Science.gov

Sample records for spatial forest patterns

  1. Rainfall redistribution in a tropical forest: Spatial and temporal patterns

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Zimmermann, Beate; Elsenbeer, Helmut

    2009-11-01

    The investigation of throughfall patterns has received considerable interest over the last decades. And yet, the geographical bias of pertinent previous studies and their methodologies and approaches to data analysis cast a doubt on the general validity of claims regarding spatial and temporal patterns of throughfall. We employed 220 collectors in a 1-ha plot of semideciduous tropical rain forest in Panama and sampled throughfall during a period of 14 months. Our analysis of spatial patterns is based on 60 data sets, whereas the temporal analysis comprises 91 events. Both data sets show skewed frequency distributions. When skewness arises from large outliers, the classical, nonrobust variogram estimator overestimates the sill variance and, in some cases, even induces spurious autocorrelation structures. In these situations, robust variogram estimation techniques offer a solution. Throughfall in our plot typically displayed no or only weak spatial autocorrelations. In contrast, temporal correlations were strong, that is, wet and dry locations persisted over consecutive wet seasons. Interestingly, seasonality and hence deciduousness had no influence on spatial and temporal patterns. We argue that if throughfall patterns are to have any explanatory power with respect to patterns of near-surface processes, data analytical artifacts must be ruled out lest spurious correlation be confounded with causality; furthermore, temporal stability over the domain of interest is essential.

  2. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  3. Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space

    PubMed Central

    Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055

  4. Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.

    PubMed

    Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055

  5. Spatial pattern of forest cover changes in the northeast China since 1980s

    NASA Astrophysics Data System (ADS)

    Li, Ying; Gao, Zhiqiang; Jing, Yuping; Zhang, Shuwen

    2005-09-01

    Forest is the main body of the land ecosystem. As key part of boreal forest in Eurasia, forest in the northeast China plays an important role in maintaining global carbon cycle and regional ecology security. The northeast China is the highest forest coverage ratio area in China, the forest coverage ratio in total area doesn't change much since reform and opening of China, but the spatial distribution of forest cover changes is in regional difference explicitly. Base on land use data of three period (1986a, 1996a, 2000a) remote sensing image, the research applying statistical analysis models and spatial analysis models, analyzed the forest cover change types, landscape characteristics and spatial distribution pattern from the middle of 1980s to 2000. The research result show that: (1) From 1980s, the main forest cover changes in northeast China was in interchange of forestland and cropland, and interchange of forestland and grassland. Among them, the forested land change plays mainly part, and deforest area is bigger than reforest one. (2) From 1980s, despite the forestland area decreases every year in northeast China, landscape pattern didn't change much, forestland is the main part of landscape, the degree of forest landscape fragmentation dropped every year. It shows that forest cover changes frequently take place at the edge of forest, which indicates that a neighborhood relation plays an important role in the forestland changes. (3) From 1980s, forest cover changes in northeast China most happened in hilly land at about 400m height, and took on obvious zonality in horizontal distribution: degree of forest cover change dropped off from south and north to middle, the degree of reforest dropped off from south to north, and the degree of deforest dropped off from north to south.

  6. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest

    PubMed Central

    May, Felix; Huth, Andreas; Wiegand, Thorsten

    2015-01-01

    Assessing the relative importance of different processes that determine the spatial distribution of species and the dynamics in highly diverse plant communities remains a challenging question in ecology. Previous modelling approaches often focused on single aggregated forest diversity patterns that convey limited information on the underlying dynamic processes. Here, we use recent advances in inference for stochastic simulation models to evaluate the ability of a spatially explicit and spatially continuous neutral model to quantitatively predict six spatial and non-spatial patterns observed at the 50 ha tropical forest plot on Barro Colorado Island, Panama. The patterns capture different aspects of forest dynamics and biodiversity structure, such as annual mortality rate, species richness, species abundance distribution, beta-diversity and the species–area relationship (SAR). The model correctly predicted each pattern independently and up to five patterns simultaneously. However, the model was unable to match the SAR and beta-diversity simultaneously. Our study moves previous theory towards a dynamic spatial theory of biodiversity and demonstrates the value of spatial data to identify ecological processes. This opens up new avenues to evaluate the consequences of additional process for community assembly and dynamics. PMID:25631991

  7. A method for the selection of relevant pattern indices for monitoring of spatial forest cover pattern at a regional scale

    NASA Astrophysics Data System (ADS)

    De Clercq, Eva M.; Vandemoortele, Femke; De Wulf, Robert R.

    2006-06-01

    When signing Agenda 21, several countries agreed to monitor the status of forests to ensure their sustainable use. For reporting on the change in spatial forest cover pattern on a regional scale, pattern metrics are widely used. These indices are not often thoroughly evaluated as to their sensitivity to remote sensing data characteristics. Hence, one would not know whether the change in the metric values was due to actual landscape pattern changes or to characteristic variation of multitemporal remote sensing data. The objective of this study is to empirically test an array of pattern metrics for the monitoring of spatial forest cover. Different user requirements are used as point of departure. This proved to be a straightforward method for selecting relevant pattern indices. We strongly encourage the systematic screening of these indices prior to use in order to get a deeper understanding of the results obtained by them.

  8. Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition.

    PubMed

    Blackwell, Bradley D; Driscoll, Charles T

    2015-07-01

    We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately. PMID:25818092

  9. Quantifying spatial patterns in the Yakama Nation Tribal Forest and Okanogan-Wenatchee National Forest to assess forest health

    NASA Astrophysics Data System (ADS)

    Wilder, T. F.

    2013-05-01

    Over the past century western United States have experienced drastic anthropogenic land use change from practices such as agriculture, fire exclusion, and timber harvesting. These changes have complex social, cultural, economic, and ecological interactions and consequences. This research studied landscapes patterns of watersheds with similar LANDFIRE potential vegetation in the Southern Washington Cascades physiographic province, within the Yakama Nation Tribal Forest (YTF) and Okanogan-Wenatchee National Forest, Naches Ranger District (NRD). In the selected watersheds, vegetation-mapping units were delineated and populated based on physiognomy of homogeneous areas of vegetative composition and structure using high-resolution aerial photos. Cover types and structural classes were derived from the raw, photo-interpreted vegetation attributes for individual vegetation mapping units and served as individual and composite response variables to quantify and assess spatial patterns and forest health conditions between the two ownerships. Structural classes in both the NRD and YTF were spatially clustered (Z-score 3.1, p-value 0.01; Z-score 2.3, p-value 0.02, respectively), however, ownership and logging type both explained a significant amount of variance in structural class composition. Based on FRAGSTATS landscape metrics, structural classes in the NRD displayed greater clustering and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 47.4% understory reinitiation structural class type and associated high FRAGASTAT class metrics demonstrated high aggregation with moderate interspersion. Stem exclusion open canopy displayed the greatest dispersal of structural class types throughout the NRD, but adjacencies were correlated to other class types. In the YTF, stem exclusion open canopy comprised 37.7% of the landscape and displayed a high degree of aggregation and interspersion about clusters throughout the YTF. Composite cover

  10. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  11. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  12. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    PubMed

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  13. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  14. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Saatchi, Sassan S.; Yang, Yan; Myneni, Ranga B.; Frankenberg, Christian; Chowdhury, Diya; Bi, Jian

    2015-08-01

    Determining the seasonality of terrestrial carbon exchange with the atmosphere remains a challenge in tropical forests because of the heterogeneity of ecosystem and climate. The magnitude and spatial variability of this flux are unknown, particularly in Amazonia where empirical upscaling approaches from spatially sparse in situ measurements and simulations from process-based models have been challenged in recent scientific literature. Here, we use satellite proxy observations of canopy structure, skin temperature, water content, and optical properties over a period of 10 years (2000-2009) to constrain and quantify the spatial pattern and seasonality of carbon exchange of Amazonian forests. We identify nine regions through an optimized cluster approach with distinct leaf phenology synchronized with either water or light availability and corresponding seasonal cycles of gross primary production (GPP), covering more than 600 million ha of remaining old growth forests of Amazonia. We find South and Southwestern regions show strong seasonality of GPP with a peak in the wet season; while from Central Western to Northeastern Amazonia cover three regions with rising GPP in the dry season. The remaining four regions have significant but weak seasonality. These patterns agree with satellite florescence observations, a better proxy for photosynthetic activity. Our results suggest that only one-third of the patterns can be explained by the spatial autocorrelation caused by intra-annual variability of climate over Amazonia. The remaining two-thirds of variations are due to biogeography of the Amazon basin driven by forest composition, structure, and nutrients. These patterns, for the first time, provide a complex picture of seasonal changes of tropical forests related to photosynthesis and influenced by water, light, and stomatal responses of trees that can improve modeling of regional carbon cycle and future prediction of impacts of climate change.

  15. Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity

    NASA Astrophysics Data System (ADS)

    Helmer, E. H.; Brandeis, Thomas J.; Lugo, Ariel E.; Kennaway, Todd

    2008-06-01

    Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and tree species richness. Accessibility, arability and spatial contagion emerge strongly as overriding spatial controls on tropical forest age, determining (1) the pattern of agricultural abandonment that permits forest regrowth, and (2) where humans leave old-growth forest remnants. Covariation between the factors patterning forest age and land development explains why most forest cleared for land development is younger. Forests are increasingly younger in more accessible and fertile areas where agriculture has lasted longer and land development is most common. All else equal, more species-rich older forest on less arable lands are somewhat less likely to undergo development, but they are still vulnerable to clearing for land development if close to urban centers and unprotected. Accounting for forest age leads to a 19% lower estimate of forest biomass cleared for land development than if forest age is not accounted for.

  16. Forest birds respond to the spatial pattern of exurban development in the Mid-Atlantic region, USA

    PubMed Central

    Lookingbill, Todd R.

    2016-01-01

    Housing development beyond the urban fringe (i.e., exurban development) is one of the fastest growing forms of land-use change in the United States. Exurban development’s attraction to natural and recreational amenities has raised concerns for conservation and represents a potential threat to wildlife. Although forest-dependent species have been found particularly sensitive to low housing densities, it is unclear how the spatial distribution of houses affects forest birds. The aim of this study was to assess forest bird responses to changes in the spatial pattern of exurban development and also to examine species responses when forest loss and forest fragmentation were considered. We evaluated landscape composition around North American Breeding Bird Survey stops between 1986 and 2009 by developing a compactness index to assess changes in the spatial pattern of exurban development over time. Compactness was defined as a measure of how clustered exurban development was in the area surrounding each survey stop at each time period considered. We used Threshold Indicator Taxa Analysis to detect the response of forest and forest-edge species in terms of occurrence and relative abundance along the compactness gradient at two spatial scales (400-m and 1-km radius buffer). Our results showed that most forest birds and some forest-edge species were positively associated with high levels of compactness at the larger spatial scale; the proportion of forest in the surrounding landscape also had a significant effect when forest loss and forest fragmentation were accounted for. In contrast, the spatial configuration of exurban development was an important predictor of occurrence and abundance for only a few species at the smaller spatial scale. The positive response of forest birds to compactness at the larger scale could represent a systematic trajectory of decline and could be highly detrimental to bird diversity if exurban growth continues and creates more compacted

  17. Forest birds respond to the spatial pattern of exurban development in the Mid-Atlantic region, USA.

    PubMed

    Suarez-Rubio, Marcela; Lookingbill, Todd R

    2016-01-01

    Housing development beyond the urban fringe (i.e., exurban development) is one of the fastest growing forms of land-use change in the United States. Exurban development's attraction to natural and recreational amenities has raised concerns for conservation and represents a potential threat to wildlife. Although forest-dependent species have been found particularly sensitive to low housing densities, it is unclear how the spatial distribution of houses affects forest birds. The aim of this study was to assess forest bird responses to changes in the spatial pattern of exurban development and also to examine species responses when forest loss and forest fragmentation were considered. We evaluated landscape composition around North American Breeding Bird Survey stops between 1986 and 2009 by developing a compactness index to assess changes in the spatial pattern of exurban development over time. Compactness was defined as a measure of how clustered exurban development was in the area surrounding each survey stop at each time period considered. We used Threshold Indicator Taxa Analysis to detect the response of forest and forest-edge species in terms of occurrence and relative abundance along the compactness gradient at two spatial scales (400-m and 1-km radius buffer). Our results showed that most forest birds and some forest-edge species were positively associated with high levels of compactness at the larger spatial scale; the proportion of forest in the surrounding landscape also had a significant effect when forest loss and forest fragmentation were accounted for. In contrast, the spatial configuration of exurban development was an important predictor of occurrence and abundance for only a few species at the smaller spatial scale. The positive response of forest birds to compactness at the larger scale could represent a systematic trajectory of decline and could be highly detrimental to bird diversity if exurban growth continues and creates more compacted

  18. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    PubMed

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  19. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest

    PubMed Central

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley’s L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  20. Influences of forest roads and their edge effects on the spatial pattern of burn severity

    NASA Astrophysics Data System (ADS)

    Narayanaraj, Ganapathy; Wimberly, Michael C.

    2013-08-01

    Previous research has shown that forest roads are an important feature in many landscapes and have significant effects on wildfire ignition and cessation. However, forest road effects on burn severity have not been studied at the landscape level. Therefore, the overarching goal of our study is to identify the influences of road edge effects on the spatial patterns of burn severity. We analyzed six fires within the Okanogan-Wenatchee National Forest on the eastern slope of the Cascades mountain range of central Washington. We generated two categories for assessing road variables: (1) Primary Road Effect Zone (area within 150 m of the nearest road) and (2) Secondary Road Effect Zone (area from 150 m to 300 m to the nearest road). A regular sampling grid including one out of every 9 cells was created for each fire. These grids were intersected with burn severity data in the form of the Relative Differenced Normalized Burn Ratio (RdNBR), road distance category, stream distance, elevation, slope, terrain shape index, heat load index, canopy cover, and fuel type. We fit spatial regression models with RdNBR as the dependent variable. We found that high burn severity is less likely to occur in the Primary Road Effect Zone for most fires, although one fire exhibited the opposite relationship. Forest road edge effects were hypothesized to be an important determinant of burn severity because fragmentation created by roads alters the roadside fuel profile and environment and because road corridors create barriers to fire spread. Recognizing roadside effects on burn severity patterns highlights the need for further study of the range of effects that roads have on fuels and the fire environment and the potential for incorporating road effects into landscape-level assessments of fire risk.

  1. Spatially variant lagged responses of forest extent and landscape patterns to socioeconomic drivers in the Li River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Li, Jun; Qin, Qiming; Xu, Ruofeng; Lin, Cong

    2016-01-01

    Forest cover change is one of the most important land cover changes. Intensified economic development and population growth have led to extensive deforestation and afforestation, and greatly altered the forest landscape patterns. This paper analyzed how socioeconomic drivers influenced the forest extent and landscape patterns in a lagged manner within the Li River Basin, Guangxi Zhuang Autonomous Region, China, during the period of 1991 to 2013. First, the temporal variations of forest extent and landscape patterns as quantified by six forest cover metrics were analyzed. The cross-correlation analysis was employed to examine the lagged responses of forest cover metrics to each socioeconomic driver across regions. Last, the fixed effects regression models were built to quantitatively assess the spatially variant relationships. The results demonstrated that the influence of socioeconomic drivers lagged, and the lagged influence varied across regions.

  2. Spatial pattern of 137Cs in soils in a mixed deciduous forest in Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Takada, M.; Yamada, T.; Takahara, T.; Okuda, T.

    2015-12-01

    Spatial heterogeneity of 137Cs contamination was studied in a forest floor of Fukushima region, c.a. 40 km NW of Fukushima Daiichi Nuclear Power Plant (FDNPP) focusing on downwards flow from forest canopy via stemflow and throughfall which play major role in determining spatial contamination of 137Cs after the FNDP accident. Setting a study plot (400 m2) in a secondary mixed deciduous forest, dominated by Quercus crispula and Abies firma in canopy layer in August and November 2014, we sampled the souk from surface to 5 cm in depth of soils and measured 137Cs in every 2 m grids and at tree stem bases. The total estimated activity of 137Cs in soil within the study plot was approximately 210 kBq/m2, but showed large spatial heterogeneity showing 30 times of difference between the lowest and highest activities. The activity decreased with increasing distances from tree stem bases. High activity around tree stem bases was presumably due to the stemflow containing 137Cs seeped into soil only around tree stem bases that raised radioactivity in soil locally in the areas. Relatively low activity away from trees (outside canopies) may be due to small effects of stemflow and throughfall. Activity of 137Cs around bases of deciduous broadleaf trees increased with increasing the tree size. Because larger trees have higher potentials to capture larger amount of 137Cs on the tree surface, cumulative activity of 137Cs included in stemflow may increase with increasing the tree size. However evergreen coniferous tree species (Abies firma) did not show such a pattern relating to the tree size. The difference is assumed to be affected by phenological characteristics as the accident happened in winter and deciduous broadleaf trees did not have leaves and 137Cs deposited on tree bodies, while evergreen coniferous tree had leaves and 137Cs was intercepted by the canopies.

  3. Spatial and temporal patterns of bioindicator mercury in pennsylvania oak forest.

    PubMed

    McClenahen, James R; Hutnik, Russell J; Davis, Donald D

    2013-01-01

    We monitored spatial and temporal patterns of total Hg in forest bioindicators to assess possible local, regional, and global changes in atmospheric Hg deposition. Total Hg concentrations were monitored in leaves and fresh litterfall of northern red oak ( L.), on an epiphytic moss ( Hedw.) on northern red oak stems, and in surface soil organic matter (O and O horizons) in Pennsylvania oak-dominated forests. Variously configured plots were used to monitor Hg deposition near local coal-fired generating stations and an industrial city and along an extended regional transect. Linearly decreasing temporal trends in Hg concentrations occurred in leaves, litterfall, moss, and soil O and O. Mean annual Hg concentrations were often greater near local emissions sources compared with remote areas, especially in the initial monitoring period. Decreasing time trends for different impact areas tended to converge due to greater rates of Hg decrease where initial bioindicator Hg levels were higher. Fresh litter and soil O showed the greatest overall potential as Hg bioindicators. We conclude that Hg deposition has been significantly decreasing over time throughout the study area as a result of locally and regionally declining Hg emissions. Reductions in Hg emissions are likely a co-benefit of the 1990 Clean Air Act regulations and changing industrial activities. Recent leveling of several bioindicator Hg time trends may foretell a shift in Hg depositional patterns. Mercury monitoring studies such as this fulfill a need for documenting local and regional effects of emissions reduction. PMID:23673822

  4. Spatial and Temporal Patterns of Soil Organic Carbon in Mangrove Forest Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    McKee, K. L.

    2010-12-01

    Wetlands are recognized as potentially important carbon sinks, but few studies have focused on tropical and sub-tropical systems that accumulate organic carbon. Soil organic carbon (SOC) density was analyzed in multiple mangrove forests, representing 30 geographic locations and six forest types (total of 230 study plots overall). SOC density varied from 0.002 to 0.1 g cm-3, with an overall average of 0.019 and 0.058 g cm-3 in mineral and organic soils, respectively. Sites spanned a latitudinal range from 37° S to 29° N, and carbon density was correlated with average annual temperature. However, high variation in SOC density within latitude indicated additional influences. At a regional scale, SOC density varied with forest type and generally increased with hydrologic energy. At a site in Panama, SOC density varied spatially with soil pore space, which influenced bulk density and soil temperature—indicating an influence of compaction and/or degree of decomposition. Carbon sequestration rates estimated from surface accretion of organic C were similar in organic (216 g C m-2 yr-1) and mineral (145 g C m-2 yr-1) soil types, but varied across geographic locations (41 to 591 g C m-2 yr-1). Subsurface inputs of carbon, which were estimated using measured rates of root matter accumulation and root carbon content, averaged 121 g m-2 yr-1, but exceeded 400 g m-2 yr-1 at several sites. Depths of mangrove peat varied across sites from < 1 m to over 10 m, indicating the potentially large carbon stores that can develop under certain conditions. Rates of carbon accretion at a site in Belize have varied from 90 to 300 g C m-2 yr-1 over 8000 yr. These patterns indicate spatial and temporal variability in SOC and suggest multiple controls on rates of carbon accumulation in mangrove ecosystems.

  5. Spatial patterns in forest composition and standing dead red spruce in montane forests of the Adirondacks and northern Appalachians.

    PubMed

    Craig, B W; Friedland, A J

    1991-08-01

    The decline of red spruce (Picea rubens Sarg.) in montane forests of the northeastern United States has been previously reported. The objective of this study was to assess spatial patterns, if any, in standing dead red spruce stems in the Adirondacks of New York and northern Appalachians of Vermont, New Hampshire, and Maine. A stratified random sample of 19 mountains along a west to east transect in the Adirondacks and the northern Appalachians showed that the live basal area of all species was highest in the White Mountains (34.6 m(2) ha(-1)) and lowest in the Adirondack Mountains (23.7 m(2) ha(-1)) in the Green Mountains was significantly lower than in any other region. Intact standing dead red spruce in the Adirondack and Green Mountains (30%) was significantly higher than that in the three eastern clusters (14%). The amount of intact standing dead red spruce trees increased with elevation in only the western part of the region. With the exception of the Adirondacks, there was a greater average percent dead red spruce on the west side than on the east side of each mountain. The sum of standing dead for other tree species (average 13%) showed no statistically significant patterns with region, elevation or aspect, and was significantly lower than the amount of total dead red spruce (average 42%). The standing dead red spruce patterns we observed cannot be associated with any specific causal factors at this time. PMID:24233751

  6. Climatic gradients and human development pressure determine spatial patterns of forest fragmentation in the Great Lakes basin, USA

    NASA Astrophysics Data System (ADS)

    Currie, W. S.; Hart, S.

    2015-12-01

    Over half of temperate forest area globally has been fragmented or deforested by human activities. Our objective was to gain insight into the combination of climatic, ecological, and social factors that control complex spatial patterns of forest cover and fragmentation at the regional scale. Our study area was the US portion of the land area of the Laurentian Great Lakes basin (USGL basin) of the Upper Midwest, USA, covering ca. 300,000 km2 and home to 25 million people. While this region was historically forested, today there are regional gradients in forest cover as well as complex spatial patterns of agriculture, human settlements, and tree cover. This includes large expanses of fragmented forests in the wildland-urban interface or the forest transition zone. We used structural equation modeling to test models of social and climatic-ecological factors to explain spatial patterns of forest cover and fragmentation. This is a model-driven approach to statistical analysis that is used to test proposed causal "structures" of direct and indirect relationships among variables. It is an innovative approach that makes use of large spatial datasets to test understanding. We assembled numerous spatial data layers at 1 km2 resolution across the USGL basin. We found that 64% to 75% of variance in tree cover and forest connectivity was explained through a relatively simple model combining climatic gradients and human development pressure. Human development pressure was best represented as a measurement model that explained 45% of variance in road density and 87% of housing unit density, while significantly explaining patterns of forest fragmentation. Climate could be represented by a single variable, temperature: where temperature was higher, tree cover and forest connectivity was lower due to human land use. Temperatures did not help to explain patterns of human development as roads and housing, but did affect forest fragmentation through land use as cropland. This suggests

  7. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  8. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests

    PubMed Central

    Boixadera, Ester; Bonal, Raúl

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in

  9. Spatial pattern analysis in Persian oak (Quercus brantii var. persica) forests on B&W aerial photographs.

    PubMed

    Erfanifard, Yousef; Feghhi, Jahangir; Zobeiri, Mahmoud; Namiranian, Manouchehr

    2009-03-01

    The purpose of this investigation was to develop a method to determine the spatial pattern of trees as a robust indicator to monitor changes from B&W aerial photographs in Persian oak forests of Zagros, Iran. A 500 x 600 m study area was selected in Servak forests next to Yasuj city in Kohgiluyeh-Va-BuyerAhmad Province. All the trees were tagged in the study area and the point map of stems were prepared. The spatial distribution of trees was determined as "dispersed" using nearest neighbour technique. Then the index of "C" calculated by T-square sampling method was applied to the point map of the study area in 30 systematic sample points in a 100 x 100 m network. Comparing the results of this method with the true spatial pattern of the study area showed that "C" can detect the spatial arrangement of trees. Thereafter the index was used on the air photo of the study area that was made of B&W aerial photographs. The method suggested in this study provides a suitable approach for detecting the spatial pattern of trees in Zagros forests on B&W air photos. PMID:18351437

  10. Prediction of historical forest habitat patterns using binomial distributions and simple Boolean logic from high spatial resolution remote sensing

    NASA Astrophysics Data System (ADS)

    Coops, Nicholas C.; Catling, Peter C.

    2001-08-01

    The identification of forest habitat, its spatial pattern and use by selected taxa is a vital step for the protection of biodiversity. The use of airborne videography and frequency distribution models based on historical habitat complexity data can provide detailed information on the spatial and temporal variation of habitat, respectively. The two techniques, however, have not been jointly applied to link the temporal variation in habitat to the spatial variation of habitat over the landscape to provide a complete historical picture of the variation of habitat quality of a forest estate. In this paper, a processing methodology is developed which allows the current spatial distribution of habitat quality to be used as a base to make retrospective predictions of the spatial extent and pattern of habitat quality over the landscape. This is achieved by projecting the spatial distribution of habitat complexity scores derived from the videography, backward in time using a combination of simple Boolean logic, estimated binomial distributions, and the use of random fluctuations to mimic natural forest dynamics that are likely to have occurred over the modeling period. The simulations provide information on the type and condition of habitat in recent history and can be linked to models predicting the abundance of a variety of common and endangered taxa.

  11. Spatial patterns of forest composition, successional pathways, and biomass production among landscape ecosystems of northwestern Lower Michigan

    SciTech Connect

    Host, G.E.

    1987-01-01

    Spatial patterns of forest composition, successional pathways, and biomass production were related to glacial landforms in a regional area of northwestern Lower Michigan. There were three general objectives: (1) to develop a geomorphic map of the study area, (2) to define and describe upland forest ecosystems, and (3) to study variation in species composition, successional pattern, and biomass production among landforms and ecosystems. Glacial landforms were mapped using field observation, airphoto interpretation, and topographic profile analysis. Eighty sample stands were located in upland landscape positions using a landform-based stratified random sampling design. Compositional patterns detected in multivariate analysis of floristic data were used to form ecological species groups and relate vegetation pattern to environmental factors. Chi-squared analyses showed significant patterns of species distribution related to landform. Potential successional pathways were studied by comparing seedling and sapling densities with current overstory composition. Total above ground biomass and biomass increment varied significantly among landforms and ecosystems. Variation in the composition, production, and structure of upland forests exhibits a pattern that corresponds closely to the geomorphic surface on which the forests developed.

  12. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural

  13. Ectomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons

    PubMed Central

    McGuire, Krista L.; Allison, Steven D.; Fierer, Noah; Treseder, Kathleen K.

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling. PMID:23874569

  14. Spatial pattern of dissolved organic matter (DOM) along a stream drainage in a forested, Piedmont catchment

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Singh, S.

    2013-12-01

    Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion

  15. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time

  16. Fine-scale, multidimensional spatial patterns of forest canopy structure derived from remotely sensed and simulated datasets

    NASA Astrophysics Data System (ADS)

    Frazer, Gordon Wilson

    Forests are not simply storehouses of timber or wood fibre for human consumption and economic development. They represent structurally and ecologically rich habitat for an estimated 40 percent of the earth's extant species, and form the functional interface between the biosphere and atmosphere for some 27 percent of the earth's terrestrial surface. Forests, therefore, play a vital role in the maintenance of biodiversity and the regulation of local to global scale ecosystem processes and functions. Present strategies for conserving biodiversity in managed forests are based on the notion that maintaining the full range of structural conditions historically present in natural forests is the best approach for assuring the long-term persistence of a broad range of native species. The overarching goal of this dissertation is to contribute to the development of novel forest measurements that are relevant to organisms and ecosystems, and much needed by forest scientists and managers to recognize and retain the key elements and patterns of forest structure that are crucial for the conservation of forest biodiversity. This study focuses explicitly on fine-spatial-scale, multidimensional patterns of forest canopy structure based on the assumption that the 'canopy' is the primary focal site of complex interactions between vegetation and the physical environment. Two disparate remote sensing technologies---ground-based hemispherical (fisheye) canopy photography and airborne discrete-return LiDAR---are employed to characterize angular, vertical, and horizontal patterns of forest canopy structure. A quantitative technique is developed for precise measurements of gap fraction (P), element clumping (O), mean projection coefficient (G), and leaf area index (L) from sequences (sets) of black and white pixels extracted at specific view angles in digital fisheye photos. Results are compared with three other leading techniques and validated using well-documented simulated and real

  17. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    USGS Publications Warehouse

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  18. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    PubMed

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association. PMID:19795631

  19. Spatial distribution patterns of ammonia-oxidizing archaea abundance in subtropical forests at early and late successional stages

    PubMed Central

    Chen, Jie; Zhang, Hui; Liu, Wei; Lian, Juyu; Ye, Wanhui; Shen, Weijun

    2015-01-01

    Characterizing the spatial distribution patterns of soil microorganisms is helpful in understanding the biogeochemical processes they perform, but has been less studied relative to those of macroorganisms. In this study, we investigated and compared the spatially explicit distribution patterns of ammonia-oxidizing archaea (AOA) abundance and the influential factors between an early (ES) and a late successional (LS) subtropical forest stand. The average AOA abundance, vegetational attributes, and soil nutrient contents were mostly greater in the LS than the ES stand (P = 0.085 or smaller), but their spatial variations were more pronounced in the ES than the LS stand. The spatial distribution patches of AOA abundance were smaller and more irregular in the ES stand (patch size <50 m) than in the LS stand (patch size about 120 m). Edaphic and vegetational variables contributed more to the spatial variations of AOA abundance for the ES (9.3%) stand than for LS stand, whereas spatial variables (MEMs) were the main contributors (62%) for the LS stand. These results suggest that environmental filtering likely influence the spatial distribution of AOA abundance at early successional stage more than that at late successional stage, while spatial dispersal is dominant at late successional stage. PMID:26565069

  20. Spatial distribution patterns of ammonia-oxidizing archaea abundance in subtropical forests at early and late successional stages

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Zhang, Hui; Liu, Wei; Lian, Juyu; Ye, Wanhui; Shen, Weijun

    2015-11-01

    Characterizing the spatial distribution patterns of soil microorganisms is helpful in understanding the biogeochemical processes they perform, but has been less studied relative to those of macroorganisms. In this study, we investigated and compared the spatially explicit distribution patterns of ammonia-oxidizing archaea (AOA) abundance and the influential factors between an early (ES) and a late successional (LS) subtropical forest stand. The average AOA abundance, vegetational attributes, and soil nutrient contents were mostly greater in the LS than the ES stand (P = 0.085 or smaller), but their spatial variations were more pronounced in the ES than the LS stand. The spatial distribution patches of AOA abundance were smaller and more irregular in the ES stand (patch size <50 m) than in the LS stand (patch size about 120 m). Edaphic and vegetational variables contributed more to the spatial variations of AOA abundance for the ES (9.3%) stand than for LS stand, whereas spatial variables (MEMs) were the main contributors (62%) for the LS stand. These results suggest that environmental filtering likely influence the spatial distribution of AOA abundance at early successional stage more than that at late successional stage, while spatial dispersal is dominant at late successional stage.

  1. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation.

    PubMed

    Wardhaugh, Carl W

    2014-11-01

    Arguably the majority of species on Earth utilise tropical rainforest canopies, and much progress has been made in describing arboreal assemblages, especially for arthropods. The most commonly described patterns for tropical rainforest insect communities are host specificity, spatial specialisation (predominantly vertical stratification), and temporal changes in abundance (seasonality and circadian rhythms). Here I review the recurrent results with respect to each of these patterns and discuss the evolutionary selective forces that have generated them in an attempt to unite these patterns in a holistic evolutionary framework. I propose that species can be quantified along a generalist-specialist scale not only with respect to host specificity, but also other spatial and temporal distribution patterns, where specialisation is a function of the extent of activity across space and time for particular species. When all of these distribution patterns are viewed through the paradigm of specialisation, hypotheses that have been proposed to explain the evolution of host specificity can also be applied to explain the generation and maintenance of other spatial and temporal distribution patterns. The main driver for most spatial and temporal distribution patterns is resource availability. Generally, the distribution of insects follows that of the resources they exploit, which are spatially stratified and vary temporally in availability. Physiological adaptations are primarily important for host specificity, where nutritional and chemical variation among host plants in particular, but also certain prey species and fungi, influence host range. Physiological tolerances of abiotic conditions are also important for explaining the spatial and temporal distributions of some insect species, especially in drier forest environments where desiccation is an ever-present threat. However, it is likely that for most species in moist tropical rainforests, abiotic conditions are valuable

  2. Abrupt State Change in Spatially-Patterned Subalpine Forests in Northern Colorado During the Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Calder, W. J.; Shuman, B. N.

    2014-12-01

    Spatial patterns in many ecosystems arise from feedbacks associated with the potential for critical transitions and multiple stable states. Such systems may be susceptible to abrupt change, which could be indicated by early-warning signals, such as critical slowing down (increasingly long recovery from perturbation as a threshold approaches). Paleoecological data from ribbon forests, a type of subalpine parkland found in the Rocky Mountains, offer an opportunity to test these hypotheses. The forests consist of alternating strips of forest and meadow that form because bands of Picea and Abies trees act as snow fences with large snowdrifts forming on their lee sides. Drifts provide moisture for the adjacent trees, but also increase seedling mortality and shorten the growing season where drifts accumulate. The feedbacks between forest growth and snow accumulation maintain the ribbon forest-meadow pattern, and raise the potential for abrupt change if the feedbacks breakdown in response to factors like drought or fire. Our fossil pollen data from Summit Lake, located on the Continental Divide in the Park Range, northern Colorado, indicate that a closed forest transitioned rapidly to a ribbon forest state at ca. 1000 BP. Artemisia pollen increased (20 to 35%) and Picea and Abies pollen decreased (25 to 15%) within a century or less after a pair of charcoal peaks. Decreased charcoal influx (from 0.6 to 0.4 pieces/cm2/yr) and fire frequency (from 4.5 to 1.5 fires/ka) coincided with the pollen assemblage changes, and is consistent with decreased landscape biomass and fuel connectivity. Initial analyses show evidence of critical slowing down before the state change. After eight of eleven fires recorded by peaks in charcoal accumulation, Artemisia pollen percentages rise to a peak consistent with brief opening of the initially forested landscape. After 2000 BP, the magnitude and duration of the post-fire changes increases until no recovery is recorded after the shift at 1000

  3. [Spatial point pattern analysis of Abies georgei var. smithii in forest of Sygera Mountains in southeast Tibet, China].

    PubMed

    Xie, Chuan-qi; Tian, Min-xia; Zhao, Zhong-rui; Zheng, Wei-lie; Wang, Guo-yan

    2015-06-01

    In this study, based on a 4 hm2 stem-mapping plot, we analyzed spatial distributions of Abies georgei var. smithii, the dominant species in forest of Sygera Mountains in southeast Tibet, China. Pair-correlation function was used to characterize univariate spatial point patterns of three size classes of the population and bivariate spatial patterns between those and different sizes of dead wood. A. georgei var. smithii population was characterized by reverse J-shaped DBH distribution, indicating an increasing population. Saplings of the population were spatially obviously aggregated at the small scales (0-7 m), and mid-sized trees and large-sized trees of the population were randomly or uniformly distributed. The aggregation intensities of A. georgei var. smithii decreased with the increasing diameter classes and spatial scales. Saplings and mid-sized trees were significantly and negatively associated with large-sized trees at the small scales (0-35 and 0-30 m), but the associations reversed at the large scales (45-100 and 80-100 m). In addition, with the increasing age difference between diameter classes of the population, the intensities of positive or negative correlations increased. Spatial associations between saplings and dead large-sized trees, and between mid-sized trees and dead large-sized trees were negative at the small scales (0-34 and 5-27 m), but positive at the large scales (49-100 and 73-100 m). This suggested that released niche space due to dead large-sized trees is not enough to weaken their negative impacts on saplings. We concluded that self-thinning effect and Janzen-Connell hypothesis may be the main mechanisms for the spatial pattern formation of A. georgei var. smithii population. PMID:26572011

  4. Spatial Patterns of Ectomycorrhizal Assemblages in a Monospecific Forest in Relation to Host Tree Genotype

    PubMed Central

    Lang, Christa; Finkeldey, Reiner; Polle, Andrea

    2013-01-01

    Ectomycorrhizas (EcM) are important for soil exploration and thereby may shape belowground interactions of roots. We investigated the composition and spatial structures of EcM assemblages in relation to host genotype in an old-growth, monospecific beech (Fagus sylvatica) forest. We hypothesized that neighboring roots of different beech individuals are colonized by similar EcM assemblages if host genotype had no influence on the fungal colonization and that the similarity would decrease with increasing distance of the sampling points. The alternative was that the EcM species showed preferences for distinct beech genotypes resulting in intraspecific variation of EcM-host assemblages. EcM species identities, abundance and exploration type as well as the genotypes of the colonized roots were determined in each sampling unit of a 1 L soil core (r = 0.04 m, depth 0.2 m). The Morisita-Horn similarity indices (MHSI) based on EcM species abundance and multiple community comparisons were calculated. No pronounced variation of MHSI with increasing distances of the sampling points within a plot was found, but variations between plots. Very high similarities and no between plot variation were found for MHSI based on EcM exploration types suggesting homogenous soil foraging in this ecosystem. The EcM community on different root genotypes in the same soil core exhibited high similarity, whereas the EcM communities on the root of the same tree genotype in different soil cores were significantly dissimilar. This finding suggests that spatial structuring of EcM assemblages occurs within the root system of an individual. This may constitute a novel, yet unknown mechanism ensuring colonization by a diverse EcM community of the roots of a given host individual. PMID:23630537

  5. Spatial patterns of ectomycorrhizal assemblages in a monospecific forest in relation to host tree genotype.

    PubMed

    Lang, Christa; Finkeldey, Reiner; Polle, Andrea

    2013-01-01

    Ectomycorrhizas (EcM) are important for soil exploration and thereby may shape belowground interactions of roots. We investigated the composition and spatial structures of EcM assemblages in relation to host genotype in an old-growth, monospecific beech (Fagus sylvatica) forest. We hypothesized that neighboring roots of different beech individuals are colonized by similar EcM assemblages if host genotype had no influence on the fungal colonization and that the similarity would decrease with increasing distance of the sampling points. The alternative was that the EcM species showed preferences for distinct beech genotypes resulting in intraspecific variation of EcM-host assemblages. EcM species identities, abundance and exploration type as well as the genotypes of the colonized roots were determined in each sampling unit of a 1 L soil core (r = 0.04 m, depth 0.2 m). The Morisita-Horn similarity indices (MHSI) based on EcM species abundance and multiple community comparisons were calculated. No pronounced variation of MHSI with increasing distances of the sampling points within a plot was found, but variations between plots. Very high similarities and no between plot variation were found for MHSI based on EcM exploration types suggesting homogenous soil foraging in this ecosystem. The EcM community on different root genotypes in the same soil core exhibited high similarity, whereas the EcM communities on the root of the same tree genotype in different soil cores were significantly dissimilar. This finding suggests that spatial structuring of EcM assemblages occurs within the root system of an individual. This may constitute a novel, yet unknown mechanism ensuring colonization by a diverse EcM community of the roots of a given host individual. PMID:23630537

  6. The Relative Importance of Janzen-Connell Effects in Influencing the Spatial Patterns at the Gutianshan Subtropical Forest

    PubMed Central

    Zhu, Yan; Getzin, Stephan; Wiegand, Thorsten; Ren, Haibao; Ma, Keping

    2013-01-01

    The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity. PMID:24040283

  7. The relative importance of Janzen-Connell effects in influencing the spatial patterns at the Gutianshan subtropical forest.

    PubMed

    Zhu, Yan; Getzin, Stephan; Wiegand, Thorsten; Ren, Haibao; Ma, Keping

    2013-01-01

    The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity. PMID:24040283

  8. Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States

    USGS Publications Warehouse

    Ross, D.S.; Shanley, J.B.; Campbell, J.L.; Lawrence, G.B.; Bailey, S.W.; Likens, G.E.; Wemple, B.C.; Fredriksen, G.; Jamison, A.E.

    2012-01-01

    Nitrogen export from small forested watersheds is known to be affected by N deposition but with high regional variability. We studied 10 headwater catchments in the northeastern United States across a gradient of N deposition (5.4 - 9.4 kg ha -1 yr -1) to determine if soil nitrification rates could explain differences in stream water NO 3 - export. Average annual export of two years (October 2002 through September 2004) varied from 0.1 kg NO 3 --N ha -1 yr -1 at Cone Pond watershed in New Hampshire to 5.1 kg ha -1 yr -1 at Buck Creek South in the western Adirondack Mountains of New York. Potential net nitrification rates and relative nitrification (fraction of inorganic N as NO 3 -) were measured in Oa or A soil horizons at 21-130 sampling points throughout each watershed. Stream NO 3 - export was positively related to nitrification rates (r 2 = 0.34, p = 0.04) and the relative nitrification (r 2 = 0.37, p = 0.04). These relationships were much improved by restricting consideration to the 6 watersheds with a higher number of rate measurements (59-130) taken in transects parallel to the streams (r 2 of 0.84 and 0.70 for the nitrification rate and relative nitrification, respectively). Potential nitrification rates were also a better predictor of NO 3 - export when data were limited to either the 6 sampling points closest to the watershed outlet (r 2 = 0.75) or sampling points <250 m from the watershed outlet (r 2 = 0.68). The basal area of conifer species at the sampling plots was negatively related to NO 3 - export. These spatial relationships found here suggest a strong influence of near-stream and near-watershed-outlet soils on measured stream NO 3 - export. Copyright 2012 by the American Geophysical Union.

  9. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  10. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  11. Spatial and Temporal Patterns in Forest Harvest, Fire, and Pest/Pathogen Disturbance for Western and Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Kennedy, R. E.; Ritts, W. D.

    2014-12-01

    The disturbance regime in temperate zone forests is a function of both human interventions - such as thinning and harvesting - and background events, including wildfire and outbreaks of pests and pathogens. Forest management requires a good understanding of the relative magnitude and trends in these disturbances, but the inherent spatial heterogeneity in their distribution and the large size of the relevant domains makes monitoring a challenge. Satellite remote sensing offers various tools to address this challenge, and in this study we employed 25 years of Landsat data (1986-2010) to characterize the disturbance regime over forested areas in the state of Oregon, U.S.A. Segmentation of the temporal trajectory of a spectral vegetation index over the study interval was used to specify the year, duration, and intensity of disturbances for each Landsat pixel. Attribution was to Harvest/Thinning, Fire, and Other (mostly pests and pathogens). The western side of the state had a larger proportion of its area disturbed over the study interval (29% vs. 23% for Eastern Oregon). The incidence of Harvest/Thinning there greatly exceeded the incidence of Fire and Other disturbance. In the more xeric eastern OR, the incidence of Fire was greater than the incidence of Harvest/Thinning or Other. The annual area harvested or thinned increased from the 1990s to the 2000s in western Oregon, but decreased in eastern Oregon. In both cases, the area burned increased. These observed patterns in disturbance will be input to a spatially-distributed biogeochemistry model to evaluate related impacts on the carbon and hydrologic cycles.

  12. Spatial patterns and stability of soil water content in forested slope and terraced area on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Xu, Guoce; Li, Zhanbin; Li, Peng

    2016-04-01

    Soil water content (SWC) plays a vital role in hydrological and vegetation restoration processes. It is the principal limiting factor for vegetation restoration on the Loess Plateau of China. This study aimed to analyze the spatial patterns and stability of SWC in a terraced area containing jujube trees (Ziziphus jujuba Mill.) and a forested slope with Chinese pine (Pinus tabulaeformis Carr.) following rainfall. The SWCs in nine soil layers at intervals of 0.2 m down to a depth of 1.8 m were measured at 21 locations both in the terraces and in the forested slope from July 19 to September 3 in 2014. The results showed that the SWCs at different soil depths were normally distributed. The SWC in terraces and forestland at each soil depth all had strong temporal stability. The temporal stability of SWC was lower in the 0-0.4 m soil layer than at the deeper soil depths. The representative locations for SWC were depth-dependent and the number of representative locations was not constant. The mean SWC was largest in the lower terrace slopes. The lowest mean SWC in the forested slope was at the mid-slope point due to the highest root distribution. The 0.4-0.6 m soil depth was generally the wettest in both terraces and forestland. The driest soil depth in terraces was 1.0-1.2 m while the driest soil depth in forestland was 0.8-1.0 m. The SWC had a significant positive correlation with clay and silt content. Moerover, the SWC had a significant positive correlation with SOC and did not have a significant correlation with root conten in the terraced area. But in the forested slope, the SWC had a significant negative correlation with roots and did not have a significant correlation with SOC. Although it is feasible to use the representative locations of SWC to represent the mean SWC of a hillslope over a period of time, the cumulative absolute error increases with the cumulative number of days. In conclusion, the SWC at different soil depths and locations showed strong spatial

  13. Spatial patterns of mercury in macroinvertebrates and fishes from streams of contrasting forested landscapes in the eastern United States

    USGS Publications Warehouse

    Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.; Brigham, Mark E.; Smith, Martyn J.; Abrahamsen, Thomas A.

    2011-01-01

    Controls on mercury bioaccumulation in lotic ecosystems are not well understood. During 2007–2009, we studied mercury and stable isotope spatial patterns of macroinvertebrates and fishes from two medium-sized (2) forested basins in contrasting settings. Samples were collected seasonally from multiple sites across the Fishing Brook basin (FBNY), in New York's Adirondack Mountains, and the McTier Creek basin (MCSC), in South Carolina's Coastal Plain. Mean methylmercury (MeHg) concentrations within macroinvertebrate feeding groups, and mean total mercury (THg) concentrations within most fish feeding groups were similar between the two regions. However, mean THg concentrations in game fish and forage fish, overall, were much lower in FBNY (1300 and 590 ng/g dw, respectively) than in MCSC (2300 and 780 ng/g dw, respectively), due to lower trophic positions of these groups from FBNY (means 3.3 and 2.7, respectively) than MCSC (means 3.7 and 3.3, respectively). Much larger spatial variation in topography and water chemistry across FBNY contributed to greater spatial variation in biotic Hg and positive correlations with dissolved MeHg and organic carbon in streamwater. Hydrologic transport distance (HTD) was negatively correlated with biotic Hg across FBNY, and was a better predictor than wetland density. The small range of landscape conditions across MCSC resulted in no consistent spatial patterns, and no discernable correspondence with local-scale environmental factors. This study demonstrates the importance of local-scale environmental factors to mercury bioaccumulation in topographically heterogeneous landscapes, and provides evidence that food-chain length can be an important predictor of broad-scale differences in Hg bioaccumulation among streams.

  14. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    SciTech Connect

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  15. Mercury distribution across 14 U.S. Forests. Part I: spatial patterns of concentrations in biomass, litter, and soils.

    PubMed

    Obrist, D; Johnson, D W; Lindberg, S E; Luo, Y; Hararuk, O; Bracho, R; Battles, J J; Dail, D B; Edmonds, R L; Monson, R K; Ollinger, S V; Pallardy, S G; Pregitzer, K S; Todd, D E

    2011-05-01

    Results from a systematic investigation of mercury (Hg) concentrations across 14 forest sites in the United States show highest concentrations in litter layers, strongly enriched in Hg compared to aboveground tissues and indicative of substantial postdepositional sorption of Hg. Soil Hg concentrations were lower than in litter, with highest concentrations in surface soils. Aboveground tissues showed no detectable spatial patterns, likely due to 17 different tree species present across sites. Litter and soil Hg concentrations positively correlated with carbon (C), latitude, precipitation, and clay (in soil), which together explained up to 94% of concentration variability. We observed strong latitudinal increases in Hg in soils and litter, in contrast to inverse latitudinal gradients of atmospheric deposition measures. Soil and litter Hg concentrations were closely linked to C contents, consistent with well-known associations between organic matter and Hg, and we propose that C also shapes distribution of Hg in forests at continental scales. The consistent link between C and Hg distribution may reflect a long-term legacy whereby old, C-rich soil and litter layers sequester atmospheric Hg depositions over long time periods. Based on a multiregression model, we present a distribution map of Hg concentrations in surface soils of the United States. PMID:21473582

  16. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  17. Seasonal and spatial dispersal patterns of ambrosia beetles (Coleoptera: curculionidae) from forest habitats into production nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic ambrosia beetles (Coleoptera: Curculionidae) are important pests of tree nurseries. While they are known to migrate in early spring from peripheral forested areas into nurseries, there are few data to show how far ambrosia beetles will fly to infest new host trees, or whether a mass trapping...

  18. Temporal and spatial patterns of remotely sensed litterfall in tropical and subtropical forests of Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Hsueh-Ching; Lin, Kuo-Chuan; Huang, Cho-ying

    2016-02-01

    Litterfall is important for returning nutrients and carbon to the forest floor, and microbes decompose the litterfall to release CO2 into the atmosphere. Litterfall is a pivotal component in the forest biogeochemical cycle, which is sensitive to climate variability and plant physiology. In this study, we combined field litterfall estimates and time series (2001-2011) climate (the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and Tropical Rainfall Measuring Mission (TRMM) precipitations) and green vegetation (MODIS photosynthetically active vegetation cover (PV)) variables to estimate regional annual litterfall in tropical/subtropical forests in Taiwan. We found that time series MODIS LST- and PV-derived metrics, the annual accumulated MODIS LST, and coefficient of variation of PV, respectively, but not the TRMM precipitation variables were salient factors for the estimation (r2 = 0.548 and p < 0.001). The mean (±standard deviation) annual litterfall was 5.1 ± 1.2 Mg ha-1 yr-1 during the observation period. The temporal dynamics of the litterfall revealed that typhoons and consecutive drought events might affect the litterfall temporal variation. Overall, the annual litterfall decreased along the elevation gradient, which may reflect a change in the vegetation type. The northeast and northwest facing slopes yielded the highest amount of annual litterfall (≥5.9 Mg ha-1 yr-1), which was in contrast with the southern aspect (5.1 Mg ha-1 yr-1). This variation may be associated with the dryness of the microclimate influenced by solar radiation. This study demonstrates the feasibility of utilizing time series MODIS LST and PV data to predict large-scale field litterfall, which may facilitate large-scale monitoring of biogeochemical cycles in forest ecosystems.

  19. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  20. Population Structure and Spatial Pattern of Main Tree Species in Secondary Betula platyphylla Forest in Ziwuling Mountains, China

    PubMed Central

    Kang, Di; Guo, Yaoxin; Ren, Chengjie; Zhao, Fazhu; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2014-01-01

    This study investigated a typical secondary Betula platyphylla forest in the Ziwuling Mountains, Loess Plateau, China. In the sample plot, the DBH (diameter at breast height) class structure of B. platyphylla was bimodal. Individuals with small and large DBH values were abundant. The DBH structures of Quercus wutaishanica and Pinus tabulaeformis were close to that of the logistic model, thus suggesting the increasing population of these species. B. platyphylla and Populus davidiana showed random spatial distributions at almost all scales. However, Q. wutaishanica and P. tabulaeformis were significantly clumped at small scales. B. platyphylla had a negative spatial relation with Q. wutaishanica at small spatial scales. P. tabulaeformis and Q. wutaishanica showed negative spatial correlations at small scales, but they had positive correlations at large scales. These results suggest that P. tabulaeformis and Q. wutaishanica shared habitat preferences at these scales. In the future, the secondary B. platyphylla forest in the Ziwuling Mountains in the Loess Plateau will probably change into a multi-species mixed forest (Quercus–Pinus mixed forest). Assisted restoration strategies must be employed to improve the regeneration dynamics of the forest in the long term. PMID:25362993

  1. Population structure and spatial pattern of main tree species in secondary Betula platyphylla forest in Ziwuling Mountains, China.

    PubMed

    Kang, Di; Guo, Yaoxin; Ren, Chengjie; Zhao, Fazhu; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2014-01-01

    This study investigated a typical secondary Betula platyphylla forest in the Ziwuling Mountains, Loess Plateau, China. In the sample plot, the DBH (diameter at breast height) class structure of B. platyphylla was bimodal. Individuals with small and large DBH values were abundant. The DBH structures of Quercus wutaishanica and Pinus tabulaeformis were close to that of the logistic model, thus suggesting the increasing population of these species. B. platyphylla and Populus davidiana showed random spatial distributions at almost all scales. However, Q. wutaishanica and P. tabulaeformis were significantly clumped at small scales. B. platyphylla had a negative spatial relation with Q. wutaishanica at small spatial scales. P. tabulaeformis and Q. wutaishanica showed negative spatial correlations at small scales, but they had positive correlations at large scales. These results suggest that P. tabulaeformis and Q. wutaishanica shared habitat preferences at these scales. In the future, the secondary B. platyphylla forest in the Ziwuling Mountains in the Loess Plateau will probably change into a multi-species mixed forest (Quercus-Pinus mixed forest). Assisted restoration strategies must be employed to improve the regeneration dynamics of the forest in the long term. PMID:25362993

  2. Spatial Patterns between Regolith Thickness and Forest Productivity in the Southern Sierra CZO

    NASA Astrophysics Data System (ADS)

    Ferrell, R. M.; Ferrell, D. F.; Hartsough, P. C.; O'Geen, T. T.

    2015-12-01

    Soil in conjunction with underlying weathered bedrock make up what is referred to as regolith, which can be thought of as the substrate that actively contributes water and nutrients to above ground biomass. As a result, regolith thickness is an important regulating factor of forest health and drought tolerance in the Sierra Nevada. Our project examined the relationships between landscape position, regolith thickness, and tree productivity within a sub watershed of the Southern Sierra Critical Zone Observatory. We hypothesized that tree productivity will increase with increasing regolith thickness. Data was collected in the summer of 2015 at sixty-five sites within a 522-ha watershed averaging 1180m in elevation with a MAP of 80cm and a MAT of 11C. Sites were randomly selected from a grid and then stratified in the field to capture representative samples from different landscape positions. Regolith was sampled using a hand auger with attachable extensions. At each site we augered to hard bedrock or a maximum depth of 7.56 m, which ever was shallower. Biomass measurements were made for all conifer species (DBH>20cm) within a 10m radius of the primary auger hole. Tree age was measured from a representative tree for all species in the plots. Preliminary findings suggest that there is a weak correlation between landscape position/slope and regolith thickness, likely due to differences in lithology. It also appears that terrain shape can result in conflicting outcomes: 1. It can focus water to promote physical and chemical weathering and thick regolith; or, 2. water focusing can result in landscape scouring, removing soil and weathered bedrock to create shallow regolith. Productivity appears to be a function of regolith thickness, effective precipitation and landscape position. Water collecting areas in the lower watershed are shallow to bedrock, but typically receive high amounts of effective precipitation resulting in greater tree productivity. Moreover, thick regolith

  3. Incorporating landscape heterogeneity to understand patterns of stream discharge across spatial and temporal scales in forested mountain watersheds

    NASA Astrophysics Data System (ADS)

    Bergstrom, A.; Jencso, K. G.; McGlynn, B. L.

    2014-12-01

    Numerous studies have indicated that catchment characteristics (e.g. geology, vegetation, and topography) modulate runoff generation processes that connect hillslopes to streams. However, there has been little direct quantification of the range of spatial scales and climatic forcing under which catchment characteristics and their topology influence patterns and thresholds in stream flow. We measured changes in discharge across 52 reaches (~200 m long) distributed across 5 nested watersheds ranging from 3.2 to 23 km2 in the Tenderfoot Creek Experimental Forest, Montana. We performed dilution gauging from early snowmelt through late summer baseflow in the 2013 and 2014 water years to develop stage-discharge relationships for calculation of real-time stream discharge for each of the 52 reaches. We also computed indices of topography, geology, vegetation, and valley characteristics. Preliminary results suggest that the dominant controls, and their degree of influence on observed changes in discharge shifted across wetness states. Total contributing area to each reach was a significant predictor of discharge at high flow with the slope of the relationship decreasing across the annual recession. We examined incremental changes in discharge for each reach and determined that spatiotemporal variability in discharge was related to the underlying lithology. Contributing areas underlain by granite gneiss yielded more water per unit area than those with sandstone. However, yield was less predictable in areas overlying the granite gneiss formation. Our preliminary analysis has identified specific watershed characteristics and time periods at which they influence discharge across watersheds and spatial scales. We suggest that these results can support improved understanding of space-time variability of stream flow and the representation of watershed characteristics in simulation model structures.

  4. Spatial pattern and temporal changes in the NH4+/NO3- ratio in atmospheric deposition in Czech forests

    NASA Astrophysics Data System (ADS)

    Hunova, Iva; Kurfurst, Pavel; Stráník, Vojtěch

    2016-04-01

    The ratio between NH4+ and NO3- in wet atmospheric deposition is an essential indicator of atmospheric chemistry, reflects the share of emission sources (Du et al., 2014), and is also important regarding the nitrogen deposition environmental impacts. There are evidences for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load (van den Berg et al., 2016). NH4+ deposition appears to be more effective than NO3- deposition in decreasing biodiversity and is more harmful to vegetation (Erisman et al., 2007). We present temporal trends and spatial patterns for NH4+/NO3- ratio on one-country scale based on long-term monitoring precipitation chemistry in Central European forests. We discuss the indicated changes within the changing emission patterns. Acknowledgements: We would like to acknowledge the grant GA14-12262S - Effects of changing growth conditions on tree increment, stand production and vitality - danger or opportunity for the Central-European forestry? for support of this contribution. The input data used for the analysis were provided by the Czech Hydrometeorological Institute. References: Du, E., de Vries, W., Galloway, J.N., Hu, X., Fang, J., 2014. Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environmental Research Letters 9, 095004. Erisman, J.W., Bleeker, A., Galloway, J.N., Sutton, M.S., 2007. Reduced nitrogen in ecology and the environment. Environmental Pollution 150, 140-149. van den Berg, L.J.L., Jones L., Sheppard, L.J., Smart, S.M., Bobbink, R., Dise, N.B., Ashmore, M.R., 2016. Evidence for differential effects of reduced and oxidized nitrogen deposition on vegetation independent of nitrogen load. Environmental Pollution 208, 890-897.

  5. Patterns of spatial distribution of mineral components of the complex of gray forest soils Vladimir opolye

    NASA Astrophysics Data System (ADS)

    Karpova, Dina; Chizhikova, Natalya; Starokozhko, Natalya; Hadyushina, Viktorya; Korotaeva, Valentina

    2014-05-01

    The aim of the work is the analysis of spatial distribution of soil fundamental characteristics - fine fractions content (less than 1, 1-5, 5-10 and more than 10 mkm) and their mineralogical composition. The experiments were carried out on the experimental field in Suzdal region in a trench (22 m length and 2 m depth) laid in upland, well-drained conditions. Soil samples from 5 different soil profiles were collected. Fractions were obtained by Gorbunov method. Mineralogical analysis were carried out by universal X-ray diffractometer (Carl Zeiss Jena, Germany). The dominant fraction is a coarse silt fraction, the sand fraction content is negligible. The soil is characterized by medium-textured loam composition from the above and a sandy loam composition in the bottom. Textural differentiation occured due to the distribution of clay fraction. The content of this fraction in plough horizons varies depending on addition of part of other horizons during plowing. The plogh-layer of the residual-carbonate agrogrey soil is characterized by higher (20-23 %) amount of fraction less than 1 mkm, in comparison with plough horizon above the second humus horizon (SHH ), where the amount of silt is 15-16 %. The main components of the fraction derived from the rock are complex mixed- lattice formations dominated by mica - smectite with a high proportion of smectite packages, mica - smectites with low content of smectite packages were in subordinate quantity. The next component is hydromica - a mixture of dioctahedral and trioctahedral varieties. Smectite phase and hydromica add up to 85-90 % of the silt component. The amount of kaolinite and chlorite usually range in 7-13 %. Kaolinite is generally imperfect, chlorite is magnesia-ferric. The presence of fine quartz and feldspars (less amount) is revealed. During the soil formation the redistribution of the above minerals whose behavior is caused by the type of soil is occurring. Agrogrey heavy-textured soils are characterized by

  6. [Spatial distribution pattern of main populations and gap makers in Picea koraiensis and Abies nephrolepis forest of Xiaoxing' an Mountains, Northeast China].

    PubMed

    Jing, Xin; Duan, Wen-biao; Chen, Li-xin; Wang, Ting; Du, Shan; Zhang, Yu-shuan; Chen, Qi-min

    2015-10-01

    Species composition and diameter class structure were investigated in 1.5 hm2 (100 m x 150 n) permanent plot in Picea koraiensis and Abies nephrolepis forest of Xiaoxing' an Mountains. The spatial distribution pattern and spatial association of main populations and gap makers were analyzed by using point pattern analysis. The results showed that there were a total of 13 species with diameters at breast height greater than 2 cm in tree layer, and great differences were observed in the densities of main populations. The importance values of A. nephrolepis, P. koraiensis, Betula platyphylla and Acer ukurunduense were ranked in the first 4 in the plot. The diameter class structure of their populations presented an inverse 'J' curve. The spatial distribution patterns for A. nephrolepis and P. koraiensis were similar, which changed from aggregated, random to uniform distribution with the spatial scale. For B. platyphylla, the distribution was aggregated at ≤40 m scale, and random at >40 m scale, whereas A. ukurunduense presented an aggregated distribution pattern at the whole research scale. Except that the negative correlation between B. platyphylla and A. ukurunduense existed at the whole research scale, positive correlation between the other populations at small scale and negative correlation at large scale were observed. Only A. nephrolepis and B. platyphylla had significant positive correlation, and generally no significant correlation existed between other populations. Spatial distribution pattern of gap makers was characterized as aggregated distribution at small and middle scales, and random distribution with increasing scale. Spatial point pattern of gap makers formed by uprooting exhibited unimodal type distribution, and random, aggregated, and uniform distribution also occurred. Spatial point pattern of gap makers formed by breaking overall presented a little fluctuation, random and aggregated distributions alternatively appeared at small scale, and random

  7. Assessment of forest geospatial patterns over the three giant forest areas of China

    USGS Publications Warehouse

    Li, M.-S.; Zhu, Z.-L.; Lu, H.; Xu, D.; Liu, A.-X.; Peng, S.-K.

    2008-01-01

    Geospatial patterns of forest fragmentation over the three traditional giant forested areas of China (Northeastern, southwestern and Southern China) were analyzed comparatively and reported based on a 250-m resolution land cover dataset. Specifically, the spatial patterns of forest fragmentation were characterized by combining geospatial metrics and forest fragmentation models. The driving forces resulting in the differences of the forest spatial patterns were also investigated. Results suggested that forests in southwest China had the highest severity of forest fragmentation, followed by south region and northeast region. The driving forces of forest fragmentation in China were primarily the giant population and improper exploitation of forests. In conclusion, the generated information in the study provided valuable insights and implications as to the fragmentation patterns and the conservation of biodiversity or genes, and the use of the chosen geospatial metrics and forest fragmentation models was quite useful for depicting forest fragmentation patterns. ?? 2008 Northeast Forestry University.

  8. Spatial Patterns of Throughfall on a Douglas-Fir Forest and its relation with canopy metrics derived from high resolution Lidar measurements.

    NASA Astrophysics Data System (ADS)

    Cisneros Vaca, César; Ucer, Murat; van der Tol, Christiaan

    2016-04-01

    Forest canopy structure intercepts around 15 to 35% of the gross precipitation (Pg) in temperate climates, the remaining proportion of Pg that reaches the forest floor is commonly known as throughfall (TF). The spatial distribution of TF below the forest canopy is relevant for many physical, chemical and biological process on the forest floor. In order to understand the spatial patterns of throughfall many sample methodologies have been tested, but most of them require big efforts and they cover relatively small areas. Nowadays, Lidar technology allows us to estimate canopy structure metrics at high resolution for a large spatial extend. This seems to be a promising tool for improving the sampling methodologies of TF. In the present study we use a rover and a stationary sampling methods to study the spatial patterns of throughfall beneath the canopy of a mid-age Douglas-Fir forest (Speulderbos) in the centre of The Netherlands, to latter to compare the results with a set of canopy metrics derived from high resolution Airborne Lidar measurements. We used 32 funnel-type collectors randomly distributed in a 32x64m plot to measure the spatial variability bellow the canopy from February to November 2015 divided in periods of around 15 days. During the first 8 periods we used the roving method and during the last 5 periods the stationary method. We also measured stemflow (SF) in 5 trees of different diametric classes, but it was negligible (~1% of Pg). To allow the comparison among periods we fitted standardized variograms. The length scale over which throughfall amounts were correlated in the stationary methodology was 7 m for aggregated TF values. In order to compare spatial distribution patterns among periods, we used standardized TF values. In this way we could combine TF values collected with the roving methodology, and this reduced the spatial correlation length to 3m , probably as an effect of the standardization of TF. We also derived a series of canopy metrics

  9. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2011-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  10. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2013-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  11. Spatial and Temporal Patterns of Nitrification Rates in Forested Floodplain Wetland Soils of Upper Mississippi River Pool 8, Journal Article

    EPA Science Inventory

    Overbank flooding is thought to be a critical process controlling nitrogen retention and cycling. In this study we investigated the effects of season and flood frequency on soil nitrification rates at ten sites in forested floodplains of Upper Mississippi River, Pool 8...A rough ...

  12. A Hierarchical Approach to Forest Landscape Pattern Characterization

    NASA Astrophysics Data System (ADS)

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  13. Soil Moisture Spatial Patterns in a Uniform Paulownia Tree Stand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture spatial patterns have been studied at length in agricultural fields and pasture/rangelands as part of the USDA soil moisture satellite validation program, but recent research has begun to address the distribution of soil beneath a forest canopy. Forests cover a significant portion of ...

  14. Development of population structure and spatial distribution patterns of a restored forest during 17-year succession (1993-2010) in Pingshuo opencast mine spoil, China.

    PubMed

    Zhao, Zhongqiu; Wang, Lianhua; Bai, Zhongke; Pan, Ziguan; Wang, Yun

    2015-07-01

    Afforestation of native tree species is often recommended for ecological restoration in mining areas, but the understanding of the ecological processes of restored vegetation is quite limited. In order to provide insight of the ecological processes of restored vegetation, in this study, we investigate the development of the population structure and spatial distribution patterns of restored Robinia pseudoacacia (ROPS) and Pinus tabuliformis (PITA) mixed forests during the 17 years of the mine spoil period of the Pingshuo opencast mine, Shanxi Province, China. After a 17-year succession, apart from the two planted species, Ulmus pumila (ULPU), as an invasive species, settled in the plot along with a large number of small diameter at breast height (DBH) size. In total, there are 10,062 living individual plants, much more than that at the plantation (5105), and ROPS had become the dominant species with a section area with a breast height of 9.40 m(2) hm(-2) and a mean DBH of 6.72 cm, much higher than both PITA and ULPU. The DBH size classes of all the total species showed inverted J-shaped distributions, which may have been a result of the large number of small regenerated ULPU trees. The DBH size classes of both ROPS and PITA showed peak-type structures with individuals mainly gathering in the moderate DBH size class, indicating a relatively healthy DBH size class structure. Meanwhile, invasive ULPU were distributed in a clear L shape, concentrating on the small DBH size class, indicating a relatively low survival rate for adult trees. Both ROPS and PITA species survival in the plantation showed uniform and aggregated distribution at small scales and random with scales increasing. ULPU showed a strong aggregation at small scales as well as random with scales increasing. Both the population structure and spatial distribution indicated that ROPS dominates and will continue to dominate the community in the future succession, which should be continuously monitored

  15. The spatial and temporal analysis of forest resources and institutions

    NASA Astrophysics Data System (ADS)

    Schweik, Charles M.

    This study addresses a central puzzle facing the Human Dimensions of Global Change research community: How can we understand the influence of environmental policies on human behavior when little or no information is available on the condition of forest resources? This dissertation capitalizes on new research tools, methods and approaches to overcome the "no information about the resource" problem. Specifically, I combine (1) forest mensuration techniques, (2) Global Positioning Systems, (3) Geographic Information Systems (GIS), (4) spatial statistics, (5) remote sensing, and (6) institutional analysis to analyze forest vegetation patterns. I provide explanation of these patterns by considering the incentive structures driving human decision-making and activity and do this through two studies in very different empirical settings. Both studies apply applicable theory related to human behavior and action. Both examine the incentive structures individuals face as they undertake daily activities related to forest resources. The first study, set in East Chitwan, Nepal, identifies spatial patterns in georeferenced forest inventory data and links these to patterns predicted by optimal foraging subject to institutional constraints. The second study compares forest management in one state and one national forest in Indiana, U.S.A. In this effort, I identify spatio-temporal patterns in the forest vegetation captured by a time series of Landsat multispectral images. The combination of natural forest regrowth and property manager actions in response to incentives and constraints explain these patterns. Substantively, both studies identify change in forest resources associated with combinations of the physical, human community and institutional "landscapes" in their regions. In both cases, geographic attributes of institutions (e.g., laws, rules) are found to influence the type and location of human actions. Methodologically, the two studies provide examples of how to control

  16. High-order local spatial context modeling by spatialized random forest.

    PubMed

    Ni, Bingbing; Yan, Shuicheng; Wang, Meng; Kassim, Ashraf A; Tian, Qi

    2013-02-01

    In this paper, we propose a novel method for spatial context modeling toward boosting visual discriminating power. We are particularly interested in how to model high-order local spatial contexts instead of the intensively studied second-order spatial contexts, i.e., co-occurrence relations. Motivated by the recent success of random forest in learning discriminative visual codebook, we present a spatialized random forest (SRF) approach, which can encode an unlimited length of high-order local spatial contexts. By spatially random neighbor selection and random histogram-bin partition during the tree construction, the SRF can explore much more complicated and informative local spatial patterns in a randomized manner. Owing to the discriminative capability test for the random partition in each tree node's split process, a set of informative high-order local spatial patterns are derived, and new images are then encoded by counting the occurrences of such discriminative local spatial patterns. Extensive comparison experiments on face recognition and object/scene classification clearly demonstrate the superiority of the proposed spatial context modeling method over other state-of-the-art approaches for this purpose. PMID:23060330

  17. Spatial vegetation patterns and desertification

    NASA Astrophysics Data System (ADS)

    Rietkerk, M.; Kéfi, S.

    2009-04-01

    Arid ecosystems are amongst the most sensitive ecosystems to human pressure and climate change, and are liable to undergo desertification. This is a main concern because this may occur abruptly and irreversibly, with concomitant losses of ecological and economic resources. Such ecosystem shifts have been theoretically attributed to positive feedback and alternative stable ecosystem states. However, verifications and predictive power with respect to such ecosystem dynamics are lacking for spatially extensive ecosystems. Therefore, management and recovery strategies against desertification for arid ecosystems are difficult to achieve. Theoretical models predict that so-called regular vegetation patterns observed in large areas in arid ecosystems world-wide are a result of spatial self-organization, and the shapes of the patterns are associated with approaching desertification thresholds. Also, patch-size distribution of the vegetation in various arid ecosystems follows a power law, and consistent deviations from power laws occur if grazing pressure is high. Model analysis suggests that such deviations from power laws may be a warning signal for the onset of desertification, independent of the vegetation cover. So, spatial patterns of vegetation, not cover, can be used to assess the vulnerability of arid ecosystems to increased human pressure or ongoing climate change. Common ecological mechanisms that account for these patterns are scale-dependent feedback and local facilitation. Our results are relevant to identify areas that are vulnerable to desertification in the face of increased human pressure and ongoing global climate change, as well as for the restoration of areas that are already degraded.

  18. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    PubMed

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time. PMID:27070005

  19. Spatial patterns in ant colonies.

    PubMed

    Theraulaz, Guy; Bonabeau, Eric; Nicolis, Stamatios C; Solé, Ricard V; Fourcassié, Vincent; Blanco, Stéphane; Fournier, Richard; Joly, Jean-Louis; Fernández, Pau; Grimal, Anne; Dalle, Patrice; Deneubourg, Jean-Louis

    2002-07-23

    The origins of large-scale spatial patterns in biology have been an important source of theoretical speculation since the pioneering work by Turing (1952) on the chemical basis of morphogenesis. Knowing how these patterns emerge and their functional role is important to our understanding of the evolution of biocomplexity and the role played by self organization. However, so far, conclusive evidence for local activation-long-range inhibition mechanisms in real biological systems has been elusive. Here a well-defined experimental and theoretical analysis of the pattern formation dynamics exhibited by clustering behavior in ant colonies is presented. These experiments and a simple mathematical model show that these colonies do indeed use this type of mechanism. All microscopic variables have been measured and provide the first evidence, to our knowledge, for this type of self-organized behavior in complex biological systems, supporting early conjectures about its role in the organization of insect societies. PMID:12114538

  20. Spatial patterns of tidal heating

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2013-03-01

    In a body periodically strained by tides, heating produced by viscous friction is far from homogeneous. The spatial distribution of tidal heating depends in a complicated way on the tidal potential and on the internal structure of the body. I show here that the distribution of the dissipated power within a spherically stratified body is a linear combination of three angular functions. These angular functions depend only on the tidal potential whereas the radial weights are specified by the internal structure of the body. The 3D problem of predicting spatial patterns of dissipation at all radii is thus reduced to the 1D problem of computing weight functions. I compute spatial patterns in various toy models without assuming a specific rheology: a viscoelastic thin shell stratified in conductive and convective layers, an incompressible homogeneous body and a two-layer model of uniform density with a liquid or rigid core. For a body in synchronous rotation undergoing eccentricity tides, dissipation in a mantle surrounding a liquid core is highest at the poles. Within a soft layer (or asthenosphere) in contact with a more rigid layer, the same tides generate maximum heating in the equatorial region with a significant degree-four structure if the soft layer is thin. The asthenosphere can be a layer of partial melting in the upper mantle or, very differently, an icy layer in contact with a silicate mantle or solid core. Tidal heating patterns are thus of three main types: mantle dissipation (with the icy shell above an ocean as a particular case), dissipation in a thin soft layer and dissipation in a thick soft layer. Finally, I show that the toy models predict well patterns of dissipation in Europa, Titan and Io. The formalism described in this paper applies to dissipation within solid layers of planets and satellites for which internal spherical symmetry and viscoelastic linear rheology are good approximations.

  1. Comparing Spatial and Non-Spatial Hierarchical Models for Mapping Forest Soil Organic Carbon at Large Spatial Scales.

    NASA Astrophysics Data System (ADS)

    Clough, B. J.; Green, E. J.

    2014-12-01

    Spatially referenced soil inventory datasets facilitate the mapping of forest soil organic carbon (SOC) at large spatial scales via statistical interpolation. When spatial autocorrelation is present in these data, geostatistical modeling strategies may lead to improved accuracy and a better understanding of the uncertainty within the predictive model. In this study, we compared spatial and non-spatial Bayesian hierarchical models for predicting SOC across forested lands in the nation of Germany. We used observations from the E.U. Joint Research Centre's LUCAS topsoil database, coupled with predictor variables drawn from remote sensing data products, to address the following objectives: (1) examine patterns of spatial autocorrelation in a national forest SOC dataset; (2) compare spatial and non-spatial models for predicting forest SOC at new locations; and (3) apply the selected model to map predicted soil carbon, along with associated uncertainty estimates, across a grid covering all German forests. Exploratory analyses indicate that there is spatial autocorrelation in the SOC data, and our results suggest that incorporating this spatial dependence within the model framework offers a 9-10 percent reduction in root mean square prediction error (RMSPE) relative to non-spatial models within our study region. By adopting a Bayesian hierarchical approach, where full posterior distributions may be generated at each prediction location, we found significant uncertainty relative to mean estimates when scaling up plot data to the national scale, even when spatial dependence was accounted for. Our results suggest that while accounting for spatial dependence improves predictive performance, difficulty associated with establishing clear relationships between forest SOC and predictor variables limits model precision. By conditioning predictions on both the model parameters and input data, Bayesian hierarchical models were important to our understanding of the model uncertainty

  2. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  3. Spatial pattern of standing timber value across the Brazilian Amazon.

    PubMed

    Ahmed, Sadia E; Ewers, Robert M

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  4. Spatial Patterns of Movement of Dung Beetle Species in a Tropical Forest Suggest a New Trap Spacing for Dung Beetle Biodiversity Studies

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    A primary goal of community ecologists is to understand the processes underlying the spatiotemporal patterns of species distribution. Understanding the dispersal process is of great interest in ecology because it is related to several mechanisms driving community structure. We investigated the mobility of dung beetles using mark-release-recapture technique, and tested the usefulness of the current recommendation for interaction distance between baited pitfall traps in the Brazilian Atlantic Forest. We found differences in mean movement rate between Scarabaeinae species, and between species with different sets of ecological traits. Large-diurnal-tunneler species showed greater mobility than did both large-nocturnal tunneler and roller species. Our results suggest that, based on the analyses of the whole community or the species with the highest number of recaptured individuals, the minimum distance of 50 m between pairs of baited pitfall traps proposed roughly 10 years ago is inadequate. Dung beetle species with different sets of ecological traits may differ in their dispersal ability, so we suggest a new minimum distance of 100 m between pairs of traps to minimize interference between baited pitfall traps for sampling copronecrophagous Scarabaeinae dung beetles. PMID:25938506

  5. Seed Dispersal and Spatial Pattern in Tropical Trees

    PubMed Central

    Seidler, Tristram G; Plotkin, Joshua B

    2006-01-01

    Theories of tropical tree diversity emphasize dispersal limitation as a potential mechanism for separating species in space and reducing competitive exclusion. We compared the dispersal morphologies, fruit sizes, and spatial distributions of 561 tree species within a fully mapped, 50-hectare plot of primary tropical forest in peninsular Malaysia. We demonstrate here that the extent and scale of conspecific spatial aggregation is correlated with the mode of seed dispersal. This relationship holds for saplings as well as for mature trees. Phylogenetically independent contrasts confirm that the relationship between dispersal and spatial pattern is significant even after controlling for common ancestry among species. We found the same qualitative results for a 50-hectare tropical forest plot in Panama. Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests. PMID:17048988

  6. A New Method for the Spatialization of Forest Cover by Fusing Forest Inventory and MODIS Data

    NASA Astrophysics Data System (ADS)

    Yin, Y.

    2015-12-01

    The acquisition of accurate spatial and temporal data on forest cover is the foundation for the sustainable management and utilization of forest resources. Although forest inventory data can provide accurate statistical information about forest type, such data do not give the specific spatial distribution. Remote sensing data provide accurate spatial information, and vegetation indices provide measures of land surface vegetation cover and growth conditions. By fusing these two sources of data, specific information about the spatial distribution of different types of forest can be obtained. Here, in a case study of Heilongjiang Province, we obtained forest dominant species area from the sixth and seventh national forest inventories and MODIS composite remote sensing data for the same periods to study forest cover by developing a spatialization method. Based on pixel features (such as NDVI and near-infrared reflectance) and their relationships with forest types, thresholds between different forest types in the remote sensing information were set according to the statistical data, which allowed the two sets of data to be fused. As a result, we generated forest cover maps for 2000 and 2005 that show the distribution of four forest types. Taking vegetation map of China as reference data, an error matrix analysis shows that the overall classification consistency reaches 76.7%, but only 70% for evergreen needleleaf forest and mixed forest. This study paves the way for further research on improving the accuracy of forest cover classification accuracy, on expanding the spatial and temporal scales of interest, and on quantifying forest dynamics

  7. Spatial Variability of VOCl Fluxes From Forest Soil

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Black, A. T.; Fulton, T.; Molodovskaya, M. S.; Nesic, Z.; Pickering, L.; Pilz, J.; Oberg, G.

    2011-12-01

    Naturally formed volatile chlorinated organic compounds (VOCl) are involved in various atmospheric processes such as ozone depletion. These compounds are present in several environmental compartments and some of them are of ecotoxicological concern. Over the past few years, a small but growing literature has focused on the emission of VOCls from terrestrial environments and there are indications that the emissions vary between ecosystems and that spatial and temporal patterns exist. Due to methodological challenges, the studies have hitherto been based on rather few measurements; subsequently estimates of both the magnitude and the variability of the fluxes are quite uncertain. To enable collection of larger sample sets, which would allow reliable surveying of spatial variability, we developed a portable chamber system. The system consists of a non-steady-state chamber (area 0.20 m2, volume 56.9L), a close-looped air-circulation unit with a diaphragm pump, and a VOCl sampling unit with carbon-based adsorbent tubes for later analysis in the laboratory by gas chromatography (GC7890, Agilent Technologies, USA) with micro-ECD detection (Agilent Technologies, USA), a thermal desorption system (TDSA2, Gerstel Inc., USA) and cryocooled inlet system (CIS4, Gerstel Inc., USA). We are using the portable system to investigate the spatial variability of chloroform fluxes at different scales and at various forested sites in south-west British Columbia, Canada. Our pilot observations strongly indicate that the flux from adjacent chambers (0.5-2 m between locations), may vary ten times or more, and that small-scale variability often overrides any larger scale patterns, or differences between sites. In addition, 'hot' and 'cold' measurement locations were not consistent spatially, indicating non-consistent spatial patterns in time. The study highlights that we need to better understand small-scale spatial heterogeneity of VOCl fluxes to interpret larger scale temporal and spatial

  8. Spatial patterns of recreation impact on experimental campsites.

    PubMed

    Cole, David N; Monz, Christopher A

    2004-01-01

    Management of camping impacts in protected areas worldwide is limited by inadequate understanding of spatial patterns of impact and attention to spatial management strategies. Spatial patterns of campsite impact were studied in two subalpine plant communities in the Wind River Mountains, Wyoming, USA (a forest and a meadow). Response to chronic disturbance and recovery from acute disturbance were both assessed. Previously undisturbed sites were camped on at intensities of one and four nights/year, for either one or three consecutive years. Recovery was followed for three years on sites camped on for one year. Percent bare ground, assessed in 49 contiguous 1 m2 quadrats, increased with increasing use frequency, particularly on the forest sites. Magnitude of impact varied spatially within campsites, with impact decreasing as distance from the center of the campsite increased. On the more fragile forest sites, this radial impact pattern developed rapidly and remained after three years of recovery. Concentration of camping activities around a centrally located small cooking stove was the apparent cause of this pattern. Maximum variation in magnitude of impact occurred at intermediate levels of campsite use and disturbance. The magnitude, variability and spatial pattern of impact varied with the spatial scale of analysis. Generally, results of these controlled experiments are consistent with earlier studies of campsites and validate the management implications derived from those studies. Even where campers use low-impact techniques, low levels of camping use can cause substantial impact and it is important to concentrate use. On resistant sites, however, it is possible that low levels of use can be sustained with minimal resultant impact. PMID:15125547

  9. Patterns in potassium dynamics in forest ecosystems.

    PubMed

    Tripler, Christopher E; Kaushal, Sujay S; Likens, Gene E; Walter, M Todd

    2006-04-01

    The biotic cycling of potassium (K) in forest systems has been relatively understudied in comparison with nitrogen (N) and phosphorus (P) despite its critical roles in maintaining the nutrition of primary production in forests. We investigated the ecological significance of K in forests from a literature review and data synthesis. We focused on (1) describing patterns of the effects of K availability on aboveground growth and change in foliar tissue of tree species from a variety of forests; and (2) documenting previously unreported relationships between hydrologic losses of K and N in forested watersheds from the Americas. In a review of studies examining tree growth under K manipulations/fertilizations, a high percentage (69% of studies) showed a positive response to increases in K availability in forest soils. In addition, 76% of the tree studies reviewed showed a positive and significant increase in K concentrations in plant tissue after soil K manipulation/fertilization. A meta-analysis on a subset of the reviewed studies was found to provide further evidence that potassium effects tree growth and increased tissue [K] with an effect size of 0.709 for growth and an overall effect size of 0.56. In our review of watershed studies, we observed that concentrations of K typically decreased during growing seasons in streams draining forested areas in the Temperate Zones and were responsive to vegetation disturbance in both temperate and tropical regions. We found a strong relationship (r2 = 0.42-0.99) between concentrations of K and N (another critical plant nutrient) in stream water, suggesting that similar mechanisms of biotic retention may control the flow of these nutrients. Furthermore, K dynamics appear to be unique among the base cations, e.g. calcium, magnesium, and sodium, because the others do not show similar seasonal patterns to K. We suggest that K may be important to the productivity and sustenance of many forests, and its dynamics and ecological

  10. Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin

    2007-01-01

    The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.

  11. Spatial Patterns of Inshore Marine Soundscapes.

    PubMed

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats. PMID:26611021

  12. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  13. Evaluation of spatial models to predict vulnerability of forest birds to brood parasitism by cowbirds

    USGS Publications Warehouse

    Gustafson, E.J.; Knutson, M.G.; Niemi, G.J.; Friberg, M.

    2002-01-01

    We constructed alternative spatial models at two scales to predict Brown-headed Cowbird (Molothrus ater) parasitism rates from land cover maps. The local-scale models tested competing hypotheses about the relationship between cowbird parasitism and distance of host nests from a forest edge (forest-nonforest boundary). The landscape models tested competing hypotheses about how landscape features (e.g., forests, agricultural fields) interact to determine rates of cowbird parasitism. The models incorporate spatial neighborhoods with a radius of 2.5 km in their formulation, reflecting the scale of the majority of cowbird commuting activity. Field data on parasitism by cowbirds (parasitism rate and number of cowbird eggs per nest) were collected at 28 sites in the Driftless Area Ecoregion of Wisconsin, Minnesota, and Iowa and were compared to the predictions of the alternative models. At the local scale, there was a significant positive relationship between cowbird parasitism and mean distance of nest sites from the forest edge. At the landscape scale, the best fitting models were the forest-dependent and forest-fragmentation-dependent models, in which more heavily forested and less fragmented landscapes had higher parasitism rates. However, much of the explanatory power of these models results from the inclusion of the local-scale relationship in these models. We found lower rates of cowbird parasitism than did most Midwestern studies, and we identified landscape patterns of cowbird parasitism that are opposite to those reported in several other studies of Midwestern songbirds. We caution that cowbird parasitism patterns can be unpredictable, depending upon ecoregional location and the spatial extent, and that our models should be tested in other ecoregions before they are applied there. Our study confirms that cowbird biology has a strong spatial component, and that improved spatial models applied at multiple spatial scales will be required to predict the effects of

  14. Towards capturing detailed patterns of taiga-tundra ecotone forests from space

    NASA Astrophysics Data System (ADS)

    Montesano, P. M.; Neigh, C. S. R.; Sun, G.; Ranson, K.

    2015-12-01

    High northern latitude forests, particularly those in the taiga-tundra ecotone (TTE), lie at the leading edge of climate change. The structure of these forests contribute to climate feedbacks by modifying surface albedo and above- and below-ground carbon storage. These modifications are associated with vertical and horizontal forest characteristics such as tree height and canopy cover. These characteristics are changing unevenly throughout the TTE, and the degree to which forests are vulnerable to such changes varies, in part, according to whether the primary drivers of their response are controlled by site-scale factors or climate. Observing spatial variations in TTE forest structure is difficult given the uncertainties associated with spaceborne measurements of sparse forests. Global-scale spaceborne observations of these forests tend to overestimate sparse tree cover. This overestimation increases the uncertainty in the patterns of forests that may reflect critical site-scale controls of its structure, its vulnerability to change and the potential for climate feedbacks. The key to improving prediction of feedbacks between TTE forests and climate may be linked to how well we understand the fine-scale patterns of heterogeneous TTE forest structure. We examine the spaceborne potential for delineating fine-scale (< 2m) forest structure (height and cover) in sparse forests in the TTE. We apply automated digital stereo-photogrammetry to high resolution spaceborne images. This processing allows us to combine surface elevation models and multispectral data at forested study sites to extract detailed vertical and horizontal forest structure characteristics. With this data, we can validate coarser (~30m) global tree cover data, model forest structure characteristics and patterns, and use these patterns to examine the differences in the vulnerability of TTE forest structure at multiple scales across the circumpolar domain.

  15. Snow Distribution Patterns in Clearings and Adjacent Forest

    NASA Astrophysics Data System (ADS)

    Golding, Douglas L.; Swanson, Robert H.

    1986-12-01

    Snow accumulation patterns were determined for clearings and adjacent forest at Marmot Creek experimental watershed and James River, Alberta. At maximum accumulation snow water equivalent (SWE) was greater in clearings than in forest whether clearings were large, as in 8- to 13-ha blocks where SWE averaged 20% more than in the forest, or small as in the ¼ to 6-H (height) diameter circular clearings where SWE was 13-45% greater than in the forest. SWE was 42 to 52% less in north than in south sectors of 2-6 H clearings. These differences increased with clearing size and time since beginning of accumulation period and are caused by snow ablation (melt and evaporation), a function of direct solar radiation reaching the snowpack. In such situations the snow that has accumulated on the ground cannot be considered a measure of the snow that has actually fallen there. For water balances and hydrologic modeling, snow measurements in partially cleared watersheds must be adjusted for temporal and spatial factors specific to the watershed.

  16. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales.

    PubMed

    Buma, Brian; Barrett, Tara M

    2015-09-01

    Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (<1000 m(2) ), the net result of thousands of individual events is regionally patterned change. Correlations between the disturbance/establishment imbalance and biomass accumulation suggest the potential for relatively

  17. Quantitative analysis of forest island pattern in selected Ohio landscapes

    SciTech Connect

    Bowen, G.W.; Burgess, R.L.

    1981-07-01

    The purpose of this study was to quantitatively describe the various aspects of regional distribution patterns of forest islands and relate those patterns to other landscape features. Several maps showing the forest cover of various counties in Ohio were selected as representative examples of forest patterns to be quantified. Ten thousand hectare study areas (landscapes) were delineated on each map. A total of 15 landscapes representing a wide variety of forest island patterns was chosen. Data were converted into a series of continuous variables which contained information pertinent to the sizes, shape, numbers, and spacing of woodlots within a landscape. The continuous variables were used in a factor analysis to describe the variation among landscapes in terms of forest island pattern. The results showed that forest island patterns are related to topography and other environmental features correlated with topography.

  18. A spatially explicit estimate of avoided forest loss.

    PubMed

    Honey-Rosés, Jordi; Baylis, Kathy; Ramírez, M Isabel

    2011-10-01

    With the potential expansion of forest conservation programs spurred by climate-change agreements, there is a need to measure the extent to which such programs achieve their intended results. Conventional methods for evaluating conservation impact tend to be biased because they do not compare like areas or account for spatial relations. We assessed the effect of a conservation initiative that combined designation of protected areas with payments for environmental services to conserve over wintering habitat for the monarch butterfly (Danaus plexippus) in Mexico. To do so, we used a spatial-matching estimator that matches covariates among polygons and their neighbors. We measured avoided forest loss (avoided disturbance and deforestation) by comparing forest cover on protected and unprotected lands that were similar in terms of accessibility, governance, and forest type. Whereas conventional estimates of avoided forest loss suggest that conservation initiatives did not protect forest cover, we found evidence that the conservation measures are preserving forest cover. We found that the conservation measures protected between 200 ha and 710 ha (3-16%) of forest that is high-quality habitat for monarch butterflies, but had a smaller effect on total forest cover, preserving between 0 ha and 200 ha (0-2.5%) of forest with canopy cover >70%. We suggest that future estimates of avoided forest loss be analyzed spatially to account for how forest loss occurs across the landscape. Given the forthcoming demand from donors and carbon financiers for estimates of avoided forest loss, we anticipate our methods and results will contribute to future studies that estimate the outcome of conservation efforts. PMID:21902720

  19. Spatial Patterns of Trees from Airborne LiDAR Using a Simple Tree Segmentation Algorithm

    NASA Astrophysics Data System (ADS)

    Jeronimo, S.; Kane, V. R.; McGaughey, R. J.; Franklin, J. F.

    2015-12-01

    Objectives for management of forest ecosystems on public land incorporate a focus on maintenance and restoration of ecological functions through silvicultural manipulation of forest structure. The spatial pattern of residual trees - the horizontal element of structure - is a key component of ecological restoration prescriptions. We tested the ability of a simple LiDAR individual tree segmentation method - the watershed transform - to generate spatial pattern metrics similar to those obtained by the traditional method - ground-based stem mapping - on forested plots representing the structural diversity of a large wilderness area (Yosemite NP) and a large managed area (Sierra NF) in the Sierra Nevada, Calif. Most understory and intermediate-canopy trees were not detected by the LiDAR segmentation; however, LiDAR- and field-based assessments of spatial pattern in terms of tree clump size distributions largely agreed. This suggests that (1) even when individual tree segmentation is not effective for tree density estimates, it can provide a good measurement of tree spatial pattern, and (2) a simple segmentation method is adequate to measure spatial pattern of large areas with a diversity of structural characteristics. These results lay the groundwork for a LiDAR tool to assess clumping patterns across forest landscapes in support of restoration silviculture. This tool could describe spatial patterns of functionally intact reference ecosystems, measure departure from reference targets in treatment areas, and, with successive acquisitions, monitor treatment efficacy.

  20. Abiotic and biotic controls of spatial pattern at alpine treeline

    USGS Publications Warehouse

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  1. Investigating the Spatial Characteristics of Forest Fire in North Korea using Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    RI, J.; Lee, K. S.

    2015-12-01

    Forest fires cause billions of dollar damage to property and the environment in the world every year. In North Korea (NK) forest fire occurred frequently in the entire region with the exception of the western plains and massive forest fires broke out throughout NK in May 2004. Furthermore, few researches focused on NK forest fire because of data unavailability and inaccessibility to the region. Operational fire monitoring over large areas can be approached through satellite remote sensing (RS). Thus, it is necessary to investigate the area damaged by forest fire and get information of damaged area for restoration of forest in NK after reunification. Therefore, the purpose of this study is to identify the location of forest fire and to estimate the damaged area by forest fire and finally to detect the landscape change after forest fire in Gangwon and South Hamgyong Province, NK using satellite RS data. In this study, we will investigate the area damaged by forest fire and investigate the spatial characteristics of forest fire in Gangwon and South Hamgyong Province using RS. Landsat data from USGS Were preprocessed (band composition), NBR and dNBR are calculated for figuring out the burned area and investigating the burn severity (BS) in burned area. NBR and dNBR (differenced NBR) are mostly useful to estimate BS by forest fires damage from RS data. The dNBR was then calculated by subtracting the post-fire NBR from the pre-fire NBR: The burned area from Landsat data processing were stored in GIS database to be retrieved and analyzed to figure out the chronological change pattern of forest fire damaged area. Finally, the spatiotemporal characteristics of forest fire in NK were analyzed and discussed to provide the information for restoring forest fire damaged area after reunification.

  2. Spatially-Explicit Holocene Drought Reconstructions in Amazonian Forests

    NASA Astrophysics Data System (ADS)

    McMichael, C.; Bush, M. B.

    2014-12-01

    Climate models predict increasing drought in Amazonian forests over the next century, and the synergy of drought and fire may lead to forest dieback. El Niño Southern Oscillation (ENSO) and the Atlantic Multi-decadal Oscillation (AMO) are two primary drivers of Amazonian drought, and each process has a spatially distinct manifestation in the Basin. Paleoecological reconstructions can contextualize the forest response to past drought periods. Stalagmite and lake sediment records have documented that the early- to mid-Holocene, i.e. 10,000 - 5000 calibrated years before present (cal yr BP), was among the driest periods of the last 100,000 years in western Amazonia. Climatic conditions became wetter and more similar to the modern climate over the last 4000 cal yr BP, and fires rarely occurred in the absence of human activity. Yet there are currently no drought and fire reconstructions that examine the spatially explicit patterns of drought during the Holocene. Here, we present regional drought histories from southwestern and northeastern sections Amazonia for the last 10,000 years that document the drought-fire dynamics resulting from both climatic processes. Our reconstructions were based on a compilation of dated soil charcoal fragments (N= 291) collected from within Amazonia sensu stricto, which were analyzed by region using summed probability analysis. The compiled soil charcoal dates contained limited evidence of fire over the last 10,000 years in some regions. Fire frequency rose markedly across the Basin, however, during the last 2000 years, indicating an increased human presence. Fire probabilities, and thus droughts, had similar increasing trajectories between southwestern and northeastern Amazonia from 1500-1100 cal yr BP, which decoupled from 1100-740 cal yr BP, and then regained synchronicity from 740-500 cal yr BP. Fire probability declined markedly after 500 yr cal BP, coincident with European arrival to the Americas. Native populations were decimated

  3. Evaluating spatial patterns in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Stisen, Simon; Høgh Jensen, Karsten

    2014-05-01

    Recent advances in hydrological modeling towards fully distributed grid based model codes, increased availability of spatially distributed data (remote sensing and intensive field studies) and more computational power allow a shift towards a spatial model evaluation away from the traditional aggregated evaluation. The consideration of spatially aggregated observations, in form of river discharge, in the evaluation process does not ensure a correct simulation of catchment-inherent distributed variables. The integration of spatial data and hydrological models is limited due to a lack of suitable metrics to evaluate similarity of spatial patterns. This study is engaged with the development of a novel set of performance metrics that capture spatial patterns and go beyond global statistics. The metrics are required to be easy, flexible and especially targeted to compare observed and simulated spatial patterns of hydrological variables. Four quantitative methodologies for comparing spatial patterns are brought forward: (1) A fuzzy set approach that incorporates both fuzziness of location and fuzziness of category. (2) Kappa statistic that expresses the similarity between two maps based on a contingency table (error matrix). (3) An extended version of (2) by considering both fuzziness in location and fuzziness in category. (4) Increasing the information content of a single cell by aggregating neighborhood cells at different window sizes; then computing mean and standard deviation. The identified metrics are tested on observed and simulated land surface temperature maps in a groundwater dominated catchment in western Denmark. The observed data originates from the MODIS satellite and MIKE SHE, a coupled and fully distributed hydrological model, serves as the modelling tool. Synthetic land surface temperature maps are generated to further address strengths and weaknesses of the metrics. The metrics are tested in different parameter optimizing frameworks, where they are

  4. Historical forest patterns of Oregon's central Coast Range

    USGS Publications Warehouse

    Ripple, W.J.; Hershey, K.T.; Anthony, R.G.

    2000-01-01

    To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.

  5. Different spatial organisation strategies of woody plant species in a montane cloud forest

    NASA Astrophysics Data System (ADS)

    Ledo, Alicia; Montes, Fernando; Condés, Sonia

    2012-01-01

    The coexistence of a high number of species in the forest is a central issue in tropical ecology. In this paper, we aim to characterise the spatial pattern of woody species in an Andean montane cloud forest to determine whether differences exist among the species in terms of spatial organization and if so, whether these differences are related to the life-form, primary dispersal mode, shade tolerance or the diameter distribution of the species. For this purpose, we analysed the spatial pattern of each species as well as the spatial relationships between young and adult individuals. Almost all the analysed species showed a cluster pattern, followed by a random pattern at larger distances. The cluster size is more evident for the young trees whereas adult trees tended to be more randomly distributed. The shade-tolerant species showed greater distances of aggregation than gap or medium-shade-tolerant species. Species primarily dispersed by wind and small birds showed larger distances of aggregation than species dispersed by mammals or big birds. All the under-story woody plants showed a notable cluster pattern, whereas canopy trees showed a variety of spatial patterns, with clustering at small scales being the most frequent. In the case of emergent trees, association was found between young and adult individuals on a large scale. Positive associations between young and adult individuals predominate at small scales for medium and shade tolerant species and at larger scales for bird-dispersed species whereas negative spatial associations at smaller scales were found for shade tolerant species and wind dispersed species. Our study confirms that conspecific organization varies among the woody plants in the analysed forest, and that the spatial pattern of woody plants is partially linked to shade tolerance, primary dispersal mode and life form of the species.

  6. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  7. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  8. Chaotic Pattern Dynamics in Spatially Ramped Turbulence

    NASA Astrophysics Data System (ADS)

    Wiener, R. J.; Ashbaker, E.; Olsen, T.; Bodenschatz, E.

    2003-11-01

    In previous experiments(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997)., Taylor vortex flow in an hourglass geometry has demonstrated a period-doubling cascade to chaotic pattern dynamics. A spatial ramp exists in the Reynolds number. For low reduced Reynolds numbesr \\varepsilon, supercritical vortex flow occurs between regions of subcritical structureless flow with soft boundaries that allow for pattern dynamics. At \\varepsilon ≈ 0.5, the pattern exhibits phase slips that occur irregularly in time. At \\varepsilon ≈ 1.0 the entire system is supercritical, and the pattern is stabilized against phase slips. At \\varepsilon > 15, shear flow creates a spatial ramp in turbulence. Remarkably, the phase slip instability reoccurs. Vortex pairs are created chaotically, possibly due to the spatial variation of the turbulence. The variance and Fourier spectra of time series of light scattered off Kalliroscope tracer were measured. These indicate that a region of turbulence exists, within which phase slips occur, bounded by regions of laminar flow which may provide soft boundaries that allow for the phase dynamics. Despite the presence of turbulence, the dynamics might be describable by a phase equation.

  9. A spatially explicit reconstruction of forest cover in China over 1700-2000

    NASA Astrophysics Data System (ADS)

    He, Fanneng; Li, Shicheng; Zhang, Xuezhen

    2015-08-01

    The spatially explicit reconstruction of historical forest plays an important role in understanding human modifications of land surfaces and its environmental effects. Based on an analysis of the forest change history of China, we devised a reconstruction method for the historical forest cover in China. The core idea of the method is that the lands with high suitability for cultivation will be cultivated and deforested first, spreading to marginal lands with lower suitability for cultivation. By determining the possible maximum distribution extent of the forest, as well as devising the land suitability for cultivation assessment model and provincial forest area allocation model, we created 10 km forest cover maps of China for the years 1700 to 2000 with 10 year intervals. By comparison with satellite-based data in 2000, we found that the grids within 25% differences account for as much as 66.07% of all grids. The comparison with the historical documents-based data in northeast China indicated that the number of counties within 30% relative differences is 99, accounting for 74.44% of all counties. Therefore, the forest area allocation model we devised can accurately reproduce the spatial patterns of historical forest cover in China. Our reconstruction indicates that from 1700 to the 1960s, the deforestation mainly occurred in southwest China, the hilly regions of south China, the southeast of Gansu province, and northeast China; from the 1960s to 2000, the reforestation occurred in most traditional forested regions of China, particularly in the Tibet Plateau, hilly regions of south China and the Greater Khingan Mountains. The spatially explicit forest cover data sets we reconstructed can be used in global or regional climatic models to study the impact of land cover change on climate change.

  10. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  11. Mitigation benefits of forestation greatly varies on short spatial scale

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; Rotenberg, Eyal; Rohatin, Shani; Ramati, Efrat; Asaf, David; Dicken, Uri

    2016-04-01

    Mitigation of global warming by forestation is controversial because of its linkage to increasing surface energy load and associated surface warming. Such tradeoffs between cooling associated with carbon sequestration and warming associated with radiative effects have been considered predominantly on large spatial scales, indicating benefits of forestation mainly in the tropics but not in the boreal regions. Using mobile laboratory for measuring CO2, water and energy flux in forest and non-forest ecosystem along the climatic gradient in Israel over three years, we show that the balance between cooling and warming effects of forestation can be transformed across small spatial scale. While converting shrubland to pine forest in a semi-arid site (280 mm annual precipitations) requires several decades of carbon sequestration to balance the radiative warming effects, similar land use change under moist Mediterranean conditions (780 mm annual precipitation) just ~200 km away showed reversal of this balance. Specifically, the results indicated that in the study region (semi-arid to humid Mediterranean), net absorb radiation in pine forests is always larger than in open space ecosystems, resulting in surface warming effects (the so-called albedo effect). Similarly, depression of thermal radiation emission, mainly due canopy skin surface cooling associated with the 'convector effect' in forests compared with shrubland ecosystems also appears in all sites. But both effects decrease by about 1/2 in going from the semi-arid to the humid Mediterranean sites, while enhanced productivity of forest compared to grassland increase about fourfold. The results indicate a greater potential for forestation as climate change mitigation strategy than previously assumed.

  12. Spatial dynamics of deforestation and forest fragmentation (1930-2013) in Eastern Ghats, India

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, C.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    The tropical forests are the most unique ecosystems for their potential economic value. Eastern Ghats, a phytogeographical region of India has rugged hilly terrain distributed in parts of five states, viz. Odisha, Andhra Pradesh, Telangana, Karnataka and Tamil Nadu. The present study is mainly aimed to analyse the trends in deforestation and its role in forest fragmentation of Eastern Ghats. The long term changes in forest cover with its spatial pattern over time has been assessed by analyzing a set of topographical maps and satellite remote sensing datasets. The multi-source and multi-date mapping has been carried out using survey of India topographical maps (1930's), Landsat MSS (1975 and 1985), IRS 1B LISS-I (1995), IRS P6 AWiFS (2005) and Resourcesat-2 AWiFS (2013) satellite images. The classified spatial data for 1930, 1975, 1985, 1995, 2005 and 2013 showed that the forest cover for the mentioned years are 102213 km2 (45.6 %), 76630 (34.2 %), 73416 km2 (32.7 %), 71730 km2 (32 %), 71305 km2 (31.8 %) and 71186 km2 (31.7 %) of the geographical area of Eastern Ghats respectively. A spatial statistical analysis of the deforestation rates and forest cover change were carried out based on distinctive time phases, i.e. 1930-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The spatial analysis was carried out first by segmenting the study area into grid cells of 5 km x 5 km for time series assessment and determining spatial changes in forests. The distribution of loss and gain of forest was calculated across six classes i.e. <1 km2, 1-5 km2, 5-10 km2, 10-15 km2, 15-20 km2 and >20 km2. Landscape metrics were used to quantify spatial variability of landscape structure and composition. The results of study on net rate of deforestation was found to be 0.64 during 1935 to 1975, 0.43 during 1975-1985, 0.23 during 1985-1995, 0.06 during 1995-2005 and 0.02 during 2005-2013. The number of forest patches increased from 2688 (1930) to 13009 (2013). The largest forest patch in

  13. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  14. A Spatial Landscape Model of Forest Patch Dynamics and Climate Change

    USGS Publications Warehouse

    Busing, Richard T.

    2007-01-01

    FOREL (a FOREst Landscape model) is an individual-based, multi-scale simulator of forest and climate dynamics. Rationale and design of the model are presented in relation to other forest patch models. Information on implementation of the model is also provided. Capabilities of the FOREL model are demonstrated for forest composition, structure and dynamics along climatic gradients. The model relies on a patch simulation approach that has been tested and developed by independent ecologists for more than three decades. Improvements made over the last decade to the simulation of climate effects on trees are incorporated in the landscape model. A single parameterization of the model is capable of simulating major shifts in forest composition and structure across broad climatic gradients. It is responsive along moisture gradients and temperature gradients. The landscape model is flexible and can be altered easily to test various assumptions about the effects of climate on trees, and the effects of spatial pattern on processes operating within and among forest stands. The spatial structure of the model makes interaction of patches possible. Interactions may include dispersal of propagules and competition for light. The model is a useful tool for projecting temporal climate change effects on forested sites, landscapes and regions.

  15. Landscape Metrics to Predict Soil Spatial Patterns

    NASA Astrophysics Data System (ADS)

    Gillin, C. P.; McGuire, K. J.; Bailey, S.; Prisley, S.

    2012-12-01

    Recent literature has advocated the application of hydropedology, or the integration of hydrology and pedology, to better understand hydrologic flowpaths and soil spatial heterogeneity in a landscape. Hydropedology can be used to describe soil units affected by distinct topography, geology, and hydrology. Such a method has not been applied to digital soil mapping in the context of spatial variations in hydrological and biogeochemical processes. The purpose of this study is to use field observations of soil morphology, geospatial information technology, and a multinomial logistic regression model to predict the distribution of five hydropedological units (HPUs) across a 41-hectare forested headwater catchment in New England. Each HPU reflects varying degrees of lateral flow influence on soil development. Ninety-six soil characterization pits were located throughout the watershed, and HPU type was identified at each pit based on the presence and thickness of genetic soil horizons. Digital terrain analysis was conducted using ArcGIS and SAGA software to compute topographic and landscape metrics. Results indicate that each HPU occurs under specific topographic settings that influence subsurface hydrologic conditions. Among the most important landscape metrics are distance from stream, distance from bedrock outcrop, upslope accumulated area, the topographic wetness index, the downslope index, and curvature. Our project is unique in that it delineates high resolution soil units using a process-based morphological approach rather than a traditional taxonomical method taken by conventional soil surveys. Hydropedological predictor models can be a valuable tool for informing forest and land management decisions, water quality planning, soil carbon accounting, and understanding subsurface hydrologic dynamics. They can also be readily calibrated for regions of differing geology, topography, and climate regimes.

  16. How Landscape Characteristics Influence Spatial Patterns of Transpiration

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Weiler, M.; Zehe, E.; Blume, T.

    2015-12-01

    Quantifying transpiration in landscapes remains a challenging task. Especially bridging the gap between tree- or plot-scale measurements and information on the landscape scale which could be gathered from remote sensing, digital elevation models or forest inventories still poses considerable problems. These problems reach from errors associated with the measurements to the reliability of representing transpiration amounts by large-scale data. In this study we analyse spatial patterns of sap velocity to identify the importance of tree- or site-specific characteristics for transpiration at the landscape scale. We set up multiple linear regression models for a dataset of daily sap velocities for 61 trees at 24 locations in mixed beech and oak forests in a catchment in Luxemburg, recorded during the growing season of 2014. As predictors we use the tree-specific characteristics species, diameter and height and the site-specific characteristics basal area and number of stems for the respective stands as well as landscape attributes such as aspect, slope position and geology. Analysing the importance of these predictors could be useful for upscaling tree-based measurements to the landscape-scale based on data from digital elevation models, forest inventories or remote sensing. We also assess the temporal dynamics of the importance of tree- vs. site-specific predictors and link them to typical controls for sap flow such as atmospheric demand and soil moisture. First results indicate that site-specific predictors contribute considerably to the explained variance of the linear models. However, remotely sensed information explained very little of the variation in daily sap velocity patterns. Further analyses will quantify to which extent we can use the landscape-scale information from digital elevation models, geology and forest inventories to upscale tree-based transpiration estimates.

  17. Spatially-explicit model of mercury accumulation in the forest floor of the United States

    NASA Astrophysics Data System (ADS)

    Perry, C. H.; Zimmerman, P.

    2009-12-01

    Atmospherically-deposited Hg has a strong affinity for soil organic matter. The Forest Service, US Department of Agriculture, Forest Inventory and Analysis (FIA) program collects soil samples from forested areas across the United States as part of its sampling program, and annual soils inventories are underway or completed in 46 of the 50 states (Alaska, Hawaii, New Mexico, and Oklahoma have yet to be sampled). Our objective is to describe the spatial distribution of forest floor Hg for a transect running across the United States, from Arizona in the southwest to Maine in the northeast. The collection of forest floor samples was accomplished as part of the standard FIA Phase 3 Soil Quality Indicator program. Field protocols include the measurement of the thickness of the forest floor and the collection of the entire forest floor found within a 30-cm diameter sampling frame. We removed approximately 0.1 g of the sample for plots in our region of interest, and these were sent to two different laboratories for Hg analysis by cold-vapor atomic absorption. The two laboratories calibrated their instruments against common Hg standards. We found good agreement between samples analyzed at both laboratories. Observations of mercury concentrations were joined with the Forest Inventory and Analysis Database and other geospatial databases to assign basic location information and associated inventory data. Ecoprovince and forest-type group are significant predictors of Hg storage; conifer species tend to store more mercury than hardwood species. Additionally, models created using spatially-explicit techniques yield distinct patterns of Hg storage that vary across forest-type groups.

  18. Spatial dependence clusters in the estimation of forest structural parameters

    NASA Astrophysics Data System (ADS)

    Wulder, Michael Albert

    1999-12-01

    In this thesis we provide a summary of the methods by which remote sensing may be applied in forestry, while also acknowledging the various limitations which are faced. The application of spatial statistics to high spatial resolution imagery is explored as a means of increasing the information which may be extracted from digital images. A number of high spatial resolution optical remote sensing satellites that are soon to be launched will increase the availability of imagery for the monitoring of forest structure. This technological advancement is timely as current forest management practices have been altered to reflect the need for sustainable ecosystem level management. The low accuracy level at which forest structural parameters have been estimated in the past is partly due to low image spatial resolution. A large pixel is often composed of a number of surface features, resulting in a spectral value which is due to the reflectance characteristics of all surface features within that pixel. In the case of small pixels, a portion of a surface feature may be represented by a single pixel. When a single pixel represents a portion of a surface object, the potential to isolate distinct surface features exists. Spatial statistics, such as the Gets statistic, provide for an image processing method to isolate distinct surface features. In this thesis, high spatial resolution imagery sensed over a forested landscape is processed with spatial statistics to combine distinct image objects into clusters, representing individual or groups of trees. Tree clusters are a means to deal with the inevitable foliage overlap which occurs within complex mixed and deciduous forest stands. The generation of image objects, that is, clusters, is necessary to deal with the presence of spectrally mixed pixels. The ability to estimate forest inventory and biophysical parameters from image clusters generated from spatially dependent image features is tested in this thesis. The inventory

  19. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  20. Spatially explicit forest characteristics of Europe through integrating Forest Inventory and Remotely sensed data

    NASA Astrophysics Data System (ADS)

    Moreno, Adam; Neumann, Mathias; Hasenauer, Hubert

    2015-04-01

    Carbon stock estimates are critical for any carbon trading scheme or climate change mitigation strategy. Understanding the carbon allocation and the structure of its ecosystem further help scientists and policy makers develop realistic plans for utilizing these systems. Forests play an important role in global carbon storage. Therefore it is imperative to include forests in any climate change mitigation and/or carbon trading scheme. Currently there is no estimate of forest carbon stocks and allocation nor forest structure maps throughout Europe. We compiled National Forest Inventory (NFI) data from 12 European countries. We integrated the NFI data with Net Primary Production data (NPP) from Moderate Resolution Imaging Spectroradiometer (MODIS), tree height data from Light Detection and Ranging (LIDAR) data from the Geosciences Laser Altimeter System (GLAS) instrument, and various other spatially explicit data sets. Through this process of integration of terrestrial and space based data we produced wall-to-wall forest characteristics maps of Europe. These maps include forest age, basal area, average diameter at breast height, total carbon, carbon allocation (stem, branches, leaves, roots), and other characteristics derived from forest inventory data. These maps cover Europe - including countries without terrestrial data - and give one coherent harmonized data set of current forest structure and carbon storage on a 16x16km resolution. The methodology presented here has the potential to be used world-wide in regions with data limitations or with limited access to data.

  1. Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.

    1995-01-01

    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.

  2. Dynamics and pattern of a managed coniferous forest landscape in Oregon

    NASA Technical Reports Server (NTRS)

    Spies, Thomas A.; Ripple, William J.; Bradshaw, G. A.

    1995-01-01

    We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km(exp 2) managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, greater than 60% conifer cover) and other forest and nonforest types (OT) (typically, less than 40 yr old or deciduous forest). The percentage of CF declined from 71 to 58% between 1972 and 1988. Declines were greatest on private land, least in wilderness, and intermediate in public nonwilderness. High elevations (greater than 914 m) maintained a greater percentage of CF than lower elevations (less than 914 m). The percentage of the area at the edge of the two cover types increased on all ownerships and in both elevational zones, whereas the amount of interior habitat (defined as CF at least 100 m from OT) decreased on all ownerships and elevational zones. By 1988 public lands contained approximately 45% interior habitat while private lands had 12% interior habitat. Mean interior patch area declined from 160 to 62 ha. The annual rate of disturbance (primarily clear-cutting) for the entire area including the wilderness was 1.19%, which corresponds to a cutting rotation of 84 yr. The forest landscape was not in a steady state or regulated condition which is not projected to occur for at least 40 yr under current forest plans. Variability in cutting rates within ownerships was higher on private land than on nonreserve public land. However, despite the use of dispersed cutting patterns on public land, spatial patterns of cutting and remnant forest patches were nonuniform across the entire public ownership. Large remaining patches (less than 5000 ha) of contiguous interior forest were restricted to public lands designated for uses other than timber production such as wilderness areas and research natural areas.

  3. Seasonal evapotranspiration patterns in mangrove forests

    NASA Astrophysics Data System (ADS)

    Barr, Jordan G.; DeLonge, Marcia S.; Fuentes, Jose D.

    2014-04-01

    Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ d-1. In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ d-1. During the dry season, high salinity levels (> 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.

  4. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  5. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  6. Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales

    PubMed Central

    Lantschner, M. Victoria; Corley, Juan C.

    2015-01-01

    Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems. PMID:25992640

  7. [Spatial distribution of human activities and their influences on landscape patterns in Daqingshan Nature Reserve].

    PubMed

    Sun, Ya-Hui; Meng, Li; Tian, Lü; Li, Guo-Liang; Li, Yue-Hui; Sun, Jian-Xin

    2014-11-01

    Based on forest inventory data and field survey information, and by using GIS spatial analysis technique and landscape indices, this paper studied the spatial distribution of three categories of human activities (settlement, roads, and other sources of disturbances) and their impacts on landscape patterns in three sub-divided regions, i. e., the west, central and east regions of the Daqingshan Nature Reserve in Inner Mongolia. Results showed that the impacts of human activities were stronger in the east and west regions and weaker in the central region. Among the three subdivided regions, the landscape pattern in the west region was predominantly affected by other sources of disturbances, making the landscape patterns of coniferous forests, broadleaf forests and shrubs tended to be of aggregated distribution; the central region was mainly affected by roads, resulting in reduced landscape patch aggregation of broadleaf forests and shrubs; the east region was mostly affected by settlement, resulting in increased fragmentation of coniferous forests and broadleaf forests and apparent increases in landscape patch aggregation of shrubs and grasslands. PMID:25898623

  8. Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients

    PubMed Central

    Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.

    2016-01-01

    Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts

  9. Emerging spatial patterns in Antarctic prokaryotes

    PubMed Central

    Chong, Chun-Wie; Pearce, David A.; Convey, Peter

    2015-01-01

    . Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of “functional redundancy” for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems. PMID:26483777

  10. Emerging spatial patterns in Antarctic prokaryotes.

    PubMed

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    . Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of "functional redundancy" for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems. PMID:26483777

  11. Global spatially explicit CO2 emission metrics for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; van Zelm, Rosalie; van der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-02-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2-1 for GTP, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  12. Characteristics of spatial variability in soil CO2 efflux in a Moso bamboo (Phyllostachys pubescens) forest

    NASA Astrophysics Data System (ADS)

    Lin, Meng Ying; Hsieh, Yi-Fang; Kume, Tomonori; Cheng, Chih-Hsin

    2014-05-01

    The expansion of bamboo forest to surrounding ecosystems in eastern Asian countries such as Taiwan can alter the carbon balance, in which soil CO2 efflux is an essential component. Spatial heterogeneity of soil CO2 efflux in forested ecosystems is essential not only for understanding CO2 dynamics but also for suitable sampling design to estimate annual soil CO2 efflux and the response to environmental changes. The aim of this study is to understand characteristics of spatial variability of soil CO2 efflux in a bamboo forest, situated in a montane cloud forest of central Taiwan. To this end, this study 1) evaluated the seasonal changes in spatial variability in soil respiration in Moso bamboo (Phyllostachys pubescens) forest through one year and 2) quantified the spatial variation of soil CO2 efflux in this stand using the semivariance. We measured soil CO2 efflux using the closed dynamic chamber method with an infrared gas analyzer (PP system, EGM-4) once a month from April 2012 to November 2013. The semivariance was used to quantify the spatial variability of soil CO2 efflux. In this study, we found spatially averaged soil CO2 efflux during each measurement campaign varied from 1.54 to 4.98 µmol CO2 m-2 s-1, which was larger in bamboo sprouting period (April to August) than other months (September to March). The average coefficient of variation (CV) of the soil CO2 effluxes was 46.4%. Our CV was comparable to that in other tropical forests. The semivariogram revealed that there was autocorrelation of soil CO2 effluxes, and the scale was significantly different between bamboo sprouting period and the other periods. The spatial distribution map showed temporal changes in soil CO2 efflux, and the fairly conservative spatial patterns in soil CO2 effluxes were found through the year in our site. On the other the hand, the range of autocorrelation was much larger in April (33.4 m - 123 m) than other months (2.4m - 5.5m). This indicated that considering a long distance

  13. Plant species composition in a temperate forest: Multi-scale patterns and determinants

    NASA Astrophysics Data System (ADS)

    Gazol, Antonio; Ibáñez, Ricardo

    2010-11-01

    We examine the spatial patterns of plant species composition at different scales in a hierarchical sampling design with two surveys of contrasting scale. Additionally, environmental and spatial variables are used to explain the observed patterns. Five datasets were analyzed in this study. The first was obtained as a result of a large-scale spatial survey, in which the study site (132 ha) was divided into 102 large plots of 20 × 20 m. The remaining four datasets were obtained from a small-scale spatial survey, in which four of the former plots were also divided into 100 small plots of 2 × 2 m. Spatial patterns of plant species composition in both spatial surveys were quantified and the factors that influenced them were assessed using multi-scale pattern analysis (MSPA). Over the large-scale survey the topographic structure of the study site created a spatially structured environment, influencing species composition, and the spatial variables indicated that the environment was structured at a broad scale (relative to grain size and extent of the survey). In the small-scale survey the microenvironmental variables that influenced species composition were also spatially structured at a broad scale (relative to grain size and extent of the survey). However, the analyses point to the existence of spatial autocorrelation that seems to be structured at finer scales than the environmental heterogeneity in both study surveys. This study indicates that species composition in this temperate forest is not only determined by the environmental variables studied at either of the two spatial scales considered (large- and small-scale surveys). In both scales, the pure spatial component present in the analyses may be indicating the influence of unmeasured environmental variables and/or biotic processes on species composition patterns. However, while environmental heterogeneity has a broad-scale domain, biotic processes seem to work at finer scales, as is indicated by the spatial

  14. Traditional land-use systems and patterns of forest fragmentation in the highlands of Chiapas, Mexico.

    PubMed

    Ochoa-Gaona, S

    2001-04-01

    The influence of slash-and-burn agriculture and tree extraction on the spatial and temporal pattern of forest fragmentation in two municipalities in the highlands of Chiapas, Mexico was analyzed. The data series were derived from two subsets of satellite images taken in 1974 and 1996. The analysis was based on area, edge, shape, core area, and neighbor indices. During the 22 years, the dense forest decreased by 8.9%/yr in Huistan and by 8.6%/yr in Chanal, while open/disturbed forest, secondary vegetation, and developed area increased in both municipalities. The total number of fragments increased by 1.4%/yr and 2.3%/yr in Huistan and Chanal, respectively. Dense forest showed the highest increase in the number of fragments (6%/yr in Huistan and 12%/yr in Chanal), while edge length, core area, and number of dense forest core areas decreased. The larger fragments of dense forest present in 1974 were divided into smaller fragments in 1996; at the same time, they experienced a process of degradation toward open/disturbed forest and secondary vegetation. Two different fragmentation patterns could be distinguished based on agricultural or forestry activities. Forest fragmentation did not occur as a continuous process; the pattern and degree of fragmentation were functions of land tenure, environmental conditions, and productive activities. The prevalence of rather poor soil conditions, small-holdings, growing human population densities, increasing poverty, and the absence of alternative economic options will maintain a high rate of deforestation and forest fragmentation in the studied region. PMID:11289455

  15. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  16. Attributing spatial patterns of hydrological model performance

    NASA Astrophysics Data System (ADS)

    Eisner, S.; Malsy, M.; Flörke, M.

    2013-12-01

    Global hydrological models and land surface models are used to understand and simulate the global terrestrial water cycle. They are, in particular, applied to assess the current state of global water resources, to identify anthropogenic pressures on the global water system, and to assess impacts of global and climate change on water resources. Especially in data-scarce regions, the growing availability of remote sensing products, e.g. GRACE estimates of changes in terrestrial water storage, evaporation or soil moisture estimates, has added valuable information to force and constrain these models as they facilitate the calibration and validation of simulated states and fluxes other than stream flow at large spatial scales. Nevertheless, observed discharge records provide important evidence to evaluate the quality of water availability estimates and to quantify the uncertainty associated with these estimates. Most large scale modelling approaches are constrained by simplified physical process representations and they implicitly rely on the assumption that the same model structure is valid and can be applied globally. It is therefore important to understand why large scale hydrological models perform good or poor in reproducing observed runoff and discharge fields in certain regions, and to explore and explain spatial patterns of model performance. We present an extensive evaluation of the global water model WaterGAP (Water - Global Assessment and Prognosis) to simulate 20th century discharges. The WaterGAP modeling framework comprises a hydrology model and several water use models and operates in its current version, WaterGAP3, on a 5 arc minute global grid and . Runoff generated on the individual grid cells is routed along a global drainage direction map taking into account retention in natural surface water bodies, i.e. lakes and wetlands, as well as anthropogenic impacts, i.e. flow regulation and water abstraction for agriculture, industry and domestic purposes as

  17. Spectral feature classification and spatial pattern recognition

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Wilson, R. G.

    1979-01-01

    This paper introduces a spatial pattern recognition processing concept involving the use of spectral feature classification technology and coherent optical correlation. The concept defines a hybrid image processing system incorporating both digital and optical technology. The hybrid instrument provides simplified pseudopattern images as functions of pixel classification from information embedded within a real-scene image. These pseudoimages become simplified inputs to an optical correlator for use in a subsequent pattern identification decision useful in executing landmark pointing, tracking, or navigating functions. Real-time classification is proposed as a research tool for exploring ways to enhance input signal-to-noise ratio as an aid in improving optical correlation. The approach can be explored with developing technology, including a current NASA Langley Research Center technology plan that involves a series of related Shuttle-borne experiments. A first-planned experiment, Feature Identification and Location Experiment (FILE), is undergoing final ground testing, and is scheduled for flight on the NASA Shuttle (STS2/flight OSTA-1) in 1980. FILE will evaluate a technique for autonomously classifying earth features into the four categories: bare land; water; vegetation; and clouds, snow, or ice.

  18. Biogeographic patterns of soil diazotrophic communities across six forests in the North America.

    PubMed

    Tu, Qichao; Deng, Ye; Yan, Qingyun; Shen, Lina; Lin, Lu; He, Zhili; Wu, Liyou; Van Nostrand, Joy D; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert B; Brown, James H; Zhou, Jizhong

    2016-06-01

    Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2)  > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2)  < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities. PMID:27085668

  19. Estimation of critical forest structure metrics through the spatial analysis of airborne laser scanner data

    NASA Astrophysics Data System (ADS)

    Andersen, Hans-Erik

    The effective management of complex forest ecosystems depends on quantification of critical forest structure components. Three important structural components include vertical foliage distribution, tree size distribution, and horizontal spatial pattern. Active remote sensing technologies, such as LIght Detection And Ranging (LIDAR), are well-suited for analysis of three-dimensional forest structure. In this research, a methodology was developed to relate the spatial distribution and pattern of LIDAR data to forest structure metrics, through implementation of stochastic modeling and image analysis techniques. An original approach to estimating the vertical distribution of canopy foliage using multiple return LIDAR is presented. A probabilistically transformed estimate of the canopy foliage profile is derived to approximate model-based profiles developed from field data. Plot-wise goodness-of-fit tests showed the transformed LIDAR-based profile provided an improved estimate of the model-based profile. A methodology is presented for estimating canopy cover and LAI using LIDAR. Two machine vision algorithms, based upon mathematical morphology and Bayesian object recognition, were developed for the spatially-explicit analysis of tree size distributions using high-density LIDAR. The mathematical morphological analysis of the canopy surface model yielded estimates of tree height that were correlated with field-based measurements (r = 0.80). The simulation-based Bayesian object recognition algorithm provided inferences on plot-wise functionals, including Lorey's height, basal area, stem number and volume. A comparison of the maximum a posteriori estimate with field-based measurements showed mean errors (+/-1 st.dev.) for: Height 3.9 +/- 8.9 ft; DBH 0.4 +/- 3.2 in; stem volume 6.9 +/- 38.8 ft3 (n = 17). A methodology was developed to quantify the error budget in automated individual tree-based forest surveys. To investigate horizontal spatial patterns, a novel approach to

  20. Spatial distribution of lacunarity of voxelized airborne LiDAR point clouds in various forest assemblages

    NASA Astrophysics Data System (ADS)

    Székely, Balázs; Kania, Adam; Standovár, Tibor; Heilmeier, Hermann

    2015-04-01

    Forest ecosystems have characteristic structure of features defined by various structural elements of different scales and vertical positions: shrub layers, understory vegetation, tree trunks, and branches. Furthermore in most of the cases there are superimposed structures in distributions (mosaic or island patterns) due to topography, soil variability, or even anthropogenic factors like past/present forest management activity. This multifaceted spatial context of the forests is relevant for many ecological issues, especially for maintaining forest biodiversity. Our aim in this study is twofold: (1) to quantify this structural variability laterally and vertically using lacunarity, and (2) to relate these results to relevant ecological features, i.e quantitatively described forest properties. Airborne LiDAR data of various quality and point density have been used for our study including a number of forested sites in Central and East Europe (partly Natura 2000 sites). The point clouds have been converted to voxel format and then converted to horizontal layers as images. These images were processed further for the lacunarity calculation. Areas of interest (AOIs) have been selected based on evaluation of the forested areas and auxiliary field information. The calculation has been performed for the AOIs for all available vertical data slices. The lacunarity function referring to a certain point and given vicinity varies horizontally and vertically, depending on the vegetation structure. Furthermore, the topography may also influence this property as the growth of plants, especially spacing and size of trees are influenced by the local topography and relief (e.g., slope, aspect). The comparisons of the flatland and hilly settings show interesting differences and the spatial patterns also vary differently. Because of the large amount of data resulting from these calculations, sophisticated methods are required to analyse the results. The large data amount then has been

  1. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Samat, Alim; Waske, Björn; Liu, Sicong; Li, Zhenhong

    2015-07-01

    Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest.

  2. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  3. Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan.

    PubMed

    Matsuda, Yosuke; Takeuchi, Kosuke; Obase, Keisuke; Ito, Shin-ichiro

    2015-10-01

    The asexual ectomycorrhizal fungus Cenococcum geophilum has a wide geographic range in diverse forest ecosystems. Although its genetic diversity has been documented at a stand or regional scale, knowledge of spatial genetic structure is limited. We studied the genetic diversity and spatial structure of C. geophilum in eight Japanese coastal pine forests with a maximum geographic range of 1364 km. A total of 225 samples were subjected to phylogenetic analysis based on the glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) followed by microsatellite analysis with five loci. The phylogenetic analysis based on GAPDH resolved three groups with most isolates falling into one dominant lineage. Microsatellite analyses generated 104 multilocus genotypes in the overall populations. We detected significant genetic variation within populations and genetic clusters indicating that high genetic diversity may be maintained by possible recombination processes at a stand scale. Although no spatial autocorrelation was detected at a stand scale, the relationship between genetic and geographic distances among the populations was significant, suggesting a pattern of isolation by distance. These results indicate that cryptic recombination events at a local scale and unknown migration events at both stand and regional scales influence spatial distribution and genetic structure of C. geophilum in coastal pine forests of Japan. PMID:26347080

  4. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    PubMed Central

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10–1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30–600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20–300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling. PMID:24204610

  5. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling. PMID:24204610

  6. Spatial analysis of early successional, temperate forest community structure

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Williams, C. A.; MacLean, R. G.; Epstein, H. E.; Vanderhoof, M. K.

    2013-12-01

    The global importance of sequestration of carbon by temperate forests makes characterizing the regrowth of these forests post-disturbance both ecologically and economically important. High intensity disturbances, such as logging, result in substantial alteration of community composition post-disturbance, creating the potential for alterations to the cycling of carbon, water, and nutrients in the ecosystem. Because logging pressure in New England continues to increase, understanding how forest ecosystems in this region respond to disturbance is crucial. This study aims to characterize interspecies interactions within New England forests by identifying synchronous and asynchronous colocation of species following a disturbance. To accomplish this, line-intercept surveys of vegetation were conducted in a clearcut forest stand located within the Harvard Forest LTER site. Survey data collected two (2010) and five (2013) years post-clearcut were analyzed using a one-dimensional Ripley's K. From 2010 to 2013, an increase in the number of interspecies relationships was observed, indicating the development of community structure. Additionally, the analysis found an increase in total vegetative cover from 2010 to 2013, and also found the majority of observed interspecies relationships to be asynchronous relationships. Together, these results imply an increase in resource competition that had the potential to drive the increase in community structure. Specifically, an increase in community structure led to the development of three distinct sub-communities: homogenous fern, tree seedling canopy over ground cover, and shrub dominated. This creates a patchy landscape in the early successional forest that allows for high species diversity (Shannon's H = 2.455). Based on the results of the Ripley's K analyses, species demonstrated definite patterns of synchronicity and asynchronicity based on both specific species interactions as well as functional group interactions. These

  7. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2016-01-01

    trend. Our analysis identifies spatially explicit patterns of long-term trends anchored with ground based evidence to highlight areas of forest that are resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective for the resource management of this area and can be applied to similar ecosystems throughout western North America.

  8. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the everglades

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Wells, C.J.

    2009-01-01

    The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.

  9. The Development of characteristic Windthrow Pattern in Forests

    NASA Astrophysics Data System (ADS)

    Agster, W.; Ruck, B.

    2003-04-01

    Catastrophic windthrow events in forests result from complex interaction of moving fluid, flexible plant canopy, and mechanical properties of trees and soil. The fundamental mechanisms, involving flow through dynamically responding porous media, tree sway, and gust penetration into canopies, in combination with transition processes at forest edges, require further research. Some studies dealt with model forests, where a few trees per time were linked with measuring equipment to obtain data on bending moments or investigated flow around aeroelastically scaled model forests. The occurence of large bending moments for single trees is not only a function of fetch from a leading edge, but often coincides with windwardly adjacent gaps in the canopy. Such gaps result from forest thinning, but also occur dynamically through gust penetration or failure of single trees. Devastation of complete stands is almost always preceeded by single treefall gaps. It is therefore very important to incorporate initial stages of stand failure in simulations concerning windthrow. For a better understanding of the effects of forest edge parameters, canopy structure and individual tree stability on windthrow, a model forest capable of dynamic response and successive failure has been constructed. First results of wind tunnel experiments on characteristic failure pattern are presented.

  10. Strategy to attain high spatial accuracy in Forest Cover Classification

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    Forest cover and its type have primary role in the processes associated with land and global change Not only the area statistics for the different type of forest covers but also the correctness of their spatial distribution matching of classified output with GIS overlay are important for process studies As maximum likelihood ML is widely practiced classification algorithm for extracting thematic information from satellite images critical evaluation was undertaken using IRS LISS-III image of Antilova tropical moist deciduous forest bounded by 17 r 50 to 17 r 56 N in latitude and 81 r 45 to 81 r 54 E in longitude for which 100 ground information in the from of GIS overlay was available GIS overlay has 9 thematic classes i e 27 13 dense DF 25 60 Semi-evergreen SE 29 38 mixed MF 0 25 bamboo BA 5 70 teak TK forests 5 88 grassland GL 4 83 podu blank PO 1 21 Settlements SET and water 0 026 WA ML classifier in general starts with equal a priori probability for all the classes method a Availability of information on cover under each thematic class enables assigning of a priori probability to each thematic class method b Method b always gave better results as compared to method a With the goal to improve classification accuracy CA the GL and MF classes that had high standard deviation of 10 29 and 11 29 in NIR band were divided into subclasses Inclusion of sub-classes in GR improved the area statistics and spatial

  11. Global spatially explicit CO2 emission metrics for forest bioenergy.

    PubMed

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2(-1) (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2(-1) for GTP, and 2.14·10(-14) ± 0.11·10(-14) °C (kg yr(-1))(-1) for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  12. Global spatially explicit CO2 emission metrics for forest bioenergy

    PubMed Central

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2−1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2−1 for GTP, and 2.14·10−14 ± 0.11·10−14 °C (kg yr−1)−1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  13. Regeneration of Rhizophora mucronata (Lamk.) in degraded mangrove forest: Lessons from point pattern analyses of local tree interactions

    NASA Astrophysics Data System (ADS)

    Olagoke, Adewole O.; Bosire, Jared O.; Berger, Uta

    2013-07-01

    Spatial structural patterns emerging from local tree interactions influence growth, mortality and regeneration processes in forest ecosystems, and decoding them enhance the understanding of ecological mechanisms affecting forest regeneration. Point-Patterns analysis was applied for the very first time to mangrove ecology to explore the spatial structure of Rhizophora mucronata regeneration in a disturbed mangrove forest; and the pattern of associations of juvenile-adult trees. R. mucronata trees were mapped in plots of 50 m × 10 m located at the seaward, central and landward edge along 50 m wide transect in the forest, and the mapped patterns were analysed with pair correlation and mark-connection functions. The population density of R. mucronata differed along the tidal gradient with the highest density in the central region, and the least near the shoreline. The study revealed that short distance propagule dispersal, resulting in the establishment of juveniles in closed distance to the mother trees, might not be the driving force for distribution of this species. The spatial structural pattern of R. mucronata population along tidal gradient showed a characteristic spatial aggregation at small scale, but randomly distributed as the distances become larger. There was a distinct spatial segregation between recruits and adult trees, and hence spatially independent. Though, adult-adult trees associations did not show a clear spatial segregation pattern; the recruit-recruit species associations exhibited significant clustering in space. Although habitat heterogeneity might be responsible for the local scale aggregation in this population, the effect of plant-plant conspecific interactions is more probable to inform the long-term structure and dynamics of the population of R. mucronata, and ditto for the entire forest.

  14. Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales.

    PubMed

    Schuldt, Andreas; Wubet, Tesfaye; Buscot, François; Staab, Michael; Assmann, Thorsten; Böhnke-Kammerlander, Martin; Both, Sabine; Erfmeier, Alexandra; Klein, Alexandra-Maria; Ma, Keping; Pietsch, Katherina; Schultze, Sabrina; Wirth, Christian; Zhang, Jiayong; Zumstein, Pascale; Bruelheide, Helge

    2015-01-01

    Subtropical and tropical forests are biodiversity hotspots, and untangling the spatial scaling of their diversity is fundamental for understanding global species richness and conserving biodiversity essential to human well-being. However, scale-dependent diversity distributions among coexisting taxa remain poorly understood for heterogeneous environments in biodiverse regions. We show that diversity relations among 43 taxa-including plants, arthropods and microorganisms-in a mountainous subtropical forest are highly nonlinear across spatial scales. Taxon-specific differences in β-diversity cause under- or overestimation of overall diversity by up to 50% when using surrogate taxa such as plants. Similar relationships may apply to half of all (sub)tropical forests-including major biodiversity hotspots-where high environmental heterogeneity causes high biodiversity and species turnover. Our study highlights that our general understanding of biodiversity patterns has to be improved-and that much larger areas will be required than in better-studied lowland forests-to reliably estimate biodiversity distributions and devise conservation strategies for the world's biodiverse regions. PMID:26658136

  15. A spatial simulation model for forest succession in the Upper Mississippi River floodplain

    USGS Publications Warehouse

    Yin, Y.; Wu, Y.; Bartell, S.M.

    2009-01-01

    A Markov-chain transition model (FORSUM) and Monte Carlo simulations were used to simulate the succession patterns and predict a long-term impact of flood on the forest structure and growth in the floodplain of the Upper Mississippi River and Illinois River. Model variables, probabilities, functions, and parameters were derived from the analysis of two comprehensive field surveys conducted in this floodplain. This modeling approach describes the establishment, growth, competition, and death of individual trees for modeled species on a 10,000-ha landscape with spatial resolution of 1 ha. The succession characteristics of each Monte Carlo simulation are summed up to describe forest development and dynamics on a landscape level. FORSUM simulated the impacts of flood intensity and frequency on species composition and dynamics in the Upper Mississippi River floodplain ecosystem. The model provides a useful tool for testing hypotheses about forest succession and enables ecologists and managers to evaluate the impacts of flood disturbances and ecosystem restoration on forest succession. The simulation results suggest that the Markov-chain Monte Carlo method is an efficient tool to help organize the existing data and knowledge of forest succession into a system of quantitative predictions for the Upper Mississippi River floodplain ecosystem. ?? 2009 Elsevier B.V.

  16. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes

    USGS Publications Warehouse

    Allen, C.D.

    2007-01-01

    Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear "pest" outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non

  17. Modeling spatial decisions with graph theory: logging roads and forest fragmentation in the Brazilian Amazon.

    PubMed

    Walker, Robert; Arima, Eugenio; Messina, Joe; Soares-Filho, Britaldo; Perz, Stephen; Vergara, Dante; Sales, Marcio; Pereira, Ritaumaria; Castro, Williams

    2013-01-01

    This article addresses the spatial decision-making of loggers and implications for forest fragmentation in the Amazon basin. It provides a behavioral explanation for fragmentation by modeling how loggers build road networks, typically abandoned upon removal of hardwoods. Logging road networks provide access to land, and the settlers who take advantage of them clear fields and pastures that accentuate their spatial signatures. In shaping agricultural activities, these networks organize emergent patterns of forest fragmentation, even though the loggers move elsewhere. The goal of the article is to explicate how loggers shape their road networks, in order to theoretically explain an important type of forest fragmentation found in the Amazon basin, particularly in Brazil. This is accomplished by adapting graph theory to represent the spatial decision-making of loggers, and by implementing computational algorithms that build graphs interpretable as logging road networks. The economic behavior of loggers is conceptualized as a profit maximization problem, and translated into spatial decision-making by establishing a formal correspondence between mathematical graphs and road networks. New computational approaches, adapted from operations research, are used to construct graphs and simulate spatial decision-making as a function of discount rates, land tenure, and topographic constraints. The algorithms employed bracket a range of behavioral settings appropriate for areas of terras de volutas, public lands that have not been set aside for environmental protection, indigenous peoples, or colonization. The simulation target sites are located in or near so-called Terra do Meio, once a major logging frontier in the lower Amazon Basin. Simulation networks are compared to empirical ones identified by remote sensing and then used to draw inferences about factors influencing the spatial behavior of loggers. Results overall suggest that Amazonia's logging road networks induce more

  18. How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest

    USGS Publications Warehouse

    Saracco, J.F.; Collazo, J.A.; Groom, M.J.

    2004-01-01

    Frugivores often track ripe fruit abundance closely across local areas despite the ephemeral and typically patchy distributions of this resource. We use spatial auto- and cross-correlation analyses to quantify spatial patterns of fruit abundance and avian frugivory across a 4-month period within a forested 4.05-ha study grid in Puerto Rico. Analyses focused on two tanager species, Spindalis portoricensis and Nesospingus speculiferus, and their principal food plants. Three broad questions are addressed: (1) at what spatial scales is fruit abundance and frugivory patchy; (2) at what spatial scales do frugivores respond to fruit abundance; and (3) to what extent do spatial patterns of frugivory overlap between bird species? Fruit patch size, species composition, and heterogeneity was variable among months, despite fruit patch locations remaining relatively consistent between months. Positive correlations between frugivory and fruit abundance suggested tanagers successfully tracked fruit abundance. Frugivory was, however, more localized than fruit abundance. Scales of spatial overlap in frugivory and monthly variation in the foraging locations of the two tanager species suggested that interspecific facilitation may have been important in determining bird foraging locations. In particular, S. portoricensis, a specialist frugivore, may have relied on the loud calls of the gregarious generalist, N. speculiferus, to find new foraging areas. Such a mechanism could help explain the formation of mixed species feeding flocks and highlights the potential importance of facilitation between species that share resources. ?? Springer-Verlag 2004.

  19. Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Germer, Sonja; Neill, Christopher; Krusche, Alex V.; Elsenbeer, Helmut

    2008-10-01

    SummaryThe brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season ( n = 14) and peak of the wet season ( n = 14) and analyzed the samples for pH and concentrations of NH4+, Na +, K +, Ca 2+, Mg 2+, Cl -, NO3-, SO42- and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of "hot" and "cold" spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor

  20. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    To evaluate the Models-3/Community Multiscale Air Quality (CMAQ) modeling system in reproducing the spatial patterns of aerosol concentrations over the country on timescales of months and years, the spatial patterns of model output are compared with those derived from observation...

  1. Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China

    PubMed Central

    Lan, Guoyu; Getzin, Stephan; Wiegand, Thorsten; Hu, Yuehua; Xie, Guishui; Zhu, Hua; Cao, Min

    2012-01-01

    Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China. PMID:23029394

  2. Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.

    2001-12-01

    We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >http://webdata.soc.hawaii.edu/climate/Frags/Frags.html

  3. Does the precipitation redistribution of the canopy sense in the moisture pattern of the forest litter?

    NASA Astrophysics Data System (ADS)

    Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán

    2013-04-01

    Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this

  4. Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests.

    PubMed

    Hůnová, Iva; Kurfürst, Pavel; Vlček, Ondřej; Stráník, Vojtěch; Stoklasová, Petra; Schovánková, Jana; Srbová, Daša

    2016-06-01

    The quantification of atmospheric deposition flux is essential for assessment of its impact on ecosystems. We present an advanced approach for the estimation of the spatial pattern of atmospheric nitrogen deposition flux over the Czech forests, collating all available measured data and model results. The aim of the presented study is to provide an improved, more complete, more reliable and more realistic estimate of the spatial pattern of nitrogen deposition flux over one country. This has so far usually been based on measurements of ambient NOx concentrations as dry deposition proxy, and [Formula: see text] and [Formula: see text] in precipitation as wet deposition proxy. For estimation of unmeasured species contributing to dry deposition, we used the CAMx Eulerian photochemical dispersion model, coupled with the Aladin regional numeric weather prediction model. The contribution of fog and dissolved organic nitrogen was estimated using a geostatistical data driven model. We prepared individual maps for particular components applying the most relevant approach and then merged all layers to obtain a final map representing the best estimate of nitrogen deposition over the Czech Republic. Final maps accounting for unmeasured species clearly indicate that the approach used so far may result in a substantial underestimation of nitrogen deposition flux. Our results showed that nitrogen deposition over the Czech forested area in 2008 was well above 2 g N m(-2) yr(-1), with almost 70% of forested area receiving 3-4 g N m(-2) yr(-1). NH3 and gaseous HNO3, contributing about 80%, dominated the dry nitrogen deposition. Estimating the unmeasured nitrogen species by modeled values provides realistic approximations of total nitrogen deposition that also result in more realistic spatial patterns that could be used as input for further studies of likely nitrogen impacts on ecosystems. PMID:26899985

  5. Competitive STDP Learning of Overlapping Spatial Patterns.

    PubMed

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet. PMID:26079753

  6. Complex temporal and spatial patterns in nonequilibrium systems

    SciTech Connect

    Swinney, H.L.

    1991-09-01

    Dynamical systems methods are being developed and used to characterize the formation and evolution of temporal and spatial patterns in systems maintained far from equilibrium. In particular, experiments and analyses are considering electrodeposition of fractal metallic clusters, pattern formation in reaction-diffusion systems, and the primary instabilities of some fluid flows. Novel reactors have been developed to search for chemical patterns (spatial variations in the chemical composition), and sustained patterns have been found in several different one- and two-dimensional geometries. Bifurcations in these patterns are studied by varying control parameters, e.g., the concentrations of the feed chemicals or the temperature. The observed two-dimensional chemical patterns range from the stationary patterns, similar to those predicted by Turing in 1952 but not observed until 1990, to chemical turbulence, which is characterized by large numbers of defects and a rapid decay of spatial correlations. These provide general insights into the formation of spatiotemporal patterns in nonequilibrium systems.

  7. [Multiple-scale analysis on spatial distribution changes of forest carbon storage in Heilongjiang Province, Northeast China based on local statistics].

    PubMed

    Liu, Chang; Li, Feng-Ri; Jia, Wei-Wei; Zhen, Zhen

    2014-09-01

    Taking 4163 permanent sample plots from Chinese National Forest Inventory (CNFI) and key ecological benefit forest monitoring plots in Heilongjiang Province as basic data, and by using local Moran I and local statistics (local mean and local standard deviation), the spatial pattern, spatial variation and spatial autocorrelation of forest carbon storage in Heilongjiang Province with four bandwidths of 25, 50, 100 and 150 km were investigated, and the change in forest carbon storage across 2005 to 2010 was studied. The results showed that the spatial distribution of forest carbon storage in Heilongjiang Province had significantly positive spatial correlation, which indicated that the changes of carbon storage tended to be similar with their neighbors without a non-random manner. Forest carbon storage was affected by environmental factors, and the spatial heterogeneity strongly existed with a large variation in the study area. The spatial distribution of forest carbon storage was significantly different between 2005 and 2010 with an increasing trend. Local statistics are useful tools for characterizing forest carbon storage change across time and space, which are visualized by ArcGIS. PMID:25757297

  8. More than just drought: complexity of recruitment patterns in Mediterranean forests.

    PubMed

    Granda, Elena; Escudero, Adrián; Valladares, Fernando

    2014-12-01

    Understanding community dynamics during early life stages of trees is critical for the prediction of future species composition. In Mediterranean forests drought is a major constraint for regeneration, but likely not the only factor determining the observed spatial patterns. We carried out a sowing experiment aimed at identifying main filters during seed-seedling transition. Specifically, we studied seed fate (predation, fungi infection, emergence) and subsequent seedling performance (mortality during the first summer and overall recruitment after 2 years) of four co-occurring Mediterranean tree species (Quercus ilex, Quercus faginea, Juniperus thurifera, Pinus nigra). We related these processes to the dominant species composition, microhabitat heterogeneity, herb cover and seed mass. The identity of the dominant species in the forest canopy was more important for recruitment than the forest canopy being dominated by conspecific vs. heterospecific species. The patterns we found suggest that biotic interactions such as facilitation (lower mortality under the canopies) and herb competition (during emergence of J. thurifera) are relevant during recruitment. Moreover, our results pointed to ontogenetic conflicts regarding the seed mass of Q. faginea and to density-dependent seed mortality for Q. ilex, rarely described in Mediterranean ecosystems. We propose that our study species experience population growth in forests dominated by heterospecifics where the recruitment success depends on habitat heterogeneity and on moderated biotic and abiotic stresses created by each species. Our results reveal patterns and mechanisms involved in recruitment constraints that add complexity to the well-known drought-related processes in Mediterranean ecosystems. PMID:25194350

  9. Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

    PubMed

    Bartlett, M K; Zhang, Y; Yang, J; Kreidler, N; Sun, S w; Lin, L; Hu, Y H; Cao, K F; Sack, L

    2016-02-01

    Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand. PMID:27145624

  10. 1987 WET DEPOSITION TEMPORAL AND SPATIAL PATTERNS IN NORTH AMERICA

    EPA Science Inventory

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. he report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate...

  11. Dynamic Analysis and Pattern Visualization of Forest Fires

    PubMed Central

    Lopes, António M.; Tenreiro Machado, J. A.

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns. PMID:25137393

  12. Using codispersion analysis to quantify and understand spatial patterns in species-environment relationships.

    PubMed

    Buckley, Hannah L; Case, Bradley S; Zimmerman, Jess K; Thompson, Jill; Myers, Jonathan A; Ellison, Aaron M

    2016-07-01

    The analysis of spatial patterns in species-environment relationships can provide new insights into the niche requirements and potential co-occurrence of species, but species abundance and environmental data are routinely collected at different spatial scales. Here, we investigate the use of codispersion analysis to measure and assess the scale, directionality and significance of complex relationships between plants and their environment in large forest plots. We applied codispersion analysis to both simulated and field data on spatially located tree species basal area and environmental variables. The significance of the observed bivariate spatial associations between the basal area of key species and underlying environmental variables was tested using three null models. Codispersion analysis reliably detected directionality (anisotropy) in bivariate species-environment relationships and identified relevant scales of effects. Null model-based significance tests applied to codispersion analyses of forest plot data enabled us to infer the extent to which environmental conditions, tree sizes and/or tree spatial positions underpinned the observed basal area-environment relationships, or whether relationships were a result of other unmeasured factors. Codispersion analysis, combined with appropriate null models, can be used to infer hypothesized ecological processes from spatial patterns, allowing us to start disentangling the possible drivers of plant species-environment relationships. PMID:27037819

  13. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps

    PubMed Central

    2013-01-01

    converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density. PMID:24161143

  14. Spatial patterns and associations between species belonging to four genera of the Lauraceae family.

    PubMed

    Li, Lin; Ye, Wan Hui; Wei, Shi Guang; Lian, Ju Yu; Huang, Zhong Liang

    2014-01-01

    Spatial distribution pattern of biological related species present unique opportunities and challenges to explain species coexistence. In this study, we explored the spatial distributions and associations among congeneric species at both the species and genus levels to explain their coexistence through examining the similarities and differences at these two levels. We first used DNA and cluster analysis to confirmed the relative relationship of eight species within a 20 ha subtropical forest in southern China. We compared Diameter at breast height (DBH) classes, aggregation intensities and spatial patterns, associations, and distributions of four closely related species pairs to reveal similarities and differences at the species and genus levels. These comparisons provided insight into the mechanisms of coexistence of these congeners. O-ring statistics were used to measure spatial patterns of species. Ω0-10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species, and g-function was used to analyze spatial associations. Our results suggested that spatial aggregations were common, but the differences between spatial patterns were reduced at the genus level. Aggregation intensity clearly reduced at the genus level. Negative association frequencies decreased at the genus level, such that independent association was commonplace among all four genera. Relationships between more closely related species appeared to be more competitive at both the species and genus levels. The importance of competition on interactions is most likely influenced by similarity in lifestyle, and the habitat diversity within the species' distribution areas. Relatives with different lifestyles likely produce different distribution patterns through different interaction process. In order to fully understand the mechanisms generating spatial distributions of coexisting siblings, further research is required to determine the spatial

  15. Three Decades of Remote Sensing Based Tropical Forests Phenological Patterns and Trends

    NASA Astrophysics Data System (ADS)

    Didan, K.

    2010-12-01

    The faint climatic seasonality of tropical rain forests is believed to be the reason these biomes lack strong and detectable seasonality. Forest seasonality is a critical element of ecosystem functions. It moderates the echo-hydrology, carbon, and nutrient exchange of the area. While deciduous forests exhibit distinct and strong seasonality, tropical forests do not, yet they play a large role in the cycling of energy and mass. Tropical forests represent a large percentage of vegetated land and their importance to the Earth system stems from their biological diversity, their habitat role, their role in regulating global weather, and the role they play in carbon storage. While Tropical forests are well buffered by their sheer size, their vulnerability to climate change is exacerbated by the human pressure. All of this begs the questions of what are the patterns and characteristic of tropical forests phenology and are there any detectable trends over the last three decades of synoptic remote sensing. These three decades comprise different episodes of droughts and an ever increasing level of human encroachment. In so far understanding the function and dynamic of these biomes, field studies continue to play a major role, but synoptic remote sensing is emerging as a viable tool to addressing the spatial and temporal scale associated with this problem. Recent studies of Brazilian rainforest with synoptic remote sensing point to a sizable seasonal signal coincident with the dry season. However, these studies were not extensive in time or space and did not look at other rainforests. Using data from AVHRR and MODIS, we generated a 30 year record of the 2 bands Enhance Vegetation Index (EVI2), and analyzed the patterns and trends of land surface phenology across all tropical forests using the homogeneous phenology cluster approach. We chose EVI because of its superior performance over these dense forests, and we selected the homogeneous phenology cluster approach to abate the

  16. Relating Spatial Patterns in Image Data to Scene Characteristics

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1983-01-01

    In remote sensing, the primary goal is accurate scene inference, in which characteristics of the scene are inferred from the image data. More effective inference of scene characteristics can be accomplished through the use of techniques that use explicit models of spatial pattern. Spatial patterns in image data are functionally related to the size and spacing of elements in the scene and to the spatial resolution of the image data. At resolutions where variance is high, scene inference techniques should rely heavily on data from the spatial domain. As variance decreases, effective scene inference will increasingly rely on spectral data.

  17. Competing resonances in spatially forced pattern-forming systems.

    PubMed

    Mau, Yair; Haim, Lev; Hagberg, Aric; Meron, Ehud

    2013-09-01

    Spatial periodic forcing can entrain a pattern-forming system in the same way as temporal periodic forcing can entrain an oscillator. The forcing can lock the pattern's wave number to a fraction of the forcing wave number within tonguelike domains in the forcing parameter plane, it can increase the pattern's amplitude, and it can also create patterns below their onset. We derive these results using a multiple-scale analysis of a spatially forced Swift-Hohenberg equation in one spatial dimension. In two spatial dimensions the one-dimensional forcing can induce a symmetry-breaking instability that leads to two-dimensional (2D) patterns, rectangular or oblique. These patterns resonate with the forcing by locking their wave-vector component in the forcing direction to half the forcing wave number. The range of this type of 2:1 resonance overlaps with the 1:1 resonance tongue of stripe patterns. Using a multiple-scale analysis in the overlap region we show that the 2D patterns can destabilize the 1:1 resonant stripes even at exact resonance. This result sheds new light on the use of spatial periodic forcing for controlling patterns. PMID:24125335

  18. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Huang, S.; Hogg, E. H.; Lieffers, V.; Qin, Y.; He, F.

    2013-12-01

    Uncertainties in the estimation of tree biomass carbon storage across large areas pose challenges for the study of forest carbon cycling at regional and global scales. In this study, we attempted to estimate the present biomass carbon storage in Alberta, Canada, by taking advantage of a spatially explicit dataset derived from a combination of forest inventory data from 1968 plots and spaceborne light detection and ranging (LiDAR) canopy height data. Ten climatic variables together with elevation, were used for model development and assessment. Four approaches, including spatial interpolation, non-spatial and spatial regression models, and decision-tree based modelling with random forests algorithm (a machine-learning technique), were compared to find the "best" estimates. We found that the random forests approach provided the best accuracy for biomass estimates. Non-spatial and spatial regression models gave estimates similar to random forests, while spatial interpolation greatly overestimated the biomass storage. Using random forests, the total biomass stock in Alberta forests was estimated to be 3.11 × 109 Mg, with the average biomass density of 77.59 Mg ha-1. At the species level, three major tree species, lodgepole pine, trembling aspen and white spruce, stocked about 1.91 × 109 Mg biomass, accounting for 61% of total estimated biomass. Spatial distribution of biomass varied with natural regions, land cover types, and species. And the relative importance of predictor variables on determining biomass distribution varied with species. This study showed that the combination of ground-based inventory data, spaceborne LiDAR data, land cover classification, climatic and environmental variables was an efficient way to estimate the quantity, distribution and variation of forest biomass carbon stocks across large regions.

  19. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Huang, S.; Hogg, E. H.; Lieffers, V.; Qin, Y.; He, F.

    2014-05-01

    Uncertainties in the estimation of tree biomass carbon storage across large areas pose challenges for the study of forest carbon cycling at regional and global scales. In this study, we attempted to estimate the present aboveground biomass (AGB) in Alberta, Canada, by taking advantage of a spatially explicit data set derived from a combination of forest inventory data from 1968 plots and spaceborne light detection and ranging (lidar) canopy height data. Ten climatic variables, together with elevation, were used for model development and assessment. Four approaches, including spatial interpolation, non-spatial and spatial regression models, and decision-tree-based modeling with random forests algorithm (a machine-learning technique), were compared to find the "best" estimates. We found that the random forests approach provided the best accuracy for biomass estimates. Non-spatial and spatial regression models gave estimates similar to random forests, while spatial interpolation greatly overestimated the biomass storage. Using random forests, the total AGB stock in Alberta forests was estimated to be 2.26 × 109 Mg (megagram), with an average AGB density of 56.30 ± 35.94 Mg ha-1. At the species level, three major tree species, lodgepole pine, trembling aspen and white spruce, stocked about 1.39 × 109 Mg biomass, accounting for nearly 62% of total estimated AGB. Spatial distribution of biomass varied with natural regions, land cover types, and species. Furthermore, the relative importance of predictor variables on determining biomass distribution varied with species. This study showed that the combination of ground-based inventory data, spaceborne lidar data, land cover classification, and climatic and environmental variables was an efficient way to estimate the quantity, distribution and variation of forest biomass carbon stocks across large regions.

  20. Spatial patterning and floral synchrony among trillium populations with contrasting histories of herbivory

    PubMed Central

    Jenkins, Michael A.; Poznanovic, Aaron J.

    2015-01-01

    We investigated the spatial patterning and floral synchrony within and among populations of a non-clonal, forest understory herb, Trillium catesbaei. Two populations of T. catesbaei within Great Smoky Mountains National Park were monitored for five years: Cades Cove (high deer abundance) and Whiteoak Sink (low deer abundance). All individuals within each population were mapped during year one and five. Only flowering and single-leaf juveniles were mapped during intervening years. Greater distances between flowering plants (plants currently in flower) and substantially lower population densities and smaller patch sizes were observed at Cades Cove versus Whiteoak Sink. However, with the exception of flowering plants, contrasting histories of herbivory did not appear to fundamentally alter the spatial patterning of the T. catesbaei population at Cades Cove, an area with a long and well-documented history of deer overabundance. Regardless of browse history, non-flowering life stages were significantly clustered at all spatial scales examined. Flowering plants were clustered in all years at Whiteoak Sink, but more often randomly distributed at Cades Cove, possibly as a result of their lower abundance. Between years, however, there was a positive spatial association between the locations of flowering plants at both sites. Flowering rate was synchronous between sites, but lagged a year behind favorable spring growing conditions, which likely allowed plants to allocate photosynthate from a favorable year towards flowering the subsequent year. Collectively, our results suggest that chronically high levels of herbivory may be associated with spatial patterning of flowering within populations of a non-clonal plant. They also highlight the persistence of underlying spatial patterns, as evidenced by high levels of spatial clustering among non-flowering individuals, and the pervasive, although muted in a population subjected to chronic herbivory, influence of precipitation and

  1. Mining Co-Location Patterns from Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Xiao, W. D.; Tang, D. Q.

    2016-06-01

    Due to the widespread application of geographic information systems (GIS) and GPS technology and the increasingly mature infrastructure for data collection, sharing, and integration, more and more research domains have gained access to high-quality geographic data and created new ways to incorporate spatial information and analysis in various studies. There is an urgent need for effective and efficient methods to extract unknown and unexpected information, e.g., co-location patterns, from spatial datasets of high dimensionality and complexity. A co-location pattern is defined as a subset of spatial items whose instances are often located together in spatial proximity. Current co-location mining algorithms are unable to quantify the spatial proximity of a co-location pattern. We propose a co-location pattern miner aiming to discover co-location patterns in a multidimensional spatial data by measuring the cohesion of a pattern. We present a model to measure the cohesion in an attempt to improve the efficiency of existing methods. The usefulness of our method is demonstrated by applying them on the publicly available spatial data of the city of Antwerp in Belgium. The experimental results show that our method is more efficient than existing methods.

  2. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  3. Within and Among Patch Variability in Patterns of Insect Herbivory Across a Fragmented Forest Landscape

    PubMed Central

    Maguire, Dorothy Y.; Buddle, Christopher M.; Bennett, Elena M.

    2016-01-01

    Fragmentation changes the spatial patterns of landscapes in ways that can alter the flow of materials and species; however, our understanding of the consequences of this fragmentation and flow alteration for ecosystem processes and ecosystem services remains limited. As an ecological process that affects many ecosystem services and is sensitive to fragmentation, insect herbivory is a good model system for exploring the role of fragmentation, and the resulting spatial patterns of landscapes, in the provision of ecosystem services. To refine our knowledge of how changes in landscape pattern affect insect herbivory, we quantified the combined influence of among patch (patch area and patch connectivity) and within patch (location within patch; canopy, edge, interior) factors on amounts of insect herbivory in a fragmented forest landscape. We measured herbivory in 20 forest patches of differing size and connectivity in southern Quebec (Canada). Within each patch, herbivory was quantified at the interior, edge, and canopy of sugar maple trees during the spring and summer of 2011 and 2012. Results show that connectivity affects herbivory differently depending on the location within the patch (edge, interior, canopy), an effect that would have gone unnoticed if samples were pooled across locations. These results suggest considering structure at both the patch and within patch scales may help to elucidate patterns when studying the effects of fragmentation on ecosystem processes, with implications for the services they support. PMID:26938457

  4. Spatial heterogeneity of forest soil carbon and nitrogen controls nitrogen transformations and trace gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale spatial heterogeneity of soil nitrogen (N) and carbon (C) pools and net transformation processes in forested ecosystems are not well understood. Two forests in central Oregon (Black Butte and Santiam Pass) were used to test the hypothesis that spatial distribution of soil nutrients cont...

  5. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  6. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  7. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  8. Spatial pattern in aerosol insecticide deposition inside a flour mill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol insecticides are commonly used for management of stored-product pests inside food facilities, but the physical complexity of the interior of most food facilities may influence the dispersal and deposition of aerosol droplets and create spatial variation in efficacy. The spatial pattern in ae...

  9. Analysis of Spatial Voting Patterns: An Approach in Political Socialization

    ERIC Educational Resources Information Center

    Klimasewski, Ted

    1973-01-01

    Passage of the 26th Amendment gave young adults the right to vote. This study attempts to further student understanding of the electoral process by presenting a method for analyzing spatial voting patterns. The spatial emphasis adds another dimension to the temporal and behavioral-structural approaches in studying the American electoral system.…

  10. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  11. Small-scale spatial variability of sub-canopy radiant energy during snowmelt in decidous and confierous forest patches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mountainous, forested environments, snowcover dynamics exert a strong control on hydrologic and atmospheric processes. Snowcover ablation patterns in forests are controlled by a complex combination of depositional patterns coupled with radiative and turbulent heat flux patterns related to topogr...

  12. Multi-spatial analysis of aeolian dune-field patterns

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  13. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar

    2013-04-01

    The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.

  14. Pattern Formation in Spatially Discrete Systems

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner

    The preceding chapters have dealt with the spatiotemporal behavior of spatially continuous systems. We now turn our attention to the dynamical behavior and stability properties of spatially discrete systems. A wide variety of phenomena in chemistry, biology, physics, and other fields involve the coupling between nonlinear, discrete units. Examples include arrays of Josephson junctions, chains of coupled diode resonators, coupled chemical or biochemical reactors, myelinated nerve fibers, neuronal networks, and patchy ecosystems. Such networks of coupled nonlinear units often combine dynamical and structural complexity [422]. Cells in living tissues, for example, are arranged in a variety of geometries. One-dimensional rings of cells were already considered by Turing [440]. Other types of lattices, such as open-ended linear arrays, tubes, rectangular and hexagonal arrays, and irregular arrangements in two or three dimensions are also found, see for example [5]. Cells interact with adjacent cells in various distinct ways. For example, signaling between cells may occur via diffusion through gap junctions [352, 230] or by membrane-bound proteins, juxtacrine signaling [339, 340, 471].

  15. Narrow-linear and small-area forest disturbance detection and mapping from high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    He, Yuhong; Franklin, Steven E.; Guo, Xuling; Stenhouse, Gordon B.

    2009-12-01

    Widespread disturbance has brought a large amount of narrow-linear and small-area disturbance features (e.g., trails, seismic lines, forest roads, well sites, and cut blocks) to forest areas throughout the past decade. This issue has prompted research into finding the appropriate data and methods for mapping these narrow-linear and small-area disturbance features in order to examine their impacts on wildlife habitat. In this paper, we first described the characteristics of small forest disturbances and presented the nature of problem. We then presented a framework for detecting and extracting narrow-linear and small-area forest disturbance features. Using a SPOT 5 high spatial detail image and existing GIS databases, we applied the framework to map narrow-linear and small-area forest disturbance features in a Bear Management area (BMA) in the eastern slopes of the Rocky Mountains in Alberta, Canada. The results indicated that the proposed framework produced accurate disturbance maps for cut blocks, and forest roads & trails. The high errors of omission in the cut lines map were attributed to inconsistent geometric and radiometric patterns in the 'rarely-used' or 'old' cut lines. The study confirmed the feasibility of rapidly updating incomplete GIS data with linear and small-area disturbance features extracted from high spatial detail SPOT imagery. Future work will be directed towards improvement of the framework and the extraction strategy to remove a large amount of spurious features and to increase accuracy for cut lines mapping.

  16. Does livestock grazing influence spatial patterns of woody plant proliferation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of woody plant proliferation in grasslands and savannas influence rates of erosion, spread of disturbance, and nutrient pools.  Spatial pattern is the outcome of plant dispersal, recruitment, competition/facilitation, and disturbance. We quantified effects of livestock grazing, a widely cit...

  17. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    PubMed

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales

  18. Spatial disparities of regional forest land change based on ESDA and GIS at the county level in Beijing-Tianjin-Hebei area

    NASA Astrophysics Data System (ADS)

    Xie, Hualin; Kung, Chih-Chun; Zhao, Yuluan

    2012-12-01

    Forest land is the essential and important natural resource that provides strong support for human survival and development. Research on forest land changes at the county level about its characteristics, rules, and spatial patterns is, therefore, important for regional resource protection and the sustainable development of the social economy. In this study we selected the GIS and Geoda software package to explore the spatial disparities of forest land changes at the Beijing-Tianjin-Hebei area county level, based on the global and local spatial autocorrelation analyses of exploratory spatial data. The results show that: 1) during 1985-2000, the global spatial autocorrelation of forest land change is significant in the study area. The global Moran's I value is 0.3122 for the entire time period and indicates significant positive spatial correlation ( p < 0.05). Moran's I value of forest land change decreases from 0.3084 at the time stage I to 0.3024 at the time stage II; 2) the spatial clustering characteristics of forest land changes appear on the whole in Beijing-Tianjin-Hebei area. Moran's I value decreases from the time stage I to time stage II, which means that trend of spatial clustering of forest land change is weakened in the Beijing-Tianjin-Hebei area; 3) the grid map of the local Moran's I for each county reflects local spatial homogeneity of forest land change, which means that spatial clustering about regions of high value and low value is especially significant. The regions with "High-High" correlation are mainly located in the north hilly area. However, the regions with "Low-Low" correlation were distributed in the middle of the study area. Therefore, protection strategies and concrete measures should be put in place for each regional cluster in the study area.

  19. [Spatial distribution pattern of Pontania dolichura larvae and sampling technique].

    PubMed

    Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan

    2006-03-01

    In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined. PMID:16724746

  20. Spatial patterns of carbonate biomineralization in biofilms.

    PubMed

    Li, Xiaobao; Chopp, David L; Russin, William A; Brannon, Paul T; Parsek, Matthew R; Packman, Aaron I

    2015-11-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112

  1. Spatial Patterns of Carbonate Biomineralization in Biofilms

    PubMed Central

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112

  2. Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest

    USGS Publications Warehouse

    Anderson, J.E.; Ducey, M.J.; Fast, A.; Martin, M.E.; Lepine, L.; Smith, M.-L.; Lee, T.D.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, B.E.; Blair, J.B.

    2011-01-01

    Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA's Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p < 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event. ?? 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Spatial pattern formation in the lung

    PubMed Central

    Donovan, Graham M.; Kritter, Thibaut

    2014-01-01

    Clustered ventilation defects are a hallmark of asthma, typically seen via imaging studies during asthma attacks. The mechanisms underlying the formation of these clusters is of great interest in understanding asthma. Because the clusters vary from event to event, many researchers believe they occur due to dynamic, rather than structural, causes. To study the formation of these clusters, we formulate and analyze a lattice-based model of the lung, considering both the role of airway bistability and a mechanism for organizing the spatial structure. Within this model we show how and why the homogeneous ventilation solution becomes unstable, and under what circumstances the resulting heterogeneous solution is a clustered solution. The size of the resulting clusters is shown to arise from structure of the eigenvalues and eigenvectors of the system, admitting not only clustered solutions but also (aphysical) checkerboard solutions. We also consider the breathing efficiency of clustered solutions in severely constricted lungs, showing that stabilizing the homogeneous solution may be advantageous in some circumstances. Extensions to hexagonal and cubic lattices are also studied. PMID:24810407

  4. Spatially Explicit Forest Characteristics of Europe Integrating NFI and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Moreno, A. L. S.; Neumann, M.; Hasenauer, H.

    2015-12-01

    Seeing the forest through the trees in Europe is easier said than done. European forest data is nationally collected using different methodologies and sampling techniques. This data can be difficult to obtain, and if made available often lacks spatial information and might only be provided in the local language. This makes analyzing forests in Europe difficult. The reporting systems of Food and Agriculture Organization (FAO) and the European Forestry Institute (EFI) permit several acquisition and calculation methodologies which lead to difficulties in comparing country level data. We have collected spatially explicit national forest inventory (NFI) data from 13 countries in Europe and harmonized these datasets. Using this data along with remote sensing data products we have derived spatially explicit forest characteristics maps of Europe on a 0.017o resolution representing the time period 2000-2010. We have created maps for every NFI variable in our dataset including carbon stock, forest age, forest height, volume, basal area, etc. Cross-validating this data shows that this method produces accurate results for most variables while variables pertaining to forest cover type have lower accuracy. This data is in line with data from FAO and EFI in most cases. However, our dataset allows us to identify large incongruities quickly in FAO and EFI data. Our spatially explicit data is also accurate at predicting forest characteristics in areas where we have no NFI data. This data set provides a consistent harmonized view of the state of European forests in a way hitherto not possible, giving researchers the ability to analyze forests spatially across the entire continent. This method can also be useful for those researching areas that have little or no NFI data or areas where data acquisition is difficult or impossible. This data can also quickly give policy makers a greater view of how forest management practices have shaped our current European forests.

  5. Mixing carrots and sticks to conserve forests in the Brazilian Amazon: a spatial probabilistic modeling approach.

    PubMed

    Börner, Jan; Marinho, Eduardo; Wunder, Sven

    2015-01-01

    Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix. PMID:25650966

  6. Mixing Carrots and Sticks to Conserve Forests in the Brazilian Amazon: A Spatial Probabilistic Modeling Approach

    PubMed Central

    Börner, Jan; Marinho, Eduardo; Wunder, Sven

    2015-01-01

    Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix. PMID:25650966

  7. Spatial variability and temporal trends in water-use efficiency of European forests.

    PubMed

    Saurer, Matthias; Spahni, Renato; Frank, David C; Joos, Fortunat; Leuenberger, Markus; Loader, Neil J; McCarroll, Danny; Gagen, Mary; Poulter, Ben; Siegwolf, Rolf T W; Andreu-Hayles, Laia; Boettger, Tatjana; Dorado Liñán, Isabel; Fairchild, Ian J; Friedrich, Michael; Gutierrez, Emilia; Haupt, Marika; Hilasvuori, Emmi; Heinrich, Ingo; Helle, Gerd; Grudd, Håkan; Jalkanen, Risto; Levanič, Tom; Linderholm, Hans W; Robertson, Iain; Sonninen, Eloni; Treydte, Kerstin; Waterhouse, John S; Woodley, Ewan J; Wynn, Peter M; Young, Giles H F

    2014-12-01

    The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data. PMID:25156251

  8. Modelling the Spatial Variability of Fuel Moisture Across a Heterogeneous Forested Landscape

    NASA Astrophysics Data System (ADS)

    van der Kamp, D.; Moore, D.; McKendry, I. G.

    2015-12-01

    Fuel moisture pays an important role in determining the intensity, behaviour and spatial patterns of forest fires and can vary significantly across a forested landscape. We present a set of models designed to quantify the spatial patterns of near surface drying potential across a landscape with significant variability in above canopy radiation load and canopy coverage. We examined the degree to which these two factors drive drying potential and whether relatively wet and non-burnable areas persist in the landscape during the fire season. Specifically, we measured near-surface temperature and humidity at sites across the landscape, as well as precipitation, solar radiation, and wind speed at a subset of these sites. These observations were then used to evaluate, train, and drive a fuel moisture model that includes sub-components for canopy interception of both precipitation and radiation. The precipitation interception is modelled using a Rutter model approach that accounts for evaporation from the canopy. Radiation interception was modelled using hemispherical photos of the canopy combined with modelled sun locations and ratios of direct to diffuse radiation. A novel model was developed to simulate the moisture of standardized fuel sticks at four different size classes and was evaluated using an independent dataset. Finally, the modelled fuel moisture was used to estimate potential fire-line intensity and ignition probability. Preliminary results indicate that downwelling longwave radiation from the canopy is counteracted by less radiation during the day. This balance leads to smaller spatial variability of daytime minimum fuel moisture which is influenced by both night time and daytime conditions due to moisture storage.

  9. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.

    PubMed

    Smithwick, Erica A H; Naithani, Kusum J; Balser, Teri C; Romme, William H; Turner, Monica G

    2012-01-01

    Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R²<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st) Century. PMID:23226324

  10. Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance

    PubMed Central

    Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

    2012-01-01

    Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

  11. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  12. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B., III; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  13. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  14. Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales

    PubMed Central

    Schuldt, Andreas; Wubet, Tesfaye; Buscot, François; Staab, Michael; Assmann, Thorsten; Böhnke-Kammerlander, Martin; Both, Sabine; Erfmeier, Alexandra; Klein, Alexandra-Maria; Ma, Keping; Pietsch, Katherina; Schultze, Sabrina; Wirth, Christian; Zhang, Jiayong; Zumstein, Pascale; Bruelheide, Helge

    2015-01-01

    Subtropical and tropical forests are biodiversity hotspots, and untangling the spatial scaling of their diversity is fundamental for understanding global species richness and conserving biodiversity essential to human well-being. However, scale-dependent diversity distributions among coexisting taxa remain poorly understood for heterogeneous environments in biodiverse regions. We show that diversity relations among 43 taxa—including plants, arthropods and microorganisms—in a mountainous subtropical forest are highly nonlinear across spatial scales. Taxon-specific differences in β-diversity cause under- or overestimation of overall diversity by up to 50% when using surrogate taxa such as plants. Similar relationships may apply to half of all (sub)tropical forests—including major biodiversity hotspots—where high environmental heterogeneity causes high biodiversity and species turnover. Our study highlights that our general understanding of biodiversity patterns has to be improved—and that much larger areas will be required than in better-studied lowland forests—to reliably estimate biodiversity distributions and devise conservation strategies for the world's biodiverse regions. PMID:26658136

  15. [Applicability analysis of spatially explicit model of leaf litter in evergreen broad-leaved forests].

    PubMed

    Zhao, Qing-Qing; Liu, He-Ming; Jonard, Mathieu; Wang, Zhang-Hua; Wang, Xi-Hua

    2014-11-01

    The spatially explicit model of leaf litter can help to understand its dispersal process, which is very important to predict the distribution pattern of leaves on the surface of the earth. In this paper, the spatially explicit model of leaf litter was developed for 20 tree species using litter trap data from the mapped forest plot in an evergreen broad-leaved forest in Tiantong, Zhejiang Pro- vince, eastern China. Applicability of the model was analyzed. The model assumed an allometric equation between diameter at breast height (DBH) and leaf litter amount, and the leaf litter declined exponentially with the distance. Model parameters were estimated by the maximum likelihood method. Results showed that the predicted and measured leaf litter amounts were significantly correlated, but the prediction accuracies varied widely for the different tree species, averaging at 49.3% and ranging from 16.0% and 74.0%. Model qualities of tree species significantly correlated with the standard deviations of the leaf litter amount per trap, DBH of the tree species and the average leaf dry mass of tree species. There were several ways to improve the forecast precision of the model, such as installing the litterfall traps according to the distribution of the tree to cover the different classes of the DBH and distance apart from the parent trees, determining the optimal dispersal function of each tree species, and optimizing the existing dispersal function. PMID:25898606

  16. Cooperation in Harsh Environments and the Emergence of Spatial Patterns

    PubMed Central

    Smaldino, Paul E.

    2013-01-01

    This paper concerns the confluence of two important areas of research in mathematical biology: spatial pattern formation and cooperative dilemmas. Mechanisms through which social organisms form spatial patterns are not fully understood. Prior work connecting cooperation and pattern formation has often included unrealistic assumptions that shed doubt on the applicability of those models toward understanding real biological patterns. I investigated a more biologically realistic model of cooperation among social actors. The environment is harsh, so that interactions with cooperators are strictly needed to survive. Harshness is implemented via a constant energy deduction. I show that this model can generate spatial patterns similar to those seen in many naturally-occuring systems. Moreover, for each payoff matrix there is an associated critical value of the energy deduction that separates two distinct dynamical processes. In low-harshness environments, the growth of cooperator clusters is impeded by defectors, but these clusters gradually expand to form dense dendritic patterns. In very harsh environments, cooperators expand rapidly but defectors can subsequently make inroads to form reticulated patterns. The resulting web-like patterns are reminiscent of transportation networks observed in slime mold colonies and other biological systems. PMID:24277977

  17. Cooperation in Harsh Environments and the Emergence of Spatial Patterns.

    PubMed

    Smaldino, Paul E

    2013-11-01

    This paper concerns the confluence of two important areas of research in mathematical biology: spatial pattern formation and cooperative dilemmas. Mechanisms through which social organisms form spatial patterns are not fully understood. Prior work connecting cooperation and pattern formation has often included unrealistic assumptions that shed doubt on the applicability of those models toward understanding real biological patterns. I investigated a more biologically realistic model of cooperation among social actors. The environment is harsh, so that interactions with cooperators are strictly needed to survive. Harshness is implemented via a constant energy deduction. I show that this model can generate spatial patterns similar to those seen in many naturally-occuring systems. Moreover, for each payoff matrix there is an associated critical value of the energy deduction that separates two distinct dynamical processes. In low-harshness environments, the growth of cooperator clusters is impeded by defectors, but these clusters gradually expand to form dense dendritic patterns. In very harsh environments, cooperators expand rapidly but defectors can subsequently make inroads to form reticulated patterns. The resulting web-like patterns are reminiscent of transportation networks observed in slime mold colonies and other biological systems. PMID:24277977

  18. Spatial distribution pattern of vanadium in hydric landscapes

    NASA Astrophysics Data System (ADS)

    Fiedler, Sabine; Breuer, Jörn; Palmer, Iris; Berger, Jochen

    2010-05-01

    landscapes. Independent from the parent material, we found a distinct spatial pattern of V, which reflected that of the local redox environment: Horizons/pedons with oxic conditions revealed a positive correlation between V content and Fe content. In this case, iron oxides act as an important sink for dissolved V which originated from other locations of the catena. Poorly drained soils, such as Stagnosols for example, promote both Fe and V reduction, which is coupled to their removal from the pedons by leaching. It can be demonstrated that the element-specific Eh window for differential reduction is very narrow. The spatial distribution of both elements shows that high V contents are often associated with low Fe contents. It is therefore assumed that a reducing environment promotes Fe3+ reduction, while maintaining while maintaining V stable.

  19. Forest stand development patterns in the southern Appalachians

    SciTech Connect

    Copenheaver, C.A.; Matthews, J.M.; Showalter, J.M.; Auch, W.E.

    2006-07-01

    Composition of southern Appalachian forests are influenced by disturbance and topography. This study examined six stands in southwestern Virginia. Within each stand, a 0.3-ha plot was established, and all trees and saplings were measured and aged. Burned stands had lower densities of saplings and small trees, but appeared to have greater Quercus regeneration. Ice damage from the 1994 ice storm was most evident in Pinus strobus saplings. A stand on old coal-mine slag appeared to be experiencing a slower rate of succession than other sites. A variety of stand development patterns were observed, but one common pattern was that oak-hickory overstories had different species in their understory, which may indicate future changes in species composition.

  20. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    USGS Publications Warehouse

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  1. Impact of spatial resolution on correlation between segmentation evaluation metrics and forest classification accuracy

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Ritlop, Klemen; Äńurić, Nataša.; Čotar, Klemen; Oštir, Krištof

    2015-10-01

    Slovenia is one of the most forested countries in Europe. Its forest management authorities need information about the forest extent and state, as their responsibility lies in forest observation and preservation. Together with appropriate geographic information system mapping methods the remotely sensed data represent essential tool for an effective and sustainable forest management. Despite the large data availability, suitable mapping methods still present big challenge in terms of their speed which is often affected by the huge amount of data. The speed of the classification method could be maximised, if each of the steps in object-based classification was automated. However, automation is hard to achieve, since segmentation requires choosing optimum parameter values for optimal classification results. This paper focuses on the analysis of segmentation and classification performance and their correlation in a range of segmentation parameter values applied in the segmentation step. In order to find out which spatial resolution is still suitable for forest classification, forest classification accuracies obtained by using four images with different spatial resolutions were compared. Results of this study indicate that all high or very high spatial resolutions are suitable for optimal forest segmentation and classification, as long as appropriate scale and merge parameters combinations are used in the object-based classification. If computation interval includes all segmentation parameter combinations, all segmentation-classification correlations are spatial resolution independent and are generally high. If computation interval includes over- or optimal-segmentation parameter combinations, most segmentation-classification correlations are spatial resolution dependent.

  2. Metacommunity Composition of Web-Spiders in a Fragmented Neotropical Forest: Relative Importance of Environmental and Spatial Effects

    PubMed Central

    Baldissera, Ronei; Rodrigues, Everton N. L.; Hartz, Sandra M.

    2012-01-01

    The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta

  3. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    PubMed

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  4. Spatial Overlap between Environmental Policy Instruments and Areas of High Conservation Value in Forest

    PubMed Central

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M.; Barton, David N.

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  5. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  6. Leaf Caloric Value from Tropical to Cold-Temperate Forests: Latitudinal Patterns and Linkage to Productivity

    PubMed Central

    Song, Guangyan; Hou, Jihua; Li, Ying; Zhang, Jiahui; He, Nianpeng

    2016-01-01

    Leaf caloric value (LCV) reflects the capacity of a leaf to fix and accumulate solar energy through photosynthesis. We systematically investigated the LCV of 745 plant species in 9 forests, representing a range of tropical to cold-temperate forests along the 4700-km North-South Transect of Eastern China. The goals were to explore the latitudinal patterns of LCV at the levels of species, plant functional group, and community and to establish the relationship between LCV and gross primary productivity (GPP). Our results showed that LCV for all species ranged from 12.85 to 22.15 KJ g–1 with an average of 18.46 KJ g–1. Plant functional groups had a significant influence on LCV, with trees > shrubs > herbs, conifers > broadleaved trees, and evergreens > deciduous trees. The different values of LCV represented the long-term evolution and adaptation of plant species to different environments. Unexpectedly, no apparent latitudinal trends of LCV at community level were observed, although LCV at the species level clearly decreased with increasing latitude. Use efficiency of LCV (CUE, gC KJ–1), defined as the ratio of GPP to total LCV at the community level, varied quadratic with latitude and was lower in the middle latitudes. Climate (temperature and precipitation) may explain 52.9% of the variation in spatial patterns of CUE, which was positively correlated with aridity. Our findings are the first large-scale report of the latitudinal patterns of LCV in forests at the species, plant functional group, and community levels and provide new insights into the relationship between LCV and ecosystem functions in forest communities. PMID:27341474

  7. Leaf Caloric Value from Tropical to Cold-Temperate Forests: Latitudinal Patterns and Linkage to Productivity.

    PubMed

    Song, Guangyan; Hou, Jihua; Li, Ying; Zhang, Jiahui; He, Nianpeng

    2016-01-01

    Leaf caloric value (LCV) reflects the capacity of a leaf to fix and accumulate solar energy through photosynthesis. We systematically investigated the LCV of 745 plant species in 9 forests, representing a range of tropical to cold-temperate forests along the 4700-km North-South Transect of Eastern China. The goals were to explore the latitudinal patterns of LCV at the levels of species, plant functional group, and community and to establish the relationship between LCV and gross primary productivity (GPP). Our results showed that LCV for all species ranged from 12.85 to 22.15 KJ g-1 with an average of 18.46 KJ g-1. Plant functional groups had a significant influence on LCV, with trees > shrubs > herbs, conifers > broadleaved trees, and evergreens > deciduous trees. The different values of LCV represented the long-term evolution and adaptation of plant species to different environments. Unexpectedly, no apparent latitudinal trends of LCV at community level were observed, although LCV at the species level clearly decreased with increasing latitude. Use efficiency of LCV (CUE, gC KJ-1), defined as the ratio of GPP to total LCV at the community level, varied quadratic with latitude and was lower in the middle latitudes. Climate (temperature and precipitation) may explain 52.9% of the variation in spatial patterns of CUE, which was positively correlated with aridity. Our findings are the first large-scale report of the latitudinal patterns of LCV in forests at the species, plant functional group, and community levels and provide new insights into the relationship between LCV and ecosystem functions in forest communities. PMID:27341474

  8. Long-Term Monitoring of Dzanga Bai Forest Elephants: Forest Clearing Use Patterns

    PubMed Central

    Turkalo, Andrea K.; Wrege, Peter H.; Wittemyer, George

    2013-01-01

    Individual identification of the relatively cryptic forest elephant (Loxodonta cyclotis) at forest clearings currently provides the highest quality monitoring data on this ecologically important but increasingly threatened species. Here we present baseline data from the first 20 years of an individually based study of this species, conducted at the Dzanga Clearing, Central African Republic. A total of 3,128 elephants were identified over the 20-year study (1,244 adults; 675 females, 569 males). It took approximately four years for the majority of elephants visiting the clearing to be identified, but new elephants entered the clearing every year of the study. The study population was relatively stable, varying from 1,668 to 1,864 individuals (including juveniles and infants), with increasingly fewer males than females over time. The age-class distribution for females remained qualitatively unchanged between 1995 and 2010, while the proportion of adult males decreased from 20% to 10%, likely reflecting increased mortality. Visitation patterns by individuals were highly variable, with some elephants visiting monthly while others were ephemeral users with visits separated by multiple years. The number of individuals in the clearing at any time varied between 40 and 100 individuals, and there was little evidence of a seasonal pattern in this variation. The number of elephants entering the clearing together (defined here as a social group) averaged 1.49 (range 1–12) for males and 2.67 (range 1–14) for females. This collation of 20 years of intensive forest elephant monitoring provides the first detailed, long term look at the ecology of bai visitation for this species, offering insight to the ecological significance and motivation for bai use, social behavior, and threats to forest elephants. We discuss likely drivers (rainfall, compression, illegal killing, etc.) influencing bai visitation rates. This study provides the baseline for future demographic and behavioral

  9. Alternative Modelling Approach to Spatial Harvest Scheduling with Respect to Fragmentation of Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Marušák, Róbert; Kašpar, Jan; Hlavatý, Robert; Kotek, Václav; Kuželka, Karel; Vopěnka, Petr

    2015-11-01

    Fragmentation of the forests affects forest ecosystems by changing the composition, shape, and configuration of the resulting patches. Subsequently, the prevailing conditions vary between patches. The exposure to the sun decreases from the patch boundary to the patch interior and this forms core and edge areas within each patch. Forest harvesting and, in particular, the clear-cut management system which is still preferred in many European countries has a significant impact on forest fragmentation. There are many indices of measuring fragmentation: non-spatial and spatial. The non-spatial indices measure the composition of patches, while the spatial indices measure both the shape and configuration of the resulting patches. The effect of forest harvesting on fragmentation, biodiversity, and the environment is extensively studied; however, the integration of fragmentation indices in the harvest scheduling model is a new, novel approach. This paper presents a multi-objective integer model of harvest scheduling for clear-cut management system and presents a case study demonstrating its use. Harvest balance and sustainability are ensured by the addition of constraints from the basic principle of the regulated forest model. The results indicate that harvest balance and sustainability can be also achieved in minimizing fragmentation of forest ecosystems. From the analyses presented in this study, it can be concluded that integration of fragmentation into harvest scheduling can provide better spatial structure. It depends on the initial spatial and age structure. It was confirmed that it is possible to find compromise solution while minimizing fragmentation and maximizing harvested area.

  10. Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains

    PubMed Central

    Chuang, Ting-Wu; Hockett, Christine W.; Kightlinger, Lon; Wimberly, Michael C.

    2012-01-01

    Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003–2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case–control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity. PMID:22492161

  11. Spatially Patterned Electrical Stimulation to Enhance Resolution of Retinal Prostheses

    PubMed Central

    Hottowy, Paweł; Mathieson, Keith; Gunning, Deborah E.; Dąbrowski, Władysław; Litke, Alan M.; Chichilnisky, E. J.

    2014-01-01

    Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we investigate the use of spatial patterns of current injection to increase the spatial resolution of stimulation, using high-density multielectrode recording and stimulation of identified ganglion cells in isolated macaque retina. As previously shown, current passed through a single electrode typically induced a single retinal ganglion cell spike with submillisecond timing precision. Current passed simultaneously through pairs of neighboring electrodes modified the probability of activation relative to injection through a single electrode. This modification could be accurately summarized by a piecewise linear model of current summation, consistent with a simple biophysical model based on multiple sites of activation. The generalizability of the piecewise linear model was tested by using the measured responses to stimulation with two electrodes to predict responses to stimulation with three electrodes. Finally, the model provided an accurate prediction of which among a set of spatial stimulation patterns maximized selective activation of a cell while minimizing activation of a neighboring cell. The results demonstrate that tailored multielectrode stimulation patterns based on a piecewise linear model may be useful in increasing the spatial resolution of retinal prostheses. PMID:24695706

  12. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  13. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  14. Spatial distribution pattern of termite in Endau Rompin Plantation

    NASA Astrophysics Data System (ADS)

    Jalaludin, Nur-Atiqah; Rahim, Faszly

    2015-09-01

    We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.

  15. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

    SciTech Connect

    Roman, Miguel O.; Schaaf, Crystal; Woodcock, Curtis E.; Strahler, Alan; Yang, Xiaoyuan; Braswell, Rob H.; Curtis, Peter; Davis, Kenneth J.; Dragoni, Danilo; Goulden, Michael L.; Gu, Lianhong; Hollinger, David Y; Meyers, Tilden P.; Wilson, Tim B.; Munger, J. William; Wofsy, Steve; Privette, Jeffrey L.; Richardson, Andrew D.

    2009-11-01

    A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel.

  16. Spatial Pattern Analysis of Heavy Metals in Beijing Agricultural Soils Based on Spatial Autocorrelation Statistics

    PubMed Central

    Huo, Xiao-Ni; Zhang, Wei-Wei; Sun, Dan-Feng; Li, Hong; Zhou, Lian-Di; Li, Bao-Guo

    2011-01-01

    This study explored the spatial pattern of heavy metals in Beijing agricultural soils using Moran’s I statistic of spatial autocorrelation. The global Moran’s I result showed that the spatial dependence of Cr, Ni, Zn, and Hg changed with different spatial weight matrixes, and they had significant and positive global spatial correlations based on distance weight. The spatial dependence of the four metals was scale-dependent on distance, but these scale effects existed within a threshold distance of 13 km, 32 km, 50 km, and 29 km, respectively for Cr, Ni, Zn, and Hg. The maximal spatial positive correlation range was 57 km, 70 km, 57 km, and 55 km for Cr, Ni, Zn, and Hg, respectively and these were not affected by sampling density. Local spatial autocorrelation analysis detected the locations of spatial clusters and spatial outliers and revealed that the pollution of these four metals occurred in significant High-high spatial clusters, Low-high, or even High-low spatial outliers. Thus, three major areas were identified and should be receiving more attention: the first was the northeast region of Beijing, where Cr, Zn, Ni, and Hg had significant increases. The second was the southeast region of Beijing where wastewater irrigation had strongly changed the content of metals, particularly of Cr and Zn, in soils. The third area was the urban fringe around city, where Hg showed a significant increase. PMID:21776217

  17. Uncoupling the complexity of forest soil variation: influence of terrain attributes, spectral indices, and spatial variability

    EPA Science Inventory

    Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...

  18. 1988 Wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  19. 1988 Wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  20. On the spatial organization of the ridge slough patterned landscape

    NASA Astrophysics Data System (ADS)

    Casey, S. T.; Cohen, M. J.; Acharya, S.; Kaplan, D. A.; Jawitz, J. W.

    2015-03-01

    A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (southern Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority, but requires an understanding of pattern genesis mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the time scales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield a central feature of ridge-slough patterning (patch elongation in the direction of historical flow), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch-area scaling, and spatial periodicity) to establish rigorous criteria for evaluating model performance, and to inform controls on pattern variation across the contemporary system. Mean water depth explained significant variation in ridge density, total perimeter, and length : width ratios, illustrating significant pattern response to existing hydrologic gradients. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape-scale. Critically, this challenges widespread invocation of meso-scale negative feedbacks for explaining ridge-slough pattern origins

  1. [Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains].

    PubMed

    Li, Yan-Li; Yang, Hua; Kang, Xin-Gang; Wang, Yan; Yue, Gang; Shen, Lin

    2014-02-01

    Based on fieldwork on a plot of 60 m x 60 m in the Changbai Mountain area of Northeast China in August 2012, the spatial distribution pattern and heterogeneity of natural regeneration in the spruce-fir mixed broadleaf-conifer forest were analyzed using semi-variograms, fractal dimensions and Kriging interpolation methods. The results showed that Abies nephrolepis and Acer mono were the most common regeneration species, accounting for 87.4% of the total. The regeneration seedlings and saplings presented an aggregate distribution pattern with the biggest radius of 9.93 m. Distinct spatial autocorrelation existed among regeneration seedlings and saplings, with 88.7% of variation coming from structure factors (biological and ecological properties and environmental heterogeneity) and 11.3% from random factors. The spatial distribution of the regeneration seedlings and saplings presented anisotropy, with the smallest fractal dimension and strongest spatial heterogeneity from north to south, and the highest fractal dimension and weakest spatial heterogeneity from northeast to southwest. The spatial heterogeneity of heights of seedlings and saplings was greater than that of root collar diameters. The distance of spatial autocorrelation for tree root collar diameters was 29.97 m, and that for heights was 31.86 m. Random factors and structure factors were found to contribute equally to the spatial heterogeneity. PMID:24830227

  2. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  3. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  4. Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia

    NASA Astrophysics Data System (ADS)

    Klinge, M.; Bohner, J.; Erasmi, S.

    2015-05-01

    Satellite images and digital elevation models provide an excellent database to analyze forest distribution patterns and forest limits in the mountain regions of semiarid central Asia on the regional scale. For the investigation area in the northern Tien Shan, a strong relationship between forest distribution and climate conditions could be found. Additionally areas of potential human impact on forested areas are identified at lower elevations near the edge of the mountains based on an analysis of the differences in climatic preconditions and the present occurrence of forest stands. The distribution of spruce (Picea schrenkiana) forests is hydrologically limited by a minimum annual precipitation of 250 mm and thermally by a minimum monthly mean temperature of 5 °C during the growing season. While the actual lower forest limit increases from 1600 m a.s.l. (above sea level) in the northwest to 2600 m a.s.l. in the southeast, the upper forest limit rises in the same direction from 1800 m a.s.l. to 2900 m a.s.l.. In accordance with the main wind directions, the steepest gradient of both forest lines and the greatest local vertical extent of the forest belt of 500 to 600 m to a maximum of 900 m occur at the northern and western mountain fronts. The forests in the investigation area are strongly restricted to north-facing slopes, which is a common feature in semiarid central Asia. Based on the presumption that variations in local climate conditions are a function of topography, the potential forest extent was analyzed with regard to the parameters slope, aspect, solar radiation input and elevation. All four parameters showed a strong relationship to forest distribution, yielding a total potential forest area that is 3.5 times larger than the present forest remains of 502 km2.

  5. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage

    PubMed Central

    Chaplin-Kramer, Rebecca; Sharp, Richard P.; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà i Canals, Llorenç; Eichelberger, Bradley A.; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M.

    2015-01-01

    The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation. PMID:26082547

  6. Forest Fragmentation

    EPA Science Inventory

    This indicator describes forest fragmentation in the contiguous United States circa 2001. This information provides a broad, recent picture of the spatial pattern of the nation’s forests and the extent to which they are being broken into smaller patches and pierced or interspe...

  7. SPATIAL AND TEMPORAL PATTERNS OF ACID PRECIPITATION AND THEIR INTERPRETATION

    EPA Science Inventory

    Using data compiled from seven nationwide precipitation chemistry networks in the U.S. and Canada, the spatial distribution of hydrogen, sulfate, and nitrate ions in North America is discussed. Geographic patterns of concentration and deposition are characterized using isopleth m...

  8. Spatial Pattern of Rainfall Trends in Serbia (1961-2009)

    NASA Astrophysics Data System (ADS)

    Lukovic, J.; Bajat, B.; Blagojevic, D.; Kilibarda, M.

    2013-12-01

    This paper examines a spatial pattern of annual, seasonal and monthly rainfall trends in Serbia. The study used data from 63 meteorological stations between 1961 and 2009. The rainfall series was analyzed applying nonparametric method of the Mann Kendall test and Sen's method to determine the significance and magnitude of the trends. Interactive WEB maps were produced to obtain detailed insight in the spatial distribution of rainfall trends in Serbia. Seasonal trends at the confidence level of 95%, however, indicate a slight decrease in winter and spring precipitation and an increase in autumn precipitation. Results for monthly rainfall trends also generally showed non- significant trend, except positive for October (9 stations out of 63) and negative for May (6 stations out of 63). Calculated global autocorrelation statistics (Moran's I) indicate, in general, a random spatial pattern of rainfall trends on annual, seasonal and monthly time scales with exceptions for March, June and November.

  9. A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest.

    PubMed

    Kellner, Elliott; Hubbart, Jason A

    2016-01-15

    To improve quantitative understanding of the long-term impact of historic forest removal on floodplain vadose zone water regime, a study was implemented in fall 2010, in the Hinkson Creek Watershed, Missouri, USA. Automated, continuously logging capacitance-frequency probes were installed in a grid-like formation (n=6) and at depths of 15, 30, 50, 75, and 100 cm within a historic agricultural field (Ag) and a remnant bottomland hardwood forest (BHF). Data were logged at thirty minute intervals for the duration of the 2011, 2012, and 2013 hydrologic years. Results showed volumetric water content (VWC) to be significantly different between sites (p<0.01) during the study, with site averages of 33.1 and 32.8% at the Ag and BHF sites, respectively. Semi-variogram analyses indicate the presence of strong (<25%) horizontal and vertical spatial correlation of VWC at the Ag site, and a relatively short-range (25 cm) vertical spatial correlation at the BHF, but only indicate horizontal VWC spatial correlation in the top 30 cm of the BHF profile. Likely mechanisms contributing to patterns of observed differences are contrasting rates and depths of plant water use, and the presence of preferential flow paths in the below ground BHF. Results suggest historic forest removal and cultivation of the Ag site lead to an effective homogenization of the upper soil profile, and facilitated the development of strong VWC spatial dependency. Conversely, higher hydraulic conductivity of the more heterogeneous BHF subsurface likely results in a wetting of the deeper profile (75 cm) during climatically wet periods, and thus a more effective processing of hydrologic inputs. Collective results highlight the greater extent and degree to which forest vegetation impacts subsurface hydrology, relative to grassland/agricultural systems, and point to the value of reestablishing floodplain forests for fresh water routing, water quality, and flood mitigation in mixed-land-use watersheds. PMID:26519576

  10. 1987 wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.