Science.gov

Sample records for space vehicles

  1. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  2. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  3. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  4. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  5. Aeroacoustics of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2014-01-01

    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  6. The aerobraking space transfer vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.

    1990-01-01

    With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.

  7. Space transfer vehicles and space basing

    NASA Technical Reports Server (NTRS)

    Kelley, Joe

    1991-01-01

    The topics covered include the following: (1) space basing agenda; (2) mission scenario 4E-5B, crew and Lunar Excursion Vehicle (LEV) delivery; (3) final concept candidate, crew concept 4E-2B; (4) space transfer vehicle (STV) concept 4E-5B; (5) configuration summary for crew concept 4E-5B; (6) configuration definition for crew concept 4E-5B; (7) low earth orbit node assembly and checkout operations; (8) criteria for operation objectives; (9) LTV and STV main engines; (10) Space Station Freedom impacts; (11) aerobrakes; and (12) on orbit operations. This document is presented in viewgraph form.

  8. Leasecraft - An innovative space vehicle

    NASA Astrophysics Data System (ADS)

    Deskevich, J.

    1984-01-01

    The Leasecraft system has been developed by an American aerospace company with the objective to further the industrialization of space with its significant business potential. This system comprises a low orbit space platform, an operation control center, user accommodations, and services such as payload interfaces, documentation, and ground support equipment and procedures. Potential applications of Leasecraft considered are related to the processing of pharmaceuticals and materials, satellite-aided search and rescue, data collection, and support of NASA's astrophysics programs. The Leasecraft space vehicle will accommodate up to five modular power subsystems, including a communications and data handling module, a modular attitude control subsystem, a special function module, two alternative solar array assemblies, a tracking and data relay satellite system antenna assembly, a propulsion module, and optional primary and secondary payload modules.

  9. Unmanned space vehicle technology demonstrator

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Accardo, D.; Grassi, M.; Curreri, F.

    2007-02-01

    The unmanned space vehicle (USV) program has been undertaken by the Italian Center for Aerospace Research with the aim of developing flying test beds of next generation reentry launch vehicles. In this framework, the development of small demonstrators is also foreseen to validate technological and operational aspects of full-scale vehicles and missions. In this paper, a small-scale demonstrator of the sub-orbital re-entry test mission of the USV program is described. Both mission profile and objectives are very challenging in terms of demonstrator guidance, navigation and control. After a short description of the mission and demonstrator architectures, particular emphasis is given to the guidance and navigation analysis. To this end, mission objectives and reduced-scale system constaints are integrated and translated into innovative guidance solutions relying on optimization techniques. Then, performance of a commercial-off-the-shelf GPS-aided, miniature inertial navigation system over the proposed trajectories is evaluated by Monte Carlo analysis. Standalone inertial and GPS-aided inertial navigation performance is also compared considering GPS loss conditions due to antenna plasma effects.

  10. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  11. ISS Update: Powering the Space Exploration Vehicle

    NASA Video Gallery

    In the Space Vehicle Mock-Up Facility at Johnson Space Center in Houston, NASA Public Affairs Officer Brandi Dean talks with Abbie Ryan, lead engineer for the fuel cell of the Multi-Mission Space E...

  12. Space vehicle thermal rejection system

    NASA Technical Reports Server (NTRS)

    Tanzer, Herbert J. (Inventor)

    1989-01-01

    A space vehicle thermal heat rejection system 10 utilizing separate optimized heat pipe components for the functions of heat acquisition, heat transport, and heat rejection. A honeycomb panel heat pipe evaporator section 20 performs the function of heat acquisition, and forms a closed thermodynamic system with a dual channel heat pipe transport section 30, which performs the function of heat transport. A plurality of truss or channel core heat pipe rejection fins 41 form the condenser section 40, which performs the function of heat rejection. A common wall 32 separates the condenser section 40 from the transport section 30. Using the above heat pipe components and having efficient interfacing between them results in high performance factors for the overall system.

  13. Lightning Protection for the Orion Space Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  14. Space vehicle gyroscope sensor applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Considerations which form the basis for the specification, design and evaluation of gyroscopes for spaceborne sensor applications are presented. The applications are distinguished by basic vehicle category: launch vehicles, spacecraft, entry vehicles and sounding rockets. Specifically excluded from discussion are gyroscope effector applications. Exotic or unconventional gyroscopes for which operational experience is nonexistent are mentioned only briefly to alert the reader of future trends. General requirements for testing and evaluation are discussed.

  15. Electric Vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  16. Zack Crues on Space Exploration Vehicle Mockup

    NASA Video Gallery

    Zack Crues, the Space Exploration Vehicle modeling and simulation lead, talks to NASA Public Affairs Officer Brandi Dean about the importance of creating an immersive virtual reality environment fo...

  17. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  18. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  19. Space Vehicle Deployment from Space Station Orbit

    NASA Technical Reports Server (NTRS)

    Henry, Paul K.; Sergeyevsky, Andrey B.; Sharma, Jayant

    1990-01-01

    When launching a spacecraft from Earth parking orbit to deep space, it is highly desirable to have the hyperbolic excess velocity vector (v-infinity) contained in the parking orbit plane. Ground launches can force the parking orbit plane to contain the v-infinity vector by using launch azimuth and lift-off time as independent variables. When launching from the Space Station, a new set of variables comes into play. The Station orbit is of fixed inclination but precessing due to the Earth's oblateness. Its plane will seldom (and may never) contain the desired v-infinity vector. Consequently, the departure strategy will usually require multiple burns and include a plane change. Also, the concept of "launch period" will be somewhat different from Earth surface launches. An analysis of the deployment of interplanetary spacecraft from Space Station is described, with emphasis on the effect of the trajectory characteristics on station operations. Several planetary mission types are analyzed for manned Mars missions. In addition, high declination departures of spacecraft on unmanned missions to an asteroid are examined. The constraint of Station orbit nodal position is quantified and the operational implications for station reboost strategy are examined.

  20. Space vehicle propulsion systems - Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Bahr, G. K.; Disimile, P. J.

    1990-01-01

    An evaluation of hazards which exist in geo-lunar space and have the potential to negatively affect a long-term mission-oriented spacecraft systems is presented based on published data. The hazards are categorized as pervasive (radiation), incident specific (meteoroids and thermal shock), and chemically corrosive (monatomic oxygen). It appears that the number one priority should be the development of new materials; and the secondary concern should be the development of fabrication techniques for the exterior hull, so that incident specific hazards can be minimized in an active fashion. The pervasive hazard can be dealt with by exploring on-board circuit technology with ancillary monitoring systems. Effects of thermal shock on the exterior nozzle, directional gimbals, and internal combustion chamber geometry seem to need more investigation.

  1. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  2. Future space transportation vehicles - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1988-01-01

    NASA has conducted extensive analyses of several scenarios of potential payload applications in an attempt to project future space transportation capability requirements. Of particular concern is the development of increasingly capable launch system. The enhancement of the manned STS with a heavy liftcargo launch vehicle which would utilize Shuttle technology to provide an unmanned cargo version of the Shuttle is also being addressed.

  3. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  4. Space vehicle acoustics prediction improvement for payloads. [space shuttle

    NASA Technical Reports Server (NTRS)

    Dandridge, R. E.

    1979-01-01

    The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

  5. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  6. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  7. Ares Launch Vehicles Overview: Space Access Society

    NASA Technical Reports Server (NTRS)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  8. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  9. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Chris; Inman, Sharon K.; Tuttle, Loraine; Neeley, James R.; Jones, James V.

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk.

  10. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  11. Launch Vehicle Assessment for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  12. Biosafety in Space Vehicles and Habitats

    NASA Astrophysics Data System (ADS)

    Wong, Wing; Arneson, David; Pierson, Duane

    2010-09-01

    Biohazardous materials can be found in space vehicles and habitats include blood, body-waste, visible microbial contamination, and payload experiments containing bacteria, fungi, animals, plants, toxins, recombinant DNA, or mammalian cell lines. To mitigate the potential hazards that these biohazardous materials present to the crew and the space environments, sound biosafety principles and practices such as thorough risk assessment, sufficient level of containment, effective remedial actions, adequate system design, and the use of proper personal protective equipment are needed. The Biosafety Review Board(BRB) at Johnson Space Center plays a critical role in ensuring the proper biosafety principles and practices are applied. The BRB includes a team of microbiologists, cell biologists, physicians, industrial hygienists, and safety professionals to assess the wide range of biohazardous materials encountered.

  13. NASA's Advanced Space Transportation System launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1990-01-01

    An account is given of NASA's Advanced Space Transportation System plans, with a view to the support systems that must be evolved in order to implement such long-term mission requirements; these encompass space-based infrastructure for orbital transfer operations between LEO and GEO, and for operations from LEO to lunar orbit and to Mars. These mission requirements are addressed by the NASA Civil Needs Data Base in order to promote multiple applications. The requisite near-term lift capacity to LEO could be achieved through the development of the Shuttle-derived, unmanned Shuttle-C cargo launch system. Longer-term transportation studies are concerned with the Next Manned Transportation System and Space Transfer Vehicles.

  14. Orbital Maneuvering Vehicle space station communications design

    NASA Technical Reports Server (NTRS)

    Arndt, D.; Novosad, S. W.; Tu, K.; Loh, Y. C.; Kuo, Y. S.

    1988-01-01

    The authors present an Orbital Maneuvering Vehicle space station communications systems design approach which is intended to satisfy the stringent link requirements. The operational scenario, system configuration, signal design, antenna system management, and link performance analysis are discussed in detail. It is shown that the return link can transmit up to 21.6 Mb/s and maintain at least a 3-dB link margin through proper power and antenna management control at a maximum distance of 37 km. It is suggested that the proposed system, which is compatible with the space station multiple-access system, can be a model for other space station interoperating elements or users to save the development cost and reduce the technical and schedule risks.

  15. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  16. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  17. Navigation simulator for the Space Tug vehicle

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  18. Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Willsey, Mark; Bailey, Brad

    2011-01-01

    In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

  19. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  20. Unlimited power for our space vehicles

    SciTech Connect

    Chidester, L.G.

    1983-01-01

    Photovoltaic solar arrays which derive their energy from the sun and provide the electrical power needed on long life space vehicles are examined. Present spacecraft solar arrays provide in the range of 1-5 kW; however, lightweight flexible arrays with reduced cost and increased performance are being developed to provide serveral hundred kilowatts of power. The state of the art of solar cell technology, Lockheed's development efforts on new solar arrays, and the upcoming NASA Solar Array Flight Experiment are described. The experiment package includes a huge 4 x 32 m flexible solar array, a structure and mechanism for moving it out of the shuttle cargo bay, and a complete data acquisition system to record operational data during ascent and on-orbit operations. Space Shuttle applications and three array concepts, developed for space power sources in the 300 kW to 1 MW range, are considered. Examples of cost and efficiency improvements being worked on include: transparent arrays, multi-bandgap solar cells, thin-film solar cells, and improved concentrator systems. Photos of the presently used solar arrays and drawings of the array concepts are presented.

  1. Multilayer insulation materials for reusable space vehicles.

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.; Hyde, E. H.

    1971-01-01

    Results of an extensive study conducted to evaluate multilayer insulation (MLI) materials suitable for repeated space vehicle operation are presented. Materials studied were radiation shields, shield spacers, blanket face sheets, fasteners, and adhesives. The Superfloc MLI concept - Kapton shields goldized on both sides as the radiation barrier with Dacron flock tufts as the spacers - appeared to be an excellent MLI for reusable cryogenic tankage. Superfloc configurations consisting of various combinations of film, spacer, and adhesive materials were manufactured and tested. Tensile, flexing, expansion, and cycling tests were performed on goldized Kapton and Mylar Superfloc and Beta glass reinforced Pyre ML face sheet material. A face sheet material that retains its shape was developed. Polyphenylene oxide material was selected for fabricating lightweight twin and tri-pin fasteners, together with grommets, face sheets, and reinforcement slabs. Measured material thermal conductivity values are tabulated.

  2. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  3. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  4. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  5. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  6. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  7. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  8. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  9. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  10. Wooden Spaceships: Human-Centered Vehicle Design for Space

    NASA Technical Reports Server (NTRS)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  11. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  12. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  13. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  14. Coupled Loads Analysis Accuracy from the Space Vehicle Perspective

    NASA Astrophysics Data System (ADS)

    Dickens, J. M.; Wittbrodt, M. J.; Gate, M. M.; Li, L. H.; Stroeve, A.

    2001-01-01

    Coupled loads analysis (CLA) consists of performing a structural response analysis, usually a time-history response analysis, with reduced dynamic models typically provided by two different companies to obtain the coupled response of a launch vehicle and space vehicle to the launching and staging events required to place the space vehicle into orbit. The CLA is performed by the launch vehicle contractor with a reduced dynamics mathematical model that is coupled to the launch vehicle, or booster, model to determine the coupled loads for each substructure. Recently, the booster and space vehicle contractors have been from different countries. Due to the language differences and governmental restrictions, the verification of the CLA is much more difficult than when working with launch vehicle and space vehicle contractors of the same country. This becomes exceedingly clear when the CLA analysis results do not seem to pass an intuitive judgement. Presented in the sequel are three checks that a space vehicle contractor can perform on the results of a coupled loads analysis to partially verify the analysis.

  15. Skylab 2 space vehicle data evaluation guide

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Vehicle telemetry measurements for all stages of Skylab 2 are presented. The data sources for the launch vehicle and command service module are identified. The data evaluation guide format is described. The system for designating the components of the spacecraft is defined. A list of abbreviations for technical terms used in the reporting documents is included.

  16. Vehicle for Space Transfer and Recovery (VSTAR), volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). VSTAR will provide for economic use of high altitude spaceflight for both the public and private sector. VSTAR components will be built and tested using earth based facilities. These components will then be launched using the space shuttle, into low earth orbit (LEO) where it will be constructed on a U.S. built space station. Once in LEO the vehicle components will be assembled in modules which can then be arranged in various configurations to perform the required missions.

  17. Expendable launch vehicle transportation for the space station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.

  18. Risk Considerations of Bird Strikes to Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  19. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  20. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    NASA Technical Reports Server (NTRS)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  1. Second Generation RLV Space Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Daniel, C. C.

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  2. Second Generation RLV Space Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle; Daniel, Charles; Throckmorton, David A. (Technical Monitor)

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistent fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At $776M for phase 1, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  3. Aircraft operability methods applied to space launch vehicles

    SciTech Connect

    Young, D.

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The {open_quotes}building in{close_quotes} of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program. {copyright} {ital 1997 American Institute of Physics.}

  4. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  5. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  6. Methods of assessing structural integrity for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Stuckenberg, F. H.

    1971-01-01

    A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.

  7. Artists drawing of partial cutaway view of Apollo/Saturn IB space vehicle

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Artists drawing of a partial cutaway view of an Apollo/Saturn IB space vehicle in a launch configuration. Arrow point to various features and components of the vehicle. This drawing is representative of the Apollo 7 space vehicle.

  8. Vehicle Engineering Development Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Champion, Robert H., Jr.

    1999-01-01

    New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.

  9. SLI Artist's Concept-Vehicle Enroute to Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  10. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  11. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  12. X-37 Space Vehicle: Starting a New Age in Space Control?

    NASA Astrophysics Data System (ADS)

    Jameson, Austin D.

    2001-04-01

    The U.S. can no longer rely on the "space as a sanctuary" policy, initiated by the Eisenhower Administration, to continue to exploit space for economic and military advantages. The X-37 space maneuvering vehicle demonstrator is an opportunity for the U.S. to begin to develop methods to more strategically defend and control the space environment. The X-37 is the first of NASA's x-vehicles intended to demonstrate leading edge technologies in orbit. This prototype space maneuvering vehicle co-sponsored by NASA, the Air Force and the Boeing Company is being designed to achieve the goals of reducing the cost to access space from 10,000 to 1000 per pound while improving reliability. The current project is funded to build an autonomous space maneuvering vehicle with on-orbit testing scheduled in 2002, The X-37 is an unmanned space plane that can carry a payload, and can conduct missions while orbiting, loitering, or rendezvousing with objects in space and then autonomously return to earth by landing on a conventional runway. If the Air Force develops the X-37 to its full potential the system could strategically support each of the Air Force's four space mission areas of force enhancement, space support, space control, and force application. Transition of the space maneuvering demonstrator into a space control platform will require a change in national policy. Capitalizing on the lessons from NASA's x-vehicles and partnering with the commercial sector can potentially save costs and shorten the development of a viable space platform that could be used for space control. Strategic development and funded evolution of the X-37 space vehicle is an immediate, tangible step the United States can take to actively pursue a more aggressive program to respond to threats in the space arena.

  13. Space Technology Research Vehicle (STRV)-2 program

    NASA Astrophysics Data System (ADS)

    Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.

    2000-11-01

    The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.

  14. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  15. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  16. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  17. Space shuttle vehicle automatic docking study

    NASA Technical Reports Server (NTRS)

    Blanchard, E. P.; Hutchinson, R. C.; Johnson, L. B.

    1971-01-01

    The material presented is divided into three main areas of accomplishment. The first is a description of the angle only docking sensor concept and the computational requirements to develop useful guidance information from the raw angle only data. The second describes the analytical effort including the MIT in-house computer simulation, the development of guidance equations and vehicle stability related thereto, and presents the results of studies covering the effects of employing Kalman filtering with the sensor. The third area presents the conclusions and recommendations resulting from the program. Much of the material has appeared in previous reports, but is included here for the sake of completeness. New material indicating how the computer might operate to identify the individual sources in the target array is included.

  18. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  19. Investigation of Vehicle Requirements and Options for Future Space Tourism

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  20. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    NASA Astrophysics Data System (ADS)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  1. Control of a flexible space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.

    1973-01-01

    The application of optimal control technology to the design of a controller for the space shuttle descent was studied using weighting matrices adjusted through iteration to reduce response peaks, which are defined as mean magnitude plus sigma values. The synthesis techniques, and optimal controller design are discussed along with simplified controller design. Quantitative characteristics of the optimal controller, effects of variation of sample rate, and simplified controller data are included.

  2. Intelligent vehicle control: Opportunities for terrestrial-space system integration

    NASA Technical Reports Server (NTRS)

    Shoemaker, Charles

    1994-01-01

    For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.

  3. Thermal Protection Systems for Future NASA Space Vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    2000-01-01

    The proposed first through fourth generation of future NASA Reusable Launch Vehicles (RLV) within NASA will be described, in general, along with their relative goals for improvement in performance (i.e., cost, safety, life, and turnaround time). A brief description of Spaceliner 100 activities representing a means to achieve those goals will be included. Some of the families of thermal protection materials with widely varying characteristics that are being developed for first generation space vehicles at Ames Research Center will be described as well as potential materials and composites for second and third generation applications as systems. These families of materials include functionally gradient material composites that are made from a variety of low-density substrates and moderate to fully dense surface treatments providing the resultant material with both toughness and higher temperature capability opening the envelope of Thermal Protection Systems (TPS) capabilities. Some of the materials truly represent enabling technologies that are required to achieve substantially enhanced thermal protection system performance thereby reducing vehicle risk. Finally the needs for integrated vehicle health monitoring (IVHM) of future vehicles thermal protection systems relative to achieving the goals for third generation reusable launch vehicles and for improving vehicle performance and capabilities reducing risk will be described along with the state of the art in TPS.

  4. Test Results for Entry Guidance Methods for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2004-01-01

    There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.

  5. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  6. Investigation of abort procedures for space shuttle-type vehicles

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Eide, D. G.

    1974-01-01

    An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.

  7. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  8. Simulating the operations of the reusable shuttle space vehicle.

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Byers, J. K.

    1971-01-01

    A stochastic simulation model has been developed using the General Purpose Simulation System (GPSS) II language to analyze the operations of a fleet of Shuttle space vehicles. This paper presents the approach used in developing the model, results obtained from some of the analyses performed to date, and an interpretation of the results as they were presented to management personnel.

  9. Development of control systems for space shuttle vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Skelley, E. D.; Stein, G.; Ward, M. D.; Skelton, G. B.; Yore, E. E.; Rupert, J. G.; Phelps, R. K.

    1971-01-01

    Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems.

  10. Cyber threat impact assessment and analysis for space vehicle architectures

    NASA Astrophysics Data System (ADS)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  11. Human-Rated Space Vehicle Backup Flight Systems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.; Busa, Joseph L.

    2004-01-01

    Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.

  12. GALILEO Signal In Space Triple Carrier four Space Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Tabacco, P.; Vernucci, A.; Cornacchini, C.; Richichi, F.; Botticchio, T.; Meta, F.

    2008-08-01

    The state of art of GALILEO Signal In Space specifications has been implemented by Space Engineering GALILEO Simulator. The design and quality test results of this Professional Instrument, aimed to support GALILEO receiver development, will be described in this Paper. The current version is compatible with SIS ICD vers. 12.0, but would allow easy migration to MBOC for L1 carrier, when this specification will be formalized by a new SIS ICD release. For what concern the E5 signal the Simulator is a truly Alt-BOC coherent generator allowing a 120MHz analog Bandwidth being generated digitally and not as two separate E5a and E5b analog signals. The current version of Space Engineering Signal In Space Simulator allow to generate up to four Satellites for all the three carriers L1, E5 and E6 simultaneously and it is a self contained unit, complete of AC power supplying adapter and fan cooling system, arranged in a single Compact-PCI (C-PCI)19" Rack.

  13. Technology issues associated with using densified hydrogen for space vehicles

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  14. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  15. Operational considerations for a crewed nuclear powered space transportation vehicle

    NASA Astrophysics Data System (ADS)

    Borrer, Jerry L.; Hoffman, Stephen J.

    1993-01-01

    Applying nuclear propulsion technology to human space travel will require new approaches to conducting human operations in space. Due to the remoteness of these types of missions, the crew and their vehicle must be capable of operating independent from Earth-based support. This paper discusses current operational studies which address methods for performing these types of remote and autonomous missions. Methods of managing the hazards to humans who will operate these high-energy nuclear-powered transportation vehicles also is reviewed. Crew training for both normal and contingency operations is considered. Options are evaluated on how best to train crews to operate and maintain the systems associated with a nuclear engine. Methods of maintaining crew proficiency during the long months of space travel are discussed. Vehicle health maintenance also will be a primary concern during these long missions. A discussion is presented on how on-board vehicle health maintenance systems will monitor system trends, identified system weaknesses, and either isolate critical failures or provide the crew with adequate warning of impending problems.

  16. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  17. Considerations on vehicle design criteria for space tourism

    NASA Astrophysics Data System (ADS)

    Isozaki, Kohki; Taniuchi, Akira; Yonemoto, Koichi; Kikukawa, Hiroshige; Maruyama, Tomoko

    1995-10-01

    The transportation research committee of JRS (Japanese Rocket Society) has begun conceptual design of vertical takeoff and landing fully reusable SSTO (Single Stage to Orbit) rocket type vehicle as a standard vehicle model for space tourism. The design criteria of the vehicle have paid most attention to the requirements of service to meet space tour amusement. The standard vehicle, which has 22m body length and weighs about 550 tons at takeoff, can provide attractive tours of 24 hours maximum for 50 passengers into the low earth orbit with a variety of space flight pleasures such as experience of weightlessness and earth sightseeing. Within the reach of our near future rocket technology, the design utilizes MMC, CF/Epy and Ti/Mw advanced materials. The twelve LOX/LH2 engines consist of two nozzle types, which can be throttled and gimbaled during the whole mission time, perform vertical launch and tail-first reentry to final landing associated with aerodynamic control of body flaps within tolerable acceleration acting on passengers.

  18. Space transfer vehicle concepts and requirements. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.

  19. Mathematical model of a flexible space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.

    1972-01-01

    The development of a mathematical model of the lateral motion of a flexible space shuttle vehicle during ascent is described. The model was developed to perform control system synthesis using stochastic constrained optimization techniques. The goals of the control system synthesis are to demonstrate the applicability of the techniques and to discover any problems peculiar to the flexible nature of a shuttle vehicle. The equations of motion are derived. A brief description of the generation of numerical data is given. Explicit definitions and numerical values of trajectory data and coefficients appearing in the equations of motion are included.

  20. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  1. Space and planetary environment criteria guidelines for use in space vehicle development. Volume 1: 1982 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Compiler); West, G. S. (Compiler)

    1983-01-01

    Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.

  2. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  3. Space vehicle approach velocity judgments under simulated visual space conditions

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Thirty-five volunteers responded when they first perceived an increase in apparent size of a collimated, 2-D image of an Orbiter vehicle. The test variables of interest included the presence of a fixed angular reticle within the field of view (FOV); three initial Orbiter distances; three constant Orbiter approach velocities corresponding to 1.6, 0.8, and 0.4 percent of the initial distance per second; and two background starfield velocities. It was found that: (1) at each initial range, increasing approach velocity led to a larger distance between the eye and Orbiter image at threshold; (2) including the fixed reticle in the FOV produced a smaller distance between the eye and Orbiter image at threshold; and (3) increasing background star velocity during this judgment led to a smaller distance between the eye and Orbiter image at threshold. The last two findings suggest that other detail within the FOV may compete for available attention which otherwise would be available for judging image expansion; thus, the target has to approach the observer nearer than otherwise if these details were present. These findings are discussed in relation to previous research and possible underlying mechanisms.

  4. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  5. Space vehicle with artificial gravity and earth-like environment

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A space vehicle adapted to provide an artificial gravity and earthlike atmospheric environment for occupants is disclosed. The vehicle comprises a cylindrically shaped, hollow pressure-tight body, one end of which is tapered from the largest diameter of the body, the other end is flat and transparent to sunlight. The vehicle is provided with thrust means which rotates the body about its longitudinal axis, generating an artificial gravity effect upon the interior walls of the body due to centrifugal forces. The walls of the tapered end of the body are maintained at a temperature below the dew point of water vapor in the body and lower than the temperature near the transparent end of the body. The controlled environment and sunlight permits an earth like environment to be maintained wherein the CO2/O2 is balanced, and food for the travelers is supplied through a natural system of plant life grown on spacecraft walls where soil is located.

  6. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…

  7. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  8. Optimum propellant usage for reaction jet systems of space vehicles

    NASA Technical Reports Server (NTRS)

    Liu, T. C.; Thompson, Z.; Fisher, P. H., Jr.

    1974-01-01

    The on-off type control for reaction jet systems is proven to be the optimal fuel scheme. However, due to the nonlinear characteristics of this type control, no direct method of solution is known for this optimal process being applied to the attitude control of space vehicles. This paper will discuss the optimization of fuel usage for an attitude control of space vehicles. A computation technique is developed for the calculation of optimal control law. The method of calculus of variations is applied to the estimation of the changes of performance index as well as terminal constraints. Thus an algorithm is obtained by the steepest descent method. A numerical example is given in the paper.

  9. The Aquila Launch Vehicle - A hybrid propulsion space booster

    NASA Astrophysics Data System (ADS)

    Flittie, Kirk J.; Estey, Paul N.; Kniffen, R. J.

    1991-10-01

    The Aquila Launch Vehicle is the first low-cost hybrid rocket propulsion space booster capable of placing 1450-kg payloads into LEO with high availability and reliability, as well as unprecedented levels of production, ground, and flight operations safety. Since hybrid rockets cannot explode, they may be readily manufactured in light-industrial production facilities. Polar-orbit operations with commercial and government-project payloads are scheduled to begin from Vandenberg AFB in 1995.

  10. Pointing control design for autonomous space vehicle applications

    SciTech Connect

    Young, K.D.

    1993-03-01

    This paper addresses the design of pointing control systems for autonomous space vehicles. The function of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor. We outline the development of novel nonlinear control algorithms which exploit the availability of on- board sensors. Simulation results comparing the performance of the different pointing control implementations are presented.

  11. Thermal conductivity of Rene 41 honeycomb panels. [space transportation vehicles

    NASA Technical Reports Server (NTRS)

    Deriugin, V.

    1980-01-01

    Effective thermal conductivities of Rene 41 panels suitable for advanced space transportation vehicle structures were determined analytically and experimentally for temperature ranges between 20.4K (423 F) and 1186K (1675 F). The cryogenic data were obtained using a cryostat whereas the high temperature data were measured using a heat flow meter and a comparative thermal conductivity instrument respectively. Comparisons were made between analysis and experimental data. Analytical methods appear to provide reasonable definition of the honeycomb panel effective thermal conductivities.

  12. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  13. Command and control displays for space vehicle operations

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Zetocha, Paul; Aleva, Denise

    2010-04-01

    This paper shall examine several command and control facility display architectures supporting space vehicle operations, to include TacSat 2, TacSat 3, STPSat 2, and Communications Navigation Outage Forecasting System (CNOFS), located within the Research Development Test & Evaluation Support Complex (RSC) Satellite Operations Center 97 (SOC-97) at Kirtland Air Force Base. A principal focus is to provide an understanding for the general design class of displays currently supporting space vehicle command and control, e.g., custom, commercial-off-the-shelf, or ruggedized commercial-off-the-shelf, and more specifically, what manner of display performance capabilities, e.g., active area, resolution, luminance, contrast ratio, frame/refresh rate, temperature range, shock/vibration, etc., are needed for particular aspects of space vehicle command and control. Another focus shall be to address the types of command and control functions performed for each of these systems, to include how operators interact with the displays, e.g., joystick, trackball, keyboard/mouse, as well as the kinds of information needed or displayed for each function. [Comparison with other known command and control facilities, such as Cheyenne Mountain and NORAD Operations Center, shall be made.] Future, anticipated display systems shall be discussed.

  14. Laser Fine-Adjustment Thruster For Space Vehicles

    SciTech Connect

    Rezunkov, Yu. A.; Egorov, M. S.; Repina, E. V.; Safronov, A. L.; Rebrov, S. G.

    2010-05-06

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  15. 75 FR 38991 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at Kodiak Launch Complex, Alaska... Corporation (AAC) for authorization to take marine mammals incidental to launching space launch vehicles, long...), incidental to space vehicle and missile launch activities from KLC for a period of 5 years. These...

  16. Applications of triggered lightning to space vehicle operations

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Sanicandro, Rocco; Rompalla, John; Wohlman, Richard

    1992-01-01

    Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.

  17. Features of the Gravity Probe B Space Vehicle

    NASA Astrophysics Data System (ADS)

    Reeve, William; Green, Gaylord

    2007-04-01

    Space vehicle performance enabled successful relativity data collection throughout the Gravity Probe B mission. Precision pointing and drag-free translation control was maintained using proportional helium micro-thrusters. Electrical power was provided by rigid, double sided solar arrays. The 1.8 kelvin science instrument temperature was maintained using the largest cryogenic liquid helium dewar ever flown in space. The flight software successfully performed autonomous operations and safemode protection. Features of the Gravity Probe B Space Vehicle mechanisms include: 1) sixteen helium micro-thrusters, the first proportional thrusters flown in space, and large-orifice thruster isolation valves, 2) seven precision and high-authority mass trim mechanisms, 3) four non-pyrotechnic, highly reliable solar array deployment and release mechanism sets. Early incremental prototyping was used extensively to reduce spacecraft development risk. All spacecraft systems were redundant and provided multiple failure tolerance in critical systems. Lockheed Martin performed the spacecraft design, systems engineering, hardware and software integration, environmental testing and launch base operations, as well as on-orbit operations support for the Gravity Probe B space science experiment.

  18. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human space exploration. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture has been designed to reduce the complexity and labor intensity of ground operations for America's next journeys beyond low-Earth orbit (LEO). A deliberate effort is being made to ensure a high level of system operability to significantly increase safety and system availability as well as reduce recurring costs for this new launch vehicle. The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. This simplicity will come from using simpler, proven engine designs, as in the case of the J-2X upper stage engine and RS-68 engine; improving existing hardware, as in the case of the Shuttle-heritage 5-segment solid rocket motor; and using common propulsion and instrument unit elements between Ares I and Ares V. Furthermore, lessons learned while developing Ares I will be applied directly to Ares V operations. In 2009, the Ares Projects plan to conduct the first flight test of Ares I, designated Ares I-X. Ares I-X preparations have already prompted changes to the vehicle stacking and launch infrastructure at Kennedy Space Center (KSC), including removing Shuttle-specific fixtures from the Vehicle Assembly Building (VAB) to accommodate Ares I-style stacking operations, new firing room computers and infrastructure in the VAB Launch Control Center, and new lightning protection system towers at Launch

  19. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    NASA Astrophysics Data System (ADS)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  20. Maximum Aerodynamic Force on an Ascending Space Vehicle

    NASA Astrophysics Data System (ADS)

    Backman, Philip

    2012-03-01

    The March 2010 issue of The Physics Teacher includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in the article), where the combined effect of air density and the shuttles speed produce the greatest aerodynamic stress on the vehicle as it ascends through the atmosphere toward orbit. Official commentary during a launch2 refers to this point in the ascent with language such as "space shuttle main engines throttling back as vehicle enters area of maximum dynamic pressure" and occurs in a range between 45 and 60 s after launch. (In dealing with this stress, the space shuttles main engines reduce their thrust at approximately 45 s to reduce acceleration, and return to normal levels again some 15 s later as maximum dynamic pressure is traversed.) This paper presents an analysis, accessible to introductory-level students, that predicts the time of Max. AirPressure for a given ascending spacecraft.

  1. Ariane Transfer Vehicle - Logistic support to Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Cougnet, C.; Ricaud, C.; Deutscher, N.

    The attractiveness of the Ariane 5 and Ariane transfer vehicle (ATV) is described: it avoids the one-sidedness of the National STS, it increases the lift capacity to meet the demands of the Space Station, and it offers a system independent of, but consistent with, the STS in providing backup contingency capability. The Ariane 5/ATV system is able to launch and transfer any cargo module to the Space Station Freedom (SSF) and dispose of it at the end of the mission. Consideration is given to Space Station and SSF logistic support, and ATV operations and design. Diagrams are provided to illustrate the ATV's requirements and capability; an ATV mission toward the SSF; ATV design and components; the ATV's attitude, layout, and the architecture of the main propulsion system and avionic; and the ATV's performance. It is demonstrated that the Ariane 5/ATV system would be an adequate complement to the NSTS for logistic support of the SSF.

  2. Human response to vibroacoustic environments of space vehicles

    NASA Astrophysics Data System (ADS)

    Willshire, K. F.

    1984-10-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  3. Human response to vibroacoustic environments of space vehicles

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  4. Folding retractable protective dome for space vehicle equipment

    NASA Technical Reports Server (NTRS)

    Clark, Paul R. (Inventor); Messinger, Ross H. (Inventor)

    2008-01-01

    A folding, retractable dome for protecting a feature, such as a docking mechanism, a hatch or other equipment at an exterior surface of a space vehicle, includes a plurality of arcuate ribs, each having opposite ends respectively pinioned at opposite sides of the feature at the surface of the vehicle for rotational movement about an axis of rotation extending through the opposite ends and through an arcuate path of revolution extending over the feature, and a flexible cover attached to each of the ribs such that, in a deployed configuration of the dome, in which adjacent ribs are rotated apart from each other at a maximum relative angle therebetween, the cover is stretched generally tangentially between the adjacent ribs to form a generally arcuate shield over the feature, and in a retracted position of the dome, in which adjacent ribs are rotated together at a minimum relative angle therebetween, the cover is collapsed to define folded pleats between the adjacent ribs.

  5. Reliable compact electrical power source systems for space launch vehicles

    SciTech Connect

    Young, A.R.

    1996-12-31

    Described herein are several key technologies utilized in the design of a family of direct-drive turboalternator systems for space launch vehicles. These systems automatically provide conditioned and regulated electrical power at various voltages, powering actuators, valves, and avionics throughout the vehicle. The simple and robust ring-wound two-pole toothless alternator operates at peripheral speeds, making it suitable to be driven directly by a turbine, thereby eliminating the weight, reliability, zero ``g`` lubrication, and cooling issues of a speed-reducing gearbox, while allowing the turbine to operate at reasonable efficiency. Additionally, the use of self-aligning foil bearing and catalytic combustors or cold gas propellants enhance the reliability. The power conditioner and electronic controller provide hands-off regulated ac or dc power on demand, maintaining critical parameters within established limits and performance while reporting on built-in health-monitoring tests.

  6. Space shuttle: Structural integrity and assessment study. [development of nondestructive test procedures for space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1974-01-01

    A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented.

  7. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  8. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  9. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  10. Optimal ascent of a Horus/Saenger type space vehicle

    NASA Astrophysics Data System (ADS)

    Sachs, Gottfried; Drexler, Johannes

    Two optimization methods are used to study the optimal ascent trajectory of the rocket-powered second stage of the Saenger II space vehicle. In the lower region of the flight path angle at separation, it is found that the lifting capability (together with the thrust vector inclination due to angle of attack) is most important in achieving an ascent. Also considered for the optimal ascent trajectory is a zero-thrust phase following separation, instead of the immediate application of full thrust. The effect of a longitudinal acceleration constraint is investigated.

  11. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  12. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  13. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    High temperature control surface seals have been identified as a critical technology in the development of future space vehicles. These seals must withstand temperatures of up to 2600 F and protect underlying temperature-sensitive structures (such as actuators and sealing capability by remaining resilient during flight conditions. The current baseline seal, used on the Shuttle orbiters and the X-38 vehicle, consists of a Nextel 312 sheath, an internal Inconel X-750 knitted spring tube, and hand-stuffed Saffil batting. Unfortunately at high temperatures (> 1500 F), the seal resiliency significantly degrades due to yielding and creep of the spring tube element. The permanent set in the seals can result in flow passing over the seals and subsequent damage to temperature sensitive components downstream of the seals. Another shortcoming of the baseline seal is that instances have been reported on Shuttle flights where some of the hand-stuffed Saffil batting insulation has been extracted, thus potentially compromising the seal. In vehicles where the thermal protection systems are delicate (such as with Shuttle tiles), the control surface seals must also limit the amount of force applied to the opposing surfaces. Additionally, in many applications the seals are subjected to scrubbing as control surfaces are actuated. The seals must be able to withstand any damage resulting from this high temperature scrubbing and retain their heat/flow blocking abilities.

  14. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  15. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  16. Automated space vehicle control for rendezvous proximity operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  17. Automated space vehicle control for rendezvous proximity operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  18. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  19. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  20. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  1. Space Vehicle Power System Comprised of Battery/Capacitor Combinations

    NASA Technical Reports Server (NTRS)

    Camarotte, C.; Lancaster, G. S.; Eichenberg, D.; Butler, S. M.; Miller, J. R.

    2002-01-01

    Recent improvements in energy densities of batteries open the possibility of using electric rather that hydraulic actuators in space vehicle systems. However, the systems usually require short-duration, high-power pulses. This power profile requires the battery system to be sized to meet the power requirements rather than stored energy requirements, often resulting in a large and inefficient energy storage system. Similar transient power applications have used a combination of two or more disparate energy storage technologies. For instance, placing a capacitor and a battery side-by-side combines the high energy density of a battery with the high power performance of a capacitor and thus can create a lighter and more compact system. A parametric study was performed to identify favorable scenarios for using capacitors. System designs were then carried out using equivalent circuit models developed for five commercial electrochemical capacitor products. Capacitors were sized to satisfy peak power levels and consequently "leveled" the power requirement of the battery, which can then be sized to meet system energy requirements. Simulation results clearly differentiate the performance offered by available capacitor products for the space vehicle applications.

  2. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  3. A study of the compatibility of science instruments with the solar electric propulsion space vehicle

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.

    1973-01-01

    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  4. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  5. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2003-01-01

    NASA's Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980s and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, then the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to assess the compatability of seal fabrics against cermaic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  6. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  7. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  8. A methodology for rapid vehicle scaling and configuration space exploration

    NASA Astrophysics Data System (ADS)

    Balaba, Davis

    2009-12-01

    The Configuration-space Exploration and Scaling Methodology (CESM) entails the representation of component or sub-system geometries as matrices of points in 3D space. These typically large matrices are reduced using minimal convex sets or convex hulls. This reduction leads to significant gains in collision detection speed at minimal approximation expense. (The Gilbert-Johnson-Keerthi algorithm [79] is used for collision detection purposes in this methodology.) Once the components are laid out, their collective convex hull (from here on out referred to as the super-hull) is used to approximate the inner mold line of the minimum enclosing envelope of the vehicle concept. A sectional slicing algorithm is used to extract the sectional dimensions of this envelope. An offset is added to these dimensions in order to come up with the sectional fuselage dimensions. Once the lift and control surfaces are added, vehicle level objective functions can be evaluated and compared to other designs. The size of the design space coupled with the fact that some key constraints such as the number of collisions are discontinuous, dictate that a domain-spanning optimization routine be used. Also, as this is a conceptual design tool, the goal is to provide the designer with a diverse baseline geometry space from which to chose. For these reasons, a domain-spanning algorithm with counter-measures against speciation and genetic drift is the recommended optimization approach. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [60] is shown to work well for the proof of concept study. There are two major reasons why the need to evaluate higher fidelity, custom geometric scaling laws became a part of this body of work. First of all, historical-data based regressions become implicitly unreliable when the vehicle concept in question is designed around a disruptive technology. Second, it was shown that simpler approaches such as photographic scaling can result in highly suboptimal concepts

  9. Space transfer vehicle concepts and requirements study. Volume 2, book 1: STV concept definition and evaluation

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The topics covered include the following: mission analysis; initial and evolutionary space transfer vehicle (STV) concept definition; configuration and subsystem trade studies; and operations and logistics.

  10. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  11. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  12. TPS Sizing for Access-to-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Henline, William; Olynick, David; Palmer, Grant; Chen, Y.-K.

    1996-01-01

    A study was carried out to identify, develop, and benchmark simulation techniques needed for optimum thermal protection system (TPS) material selection and sizing for reusable launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solutions over the Langley wing-body single stage to orbit (SSTO) configuration were generated and coupled with an in-depth conduction code. Results from the study provide detailed TPS heat shield materials selection and thickness sizing for the wing-body SSTO. These results are the first ever achieved through the use of a complete, trajectory based hypersonic, Navier-Stokes solution database. TPS designs were obtained for both laminar and turbulent entry trajectories using the Access-to-Space baseline materials such as tailorable advanced blanket insulation. The TPS design effects (materials selection and thickness) of coupling material characteristics to the aerothermal environment are illustrated. Finally, a sample validation case using the shuttle flight database is included.

  13. Practices in adequate structural design. [of space vehicles and space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    An account is given of the guidelines for safe and reliable space vehicle design, especially in the structural engineering area, which have been formulated by NASA in the aftermath of the Space Shuttle Challenger accident in 1986. Illustrative examples are presented from state-of-the-art, performance-driven hardware whose design ineluctably gives rise to a high sensitivity to small variations and uncertainties. It is recommended that such hardware be designed with a view to easy inspectability and manufacturability, with emphasis on the role played in system structures by fracture mechanics. Static and dynamic coupling effects must be precluded wherever possible.

  14. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  15. O/S analysis of conceptual space vehicles. Part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.

  16. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  17. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  18. ISS Update: SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean conducts an interview with SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko about the second commercial resupply mission to the International Space Stat...

  19. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  20. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and

  1. Integrated Vehicle Health Management (IVHM) Activities at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Fox, Jack

    2000-01-01

    Integrated Vehicle Health Management (IVHM) goals are to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce the costs of operations.

  2. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    NASA Technical Reports Server (NTRS)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  3. Required Area for a Crew Person in a Space Vehicle

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.

    1998-01-01

    This 176 page report was written in circa 1966 to examine the effects of confmement during space flight. One of the topics covered was the required size of a space vehicle for extended missions. Analysis was done using size of crew and length of time in a confmed space. The report was based on all information available at that time. The data collected and analyzed included both NASA and (when possible) Russian missions flown to date, analogs (such as submarines), and ground studies. Both psychological and physiological responses to confmement were examined. Factors evaluated in estimating the degree of impairment included the level of performance of intellectual, perceptual, manual and co-ordinated tasks, response to psychological testing, subjective comments of the participants, nature and extent of physiological change, and the nature and extent of behavioral change and the nature and extent of somatic complaints. Information was not included from studies where elements of perceptual isolation were more than mildly incidental - water immersion studies, studies in darkened and acoustically insulated rooms, studies with distorted environmental inputs - unpattemed light and white noise. Using the graph from the document, the upper line provides a threshold of minimum acceptable volumeall points above the line may be considered acceptable. The lower line provides a threshold of unacceptable volume - all points below the line are unacceptable. The area in between the two lines is the area of doubtful acceptability where impairment tends to increase with reduction in volume and increased duration of exposure. Reference is made of the Gemini VII, 14-day duration mission which had detectable impairment with a combination of 40 cubic feet per man for 14 days. In line with all other data this point should be in the 'marked impairment' zone. It is assumed that the state of fitness, dedication and experience influenced this outcome.

  4. Life cycle cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.

  5. Space transportation vehicle design evaluation using saturated designs

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1993-01-01

    An important objective in the preliminary design and evaluation of space transportation vehicles is to find the best values of design variables that optimize the performance characteristic (e.g. dry weight). For a given configuration, the vehicle performance can be determined by the use of complex sizing and performance evaluation computer programs. These complex computer programs utilize iterative algorithms and they are generally too expensive and/or difficult to use directly in multidisciplinary design optimization. An alternative is to use response surface methodology (RSM) and obtain quadratic polynomial approximations to the functional relationships between performance characteristics and design variables. In RSM, these approximation models are then used to determine optimum design parameter values and for rapid sensitivity studies. Constructing a second-order model requires that 'n' design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. There, 3(n) factorial experiments (point designs or observations) may be necessary. For small values of 'n' such as two or three, this design works well. However, when a large number of design parameters are under study, the number of design points required for a full-factorial design may become excessive. Fortunately, these quadratic polynomial approximations can be obtained by selecting an efficient design matrix using central composite designs (CCD) from design of experiments theory. Each unique point design from the CCD matrix is then conducted using computerized analysis tools (e.g. POST, CONSIZ, etc.). In the next step, least squares regression analysis is used to calculate the quadratic polynomial coefficients from the data. However, in some multidisciplinary applications involving a large number of design variables and several disciplines, the computerized performance synthesis programs may get too time consuming and expensive to run even with the use of

  6. Unmanned, space-based, reusable orbital transfer vehicle, DARVES. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The design of an unmanned, space-based, reusable Orbital Transfer Vehicle (OTV) is presented. This OTV will be utilized for the delivery and retrieval of satellites from geosynchronous Earth orbit (GEO) in conjunction with a space station assumed to be in existence in low Earth orbit (LEO). The trade analysis used to determine the vehicle design is presented, and from this study a vehicle definition is given.

  7. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    NASA Astrophysics Data System (ADS)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  8. Advanced automation for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Sklar, Michael; Wegerif, D.

    1990-01-01

    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  9. Common Cause Failure Modeling in Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Ring, Rob; Novack, Steven D.; Britton, Paul

    2015-01-01

    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFs are a set of dependent type of failures that can be caused for example by system environments, manufacturing, transportation, storage, maintenance, and assembly. Since there are many factors that contribute to CCFs, they can be reduced, but are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and dependent CCF. Because common cause failure data is limited in the aerospace industry, the Probabilistic Risk Assessment (PRA) Team at Bastion Technology Inc. is estimating CCF risk using generic data collected by the Nuclear Regulatory Commission (NRC). Consequently, common cause risk estimates based on this database, when applied to other industry applications, are highly uncertain. Therefore, it is important to account for a range of values for independent and CCF risk and to communicate the uncertainty to decision makers. There is an existing methodology for reducing CCF risk during design, which includes a checklist of 40+ factors grouped into eight categories. Using this checklist, an approach to produce a beta factor estimate is being investigated that quantitatively relates these factors. In this example, the checklist will be tailored to space launch vehicles, a quantitative approach will be described, and an example of the method will be presented.

  10. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  11. Future space transportation systems analysis study. Phase 1: Technical report, appendices. [a discussion of orbit transfer vehicles, lunar transport vehicles, space shuttles, and reusable spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.

  12. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    NASA Technical Reports Server (NTRS)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  13. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  14. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2010-01-01

    Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture was designed to reduce the complexity and labor intensity of ground operations for America s next journeys beyond low-Earth orbit (LEO). The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. Since completing the Preliminary Design Review in 2008, work has continued to push the Ares I beyond the concept phase and into full vehicle development, while tackling fresh engineering challenges and performing pathfinding activities related to vehicle manufacturing and ground operations.

  15. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    PubMed Central

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  16. Sensor systems for vehicle environment perception in a Highway Intelligent Space System.

    PubMed

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  17. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.

    2006-01-01

    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  18. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  19. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  20. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  1. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  2. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  3. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2015-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  4. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. 1828.371 Section 1828.371 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space...

  5. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. 1828.371 Section 1828.371 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space...

  6. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  7. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  8. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  9. Application of the MESA reactive hydrocode to space vehicle explosive ordnance devices

    NASA Technical Reports Server (NTRS)

    Goldstein, Selma

    1993-01-01

    The construction of detailed computational models of the dynamic behavior of various explosive ordnance devices used on space vehicles is discussed. The following topics are presented in viewgraph form: numerical methods, explosives and detonations, and the MESA computer code.

  10. 77 FR 23463 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... launch operations at the KLC, were issued on March 22, 2011 (76 FR 16311, March 23, 2011), and remain in... two species of pinnipeds incidental to space vehicle and missile launch operations at the...

  11. Optimal Thermal Design of a Multishield Thermal Protection System of Reusable Space Vehicles

    NASA Astrophysics Data System (ADS)

    Maiorova, I. A.; Prosuntsov, P. V.; Zuev, A. V.

    2016-03-01

    We have solved the problem of the optimal thermal design of a multishield thermal protection system of reusable space vehicles due to the choice of the optimal position and materials of radiation shields.

  12. Simplified control and display concepts for space vehicle control, applied to space station, space shuttle and unmanned satellites

    NASA Astrophysics Data System (ADS)

    Barry, John M.

    NASA and the Air Force are constantly exploring ways to reduce launch vehicle, satellite, and planetary mission life cycle costs. A significant amount of these costs has been devoted to the control of these missions. This control is labor-intensive and requires a diversity of equipment and control devices. The diagnostic procedures involved in this control are duplicated in the development, testing, and operation of the space assets. This control philosophy tends to inhibit technological growth. Such growth is necessary in space systems which are being designed and modified over decades. This paper advocates and demonstrates an innovative approach to simplify the control and display concepts and improve the development and operational process for space assets. It visualizes traditional system engineering techniques in a concurrent engineering environment. This approach captures the knowledge of functional decomposition, failure modes and effects analysis and configuration management in a dynamic prototyping process. It can use existing testing and checkout information to control and operate the space asset during assembly, test, and operation. The implementation of this technique will reduce space development and operations costs, cycle time, and allow for technological growth.

  13. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  14. Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.

  15. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  16. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  17. Ascent, abort, and entry capability assessment of a Space Station rescue and personnel/logistics vehicle

    NASA Technical Reports Server (NTRS)

    Naftel, J. C.; Powell, R. W.; Talay, T. A.

    1989-01-01

    The ascent, abort, and entry capability of a vehicle for rescue of the Space Station crew or ferry of personnel and supplies to and from the Space Station are analyzed. The configurations of the Space Station rescue vehicle and the Space Station personnel/logistics vehicle (SSPLV) are discussed and illustrated. The nominal ascent trajectory for the SSPLV delivered to orbit on a Titan II is presented. The ascent abort modes from launch to orbital injection are evaluated. It is shown that five landing sites with runways longer than 10,000 ft could provide a landing opportunity from every orbit of the Space Station in a 220-nmi circular orbit with a 28.5 deg inclination.

  18. Space Wear Vision -Development of a Wardrobe for Life in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Orndorff, Evelyne

    2015-01-01

    one of shirts used as sleep-wear. The IVA (Intra Vehicular Activity) Clothing Study has been the first study with Roscosmos under the "Utilization Sharing Plan On-Board ISS," while the other studies have been conducted at the Johnson Space Center in a controlled environment similar to the ISS. For exercise clothing, study participants wore garments during aerobic exercise. For routine wear clothing, study participants wore the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reasons for retiring a used garment. More studies have been initiated on Earth, and some should be planned to engage more astronauts and cosmonauts in the design of the new space wear. Future studies will extend to other types of garments in the wardrobe; another will address microbial growth on textiles. Others will address cleaning and sanitation of clothing in space vehicles. Efforts will be made for additional ISS studies with NASA's international partners.

  19. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  20. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  1. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  2. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  3. A lightweight pumped hydrazine orbit maneuvering space vehicle

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-01-01

    An orbital maneuvering vehicle has a pair of opposed cylindrical piston tanks for hydrazine, and four transverse liquid rocket engines along a longitudinal plane. A new kind of pumped rocket propulsion provides maneuvering thrust on demand, and free-piston pumps which can rapidly start and stop are radially oriented between thrusters. A major advantage of this configuration is that the tanks can be close together, which maximizes the vehicle's longitudinal bending stiffness while minimizing the mass of the central bridging structure. The impulses from pump exhaust and piston reciprocation are directed through the system mass center, so they apply no disturbance torques. All high-temperature components are located on the outside of the central structure, where they are free to expand and radiate heat without detrimental effects. Virtually all lightweight components have been fabricated and tested, and photographs of hardware subassemblies are presented.

  4. Protection of Space Vehicles from Micrometeoroid/Orbital Debris (MMOD) Damages

    NASA Technical Reports Server (NTRS)

    Barr, Stephanie

    2007-01-01

    As the environment that puts space vehicles at risk can never be eliminated, space vehicles must implement protection against the MMOD environment. In general, this protection has been implemented on a risk estimate basis, largely focused on estimates of impactor size and estimated flux. However, there is some uncertainty in applying these methods from data gathered in earth orbit to excursions outside. This paper discusses different past thresholds and processes of the past and suggests additional refinement or methods that could be used for future space endeavors.

  5. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  6. Maximum Aerodynamic Force on an Ascending Space Vehicle

    ERIC Educational Resources Information Center

    Backman, Philip

    2012-01-01

    The March 2010 issue of "The Physics Teacher" includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in…

  7. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  8. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  9. Redundancy of space manipulator on free-flying vehicle and its nonholonomic path planning

    NASA Technical Reports Server (NTRS)

    Nakamura, Yoshihiko; Mukherjee, Ranjan

    1989-01-01

    The nonholonomic mechanical structure of space robots and path planning is discussed. The angular momentum conservation works as a nonholonomic constraint while the linear momentum conservation is a holonomic one. Thus, a vehicle with a 6 d.o.f. manipulator is described as a 9 variable system with 6 inputs. This implies the possibility of controlling the vehicle orientation and the joint variables of the manipulator by actuating the joint variables, but only if the trajectory is carefully planned; however, both of them cannot be controlled independently. It means that by assuming feasible-path planning, a system that consists of a vehicle and a 6 d.o.f. manipulator can be utilized as 9 d.o.f. system. Initially, the nonholonomic mechanical structure of space vehicle/manipulator system is shown. Then a path planning scheme for nonholonomic systems is proposed using Lyapunov functions.

  10. Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.

  11. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  12. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  13. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  14. Energy impact assessment of NASA's past, present, and future space launch vehicles

    NASA Technical Reports Server (NTRS)

    Rice, E. E.

    1978-01-01

    An approach to analyze the total energy required for overall support of space launch vehicles is outlined along with some of the basic data required for such analyses. Selected results obtained by using this approach are presented for various past (some are already phased out), present, and future NASA launch vehicles, including an estimate of the total annual energy required to support one projected NASA launch vehicle traffic model. The material presented is expected to give a better insight into the details of an energy impact analysis. Major conclusions are that: (1) for expendable launch vehicle systems, the energy required to manufacture hardware and support launch operations is most significant; (2) for totally reusable systems, the energy required to process/manufacture propellants and fluids is by far the most significant contributor; and (3) up to 1991, the projected highest annual energy requirement for the NASA launch vehicles does not constitute a significant energy impact relative to the nation's total energy needs.

  15. Operational design factors for advanced space transportation vehicles

    NASA Astrophysics Data System (ADS)

    Whitehair, C. L.; Hickman, R. A.; Adams, J. D.; Wolfe, M. G.

    1992-08-01

    The tools and techniques needed to provide design decision-makers with balanced quantitative assessments of the potential operability consequences of their decisions are addressed. The factors controlling operability are identified, and a methodology to predict the impact of these factors on a specific launch vehicle is developed. Requirements to control these factors are established, and analytical tools developed specifically for performing detailed simulations to verify specific operability characteristics are described. An approach to collect, store, organize, and access high-quality historical, current, and future launch system data for the benefit of the USAF and the U.S. launch system community at large is outlined.

  16. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.

  17. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  18. Modification and development of the external tank hydrogen vent umbilical system for the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Tatem, Bemis C., Jr.

    1988-01-01

    The design and development of a new T-O lock and secondary release mechanism which is being introduced to the ET Hydrogen Vent Umbilical System for the next launch of the Space Shuttle Vehicle is described. Critical analysis of the system in early 1986 indicated the need for an improvement in the secondary release system. The new T-O lock increases the clearance with the vehicle during secondary disconnect and is described.

  19. Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.

  20. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  1. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  2. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  3. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  4. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  5. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cook, Stephen A.

    1998-01-01

    NASA has established a goal of providing low-cost reliable access to space. While this goal has been around for many years, it received a major impetus when the U.S Congress mandated the Access-to-Space study in 1993. This study concluded that a rocket powered single-stage-to-orbit vehicle offered the best opportunity for low-cost reliable space transportation by the first decade of the new millennium. This required a focused technology development program before such a vehicle could be built. NASA recognized that no commercial entity would commit to the development of a single-stage-to-orbit vehicle without the U.S. Government's participation. To this end, NASA entered into a cooperative agreement with industry to mature the required technologies. This effort includes the development of an experimental subscale-vehicle known as the X-33, an extensive ground-based program to provide the required additional technology development, and conceptual through preliminary design of an operational reusable launch vehicle. Following this effort, a decision will be made whether or not to proceed with the detailed design and fabrication of an operational vehicle.

  6. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cook, Stephen A.

    1998-01-01

    NASA has established a goal of providing low-cost reliable access to space. While this goal has been around for many years, it received a major impetus when the U.S. Congress mandated the Access-to-Space study in 1993. This study concluded that a rocket powered single-state-to-orbit vehicle offered the best opportunity for low-cost reliable space transportation by the first decade of the new millennium. This required a focused technology development program before such a vehicle could be built. NASA recognized that no commercial entity would commit to the development of a single-stage-to-orbit vehicle without the U.S. Government's participation. To this end, NASA entered into a cooperative agreement with industry to mature the required technologies. This effort includes the development of an experimental subscale-vehicle known as the X-33, an extensive ground-based program to provide the required additional technology development, and conceptual through preliminary design of an operational reusable launch vehicle. Following this effort, a decision will be made whether or not to proceed with the detailed design and fabrication of an operational vehicle.

  7. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle

    NASA Astrophysics Data System (ADS)

    Kiyokawa, T.; Nakajima, M.; Mori, Y.

    2012-01-01

    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  8. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such

  9. The Ares I Crew Launch Vehicle: Human Space Access for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle (Figure 1), the United States first new human-rated launch vehicle in over 25 years. Ares I will provide the core space launch capabilities the United States needs to continue providing crew and cargo access to the International Space Station (ISS), maintaining the U.S. pioneering tradition as a spacefaring nation, and enabling cooperative international ventures to the Moon and beyond. This paper will discuss programmatic, design, fabrication, and testing progress toward building this new launch vehicle.

  10. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  11. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  12. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  13. Application of Closed Loop Optimal Guidance for a Constant Thrust Space Vehicle

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Mahdy; Abbasi Mahale, Mahdi

    2016-01-01

    This research presents derivation and implementation of the explicit guidance problem to steer a space vehicle into exo atmospheric phase of flight to develop three-dimensional optimal trajectory. The proposed guidance algorithm is in association with continuous powered flight of the space vehicle in ascent manoeuvre. Stability, accuracy and simplicity of this approach are the improved developments in comparison with the IGM approach. This algorithm uses the calculus of variation method for the two boundary-value injection problem to generate an optimal trajectory of space vehicle with online generation of steering command to inject to any desired orbit. Here the end conditions have been determined as the orbital height, inclination and eccentricity where the initial conditions are fixed. The simulation results are considered which shows the accuracy and simplicity of this method to reach to the desired orbit in minimum fuel.

  14. Subjective and objective evaluation of sense of space for vehicle occupants based on anthropometric data.

    PubMed

    Hiamtoe, Pitarn; Steinhardt, Florian; Köhler, Uwe; Bengler, Klaus

    2012-01-01

    At present, the number of the vehicle requirements has been continuously increasing. These requirements can be related to the customer as well as the technical requirements. Among these, the "feeling of space" of the occupants inside the vehicles can be regarded as one of the most important factors. In this respect, the driver and passengers should be able to experience positive feeling of space inside the vehicle. There are numerous factors that can influence the sense of space inside the vehicle. These include geometry (vehicle dimensions), light exposure, ambient lights, colors, material selection and material surface. Depending on the selection, the sense of space can be dramatically influenced by these factors. In general, human feeling is subjective and cannot be measured by any instrument. The measure can nevertheless be carried out by utilizing the method of subjective evaluation. Throughout the experiments, the method of evaluation is developed and the factors which can influence the interior feeling are analyzed. In this process, psychological perception, architectural aspects and anthropometry are considered and knowledge from the other domains is transferred in the form of a multidisciplinary approach. The experiments with an aim to evaluate the overall sense of space in the vehicle are carried out based on the physical mock up of BMW 1 series (E87). The space perception with different interior dimensions and anthropometric data of test persons are also analyzed. The use of Computer Aided Technology was shown by CATIA V5, PCMAN and RAMSIS. The results show a good correlation between the subjective evaluation and the geometric values. PMID:22316731

  15. Aerodynamic comparisons of STS-1 Space Shuttle entry vehicle

    NASA Technical Reports Server (NTRS)

    Young, J. C.

    1982-01-01

    A conventional flight-test program, which slowly and cautiously approaches more severe flight conditions, was not possible with the Orbiter. On the first flight, the Orbiter entered the atmosphere at Mach 28 and decelerated through the Mach range. (The subsonic portion of flight was also flown by another orbiter vehicle during the Approach and Landing Test Program.) Certification for the first flight was achieved by an extensive wind-tunnel test and analysis program and by restricting the flight maneuvers severely. The initial flights of the orbiter were heavily instrumented for the purpose of obtaining accurate aerodynamic data. Even without maneuvers to excite the system, the first flight provided comparisons between flight and wind-tunnel-derived predicted data in the areas of aerodynamic performance, longitudinal trim, and reaction-control jet interaction. The aerodynamic performance comparisons are presented.

  16. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1971-01-01

    The unsteady aerodynamics of the proposed delta planform, high cross range, shuttle orbiters, are investigated. It is found that these vehicles are subject to five unsteady-flow phenomena that could compromise the flight dynamics. The phenomena are as follows: (1) leeside shock-induced separation, (2) sudden leading-edge stall, (3) vortex burst, (4)bow shock-flap shock interaction, and (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding deterimental effects of the stall phenomena; however, stall must be fixed or controlled when traversing the stall region. Other phenomana may be controlled by carefully programmed control deflections and some configuration modifications. Ways to alter the occurrence of the various flow conditions are explored.

  17. Expert system isssues in automated, autonomous space vehicle rendezvous

    NASA Technical Reports Server (NTRS)

    Goodwin, Mary Ann; Bochsler, Daniel C.

    1987-01-01

    The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.

  18. Apollo/Saturn 5 space vehicle countdown. Volume 2: Turnaround from scrub

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The procedures required to prepare a space vehicle for subsequent launch attempt after cancelling lift-off activities are presented. The cancellation must occur after the start of cryogenic loading, but prior to initiation of ignition sequences. The sequence of operations necessary to return the space vehicle to a predetermined configuration at which time the launch count can be resumed or rescheduled for following launch opportunities is developed. The considerations and constraints that are the basis for the scrub/turnaround times are described.

  19. The General Discussion on Thermal Technologies in Advanced Space Transfer Vehicles

    NASA Astrophysics Data System (ADS)

    Qi, Feng; Wang, Guo-hui

    2016-07-01

    In recent years, the boundary of space exploration has been wider and wider. So the demand of new-generation spacecrafts, carriers and transfer vehicles becomes urged. In this article, thermal questions and first-stage counter-measure technical methods and the relative important recent improvements in these methods are discussed about two important types of new conceptive Space Transfer Vehicles (STVs), the nuclear-thermal propelling STV and laser propelled STV, especially on the heat generation, heat collection, heat transfer and heat control. At the end of this article, pieces of advice and several predictions are put forward, generally and principally.

  20. Integrating Human Factors into Space Vehicle Processing for Risk Management

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah; Richards, Kimberly J.

    2008-01-01

    This presentation will discuss the multiple projects performed in United Space Alliance's Human Engineering Modeling and Performance (HEMAP) Lab, improvements that resulted from analysis, and the future applications of the HEMAP Lab for risk assessment by evaluating human/machine interaction and ergonomic designs.

  1. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  2. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig

    2007-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007

  3. Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles

    NASA Astrophysics Data System (ADS)

    During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.

  4. Fire safety design considerations for advanced space vehicles

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The desire to understand and explore space has driven man to overcome the confines of the Earth's atmosphere and accept the challenge of spaceflight. With our increasing ability to travel, work, and explore in space comes a need for a better understanding of the hazards in this relatively new endeavor. One of the most important and immediate needs is to be able to predict the ignition, spread, and growth of fire on board spacecraft. Fire safety aboard spacecraft has always been a concern; however, with the increasing number and duration of proposed missions, it is imperative that the spacecraft be designed with a solid understanding of fire hazards, insuring that all risks have been minimized and extinguishment systems are available.

  5. Thermal preparation of foods in space-vehicle environments

    NASA Technical Reports Server (NTRS)

    Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.

    1974-01-01

    Convection is the primary heat transfer mechanism for most foods heated in an earth-based environment. In contrast, in the low-gravity environment of space flight, the primary heat transfer mechanism is conduction (or radiation in the absence of a conducting medium). Conduction heating is significantly slower and less efficient than convection heating. This fact poses a problem for food heating during space flight. A numerical model has been developed to evaluate this problem. This model simulates the food-heating process for Skylab. The model includes the effect of a thermally controlled on/off heat flux. Parametric studies using this model establish how the required heating time is affected by: the thermal diffusivity of the nutrient materials, the power level of the heater, the initial food temperatures, and the food container dimensions.

  6. Space shuttle orbiter vehicle star tracker test program plan

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1974-01-01

    The development model test program was written to provide guidance for essential star tracker test support to the Space Shuttle Orbiter Program. The program organization included test equipment preparation, prototype baseline/acceptance tests, prototype total performance tests, and prototype special tests. Test configurations, preparation phase, documentation, scheduling, and manpower requirements are discussed. The test program permits an early evaluation of the tracker's performance prior to completion and testing of the final flight models.

  7. Inter-Module Ventilation Changes to the International Space Station Vehicle to Support Integration of the International Docking Adapter and Commercial Crew Vehicles

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Balistreri, Steven F., Jr.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.

  8. Composite propulsion feedlines for cryogenic space vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Laintz, D. J.; Phillips, J. M.

    1973-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.

  9. An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.

    2014-01-01

    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.

  10. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  11. Photovoltaic solar arrays - Unlimited power for our space vehicles

    SciTech Connect

    Chidester, L.G.

    1981-01-01

    Solar cell technology is reviewed with reference to the high-efficiency cells, ultra-thin cells, GaAs cells and wrap-around cells. Performance characteristics are presented noting the advantages of GaAs cells over silicon cells. A number of solar array configurations are illustrated including large flexible arrays and curved graphite panels. Attention is given to the NASA Solar Electric Propulsion Stage program which would use ion engines to propel spacecraft in interplanetary missions. Applications of solar cell technology to the Space Shuttle program are discussed, including the Power Extension Package, lightweight arrays and solar energy concentrators.

  12. Optimization of thermal protection systems for the space vehicle. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of the computational techniques for the design optimization of thermal protection systems for the space shuttle vehicle are discussed. The resulting computer program was then used to perform initial optimization and sensitivity studies on a typical thermal protection system (TPS) to demonstrate its application to the space shuttle TPS design. The program was developed in FORTRAN IV for CDC 6400 computer, but it was subsequently converted to the FORTRAN V language to be used on the Univac 1108.

  13. Development of Backscatter X-Ray Imaging Techniques for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2009-01-01

    This slide presentation reviews the development of backscatter x ray (BSX) imaging techniques to perform inspection of spacecraft components. The techniques are currently being enhanced to advance Non-Destructive Testing (NDT) methods for future space vehicle applications. The presentation includes an overview of x ray techniques, a description of current BSX applications used on the space shuttle, the development for Constellation applications, and the use of the system for foam applications.

  14. Analysis of International Space Station Vehicle Materials on MISSE 6

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Golden, Johnny; Kravchenko, Michael; O'Rourke, Mary Jane

    2010-01-01

    The International Space Station Materials and Processes team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. Results for the following MISSE 6 samples materials will be presented: deionized water sealed anodized aluminum; Hyzod(tm) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; Beta Cloth with Teflon(tm) reformulated without perfluorooctanoic acid (PFOA), and electroless nickel. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: more deionized water sealed anodized aluminum, including Photofoil(tm); indium tin oxide (ITO) over-coated Kapton(tm) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth (alpha/beta transformation); and beta cloth backed with a black coating rather than aluminization. MISSE 8 samples are: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, protective fiberglass tapes and sleeve materials, and optical witness samples to monitor contamination.

  15. The computation of relative motion with increased precision. [of two orbiting space vehicles

    NASA Technical Reports Server (NTRS)

    Nacozy, P.; Szebehely, V.

    1976-01-01

    Encke's method as modified by Potter to increase the accuracy of orbit computations of gravitationally interacting bodies is applied to the problem of relative motion of non-interacting space vehicles. This technique is then combined with a simple transformation of the independent variable to arrive at a system of equations from which the relative motion may be determined with increased precision.

  16. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  17. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  18. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  19. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  20. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  1. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    NASA Technical Reports Server (NTRS)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  2. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Klimeck, G.; Hanks, D.

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.

  3. A Capability to Generate Physics-based Mass Estimating Relationships for Conceptual Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Marcus, Leland

    2002-01-01

    This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).

  4. Compilation of Papers Presented to Meeting on Space Vehicle Landing and Recovery Research and Technology

    NASA Technical Reports Server (NTRS)

    1962-01-01

    A meeting on Space Vehicle Landing and Recovery was held on July 10-11, 1962 at NASA Headquarters. The Centers were asked to participate in this meeting in accordance with their interest, activities, and requirements in the subject area. Primary emphasis was directed toward parachutes, parachute-rocket systems, paragliders, and lifting rotor concepts applicable to bothe booster and spacecraft landing and recovery.

  5. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; Zapp, E. Neal; Shelfer, Tad D.

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  6. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Technical Reports Server (NTRS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    1990-01-01

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  7. Automated procedure execution for space vehicle autonomous control

    NASA Technical Reports Server (NTRS)

    Broten, Thomas A.; Brown, David A.

    1990-01-01

    Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.

  8. Misalignment studies on space shuttle integrated vehicle (IA31FC)

    NASA Technical Reports Server (NTRS)

    Ramsey, P.; Mcmeans, T.; Davis, T.

    1973-01-01

    The effects of test model element misalignments on test results were investigated. Transonic wind tunnel-573 was designed to study these misalignment effects in detail by purposely misaligning model elements a known amount. Misalignments in TWT-573 were achieved by use of special off-set spacers and mounting hardware to change, yaw, pitch and roll on various elements of a 0.004-Scale PRR Baseline space shuttle configuration model. By comparing the misalignment runs to the nominal configuration with no misalignment, relative effects of the misalignment could be seen. This data was obtained over a Mach range of .9 to 1.46 using an angle of attack sweep of minus 10 deg to plus 10 deg in 2 deg increments.

  9. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  10. Analysis of International Space Station Vehicle Materials Exposed on Materials International Space Station Experiment from 2001 to 2011

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Golden, J. L.; Kravchenko, M.

    2013-01-01

    Since August 2001, the Materials on International Space Station Experiment (MISSE) has provided data on a variety of materials and spacecraft components, including samples chosen to provide sustaining engineering and life extension data for the International Space Station vehicle itself. This Technical Publication is by no means a complete set of MISSE data but does provide changes in solar absorptance, infrared emittance, and visual appearance due to atomic oxygen, ultraviolet radiation, and thermal cycling in vacuum. Conversion coatings, anodizes, thermal control coatings with organic and inorganic binders, multilayer insulation components, optical materials, and part markings are discussed.

  11. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  12. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  13. Space transfer vehicle concepts and requirements, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  14. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  15. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-IOO1A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  16. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  17. CARINA - A space vehicle with re-entry capabilities for microgravity experiments

    NASA Astrophysics Data System (ADS)

    Borriello, G.; Sansone, A.; Ricciardi, A.

    1992-08-01

    An Italian autonomous space vehicle with recovery capabilities, named CARINA (Capsula di Rientro Non Abitata), is described with special attention given to the technological developments in areas pertaining to the reentry system, including reentry aerothermodynamics and the design of the thermal protection system. Consideration is also given to the configuration of the CARINA vehicle (comprised of the expendable Service Module and the Apollo-like Reentry Module), the subsystems and their performances, the mission life cycle, the microgravity utilization aspects, and the programmatic aspects.

  18. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  19. Dispersion analysis and linear error analysis capabilities of the space vehicle dynamics simulation program

    NASA Technical Reports Server (NTRS)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.

  20. Heavy-lift launch vehicle options for future space exploration initiatives

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.; Harris, Ronald J.

    1990-01-01

    A review of present heavy-lift launch vehicles (HLLV) capable of placing heavy payloads in earth orbit is presented and the basis for an emerging consensus that an HLLV will be required in the near future is discussed. Some of the factors for the policies governing the roles and requirements for these vehicles in the future, such as cost, technology development, and lead time to first use are addressed. Potential Space Station Freedom application is discussed as well as application to the proposed initiatives for human exploration of Mars and the moon.

  1. Space shuttle orbiter reaction control system interactions with the vehicle flow field

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1978-01-01

    Test data on the effect of the interaction between the space shuttle orbiter rear-mounted reaction control system jets and the flow over the vehicle in the atmosphere are analyzed with particular attention to yaw angle effects. Masted tank-plus-orbiter jet interactions resulting from combinations of forward and rear-mounted reaction control jets being fired prior to external tank staging are also documented. The primary correlating parameter used for the mated data is a single-jet momentum ratioed to free-stream momentum. An analytic model for computing reaction control system interactions for all control combinations used for mated vehicle coast is included.

  2. Applying a Crew Accommodations Resource Model to Future Space Vehicle Research

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer Linda

    2003-01-01

    The success of research and development for human space flight depends heavily on modeling. In addition, the use of such models is especially critical at the earliest phase of research and development of any manned vehicle or habitat. NASA is currently studying various innovative and futuristic propulsion technologies to enable further exploration of space by untended as well as tended vehicles. Details such as vehicle mass, volume, shape and configuration are required variables to evaluate the success of the propulsion concepts. For tended vehicles, the impact of the crew's requirements on those parameters must be included. This is especially important on long duration missions where the crew requirements become more complex. To address these issues, a crew accommodations resource model, developed as a mission planning tool for human spaceflight (Stillwell, Boutros, & Connolly), was applied to a reference mission in order to estimate the volume and mass required to sustain a crew for a variety of long duration missions. The model, which compiled information from numerous different sources and contains various attributes which can be modified to enable comparisons across different dimensions, was instrumental in deriving volume and mass required for a tended long duration space flight. With the inclusion of some additional variables, a set of volume and mass requirements were provided to the project. If due consideration to crew requirements for volume and mass had not been entertained, the assumptions behind validation of the propulsion technology could have been found to be incorrect, possibly far into development of the technology or even into the design and build of test vehicles. The availability and use of such a model contributes significantly by increasing the accuracy of human space flight research and development activities and acts as a cost saving measure by preventing inaccurate assumptions from driving design decisions.

  3. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several

  4. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (< 20 years!) accumulation of sufficient data for countermeasures formulation. Indeed, there is no guarantee that even with the data, a practical or sufficiently robust set of countermeasures will be forthcoming. Providing an artificial gravity (AG) environment by crew centrifugation aboard deep-space human exploration vehicles, long a staple technique of science fiction, has received surprisingly limited engineering assessment. This is most likely due to a number of factors: the lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as

  5. A prototype computerized synthesis methodology for generic space access vehicle (SAV) conceptual design

    NASA Astrophysics Data System (ADS)

    Huang, Xiao

    2006-04-01

    Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth

  6. International Space Station as an Observation Platform for Hypersonic Re-Entry of its Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2001-01-01

    The International Space Station (ISS) will receive an armada of visiting supply vehicles during its life in orbit. Over 500 tons of material will be destroyed in targeted re-entries of these vehicles. Because all such re-entries lie in the same orbital plane of the station, and because the visiting vehicles typically deorbit within a few hours of departure, the ISS will usually be within sight of the re-entry process, at a range of only 300-600 kilometers. This vantage point offers an unprecedented opportunity for systematically measuring hypersonic destructive processes. This paper examines the integrated operational constraints of the ISS, its supply vehicles, and candidate sensors which can be employed in the scientific observation of the re-entry process. It is asserted the ISS program has the potential to reduce the worldwide risks from future deorbiting spacecraft, through systematic experimental characterization of the factors which affect the rupture, debris survival, and footprint size of its visiting vehicle fleet.

  7. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Wimsatt, J. C.

    1973-01-01

    An experimental sterilization facility was developed to simulate conditions that will be encountered during terminal sterilization of space vehicles. The system consists of a temperature controlled oven with a nitrogen gas stream containing a known concentration of water. Moisture analyzers are utilized to monitor the gas flowing over spore samples contained in the oven. In its original configuration, no provision was made for the control of water vapor during the sterilization cycle. Because moisture profoundly influences the thermal inactivation of bacterial spores, an upper limit for the moisture content in the gas used to sterilize the space vehicle was established (25% RH at 0 C STP). Accordingly, a controller was developed and installed to provide these conditions in the experimental sterilization facility.

  8. Applying a Crew Accommodations Resource Model to Future Space Vehicle Research: A Case Study

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer Linda

    2003-01-01

    Modeling for space vehicle design needs to consider: 1) The Human Factor; and 2) The Mission Factor. The Test Case of a crew resource model in this viewgraph presentation includes: 1) The Problem; 2) Crew Accomodations Resource Model; and 3) Conculsions on the model's utility for working the problem. The presentation uses the Crew Accomodations Resource Model to determine the mass and volume of supplies and equipment for a hypothetical manned Mars mission.

  9. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  10. Development of control systems for space shuttle vehicles. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.

    1971-01-01

    A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.

  11. Macroinformational analysis of conditions for controllability of space-vehicle orbit

    NASA Astrophysics Data System (ADS)

    Glazov, B. I.

    2011-12-01

    The general axiomatics of information measures for the macro analysis of relations of an information-cybernetic system in the control is introduced. The general structure of a semantically marked graph of open and closed relations of an information-cybernetic system between the participants in the environment, as well as thenecessary axiomatic and technological information-cybernetic system conditions of controllability and observability of objects, for the case of a space vehicle in orbit, are justified.

  12. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  13. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  14. A transient response analysis of the space shuttle vehicle during liftoff

    NASA Technical Reports Server (NTRS)

    Brunty, J. A.

    1990-01-01

    A proposed transient response method is formulated for the liftoff analysis of the space shuttle vehicles. It uses a power series approximation with unknown coefficients for the interface forces between the space shuttle and mobile launch platform. This allows the equation of motion of the two structures to be solved separately with the unknown coefficients at the end of each step. These coefficients are obtained by enforcing the interface compatibility conditions between the two structures. Once the unknown coefficients are determined, the total response is computed for that time step. The method is validated by a numerical example of a cantilevered beam and by the liftoff analysis of the space shuttle vehicles. The proposed method is compared to an iterative transient response analysis method used by Martin Marietta for their space shuttle liftoff analysis. It is shown that the proposed method uses less computer time than the iterative method and does not require as small a time step for integration. The space shuttle vehicle model is reduced using two different types of component mode synthesis (CMS) methods, the Lanczos method and the Craig and Bampton CMS method. By varying the cutoff frequency in the Craig and Bampton method it was shown that the space shuttle interface loads can be computed with reasonable accuracy. Both the Lanczos CMS method and Craig and Bampton CMS method give similar results. A substantial amount of computer time is saved using the Lanczos CMS method over that of the Craig and Bampton method. However, when trying to compute a large number of Lanczos vectors, input/output computer time increased and increased the overall computer time. The application of several liftoff release mechanisms that can be adapted to the proposed method are discussed.

  15. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  16. Considerations for Medical Transport from the Space Station via an Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Hamilton, Glenn C.; Stizza, Denis; Garrison, Richard; Gerstner, David

    2001-01-01

    In developing a permanently crewed space station, the importance of medical care has been continually reaffirmed; and the health maintenance facility (HMF) is an integral component. It has diagnostic, therapeutic, monitoring, and information management capability. It is designed to allow supportive care for: (1) non-life-threatening illnesses; e.g., headache, lacerations; (2) moderate to severe, possibly life-threatening illnesses; e.g., appendicitis, kidney stones; and (3) severe, incapacitating, life-threatening illnesses; e.g., major trauma, toxic exposure. Since the HMF will not have a general surgical capability, the need for emergency escape and recovery methods has been studied. Medical risk assessments have determined that it is impossible to accurately predict the incidence of crewmember illness/injury. A best estimate is 1:3 per work-year, with 1% of these needing an ACRV. For an eight-person crew, this means that one assured crew return vehicle (ACRV) will be used every 4 to 12 years. The ACRV would serve at least three basic objectives as: (1) a crew return if the space shuttle is unavailable; (2) an escape vehicle from a major time-critical space station emergency; and (3) a full or partial crew return vehicle for a medical emergency. The focus of this paper is the third objective for the ACRV.

  17. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Astrophysics Data System (ADS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  18. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  19. Space Shuttle Main Engine plume diagnostics: OPAD approach to vehicle health monitoring

    NASA Technical Reports Server (NTRS)

    Powers, W. T.; Cooper, A. E.; Wallace, T. L.; Buntine, W. L.; Whitaker, K.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup, AEDC, in Tullahoma, Tennessee. This process, Optical Plume Anomaly Detection (OPAD), has formed the basis for various efforts in the development of in-flight plume spectroscopy and in addition produced a viable test stand vehicle health monitor. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data.

  20. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles. PMID:17357620

  1. Asymmetrical booster guidance and control system design study. Volume 3: Space shuttle vehicle SRB actuator failure study. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The investigation of single actuator failures on the space shuttle solid rocket booster required the analysis of both square pattern and diamond pattern actuator configurations. It was determined that for failures occuring near or prior to the region of maximum dynamic pressure, control gain adjustments can be used to achieve virtually nominal mid-boost vehicle behavior. A distinct worst case failure condition was established near staging that could significantly delay staging. It is recommended that the square pattern be retained as a viable alternative to the baseline diamond pattern because the staging transient is better controlled resulting in earlier staging.

  2. A Perspective on the Use of Storable Propellants for Future Space Vehicle Propulsion

    NASA Technical Reports Server (NTRS)

    Boyd, William C.; Brasher, Warren L.

    1989-01-01

    Propulsion system configurations for future NASA and DOD space initiatives are driven by the continually emerging new mission requirements. These initiatives cover an extremely wide range of mission scenarios, from unmanned planetary programs, to manned lunar and planetary programs, to earth-oriented (Mission to Planet Earth) programs, and they are in addition to existing and future requirements for near-earth missions such as to geosynchronous earth orbit (GEO). Increasing space transportation costs, and anticipated high costs associated with space-basing of future vehicles, necessitate consideration of cost-effective and easily maintainable configurations which maximize the use of existing technologies and assets, and use budgetary resources effectively. System design considerations associated with the use of storable propellants to fill these needs are presented. Comparisons in areas such as complexity, performance, flexibility, maintainability, and technology status are made for earth and space storable propellants, including nitrogen tetroxide/monomethylhydrazine and LOX/monomethylhydrazine.

  3. A full-pressure space suit with bailout capabilities for experimental suborbital vehicles

    NASA Astrophysics Data System (ADS)

    de León, Pablo; Williamson, Mark R.

    2007-02-01

    This paper discusses the development of a full-pressure space suit to be used in the Argentine Gauchito suborbital space vehicle. Rationales for providing full-pressure suits with bailout capabilities for both crew and passengers are first discussed. Mishaps during past US and Russian space missions are also presented to show how the hazards of reentry and landing can be mitigated by a robust space suit with bailout capabilities. Results from the testing of the suit's helmet, enclosure mechanisms, gloves, cooling system, thermal garment, and mobility range are presented followed by a description of the suit's emergency operating procedures. Testing of the suit culminated in an altitude chamber and a high-altitude glider flight.

  4. Development of space stable thermal control coatings for use on large space vehicles

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.

    1972-01-01

    A reserach project to develop space stable thermal control coatings for large surfaces is discussed. Four major tasks are considered: (1) pigment development, (2) binder development, (3) environmental effects evaluations, and (4) general coatings investigations.

  5. Analysis of Separation Corridors for Visiting Vehicles from the International Space Station

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.; Schrock, Rita R.; Schrock, Mark B.; Lowman, Bryan C.

    2011-01-01

    The International Space Station (ISS) is a very dynamic vehicle with many operational constraints that affect its performance, operations, and vehicle lifetime. Most constraints are designed to alleviate various safety concerns that are a result of dynamic activities between the ISS and various Visiting Vehicles (VVs). One such constraint that has been in place for Russian Vehicle (RV) operations is the limitation placed on Solar Array (SA) positioning in order to prevent collisions during separation and subsequent relative motion of VVs. An unintended consequence of the SA constraint has been the impacts to the operational flexibility of the ISS resulting from the reduced power generation capability as well as from a reduction in the operational lifetime of various SA components. The purpose of this paper is to discuss the technique and the analysis that were applied in order to relax the SA constraints for RV undockings, thereby improving both the ISS operational flexibility and extending its lifetime for many years to come. This analysis focused on the effects of the dynamic motion that occur both prior to and following RV separations. The analysis involved a parametric approach in the conservative application of various initial conditions and assumptions. These included the use of the worst case minimum and maximum vehicle configurations, worst case initial attitudes and attitude rates, and the worst case docking port separation dynamics. Separations were calculated for multiple ISS docking ports, at varied deviations from the nominal undocking attitudes and included the use of two separate attitude control schemes: continuous free-drift and a post separation attitude hold. The analysis required numerical propagation of both the separation motion and the vehicle attitudes using 3-degree-of-freedom (DOF) relative motion equations coupled with rigid body rotational dynamics to generate a large set of separation trajectories.

  6. RS-25 for the NASA Crew Launch Vehicle: The Evolution of SSME for Space Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael H.; Genge, Gary G.; Greene, William D.; Jacobs, William; McArthur, J. Craig; Mims, Michael J.; Tepool, J. Eric; Wofford, Steven J.

    2006-01-01

    As a first step towards the fulfillment of the National Vision for Space Exploration, NASA has begun development of the Crew Launch Vehicle (CLV). The CLV will act, in conjunction with the Crew Exploration Vehicle, as the next generation human launch system to first support missions to the International Space Station (ISS), then later to support the lunar return missions, and then after that to exploration missions to Mars and beyond. The CLV is a two-stage launch vehicle with the first stage based upon the Space Shuttle solid rocket booster. The newly designed, expendable second stage is powered by a single RS-25 liquid hydrogen/liquid oxygen rocket engine. The RS-25 is essentially the Space Shuttle Main Engine (SSME) evolved for a new mission, new environments, and new conditions. The CLV Upper-Stage Engine (USE) office has been established to develop the RS-25 in support of the CLV Project. This paper presents an outline and discussion of the risks associated with this endeavor of transforming the SSME into the upper-stage, altitude-start RS-25 and the plans being undertaken to understand and mitigate these risks. In addition, to meet the long-term requirements of the CLV launch manifest, it will be necessary to redevelop the RS-25, with its long history as the reusable SSME for the Space Shuttle Program, as an expendable engine. While the first flights of CLV will be using heritage SSME hardware, beyond that a new version of RS-25 as an expendable engine is being pursued by the CLV USE element. The goals of this work include the need to make the hardware more producible while maintaining the inherent and inherited reliability of the basic design. This paper will also discuss the risks and present the plans for developing both this next generation version of the RS-25 and for developing the manufacturing capacity necessary to support the CLV Project.

  7. Vehicle Shield Optimization and Risk Assessment for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Nounu, Hatem N.; Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    As the focus of future human space missions shifts to destinations beyond low Earth orbit such as Near Earth Objects (NEO), the moon, or Mars, risks associated with extended stay in hostile radiation environment need to be well understood and assessed. Since future spacecrafts designs and shapes are evolving continuous assessments of shielding and radiation risks are needed. In this study, we use a predictive software capability that calculates risks to humans inside a spacecraft prototype that builds on previous designs. The software uses CAD software Pro/Engineer and Fishbowl tool kit to quantify radiation shielding provided by the spacecraft geometry by calculating the areal density seen at a certain point, dose point, inside the spacecraft. Shielding results are used by NASA-developed software, BRYNTRN, to quantify organ doses received in a human body located in the vehicle in case of solar particle event (SPE) during such prolonged space missions. Organ doses are used to quantify risks on astronauts health and life using NASA Space Cancer Model. The software can also locate shielding weak points-hotspots-on the spacecraft s outer surface. This capability is used to reinforce weak areas in the design. Results of shielding optimization and risk calculation on an exploration vehicle design for missions of 6 months and 30 months are provided in this study. Vehicle capsule is made of aluminum shell that includes main cabin and airlock. The capsule contains 5 sets of racks that surround working and living areas. Water shelter is provided in the main cabin of the vehicle to enhance shielding in case of SPE.

  8. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  9. Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace

    NASA Astrophysics Data System (ADS)

    Burleigh, Douglas D.

    1999-03-01

    The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  10. Fracture control methods for space vehicles. Volume 1: Fracture control design methods. [for space shuttle configuration planning

    NASA Technical Reports Server (NTRS)

    Liu, A. F.

    1974-01-01

    A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.

  11. Automatic theodolite for pre-launch azimuth alignment of the saturn space vehicles.

    PubMed

    Mrus, G J; Zukowsky, W S; Kokot, W; Yoder, P R; Wood, J T

    1971-03-01

    The inertial guidance system in the Saturn 1B and Saturn 5 space vehicles is aligned in azimuth prior to lift-off by a Perkin-Elmer high precision, automatic alignment theodolite. This special theodolite, designated the AALT-SV-M2, acquires and locks onto the autocollimated images from each of two porro prisms mounted within the instrument unit on top of the S4-B booster stage of the vehicle. A separate retroreflecting prism on the skin of the instrument unit near the porro prisms is also tracked to eliminate the effects of vehicle sway. The theodolite itself is located in an underground hut between the crawler-ways about 232 m from the base of the vehicle. Six of these theodolite systems have been built by Perkin-Elmer under contract to NASA. These units have been used successfully in all the Saturn launches to date; they have consistently achieved better than the required alignment accuracy of +/-2 sec of arc for all missions. In this paper, we describe the theodolite and its function as an integrated electrooptical system. The means employed to separate the various return images into the proper channels and to generate the required error signals are discussed. PMID:20094480

  12. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  13. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  14. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Lightsey, Glenn; Campbell, Chip; Carpenter, Russell; Davis, George; Jackson, Larry; Davis, Ed; Kizhner, Semion

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X- 38CrewReturnVehicle(CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by NASA:s Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  15. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  16. Quadratic programming-based approach for autonomous vehicle path planning in space

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Han, Jianda; Wu, Huaiyu

    2012-07-01

    Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades. The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one, and also can not solve the inherent constraints arising from the robot body and the exterior environment. To address these difficulties, this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles. First, the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target, as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs). The optimization is in quadratic polynomial form according to QP formulation. Then, the avoidance task is modeled with linear constraints in RVCs. Some other constraints, such as kinematics, dynamics, and sensor range, are included. Last, simulations with typical multiple obstacles are carried out, including in static and dynamic environments and one of human-in-the-loop. The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances. Therefore, the QP model proposed in this paper not only adapts to dynamic environment with uncertainty, but also can satisfy all kinds of constraints, and it provides an efficient approach to solve the problems of path planning in three-dimensional space.

  17. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  18. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and Modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design and tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges of that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  19. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  20. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    NASA Technical Reports Server (NTRS)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  1. Space-based laser-powered orbital transfer vehicle (Project SLICK)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The project SLICK (Space Laser Interorbital Cargo Kite) involves conceptual designs of reusable space-based laser-powered orbital transfer vehicle (LOTV) for ferrying 16,000 kg cargo primarily between low Earth orbit (LEO) and geosynchronous earth orbit (GEO). The power of LOTV is beamed by a single 32-MW solar-pumped iodide laser orbiting the Earth at an altitude of one Earth radius. The laser engine selected for the LOTV is based on a continuous-wave, steady-state propulsion scheme and uses an array of seven discrete plasmas in a flow of hydrogen propellant. Both all-propulsive and aerobraked LOTV configurations were analyzed and developed. The all-propulsive vehicle uses a rigid 11.5-m aperture primary mirror and its engine produces a thrust of 2000 N at a specific impulse of 1500 sec. For the LEO-to-GEO trip, the payload ratio, m(sub payload/m(sub propellant)+m(sub dry vehicle) = 1.19 and the trip time is about 6 days. The aerobraked version uses a lightweight, retractable wrapped-rib primary mirror which is folded for aerobraking and a 20-m-diameter inflatable-ballute aeroshield which is jettisoned after aeromaneuver. Lifecycle cost analysis shows that the aerobraked configuration may have an economic advantage over the all-propulsive configuration as long as the cost of launching the propellant to LEO is higher than about $500/kg in current dollars.

  2. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  3. Impact gages for detecting meteoroid and other orbital debris impacts on space vehicles.

    NASA Technical Reports Server (NTRS)

    Mastandrea, J. R.; Scherb, M. V.

    1973-01-01

    Impacts on space vehicles have been simulated using the McDonnell Douglas Aerophysics Laboratory (MDAL) Light-Gas Guns to launch particles at hypervelocity speeds into scaled space structures. Using impact gages and a triangulation technique, these impacts have been detected and accurately located. This paper describes in detail the various types of impact gages (piezoelectric PZT-5A, quartz, electret, and off-the-shelf plastics) used. This description includes gage design and experimental results for gages installed on single-walled scaled payload carriers, multiple-walled satellites and space stations, and single-walled full-scale Delta tank structures. A brief description of the triangulation technique, the impact simulation, and the data acquisition system are also included.

  4. Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.

  5. Study of the commonality of space vehicle applications to future national needs (unclassified portion)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A midterm progress report was presented on the study of commonality of space vehicle applications to future national needs. Two of the four objectives in the entire study were discussed. The first one involved deriving functional requirements for space systems based on future needs and environments for the military and civilian communities. Possible space initiatives based on extrapolations of technology were compiled without regard as to need but only with respect to feasibility, given the advanced state of technology which could exist through the year 2,000. The second one involved matching the initiatives against the requirements, developing a methodology to match and select the initiatives with each of the separate plans based on the future environments, and deriving common features of the military and civilian support requirements for these programs.

  6. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Astrophysics Data System (ADS)

    Chiu, Ing-Tsau

    1993-02-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  7. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  8. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horatio (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schleisling, John A. (Inventor)

    1993-01-01

    Methods and apparatus are provided for a single heavylift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a Shuttle Orbiter using the launch vehicle of the Shuttle Orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are pre-integrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  9. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horacio M. (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schliesing, John A. (Inventor)

    1995-01-01

    Methods and apparatus are provided for a single heavy-lift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a shuttle orbiter using the launch vehicle of the shuttle orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are preintegrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  10. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  11. Bioresearch Module Design Definition and Space Shuttle Vehicle Integration Study. Volume 1: Basic Report

    NASA Technical Reports Server (NTRS)

    Lang, A. L., Jr.

    1971-01-01

    Preliminary designs of the Bioexplorer spacecraft, developed in an earlier study program, are analyzed and updated to conform to a new specification which includes use of both the Scout and the space shuttle vehicle for launch. The updated spacecraft is referred to as bioresearch module. It is capable of supporting a variety of small biological experiments in near-earth and highly elliptical earth orbits. The baseline spacecraft design is compatible with the Scout launch vehicle. Inboard profile drawings, weight statements, interface drawings, and spacecraft parts and aerospace ground equipment lists are provided to document the design. The baseline design was analyzed to determine the design and cost impact of a set of optional features. These include reduced experiment power and thermal load, addition of an experiment television monitor, and replacement of VHF with S-band communications. The impact of these options on power required, weight change and cost is defined.

  12. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  13. Preliminary design of a cargo return vehicle for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Vano, Andrew

    1990-09-01

    The design of an unmanned, reusable cargo return vehicle (CRV) incorporated as a class project at the University of Minnesota under NASA auspices is presented. Two configurations are considered, a winged and a biconic with a parafoil advanced recovery system. Three inline liquid rocket boosters would propel the CRV into a low earth orbit with onboard orbital maneuvering system engines used to reach station orbit and dock to the station. The main objective of the courses was to develop the design skills of the students while allowing them to work together in teams with NASA and industry engineers on a specific NASA project. The final conclusion of the study was that the winged CRV was the best vehicle for space station resupply.

  14. Surface definition and grid generation about an Assured Crew Return Vehicle (ACRV) for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Everton, E. L.; Weilmuenster, K. J.; Weise, M. R.; Farr, N.

    1990-01-01

    The surface definition and grid generation about an Assured Crew Return Vehicle (ACRV) for the Space Station Freedom are described. The purpose of the surface definition and grid generation is to provide the necessary geometry information for CFD calculations about the vehicle. There are two salient features in this description. The first is that the numerical model representing the ACRV configuration is obtained from the measurement of an existing wind tunnel model. The method for smoothing the measured data and obtaining the numerical model is described. The second feature is the description of the algebraic grid generation method and software to compute volume grids about the ACRV. The methods and software allow rapid computation of volume grids for a wide range of flow conditions.

  15. Summary of results of parametric studies of space shuttle booster, orbiter, and launch vehicle concepts

    NASA Technical Reports Server (NTRS)

    Bradley, D.; Buchholz, R. E.

    1972-01-01

    The results of analytical and experimental parametric studies of space shuttle booster, orbiter and launch vehicle aerodynamics are described. During this study over 1700 hours of experimental wind tunnel tests were conducted on several versions of the shuttle booster, orbiter and launch vehicle. Fifteen separate tests were conducted in three different test facilities. Due to the number of test programs conducted and the time required for test preparation, analysis of the test data has been limited to that required to drive the experimental program. A brief description of each of the experimental tests conducted including the test purpose and approach is included. Several test models were designed and fabricated in support of the experimental program. These models are described.

  16. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  17. Flutter of Winged Reentry Space Vehicles Affected by an Elastic Attachment in Launching Configuration

    NASA Astrophysics Data System (ADS)

    Kanda, Atsushi; Ueda, Tetsuhiko

    This paper reports the flutter investigation of a winged reentry space vehicle having rotational modes in dynamic deflection due to an elastic attachment between a vehicle and a booster rocket. The elastic rotational mode is taken into consideration as an elastic rolling mode or an elastic yawing mode. Flutter experiments have been conducted in a transonic wind tunnel. The doublet-point method (DPM) is used to calculate flutter boundaries for this model. It is shown that an elastic rolling mode may lower the critical speed of anti-symmetric mode flutter because its existence alters the natural vibration mode of anti-symmetric bending which causes flutter. On the other hand, a coupling between an elastic yawing mode and an anti-symmetric bending one becomes critical in the different model.

  18. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  19. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware

  20. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Technical Reports Server (NTRS)

    Merkel, Lawrence

    1991-01-01

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  1. Backscatter x-ray development for space vehicle thermal protection systems

    SciTech Connect

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-23

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  2. Raven: An On-Orbit Relative Navigation Demonstration Using International Space Station Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Strube, Matthew; Henry, Ross; Skeleton, Eugene; Eepoel, John Van; Gill, Nat; McKenna, Reed

    2015-01-01

    Since the last Hubble Servicing Mission five years ago, the Satellite Servicing Capabilities Office (SSCO) at the NASA Goddard Space Flight Center (GSFC) has been focusing on maturing the technologies necessary to robotically service orbiting legacy assets-spacecraft not necessarily designed for in-flight service. Raven, SSCO's next orbital experiment to the International Space Station (ISS), is a real-time autonomous non-cooperative relative navigation system that will mature the estimation algorithms required for rendezvous and proximity operations for a satellite-servicing mission. Raven will fly as a hosted payload as part of the Space Test Program's STP-H5 mission, which will be mounted on an external ExPRESS Logistics Carrier (ELC) and will image the many visiting vehicles arriving and departing from the ISS as targets for observation. Raven will host multiple sensors: a visible camera with a variable field of view lens, a long-wave infrared camera, and a short-wave flash lidar. This sensor suite can be pointed via a two-axis gimbal to provide a wide field of regard to track the visiting vehicles as they make their approach. Various real-time vision processing algorithms will produce range, bearing, and six degree of freedom pose measurements that will be processed in a relative navigation filter to produce an optimal relative state estimate. In this overview paper, we will cover top-level requirements, experimental concept of operations, system design, and the status of Raven integration and test activities.

  3. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  4. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  5. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    Outlined is a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  6. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    This paper will outline a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  7. Preliminary assessment of the vacuum environment in the wake of large space vehicles

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Naumann, R. J.

    1977-01-01

    The vacuum environment in the wake region of presently planned large space vehicles is calculated using simplified models of the particle fluxes from the various sources. The fluxes which are calculated come directly from the ambient, are due to ambient particles backscattered from spacecraft emissions, and are due to self scattering of spacecraft emissions. Using nominal values for the surface emissions, the flux density environment behind a large unmanned craft at 550 km altitude is calculated. Calculations indicate that the flux density on a wake vacuum experiment conducted in the vicinity of the shuttle is substantially greater than that behind unmanned craft.

  8. Development and characterization of lubricants for use near nuclear reactors in space vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.

    1972-01-01

    The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.

  9. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  10. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  11. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  12. Radar cross section measurements of a scale model of the space shuttle orbiter vehicle

    NASA Technical Reports Server (NTRS)

    Yates, W. T.

    1978-01-01

    A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.

  13. Doppler and range determination for deep space vehicles using active optical transponders.

    PubMed

    Kinman, P W; Gagliardi, R M

    1988-11-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated. PMID:20539597

  14. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  15. Dynamic stability characteristics of the combination space shuttle orbiter and ferry vehicle

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Boyden, R. P.

    1977-01-01

    Subsonic forced-oscillation tests of a 0.015 scale model of the space shuttle orbiter/747 ferry vehicle were conducted in the Langley high speed 7- by 10-foot tunnel at Mach numbers of 0.2, 0.4, and 0.5 for angles of attack up to 12 deg. Tests were made of the basic 747 airplane, of the modified 747 (tip fins and struts added), of the ferry configuration, (747 plus orbiter at an incidence angle of 3 deg), and of the approach and landing test configuration (747 plus orbiter at an incidence angle of 6 deg).

  16. An improved space-based algorithm for recognizing vehicle models from the side view

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Ding, Youdong; Zhang, Li; Li, Rong; Zhu, Jiang; Xie, Zhifeng

    2015-12-01

    Vehicle model matching problem from the side view is a problem meets the practical needs of actual users, but less focus by researchers. We propose a improved feature space-based algorithm for this problem. The algorithm combines the various advantages of some classic algorithms, and effectively combining global and local feature, eliminate data redundancy and improve data divisibility. And finally complete the classification by quick and efficient KNN. The real scene test results show that the proposed method is robust, accurate, insensitive to external factors, adaptable to large angle deviations, and can be applied to a formal application.

  17. H2-O2 auxiliary power unit for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    A program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the space shuttle orbiter vehicle is discussed. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial APU configuration with recycled hydrogen flow has been studied and revised towards greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and from the hydraulic system. Steady-state test of the combustor has been successful.

  18. Preliminary tests for an intelligent thermal protection system for space vehicles

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Felli, Ferdinando; Valente, Teodore; Caponero, Michele A.; Tului, Mario

    2001-04-01

    Re-entry in planetary atmospheres is one of the most challenging environments to be faced by an aerospace structure. Presently space agencies are studying and developing programs to reduce launch costs by developing a new generation reusable launch vehicles. In fact a significant portion of the launch cost, for those vehicles, is represented by maintenance, non destructive testing and personnel involved in ground operations. For instance NASA and Lockeed Martin are leading the VentureStar program, where the real time health monitoring is considered an important aspect, while ESA has now finished a preliminary analysis for different reusable launch vehicle configurations. Fiber optic sensors which can be embedded into structural components can provide an efficient means for fast and reliable structural health monitoring. In this paper the possibility of embedding fiber optic sensors into materials subjected to particularly critical thermal treatments is verified. Several specimens of metal alloys and carbide based powders with embedded optical fibers have been prepared by the high pressure high velocity oxy fuel technique. The tests have proven the feasibility of the embedding with the above mentioned technology which exposes the fibers to quite a severe environment during the deposition. Micrographic analysis and optical transmission tests have been carried out on the sprayed specimens.

  19. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  20. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  1. The Rockot launch vehicle - the successful German/Russian partnership in space transportation

    NASA Astrophysics Data System (ADS)

    Viertel, York; Freeborn, Peter; Kinnersley, Mark

    2003-11-01

    Eurockot is a German-Russian joint venture company established to provide LEO launch services using the Russian Rockot launch vehicle. Following the successful debut of the commercial configuration of the Rockot vehicle in 2000 and the successful launches of further twelve satellites during the GRACE, Iridium and Multiple Orbit missions in 2002 and 2003, further launch contracts for Japan (SERVIS-1), Korea (KOMPSAT-2) and the European Space Agency ESA (CryoSat) have been concluded, thus establishing Eurockot as the premier provider of launch services in this segment. The Rockot launch vehicle is a three stage liquid fuelled rocket based on the former Russian SS-19 strategic missile. Rockot can place payloads of more than 2000 kilograms in low earth orbits (LEO) and has the capability to serve sun-synchronous, near polar and highly inclined orbits from its launch site. Launches are performed from state-of-the-art facilities at Plesetsk Cosmodrome in Northern Russia. Eurockot is also in a position to offer high altitude orbits. In particular for payloads with a mass of up to approximately 440 kg even earth escape/planetary mission with reliable, competitive and flight qualified systems can be offered by adding a solid boost stage to the Rockot launcher in co-operation with the major provider of these stages. In this paper the performance envelope, interfaces and potential design solutions will be discussed.

  2. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  3. A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1986-01-01

    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope.

  4. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts were developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, loadbearing insulation (LBI). Thermal performance measurements were made under space-hold (vacuum) conditions for insulating warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately 0.00008 W/m-K (W = weight,Kg; m = measured; K = temperature) for the MLI systems (liquid hydrogen test results) and 0.00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature).

  5. The Role of Habitability Studies in Space Facility and Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adams, Constance M.

    1999-01-01

    This document is a viewgraph presentation which reviews the role of the space architect in designing a space vehicle with habitability as a chief concern. Habitability is composed of the qualities of the environment or system which support the crew in working and living. All the impacts from habitability are interdependent; i.e., impacts to well-being can impact performance, safety or efficiency. After reviewing the issues relating to habitability the presentation discusses the application of these issues in two case studies. The first studies the Bio-Plex Hab chamber which includes designs of the living and working areas. The second case study is the ISS-TransHab which is being studied as a prototype for Mars transit.

  6. H2-O2 auxiliary power unit for Space Shuttle vehicles - A progress report.

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    Description of a program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the Space Shuttle orbiter vehicle. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial auxiliary power unit (APU) configuration with recycled hydrogen flow has been studied and revised toward greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and heat from the hydraulic system. The revised configuration schematic and its calculated performance are reviewed. A weight comparison is made between the shuttle baseline hydrazine and H2-O2 APU systems, showing that hydrogen-oxygen APUs have the potential of increasing the payload of the Space Shuttle.

  7. Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    1987-01-01

    equipped with complete guidance, navigation, control and communications systems modules attached near the crew module. Control of vehicle attitude will be provided by a set of small reaction control thrusters quite similar to those on the current Space Shuttle. All crew module and vehicle electrical functions will be powered via a set of H2/O2 fuel cells with radio-isotopic generators as backup supplies. Also included in the burnout mass of 98,000 lb is allowance for 10,000 lbm of miscellaneous payload (scientific equipment or other supplies).

  8. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.

  9. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  10. Optimization of maneuvers and resources for the rendezvous of a servicing vehicle to a space station

    NASA Astrophysics Data System (ADS)

    Magne, Jacques; Canu, Richard; Joulot, Antoine

    Addressing the generation of flight scenarios for the rendezvous of a servicing vehicle to a space station, solutions in terms of sequences of maneuvers shall be found that meet a generally complex set of mission constraints while optimizing the needed resources. For the optimization of maneuvers and resources during rendezvous, this paper describes a methodology based on the parametric optimization of a sequence of genetic non-impulsional thrust maneuvers which are defined by the user from a standard catalog, allowing to cope with both translations and rotations. The method uses a reduced gradient algorithm to find an optimal trajectory that meet every mission constraint. Most attention has been paid to the standard of realism in the modeling of the chaser and target dynamics, and in the formalization of the constraints on the approach trajectories; these last ones are defined as the terminal position, the attitude and kinematic capture conditions for berthing or docking, the maximal duration allocated to the approach, path constraints, the propulsive capacities of the chaser and a `safety' constraint, which in other words means that any failure on the chaser during the approach shall result in collision avoiding trajectories or in a mechanical contract to the station within safe limits. The criterion for scenarios optimization can be minimization of propellant consumption or phase duration, or a weighed combination of both. For illustration purpose, example results are given for the final approach of a servicing vehicle to an Earth-pointed space station.

  11. Numerical Methodology For Full-Body TPS Sizing And Optimization For Access-To-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Henline, William D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    This paper presents details of the methodology and numerical procedures developed at NASA Ames for full-body TEXAS sizing and optimization for Access to Space vehicle concepts. The core of the procedures is a robust implicit solver for one dimensional transient heat conduction in reusable multilayer TEXAS stackups. The solver includes an arbitrary number of material layers, contact resistances between materials, temperature and pressure dependent material and surface properties, numerous boundary-condition options, and self-adaptive time stepping. The solver is coupled with the Access-to-Space material database of 23 candidate TPS and structural materials and a thermal-environment database obtained from trajectory-based fullbody Navier-Stokes computations of the external flowfield. The thermal environment and material response are coupled through the use of T-type heat transfer coefficients. TIPS sizing and weight optimization are performed at every surface point on the vehicle based on sizing constraints which include material temperature limits, maximum backwall temperature, and cumulative interior heat flux. Typical results are presented for a lifting body concept with 10000 surface points, which required 35 minutes to compute on an SGI Indigo 2.

  12. Applications of graphics to support a testbed for autonomous space vehicle operations

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.; Aldridge, J. P.; Benson, S.; Horner, S.; Kullman, A.; Mulder, T.; Parrott, W.; Roman, D.; Watts, G.; Bochsler, Daniel C.

    1989-01-01

    Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics.

  13. Operational Concept Evaluation of Solid Oxide Fuel Cells for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Poast, Kenneth I.

    2011-01-01

    With the end of the Space Shuttle Program, NASA is evaluating many different technologies to support future missions. Green propellants, like liquid methane and liquid oxygen, have potential advantages for some applications. A Lander propelled with LOX/methane engines is one such application. When the total vehicle design and infrastructure are considered, the advantages of the integration of propulsion, heat rejection, life support and power generation become attractive for further evaluation. Scavenged residual propellants from the propulsion tanks could be used to generate needed electric power, heat and water with a Solid Oxide Fuel Cell(SOFC). In-Situ Resource Utilization(ISRU) technologies may also generate quantities of green propellants to refill these tanks and/or supply these fuel cells. Technology demonstration projects such as the Morpheus Lander are currently underway to evaluate the practicality of such designs and operational concepts. Tethered tests are currently in progress on this vertical test bed to evaluate the propulsion and avionics systems. Evaluation of the SOFC seeks to determine the feasibility of using these green propellants to supply power and identify the limits to the integration of this technology into a space vehicle prototype.

  14. Ultrahigh Temperature Ceramics for Thermal Protection of Next Generation Space Vehicles

    NASA Technical Reports Server (NTRS)

    Loehman, R. E.; Ellerby, D. T.; Gusman, M. I.; Stackpoole, M.; Johnson, S. M.; Arnold, James (Technical Monitor)

    2001-01-01

    Materials with improved properties are needed for thermal protection of next generation space vehicles. Sharp leading edges on these vehicles will have to withstand exposure to high temperatures (> 2200 C or 4000 F) and severe thermal cycling in both neutral and oxidizing environments. These extreme conditions will require materials that possess superior oxidation resistance, low creep, and excellent thermal shock properties. This presentation will first discuss the system requirements for thermal protection of advanced space vehicles and then show how they are driving development of new materials systems. The presentation will focus on ultrahigh temperature ceramics (UHTCs) that are promising candidates for such applications. ZrB2 and HfB2 and composites of those ceramics with SiC are two particular families of UHTCs that are currently under development for sharp leading edges. These ceramics are appealing because their melting temperatures are 3245 C (5873 F) for ZrB2 and 3380 C (6116 F) for HfB2 and because they may form protective, oxidation resistant coatings in use. The mechanical properties of the UHTCs are strongly dependent on phase purity and the processing route used to make them, both of which factors are being actively investigated. For example, oxide impurities could form glassy grain boundary phases that soften at high temperatures and make the ceramic susceptible to creep deformation. Results from scanning and transmission electron microscopic studies of the UHTCs have shown how their processing can be improved to give better properties. This presentation will discuss the UHTC characterization results in some detail, focusing particularly on the structure and composition of the ceramic grain boundaries. The presentation will conclude with some remarks on how the properties of these promising UHTCs can be further improved and how they might be made more economically.

  15. NASA/USRA advanced space design program: The laser powered interorbital vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  16. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.

  17. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  18. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  19. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    NASA Technical Reports Server (NTRS)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  20. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    NASA Technical Reports Server (NTRS)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  1. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  2. Implications of previous space commercialization experiences for the reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Obermann, Richard M.; Williamson, Ray A.

    2003-07-01

    The United States' 1994 National Space Transportation Policy directed the National Aeronautics and Space Administration (NASA) to work with industry on the development of technologies required for a reusable launch vehicle (RLV). In the partnership that has evolved from that directive, NASA envisions its role as providing support for technological risk reduction and for developing space transportation to serve government needs. NASA officials assume that the development of an operational, commercial RLV will be carried out by the private sector without use of government funds. Under that scenario, the Federal government will simply become a customer for commercial RLV services. In evaluating the prospects for the development of a commercially viable RLV, it may be useful to examine "lessons learned" from previous space commercialization efforts—both those that succeeded and those that did not. It can be argued that several distinct streams of market and technological development may have to converge for successful commercialization of space systems to occur. Potential factors influencing the prospects for commercialization include the size and growth rate of the potential customer base, the extent to which a governmental customer exists to underpin the market, the development of associated "value-added" markets, the stability of governmental policies, the levels of technological and business risk, and the degree to which competitive markets exist. This paper examines two previous space commercialization experiences, evaluates the relative importance of the various factors that influence the prospects for success of commercialization efforts, and assesses the implications of those factors for the commercial viability of the proposed RLV.

  3. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  4. Preliminary Investigation of Impact on Multiple-Sheet Structures and an Evaluation of the Meteoroid Hazard to Space Vehicles

    NASA Technical Reports Server (NTRS)

    Nysmith, C. Robert; Summers, James L.

    1961-01-01

    Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.

  5. Future Concepts for Integrating the Space Launch System and the Multi-Purpose Crew Vehicle into a Reusable Space Transportation Infrastructure

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes the Space Launch System (SLS), the Mulit-Purpose Crew Vehicle (MPCV), the International Space Station (ISS), and propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for commercial crew, cargo, and propellant launches to a Low-Earth-Orbit (LEO) Depot and/or the ISS. The SLS provides all payload and propellant launches to the Earth-Moon Langrange Point 1 (EML1) Depot to support new reusable in-space transportation vehicles. The ISS or follow-on LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to Earth-Moon L1 for EML1 Depot missions. The EML1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. New vehicle design concepts are presented that can be launched utilizing the SLS and current ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) derived from the MPCV and a reusable Cryogenic Propulsion Stage (CPS) for crew transportation between the LEO Depot, EML1 Depot and missions beyond the Earth-Moon vicinity; a new reusable Lunar Lander for crew transportation between the EML1 Depot and the lunar surface; and a new reusable Deep Space Habitat (DSH) with a CTV to support crew missions from the EML1 Depot to ESL2, Asteroids, and a Mars Orbital Depot. The LEO Depot, EML1 Depot, and Mars Orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing SLS and current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this

  6. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.

    2011-01-01

    As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc

  7. Multimodal Perception and Multicriterion Control of Nested Systems. 2; Constraints on Crew Members During Space Vehicle Abort, Entry, and Landing

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon; Irvin, Gregg E.; Bloomberg, Jacob J.

    1998-01-01

    This report reviews the operational demands made of a Shuttle pilot or commander within the context of a proven empirical methodology for describing human sensorimotor performance and whole-body coordination in mechanically and perceptually complex environments. The conclusions of this review pertain to a) methods for improving our understanding of the psychophysics and biomechanics of visual/manual control and whole-body coordination in space vehicle cockpits; b) the application of scientific knowledge about human perception and performance in dynamic inertial conditions to the development of technology, procedures, and training for personnel in space vehicle cockpits; c) recommendations for mitigation of safety and reliability concerns about human performance in space vehicle cockpits; and d) in-flight evaluation of flight crew performance during nominal and off-nominal launch and reentry scenarios.

  8. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  9. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  10. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    NASA Astrophysics Data System (ADS)

    Batra, T.; Schaltz, E.

    2015-05-01

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  11. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts have been developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, load-bearing insulation (LBI). All three insulation systems have recently undergone experimental testing and evaluation under NASA-sponsored programs. Thermal performance measurements were made under space-hold (vacuum) conditions for insulation warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately .00008 W/m-K for the MLI systems (liquid hydrogen test results) and .00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature). The DGK MLI system experienced a maximum thermal degradation of 38 percent, the DAM MLI system 14 percent, and the LBI system 6.7 percent due to repeated thermal cycling representing typical space flight conditions. Repeated exposure of the DAM MLI system to a high humidity environment for periods as long as 8 weeks provided a maximum degradation of only 24 percent.

  12. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  13. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    SciTech Connect

    Batra, T. Schaltz, E.

    2015-05-07

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  14. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    High temperature, dynamic structural seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. NASA GRC became involved in the development of high temperature structural seals in the late 1980 s and early 1990 s during the National Aerospace Plane (NASP) program. Researchers at GRC carried out an in-house program to develop seals for the NASP hypersonic engine and oversaw industry efforts for airframe and propulsion system seal development for this vehicle. The figure shows one of the seal locations in the NASP engine. Seals were needed along the edges of movable panels in the engine to seal gaps between the panels and adjacent engine sidewalls. Seals developed during the NASP program met many requirements but fell short of leakage, durability, and resiliency goals. Due to program termination the seals could not be adequately matured. To overcome these shortfalls, GRC is currently developing advanced seals and seal preloading devices for the hypersonic engines of future space vehicles as part of NASA s Next Generation Launch Technology (NGLT) program.

  15. Aerodynamic shape optimization of space vehicle in very-low-earth-orbit

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Myong, Rho Shin; Kim, Dong Hyun; Baek, Seung Wook

    2014-12-01

    Space vehicles orbiting in Very-Low-Earth-Orbit (VLEO, h = 200˜300 km) experience considerably large aerodynamic drag due to high air-density in comparison with Low-Earth-Orbit (LEO, h = 600 ˜ 700 km). Therefore, the optimization of vehicle shape via minimization of aerodynamic drag is essential for accurate estimation of satellite lifetime and fuel budget at the design stage. In this study, the aerodynamic drag is computed with direct simulation Monte Carlo (DSMC) because even in VLEO, whose free stream Knudsen number is sufficiently large, some errors are still found in the prediction using free molecular approach. In order to find the optimized configuration, we vary the shape of frontal surface normal to the flight direction. Interestingly, the effects of such geometrical change appear distinctively depending on the gas-surface interaction (GSI, diffuse or specular) which can be represented by the thermal accommodation coefficient. The satellite aerodynamic characteristics including force, torque, and thermal loading are also identified by changing the pitch and the side angle.

  16. S@tMax—A space-based system enabling mobile IP applications in vehicles

    NASA Astrophysics Data System (ADS)

    Arcioni, Marco; Daehler, Erik; Mueller, Robert P.; van der Meulen, Wencke

    2009-06-01

    As personal mobility increases, people spend more time in their vehicles. Furthermore, a large segment of today's workforce is part of a growing mobile service industry. This mobile society creates opportunities to increase productivity which do not yet exist. Today's commuting time could be better utilized and mobile business transactions could be more efficiently conducted, by integrating mobile IP wireless services in vehicles. By means of a direct to mobile user Internet access, and total IP services, integrated into automobiles, S@tMax services can empower the mobile business movement therefore improving productivity. This paper presents a commercial system architecture that will deliver an optimized solution for direct to mobile user Internet access, through an integration of a ground based network infrastructure, use of existing communications satellites and the development of a proprietary satellite system. As a result of a detailed systems engineering process, the architectures of the space, ground and infrastructures segments will be presented. Furthermore, the benefits of on-orbit servicing were examined in the S@tMax context. The approach proposed is considered as an important step towards enforcing main roadway IP coverage in the US, for near-continuous communications and services.

  17. Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat

    1993-01-01

    The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.

  18. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  19. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  20. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  1. A comparison of iterative explicit guidance algorithms for space launch vehicles

    NASA Astrophysics Data System (ADS)

    Song, Eun-Jung; Cho, Sangbum; Roh, Woong-Rae

    2015-01-01

    This paper analyzes and compares the performance of two prominent explicit guidance algorithms: the iterative guidance mode and the powered explicit guidance. We performed a series of numerical simulations of a space launch vehicle model for both nominal and off-nominal conditions. One of our findings is that if we take into account the originally ignored higher-order terms from the guidance parameters of the iterative guidance mode for a long-range flight, the guidance performance can be enhanced to a level comparable to that of the powered explicit guidance. These higher-order terms can be included by employing an iterative predictor-corrector method like the powered explicit guidance. Also we proposed a remedy of preventing relatively earlier divergence of the guidance commands with the predictor-corrector iteration than that of the linear differential corrector approach by making a better initial guess.

  2. Performance, static stability, and control effectiveness of a parametric space shuttle launch vehicle

    NASA Technical Reports Server (NTRS)

    Buchholz, R. E.; Gamble, M.

    1972-01-01

    This test was run as a continuation of a prior investigation of aerodynamic performance and static stability tests for a parametric space shuttle launch vehicle. The purposes of this test were: (1) to obtain a more complete set of data in the transonic flight region, (2) to investigate new H-0 tank noseshapes and tank diameters, (3) to obtain control effectiveness data for the orbiter at 0 degree incidence and with a smaller diameter H-0 tank, and (4) to determine the effects of varying solid rocket motor-to-H0 tank gap size. Experimental data were obtained for angles of attack from -10 to +10 degrees and for angles of sideslip from +10 to -10 degrees at Mach numbers ranging from .6 to 4.96.

  3. Optimization of a combined-cycle propulsion system for space vehicle

    NASA Astrophysics Data System (ADS)

    Lian, Xiaochun; Chen, Fuqun

    1992-10-01

    This paper presents some results of optimization of operating modes transfer in a supercharged ejector ramjet (SERJ) specified for first stage of a two-stage-to-orbit space vehicle. The SERJ consists of four subsystem: the Fan, the Ejector, the Ramjet, and an Air liquefaction subsystem used as a heat exchanger. Three factors are considered for estimating the propulsion system installed thrust: the internal and external performances of the inlet and the nozzle power, and air extractions from the engine. An objective of minimization is the minimum of the fuel consumption, which is attained by varying the transition conditions of different engine operation modes. Then, the optimum transition conditions can be obtained between SERJ and fan ramjet modes, fan ramjet and ramjet modes, ramjet and ejector ramjet modes, and ejector ramjet and rocket modes.

  4. Unsteady aerodynamic analysis of space shuttle vehicles. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1973-01-01

    An analysis of the unsteady aerodynamics of space shuttle vehicles was performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics over a large Mach number range from M = 0 to M 1. A semi-empirical analytic approximation is derived for the loads induced by the leading edge vortex; and it is shown that the developed analytic technique gives good prediction of experimentally determined steady and unsteady delta wing aerodynamics, including the effects of leading edge roundness. At supersonic speeds, attached leading edge flow is established and shock-induced flow separation effects become of concern. Analysis of experimental results for a variety of boost configurations led to a definition of the main features of the flow interference effects between orbiter (delta wing) and booster. The effects of control deflection on the unsteady aerodynamics of the delta-wing orbiter were also evaluated.

  5. Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)

    1981-01-01

    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.

  6. Disinfection susceptibility of waterborne pseudomonads and Legionellae under simulated space vehicle conditions

    NASA Technical Reports Server (NTRS)

    Mcfeters, Gordon A.; Pyle, Barry H.; Watters, Shelley K.; Cargill, Kari L.; Yu, Feipeng P.

    1991-01-01

    The sensitivity of waterborne bacteria from iodinated systems to iodine is examined with particular attention to the recovery of the organisms. The use of iodine as a disinfectant for space-vehicle water is described, and references are made to studies of iodine sensitivity and the relationship between growth rate and iodine sensitivity. Growth following iodination is discussed, and bacterial responses to nutrient restriction are examined for both P aeruginosa and Legionella pneumophila. The low level of organic nutrients in spacecraft water allows the selection for bacteria that are less sensitive to halogens. The formation of biofilms within the water-treatment system enhances bacterial resistance to iodine, and in the case of high-quality water it is shown that sublethal doses of iodine can stimulate bacterial growth. Water treatment should therefore be based on antecedent growth conditions, nutrient limitation, biofilm formation, and ambient selective pressures.

  7. International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.

    1997-01-01

    The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.

  8. Unsteady aerodynamic analysis of space shuttle vehicles. Part 3: Booster interference effects

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1973-01-01

    An investigation of the interference flow field on the space-shuttle boost configuration has been made. The results show that the interference effects can dominate the shuttle aerodynamics. Vortices shed from shock-induced flow separations on the forward portion of the vehicle affect the aerodynamic loads on the aft portion of the booster. Thus, the forebody and aft-body flow fields are coupled. This coupling and the associated time lag due to the finite convection speed of the vortices furnish a mechanism whereby the unsteady aerodynamics can cause undamping of certain low frequency elastic modes of the booster. A preliminary order-of-magnitude analysis of the aeroelastic stability of the shuttle booster indicates that negative aerodynamic damping could occur for at least one bending mode and be of sufficient magnitude to dominate the structural damping. The implication of these results, (with the possibility of undamped oscillations leading to structural failure), is serious enough to warrant further, more detailed analysis.

  9. The role of atomic lines in radiation heating of the experimental space vehicle Fire-II

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2015-10-01

    The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.

  10. An advanced tracker design for pointing and control of space vehicles using the charge injection device

    NASA Technical Reports Server (NTRS)

    Jones, C.; Kollodge, J. C.

    1982-01-01

    The use of charge transfer devices (CTD) in pointing and control of space vehicles is examined, with emphasis on the use of charge injection devices (CID). The selection of CTD type and CID operation, including CID signal and noise analysis and signal improvement, are discussed. Star tracking operational advantages of the CTD are pointed out, and the tracking optical concept is discussed and graphically depicted. The position interpolation procedure and the effects of rate of stellar motion on position interpolation are considered, and error analysis is examined. Finally, the breadboard and test program are discussed in detail, coarse and fine acquisition, test for star, track pattern, test procedure and results. An overall accuracy performance of approximately 0.02 pixels or approximately 0.8 arcsec for the test equipment and tracker was obtained.

  11. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  12. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  13. Space shuttle program. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 2: Expendable second stage vehicle definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.

  14. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  15. Small Launch Vehicle Trade Space Definition: Development of a Zero Level Mass Estimation Tool with Trajectory Validation

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.

    2013-01-01

    Recent high level interest in the capability of small launch vehicles has placed significant demand on determining the trade space these vehicles occupy. This has led to the development of a zero level analysis tool that can quickly determine the minimum expected vehicle gross liftoff weight (GLOW) in terms of vehicle stage specific impulse (Isp) and propellant mass fraction (pmf) for any given payload value. Utilizing an extensive background in Earth to orbit trajectory experience a total necessary delta v the vehicle must achieve can be estimated including relevant loss terms. This foresight into expected losses allows for more specific assumptions relating to the initial estimates of thrust to weight values for each stage. This tool was further validated against a trajectory model, in this case the Program to Optimize Simulated Trajectories (POST), to determine if the initial sizing delta v was adequate to meet payload expectations. Presented here is a description of how the tool is setup and the approach the analyst must take when using the tool. Also, expected outputs which are dependent on the type of small launch vehicle being sized will be displayed. The method of validation will be discussed as well as where the sizing tool fits into the vehicle design process.

  16. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  17. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.

    2003-01-01

    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  18. Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

    NASA Astrophysics Data System (ADS)

    Stroud, Kenneth Joshua

    Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations

  19. Space transfer vehicle concepts and requirements study. Volume 3: Program cost estimates. Book 2: WBS and dictionary

    NASA Technical Reports Server (NTRS)

    Peffley, A. F.

    1991-01-01

    This document describes the products and services to be developed, tested, produced, and operated for the Space Transfer Vehicle (STV) Program. The Work Breakdown Structure (WBS) and WBS Dictionary are program management tools used to catalog, account by task, and summarize work packages of a space system program. The products or services to be delivered or accomplished during the STV C/D phase are the primary focus of this work breakdown structure document.

  20. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  1. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  2. Behavior of Spinning Space Vehicles with Onboard Liquids, 2nd Edition, Technical Report B8030

    NASA Technical Reports Server (NTRS)

    Hubert, Carl

    2008-01-01

    Although the fundamental principles of spin stabilization are well established, uncertainty regarding the potential for rapid nutation growth caused by onboard liquids is a continuing concern. NASA and other organizations regularly encounter the issue of rapid nutation growth due to energy dissipation by liquids on spinning vehicles. Of concern is the stability of spinning upper stages and of spacecraft that spin for part or all of their missions. Several missions have required last-minute hardware or operational changes to deal with rapid nutation divergences that were identified late in the program. In some instances, major schedule slips were barely averted. In at least two cases, it was determined that a spinning upper stage was not a viable option. Historically, the "slosh" issue has been addressed by each space vehicle project individually, if it has been addressed at all. Due to budgetary and programmatic constraints, individual projects are unable to address the problem globally. Hence, there has been little effort to collect available test and flight data and use that data to make a coherent, unified picture of the "slosh" effect and how to deal with it. To some extent, each project has had to "reinvent the wheel", which can be both costly and risky. This study is a step toward correcting the situation. Specifically, the goal was to identify and collect available flight and test data for spinning vehicles with onboard liquid propellants. A total of 149 flight data points and 1,692 test points were collected as part of this study. This data was analyzed, correlated, and is presented here in a normalized form. In most cases, the normalization involves a dimensionless nutation time constant that can be used to predict performance of other vehicles with the same type of tank. For some configurations, it was also possible to identify conditions that can lead to resonance between nutational motion and liquid modes. Gaps in the knowledge base are identified and

  3. Study of a Solar Sensor for use in Space Vehicle Orientation Control Systems

    NASA Technical Reports Server (NTRS)

    Spencer, Paul R.

    1961-01-01

    The solar sensor described herein may be used for a variety of space operations requiring solar orientation. The use of silicon solar cells as the sensing elements provides the sensor with sufficient capability to withstand the hazards of a space environment. A method of arranging the cells in a sensor consists simply of mounting them at a large angle to the base. The use of an opaque shield placed between the cells and perpendicular to the base enhances the small-angle sensitivity while adding slightly to the bulk of the sensor. The difference in illumination of these cells as the result of an oblique incidence of the light rays from the reference source causes an electrical error signal which, when used in a battery-bridge circuit, requires a minimum of electrical processing for use in a space-vehicle orientation control system. An error which could occur after prolonged operation of the sensor is that resulting from asymmetrical aging of opposite cells. This could be periodically corrected with a balance potentiometer. A more routine error in the sensor is that produced by reflected earth radiation. This error may be eliminated over a large portion of the operation time by restricting the field of view and, consequently, the capture capability. A more sophisticated method of eliminating this error is to use separate sensors, for capture and fine pointing, along with a switching device. An experimental model has been constructed and tested to yield an output sensitivity of 1.2 millivolts per second of arc with a load resistance of 1,000 ohms and a reference light source of approximately 1,200 foot-candles delivered at the sensor.

  4. Automated guidance algorithms for a space station-based crew escape vehicle.

    PubMed

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires

  5. Space transfer vehicle concepts and requirements. Volume 2, book 2: Appendix

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This appendix describes the work that was performed to define the Lunar transfer vehicle and Lunar excursion vehicle which were part of the 'Report of the 90-Day Study on Human Exploration of the Moon and Mars.' A detailed concept definition of both vehicles including overall dimensions, mass properties, subsystem definition, and operational flight sequences is included.

  6. Design of an integral thermal protection system for future space vehicles

    NASA Astrophysics Data System (ADS)

    Bapanapalli, Satish Kumar

    Thermal protection systems (TPS) are the features incorporated into a spacecraft's design to protect it from severe aerodynamic heating during high-speed travel through planetary atmospheres. The ablative TPS on the space capsule Apollo and ceramic tiles and blankets on the Space Shuttle Orbiter were designed as add-ons to the main load-bearing structure of the vehicles. They are usually incompatible with the structure due to mismatch in coefficient of thermal expansion and as a result the robustness of the external surface of the spacecraft is compromised. This could potentially lead to catastrophic consequences because the TPS forms the external surface of the vehicle and is subjected to numerous other loads like aerodynamic pressure loads, small object high-speed impacts and handling damages during maintenance. In order to make the spacecraft external surface robust, an Integral Thermal Protection System (ITPS) concept has been proposed in this research in which the load-bearing structure and the TPS are combined into one single structure. The design of an ITPS is a formidable task because the requirement of a load-bearing structure and a TPS are often contradictory to one another. The design process has been formulated as an optimization problem with mass per unit area of the ITPS as the objective function and the various functions of the ITPS were formulated as constraints. This is a multidisciplinary design optimization problem involving heat transfer and structural analysis fields. The constraints were expressed as response surface approximations obtained from a large number of finite element analyses, which were carried out with combinations of design variables obtained from an optimized Latin-Hypercube sampling scheme. A MATLABRTM code has been developed to carry out these FE analyses automatically in conjunction with ABAQUSRTM . Corrugated-core structures were designed for ITPS applications with loads and boundary conditions similar to that of a Space

  7. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  8. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    NASA Technical Reports Server (NTRS)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  9. Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration

    NASA Astrophysics Data System (ADS)

    Abercromby, Andrew F. J.; Gernhardt, Michael L.; Jadwick, Jennifer

    2013-10-01

    IntroductionA pair of small pressurized rovers (multi-mission space exploration vehicles, or MMSEVs) is at the center of the Global Point-of-Departure architecture for future human lunar exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. MethodsA 14-day mission simulation was conducted in the Arizona desert as part of NASA's 2010 Desert Research and Technology Studies (DRATS) field test. The simulation involved two MMSEV earth-gravity prototypes performing geological exploration under varied operational modes affecting both the extent to which the MMSEVs must maintain real-time communications with the mission control center (Continuous [CC] versus Twice-a-Day [2/D]) and their proximity to each other (Lead-and-Follow [L&F] versus Divide-and-Conquer [D&C]). As part of a minimalist lunar architecture, no communication relay satellites were assumed. Two-person crews (an astronaut and a field geologist) operated each MMSEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Metrics and qualitative observations enabled evaluation of the extent to which the operating modes affected productivity and scientific data quality (SDQ). Results and discussionSDQ was greater during CC mode than during 2/D mode; metrics showed a marginal increase while qualitative assessments suggested a practically significant difference. For the communications architecture evaluated, significantly more crew time (14% per day) was required to maintain communications during D&C than during L&F (5%) or 2/D (2%), increasing the time required to complete all traverse objectives. Situational awareness of the other vehicle's location, activities, and contingency return constraints were qualitatively enhanced during L&F and 2/D modes due to line-of-sight and direct MMSEV-to-MMSEV communication. Future testing

  10. A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001. The two largest vehicles trailing the shuttle provide electrical power and air conditioning to the shuttle's systems during post-flight recovery operations. The Endeavour had just completed mission STS-100, an almost 12-day mission to install the Canadarm 2 robotic arm and deliver some three tons of supplies and experiments to the International Space Station. The landing was the 48th shuttle landing at Edwards since shuttle flights began in 1981. After post-flight processing, the Endeavour was mounted atop one of NASA's modified Boeing 747 shuttle carrier aircraft and ferried back to the Kennedy Space Center in Florida on May 8, 2001.

  11. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph

    2013-08-01

    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal

  12. Thermographic nondestructive testing (TNDT) of honeycomb composite structural parts of Atlas space launch vehicles

    SciTech Connect

    Burleigh, D.D.; Kuhns, D.R.; Cowell, S.D.; Engel, J.E.

    1994-12-31

    Thermography is a means of recording the patterns of heat emission from a surface. Thermographic nondestructive testing (TNDT) uses this technology to detect sub-surface defects. Generally, a heat pulse is applied to a surface that is thermographically monitored. If a sub-surface defect exists that locally reduces or improves the thermal properties of the material, the surface thermal pattern will be perturbed over the defect. TNDT has been used successfully on a wide variety of composite laminates, filament-wound structures, sandwich structures, and foam-insulated cryogenic tanks. Both real structures with real delamination and impact damage, as well as test panels with simulated delaminations, face sheet disbonds, and interply implants have been tested. For some of these applications, TNDT is the best technique. The thrust structure at the aft end of the Atlas space launch vehicle is a composite sandwich comprised of aluminum honeycomb core with fiberglass/phenolic face sheets. The surface area of this structure is approximately 600 ft{sup 2}. In 1992, General Dynamics Space Systems Division (GDSS) began using TNDT for quality verification of these complex composite parts. TNDT has been used on these parts during manufacture and assembly, and on the launch pad at Cape Canaveral. The NDT technique previously used on these parts, since their design in 1957, was ``coin tap.`` Compared to this method, TNDT provides a greatly improved inspection in less time and at a lower cost. A heat gun with a diffuser attachment is used to heat the inspection area while the area is monitored thermographically. TNDT is a rapid, remote, non-contact, highly portable, real-time scanning technique that can provide a well-documented video record of subsurface structural details including facesheet disbonds and skin delaminations. A specification and test procedure has been written, equipment has been procured, and personnel have been trained and certified.

  13. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Astrophysics Data System (ADS)

    Peffley, Al F.

    1991-04-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  14. Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing; Sun, Changyin; Qian, Chengshan; Wang, Li

    2015-12-01

    This paper deals with the problem of linear parameter varying (LPV) switching attitude control for a near space hypersonic vehicle (NSHV) with parametric uncertainties. First, due to the enormous complexity of the NSHV nonlinear attitude dynamics, a slow-fast loop polytopic LPV attitude model is developed by using Jacobian linearisation and the tensor product model transformation approach. Second, for the purpose of less conservative attitude controller design, the flight envelope is divided into four subregions. For each parameter subregion, slow-loop and fast-loop LPV controllers are designed. By the defined switching character function, these slow-fast loop LPV controllers are then switched in order to guarantee the closed-loop NSHV system to be asymptotically stable and satisfy a specified tracking performance criterion. The condition of LPV switching attitude controller synthesis is given in terms of linear matrix inequalities, which can be readily solved via standard numerical software, and the robust stability analysis of the closed-loop NSHV system is verified based on multiple Lypapunov functions. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.

  15. A 20,000-Kilowatt Nuclear Turboelectric Power Supply for Manned Space Vehicles

    NASA Technical Reports Server (NTRS)

    English, Robert E.; Slone, Henry O.; Bernatowicz, Daniel T.; Davison, Elmer H.; Lieblein, Seymour

    1959-01-01

    A conceptual design of a nuclear turboelectric powerplant, producing 20,000 kilowatts of power suitable for manned space vehicles is presented. The study indicates that the radiator necessary for rejecting cycle waste heat is the dominant weight, and emphasis is placed on the selection of cycle operating conditions in order to reduce this weight. A thermodynamic cycle using sodium vapor as the working fluid and operating at a turbine-inlet temperature of 2500 R was selected. The total powerplant weight was calculated to be approximately 6 pounds per kilowatt. The radiator contributes approximately 2.1 pounds per kilowatt to the total weight and the reactor and reactor shield contribute approximately 0.24 and 1.2 pounds per kilowatt, respectively. The generator, turbine, and piping add significantly to the total weight (between 0.5 and 0.6 lb/kw), but the heat exchanger, pumps, and so on are less important. Several important research areas associated with the development of a reliable nuclear turboelectric powerplant of the type analyzed are discussed.

  16. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  17. Experimental modeling of impact of space dust and debris on flying vehicles and their components

    NASA Astrophysics Data System (ADS)

    Khristoforov, B. D.

    2011-06-01

    For modeling the space dust and debris effect on flying vehicles, an investigation of the low-velocity impact of corundum and tungsten powders, accelerated by explosion, with particle size up to 50 microns on steel and duralumin targets was carried out. Also studied was the impact of sewing needles against metal and dielectric barriers, antimeteor shield models, and duralumin containers with hard materials, gunpowder, and explosives. At impact of powders at velocities of up to 2 km/s and needles at a velocity of up to 0.5 km/s against metals, the channels arose with lengths greater than 100 and 50 diameters of a striker. At impact of needles, the containers with hard explosive materials were destroyed because of ignition of their contents, and containers with plastic explosive were punched through, and no burning occurred. The energy, released at destruction of plexiglas blocks and containers with hard materials, many times exceeded the impact energy due to release of the elastic energy stored in them.

  18. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Technical Reports Server (NTRS)

    Peffley, Al F.

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  19. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  20. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 2: Integrated loss of vehicle model

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.

  1. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  2. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  3. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  4. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  5. Welding in space and the construction of space vehicles by welding; Proceedings of the Conference, New Carrollton, MD, Sept. 24-26, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The present conference discusses such topics in spacecraft welding as the NASA Long Duration Exposure Facility's evidence on material properties degradation, EVA/telerobotic construction techniques, welding of the superfluid helium on-orbit transfer flight demonstration tanks and hardware, electron-beam welding of aerospace vehicles, variable-polarity plasma arc keyhole welding of Al, aircraft experiments of low-gravity fusion welding, flash-butt welding of Al alloys, and a computer-aided handbook for space welding fabrication. Also discussed are the welded nozzle extension for Ariane launch vehicles, the existence of on-orbit cold-welding, structural materials performance in long-term space service, high-strength lightweight alloys, steels, and heat-resistant alloys for aerospace welded structures, the NASA-Goddard satellite repair program, and the uses of explosion welding and cutting in aerospace engineering.

  6. Concepts used in the preparation of the document - Space and planetary environment criteria guidelines for use in space vehicle development 1982 revision

    NASA Technical Reports Server (NTRS)

    Davis, M. H.; Smith, R. E.; West, G. S.

    1984-01-01

    The NASA/Marshall Space Flight Center has developed a series of documents concerning space and planetary environments for use in the formulation of aerospace vehicle and spacecraft design criteria. For the earth above 90km altitude, and for the moon, planets, and other bodies in the Solar System; information is provided in disciplinary area of importance to the spacecraft designer such as planetary geology and morphology, atmospheric and ionospheric structures, radiation, particles, geomagnetic fields, astrodynamic constants, and meteoroids. This paper presents the philosophy used in the preparation of the current (1982) version of the document. Specific topics will be discussed in relation to their significance for aerospace vehicle and spacecraft development and mission analysis.

  7. RS-25 for the NASA Cargo Launch Vehicle: The Evolution of SSME for Space Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael H.; McArthur, J. Craig; Ise, Dayna S.

    2006-01-01

    A key element of the National Vision for Space Exploration is the development of a heavy-lift Cargo Launch Vehicle (CaLV). Missions to the Moon, Mars, and beyond are only possible with the logistical capacity of putting large payloads in low-earth orbit. However, beyond simple logistics, there exists the need for this capability to be as cost effective as possible to ensure mission sustainability. An element of the CaLV project is, therefore, the development of the RS-25, which represents the evolution of the proven Space Shuttle Main Engine (SSME) into a high-performance, cost-effective expendable rocket engine. The development of the RS-25 will be built upon the foundation of over one million seconds of accumulated hot-fire time on the SSME. Yet in order to transform the reusable SSME into the more cost-effective, expendable RS-25 changes will have to be made. Thus the project will inevitably strive to maintain a balance between demonstrated heritage products and processes and the utilization of newer technology developments. Towards that end, the Core Stage Engine Office has been established at the NASA Marshall Space Flight Center to initiate the design and development of the RS-25 engine. This paper is being written very early in the formulation phase of the RS-25 project. Therefore the focus of this paper will be to present the scope, challenges, and opportunities for the RS-25 project. Early schedules and development decisions and plans will be explained. For not only must the RS-25 project achieve cost effectiveness through the development of new, evolved components such as a channel-wall nozzle, a new HIP-bonded main combustion chamber, and several others, it must simultaneously develop the means whereby this engine can be manufactured on a scale never envisioned for the SSME. Thus, while the overall project will span the next eight to ten years, there is little doubt that even this schedule is aggressive with a great deal of work to accomplish.

  8. Orbital transfer vehicle concept definition and system analysis study. Volume 4, Appendix A: Space station accommodations. Revision 1

    NASA Technical Reports Server (NTRS)

    Randall, Roger M.

    1987-01-01

    Orbit Transfer Vehicle (OTV) processing at the space station is divided into two major categories: OTV processing and assembly operations, and support operations. These categories are further subdivided into major functional areas to allow development of detailed OTV processing procedures and timelines. These procedures and timelines are used to derive the specific space station accommodations necessary to support OTV activities. The overall objective is to limit impact on OTV processing requirements on space station operations, involvement of crew, and associated crew training and skill requirements. The operational concept maximizes use of automated and robotic systems to perform all required OTV servicing and maintenance tasks. Only potentially critical activities would require direct crew involvement or supervision. EVA operations are considered to be strictly contingency back-up to failure of the automated and robotic systems, with the exception of the initial assembly of Space-Based OTV accommodations at the space station, which will require manned involvement.

  9. A Full-Size Mockup of the Cabin for the Crew Return Vehicle (CRV) for the International Space Statio

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo, taken at NASA's Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  10. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  11. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  12. A Full-Size Mockup of the Cabin for the Crew Return Vehicle (CRV) for the International Space Statio

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo, taken at NASA's Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  13. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  14. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object

    NASA Technical Reports Server (NTRS)

    Kline, Heather

    2011-01-01

    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  15. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  16. Space-based laser-powered orbital transfer vehicle (Project SLICK)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.

  17. Navigation of military and space unmanned ground vehicles in unstructured terrains

    NASA Technical Reports Server (NTRS)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  18. New Capabilities to Achieve Future Major Astrophysical Goals in Space: In-Space Servicing and the Ares V Heavy Lift Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A., Jr.; Postman, M.; Stahl, P.; Lester, D.; Lillie, C.; Moe, R.; Schweitzer, A.; Varsi, G.; Espero, T.

    2007-12-01

    The astronomy community, NASA Centers, and the National Academy of Sciences are beginning the processes to design, assess, and advocate a generation of very large, very capable astronomical observatories for the post-JWST time period; that is, about 2020 and beyond. Simultaneously, commercial companies and entrepreneurs, as well as NASA's human spaceflight program, are investing in capabilities that may be adapted - and, indeed, may be necessary - to enable the most ambitious science missions in space. In this presentation, we describe the history of and recent progress in space robotics, notably DARPA's Orbital Express program, which demonstrated in Spring, 2007 effective in-space acquisition, rendezvous, docking, and instrument transfer. We also will summarize recent concepts for modest augmentation of the Orion/Crew Exploration Vehicle that would permit astronaut and/or robotic servicing of the science community's most valuable space assets. Finally, we will outline our proposed study of the Ares V heavy lift launch vehicle, which has the potential to put a 8 m monolithic telescope - or even larger segmented/deployable optic - into the Sun-Earth L2 orbit.

  19. Calculated maximum Hl ground-level concentrations downwind from launch pad aborts of the space shuttle and Titan 3 C vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.

    1972-01-01

    A quantitative assessment is described of the potential environmental hazard posed by the atmospheric release of HCl resulting from the burning of solid propellant during two hypothetical on-pad aborts of the Titan 3 C and space shuttle vehicles at Kennedy Space Center. In one pad-abort situation, it is assumed that the cases of the two solid-propellant engines are ruptured and the burning propellant falls to the ground in the immediate vicinity of the launch pad where it continues to burn for 5 minutes. In the other pad-abort situation considered, one of the two solid engines on each vehicle is assumed to ignite and burn at the normal rate while the vehicle remains on the launch pad. Calculations of maximum HCl ground-level concentration for the above on-pad abort situations were made using the computerized NASA/MSFC multilayer diffusion models in conjunction with appropriate meteorological and source inputs. Three meteorological regimes are considered-fall, spring, and afternoon sea-breeze. Source inputs for the hazard calculations were developed. The principal result of the calculations is that maximum ground-level HCl concentrations at distances greater than 1 kilometer from the launch pad are less than 3 parts per million in all cases considered.

  20. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  1. 78 FR 43861 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... vehicle and missile launch operations at the KLC, were issued on March 22, 2011 (76 FR 16311, March 23... ``take'' means to harass, hunt, capture, or kill, or attempt to harass, hunt, capture, or kill...

  2. 76 FR 27308 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... vehicle and missile launch operations at the KLC, were issued on March 22, 2011 (76 FR 16311, March 23... proper; and (4) sonic booms. Sonic booms are not a concern for pinnipeds on Ugak Island, as sonic...

  3. Design study of RL10 derivatives. Volume 3, part 1: Preliminary interface control document. [development of baseline engines for space tug vehicles

    NASA Technical Reports Server (NTRS)

    Adams, A.

    1973-01-01

    The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.

  4. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  5. Project Argo: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.

  6. Findings on American astronauts bearing on the issue of artificial gravity for future manned space vehicles. [adaptation to weightlessness during manned space flight

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    Findings for American astronauts are reviewed that may indicate some alteration in vestibular response related to exposure to zero gravity. Of 25 individuals participating in Apollo missions 7 through 15, nine have experienced symptomatology that could be related to motion sickness. The apparent divergence between these results and those from the Soviet space program, which initially appears great, may reflect the greater emphasis given by Soviet investigators to vestibular aberrations. Presently the incidence of motion sickness, long known as an indicator of vestibular disturbance, seems too low to warrant any positive statement regarding inclusion of an artificial gravity system in future long term space missions. Where motion sickness has occurred, adaptation to weightlessness has always resulted in abatement of symptoms. In the absence of biomedical justification for incorporating artificial gravity systems in long term space flight vehicles, engineering considerations may dictate the manner in which the final ballot is cast.

  7. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  8. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  9. Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1989-01-01

    The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.

  10. Development of space stable thermal control coatings for use on large space vehicles. [effects of ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Harada, Y.

    1974-01-01

    The development of a large scale manufacturing method for the production of a stable zinc orthotitanate pigment is discussed. Major emphasis was placed on the evaluation of the radiation stability of Tektronix, Inc. pigments and of the conditions (time and temperature) leading to high reflection and high optical stability. Paints were formulated in OI-650 and in OI-650G vehicles from pigments which were prepared at various temperatures, some of which were chemically treated to remove ZnO. Ultraviolet irradiation tests of these paints were performed, and observations made regarding optimum pigment preparation parameters.

  11. Development of space stable thermal control coatings for use on large space vehicles. [effects of ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Harada, Y.

    1974-01-01

    The development of a large scale manufacturing method for the production of a stable zinc orthotitanate pigment is discussed. Major emphasis was placed on the evaluation of ultraviolet radiation stability tests of pigments derived from coprecipitated and individually precipitated oxalates. Emphasis was also placed on an investigation of the conditions (time and temperature) leading to high reflectance and high optical stability. Paints were formulated in OI-650 and in OI-650G vehicles from pigments which were prepared at various temperatures. Analyses of ultraviolet irradiation test data were conducted regarding optimum pigment preparation parameters and treatment conditions.

  12. Study of automatic and manual terminal guidance and control systems for space shuttle vehicles. Volume 1: Sections 1 through 3

    NASA Technical Reports Server (NTRS)

    Osder, S.; Keller, R.

    1971-01-01

    The results of a study to analyze, design, and evaluate guidance and control systems are presented that start at an altitude of about 100,000 feet and bring the unpowered space shuttle orbiters to a precision horizontal landing. The systems under consideration included fully automatic versions which involve no pilot participation as well as various manual configurations that provide combinations of displays and control augmentation which permit the pilot to control the vehicle to a successful landing. Two classes of vehicles were studied: the low cross range or straight-wing orbiter and the high cross range or delta-wing (delta body) orbiter. The recommended navigation, guidance and control system is shown to be compatible with realistic physical constraints that would exist in space shuttlecraft and to be consistent with the 1971 avionics equipment state of the art. Aircraft capable of aerodynamically simulating the various candidate space shuttlecraft in their unpowered, terminal area descent were investigated, and flight test recommendations, including system mechanizations, are made.

  13. 1958 NASA/USAF Space Probes (ABLE-1). Volume 3; Vehicles, Trajectories, and Flight Histories

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The three NASA/USAF lunar probes of August 17, October 13, and November 8, 1958 are described. Details of the program, the vehicles, the payloads, the firings, the tracking, and the results are presented. Principal result was the first experimental verification of a confined radiation zone of the type postulated by Van Allen and others.

  14. Forward bearing reactor mechanism for Titan 3-E/Centaur D-1T space launch vehicle

    NASA Technical Reports Server (NTRS)

    Jones, R. A.

    1975-01-01

    System between the Titan/Centaur launch vehicle and its aerodynamic shroud is described. The system provides a precise spring constant and is capable of being inactivated during flight. Design requirements, design details, and the test program are discussed. The conventional English system of units was used during this development program for all principal measurements and calculations.

  15. Estimation of unmodeled forces on a low-thrust space vehicle. [trajectory analysis for Eros asteroid flyby

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Hagar, H.

    1975-01-01

    The application of a sequential estimation algorithm, which compensates for random errors in the dynamic model, to the problem of estimating the state of a continuously thrusting solar electric propulsion space vehicle is investigated. The dynamic model errors, due to random anomalies in the propulsion system, are approximated successfully by both first order and second order Gauss-Markov processes to obtain a more accurate and stable orbit determination algorithm. The importance of correct dynamic and measurement modeling in achieving accurate estimates is demonstrated.

  16. Numerical computation of complex multi-body Navier-Stokes flows with applications for the integrated Space Shuttle launch vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1993-01-01

    An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.

  17. Space transfer vehicle concepts and requirements study. Volume 2, book 2: System and program requirements trade studies

    NASA Astrophysics Data System (ADS)

    Weber, Gary A.; Richards, Bill; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard; Hosking, Craig; Dishman, George; Furlong, Mike

    1991-04-01

    During the 90-day study, support was provided to NASA in defining a point-of-departure space transfer vehicle (STV). The resulting STV concept was performance optimized with a two-stage LTV/LEV configuration. Appendix A reports on the effort during this period of the study. From the end of the 90-day study until the March Interim Review, effort was placed on optimizing the two-stage vehicle approach identified in the 90-day effort. After the March Interim Review, the effort was expanded to perform a full architectural trade study with the intent of developing a decision database to support STV system decisions in response to changing SEI infrastructure concepts. Several of the architecture trade studies were combined in a System Architecture Trade Study. In addition to this trade, system optimization/definition trades and analyses were completed and some special topics were addressed. Program- and system-level trade study and analyses methodologies and results are presented in this section. Trades and analyses covered in this section are: (1) a system architecture trade study; (2) evolution; (3) safety and abort considerations; (4) STV as a launch vehicle upper stage; and (5) optimum crew and cargo split.

  18. NASA Affordable Vehicle Avionics (AVA): Common Modular Avionics System for Nano-Launchers Offering Affordable Access to Space

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2015-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.

  19. Space Transfer Vehicle Concepts and Requirements Study. Volume 2, Book 2: System and Program Requirements Trade Studies

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.; Richards, Bill; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard; Hosking, Craig; Dishman, George; Furlong, Mike

    1991-01-01

    During the 90-day study, support was provided to NASA in defining a point-of-departure space transfer vehicle (STV). The resulting STV concept was performance optimized with a two-stage LTV/LEV configuration. Appendix A reports on the effort during this period of the study. From the end of the 90-day study until the March Interim Review, effort was placed on optimizing the two-stage vehicle approach identified in the 90-day effort. After the March Interim Review, the effort was expanded to perform a full architectural trade study with the intent of developing a decision database to support STV system decisions in response to changing SEI infrastructure concepts. Several of the architecture trade studies were combined in a System Architecture Trade Study. In addition to this trade, system optimization/definition trades and analyses were completed and some special topics were addressed. Program- and system-level trade study and analyses methodologies and results are presented in this section. Trades and analyses covered in this section are: (1) a system architecture trade study; (2) evolution; (3) safety and abort considerations; (4) STV as a launch vehicle upper stage; and (5) optimum crew and cargo split.

  20. A framework for the assessment and analysis of multi-hazards induced risk resulting from space vehicles operations

    NASA Astrophysics Data System (ADS)

    Sala-Diakanda, Serge N.

    2007-12-01

    With the foreseeable increase in traffic frequency to and from orbit, the safe operation of current and future space vehicles at designated spaceports has become a serious concern. Due to their high explosive energy potential, operating those launch vehicles presents a real risk to: (1) the spaceport infrastructure and personnel, (2) the communities surrounding the spaceport and (3) the flying aircrafts whose routes could be relatively close to spaceport launch and reentry routes. Several computer models aimed at modeling the effects of the different hazards generated by the breakup of such vehicles (e.g., fragmentation of debris, release of toxic gases, propagation of blast waves, etc.) have been developed, and are used to assist in Go-No Go launch decisions. They can simulate a total failure scenario of the vehicle and, estimate a number of casualties to be expected as a result of such failure. However, as all of these models---which can be very elaborate and complex---consider only one specific explosion hazard in their simulations, the decision of whether or not a launch should occur is currently based on the evaluation of several estimates of an expected number of casualties. As such, current practices ignore the complex, nonlinear interactions between the different hazards as well as the interdependencies between the estimates. In this study, we developed a new framework which makes use of information fusion theory, hazards' dispersion modeling and, geographical statistical analysis and visualization capabilities of geographical information systems to assess the risk generated by the operation of space launch vehicles. A new risk metric, which effectively addresses the lack of a common risk metric with current methods, is also proposed. A case study, based on a proposed spaceport in the state of Oklahoma showed that the estimates we generate through our framework consistently outperform estimates provided by any individual hazard, or by the independent

  1. "Fly-by-Wireless" Vehicles and Evaluations of ISA 100 Applications to Space-Flight

    NASA Technical Reports Server (NTRS)

    Studor, George F.

    2009-01-01

    "Fly-by-Wireless" (What is it?) Vision: To minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus Areas: 1. System Engineering and Integration to reduce cables and connectors. 2. Provisions for modularity and accessibility in the vehicle architecture. 3. Develop Alternatives to wired connectivity (the "tool box").NASA and Aerospace depend more and more on cost-effective solutions that can meet our requirements. ISA-100.11 a is a promising new standard and NASA wants to evaluate it. NASA should be involved in understanding and contributing to other ISA-100 efforts that contribute to "Fly-by-Wireless" and it's objectives. ISA can engage other aerospace groups that are working on similar goals and obtain more aerospace industry perspective.

  2. Space vehicle integrated thermal protection/structural/meteoroid protection system, volume 1

    NASA Technical Reports Server (NTRS)

    Bartlett, D. H.; Zimmerman, D. K.

    1973-01-01

    A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic vehicle propulsion module. Structural concepts were evaluated to identify least weight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetration experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demonstrate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/meteoroid protection system.

  3. Comparison of Structural Optimization Techniques for a Nuclear Electric Space Vehicle

    NASA Technical Reports Server (NTRS)

    Benford, Andrew

    2003-01-01

    The purpose of this paper is to utilize the optimization method of genetic algorithms (GA) for truss design on a nuclear propulsion vehicle. Genetic Algorithms are a guided, random search that mirrors Darwin s theory of natural selection and survival of the fittest. To verify the GA s capabilities, other traditional optimization methods were used to compare the results obtained by the GA's, first on simple 2-D structures, and eventually on full-scale 3-D truss designs.

  4. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  5. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    This project forms part of the long term computational effort to simulate the time dependent flow over the integrated Space Shuttle vehicle (orbiter, solid rocket boosters (SRB's), external tank (ET), and attach hardware) during its ascent mode for various nominal and abort flight conditions. Due to the limitations of experimental data such as wind tunnel wall effects and the difficulty of safely obtaining valid flight data, numerical simulations are undertaken to supplement the existing data base. This data can then be used to predict the aerodynamic behavior over a wide range of flight conditions. Existing computational results show relatively good overall comparison with experiments but further refinement is required to reduce numerical errors and to obtain finer agreements over a larger parameter space. One of the important goals of this project is to obtain better comparisons between numerical simulations and experiments. In the simulations performed so far, the geometry has been simplified in various ways to reduce the complexity so that useful results can be obtained in a reasonable time frame due to limitations in computer resources. In this project, the finer details of the major components of the Space Shuttle are modeled better by including more complexity in the geometry definition. Smaller components not included in early Space Shuttle simulations will now be modeled and gridded.

  6. Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.

    1997-01-01

    Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.

  7. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  8. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    SciTech Connect

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree to

  9. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  10. RendezVous sensor for automatic guidance of transfer vehicles to the International Space Station

    NASA Astrophysics Data System (ADS)

    Kolk, Karl-Hermann; Moebius, Bettina G.

    2000-10-01

    Based on a Predevelopment Program, initiated by the European Space Agency, an automatically operating RendezVous Sensor (RVS) is currently developed. This paper describes in more detail the RVS concept emphasizing the electro-optical elements of the sensor.

  11. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.

    2002-01-01

    Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.

  12. Mercury-Redstone: The first American man-rated space launch vehicle

    NASA Astrophysics Data System (ADS)

    Burkhalter, Bettye B.; Sharpe, Mitchell R.

    1990-12-01

    This paper describes the development of the Mercury-Redstone launch vehicle used by the U.S.A. in 1961 to project two manned spacecraft along suborbital ballistic trajectories. It shows that progress in ballistic missile technology dating from World War II contributed to the development of the Redstone missile, which itself was adapted for the Mercury spacecraft launch missions. Among other subjects, the proposal to use a modified Redstone as a manned launch vehicle in the proposed project Adam is recounted as is the role played by the Hermes C1. Particular attention is focused on the engineering adaptations and rigid reliability program of the Redstone missile to fulfill the requirements of launching man. The process of "man-rating" the Mercury-Redstone for this category of mission is explained. Also described are the design, development, and testing procedures developed for Mercury-Redstone. Key points in the design process and decisions made to insure mission success and astronaut safety are reviewed. Finally, the results of the flights of the Mercury Freedom 7 spacecraft piloted by Astronaut Alan B. Shepard on 6 May 1961 and the Mercury Liberty Bell 7 spacecraft piloted by Astronaut Virgil I. Grissom on 21 July 1961 are summarized.

  13. Experimental and Numerical Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of Cryogenic Launch and Space Vehicle Propellants

    NASA Technical Reports Server (NTRS)

    Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.

    2011-01-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  14. Experimental and numerical investigation of reduced gravity slosh dynamics for the characterization of cryogenic launch and space vehicle propellants

    NASA Astrophysics Data System (ADS)

    Walls, Laurie; Kirk, Daniel; de Luis, Javier

    2012-06-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of the slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. This publication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  15. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  16. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1971-01-01

    Data showing that 90 C was a more effective temperature than 125 C for the destruction of Bacillus subtilis var. niger when the head-space moisture was fixed at 474 micrograms H2O/ml have been confirmed and are summarized. The influence of head-space moisture at 90 C was investigated and it was observed that as the head-space moisture was increased 474 micrograms H2O/ml, there was a corresponding increase in lethality of the system. This moisture level corresponded to 100% relative humidity at 90 C, and additional water in the cans should have had no effect. A profound descrease was observed in the destruction of the organisms when additional water was added. The discontinuity observed in these data is troublesome and must be resolved as the first step in an orderly exploration of low temperature inactivation of B. subtilis var. niger.

  17. Radiative gas dynamics of the Fire-II superorbital space vehicle

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2016-03-01

    The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.

  18. Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply

    NASA Technical Reports Server (NTRS)

    Defelice, David M.; Aydelott, John C.

    1987-01-01

    The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results.

  19. A movable mass control system to detumble a disabled space vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, T. L.

    1973-01-01

    An internal autonomous control system to either completely detumble a spacecraft or lessen the tumbling motions until the rescue craft arrives is discussed. Such a device would become active upon loss of control. The development of a movable mass control system to convert the tumbling motions of a disabled vehicle into simple spin is presented. A simple spin state would greatly facilitate crew evacuation and final despinning by an external means. The system moves a control mass, according to a selected control law, in the acceleration environment created by the tumbling motion. By moving the mass properly, the rotational kinetic energy of the system may be increased or decreased creating simple spin states about the minimum or maximum moment of inertia axis, respectively. The control system is designed for the latter case due to its associated stability in the presence of perturbing forces.

  20. Concept for a Lunar Transfer Vehicle for Small Satellite Delivery to the Moon from the International Space Station

    NASA Technical Reports Server (NTRS)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.