Sample records for space suit ventilation

  1. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  2. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  3. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  4. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  5. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  6. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.

    2012-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.

  8. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.

    2011-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.

  9. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  10. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  11. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  12. Results of the Trace Contaminant Control Needs Evaluation and Sizing Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.

    2009-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  13. Development of a Fan for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  14. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  15. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  16. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  17. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  18. A New Method for Breath Capture Inside a Space Suit Helmet

    NASA Technical Reports Server (NTRS)

    Filburn, Tom; Dolder, Craig; Tufano, Brett; Paul, Heather L.

    2007-01-01

    This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg. This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet. The CFD code, Fluent, provides modeling of the various gas species (CO2, water vapor, and oxygen (O2)) as they pass through a helmet. This same model will be used to numerically evaluate several different collection cup designs for this same CO2 segregation effort. A new test rig will be built to test the results of the CFD analyses and validate the collection cup designs. This paper outlines the initial results and future plans of this work.

  19. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  20. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  1. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  2. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  3. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  4. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  5. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  6. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  7. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  8. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...

  9. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...

  10. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...

  11. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...

  12. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...

  13. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  14. Evaluation of the Ventilated Flight Suit for OV-1 (Mohawk) Crews.

    DTIC Science & Technology

    the ’ greenhouse effect ’ increases the temperature in the cockpit to approximately 100F. These temperatures create undesirable operating conditions and decrease the overall crew efficiency. The ventilated flight suit system was evaluated by means of questionnaires and interviews of the commanders, aviators, and maintenance personnel to determine its operational

  15. Ventilation loss and pressurization in the NASA launch/entry suit: Potential for heat stress

    NASA Technical Reports Server (NTRS)

    Kaufman, Jonathan W.; Dejneka, Katherine Y.; Askew, Gregory K.

    1989-01-01

    The potential of the NASA Launch/Entry Suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment was studied. The testing was designed to identify potential heat stress hazards if the LES were pressurized or if ventilation were lost. Conditions were designed to simulate an extreme pre-launch situation with chamber temperatures maintained at dry bulb temperature = 27.2 +/- 0.1 C, globe temperature = 27.3 +/- 0.1 C, and wet bulb temperature = 21.1 +/- 0.3 C. Two females and two males, 23 to 34 years of age, were employed in this study, with two subjects having exposures in all 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. Pressurized runs (Pr) were designed for 45 minutes, which all subjects also achieved. While some significant differences related to experimental conditions were noted in rectal and mean skin temperatures, evaporation rates, sweat rates, and heart rate, these differences were not thought to be physiologically significant. The results indicate that the LES garment, in either the Pr or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Space Shuttle cabin during launch or reentry.

  16. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  17. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  18. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  19. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  20. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  1. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  2. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  3. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  4. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  5. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  6. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  7. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  8. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  9. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  10. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings to...

  11. Space Suit (Mobil Biological Isolation)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Houston five-year-old known as David is getting a "space suit," a vitally important gift that will give him mobility he has never known. David suffers from a rare malady called severe combined immune deficiency, which means that be was born without natural body defenses against disease; germs that would have little or no effect on most people could cause his death. As a result, he has spent his entire life in germ-free isolation rooms, one at Houston's Texas Children's hospital, another at his home. The "space suit" David is getting will allow him to spend four hours ata a time in a mobile sterile environment outside his isolation rooms. Built by NASA's Johnson Space Center, it is a specially-designed by product of Space Suit technology known as the mobile biological isolation system.

  12. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  13. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  14. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  15. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  16. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  17. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  18. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  19. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  20. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  1. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  2. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  3. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  4. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...

  5. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  6. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  7. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  8. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  9. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  10. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  11. Space Suit Portable Life Support System (PLSS) 2.0 Human-in-the-Loop (HITL) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    The space suit Portable Life Support System (PLSS) 2.0 represents the second integrated prototype developed and tested to mature a design that uses advanced technologies to reduce consumables, improve robustness, and provide additional capabilities over the current state of the art. PLSS 2.0 was developed in 2012, with extensive functional evaluations and system performance testing through mid-2014. In late 2014, PLSS 2.0 was integrated with the Mark III space suit in an ambient laboratory environment to facilitate manned testing, designated PLSS 2.0 Human-in-the-Loop (HITL) testing, in which the PLSS prototype performed the primary life support functions, including suit pressure regulation, ventilation, carbon dioxide control, and cooling of the test subject and PLSS avionics. The intent of this testing was to obtain subjective test subject feedback regarding qualitative aspects of PLSS 2.0 performance such as thermal comfort, sounds, smells, and suit pressure fluctuations due to the cycling carbon dioxide removal system, as well as to collect PLSS performance data over a range of human metabolic rates from 500-3000 Btu/hr. Between October 27 and December 18, 2014, nineteen two-hour simulated EVA test points were conducted in which suited test subjects walked on a treadmill to achieve a target metabolic rate. Six test subjects simulated nominal and emergency EVA conditions with varied test parameters including metabolic rate profile, carbon dioxide removal control mode, cooling water temperature, and Liquid Cooling and Ventilation Garment (state of the art or prototype). The nineteen test points achieved more than 60 hours of test time, with 36 hours accounting for simulated EVA time. The PLSS 2.0 test article performed nominally throughout the test series, confirming design intentions for the advanced PLSS. Test subjects' subjective feedback provided valuable insight into thermal comfort and perceptions of suit pressure fluctuations that will influence future

  12. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for closing...

  13. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for closing...

  14. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for closing...

  15. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for closing...

  16. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for closing...

  17. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  18. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  19. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  20. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  1. Complexity of Sizing for Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    The `fit? of a garment is often considered to be a subjective measure of garment quality. However, some experts attest that a complaint of poor garment fit is a symptom of inadequate or excessive ease, the space between the garment and the wearer. Fit has traditionally been hard to quantify, and space suits are an extreme example, where fit is difficult to measure but crucial for safety and operability. A proper space suit fit is particularly challenging because of NASA?s need to fit an incredibly diverse population (males and females from the 1st to 99th percentile) while developing a minimum number of space suit sizes. Because so few sizes are available, the available space suits must be optimized so that each fits a large segment of the population without compromising the fit of any one wearer.

  2. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  3. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  4. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  5. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by...

  6. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  7. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  8. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  9. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  10. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  11. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  12. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  13. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  14. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  15. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters. (a) All living spaces shall be adequately ventilated in a manner suitable to the purpose of the space...

  16. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  17. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  18. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  19. 46 CFR 153.314 - Ventilation of spaces not usually occupied.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ventilation of spaces not usually occupied. 153.314... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.314 Ventilation of spaces not usually occupied. (a) Each...

  20. 46 CFR 153.314 - Ventilation of spaces not usually occupied.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ventilation of spaces not usually occupied. 153.314... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.314 Ventilation of spaces not usually occupied. (a) Each...

  1. 46 CFR 153.314 - Ventilation of spaces not usually occupied.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ventilation of spaces not usually occupied. 153.314... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.314 Ventilation of spaces not usually occupied. (a) Each...

  2. 46 CFR 153.314 - Ventilation of spaces not usually occupied.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ventilation of spaces not usually occupied. 153.314... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.314 Ventilation of spaces not usually occupied. (a) Each...

  3. 46 CFR 153.314 - Ventilation of spaces not usually occupied.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation of spaces not usually occupied. 153.314... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.314 Ventilation of spaces not usually occupied. (a) Each...

  4. Preliminary Shuttle Space Suit Shielding Model. Chapter 9

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.; hide

    2003-01-01

    There are two space suits in current usage within the space program: EMU [2] and Orlan-M Space Suit . The Shuttle space suit components are discussed elsewhere [2,5,6] and serve as a guide to development of the current model. The present model is somewhat simplified in details which are considered to be second order in their effects on exposures. A more systematic approach is ongoing on a part-by-part basis with the most important ones in terms of exposure contributions being addressed first with detailed studies of the relatively thin space suit fabric as the first example . Additional studies to validate the model of the head coverings (bubble, helmet, visors.. .) will be undertaken in the near future. The purpose of this paper is to present the details of the model as it is now and to examine its impact on estimates of astronaut health risks. In this respect, the nonuniform distribution of mass of the space suit provides increased shielding in some directions and some organs. These effects can be most important in terms of health risks and especially critical to evaluation of potential early radiation effects .

  5. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served. ...

  6. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served. ...

  7. Confined space ventilation by shipyard welders: observed use and effectiveness.

    PubMed

    Pouzou, Jane G; Warner, Chris; Neitzel, Richard L; Croteau, Gerry A; Yost, Michael G; Seixas, Noah S

    2015-01-01

    Shipbuilding involves intensive welding activities within enclosed and confined spaces, and although ventilation is commonly used in the industry, its use and effectiveness has not been adequately documented. Workers engaged in welding in enclosed or confined spaces in two shipyards were observed for their use of ventilation and monitored for their exposure to particulate matter. The type of ventilation in use, its placement and face velocity, the movement of air within the space, and other ventilation-related parameters were recorded, along with task characteristics such as the type of welding, the welder's position, and the configuration of the space. Mechanical ventilation was present in about two-thirds of the 65 welding scenarios observed, with exhaust ventilation used predominantly in one shipyard and supply blowers predominantly in the other. Welders were observed working in apparent dead-spaces within the room in 53% of the cases, even where ventilation was in use. Respiratory protection was common in the two shipyards, observed in use in 77 and 100% of the cases. Welding method, the proximity of the welder's head to the fume, and air mixing were found to be significantly associated with the welder's exposure, while other characteristics of dilution ventilation did not produce appreciable differences in exposure level. These parameters associated with exposure reduction can be assessed subjectively and are thus good candidates for training on effective ventilation use during hot work in confined spaces. Ventilation used in confined space welding is often inadequate for controlling exposure to welding fume. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  9. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  10. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  11. Emergency Medical Considerations in a Space-Suited Patient.

    PubMed

    Garbino, Alejandro; Nusbaum, Derek M; Buckland, Daniel M; Menon, Anil S; Clark, Jonathan B; Antonsen, Erik L

    The Stratex Project is a high altitude balloon flight that culminated in a freefall from 41,422 m (135,890 ft), breaking the record for the highest freefall to date. Crew recovery operations required an innovative approach due to the unique nature of the event as well as the equipment involved. The parachutist donned a custom space suit similar to a NASA Extravehicular Mobility Unit (EMU), with life support system mounted to the front and a parachute on the back. This space suit had a metal structure around the torso, which, in conjunction with the parachute and life support assembly, created a significant barrier to extraction from the suit in the event of a medical emergency. For this reason the Medical Support Team coordinated with the pressure suit assembly engineer team for integration, training in suit removal, definition of a priori contingency leadership on site, creation of color-coded extraction scenarios, and extraction drills with a suit mock-up that provided insight into limitations to immediate access. This paper discusses novel extraction processes and contrasts the required medical preparation for this type of equipment with the needs of the prior record-holding jump that used a different space suit with easier immediate access. Garbino A, Nusbaum DM, Buckland DM, Menon AS, Clark JB, Antonsen EL. Emergency medical considerations in a space-suited patient. Aerosp Med Hum Perform. 2016; 87(11):958-962.

  12. 46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...

  13. 46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...

  14. 46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...

  15. 46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...

  16. 46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...

  17. 46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...

  18. 46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...

  19. 46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...

  20. 46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...

  1. 46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...

  2. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  3. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  4. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  6. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  7. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  8. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  9. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  10. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  11. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  12. The experience in operation and improving the Orlan-type space suits.

    PubMed

    Abramov, I P

    1995-07-01

    Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.

  13. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  14. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  15. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  16. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  17. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  18. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  19. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  20. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  1. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  2. Complexity of Fit, with Application to Space Suits

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely

  3. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  4. Skin blood flow with elastic compressive extravehicular activity space suit.

    PubMed

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  5. Utilizing a Suited Manikin Test Apparatus and Spacesuit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike

    2014-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  6. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  7. An MBSE Approach to Space Suit Development

    NASA Technical Reports Server (NTRS)

    Cordova, Lauren; Kovich, Christine; Sargusingh, Miriam

    2012-01-01

    The EVA/Space Suit Development Office (ESSD) Systems Engineering and Integration (SE&I) team has utilized MBSE in multiple programs. After developing operational and architectural models, the MBSE framework was expanded to link the requirements space to the system models through functional analysis and interfaces definitions. By documenting all the connections within the technical baseline, ESSD experienced significant efficiency improvements in analysis and identification of change impacts. One of the biggest challenges presented to the MBSE structure was a program transition and restructuring effort, which was completed successfully in 4 months culminating in the approval of a new EVA Technical Baseline. During this time three requirements sets spanning multiple DRMs were streamlined into one NASA-owned Systems Requirement Document (SRD) that successfully identified requirements relevant to the current hardware development effort while remaining extensible to support future hardware developments. A capability-based hierarchy was established to provide a more flexible framework for future space suit development that can support multiple programs with minimal rework of basic EVA/Space Suit requirements. This MBSE approach was most recently applied for generation of an EMU Demonstrator technical baseline being developed for an ISS DTO. The relatively quick turnaround of operational concepts, architecture definition, and requirements for this new suit development has allowed us to test and evolve the MBSE process and framework in an extremely different setting while still offering extensibility and traceability throughout ESSD projects. The ESSD MBSE framework continues to be evolved in order to support integration of all products associated with the SE&I engine.

  8. Don/Doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1989-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future space-craft, lunar or planetary bases. The present invention has a retainer which receives a protruding lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suit. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  9. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  10. Development and Evaluation of Titanium Space Suit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Ray, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z series space suit architecture allows us to reduce mass by an estimated 23 pounds per suit system compared to the previously used stainless steel bearing designs without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race: 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approximately 2 years), bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination around a maximum contact stress that will allow the bearing to survive the life of an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an exploration mission.

  11. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  12. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  13. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  14. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  15. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  16. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for crew quarters and passenger spaces. 72... spaces. (a) All crew and passenger spaces shall be adequately ventilated in a manner suitable to the purpose of the space. (b) On vessels of 100 gross tons and over, except for such spaces as are so located...

  17. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for crew quarters and passenger spaces. 72... spaces. (a) All crew and passenger spaces shall be adequately ventilated in a manner suitable to the purpose of the space. (b) On vessels of 100 gross tons and over, except for such spaces as are so located...

  18. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for crew quarters and passenger spaces. 72... spaces. (a) All crew and passenger spaces shall be adequately ventilated in a manner suitable to the purpose of the space. (b) On vessels of 100 gross tons and over, except for such spaces as are so located...

  19. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation for crew quarters and passenger spaces. 72... spaces. (a) All crew and passenger spaces shall be adequately ventilated in a manner suitable to the purpose of the space. (b) On vessels of 100 gross tons and over, except for such spaces as are so located...

  20. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for crew quarters and passenger spaces. 72... spaces. (a) All crew and passenger spaces shall be adequately ventilated in a manner suitable to the purpose of the space. (b) On vessels of 100 gross tons and over, except for such spaces as are so located...

  1. The Apollo Number: space suits, self-support, and the walk-run transition.

    PubMed

    Carr, Christopher E; McGee, Jeremy

    2009-08-12

    How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. The walk-run transition (denoted *) correlates with the Froude Number (Fr = v(2)/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (approximately 0.5) with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36+/-0.11, mean+/-95% CI) and Ap* (0.68+/-0.20). The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  2. Don/doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1988-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future spacecraft, lunar, or planetary bases. The present invention has a retainer which receives a protrucing lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suite. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  4. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation (other than machinery spaces). 169.315 Section 169.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Hull Structure § 169.315 Ventilation (other than machinery...

  5. The Apollo Number: Space Suits, Self-Support, and the Walk-Run Transition

    PubMed Central

    Carr, Christopher E.; McGee, Jeremy

    2009-01-01

    Background How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. Methodology/Principal Findings The walk-run transition (denoted *) correlates with the Froude Number (Fr = v2/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (∼0.5) with gravity but increases substantially with decreasing gravity below ∼0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36±0.11, mean±95% CI) and Ap* (0.68±0.20). Conclusions/Significance The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars. PMID:19672305

  6. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  7. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  8. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  9. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  10. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  11. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to

  12. EVALUATION OF VENTILATION PERFORMANCE FOR INDOOR SPACE

    EPA Science Inventory

    The paper discusses a personal-computer-based application of computational fluid dynamics that can be used to determine the turbulent flow field and time-dependent/steady-state contaminant concentration distributions within isothermal indoor space. (NOTE: Ventilation performance ...

  13. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    PubMed

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    PubMed

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  15. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  16. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  17. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  18. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Young, Karen; Kim, Han; Bernal, Yaritza; Vu, Linh; Boppana, Adhi; Benson, Elizabeth; Jarvis, Sarah; Rajulu, Sudhakar

    2016-01-01

    Goal of space human factors analyses: Place the highly variable human body within these restrictive physical environments to ensure that the entire anticipated population can live, work, and interact. Space suits are a very restrictive space and if not properly sized can result in pain or injury. The highly dynamic motions performed while wearing a space suit often make it difficult to model. Limited human body models do not have much allowance for customization of anthropometry and representation of the population that may wear a space suit.

  19. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  20. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  1. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, S. M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counter-pressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  2. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  3. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  4. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  5. Compression under a mechanical counter pressure space suit glove.

    PubMed

    Waldie, James M A; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W; Hargens, Alan R

    2002-12-01

    Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  6. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  7. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  8. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  9. High Performance Mars Liquid Cooling and Ventilation Garment Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Whitlock, David; Conger, Bruce

    2015-01-01

    EVA space suit mobility in micro-gravity is enough of a challenge and in the gravity of Mars, improvements in mobility will enable the suited crew member to efficiently complete EVA objectives. The idea proposed is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area in order to free up the arms and legs by removing the liquid tubes currently used in the ISS EVA suit in the limbs. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased to provide the entire liquid cooling requirement and increase mobility by freeing up the arms and legs. Additional potential benefits of this approach include reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development.

  10. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  11. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  12. NASA Research Announcement for Space Suit Survivability Enhancement

    NASA Technical Reports Server (NTRS)

    Fredrickson, Thad H.; Ware, Joanne S.; Lin, John K.; Pastore, Christopher M.

    1998-01-01

    This report documents the research activities for space suit survivability material enhancements. Self-sealing mechanisms for the pressure envelope were addressed, as were improvements in materials for cut, puncture, and hypervelocity impact resistance.

  13. A methodology for choosing candidate materials for the fabrication of planetary space suit structures

    NASA Technical Reports Server (NTRS)

    Jacobs, Gilda

    1990-01-01

    A study of space suit structures and materials is under way at NASA Ames Research Center, Moffett Field, CA. The study was initiated by the need for a generation of lightweight space suits to be used in future planetary Exploration Missions. This paper provides a brief description of the Lunar and Mars environments and reviews what has been done in the past in the design and development of fabric, metal, and composite suit components in order to establish criteria for comparison of promising candidate materials and space suit structures. Environmental factors and mission scenarios will present challenging material and structural requirements; thus, a program is planned to outline the methodology used to identify materials and processes for producing candidate space suit structures which meet those requirements.

  14. A Comparison of Methods for Assessing Space Suit Joint Ranges of Motion

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay T.

    2012-01-01

    Through the Advanced Exploration Systems (AES) Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2-D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3-D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.

  15. Compatible atmospheres for a space suit, Space Station, and Shuttle based on physiological principles

    NASA Technical Reports Server (NTRS)

    Hills, B. A.

    1985-01-01

    Fundamental physiological principles have been invoked to design compatible environments for a space suit, Space Station and the spacecraft used to transport the astronauts from earth. These principles include the long-term memory of tissues for a bubble-provoking decompression, the intermittent nature of blood flow in the tight connective tissue(s) responsible for the bends whose incidence in aviators has been shown to be related to bubble volume by the Weibull distribution. In the overall design an astronaut breathing a mixture of 30 percent O2 in N2 for 4-5 h in a spacecraft at 11.9 psia can transfer to a Space Station filled with the same mix at 8.7 psia and, after a further 4-5 h, go EVA at any time without any oxygen prebreathing at any stage. The probable incidence of decompression sickness has been estimated as less than 0.5 percent using the present suit operating at 4.3 psia but the risk could be reduced to zero if the suit pressure were increased to 6.5 psia.

  16. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  17. Impact verification of space suit design for space station

    NASA Technical Reports Server (NTRS)

    Fish, Richard H.

    1987-01-01

    The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.

  18. Space Suit Technologies Protect Deep-Sea Divers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Working on NASA missions allows engineers and scientists to hone their skills. Creating devices for the high-stress rigors of space travel pushes designers to their limits, and the results often far exceed the original concepts. The technologies developed for the extreme environment of space are often applicable here on Earth. Some of these NASA technologies, for example, have been applied to the breathing apparatuses worn by firefighters, the fire-resistant suits worn by racecar crews, and, most recently, the deep-sea gear worn by U.S. Navy divers.

  19. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

    PubMed

    Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A

    2003-05-01

    Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

  20. 46 CFR 108.187 - Ventilation for brush type electric motors in classified spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for brush type electric motors in classified... Ventilation for brush type electric motors in classified spaces. Ventilation for brush type electric motors in... Electrical Equipment in Hazardous Locations”, except audible and visual alarms may be used if shutting down...

  1. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  2. 46 CFR 108.187 - Ventilation for brush type electric motors in classified spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for brush type electric motors in classified... Ventilation for brush type electric motors in classified spaces. Ventilation for brush type electric motors in classified locations must meet N.F.P.A. 496-1974 “Standard for Purged and Pressurized Enclosures for...

  3. Testing of materials for passive thermal control of space suits

    NASA Technical Reports Server (NTRS)

    Squire, Bernadette

    1988-01-01

    An effort is underway to determine the coating material of choice for the AX-5 prototype hard space suit. Samples of 6061 aluminum have been coated with one of 10 selected metal coatings, and subjected to corrosion, abrasion, and thermal testing. Changes in reflectance after exposure are documented. Plated gold exhibited minimal degradation of optical properties. A computer model is used in evaluating coating thermal performance in the EVA environment. The model is verified with an experiment designed to measure the heat transfer characteristics of coated space suit parts in a thermal vacuum chamber. Details of this experiment are presented.

  4. Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.

    2006-01-01

    Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.

  5. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  6. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  7. Remote manual operator for space station intermodule ventilation valve

    NASA Technical Reports Server (NTRS)

    Guyaux, James R.

    1996-01-01

    The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.

  8. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  9. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  10. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  11. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls.

    PubMed

    Biselli, Paolo; Fricke, Kathrin; Grote, Ludger; Braun, Andrew T; Kirkness, Jason; Smith, Philip; Schwartz, Alan; Schneider, Hartmut

    2018-05-01

    Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO 2 ) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min -1 ) intermittently for periods of 5-10 min. We measured CO 2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min -1 ; p<0.05) and tidal volume (from 0.34±0.03 to 0.3±0.03 L; p<0.05) without a change in energy expenditure, transcutaneous CO 2 or alveolar ventilation. There was a significant decrease in dead space ventilation (from 2.5±0.4 to 1.6±0.4 L·min -1 ; p<0.05), but not in respiratory rate. The reduction in dead space ventilation correlated with baseline physiological dead space fraction (r 2 =0.36; p<0.05), but not with respiratory rate or anatomical dead space volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction. Copyright ©ERS 2018.

  12. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the

  13. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  14. [EC5-Space Suit Assembly Team- Internship

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    There were three main projects in this internship. The first pertained to the Bearing Dust Cycle Test, in particular automating the test to allow for easier administration. The second concerned modifying the communication system setup in the Z2 suit, where speakers and mics were adjusted to allow for more space in the helmet. And finally, the last project concerned the tensile strength testing of fabrics deemed as candidates for space suit materials and desired to be sent off for radiation testing. The major duties here are split up between the major projects detailed above. For the Bearing Dust Cycle Test, the first objective was to find a way to automate administration of the test, as the previous version was long and tedious to perform. In order to do this, it was necessary to introduce additional electronics and perform programming to control the automation. Once this was done, it would be necessary to update documents concerning the test setup, procedure, and potential hazards. Finally, I was tasked with running tests using the new system to confirm system performance. For the Z2 communication system modifications, it was necessary to investigate alternative speakers and microphones which may have better performance than those currently used in the suit. Further, new speaker and microphone positions needed to be identified to keep them out of the way of the suit user. Once this was done, appropriate hardware (such as speaker or microphone cases and holders) could be prototyped and fabricated. For the suit material strength testing, the first task was to gather and document various test fabrics to identify the best suit material candidates. Then, it was needed to prepare samples for testing to establish baseline measurements and specify a testing procedure. Once the data was fully collected, additional test samples would be prepared and sent off-site to undergo irradiation before being tested again to observe changes in strength performance. For the Bearing

  15. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  16. Results of the Particulate Contamination Control Trade Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Conger, Bruce; Paul, Heather L.

    2009-01-01

    As the United States plans to return astronauts to the moon and eventually to Mars, designing the most effective, efficient, and robust space suit life support system that will operate successfully in these dusty environments is vital. There is some knowledge of the contaminants and level of infiltration expected from the Lunar and Mars dust, however risk mitigation strategies and filtration designs to prevent contamination within the space suit life support system are still undefined. A trade study was initiated to identify and address these concerns, and to develop new requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS). This trade study investigates historical methods of particulate contamination control in space suits and vehicles, and evaluated the possibility of using commercial technologies for this application. In addition, the trade study examined potential filtration designs. This paper summarizes the results of this trade study.

  17. Influence of gestational age on dead space and alveolar ventilation in preterm infants ventilated with volume guarantee.

    PubMed

    Neumann, Roland P; Pillow, Jane J; Thamrin, Cindy; Larcombe, Alexander N; Hall, Graham L; Schulzke, Sven M

    2015-01-01

    Ventilated preterm infant lungs are vulnerable to overdistension and underinflation. The optimal ventilator-delivered tidal volume (VT) in these infants is unknown and may depend on the extent of alveolarisation at birth. We aimed to calculate respiratory dead space (VD) from the molar mass (MM) signal of an ultrasonic flowmeter (VD,MM) in very preterm infants on volume-targeted ventilation (VT target, 4-5 ml/kg) and to study the association between gestational age (GA) and VD,MM-to-VT ratio (VD,MM/VT), alveolar tidal volume (VA) and alveolar minute volume (AMV). This was a single-centre, prospective, observational, cohort study in a neonatal intensive care unit. Tidal breathing analysis was performed in ventilated very preterm infants (GA range 23-32 weeks) on day 1 of life. Valid measurements were obtained in 43/51 (87%) infants. Tidal breathing variables were analysed using multivariable linear regression. VD,MM/VT was negatively associated with GA after adjusting for birth weight Z score (p < 0.001, R(2) = 0.26). This association was primarily influenced by the appliance dead space. Despite similar VT/kg and VA/kg across all studied infants, respiratory rate and AMV/kg increased with GA. VD,app rather than anatomical VD is the major factor influencing increased VD,MM/VT at a younger GA. A volume guarantee setting of 4-5 ml/kg in the Dräger Babylog® 8000 plus ventilator may be inappropriate as a universal target across the GA range of 23-32 weeks. Differences between measured and set VT and the dependence of this difference on GA require further investigation. © 2014 S. Karger AG, Basel.

  18. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    PubMed

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  19. Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Hertig, B. A.

    1972-01-01

    Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.

  20. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  1. Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress

    NASA Technical Reports Server (NTRS)

    Askew, Gregory K.; Kaufman, Jonathan W.

    1991-01-01

    The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

  2. Novel analysis of 4DCT imaging quantifies progressive increases in anatomic dead space during mechanical ventilation in mice.

    PubMed

    Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D

    2017-09-01

    Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.

  3. Analysis of a Radiation Model of the Shuttle Space Suit

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Kim, Myung-Hee; Qualls, Garry D.; Wilson, John W.

    2003-01-01

    The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.

  4. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  5. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  6. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  7. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  8. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  9. Mobility and Agility During Locomotion in the Mark III Space Suit.

    PubMed

    Cullinane, Conor R; Rhodes, Richard A; Stirling, Leia A

    2017-06-01

    The Mark III (MIII) space suit assembly (SSAs) implements a multibearing, hard-material hip brief assembly (HBA). We hypothesize that: 1) the MIII HBA restricts operator mobility and agility which manifests in effects to gait parameters; 2) the waist bearing provides rotational motion, partially alleviating the restrictions; and 3) there are resistive, speed-dependent torques associated with the spinning bearings which further diminish mobility and agility. A subject (Suited and Unsuited) performed two planetary tasks-walking forward (WF) and backward (WB). An analysis of variance (ANOVA) and post hoc comparisons were performed to determine interaction effects. Motion capture data was processed to obtain gait parameters: static base (m), dynamic base (m), step length (m), stride length (m), cadence (steps/min), center of mass speed (m · s-1), foot clearance (toe and heel) (m), and bearing angular velocities (° · s-1). The static base when Suited (0.355 m) was larger than Unsuited (0.263 m). The Suited dynamic base (pooled, 0.200 m) was larger than both Unsuited WF (0.081 m) and WB (0.107 m). When Suited, the operator had lower clearance heights. The waist bearings provided about 7.2° of rotation when WB and WF. The maximum torque, while WF, in the right upper and mid bearings was 15.6 ± 1.35 Nm and 16.3 ± 1.28 Nm. This study integrated suit component properties and the emergent biomechanics of the operator to investigate how biomechanics are affected. The human hip has three collocated degrees of freedom (DOFs), whereas the HBA has a single DOF per bearing. The results can inform requirements for future SSA and other wearable system designs and evaluations.Cullinane CR, Rhodes RA, Stirling LA. Mobility and agility during locomotion in the Mark III space suit. Aerosp Med Hum Perform. 2017; 88(6):589-596.

  10. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  11. The European space suit, a design for productivity and crew safety

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  12. The European space suit, a design for productivity and crew safety.

    PubMed

    Skoog, A I; Berthier, S; Ollivier, Y

    1991-01-01

    In order to fulfill the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today--and will be for several years--a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: easy donning/doffing thru rear entry, suit ergonomy optimisation, display of operational information in alpha-numerical and graphical form, and voice processing for operations and safety critical information. Concerning crew safety the major design features are: a lower R-factor for emergency EVA operations thru increased suit pressure, zero prebreath conditions for normal operations, visual and voice processing of all safety critical functions, and an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  13. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  14. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian M.; Norcross, Jason; Bekdash, Omar; Ploutz-Snyder, Robert

    2016-01-01

    A space suit must provide adequate carbon dioxide (CO2) washout inside the helmet to prevent symptoms of hypercapnia. In the past, an oronasal mask has been used to measure the inspired air of suited subjects to determine a space suit's CO2 washout capability. While sufficient for super-ambient pressure testing of space suits, the oronasal mask fails to meet several human factors and operational criterion needed for future sub-ambient pressure testing (e.g. compatibility with a Valsalva device). This paper describes the evaluation of a nasal cannula as a device for measuring inspired air within a space suit. Eight test subjects were tasked with walking on a treadmill or operating an arm ergometer to achieve target metabolic rates of 1000, 2000, and 3000 British thermal units per hour (BTU/hr), at flow rates of 2, 4, and 6 actual cubic feet per minute (ACFM). Each test configuration was conducted twice, with subjects instructed to breathe either through their nose only, or however they felt comfortable. Test data shows that the nasal cannula provides more statistically consistent data across test subjects than the oronasal mask used in previous tests. The data also shows that inhaling/exhaling through only the nose provides a lower sample variance than a normal breathing style. Nose-only breathing reports better CO2 washout due to several possible reasons, including a decreased respiratory rate, an increased tidal volume, and because nose-only breathing directs all of the exhaled CO2 down and away from the oronasal region. The test subjects in this study provided feedback that the nasal cannula is comfortable and can be used with the Valsalva device.

  15. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  16. The ESA's Space Trajectory Analysis software suite

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  17. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... spaces as are so located that under all ordinary conditions of weather, windows, ports, skylights, etc..., passenger spaces. 92.15-15 Section 92.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... quarters and, where provided, passenger spaces. (a) All living spaces shall be adequately ventilated in a...

  18. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... spaces as are so located that under all ordinary conditions of weather, windows, ports, skylights, etc..., passenger spaces. 92.15-15 Section 92.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... quarters and, where provided, passenger spaces. (a) All living spaces shall be adequately ventilated in a...

  19. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... spaces as are so located that under all ordinary conditions of weather, windows, ports, skylights, etc..., passenger spaces. 92.15-15 Section 92.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... quarters and, where provided, passenger spaces. (a) All living spaces shall be adequately ventilated in a...

  20. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... spaces as are so located that under all ordinary conditions of weather, windows, ports, skylights, etc..., passenger spaces. 92.15-15 Section 92.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... quarters and, where provided, passenger spaces. (a) All living spaces shall be adequately ventilated in a...

  1. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... spaces as are so located that under all ordinary conditions of weather, windows, ports, skylights, etc..., passenger spaces. 92.15-15 Section 92.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... quarters and, where provided, passenger spaces. (a) All living spaces shall be adequately ventilated in a...

  2. Teacher is Space participant Christa McAuliffe during suite/hygiene briefing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Teacher is Space participant Christa McAuliffe (right) is briefed on her suit and on personal hygiene equipment to be used on the STS 51-L mission. The briefing was conducted by Laura Louviere (center).

  3. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  4. Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.; Paul, Heather L.

    2008-01-01

    As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember s health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, realtime EVA.

  5. Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.

    2009-01-01

    As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember's health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, real-time EVA.

  6. Dressing for Altitude: U.S. Aviation Pressure Suits--Wiley Post to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2012-01-01

    Since its earliest days, flight has been about pushing the limits of technology and, in many cases, pushing the limits of human endurance. The human body can be the limiting factor in the design of aircraft and spacecraft. Humans cannot survive unaided at high altitudes. There have been a number of books written on the subject of spacesuits, but the literature on the high-altitude pressure suits is lacking. This volume provides a high-level summary of the technological development and operational use of partial- and full-pressure suits, from the earliest models to the current high altitude, full-pressure suits used for modern aviation, as well as those that were used for launch and entry on the Space Shuttle. The goal of this work is to provide a resource on the technology for suits designed to keep humans alive at the edge of space. Hopefully, future generations will learn from the hard-fought lessons of the past. NASA is committed to the future of aerospace, and a key component of that future is the workforce. Without these men and women, technological advancements would not be possible. Dressing for Altitude is designed to provide the history of the technology and to explore the lessons learned through years of research in creating, testing, and utilizing today s high-altitude suits. It is our hope that this information will prove helpful in the development of future suits. Even with the closeout of the Space Shuttle and the planned ending of the U-2 program, pressure suits will be needed for protection as long as humans seek to explore high frontiers. The NASA Aeronautics Research Mission Directorate is committed to the training of the current and future aerospace workforce. This book and the other books published by the NASA Aeronautics Research Mission Directorate are in support of this commitment. Hopefully, you will find this book a valuable resource for many years to come.

  7. A Software Suite for Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  8. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to

  9. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Norcross, J.; Bekdash, O.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, dizziness, and in severe cases can lead to unconsciousness and death. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Prior work conducted by the EPL examined several different wearable, respirator style, masks that could be used to sample air from the vicinity surround the nose and mouth of a suited test subject. Previously published studies utilized these masks, some being commercial products and some novel designs, to monitor CO2 under various exercise and flow conditions with mixed results for repeatability and/or consistency between subjects. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device that is placed directly in the flow path of the user as they breathe. A nasal cannula was used to sample air inhaled by the test subjects during both rest and exercise conditions. Eight subjects were tasked with walking on a treadmill or operating an arm ergometer to reach target metabolic rates of 1000, 2000, and 3000 BTU/hr. Suit pressure was maintained at 4.3 psid for all tests, with supply flow rates of 6, 4, and 2 actual cubic feet per minute depending on the test condition. Each test configuration was conducted twice with subjects breathing

  10. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX?1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 minute tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, CA) with the pressure maintained at 20?2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars?1) off of the floor, and one of the authors (Lee) wearing the NDX?1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  11. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX-1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 min tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, California) with the pressure maintained at 20 2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars-1) off of the floor, and one of the authors (Lee) wearing the NDX-1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  12. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  13. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  14. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  15. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  16. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  17. Mass loss of shuttle space suit orthofabric under simulated ionospheric atomic oxygen bombardment

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1985-01-01

    Many polymeric materials used for thermal protection and insulation on spacecraft degrade significantly under prolonged bombardment by ionospheric atomic oxygen. The covering fabric of the multilayered shuttle space suit is composed of a loose weave of GORE-TEX fibers, Nomex and Kevlar-29, which are all polymeric materials. The complete evaluation of suit fabric degradation from ionospheric atomic oxygen is of importance in reevaluating suit lifetime and inspection procedures. The mass loss and visible physical changes of each test sample was determined. Kapton control samples and data from previous asher and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits.

  18. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  19. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon monoxide...

  20. Elbow and knee joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    An elbow or knee joint for a hard space suit or similar usage is formed of three serially connected rigid sections which have truncated spherical configurations. The ends of each section form solid geometric angles, and the sections are interconnected by hermetically sealed ball bearings. The outer two sections are fixed together for rotation in a direction opposite to rotation of the center section. A preferred means to make the outer sections track each other in rotation comprises a rotatable continuous bead chain which engages sockets circumferentially spaced on the facing sides of the outer races of the bearings. The joint has a single pivot point and the bearing axes are always contained in a single plane for any articulation of the joint. Thus flexure of the joint simulates the coplanar flexure of the knee or elbow and is not susceptible to lockup.

  1. Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art

    2012-01-01

    This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).

  2. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    NASA Technical Reports Server (NTRS)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  3. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  4. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  5. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  6. Development of an Objective Space Suit Mobility Performance Metric Using Metabolic Cost and Functional Tasks

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason

    2016-01-01

    Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.

  7. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  8. Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2012-01-01

    With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.

  9. [Research progress of thermal control system for extravehicular activity space suit].

    PubMed

    Wu, Z Q; Shen, L P; Yuan, X G

    1999-08-01

    New research progress of thermal control system for oversea Extravehicular Activity (EVA) space suit is presented. Characteristics of several thermal control systems are analyzed in detail. Some research tendencies and problems are discussed, which are worthwhile to be specially noted. Finally, author's opinion about thermal control system in the future is put forward.

  10. Suited crewmember productivity

    NASA Astrophysics Data System (ADS)

    Barer, A. S.; Filipenkov, S. N.

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  11. Suited crewmember productivity.

    PubMed

    Barer, A S; Filipenkov, S N

    1994-01-01

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  12. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Shoulder injury is one of the most severe risks that have the potential to impair crewmembers' performance and health in long duration space flight. Overall, 64% of crewmembers experience shoulder pain after extra-vehicular training in a space suit, and 14% of symptomatic crewmembers require surgical repair (Williams & Johnson, 2003). Suboptimal suit fit, in particular at the shoulder region, has been identified as one of the predominant risk factors. However, traditional suit fit assessments and laser scans represent only a single person's data, and thus may not be generalized across wide variations of body shapes and poses. The aim of this work is to develop a software tool based on a statistical analysis of a large dataset of crewmember body shapes. This tool can accurately predict the skin deformation and shape variations for any body size and shoulder pose for a target population, from which the geometry can be exported and evaluated against suit models in commercial CAD software. A preliminary software tool was developed by statistically analyzing 150 body shapes matched with body dimension ranges specified in the Human-Systems Integration Requirements of NASA ("baseline model"). Further, the baseline model was incorporated with shoulder joint articulation ("articulation model"), using additional subjects scanned in a variety of shoulder poses across a pre-specified range of motion. Scan data was cleaned and aligned using body landmarks. The skin deformation patterns were dimensionally reduced and the co-variation with shoulder angles was analyzed. A software tool is currently in development and will be presented in the final proceeding. This tool would allow suit engineers to parametrically generate body shapes in strategically targeted anthropometry dimensions and shoulder poses. This would also enable virtual fit assessments, with which the contact volume and clearance between the suit and body surface can be predictively quantified at reduced time and

  13. Teacher is Space participant Christa McAuliffe during suite/hygiene briefing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Teacher is Space participant Christa McAuliffe is briefed on her suit and on personal hygiene equipment to be used on the STS 51-L mission. She is standing in front of a table with several of the items to be used on the flight, including one can labeled DIAL and one can labeled BAN.

  14. Skin microvascular flow during hypobaric exposure with and without a mechanical counter-pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Tanaka, Kunihiko; Waldie, James; Steinbach, Gregory C.; Webb, Paul; Tourbier, Dietmar; Knudsen, Jeffrey; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.

  15. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  16. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  17. Optimal ventilation of the anesthetized pediatric patient.

    PubMed

    Feldman, Jeffrey M

    2015-01-01

    Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.

  18. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  19. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  20. Control of airborne infectious diseases in ventilated spaces

    PubMed Central

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed positions. PMID:19740921

  1. Performance evaluation of candidate space suit elements for the next generation orbital EMU

    NASA Technical Reports Server (NTRS)

    West, Philip R.; Trausch, Stephanie V.

    1992-01-01

    The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.

  2. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  3. Checkout and Standard Use Procedures for the Mark III Space Suit Assembly

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2012-01-01

    The operational pressure range is the range to which the suit can be nominally operated for manned testing. The top end of the nominal operational pressure range is equivalent to 1/2 the proof pressure. Structural pressure is 1.5 times the specified test pressure for any given test. Proof pressure is the maximum unmanned pressure to which the suit was tested by the vendor prior to delivery. The maximum allowable working pressure (MAWP) is 90% of the proof pressure. The pressure systems RVs are set to keep components below their MAWPs. If the suit is pressurized over its MAWP, the suit will be taken out of service and an in-depth inspection/review of the suit will be performed before the suit is put back in service. The procedures outlined in this document should be followed as written. However, the suit test engineer (STE) may make redline changes real-time, provided those changes are recorded in the anomaly section of the test data sheet. If technicians supporting suit build-up, check-out, and/or test execution believe that a procedure can be improved, they should notify their lead. If procedures are incorrect to the point of potentially causing hardware damage or affecting safety, bring the problem to the technician lead and/or STE s attention and stop work until a solution (temporary or permanent) is authorized. Certain steps in the procedure are marked with a DV , for Designated Verifier. The Designated Verifier for this procedure is an Advanced Space Suit Technology Development Laboratory technician, not directly involved in performing the procedural steps, who will verify that the step was performed as stated. The steps to be verified by the DV were selected based on one or more of the following criteria: the step was deemed significant in ensuring the safe performance of the test, the data recorded in the step is of specific interest in monitoring the suit system operation, or the step has a strong influence on the successful completion of test objectives

  4. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  5. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  6. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  7. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  8. Cycle life machine for AX-5 space suit

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah S.

    1990-01-01

    In order to accurately test the AX-5 space suit, a complex series of motions needed to be performed which provided a unique opportunity for mechanism design. The cycle life machine design showed how 3-D computer images can enhance mechanical design as well as help in visualizing mechanisms before manufacturing them. In the early stages of the design, potential problems in the motion of the joint and in the four bar linkage system were resolved using CAD. Since these problems would have been very difficult and tedious to solve on a drawing board, they would probably not have been addressed prior to fabrication, thus limiting the final design or requiring design modification after fabrication.

  9. Using Piezoelectric Ceramics for Dust Mitigation of Space Suits

    NASA Technical Reports Server (NTRS)

    Angel, Heather K.

    2004-01-01

    The particles that make up moon dust and Mars soil can be hazardous to an astronaut s health if not handled properly. In the near future, while exploring outer space, astronauts plan to wander the surfaces of unknown planets. During these explorations, dust and soil will cling to their space suits and become imbedded in the fabric. The astronauts will track moon dust and mars soil back into their living quarters. This not only will create a mess with millions of tiny air-born particles floating around, but will also be dangerous in the case that the fine particles are breathed in and become trapped in an astronaut s lungs. research center are investigating ways to remove these particles from space suits. This problem is very difficult due to the nature of the particles: They are extremely small and have jagged edges which can easily latch onto the fibers of the fabric. For the past summer, I have been involved in researching the potential problems, investigating ways to remove the particles, and conducting experiments to validate the techniques. The current technique under investigation uses piezoelectric ceramics imbedded in the fabric that vibrate and shake the particles free. The particles will be left on the planet s surface or collected a vacuum to be disposed of later. The ceramics vibrate when connected to an AC voltage supply and create a small scale motion similar to what people use at the beach to shake sand off of a beach towel. Because the particles are so small, similar to volcanic ash, caution must be taken to make sure that this technique does not further inbed them in the fabric and make removal more difficult. Only a very precise range of frequency and voltage will produce a suitable vibration. My summer project involved many experiments to determine the correct range. Analysis involved hands on experience with oscilloscopes, amplifiers, piezoelectrics, a high speed camera, microscopes and computers. perfect this technology. Someday, vibration to

  10. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... passenger or crew compartment must be suitably ventilated. Carbon monoxide concentration may not be more...

  11. The fluid mechanics of natural ventilation

    NASA Astrophysics Data System (ADS)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  12. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  13. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marman Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Allton, Charles; Jennings, Mallory; Aitchision, Lindsay

    2013-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  14. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marmon Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Alton, Charles; Jennings, Mallory; Aitchison, Lindsay

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  15. Radiation Tests of the Extravehicular Mobility Unit Space Suit for the International Space Station Using Energetic Protons. Chapter 3

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.

    2003-01-01

    Measurements using silicon detectors to characterize the radiation transmitted through the EMU space suit and a human phantom have been performed using 155 and 250 MeV proton beams at LLUMC. The beams simulate radiation encountered in space, where trapped protons having kinetic energies on the order of 100 MeV are copious. Protons with 100 MeV kinetic energy and above can penetrate many centimeters of water or other light materials, so that astronauts exposed to such energetic particles will receive doses to their internal organs. This dose can be enhanced or reduced by shielding - either from the space suit or the self-shielding of the body - but minimization of the risk depends on details of the incident particle flux (in particular the energy spectrum) and on the dose responses of the various critical organs. Data were taken to characterize the beams and to calibrate the detectors using the beam in a treatment room at LLUPTF, in preparation for an experiment with the same beams incident on detectors placed in a human phantom within the EMU suit. Nuclear interactions of high-energy protons in various materials produce a small flux of highly ionizing, low-energy secondary radiation. Secondaries are of interest for their biological effects, since they cause doses and especially dose-equivalents to increase relative to the values expected simply from ionization energy loss along the Bragg curve. Because many secondaries have very short ranges, they are best measured in passive track detectors such as CR-39. The silicon detector data presented here are intended to supplement the CR-39 data in regions where silicon has greater sensitivity, in particular the portion of the LET spectrum below 5 keV/micron. The results obtained in this study suggest that optimizing the radiation shielding properties of space suits is a formidable task. The naive assumption that adding mass can reduce risk is not supported by the data, which show that reducing the dose delivered at or

  16. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  17. Contaminants in ventilated filling boxes

    NASA Astrophysics Data System (ADS)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  18. Design and Evaluation of a Ventilated Garment for Use in Temperatures up to 200°C

    PubMed Central

    Crockford, G. W.; Hellon, R. F.

    1964-01-01

    The protection of personnel against high air and radiant temperatures is a problem that has been confronting industry for many years now, and for many industrial situations it still has not been solved. The experiments reported here were intended to determine the most suitable form of insulation for a hot entry suit for use primarily in furnace wrecking where mean radiant temperatures of 200°C. are met and where heat-reflecting garments are unsuitable due to the rapid deterioration of the reflecting surface. From a preliminary consideration of the problem it was concluded that a ventilated garment was required and that conventional ventilated garments in which air is induced to flow parallel to the body surfaces (axial ventilation) are basically unsound in design as the air is not utilized for the transfer of heat in the most efficient manner. A new form of ventilation was therefore developed in which air flows out through a permeable suit (radial ventilation). This form of ventilation produces what is called dynamic insulation, and this method of insulation, when compared with two alternative methods on a physical model, was found to be very effective. The model experiments were confirmed by comparative trials of three ventilated suits each using one of three different forms of insulation thought to be suitable for use in heat-protective clothing. Physiological measurements made on the subjects and physical measurement made on the suits confirmed that dynamic insulation is the most suitable insulation for a hot entry suit for furnace wrecking. With the air flows used in these experiments, dynamic insulation had a thermal conductance one-fifth that of conventional static insulation, and sweat losses and oral temperature rises were reduced by one-third and one-half respectively. PMID:14180476

  19. Evaluation of Carbon Dioxide Sensors for the Constellation Space Suit Life Support System for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Paul, Heather L.; Conger, Bruce C.

    2009-01-01

    This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial

  20. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  1. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  2. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  3. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...

  4. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...

  5. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...

  6. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...

  7. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...

  8. A glimpse from the inside of a space suit: What is it really like to train for an EVA?

    NASA Astrophysics Data System (ADS)

    Gast, Matthew A.; Moore, Sandra K.

    2011-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the space suit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper will take you on a journey through an astronaut's earliest experiences working in the space suit, termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a space suit.

  9. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2011-01-01

    With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  10. Physiological effects of a new racing suit for elite cross country skiers.

    PubMed

    Sperlich, B; Holmberg, H C

    2011-12-01

    The aim of this paper was to investigate the influence of the new cross country racing suit, designed for the Olympic Winter Games in Vancouver 2010, on cardio-respiratory, thermoregulatory and perceptual responses. Six elite cross country skiers (29±6 years, peak oxygen uptake 73.2±6.9 mL·min-1·kg-1) performed two exercise bouts wearing either the 2009 or the 2010 racing suit. Bouts consisted of incremental testing on roller skis (12 km·h-1 at 5° inclination; 11 km·h-1 at 6° inclination and 12 km·h-1at 8° inclination for six minutes). During increasing intensities, significantly lower values were found for oxygen uptake, minute ventilation, RER and heart rate when wearing the new suit compared to the old one (P<0.05; effect sizes: 0.21-4.00). Core temperature was lower with the new suit during steps 2 and 3 (P<0.05, effect size: 1.22-1.27). Also, mean skin temperature was lower during the last increment (P<0.05, effect size: 0.87). The new 2010 racing suit, developed specifically for the Olympic Winter Games in Vancouver 2010, demonstrated lower values for oxygen uptake, minute ventilation, heart rate, skin and core temperature, ratings of thermal and sweat sensation when compared to the 2009 racing suit.

  11. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...

  12. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...

  13. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...

  14. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...

  15. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...

  16. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  17. Assessment of Suited Reach Envelope in an Underwater Environment

    NASA Technical Reports Server (NTRS)

    Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar

    2017-01-01

    Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.

  18. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  19. Capnogram slope and ventilation dead space parameters: comparison of mainstream and sidestream techniques.

    PubMed

    Balogh, A L; Petak, F; Fodor, G H; Tolnai, J; Csorba, Z; Babik, B

    2016-07-01

    Capnography may provide useful non-invasive bedside information concerning heterogeneity in lung ventilation, ventilation-perfusion mismatching and metabolic status. Although the capnogram may be recorded by mainstream and sidestream techniques, the capnogram indices furnished by these approaches have not previously been compared systematically. Simultaneous mainstream and sidestream time and volumetric capnography was performed in anaesthetized, mechanically ventilated patients undergoing elective heart surgery. Time capnography was used to assess the phase II (SII,T) and III slopes (SIII,T). The volumetric method was applied to estimate phase II (SII,V) and III slopes (SIII,V), together with the dead space values according to the Fowler (VDF), Bohr (VDB), and Enghoff (VDE) methods and the volume of CO2 eliminated per breath ([Formula: see text]). The partial pressure of end-tidal CO2 ([Formula: see text]) was registered. Excellent correlation and good agreement were observed in SIII,T measured by the mainstream and sidestream techniques [ratio=1.05 (sem 0.16), R(2)=0.92, P<0.0001]. Although the sidestream technique significantly underestimated [Formula: see text] and overestimated SIII,V [1.32 (0.28), R(2)=0.93, P<0.0001], VDF, VDB, and VDE, the agreement between the mainstream and sidestream techniques in the difference between VDE and VDB, reflecting the intrapulmonary shunt, was excellent [0.97 (0.004), R(2)=0.92, P<0.0001]. The [Formula: see text] exhibited good correlation and mild differences between the mainstream and sidestream approaches [0.025 (0.005) kPa]. Sidestream capnography provides adequate quantitative bedside information about uneven alveolar emptying and ventilation-perfusion mismatching, because it allows reliable assessments of the phase III slope, [Formula: see text] and intrapulmonary shunt. Reliable measurement of volumetric parameters (phase II slope, dead spaces, and eliminated CO2 volumes) requires the application of a mainstream

  20. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  1. On development of an inexpensive, lightweight thermal micrometeroid garment for space suits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A lightweight and inexpensive coverlayer developed for space suits is described. Material selection, procurement, and testing, pattern design, and prototype fabrication are discussed. By using the minimum required cross section necessary for earth orbital mission, by utilizing the lightest weight materials possible, and by decreasing the use of weight costly taping a lightweight and economical thermal micrometeroid garment was developed. Simplification of manufacturing techniques and use of off-the-shelf materials helped to reduce costs.

  2. 46 CFR 111.106-15 - Ventilation of hazardous locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... its operational controls outside the ventilated space, if the system is mechanical; and (3) Have a... opening. (c) The mechanical ventilation of enclosed flammable or combustible liquid cargo handling or.... The power ventilation system must be designed to remove vapors from the bottom of the space at points...

  3. The performance of field scientists undertaking observations of early life fossils while in simulated space suit

    NASA Astrophysics Data System (ADS)

    Willson, D.; Rask, J. C.; George, S. C.; de Leon, P.; Bonaccorsi, R.; Blank, J.; Slocombe, J.; Silburn, K.; Steele, H.; Gargarno, M.; McKay, C. P.

    2014-01-01

    We conducted simulated Apollo Extravehicular Activity's (EVA) at the 3.45 Ga Australian 'Pilbara Dawn of life' (Western Australia) trail with field and non-field scientists using the University of North Dakota's NDX-1 pressurizable space suit to overview the effectiveness of scientist astronauts employing their field observation skills while looking for stromatolite fossil evidence. Off-world scientist astronauts will be faced with space suit limitations in vision, human sense perception, mobility, dexterity, the space suit fit, time limitations, and the psychological fear of death from accidents, causing physical fatigue reducing field science performance. Finding evidence of visible biosignatures for past life such as stromatolite fossils, on Mars, is a very significant discovery. Our preliminary overview trials showed that when in simulated EVAs, 25% stromatolite fossil evidence is missed with more incorrect identifications compared to ground truth surveys but providing quality characterization descriptions becomes less affected by simulated EVA limitations as the science importance of the features increases. Field scientists focused more on capturing high value characterization detail from the rock features whereas non-field scientists focused more on finding many features. We identified technologies and training to improve off-world field science performance. The data collected is also useful for NASA's "EVA performance and crew health" research program requirements but further work will be required to confirm the conclusions.

  4. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  5. A new look at ocean ventilation time scales and their uncertainties

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; Bryan, Frank O.

    2017-05-01

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracer age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26-27.2 σθ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.

  6. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2012-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  7. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2013-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  8. Shoulder and hip joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    Shoulder and hip joints for hard space suits are disclosed which are comprised of three serially connected truncated spherical sections, the ends of which converge. Ball bearings between the sections permit relative rotation. The proximal end of the first section is connected to the torso covering by a ball bearing and the distal end of the outermost section is connected to the elbow or thigh covering by a ball bearing. The sections are equi-angular and this alleviates lockup, the condition where the distal end of the joint leaves the plane in which the user is attempting to flex. The axes of rotation of the bearings and the bearing mid planes are arranged to intersect in a particular manner that provides the joint with a minimum envelope. In one embodiment, the races of the bearing between the innermost section and the second section is partially within the inner race of the bearing between the torso and the innermost spherical section further to reduce bulk.

  9. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.

    PubMed

    Ivanov, Vadim A

    2016-02-01

    The reduction of instrumental dead space is a recognized approach to preventing ventilation-induced lung injury in premature infants. However, there are no published data regarding the effectiveness of instrumental dead-space reduction in endotracheal tube (ETT) connectors. We tested the impact of the Y-piece/ETT connector pairs with reduced instrumental dead space on CO2 elimination in a model of the premature neonate lung. The standard ETT connector was compared with a low-dead-space ETT connector and with a standard connector equipped with an insert. We compared the setups by measuring the CO2 elimination rate in an artificial lung ventilated via the connectors. The lung was connected to a ventilator via a standard circuit, a 2.5-mm ETT, and one of the connectors under investigation. The ventilator was run in volume-controlled continuous mandatory ventilation mode. The low-dead-space ETT connector/Y-piece and insert-equipped standard connector/Y-piece pairs had instrumental dead space reduced by 36 and 67%, respectively. With set tidal volumes (VT) of 2.5, 5, and 10 mL, in comparison with the standard ETT connector, the low-dead-space connector reduced CO2 elimination time by 4.5% (P < .05), 4.4% (P < .01), and 7.1% (not significant), respectively. The insert-equipped standard connector reduced CO2 elimination time by 13.5, 25.1, and 16.1% (all P < .01). The low-dead-space connector increased inspiratory resistance by 17.8% (P < .01), 9.6% (P < .05), and 5.0% (not significant); the insert-equipped standard connector increased inspiratory resistance by 9.1, 8.4, and 5.9% (all not significant). The low-dead-space connector decreased expiratory resistance by 6.8% (P < .01) and 1.8% (not significant) and increased it by 1.4% (not significant); the insert-equipped standard connector decreased expiratory resistance by 1.5 and 1% and increased it by 1% (all not significant). The low-dead-space connector increased work of breathing by 4.7% (P < .01), 3.8% (P < .01), and

  10. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  11. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  12. Pressure-constrained, reduced-DOF, interconnected parallel manipulators with applications to space suit design

    NASA Astrophysics Data System (ADS)

    Jacobs, Shane Earl

    This dissertation presents the concept of a Morphing Upper Torso, an innovative pressure suit design that incorporates robotic elements to enable a resizable, highly mobile and easy to don/doff spacesuit. The torso is modeled as a system of interconnected, pressure-constrained, reduced-DOF, wire-actuated parallel manipulators, that enable the dimensions of the suit to be reconfigured to match the wearer. The kinematics, dynamics and control of wire-actuated manipulators are derived and simulated, along with the Jacobian transforms, which relate the total twist vector of the system to the vector of actuator velocities. Tools are developed that allow calculation of the workspace for both single and interconnected reduced-DOF robots of this type, using knowledge of the link lengths. The forward kinematics and statics equations are combined and solved to produce the pose of the platforms along with the link tensions. These tools allow analysis of the full Morphing Upper Torso design, in which the back hatch of a rear-entry torso is interconnected with the waist ring, helmet ring and two scye bearings. Half-scale and full-scale experimental models are used along with analytical models to examine the feasibility of this novel space suit concept. The analytical and experimental results demonstrate that the torso could be expanded to facilitate donning and doffng, and then contracted to match different wearer's body dimensions. Using the system of interconnected parallel manipulators, suit components can be accurately repositioned to different desired configurations. The demonstrated feasibility of the Morphing Upper Torso concept makes it an exciting candidate for inclusion in a future planetary suit architecture.

  13. The Fluid Mechanics of Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Linden, P. F.

    1999-01-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

  14. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  15. Reach Envelope and Field of Vision Quantification in Mark III Space Suit Using Delaunay Triangulation

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Thaxton, Sherry S.; Onady, Elizabeth A.; Rajulu, Sudhakar L.

    2006-01-01

    The Science Crew Operations and Utility Testbed (SCOUT) project is focused on the development of a rover vehicle that can be utilized by two crewmembers during extra vehicular activities (EVAs) on the moon and Mars. The current SCOUT vehicle can transport two suited astronauts riding in open cockpit seats. Among the aspects currently being developed is the cockpit design and layout. This process includes the identification of possible locations for a socket to which a crewmember could connect a portable life support system (PLSS) for recharging power, air, and cooling while seated in the vehicle. The spaces in which controls and connectors may be situated within the vehicle are constrained by the reach and vision capabilities of the suited crewmembers. Accordingly, quantification of the volumes within which suited crewmembers can both see and reach relative to the vehicle represents important information during the design process.

  16. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  17. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    PubMed

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  18. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...

  19. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...

  20. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...

  1. ASTRONAUT GLENN, JOHN - MERCURY SPACE SUIT

    NASA Image and Video Library

    1962-02-20

    S62-00965 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., finishes suiting up, and prepares for the launch of his Mercury-Atlas 6 (MA-6) spacecraft. The MA-6 ?Friendship 7? mission marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  2. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  3. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  4. Human factors in space station architecture 2. EVA access facility: A comparative analysis of 4 concepts for on-orbit space suit servicing

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Bussolari, Steven

    1987-01-01

    Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.

  5. A new look at ocean ventilation time scales and their uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  6. A new look at ocean ventilation time scales and their uncertainties

    DOE PAGES

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; ...

    2017-03-17

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  7. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  8. My Space- a collaboration between Arts & Science to create a suite of informal interactive public engagement initiatives.

    NASA Astrophysics Data System (ADS)

    Shaw, Niamh, , Dr.; McSweeney, Clair; Smith, Niall, , Dr.; O'Neill, Stephanie; Foley, Cathy; Crawley, Joanna; Phelan, Ronan; Colley, Dan; Henderson, Clare; Conroy, Lorraine

    2015-04-01

    A suite of informal interactive public engagement initiatives, entitled 'MySpace' was created, to promote the importance of Earth science and Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space and Earth Science industries. Site visits to research centres in Ireland & abroad, interviews with scientists, engineers, and former astronauts were conducted over a 6 month period. A suite of performance pieces emerged from this development phase, based on Dr. Shaw's personal documented journey and the dissemination of her research. These included: 1. 'To Space'- A live multimedia theatre performance aimed at the general public & young adult. Initially presented as a 'Work In Progress' event at The Festival of Curiosity, the full theatre show 'To Space' premiered at Science Gallery, Dublin as part of Tiger Dublin Fringe Arts Festival. Response to the piece was very strong, indicated by audience response, box office sales and theatre reviews in national press and online. A national and international tour is in place for 2015. To Space was performed a total of 10 times and was seen by 680 audiences. 2. An adapted piece for 13-17 year old students -'ToSpace for Secondary Schools'- to increase awareness of Ireland's involvement in Space Exploration & to encourage school leavers to dream big. This show toured nationally as part of World Space week and Science week events in conjunction with ESERO Ireland, CIT Blackrock Castle Observatory, Cork, Armagh Planetarium & Dunsink Observatory. It was performed 12 times and was seen by 570 students. 3. 'My Place in Space', created for families from the very old (60 +) to the very young (3yrs +), this highly interactive workshop highlighted the appeal of science through the wonders of our planet and its place in Space. Presented at Festival of Curiosity, the Mallow Science Fair and at Science week 2014, this

  9. Design and Testing of a Variable Pressure Regulator for the Constellation Space Suit

    NASA Technical Reports Server (NTRS)

    Gill, Larry; Campbell, Colin

    2008-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.

  10. Development of metamodels for predicting aerosol dispersion in ventilated spaces

    NASA Astrophysics Data System (ADS)

    Hoque, Shamia; Farouk, Bakhtier; Haas, Charles N.

    2011-04-01

    Artificial neural network (ANN) based metamodels were developed to describe the relationship between the design variables and their effects on the dispersion of aerosols in a ventilated space. A Hammersley sequence sampling (HSS) technique was employed to efficiently explore the multi-parameter design space and to build numerical simulation scenarios. A detailed computational fluid dynamics (CFD) model was applied to simulate these scenarios. The results derived from the CFD simulations were used to train and test the metamodels. Feed forward ANN's were developed to map the relationship between the inputs and the outputs. The predictive ability of the neural network based metamodels was compared to linear and quadratic metamodels also derived from the same CFD simulation results. The ANN based metamodel performed well in predicting the independent data sets including data generated at the boundaries. Sensitivity analysis showed that particle tracking time to residence time and the location of input and output with relation to the height of the room had more impact than the other dimensionless groups on particle behavior.

  11. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for sleeping rooms, washrooms, toilet rooms, hospital spaces, and messrooms, these spaces must be supplied with...

  12. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for sleeping rooms, washrooms, toilet rooms, hospital spaces, and messrooms, these spaces must be supplied with...

  13. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for sleeping rooms, washrooms, toilet rooms, hospital spaces, and messrooms, these spaces must be supplied with...

  14. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for sleeping rooms, washrooms, toilet rooms, hospital spaces, and messrooms, these spaces must be supplied with...

  15. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for sleeping rooms, washrooms, toilet rooms, hospital spaces, and messrooms, these spaces must be supplied with...

  16. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) ofmore » $$0.52/ft{sup 2} in climate zone 14, followed by $$0.32/ft{sup 2} in climate zone 16 and $$0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a

  17. Protective ventilation in experimental acute respiratory distress syndrome after ventilator-induced lung injury: a randomized controlled trial.

    PubMed

    Uttman, L; Bitzén, U; De Robertis, E; Enoksson, J; Johansson, L; Jonson, B

    2012-10-01

    Low tidal volume (V(T)), PEEP, and low plateau pressure (P(PLAT)) are lung protective during acute respiratory distress syndrome (ARDS). This study tested the hypothesis that the aspiration of dead space (ASPIDS) together with computer simulation can help maintain gas exchange at these settings, thus promoting protection of the lungs. ARDS was induced in pigs using surfactant perturbation plus an injurious ventilation strategy. One group then underwent 24 h protective ventilation, while control groups were ventilated using a conventional ventilation strategy at either high or low pressure. Pressure-volume curves (P(el)/V), blood gases, and haemodynamics were studied at 0, 4, 8, 16, and 24 h after the induction of ARDS and lung histology was evaluated. The P(el)/V curves showed improvements in the protective strategy group and deterioration in both control groups. In the protective group, when respiratory rate (RR) was ≈ 60 bpm, better oxygenation and reduced shunt were found. Histological damage was significantly more severe in the high-pressure group. There were no differences in venous oxygen saturation and pulmonary vascular resistance between the groups. The protective ventilation strategy of adequate pH or PaCO2 with minimal V(T), and high/safe P(PLAT) resulting in high PEEP was based on the avoidance of known lung-damaging phenomena. The approach is based upon the optimization of V(T), RR, PEEP, I/E, and dead space. This study does not lend itself to conclusions about the independent role of each of these features. However, dead space reduction is fundamental for achieving minimal V(T) at high RR. Classical physiology is applicable at high RR. Computer simulation optimizes ventilation and limiting of dead space using ASPIDS. Inspiratory P(el)/V curves recorded from PEEP or, even better, expiratory P(el)/V curves allow monitoring in ARDS.

  18. Ventilation.

    PubMed

    Turner, W A; Bearg, D W; Brennan, T

    1995-01-01

    This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.

  19. Gemini 7 prime crew during suiting up procedures at Launch Complex 16

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr. (left), Gemini 7 prime crew pilot, talks with NASA space suit technician Clyde Teague during suiting up procedures at Launch Complex 16, Kennedy Space Center. Lovell wears the new lightweight space suit planned for use during the Gemini 7 mission (61756); Astronaut Frank Borman, comand pilot of the Gemini 7 space flight, undergoes suiting up operations in Launch Complex 16 during prelaunch countdown. Medical biosensors are attached to his scalp (61757).

  20. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  1. Comparison of different coil positions for ventilation monitoring with contact-less magnetic impedance measurements

    NASA Astrophysics Data System (ADS)

    Cordes, A.; Pollig, D.; Leonhardt, S.

    2010-04-01

    For monitoring the health status of individuals, proper monitoring of ventilation is desirable. Therefore, a continuous measurement technique is an advantage for many patients since it allows personal home care scenarios. As an example, monitoring of elderly people at home could enable them to live in their familiar environment on their own with the safety of a continuous monitoring. Therefore, a measurement technique without the restriction of mobility is required. Since it is possible to monitor ventilation with magnetic impedance measurements without conductive contact, this technique is well suited for the mentioned scenario. Integrated in a chair, a person's health state could be monitored in many situations, e.g. during meals, while watching TV or reading a book. In this paper, we compare different positions of coil arrays for a magnetic impedance measurement system integrated in a chair in order to monitor ventilation continuously. For limiting the costs and technical complexity of the magnetic impedance measurement system, we have a focus on coil configurations with one RF channel. To limit the needed space and thickness of the array in the backrest, planar gradiometer coil setups are investigated. All measurements will be performed with a new developed portable magnetic impedance measurement system and a standard office chair.

  2. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    NASA Astrophysics Data System (ADS)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  3. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  4. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  5. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  6. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  7. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  8. Continuous distributions of specific ventilation recovered from inert gas washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.

    1978-01-01

    A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.

  9. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and shall serve no other space. Weather cowls shall be provided with a double layer of wire screen of... temperature below 100 °F. with 88 °F. weather air. Mechanical cooling may be used where ventilation... 130 °F. with an assumed outside temperature of 115 °F. (2) Ventilation supply weather openings shall...

  10. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and shall serve no other space. Weather cowls shall be provided with a double layer of wire screen of... temperature below 100 °F. with 88 °F. weather air. Mechanical cooling may be used where ventilation... 130 °F. with an assumed outside temperature of 115 °F. (2) Ventilation supply weather openings shall...

  11. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and shall serve no other space. Weather cowls shall be provided with a double layer of wire screen of... temperature below 100 °F. with 88 °F. weather air. Mechanical cooling may be used where ventilation... 130 °F. with an assumed outside temperature of 115 °F. (2) Ventilation supply weather openings shall...

  12. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and shall serve no other space. Weather cowls shall be provided with a double layer of wire screen of... temperature below 100 °F. with 88 °F. weather air. Mechanical cooling may be used where ventilation... 130 °F. with an assumed outside temperature of 115 °F. (2) Ventilation supply weather openings shall...

  13. Inner Space and Outer Space: Pressure Suits & Life Support Systems for Space Workers

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce

    2004-01-01

    This slide presentation presents an overview of work system requirements, extravehicular activity system evolution, key issues, future needs, and a summary. Key issues include pressure suits, life support systems, system integration, biomedical requirements, and work and mobility aids.

  14. Torso sizing ring construction for hard space suit

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    A hard suit for use in space or diving applications having an adjustable length torso covering that will fit a large variety of wearers is described. The torso covering comprises an upper section and a lower section which interconnect so that the covering will fit wearers with short torsos. One or more sizing rings may be inserted between the upper and lower sections to accommodate larger torso sizes as required. Since access of the astronaut to the torso covering is preferably through an opening in the back of the upper section (which is closed off by the backpack), the rings slant upward-forward from the lower edge of the opening. The lower edge of the upper covering section has a coupler which slants upward-forward from the lower edge of the back opening. The lower torso section has a similarly slanted coupler which may interfit with the upper section coupler to accommodate the smallest torso size. One or more sizing rings may be inserted between the coupler sections of the upper and lower torso sections to accommodate larger torsos. Each ring has an upper coupler which may interfit with the upper section coupler and a lower coupler which may interfit with the lower section coupler.

  15. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  16. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  17. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  18. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  19. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  20. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  1. 46 CFR 32.56-60 - Ventilation ducts-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Ventilation ducts-T/ALL. 32.56-60 Section 32.56-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-60 Ventilation ducts—T/ALL. (a) Each duct for ventilation of Category A machinery spaces that...

  2. 46 CFR 32.56-60 - Ventilation ducts-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation ducts-T/ALL. 32.56-60 Section 32.56-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-60 Ventilation ducts—T/ALL. (a) Each duct for ventilation of Category A machinery spaces that...

  3. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  4. Special "space" suit for the Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1965-05-05

    Special "space" suit for the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator in his paper "Discussion of Existing and Planned Simulators for Space Research," "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center

  5. Astronaut Fred Haise - Suiting Room - Prelaunch - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34851 (11 April 1970) --- A space suit technician talks with astronaut Fred W. Haise Jr., lunar module pilot for NASA's Apollo 13 mission, during suiting up procedures at Kennedy Space Center (KSC). Other members of the crew are astronauts James A. Lovell Jr., commander, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II as a member of the crew when it was learned he had been exposed to measles.

  6. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  7. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  8. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  9. STS-76 Payload Cmdr Ronald Sega suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Payload Commander Ronald M. Sega is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The third docking between the Russian Space Station Mir and the U.S. Space Shuttle marks the second trip into space for Sega, who recently served a five-month assignment in Russia as operations director for NASA activities there. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  10. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  11. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  12. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  13. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  14. SY Tank Farm ventilation isolation option risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, T.B.; Morales, S.D.

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  15. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  17. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  18. An Ergonomic Evaluation of the Extravehicular Mobility Unit (EMU) Space Suit Hard Upper Torso (HUT) Size Effect on Metabolic, Mobility, and Strength Performance

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Harvill, Lauren; England, Scott; Young, Karen; Norcross, Jason; Rajulu, Sudhakar

    2014-01-01

    The objective of this project was to assess the performance differences between a nominally sized Extravehicular Mobility Unit (EMU) space suit and a nominal +1 (plus) sized EMU. Method: This study evaluated suit size conditions by using metabolic cost, arm mobility, and arm strength as performance metrics. Results: Differences between the suit sizes were found only in shoulder extension strength being 15.8% greater for the plus size. Discussion: While this study was able to identify motions and activities that were considered to be practically or statistically different, it does not signify that use of a plus sized suit should be prohibited. Further testing would be required that either pertained to a particular mission critical task or better simulates a microgravity environment that the EMU suit was designed to work in.

  19. STS-70 Commander Terence 'Tom' Henricks suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Commander Terence 'Tom' Henricks is donning his launch/entry suit in the Operations and Checkout Building with help from a suit technician. Henricks, who is about to make his third trip into space, and four crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  20. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gas-safe space in the cargo area. (4) Each space that contains inert gas generators, except main...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... following must have a supply-type mechanical ventilation system: (1) Each space that contains electric...

  1. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  2. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  3. Capnogram slope and ventilation dead space parameters: comparison of mainstream and sidestream techniques

    PubMed Central

    Balogh, A. L.; Petak, F.; Fodor, G. H.; Tolnai, J.; Csorba, Z.; Babik, B.

    2016-01-01

    Background Capnography may provide useful non-invasive bedside information concerning heterogeneity in lung ventilation, ventilation–perfusion mismatching and metabolic status. Although the capnogram may be recorded by mainstream and sidestream techniques, the capnogram indices furnished by these approaches have not previously been compared systematically. Methods Simultaneous mainstream and sidestream time and volumetric capnography was performed in anaesthetized, mechanically ventilated patients undergoing elective heart surgery. Time capnography was used to assess the phase II (SII,T) and III slopes (SIII,T). The volumetric method was applied to estimate phase II (SII,V) and III slopes (SIII,V), together with the dead space values according to the Fowler (VDF), Bohr (VDB), and Enghoff (VDE) methods and the volume of CO2 eliminated per breath (VCO2). The partial pressure of end-tidal CO2 (PETCO2) was registered. Results Excellent correlation and good agreement were observed in SIII,T measured by the mainstream and sidestream techniques [ratio=1.05 (sem 0.16), R2=0.92, P<0.0001]. Although the sidestream technique significantly underestimated VCO2 and overestimated SIII,V [1.32 (0.28), R2=0.93, P<0.0001], VDF, VDB, and VDE, the agreement between the mainstream and sidestream techniques in the difference between VDE and VDB, reflecting the intrapulmonary shunt, was excellent [0.97 (0.004), R2=0.92, P<0.0001]. The PETCO2 exhibited good correlation and mild differences between the mainstream and sidestream approaches [0.025 (0.005) kPa]. Conclusions Sidestream capnography provides adequate quantitative bedside information about uneven alveolar emptying and ventilation–perfusion mismatching, because it allows reliable assessments of the phase III slope, PETCO2 and intrapulmonary shunt. Reliable measurement of volumetric parameters (phase II slope, dead spaces, and eliminated CO2 volumes) requires the application of a mainstream device. PMID:27317710

  4. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  5. EV space suit gloves (passive)

    NASA Technical Reports Server (NTRS)

    Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.

    1975-01-01

    A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.

  6. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  7. STS-82 Mission Specialist Steven L. Smith Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  8. STS-86 Mission Specialist David Wolf suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf gets assistance from a suit technician while donning his orange launch and entry suit in the Operations and Checkout Building. This will be Wolfs second flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the rest of the STS-86 crew. Wolf is expected to live and work aboard the Russian space station for about four months.

  9. Propellant Handler's Ensemble (PHE) Aka Self-Contained Atmospheric Protective Ensemble (SCAPE), Ventilator Improvement Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The overall objective for this project is to evaluate two candidate alternatives for the existing Propellant Handler's Ensemble (PHE) escape ventilator. The new candidate ventilators use newer technology with similar quantities of air at approximately half the weight of the current ventilator. Ventilators are typically used to ingress/egress a hazardous work area when hard line air is provided at the work area but the hose is not long enough to get the operator to and from the staging area to the work area. The intent of this test is to verify that the new ventilators perform as well as or better than the current ventilators in maintaining proper oxygen (O2) and carbon dioxide (CO2) levels in the PHE during a typical use for the rated time period (10 minutes). We will evaluate two new units comparing them to the existing unit. Subjects will wear the Category I version of the Propellant Handler's Ensemble with the rear suit pouch snapped.

  10. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  11. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  12. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  13. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  14. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  15. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  16. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  17. Natural ventilation for the prevention of airborne contagion.

    PubMed

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. Opening windows and doors maximises natural ventilation so that the risk of airborne contagion is much lower than with costly, maintenance-requiring mechanical ventilation systems. Old-fashioned clinical areas with high ceilings and large windows provide greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion.

  18. Extravehicular Mobility Unit Penetration Probability from Micrometeoroids and Orbital Debris: Revised Analytical Model and Potential Space Suit Improvements

    NASA Technical Reports Server (NTRS)

    Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.

    2007-01-01

    The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.

  19. Russian Space Suits ready

    NASA Image and Video Library

    2014-08-17

    ISS040-E-095609 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.

  20. Russian Space Suits ready

    NASA Image and Video Library

    2014-08-17

    ISS040-E-095619 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.

  1. Russian Space Suits ready

    NASA Image and Video Library

    2014-08-17

    ISS040-E-095615 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.

  2. Russian Space Suits ready

    NASA Image and Video Library

    2014-08-17

    ISS040-E-095617 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.

  3. Russian Space Suits ready

    NASA Image and Video Library

    2014-08-17

    ISS040-E-095612 (17 Aug. 2014) --- Unoccupied Russian Orlan spacesuits for Russian cosmonauts Oleg Artemyev (blue stripes) and Alexander Skvortsov (red stripes), both Expedition 40 flight engineers, are pictured in the Pirs Docking Compartment of the International Space Station on the eve of the spacewalk scheduled for Aug. 18, 2014.

  4. Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.

    PubMed

    Wang, P M; Lai-Fook, S J

    1997-01-01

    We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.

  5. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  7. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  8. Anaesthesia ventilators.

    PubMed

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  9. A tracer study of ventilation in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Postlethwaite, C. F.; Rohling, E. J.; Jenkins, W. J.; Walker, C. F.

    2005-06-01

    During the Circulation Research in East Asian Marginal Seas (CREAMS) summer cruises in 1999, a suite of samples was collected for tracer analysis. Oxygen isotopes combined with tritium-helium ventilation timescales and noble gas measurements give unique insights into the ventilation of water masses in the Japan/East Sea (JES). In particular, noble gases and oxygen isotopes are indicators of brine rejection, which may assist in explaining the recent changes observed in the ventilation of the JES. Oxygen isotope data presented here indicate that both thermally driven convection and brine rejection have played significant roles in deep-water formation but that brine rejection is unlikely to be a significant contributor at the moment. A 6-box ventilation model of the JES, calibrated with tritium and helium-3 measurements, performed better when a significant decrease of dense-water formation rates in the mid-1960s was incorporated. However, the model calculations suggest that Japan Sea Intermediate Water formation is still occurring. Subduction of sea-ice melt water may be a significant ventilation mechanism for this water mass, based on an argon saturation minimum at the recently ventilated salinity minimum in the northwestern sector of the JES. The salinity and oxygen isotope budgets imply a potential bottom-water formation rate of 3.97±0.89×10 12 m 3 yr -1 due to brine rejection, which could account for a time averaged fraction of between 25% and 35% of the ventilation of subsurface water formation in the JES.

  10. The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2008-01-01

    The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.

  11. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  12. Iatrogenic pneumothorax related to mechanical ventilation

    PubMed Central

    Hsu, Chien-Wei; Sun, Shu-Fen

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397

  13. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... openings to accommodations, service, control station, and other gas-safe spaces. (c) Each ventilation system under § 154.1200 (a) and (b)(1) must change the air in that space and its adjoining trunks at... top of each space that personnel enter during cargo handling operations. (b) The discharge end of each...

  14. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and

  15. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    PubMed

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P < .001), but it was not related to the patient profile, the ventilatory mode, or the type of ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  16. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2010-01-01

    In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.

  17. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2011-01-01

    In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.

  18. 18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH MISCELLANEOUS SUIT COMPONENTS AND SUPPLIES. TERRY WEST TO LEFT, AND PAUL DUMBACHER TO RIGHT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  19. Small dead space heat and moisture exchangers do not impede gas exchange during noninvasive ventilation: a comparison with a heated humidifier.

    PubMed

    Boyer, Alexandre; Vargas, Frederic; Hilbert, Gilles; Gruson, Didier; Mousset-Hovaere, Maud; Castaing, Yves; Dreyfuss, Didier; Ricard, Jean Damien

    2010-08-01

    Adverse respiratory and gasometrical effects have been described in patients with acute respiratory failure (ARF) undergoing noninvasive ventilation (NIV) with standard heat and moisture exchangers (HME). We decided to evaluate respiratory parameters and arterial blood gases (ABG) of patients during NIV with small dead space HME compared with heated humidifier (HH). Prospective randomized crossover study. A 16-bed medical intensive care unit (ICU). Fifty patients receiving NIV for ARF. The effects of HME and HH on respiratory rate, minute ventilation, EtCO(2), oxygen saturation, airway occlusion pressure at 0.1 s, ABG, and comfort perception were compared during two randomly determined NIV periods of 30 min. The relative impact of HME and HH on these parameters was successively compared with or without addition of a flex tube (40 and 10 patients, respectively). No difference was observed between HME and HH regarding any of the studied parameters, whether or not a flex tube was added. If one decides to humidify patients' airways during NIV, one may do so with small dead space HME or HH without altering respiratory parameters.

  20. STS-108 Pilot Kelly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.

  1. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  2. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  3. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  4. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  5. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  6. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  7. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Blackledge, Christopher; Ferrer, Mike; Margerum, Sarah

    2009-01-01

    subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the

  8. [A young child with respiratory acidosis and hypoxia from mechanical ventilation with equipment made for adults].

    PubMed

    Joor, Fleur; Markhorst, Dick G; Kneyber, Martin C J; van Heerde, Marc

    2011-01-01

    During mechanical ventilation of young children, problems may arise due to the additional dead space of the ventilation circuit. This may lead to respiratory acidosis and even hypoxia in the child. A 3-month-old boy suffered from frequent apnoea. He was mechanically ventilated for this. Shortly after its initiation, he developed severe respiratory acidosis, hypoxemia and circulatory insufficiency. This was due to a large additional dead space caused by the use of equipment components made for adults. After he was switched to a circuit suitable for himself, he recovered rapidly. As a rule of thumb, an additional dead space of 1.5-2 ml/kg body weight is acceptable in young children. Emergency wards for young children should have specific equipment to mechanically ventilate them, and have a protocol paying explicit attention to the dead space.

  9. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  10. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  11. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.

  12. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke pose for a photograph after they don their Russian Sokol suits prior to the launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while American spaceflight participant Richard Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke dons his Russian Sokol suit hours before he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, dons his Russian Sokol suit hours before he and Flight Engineer Yuri V. Lonchakov, second from left, and Expedition 18 Commander Michael Fincke launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov dons his Russian Sokol suit hours before he and Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke don their Russian Sokol suits hours before they and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  18. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... space surrounding tanks whose manhole openings are below the weather deck in accordance with § 38.05-10... containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... located at points where concentrations of vapors may be expected. Ventilation from the weather deck shall...

  19. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... space surrounding tanks whose manhole openings are below the weather deck in accordance with § 38.05-10... containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... located at points where concentrations of vapors may be expected. Ventilation from the weather deck shall...

  20. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... space surrounding tanks whose manhole openings are below the weather deck in accordance with § 38.05-10... containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... located at points where concentrations of vapors may be expected. Ventilation from the weather deck shall...

  1. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... space surrounding tanks whose manhole openings are below the weather deck in accordance with § 38.05-10... containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... located at points where concentrations of vapors may be expected. Ventilation from the weather deck shall...

  2. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  3. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  4. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. STS-71 Pilot Charles J. Precourt suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Pilot Charles J. Precourt gets a helping hand from a suit technician as he dons his launch/entry suit in the Operations and Checkout Building. About to embark on his second spaceflight, Precourt and six fellow crew members will shortly depart for Launch Pad 39A, where the Space Shuttle Atlantis is poised for a third liftoff attempt at 3:32 p.m. EDT.

  6. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  7. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    PubMed

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  8. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  9. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  10. STS-108 Mission Specialist Daniel M. Tani final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Daniel M. Tani final suit checkout KSC-01PD-1717 KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani waves as he undergoes final suit check before launch on Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  11. STS-108 Mission Specialist Linda A. Godwin final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Linda A. Godwin final suit checkout KSC-01PD-1720 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin undergoes final suit check before launch on mission STS-108 Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  12. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, smile for the camera after they had their Russian Sokol suits pressure checked in preparation for launch onboard the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke smiles for the camera after he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott had their Russian Sokol suits pressure checked prior to launching in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  15. Cosmonaut Sergei Krikalev receives assistance from suit technician

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  16. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.

  17. 14 CFR 27.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 27.831 Section 27.831... the presence of excessive quantities of fuel fumes and carbon monoxide. (b) The concentration of carbon monoxide may not exceed one part in 20,000 parts of air during forward flight or hovering in still...

  18. Comparisons of three anti-G suit configurations during long duration, low onset, +Gz

    NASA Technical Reports Server (NTRS)

    Stegmann, B. J.; Krutz, R. W.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    Little physiologic data exist on the effects of long duration, low onset, hypergravity (+G). Space shuttle crewmembers are subjected to low +G forces (less than +3G) for upwards of 30 minutes during reentry. A similar reentry profile is predicted for the National Aerospace Plane (NASP). The physiologic effects of this acceleration stress are compounded by the loss of body water experienced during microgravity. Currently, a standard 5 bladder anti-G suit is being used during shuttle reentry. There have been complaints of discomfort using this suit, mainly due to the abdominal bladder. This study compared the effectiveness of three anti-G suit configurations in volume depleted subjects during a simulated space shuttle reentry profile. Methods: Seven male subjects were given intravenous Lasix in a dose from 20-40 mg to induce a total body weight loss of 3 plus or minus 1.5 percent. Approximately six hours after the injection, the subjects donned one of three anti-G suits - a standard 5 bladder anti-G suit, an extended coverage anti-G suit (the advanced technology anti-G suit or ATAGS), or an extended coverage anti-G suit without an abdominal bladder (the reentry anti-G suit or REAGS). All subjects were exposed to a simulated space shuttle reentry profile. Non-invasive eye-level blood pressure (ELBP) was monitored throughout the +G exposure. When systolic ELBP dropped below 70 mmHg, the anti-G suit was inflated in 0.5 psig increments to the pressure required to maintain 70 mmHg ELBP. Each subject rode with all three suits. Comparisons were made between the final pressure required in each suit to maintain ELBP and subjective reports of comfort. Results: The mean final suit pressure required to maintain ELBP was 1.1 psi, in both the ATAGS and REAGS versus 1.8 psi in the standard suit. In addition, the subjects rated the REAGS suit highest on the comfort scale, citing the absence of the abdominal bladder as the main reason. Conclusions: Overall, the REAGS suit was the

  19. STS-77 MS Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 Mission Specialist Andrew S. W. Thomas finishes donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. A native of South Australia, the rookie astronaut joins a crew of five veterans on the fourth Shuttle flight of 1996. They will depart shortly for Launch Pad 39B, where the Space Shuttle Endeavour is undergoing final preparations for liftoff during a two-and-a-half hour launch window opening at 6:30 a.m. EDT, May 19.

  20. Optimal ventilator strategies for trauma-related ARDS.

    PubMed

    Goatly, Giles; Guidozzi, N; Khan, M

    2018-03-29

    Acute respiratory distress syndrome (ARDS) was first described in the 1960s and has become a major area of research due to the mortality and morbidity associated with it. ARDS is currently defined using the Berlin Consensus; however, this is not wholly applicable for trauma-related ARDS. A systematic review of the literature was undertaken using the Preferred Reporting for Systematic Reviews and Meta Analyses methodology. The Ovid Medline, Web of Science and PubMed online databases were interrogated for papers published between 1 January 1995 and 31 December 2017. The literature search yielded a total of 64 papers that fulfilled the search criteria. Despite decades of dedicated research into different treatment modalities, ARDS continues to carry a high burden of mortality. The ARDS definitions laid out in the Berlin consensus are not entirely suited to trauma. While trauma-related ARDS represents a small portion of the available research, the evidence continues to favour low tidal volume ventilation as the benchmark for current practice. Positive end expiratory ventilation and airway pressure release ventilation in trauma cohorts may be beneficial; however, the evidence to date does not show this. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Impact of the Mk VI SkinSuit on skin microbiota of terrestrial volunteers and an International Space Station-bound astronaut.

    PubMed

    Stabler, Richard A; Rosado, Helena; Doyle, Ronan; Negus, David; Carvil, Philip A; Kristjánsson, Juan G; Green, David A; Franco-Cendejas, Rafael; Davies, Cadi; Mogensen, Andreas; Scott, Jonathan; Taylor, Peter W

    2017-01-01

    Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

  2. Some problems of selection and evaluation of the Martian suit enclosure concept

    NASA Astrophysics Data System (ADS)

    Abramov, Isaak; Moiseyev, Nikolay; Stoklitsky, Anatoly

    2005-12-01

    One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface. The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means. However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency. The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc. The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface. The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing "Orlan" type suit. The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.

  3. Wakata wearing Penguin-3 suit in JPM

    NASA Image and Video Library

    2009-07-12

    ISS020-E-019078 (12 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  4. 9 CFR 91.21 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... motors and fans shall be available on board, for replacement or repair of the ventilation system during the voyage. A spare motor and fan of an approved type in working order shall be aboard the vessel for each type of motor or fan used. Net pen space in any compartment shall not exceed 80 percent of the...

  5. GT-6 PREFLIGHT ACTIVITY (LEAVE SUITING TRAILER) - ASTRONAUT WALTER M. SCHIRRA, JR. - SUIT

    NASA Image and Video Library

    1965-12-15

    S65-59974 (15 Dec. 1965) --- Astronauts Walter M. Schirra Jr. (leading), command pilot; and Thomas P. Stafford, pilot, leave the suiting trailer at Launch Complex 16 during the Gemini-6 prelaunch countdown at Cape Kennedy, Florida. They entered a special transport van which carried them to Pad 19 and their spacecraft. Gemini-6 lifted off at 8:37 a.m. (EST) on Dec. 15, 1965. Photo credit: NASA or National Aeronautics and Space Administration

  6. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    PubMed

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  8. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke, foreground, has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with American spaceflight participant Richard Garriott and Expedition 18 Flight Engineer Yuri V. Lonchakov, right, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  9. Expedition 18 Suit Pressure Check

    NASA Image and Video Library

    2008-10-11

    American Spaceflight Participant Richard Garriott has his Russian Sokol suit pressure checked prior to launching in the Soyuz TMA-13 spacecraft with Expedition 18 Commander Michael Fincke and Flight Engineer Yury V. Lonchakov, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24, 2008 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. Physiologic effects of alveolar recruitment and inspiratory pauses during moderately-high-frequency ventilation delivered by a conventional ventilator in a severe lung injury model

    PubMed Central

    Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes; Gomes, Susimeire; Amato, Marcelo Britto Passos; Park, Marcelo

    2017-01-01

    Background and aims To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT) during moderately-high-frequency positive pressure ventilation (MHFPPV) delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS). Methods Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed. Then, animals were ventilated on a conventional mechanical ventilator with a respiratory rate (RR) = 60 breaths/minute and PEEP titrated according to ARDS Network table. The first two steps consisted of a randomized order of inspiratory pauses of 10 and 30% of inspiratory time. In final step, we removed the inspiratory pause and titrated PEEP, after lung recruitment, with the aid of electrical impedance tomography. At each step, PaCO2 was allowed to stabilize between 57–63 mmHg for 30 minutes. Results The step with RR of 60 after lung recruitment had the highest PEEP when compared with all other steps (17 [16,19] vs 14 [10, 17]cmH2O), but had lower driving pressures (13 [13,11] vs 16 [14, 17]cmH2O), higher P/F ratios (212 [191,243] vs 141 [105, 184] mmHg), lower shunt (23 [20, 23] vs 32 [27, 49]%), lower dead space ventilation (10 [0, 15] vs 30 [20, 37]%), and a more homogeneous alveolar ventilation distribution. There were no detrimental effects in terms of lung mechanics, hemodynamics, or gas exchange. Neither the addition of inspiratory pauses or the alveolar recruitment maneuver followed by decremental PEEP titration resulted in further reductions in VT. Conclusions During MHFPPV set with RR of 60 bpm delivered by a conventional ventilator in severe ARDS swine model, neither the inspiratory pauses or PEEP titration after recruitment maneuver allowed reduction of VT significantly, however the last strategy decreased driving pressures and improved both shunt

  11. Boeing Unveils New Suit for Commercial Crew Astronauts

    NASA Image and Video Library

    2017-01-23

    Boeing unveiled its spacesuit design Wednesday as the company continues to move toward flight tests and crew rotation missions of its Starliner spacecraft and launch systems that will fly astronauts to the International Space Station. Astronauts heading into orbit for the station aboard the Starliner will wear Boeing’s new spacesuits. The suits are custom-designed to fit each astronaut, lighter and more comfortable than earlier versions and meet NASA requirements for safety and functionality. NASA's commercial crew astronauts Eric Boe and Suni Williams tried on the suits at Boeing’s Commercial Crew and Cargo Facility at NASA’s Kennedy Space Center. Boe, Williams, Bob Behnken, and Doug Hurley were selected by NASA in July 2015 to train for commercial crew test flights aboard the Starliner and SpaceX’s Crew Dragon spacecraft. The flight assignments have not been set, so all four of the astronauts are rehearsingheavily for flights aboard both vehicles.

  12. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  13. A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; Merlis, T. M.

    2014-12-01

    Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.

  14. An evaluation of three anti-G suit concepts for shuttle reentry

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    A study was conducted to compare the standard anti-G launch-entry suit (LES) with a reentry full-coverage anti-G suit (REAGS) and a REAGS without an abdominal bladder (AB). (The inflated AB is the most uncomfortable G-suit component). Intravenous Lasix, a diuretic, was used to induce the fluid loss seen during space flight. Using the Armstrong Laboratory Centrifuge, data collected from seven subjects have shown that less anti-G suit pressure is required to maintain eye-level systolic blood pressure above 70 mmHg when the REAGS or REAGS without AB is worn during simulated shuttle reentry G-profiles when compared to the current LES G-suit. The REAGS without AB was significantly more comfortable than the standard anti-G suit.

  15. Comparative performance of a modified Space Shuttle Reentry Anti-G Suit (REAGS) with and without pressure socks

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Ripley, G. L.; Marshall, J. A.; Sawin, C. F.

    1994-01-01

    In a prior study, the Armstrong Laboratory (AL) demonstrated that +G(sub z) protection during simulated shuttle reentry could be improved with an extended coverage anti-G suit with pressure socks but no abdominal bladder (REAGS). In a subsequent study conducted at the NASA Johnson Space Center it was shown that REAGS had a down side which included restricted mobility (during simulated shuttle egress) and a larger boot size needed for the pressure socks. The present study was conducted using a modified REAGS to increase mobility during egress. The size of the crotch opening was increased, and the fabric covering the buttocks was replaced with more elastic material. Six healthy male members of the AL centrifuge panel served as subjects for the study. As in the earlier study, subjects received 20 to 35 mg of IV Lasix approximately 6 hours before being exposed to a simulated space shuttle reentry +G(sub z) profile on the AL centrifuge, which induced a mean weight loss of 2.8 percent, range 2.1 percent to 3.7 percent. The REAGS was inflated to 1.0 psig 10 minutes prior to G onset. The G-profile was identical to that used in the previous REAGS study. Physiologic parameters monitored were also the same, i.e., eye-level systolic blood pressure (ELBP) using the Finapres digital cuff technique and heart rate and rhythm. Subjective comments were obtained from questionnaires administered after the increased G exposure. Systolic ELBP was maintained at 60 mm Hg or above by pressurizing the anti-G suit in 0.5 psig increments up to a maximum pressure of 2.5 psig. There were no significant differences in mean G-suit pressure required to maintain systolic ELBP at 60 mm Hg or above between the REAGS worn with and without pressure socks. Maximum mean G-levels achieved during the GOR were also the same under both experimental conditions, i.e., 4.7 G with socks and 4.6 G without socks. These G-levels were essentially the same as recorded earlier with the unmodified REAGS. There were no

  16. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  17. An intelligent FFR with a self-adjustable ventilation fan.

    PubMed

    Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James

    2017-11-01

    This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.

  18. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David

    2009-01-01

    There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.

  19. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  20. Survival in space. [spacesuit development

    NASA Technical Reports Server (NTRS)

    Webbon, B.

    1981-01-01

    The evolution of space suit design to meet the needs of past and future manned space missions is discussed. Following a brief consideration of the purposes of the space suit in providing an artificial atmosphere and protection from environmental hazards, attention is given to the first high-altitude suits developed in the 1930's for the protection of balloon pilots, and for high-altitude airplane flights. The Mercury project space suit is presented as essentially similar to those for high-altitude military aircraft developed since World War II, providing pressurization and oxygen as a backup to the capsule systems. Modifications to the suit allowing it to be worn without discomfort during work outside the spacecraft, which were stimulated by experience in Gemini missions, are considered, which culminated in the suits of the Apollo and Skylab programs which provided insulation, cooling and life support for periods of up to eight hours. Finally, changes to suit design made necessary by the increasing numbers of men and women to perform Space Shuttle flights and space construction operations are considered.