. Vehicle architectures considered included shuttle only, an additional unmanned launch vehicle, and a second manned/unmanned launch vehicle. Projections are made for the operational parameters and flight event probabilities. Using these projections and Space Station era mission models, the operability of alternative vehicle architectures are examined, and implications to future manned space program plans are summarized.

1989-01-01

341

Progress Resupply Craft Docks to Space Station - Duration: 2:21.  

NASA Video Gallery

The 39th ISS Progress resupply vehicle automatically docked to the aft port of the Zvezda service module of the International Space Station at 7:58 a.m. EDT on September 12 using the Kurs automated...

342

Centaur operations at the space station  

NASA Technical Reports Server (NTRS)

A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.

Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.

1987-01-01

343

Space Station Interaction with Transportation System  

NASA Astrophysics Data System (ADS)

The paper reports the results of a study into the consequences on acquisition cost of modularising space stations for in orbit assembly. A cost model was produced to cover all aspects of dividing a station up for launch and this enabled the increases due to modularization to be balanced against launch system capacity and cost. The study found that space station acquisition costs are dominated by the level of modularization and in orbit assembly, to the extent that in a mixed launcher fleet it pays to use the largest launch system regardless of any impact on launch costs. A key factor affecting modularization cost was found to be the additional systems engineering and testing required and this area is recommended as worthy of further investigation.

Parkinson, R. C.

344

Space Station overall management approach for operations  

NASA Technical Reports Server (NTRS)

An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

Paules, G.

1986-01-01

345

Technology evaluation for space station atmospheric leakage  

SciTech Connect

A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

1990-02-01

346

Space Station Program threat and vulnerability analysis  

NASA Technical Reports Server (NTRS)

An examination has been made of the physical security of the Space Station Program at the Kennedy Space Center in a peacetime environment, in order to furnish facility personnel with threat/vulnerability information. A risk-management approach is used to prioritize threat-target combinations that are characterized in terms of 'insiders' and 'outsiders'. Potential targets were identified and analyzed with a view to their attractiveness to an adversary, as well as to the consequentiality of the resulting damage.

Van Meter, Steven D.; Veatch, John D.

1987-01-01

347

[Comment on ``Space station?''] Not now  

Microsoft Academic Search

When the shuttle development started, its acceptance was greatly supported by the promise of a $100\\/kg transport fare. From 1985, this has risen to $ll,000\\/kg (and never dropped since), which gives an interesting clue to the reliability of cost estimates for the Space Station. It is very likely that the Challenger disaster will cause another price jump due to increase

Erhard Keppler

1987-01-01

348

Telerobotics: Research needs for evolving space stations  

NASA Technical Reports Server (NTRS)

It is argued that triplicate planning for telerobotics applicable to space stations is needed. It is important to carry out research to accomplish tasks: (1) with man alone (such as extra-vehicular activities), (2) with autonomous robots, and (3) with telerobotics. The research necessary to carry out these approaches is compared and contrasted in order to clarify present problems.

Stark, L.

1987-01-01

349

Liquid helium servicing from the Space Station  

NASA Technical Reports Server (NTRS)

The current concept of liquid helium resupply from the Space Station is discussed with regard to user and Space Station requirements, as well as requirements of the liquid helium servicing facility itself. A number of trade-offs which will affect both the hardware and the operation of the facility are presented. A total of 12 potential users have been identified. The users are divided into two groups: large volume users which are serviced every one to two years and small volume users which are serviced every few months. Both groups have a very strong impact on the definition of the liquid helium servicing facility. The facility components will be based on results of the Superfluid Helium On Orbit Transfer flight demonstration being conducted by NASA. Currently, the Space Station design includes a customer servicing bay which provides electrical power, thermal and contamination control, and connections for control and data handling systems. Restrictions on venting and vibrational disturbances on the Space Station may preclude servicing during quiescent periods when accelerations are minimal.

Breon, S. R.

1988-01-01

350

Canada's Mobile Servicing System for Space Station  

Microsoft Academic Search

The development program for the Mobile Sevicing System (MSS) of the Space Station is discussed. The on-orbit elements of the MSS are examined, including the Mobile Servicing Center, the MSS Maintenance Depot, and the Special Purpose Dexterous Manipulator. Ground support facilities and technology development for the MSS are considered.

W. E. M. Evans; K. H. Doetsch

1988-01-01

351

The International Space Station and Atmospheric Drag  

NSDL National Science Digital Library

In this problem set, learners will analyze an altitude graph of the International Space Station to understand its rate of altitude loss as a result of atmospheric drag and solar activity. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

2012-08-03

352

Robust controllers for space station momentum management  

Microsoft Academic Search

The design of controllers for space station attitude control and momentum management is described. Fundamental control performance tradeoffs between stabilization, attitude regulation, and momentum magnitudes are explored using H-infinity optimization. The resulting controllers stabilize the unstable gravity gradient torques, keep attitudes and momentums due to aero disturbance torques small, and are robust to uncertainties in the moments of inertia of

Michael R. Elgersma; Gunter Stein; Michael R. Jackson; John Yeichner

1992-01-01

353

Space Station: Key to the Future.  

ERIC Educational Resources Information Center

The possible applications, advantages and features of an advanced space station to be developed are considered in a non-technical manner in this booklet. Some of the areas of application considered include the following: the detection of large scale dynamic earth processes such as changes in snow pack, crops, and air pollution levels; the…

National Aeronautics and Space Administration, Washington, DC.

354

Adaptive control for the space station  

Microsoft Academic Search

This paper describes an adaptive control algorithm along with the proposed inner-loop plant augmentation for controlling the space station under severe conditions of shuttle docking, mass and inertia change, and model truncation. Simulation results with a simplified model show that the controller is robust and the plant dynamics closely follows that of the reference model. Reasonable results have been observed

C. Che-Hang; Shyh Jong Wang; Cornelius T. Leondes

1987-01-01

355

Motion of a space station. I  

Microsoft Academic Search

In this first part of the work we develop the equations of motion of a triaxial space station in orbit around the oblate Earth. A first order solution of the problem is presented and the method of complete integration of the system is outlined up to second order of approximation. The zero order part of the Hamiltonian includes both the

G. E. O. Giacaglia; W. H. Jefferys

1971-01-01

356

Microwave Cavity Clocks On Space Station  

NASA Technical Reports Server (NTRS)

We describe the status of a microwave cavity clock experiment to perform improved tests of Local Position Invariance and Lorentz Invariance on the International Space Station in conjunction with atomic clocks. Significant improvements over present bounds are expected in both cases. The oscillators can also be used to enhance the performance of atomic clocks at short time scales for other experiments.

Lipa, J. a.; Nissen, J. A.; Wang, S.; Stricker, D. A.; Avaloff, D.

2003-01-01

357

Space Station Water Processor Process Pump  

NASA Technical Reports Server (NTRS)

This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

Parker, David

1995-01-01

358

Microgravity Particle Research on the Space Station  

NASA Technical Reports Server (NTRS)

Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

Squyres, Steven W. (editor); Mckay, Christopher P. (editor); Schwartz, Deborah E. (editor)

1987-01-01

359

Telemedicine for the international space station  

Microsoft Academic Search

The medical care for the integrated crew of the International Space Station (ISS) will require close co-operation between the partner agencies in the areas of selection, medical surveillance, countermeasures, and handling of acute medical problems. Based on a commonly accepted policy of shared care and responsibilities medical guidelines, procedures, and standards for medical data and communication need to be harmonised

D. Wilke; D. Padeken; Th. Weber; R. Gerzer

1999-01-01

360

Russian questions remain after space station review  

NASA Technical Reports Server (NTRS)

Following the project's first major design review, some unresolved technical issues, mainly centered on details of how to integrate Russian hardware into the U.S./international space station, remain. No 'show stoppers' were found in the review. Specific open technical issues are discussed in this article.

Asker, James R.

1994-01-01

361

Application of robotic mechanisms to simulation of the international space station  

Microsoft Academic Search

In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to

E. Freund; J. Rossmann; C. Turner

2003-01-01

362

77 FR 41203 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2012-07-12

363

77 FR 2765 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2012-01-19

364

75 FR 51852 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2010-08-23

365

78 FR 49296 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2013-08-13

366

77 FR 66082 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2012-11-01

367

78 FR 77502 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2013-12-23

368

78 FR 66964 - International Space Station Advisory Committee; Charter Renewal  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-128)] International Space Station Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

2013-11-07

369

NASA space station automation: AI-based technology review  

NASA Technical Reports Server (NTRS)

Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

1985-01-01

370

Performance requirements analysis for payload delivery from a space station  

NASA Technical Reports Server (NTRS)

Operations conducted from a space station in low Earth orbit which have different constraints and opportunities than those conducted from direct Earth launch were examined. While a space station relieves many size and performance constraints on the space shuttle, the space station's inertial orbit has different launch window constraints from those associated with customary Earth launches which reflect upon upper stage capability. A performance requirements analysis was developed to provide a reference source of parametric data, and specific case solutions and upper stage sizing trade to assist potential space station users and space station and upper stage developers assess the impacts of a space station on missions of interest.

Friedlander, A. L.; Soldner, J. K.; Bell, J. (editor); Ricks, G. W.; Kincade, R. E.; Deatkins, D.; Reynolds, R.; Nader, B. A.; Hill, O.; Babb, G. R.

1983-01-01

371

Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments  

NASA Astrophysics Data System (ADS)

Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232

Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

372

Space Station technology testbed: 2010 deep space transport  

NASA Technical Reports Server (NTRS)

A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).

Holt, Alan C.

1993-01-01

373

Space station dynamics, attitude control and momentum management  

NASA Technical Reports Server (NTRS)

The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

1989-01-01

374

National Aeronautics and Space Administration International Space Station  

E-print Network

Specific Technologies 5 #12;Mars Design Reference Architecture Based on "Human Exploration of Mars, DRA 5 and habitat prior to human launch Long-surface Stay + Forward Deployment · Mars mission elements preNational Aeronautics and Space Administration International Space Station Mars Analog Update Brief

Waliser, Duane E.

375

Future international cooperation on space stations  

NASA Astrophysics Data System (ADS)

In the course of the next thirty years, extensive international cooperation in space may become the norm rather than the exception. The benefits from the mutual application and exchange of assets and knowledge may enable the development of projects that no nation could afford alone. Cooperation on technical projects may also yield political benefits such as alliance building, although potentially at a cost of making the program hostage to the vagaries of international politics. Successful past cooperative projects include the Apollo-Soyuz Test Project, Spacelab and Soviet Salyut and Mir space stations. The ongoing Space Station Freedom program is offering the first sustained long term opportunity for international cooperation in space. In addition to enabling potential advances in science and technology development, the station may serve as the stepping stone for future international efforts in areas such as planetary exploration. Any significant future increase in international cooperation would likely need to include both the United States and the Soviet Union. Such cooperation could offer many unique possibilities, including interactions between the Freedom and Mir. Indeed the success of future manned exploration missions may well depend on how well space-faring nations learn to cooperate with each other. International involvement in technical programs always creates an additional element of complexity regarding the technical requirements and resource management of a project. However, the experience of international cooperation to date tells us that there can be significant gains, both tangible and symbolic, from international participation.

Bartoe, John-David

376

Space Station Freedom electrical performance model  

NASA Technical Reports Server (NTRS)

The baseline Space Station Freedom electric power system (EPS) employs photovoltaic (PV) arrays and nickel hydrogen (NiH2) batteries to supply power to housekeeping and user electrical loads via a direct current (dc) distribution system. The EPS was originally designed for an operating life of 30 years through orbital replacement of components. As the design and development of the EPS continues, accurate EPS performance predictions are needed to assess design options, operating scenarios, and resource allocations. To meet these needs, NASA Lewis Research Center (LeRC) has, over a 10 year period, developed SPACE (Station Power Analysis for Capability Evaluation), a computer code designed to predict EPS performance. This paper describes SPACE, its functionality, and its capabilities.

Hojnicki, Jeffrey S.; Green, Robert D.; Kerslake, Thomas W.; Mckissock, David B.; Trudell, Jeffrey J.

1993-01-01

377

Photovoltaic power for Space Station Freedom  

NASA Technical Reports Server (NTRS)

Space Station Freedom is described with special attention given to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management, and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

Baraona, Cosmo R.

1990-01-01

378

Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development  

NASA Technical Reports Server (NTRS)

In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

1985-01-01

379

Design-Tradeoff Model For Space Station  

NASA Technical Reports Server (NTRS)

System Design Tradeoff Model (SDTM) computer program produces information which helps to enforce consistency of design objectives throughout system. Mathematical model of set of possible designs for Space Station Freedom. Program finds particular design enabling station to provide specified amounts of resources to users at lowest total (or life-cycle) cost. Compares alternative design concepts by changing set of possible designs, while holding specified services to users constant, and then comparing costs. Finally, both costs and services varied simultaneously when comparing different designs. Written in Turbo C 2.0.

Chamberlain, Robert G.; Smith, Jeffrey L.; Borden, Chester S.; Deshpande, Govind K.; Fox, George; Duquette, William H.; Dilullo, Larry A.; Seeley, Larry; Shishko, Robert

1990-01-01

380

Biological research on a Space Station  

NASA Technical Reports Server (NTRS)

A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

Krikorian, A. D.; Johnson, Catherine C.

1990-01-01

381

Habitability design elements for a space station  

NASA Technical Reports Server (NTRS)

Habitability in space refers to the components, characteristics, conditions, and design parameters that go beyond but include the basic life sustaining requirements. Elements of habitability covered include internal environment, architecture, mobility and restraint, food, clothing, personal hygiene, housekeeping, communications, and crew activities. All elements are interrelated and need to be treated as an overall discipline. Designing for a space station is similar to designing on earth but with 'space rules' instead of ground rules. It is concluded that some habitability problems require behavioral science solutions.

Dalton, M. C.

1983-01-01

382

Space station freedom life sciences activities  

NASA Technical Reports Server (NTRS)

Life sciences activities being planned for Space Station Freedom (SSF) as of Fall 1992 are discussed. Planning for these activities is ongoing. Therefore, this description should be viewed as indicative of the prevailing ideas at one particular time in the SSF development cycle. The proposed contributions of the Canadian Space Agency (CSN) the European Space Agency (ESA), Japan, and the United States are all discussed in detail. In each case, the life sciences goals, and the way in which each partner proposes to achieve their goals, are reviewed.

Taylor, G. R.

1994-01-01

383

Animal research on the Space Station  

NASA Technical Reports Server (NTRS)

The need for in-depth, long- and short-term animal experimentation in space to qualify man for long-duration space missions, and to study the effects of the absence and presence of Earth's gravity and of heavy particle radiation on the development and functioning of vertebrates is described. The major facilities required for these investigations and to be installed on the Space Station are: modular habitats for holding rodents and small primates in full bioisolation; a habitat holding facility; 1.8 and 4.0 m dia centrifuges; a multipurpose workbench; and a cage cleaner/disposal system. The design concepts, functions, and characteristics of these facilities are described.

Bonting, S. L.; Arno, R. D.; Corbin, S. D.

1987-01-01

384

Evaluation of Space Station Meteoroid/Debris Shielding Materials, Supplement  

NASA Technical Reports Server (NTRS)

The following Lotus 1-2-3 spreadsheets are included. They were converted from Lotus version 2.1 to version 1A, which is more common and can also be read by all subsequent versions. MS-DOS V.3.10 was used to format the diskette. Additional information can be attained by contacting: Eric L. Christiansen, Eagle Engineering, (713)338-2682. 1) IMPACT.WKS Analytical model described in Section 4.2 and Appendix A. 2) HUGONIOT.WKS Calculates peak shock pressure as described in Appendix C. 3) FIGOFMER.WKS Empirical model described in Section 4.1 and Appendix B. 4) DEB_VDIS.WKS Contains orbital debris velocity distribution for typical Space Station orbit. Calculates the fraction of debris below the velocity causing aluminum projectiles to melt as described in Section 3.3. 5) MOD_CRIT.WKS Determines the critical orbital debris and meteoroid size that a Space Station hab or lab module should be designed to protect against based on a 0.9955 probability of no penetration as described in Section 3.3. 6) SSMOD_CE.WKS Determines the number and maximum size of perforations expected in an aluminum bumper of a Space Station common module over its orbital lifetime as discussed in Section 3.3.

1987-01-01

385

Space Station crew safety alternatives study. Volume 5: Space Station safety plan  

NASA Technical Reports Server (NTRS)

The Space Station Safety Plan has been prepared as an adjunct to the subject contract final report, suggesting the tasks and implementation procedures to ensure that threats are addressed and resolution strategy options identified and incorporated into the space station program. The safety program's approach is to realize minimum risk exposure without levying undue design and operational constraints. Safety objectives and risk acceptances are discussed.

Mead, G. H.; Peercy, R. L., Jr.; Raasch, R. F.

1985-01-01

386

Space station propulsion technology: Space station propulsion system test bed test plan  

NASA Technical Reports Server (NTRS)

Testing of the hydrogen/oxygen Space Station Propulsion System will demonstrate the technology readiness for the IOC application. To facilitate early demonstration of this technology and to allow demonstration of maturing technology, this testing will be performed with the components installed on a test bed which simulated the Space Station Structure. The test plan contains a description of the test bed, test objective, instrumentation plan, and controls plan. Each of these is discussed in detail.

Briley, G. L.

1986-01-01

387

Achievements and challenges of Space Station Freedom's safety review process  

Microsoft Academic Search

The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has

David W. Robinson

1993-01-01

388

Space Station Freedom. A Foothold on the Future.  

ERIC Educational Resources Information Center

This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space"; (4) "Dreams Fulfilled" (summarizing the history of the space station development, including the skylab and shuttle); (5) "Building a Way…

David, Leonard

389

The AMS-02 TRD for the International Space Station  

E-print Network

The AMS-02 TRD for the International Space Station Florian Hauler on behalf of the AMS-02 TRD Group Magnetic Spectrometer (AMS-02) is an experiment which will be mounted on the international space station on the International Space Station (ISS) to measure primary cosmic ray spectra in space for three years

Roma "La Sapienza", Università di

390

Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis  

NASA Technical Reports Server (NTRS)

This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

2005-01-01

391

Space Station Furnace Facility. Volume 2: Summary of technical reports  

NASA Astrophysics Data System (ADS)

The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

1992-05-01

392

International space station microgravity environment design & verification  

NASA Astrophysics Data System (ADS)

A broad class of scientific experiments has evolved which utilize extreme low acceleration environments. The International Space Station will provide such a ``microgravity'' environment, in conjunction with an unparalleled combination of quiescent period duration, payload volume and power, and manned or telescience interaction. The International Space Station is the world's first manned space vehicle with microgravity requirements. These place limits on the acceleration levels within the pressurized laboratories and affect everything from flight altitude and attitude to the mechanical and acoustic energies emitted by an air circulation fan. To achieve such performance within the program's resource constraints, a microgravity control approach has been adopted which balances both source and receiver disturbance mitigation. The Active Rack Isolation System (ARIS) provides acceleration attenuation at the payload rack level, and dominant sources have been reduced either by isolation or design modifications. Analytical assessments indicate that the vehicle is capable of meeting the challenging microgravity requirements, although some current marginal non-compliances do exist. Assessment refinements will continue through the verification phase with greater reliance on test and on-orbit measured data as part of a long term effort to clearly define and understand the constitution of the acceleration environment. This process will assure that the design and operation of the International Space Station will support significant microgravity science research.

Del Basso, Steve

1999-01-01

393

KSC ground operations planning for Space Station  

NASA Astrophysics Data System (ADS)

At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

Lyon, J. R.; Revesz, W., Jr.

1993-10-01

394

Space Station Workstation Technology Workshop Report  

NASA Technical Reports Server (NTRS)

This report describes the results of a workshop conducted at Goddard Space Flight Center (GSFC) to identify current and anticipated trends in human-computer interface technology that may influence the design or operation of a space station workstation. The workshop was attended by approximately 40 persons from government and academia who were selected for their expertise in some aspect of human-machine interaction research. The focus of the workshop was a 1 1/2 brainstorming/forecasting session in which the attendees were assigned to interdisciplinary working groups and instructed to develop predictions for each of the following technology areas: (1) user interface, (2) resource management, (3) control language, (4) data base systems, (5) automatic software development, (6) communications, (7) training, and (8) simulation. This report is significant in that it provides a unique perspective on workstation design for the space station. This perspective, which is characterized by a major emphasis on user requirements, should be most valuable to Phase B contractors involved in design development of the space station workstation. One of the more compelling results of the workshop is the recognition that no major technological breakthroughs are required to implement the current workstation concept. What is required is the creative application of existing knowledge and technology.

Moe, K. L.; Emerson, C. M.; Eike, D. R.; Malone, T. B.

1985-01-01

395

Intelligent user interface concept for space station  

NASA Technical Reports Server (NTRS)

The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

1986-01-01

396

Life In Space: An Introduction To Space Life Sciences And The International Space Station  

NASA Astrophysics Data System (ADS)

The impact of the space environment upon living organisms is profound. Its effects range from alterations in sub-cellular processes to changes in the structure and function of whole organ systems. As the number of astronaut and cosmonaut crews flown in space has grown, so to has our understanding of the effects of the space environment upon biological systems. There are many parallels between the physiology of space flight and terrestrial disease processes, and the response of astronaut crews themselves to long-duration space deployment is therefore of central interest. In the next 15 years the International Space Station (ISS) will serve as a permanently manned dedicated life and physical sciences platform for the further investigation of these phenomena. The European Space Agency's Columbus module will hold the bulk of the ISS life science capability and, in combination with NASA's Human Research Facility (HRF) will accommodate the rack mounted experimental apparatus. The programme of experimentation will include efforts in fundamental biology, human physiology, behavioural science and space biomedical research. In the four decades since Yuri Gagarin first orbited the Earth, space life science has emerged as a field of study in its own right. The ISS takes us into the next era of human space exploration, and it is hoped that its programme of research will yield new insights, novel therapeutic interventions, and improved biotechnology for terrestrial application.

Fong, Kevin

2001-11-01

397

Mechanically Induced g-Jitter from Space Station Rotary Joints  

NASA Technical Reports Server (NTRS)

The mission of the International Space Station is to provide a working laboratory in orbit for research in engineering, life sciences, and microgravity. Among the microgravity disciplines that are preparing to utilize this international resource are materials processing, combustion, fluid dynamics, biotechnology, and fundamental physics. The Station promises to enable significant advances in each of these areas by making available a research facility in which gravitational and other accelerations, and their corresponding buoyancy and diffusion effects on various physical processes, are orders of magnitude lower than they are on Earth. In order to fulfill this promise, it is not enough for the Space Station to simply replicate a typical terrestrial scientific laboratory in orbit. Although an orbiting laboratory is free of most of the effects of gravitational acceleration by virtue of its free fall condition, it also produces structural vibration or jitter that can interfere with the processes under study. To ensure the quality of the acceleration environment and enable a successful mission, the Space Station Program has limited potential disturbances in two ways: first, by isolating the most sensitive payloads from the vehicle structure, and second, by quieting major disturbances at their sources. The first area, payload isolation, is implemented inside the pressurized modules at the rack level. Sub-rack level isolators have also been developed. This paper addresses the second area, disturbance source limits, for one of the major sources of mechanical noise on the Space Station: the Solar Alpha Rotary Joints. Due to the potential for large disturbances to the microgravity environment, an initial analytical prediction of rotary joint vibration output was made. Key components were identified and tested to validate the analytical predictions. Based on the component test results, the final vibration output of the joints was verified by a test on each fully assembled flight unit. This paper describes the Space Station microgravity requirements, the rotary joint hardware, and the disturbance producing aspects of joint operation. The test setup, instrumentation, test conditions, and results for the component level and system level measurements are described. An overall forcing function that describes the maximum torque imparted to the Station is created based on the test results, and these disturbances are shown to meet the applicable Space Station microgravity requirements.

Boucher, Robert L.

2000-01-01

398

Robotic mobile servicing platform for space station  

NASA Technical Reports Server (NTRS)

The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves.

Lowenthal, S. H.; Vanerden, L.

1987-01-01

399

Space station human productivity study, volume 1  

NASA Technical Reports Server (NTRS)

The primary goal was to develop design and operations requirements for direct support of intra-vehicular activity (IVA) crew performance and productivity. It was recognized that much work had already been accomplished which provided sufficient data for the definition of the desired requirements. It was necessary, therefore, to assess the status of such data to extract definable requirements, and then to define the remaining study needs. The explicit objectives of the study were to: review existing data to identify potential problems of space station crew productivity and to define requirements for support of productivity insofar as they could be justified by current information; identify those areas that lack adequate data; and prepare plans for managing studies to develop the lacking data, so that results can be input to the space station program in a timely manner.

1985-01-01

400

Exobiology research on Space Station Freedom.  

PubMed

The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described. PMID:11539215

Huntington, J L; Stratton, D M; Scattergood, T W

1995-03-01

401

Exobiology research on Space Station Freedom  

NASA Technical Reports Server (NTRS)

The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.

1995-01-01

402

Modelling early failures in Space Station Freedom  

NASA Technical Reports Server (NTRS)

A major problem encountered in planning for Space Station Freedom is the amount of maintenance that will be required. To predict the failure rates of components and systems aboard Space Station Freedom, the logical approach is to use data obtained from previously flown spacecraft. In order to determine the mechanisms that are driving the failures, models can be proposed, and then checked to see if they adequately fit the observed failure data obtained from a large variety of satellites. For this particular study, failure data and truncation times were available for satellites launched between 1976 and 1984; no data past 1984 was available. The study was limited to electrical subsystems and assemblies, which were studied to determine if they followed a model resulting from a mixture of exponential distributions.

Navard, Sharon E.

1993-01-01

403

Reference Guide to the International Space Station  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) is a great international, technological, and political achievement. It is the latest step in humankind's quest to explore and live in space. The research done on the ISS may advance our knowledge in various areas of science, enable us to improve life on this planet, and give us the experience and increased understanding that can eventually equip us to journey to other worlds. As a result of the Station s complexity, few understand its configuration, its design and component systems, or the complex operations required in its construction and operation. This book provides high-level insight into the ISS. The ISS is in orbit today, operating with a crew of three. Its assembly will continue through 2010. As the ISS grows, its capabilities will increase, thus requiring a larger crew. Currently, 16 countries are involved in this venture. This CD-ROM includes multimedia files and animations.

Kitmacher, Gary H.

2006-01-01

404

Space station attached payload program support  

NASA Technical Reports Server (NTRS)

The USRA is providing management and technical support for the peer review of the Space Station Freedom Attached Payload proposals. USRA is arranging for consultants to evaluate proposals, arranging meeting facilities for the reviewers to meet in Huntsville, Alabama and management of the actual review meetings. Assistance in developing an Experiment Requirements Data Base and Engineering/Technical Assessment support for the MSFC Technical Evaluation Team is also being provided. The results of the project will be coordinated into a consistent set of reviews and reports by USRA. The strengths and weaknesses analysis provided by the peer panel reviewers will by used NASA personnel in the selection of experiments for implementation on the Space Station Freedom.

Estes, Maurice G., Jr.; Brown, Bardle D.

1989-01-01

405

Maintainable design for Space Station Freedom  

NASA Technical Reports Server (NTRS)

Space Station Freedom poses a unique challenge from the standpoint-of-logistical support and maintainability. There is limited on-orbit stowage volume available for supply of replacement parts for critical systems, and crew time required for maintenance and repair of on-board systems is an extremely valuable commodity. These considerations, plus the high cost of ground-to-orbit resupply, give special importance to the consideration of maintainability in system design. Use of common parts and system redundancy have important influences on logistics and maintenance requirements, and the requirements for specialized crew training and tools are directly related to system design for maintainability. This paper describes the approach for maintainable design of Space Station Freedom systems.

Hopson, George D.; Neale, Wayne L.

1993-01-01

406

1International Space Station Status to the NAC HEO Committee March 7, 2012 INTERNATIONAL SPACE STATION STATUS  

E-print Network

1International Space Station Status to the NAC HEO Committee ­ March 7, 2012 INTERNATIONAL SPACE Director, International Space Station Division Human Exploration and Operations Mission Directorate center beneath the SSRMS. #12;2International Space Station Status to the NAC HEO Committee ­ March 7

Waliser, Duane E.

407

Evolutionary space station fluids management strategies  

NASA Technical Reports Server (NTRS)

Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.

1989-01-01

408

Space station pressurized laboratory safety guidelines  

NASA Technical Reports Server (NTRS)

Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.

Mcgonigal, Les

1990-01-01

409

[Comment on “Space station?”] Not now  

NASA Astrophysics Data System (ADS)

When the shuttle development started, its acceptance was greatly supported by the promise of a $100/kg transport fare. From 1985, this has risen to $ll,000/kg (and never dropped since), which gives an interesting clue to the reliability of cost estimates for the Space Station. It is very likely that the Challenger disaster will cause another price jump due to increase safety requirements and may lift the price per transported kilogram beyond perhaps $20,000/kg.

Keppler, Erhard

410

Momentum management strategy during Space Station buildup  

NASA Technical Reports Server (NTRS)

The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

Bishop, Lynda; Malchow, Harvey; Hattis, Philip

1988-01-01

411

Microbiology facilities aboard Space Station Freedom (SSF)  

NASA Technical Reports Server (NTRS)

A comprehensive microbiological facility is being designed for use on board Space Station Freedom (SSF). Its purpose will be to conduct microbial surveillance of the SSF environment and to examine clinical specimens. Air, water, and internal surfaces will be periodically monitored to satisfy requirements for a safe environment. Crew health will remain a principle objective for every mission. This paper will review the Microbiology Subsystem capabilities planned for SSF application.

Cioletti, L. A.; Mishra, S. K.; Richard, Elizabeth E.; Taylor, R.

1990-01-01

412

Space station orbit design using dynamic programming  

NASA Astrophysics Data System (ADS)

A space station orbit design mission is characterized by a long-duration and multi-step decision process. First, the long-duration design process is divided into multiple planning periods, each of which consists of five basic flight segments. Second, each planning period is modeled as a multi-step decision process, and the orbital altitude strategies of different flight segments have interaction effects on each other. Third, a dynamic programming method is used to optimize the total propellant consumption of a planning period while considering interaction effects. The step cost of each decision segment is the propellant for orbital-decay maintenance or lifting altitude, and is calculated by approximate analytical equations and combining a shooting iteration method. The proposed approach is demonstrated for a typical orbit design problem of a space station. The results show that the proposed approach can effectively optimize the design of altitude strategies, and can save considerable propellant consumption for the space station than previous public studies.

Lin, Kun-Peng; Luo, Ya-Zhong; Tang, Guo-Jin

2013-08-01

413

Space Station Control Moment Gyroscope Lessons Learned  

NASA Technical Reports Server (NTRS)

Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.

Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin

2010-01-01

414

Human Factors and the International Space Station  

NASA Technical Reports Server (NTRS)

The purposes of this panel are to inform the human factors community regarding the challenges of designing the International Space Station (ISS) and to stimulate the broader human factors community into participating in the various basic and applied research opportunities associated with the ISS. This panel describes the variety of techniques used to plan and evaluate human factors for living and working in space. The panel members have contributed to many different aspects of the ISS design and operations. Architecture, equipment, and human physical performance requirements for various tasks have all been tailored to the requirements of operating in microgravity.

Peacock, Brian; Rajulu, Sudhakar; Novak, Jennifer; Rathjen, Thomas; Whitmore, Mihriban; Maida, James; Woolford, Barbara

2001-01-01

415

Introducing new technologies into Space Station subsystems  

NASA Technical Reports Server (NTRS)

A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

Wiskerchen, Michael J.; Mollakarimi, Cindy L.

1989-01-01

416

Differential Space-Time modulation  

Microsoft Academic Search

Space-time coding and modulation exploit the presence of multiple transmit antennas to improve the performance on multipath radio channels. Thus far, most work on space-time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider

Brian L. Hughes

2000-01-01

417

SPACE: Intermediate Level Modules.  

ERIC Educational Resources Information Center

These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

418

Space Station Freedom Gateway to the Future  

NASA Technical Reports Server (NTRS)

The first inhabited outpost on the frontier of space will be a place to live, work, and discover. Experiments conducted on Freedom will advance scientific knowledge about our world, our environment, and ourselves. We will learn how to adapt to the space environment and to build and operate new spacecraft with destinations far beyond Earth, continuing the tradition of exploration that began with a journey to the Moon. What we learn from living and working on Freedom will strengthen our expertise in science and engineering, promote national research and development initiatives and inspire another generation of Americans to push forward and onward. On the eve of the 21st century, Space Station Freedom will be our gateway to the future. This material covers gateways to space, research, discovery, utilization, benefits, and NASA.

1992-01-01

419

The International Space Station: A National Laboratory  

NASA Technical Reports Server (NTRS)

After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

Giblin, Timothy W.

2012-01-01

420

Low temperature storage container for transporting perishables to space station  

NASA Astrophysics Data System (ADS)

This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

Dean, William G.; Owen, James W.

1988-04-01

421

Low temperature storage container for transporting perishables to space station  

NASA Technical Reports Server (NTRS)

This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

Dean, William G (inventor); Owen, James W. (inventor)

1988-01-01

422

Space station needs, attributes and architectural options: Study summary  

NASA Technical Reports Server (NTRS)

Space station needs, attributes, and architectural options that affect the future implementation and design of a space station system are examined. Requirements for candidate missions are used to define functional attributes of a space station. Station elements that perform these functions form the basic station architecture. Alternative ways to accomplish these functions are defined and configuration concepts are developed and evaluated. Configuration analyses are carried to the point that budgetary cost estimates of alternate approaches could be made. Emphasis is placed on differential costs for station support elements and benefits that accrue through use of the station.

1983-01-01

423

Austrian dose measurements onboard space station MIR and the International Space Station – overview and comparison  

Microsoft Academic Search

The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the

T. Berger; M. Hajek; L. Summerer; N. Vana; Y. Akatov; V. Shurshakov; V. Arkhangelsky

2004-01-01

424

IAC-04-A.4.10 INTERNATIONAL SPACE STATION LEAK  

E-print Network

IAC-04-A.4.10 INTERNATIONAL SPACE STATION LEAK LOCALIZATION USING VENT TORQUE ESTIMATION Jong in this paper to localize air leaks on the International Space Station based on the spacecraft attitude and rate for a given response, but the actual geometric structure of the space station eliminates many of the possible

Crassidis, John L.

425

International Space Station Leak Localization Using Attitude Response Data  

E-print Network

International Space Station Leak Localization Using Attitude Response Data Jong-Woo Kim, John L leaks on the International Space Station based on the spacecraft attitude and rate behavior produced for a given response, but the actual geometric structure of the space station eliminates many of the possible

Crassidis, John L.

426

International Space Station Leak Localization Using Attitude Disturbance Estimation  

E-print Network

International Space Station Leak Localization Using Attitude Disturbance Estimation Jong-Woo Kim present a new method to local- ize air leaks on the International Space Station based on the spacecraft be multiple leak locations for a given re- sponse, but the actual geometric structure of the space station

Crassidis, John L.

427

Low temperature storage container for transporting perishables to space station  

NASA Technical Reports Server (NTRS)

Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.

Owen, James W. (Inventor); Dean, William G. (Inventor)

1989-01-01

428

Astronaut 'Checks In' From Space Station - Duration: 1:07.  

NASA Video Gallery

NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

429

Space Station Freedom solar array panels plasma interaction test facility  

NASA Astrophysics Data System (ADS)

The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

Martin, Donald F.; Mellott, Kenneth D.

430

Interpreting the International Space Station Microgravity Environment  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. A physical environment with very low-levels of acceleration and vibration has been accomplished by both the free fall associated with orbital flight and the design of the International Space Station. The International Space Station design has been driven by a long-standing, high-level requirement for a microgravity mode of operation. The Space Acceleration Measurement System has been in operation for nearly four years on the ISS measuring the microgravity environment in support of principal investigators and to characterize the ISS microgravity environment. The Principal Investigator Microgravity Services project functions as a detective to ascertain the source of disturbances seen in the ISS microgravity environment to allow correlation between that environment and experimental data. Payload developers need to predict the microgravity environment that will be imposed upon an experiment and ensure that the science and engineering requirements will be met. The Principal Investigator Microgravity Services project is developing n interactive tool to predict the microgravity environment at science payloads based on user defined operational scenarios. These operations (predictions and post-analyses) allow a researcher to examine the microgravity acceleration levels expected to exist when their experiment is operated and then receive an analysis of the environment which existed during their experiment operations. Presented in this paper will be descriptions of the environment predictive tool and an investigation into a previously unknown disturbance in the ISS microgravity environment.

DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric M.; Humphreys, Brad

2005-01-01

431

Design, operation, and critical issues of the US Space Station Freedom propulsion system  

Microsoft Academic Search

The U.S. Space Station Freedom Manned Base (SSFMB) propulsion system is a gaseous hydrogen\\/oxygen-based system for primary reboost, attitude control, and station contingencies using electrolyzed water as a propellant. A secondary propulsion reboost system employs multipropellant resistojets which utilize the various waste gases generated during normal station operations. The hydrogen\\/oxygen propulsion system is comprised of several modules which contain thrusters,

J. S. Morano; J. B. Henderson

1989-01-01

432

High pressure water electrolysis for space station EMU recharge  

NASA Technical Reports Server (NTRS)

A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

1988-01-01

433

Operational considerations for the Space Station Life Science Glovebox  

NASA Technical Reports Server (NTRS)

The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

1988-01-01

434

Power electronic applications for Space Station Freedom  

NASA Technical Reports Server (NTRS)

NASA plans to orbit a permanently manned space station in the late 1990s, which requires development and assembly of a photovoltaic (PV) power source system to supply up to 75 kW of electrical power average during the orbital period. The electrical power requirements are to be met by a combination of PV source, storage, and control elements for the sun and eclipse periods. The authors discuss the application of power electronics and controls to manage the generation, storage, and distribution of power to meet the station loads, as well as the computer models used for analysis and simulation of the PV power system. The requirements for power source integrated controls to adjust storage charge power during the insolation period current limiting, breaker interrupt current values, and the electrical fault protection approach are defined. Based on these requirements, operating concepts have been defined which then become drivers for specific system and element design.

Pickrell, Roy L.; Lazbin, Igor

1990-01-01

435

Crew Member Interface with Space Station Furnace Facility  

NASA Technical Reports Server (NTRS)

The Space Station Furnace Facility (SSFF) is a facility located in the International Space Station United States Laboratory (ISS US Lab) for materials research in the microgravity environment. The SSFF will accommodate basic research, commercial applications, and studies of phenomena of metals and alloys, electronic and photonic materials, and glasses and ceramics. To support this broad base of research requirements, the SSFF will operate, regulate, and support a variety of Experiment Modules (EMs). To meet station requirements concerning the microgravity level needed for experiments, station is providing an active vibration isolation system, and SSFF provides the interface. SSFF physically consists of a Core Rack and two instrument racks (IRs) that occupy three adjacent ISS US Lab rack locations within the International Space Station (ISS). All SSFF racks are modified International Standard Payload Racks (ISPR). SSFF racks will have a 50% larger pass through area on the lower sides than ISPRs to accommodate the many rack to rack interconnections. The Instrument Racks are further modified with lowered floors and an additional removable panel (15" x 22") on top of the rack for access if needed. The Core Rack shall contain all centralized Core subsystems and ISS subsystem equipment. The two Instrument Racks shall contain the distributed Core subsystem equipment, ISS subsystem equipment, and the EMs. The Core System, which includes the Core Rack, the IR structures, and subsystem components located in the IRs serves as the central control and management for the IRs and the EMs. The Core System receives the resources provided by the International Space Station (ISS) and modifies, allocates, and distributes these resources to meet the operational requirements of the furnace. The Core System is able to support a total of four EMs and can control, support, and activate/deactivate the operations of two EMs, simultaneously. The IRs can be configured to house two small EMs or one tall vertical EM, and serve as the interface between the Core and the respective EM. The Core Rack and an adjacent Instrument Rack (containing one or more furnaces) will be delivered to the ISS in one launch. This is Integrated Configuration One (ICI). The Core Rack and IRI will be passive during transport in the Mini Pressurized Logistics Module (MPLM): Any subsequent EMs to operate within IRI are installed on-orbit. The second IR (containing one or more furnaces) is delivered to ISS on a subsequent launch which will establish Integrated Configuration Two (IC2). Additional integrated configurations will be established with the replacement of EMs or Instrument Racks.

Cash, Martha B.

1997-01-01

436

Space Station Redesign Team: Final report to the Advisory Committee on the Redesign of the Space Station  

NASA Technical Reports Server (NTRS)

This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C.

1993-01-01

437

Logistics resupply and emergency crew return system for Space Station Freedom  

NASA Technical Reports Server (NTRS)

Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.

Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.

1989-01-01

438

Design and operation of the US Space Station Freedom propulsion system  

NASA Astrophysics Data System (ADS)

The propulsion functions for the U.S. Space Station Freedom (SSF) are accomplished by two separate systems, the Primary Propulsion System and the Supplemental Reboost System (SRS). The Primary Propulsion System includes self-contained hydrazine modules for station reboost, attitude control, and contingency maneuvers. These Propulsion Modules contain reboost and attitude control thrusters, propellant storage, thermal conditioning, and electronic controls. The modules are serviced on the ground and launched on the Space Shuttle as replacements for the on-orbit modules which have expended their propellant. The expended modules are returned to the ground for reservicing and subsequent reuse. The Supplemental Reboost System includes a Waste Gas Assembly and Resistojet Modules which are used for reboost maneuvers only. The Waste Gas Assembly contains waste gas storage, compressors, and dryers, and the Resistojet Modules contain multipropellant resistojet thrusters, electronic pressure regulators and power conditioning equipment.

Morano, Joseph S.; Delventhal, Rex A.

1992-02-01

439

Design and operation of the U.S. Space Station Freedom Propulsion System  

NASA Technical Reports Server (NTRS)

The propulsion functions for the U.S. Space Station Freedom (SSF) are accomplished by two separate systems, the Primary Propulsion System and the Supplemental Reboost System (SRS). The Primary Propulsion System includes self-contained hydrazine modules for station reboost, attitude control and contingency maneuvers. These Propulsion Modules contain reboost and attitude control thrusters, propellant storage, thermal conditioning and electronic controls. The modules are serviced on the ground and launched on the Space Shuttle as replacements for the on-orbit modules which have expended their propellant. The expended modules are returned to the ground for reservicing and subsequent reuse. The Supplemental Reboost System includes a Waste Gas Assembly and Resistojet Modules which are used for reboost maneuvers only. The Waste Gas Assembly contains waste gas storage, compressors and dryers and the Resistojet Modules contain multipropellant resistojet thrusters, electronic pressure regulators and power conditioning equipment.

Morano, Joseph S.; Delventhal, Rex A.

1991-01-01

440

Impact of lunar and planetary missions on the space station  

NASA Technical Reports Server (NTRS)

The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

1984-01-01

441

A simple 5-DOF walking robot for space station application  

NASA Technical Reports Server (NTRS)

Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams.

Brown, H. Benjamin, Jr.; Friedman, Mark B.; Kanade, Takeo

1991-01-01

442

A space station Structures and Assembly Verification Experiment, SAVE  

NASA Technical Reports Server (NTRS)

The Space Station structure has been baselined to be a 5 M (16.4 ft) erectable truss. This structure will provide the overall framework to attach laboratory modules and other systems, subsystems and utilities. The assembly of this structure represents a formidable EVA challenge. To validate this capability the Space Station Structures/Dynamics Technical Integration Panel (TIP) met to develop the necessary data for an integrated STS structures flight experiment. As a result of this meeting, the Langley Research Center initiated a joint Langley/Boeing Aerospace Company study which supported the structures/dynamics TIP in developing the preliminary definition and design of a 5 M erectable space station truss and the resources required for a proposed flight experiment. The purpose of the study was to: (1) devise methods of truss assembly by astronauts; (2) d