Science.gov

Sample records for spatio-temporal point process

  1. Functional Principal Component Analysis of Spatio-Temporal Point Processes with Applications in Disease Surveillance.

    PubMed

    Li, Yehua; Guan, Yongtao

    2014-08-01

    In disease surveillance applications, the disease events are modeled by spatio-temporal point processes. We propose a new class of semiparametric generalized linear mixed model for such data, where the event rate is related to some known risk factors and some unknown latent random effects. We model the latent spatio-temporal process as spatially correlated functional data, and propose Poisson maximum likelihood and composite likelihood methods based on spline approximations to estimate the mean and covariance functions of the latent process. By performing functional principal component analysis to the latent process, we can better understand the correlation structure in the point process. We also propose an empirical Bayes method to predict the latent spatial random effects, which can help highlight hot areas with unusually high event rates. Under an increasing domain and increasing knots asymptotic framework, we establish the asymptotic distribution for the parametric components in the model and the asymptotic convergence rates for the functional principal component estimators. We illustrate the methodology through a simulation study and an application to the Connecticut Tumor Registry data. PMID:25368436

  2. Functional Principal Component Analysis of Spatio-Temporal Point Processes with Applications in Disease Surveillance

    PubMed Central

    Li, Yehua; Guan, Yongtao

    2014-01-01

    In disease surveillance applications, the disease events are modeled by spatio-temporal point processes. We propose a new class of semiparametric generalized linear mixed model for such data, where the event rate is related to some known risk factors and some unknown latent random effects. We model the latent spatio-temporal process as spatially correlated functional data, and propose Poisson maximum likelihood and composite likelihood methods based on spline approximations to estimate the mean and covariance functions of the latent process. By performing functional principal component analysis to the latent process, we can better understand the correlation structure in the point process. We also propose an empirical Bayes method to predict the latent spatial random effects, which can help highlight hot areas with unusually high event rates. Under an increasing domain and increasing knots asymptotic framework, we establish the asymptotic distribution for the parametric components in the model and the asymptotic convergence rates for the functional principal component estimators. We illustrate the methodology through a simulation study and an application to the Connecticut Tumor Registry data. PMID:25368436

  3. Spatio-Temporal Statistical Models with Application to Atmospheric Processes.

    NASA Astrophysics Data System (ADS)

    Wikle, Christopher Kim

    This dissertation is concerned with spatio-temporal processes in the atmospheric sciences. In the first chapter, a comprehensive overview of spatio-temporal methods from the atmospheric science literature is presented. Focus is on Empirical Orthogonal Function (EOF), Principal Interaction Pattern (PIP), Principal Oscillation Pattern (POP), and spatio-temporal Canonical Correlation Analysis (CCA) methods. Previously unexamined issues related to measurement error, continuous space, and Bayesian ideas are considered. In the second chapter, harmonic analysis is used to make diagnostic inference about the spatial variation of the semiannual oscillation (SAO) in the Northern Hemisphere (NH) 500-hPa height field. The SAO is explained by the spatial and temporal asymmetries in the annual variation of stationary eddies. The SAO in the NH extratropics is a result of east-west land-sea contrasts, analogous to the well-known Southern Hemisphere (SH) SAO, which is explained by north-south land-sea contrasts. The third chapter examines the seasonal variability of mixed Rossby-gravity waves (MRGWs) in the lower stratosphere over the tropical western Pacific. Thirty-one years of lower stratospheric wind observations from four tropical Pacific stations are examined with seasonally varying cross -spectral analysis, which suggests significant twice-yearly peaks in the v-wind power and the mean squared coherence between the u- and v-winds, with peaks occurring in the winter-early spring and in summer-early fall. Horizontal momentum flux convergence is found with these waves, with the sign of the convergence opposite during the two seasonal maxima. Cyclic spectral analyses show that the frequency of the maximum v-wind power in the MRGW frequency band shifts seasonally. In the fourth chapter, a spatio-temporal statistical model is proposed that assumes a first-order Markov dynamic process combined with a spatially descriptive colored noise process. With a measurement error equation, a spatio-temporal Kalman filter gives predictions in time and at any spatial location. The model prediction equation includes a simple kriging analog as a special case. The model predicts well with simulated spatio-temporal data, and is superior to simple kriging applied independently at each time. Predictions of precipitation over the data-sparse South China Sea captures the dynamic variation of the spatial precipitation.

  4. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /b?/, incongruent auditory /b?/ synchronized with visual /g?/, auditory-only /b?/, and visual-only /b?/ and /g?/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  5. Modeling directional spatio-temporal processes in island biogeography.

    PubMed

    Carvalho, José C; Cardoso, Pedro; Rigal, François; Triantis, Kostas A; Borges, Paulo A V

    2015-10-01

    A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time-isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time-isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio-temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity. PMID:26668731

  6. Association rule mining based on spatio-temporal processes of spatial distribution patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewu; Su, Fenzhen; Shi, Yishao; He, Yawen

    2008-12-01

    Spatial distribution pattern is an arrangement of two or more spatial objects according to some spatial relations, such as spatial direction, topological and distance relations. In the real world, spatial objects and spatial distribution pattern all vary continuously along the time-line. Traditional spatial and non-spatial data dissevers this continuous spatio-temporal process. Under analyzing relations among spatial object, its attributes and spatial distribution pattern, we brought metaspatio- temporal process, spatio-temporal process and spatial distribution pattern spatio-temporal process. Rainfall in Eastern China has a typical spatial distribution pattern, being composed of the northern rain area and the southern rain area. Through constructing spatio-temporal process transactions, the association rules can be extracted from spatiotemporal process data set by the Apriori algorithm. The result of the spaio-temporal process association rule mining is consistent with the analysis of the theory. Finally, it is concluded that the spatio-temporal process can describe change of a spatial object in a defined time range, and change trend of one entity can be forecasted through varying trend of others based on the valuable spatio-temporal process association rules.

  7. Motion analysis and segmentation through spatio-temporal slices processing.

    PubMed

    Ngo, Chong-Wah; Pong, Ting-Chuen; Zhang, Hong-Jiang

    2003-01-01

    This paper presents new approaches in characterizing and segmenting the content of video. These approaches are developed based upon the pattern analysis of spatio-temporal slices. While traditional approaches to motion sequence analysis tend to formulate computational methodologies on two or three adjacent frames, spatio-temporal slices provide rich visual patterns along a larger temporal scale. We first describe a motion computation method based on a structure tensor formulation. This method encodes visual patterns of spatio-temporal slices in a tensor histogram, on one hand, characterizing the temporal changes of motion over time, on the other hand, describing the motion trajectories of different moving objects. By analyzing the tensor histogram of an image sequence, we can temporally segment the sequence into several motion coherent subunits, in addition, spatially segment the sequence into various motion layers. The temporal segmentation of image sequences expeditiously facilitates the motion annotation and content representation of a video, while the spatial decomposition of image sequences leads to a prominent way of reconstructing background panoramic images and computing foreground objects. PMID:18237913

  8. Spatio-temporal statistical models with applications to atmospheric processes

    SciTech Connect

    Wikle, C.K.

    1996-12-31

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model.

  9. Power law in random multiplicative processes with spatio-temporal correlated multipliers

    NASA Astrophysics Data System (ADS)

    Morita, Satoru

    2016-02-01

    It is well known that random multiplicative processes generate power-law probability distributions. We study how the spatio-temporal correlation of the multipliers influences the power-law exponent. We investigate two sources of the time correlation: the local environment and the global environment. In addition, we introduce two simple models through which we analytically and numerically show that the local and global environments yield different trends in the power-law exponent.

  10. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  11. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging

    PubMed Central

    Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W.; Niehaus, Karsten

    2016-01-01

    MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880

  12. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    SciTech Connect

    Sen, Satyabrata

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  13. Spatio-temporal processing of words and nonwords: hemispheric laterality and acute alcohol intoxication

    PubMed Central

    Marinkovic, Ksenija; Rosen, Burke Q.; Cox, Brendan; Hagler, Donald J.

    2014-01-01

    This study examined neurofunctional correlates of reading by modulating semantic, lexical, and orthographic attributes of letter strings. It compared the spatio-temporal activity patterns elicited by real words (RW), pseudowords, orthographically regular, pronounceable nonwords (PN) that carry no meaning, and orthographically illegal, nonpronounceable nonwords (NN). A double-duty lexical decision paradigm instructed participants to detect RW while ignoring nonwords and to additionally respond to words that refer to animals (AW). Healthy social drinkers (N=22) participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head MEG signals were analyzed with an anatomically-constrained MEG method. Simultaneously acquired ERPs confirm previous evidence. Spatio-temporal MEG estimates to RW and PN are consistent with the highly replicable left-lateralized ventral visual processing stream. However, the PN elicit weaker activity than other stimuli starting at ~230 ms and extending to the M400 (magnetic equivalent of N400) in the left lateral temporal area, indicating their reduced access to lexicosemantic stores. In contrast, the NN uniquely engage the right hemisphere during the M400. Increased demands on lexicosemantic access imposed by AW result in greater activity in the left temporal cortex starting at ~230 ms and persisting through the M400 and response preparation stages. Alcohol intoxication strongly attenuates early visual responses occipito-temporally overall. Subsequently, alcohol selectively affects the left prefrontal cortex as a function of orthographic and semantic dimensions, suggesting that it modulates the dynamics of the lexicosemantic processing in a top-down manner, by increasing difficulty of semantic retrieval. PMID:24565928

  14. Evaluating Projected Changes in Mean Processes, Extreme Events, and their Spatio-Temporal Dependence Structures

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinhaeuser, K.; Kodra, E. A.; Kao, S.

    2010-12-01

    Observational datasets - both raw measurements and derived data products such as reanalysis data - are used to evaluate climate simulations run in forecast and hindcast modes. Bias and uncertainty in mean processes is quantified using statistical comparisons between observations and model-generated outputs. Weather and hydrological extremes under climate change are characterized using both event definitions and extreme value theory (EVT), and their aggregate statistics (intensity, duration and frequency) are likewise compared. The geographic variability and topographical biases are examined at continental to regional scales, and dependence structures (both spatio-temporal autocorrelation and long-range dependence) are assessed using statistical and nonlinear dynamical methods. These tools were developed primarily using the CMIP3/IPCC-AR4 archived model outputs, and are being additional tested with simulations from regional climate models which dynamically downscale the AR4 archives. This combination of traditional and novel tools is thus geared towards evaluation of multiple climate models which may handle processes or generate outputs at different spatial and temporal scales. The tools are expected to be immediately applicable to the CMIP5 data when it becomes available. The anticipated space-time resolutions will pose algorithmic challenges and computational demands, which will be addressed using analytic solutions and implementations thereof on high-performance scientific computing platforms.

  15. The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG.

    PubMed

    Capilla, Almudena; Belin, Pascal; Gross, Joachim

    2013-06-01

    Functional magnetic resonance imaging studies have repeatedly provided evidence for temporal voice areas (TVAs) with particular sensitivity to human voices along bilateral mid/anterior superior temporal sulci and superior temporal gyri (STS/STG). In contrast, electrophysiological studies of the spatio-temporal correlates of cerebral voice processing have yielded contradictory results, finding the earliest correlates either at ?300-400 ms, or earlier at ?200 ms ("fronto-temporal positivity to voice", FTPV). These contradictory results are likely the consequence of different stimulus sets and attentional demands. Here, we recorded magnetoencephalography activity while participants listened to diverse types of vocal and non-vocal sounds and performed different tasks varying in attentional demands. Our results confirm the existence of an early voice-preferential magnetic response (FTPVm, the magnetic counterpart of the FTPV) peaking at about 220 ms and distinguishing between vocal and non-vocal sounds as early as 150 ms after stimulus onset. The sources underlying the FTPVm were localized along bilateral mid-STS/STG, largely overlapping with the TVAs. The FTPVm was consistently observed across different stimulus subcategories, including speech and non-speech vocal sounds, and across different tasks. These results demonstrate the early, largely automatic recruitment of focal, voice-selective cerebral mechanisms with a time-course comparable to that of face processing. PMID:22610392

  16. Spatio-temporal processing of femtosecond laser pulses with thin film micro-optics

    NASA Astrophysics Data System (ADS)

    Grunwald, Ruediger; Kebbel, Volker; Neumann, Uwe; Griebner, Uwe; Piche, Michel

    2003-11-01

    For spatio-temporal processing of ultrashort-pulse laser beams, design constraints arise from dispersion and diffraction. In sub-10-fs region, temporal and spatial coordinates of propagating wavepackets get non-separable. To enable controlled shaping and detection with spatial resolution, specific advantages of thin-film microoptical arrays are exploited. Transmitting and reflecting components of extremely small conical angles were used to generate multiple nondiffracting beams and self imaging patterns. With novel-type metal-dielectric microaxicons, low-dispersion reflective devices were realized. Beam propagation was simulated with Rayleigh-Sommerfeld diffraction theory. For time-space conversion, matrix processors consisting of thin-film microaxicons were tested. Transversally resolving linear and nonlinear autocorrelation techniques were applied to characterize the space-time-structure of localized few-cycle wavepackets shaped from Ti:sapphire laser beams at pulse durations down to 8 fs. Bessel-like X-waves were shaped and their propagation was studied. In combination with autocorrelation, wavefront analysis of ultrashort-pulse lasers with Bessel-Shack-Hartmann sensors operated in reflection setup was demonstrated.

  17. Spatio-temporal change modeling with array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2015-04-01

    Spatio-temporal change modeling of our ecosystems is critical for environmental conservation. Open access to remote sensing satellite image archives provides new opportunities for change modeling, such as near real-time change monitoring with long term image time series. Newly developed time series analysis methods allow the detection of quantitative changes in trend and seasonality for each pixel of the image. A drawback of pure time series analysis is that spatial dependence is neglected. There are several spatio-temporal statistical approaches to incorporate spatial context. One method is to build hierarchical models with spatial effects for time series parameters. Other methods include representing regression parameters as spatially correlated random fields, or integrating spatial autoregressive models to time series analysis. Apart from spatio-temporal statistical modeling, the results can be further improved by qualification of detected change points with their spatio-temporal neighbors. Spatio-temporal modeling approaches are typically complex and large in scale, and call for new data management and analysis tools. Remote sensing satellite images, which are continuous and regular in space and time, can naturally be represented as three- or four-dimensional arrays for spatio-temporal data management and analysis. The developed spatio-temporal statistical algorithms can be flexibly applied within array partitions that span the relevant array-based dimensions. This study investigates the potential of array-based Data Data Management and Analytic Software (DMAS) for fast data access, data integration and large-scale complex spatio-temporal analysis. A study case is developed in near-real time deforestation monitoring in Amazonian rainforest with long-term 250 m, 8-day resolution MODIS image time series. A novel spatio-temporal change modeling process is being developed and implemented in DMAS to realize rapid and automated analysis of satellite image time series for forest disturbance detection. The study expects results that improve over a pure time series analysis approach, and that is practically applicable to massive complex spatio-temporal data.

  18. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  19. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  20. A Validation Framework for Non-Point Source Simulation Models: Application to the Southern California Central Valley with Spatio-Temporally Heterogenous Source Rates

    NASA Astrophysics Data System (ADS)

    Kourakos, G.; Harter, T.

    2013-12-01

    Non-point source pollution on groundwater of agricultural regions is an alarming issue of global importance. The very large response times of contaminants which may vary from decades to centuries, require mitigation measures to be based on reliable modeling. Here we present a novel computational framework to assess and evaluate the dynamic, spatio-temporally distributed linkages between non-point sources above a groundwater basin and groundwater discharges to wells, streams, or other compliance discharge surfaces (CDSs) within a groundwater basin. The modeling framework allows for efficient evaluation of NPS pollution scenarios and of their short- and long-term effects on pollutant exceedance probabilities in CDSs. We apply the model to simulate 100 years of nitrate pollution at high resolution in a 2 million hectare semi-arid, irrigated agricultural region with a large diversity of crops, but also natural lands and urban areas, and highly heterogeneous, temporally variable loading landscape in the Southern California Central Valley. Results show that the timing of nitrate breakthrough in wells is significantly controlled by aquifer recharge and pumping rates in NPS areas and by the effective porosity of the aquifer system. MLast the model predictions are compared against a highly heterogeneous, spatio-temporally varying in space and time database of historic nitrate records and an attempt is made to compute the spatial distribution of nitrate half-life due to denitrification.

  1. Spatio-temporal distribution of stored-product inects around food processing and storage facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...

  2. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    PubMed Central

    Tapson, Jonathan C.; Cohen, Greg K.; Afshar, Saeed; Stiefel, Klaus M.; Buskila, Yossi; Wang, Runchun Mark; Hamilton, Tara J.; van Schaik, André

    2013-01-01

    The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework (NEF) offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify—arbitrarily—neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times. PMID:24009550

  3. Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes.

    PubMed

    Soh, Harold; Demiris, Yiannis

    2015-03-01

    Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair. PMID:25720008

  4. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  5. Low-complexity algorithms for spatio-temporal directional spectrum sensing with applications in cognitive radio

    NASA Astrophysics Data System (ADS)

    Madanayake, Arjuna; Wijenayake, Chamith; Potluri, Uma; Abeysekara, Judith; Mugler, Dale

    2013-05-01

    A suit of low complexity signal processing algorithms are identified for the directional spectrum sensing and two-dimensional (2-D) spatio-temporal white space detection in cognitive radio systems. The concept of spectral white spaces in 2-D spatio-temporal frequency space is reviewed based on the specific spectral properties of 2-D spatio-temporal array signals. The proposed system contains an array processing stage, magnitude-fast-Fourier-transform (FFT) stage followed by an energy detection stage. The use of 2-D infinite impulse response (IIR) filters having beam-shaped passbands in the 2-D frequency space is identi_ed as a low complexity solution for the array processing stage for the directional enhancement of radio signals. A low complexity algorithm that delivers the magnitude FFT is described for the 16-point case and computational complexity is expressed in closed-form.

  6. Environmental surveillance of norovirus in Argentina revealed distinct viral diversity patterns, seasonality and spatio-temporal diffusion processes.

    PubMed

    Fernández, María D Blanco; Torres, Carolina; Poma, Hugo R; Riviello-López, Gabriela; Martínez, Laura C; Cisterna, Daniel M; Rajal, Verónica B; Nates, Silvia V; Mbayed, Viviana A

    2012-10-15

    Norovirus (NoV) contamination was evaluated in five rivers of Argentina between 2005 and 2011. NoV was present in all sampled rivers, with distinct NoV patterns in waters impacted by different-sized communities. In rivers affected by medium-sized populations (Salta and Córdoba cities) only one or two genotypes were present, GII.4 being the main one, with winter seasonality. In contrast, in the much more heavily populated area of Buenos Aires city the prevalent GII.4 was accompanied by several additional genotypes (GII.4, GII.b, GII.2, GII.7, GII.17, GII.e and GII.g) and one ungenotyped GII NoV, with no clear seasonality. GII.4 2006b was the main variant detected (60.9%). Phylogeographic and phylodynamic analyses performed in region D of the VP1 gene showed a most recent common ancestor in 2002 and a substitution rate of 3.7×10(-3) substitutions per site per year (HPD95%=2.3×10(-3)-5.2×10(-3)) for this variant still involving a significant population size with a slight decrease since 2008. The spatio-temporal diffusion analysis proposed Europe as an intermediate path between the American Continent and the rest of the World for NoV dissemination. Given the importance of NoV as a cause of epidemic gastroenteritis and the likelihood of its environmental transmission, the results of this work should increase public and institutional awareness of the health risk involved in sewage discharges into the environment. Environmental surveillance of enteric viruses could be a very useful tool not only to prevent waterborne outbreaks, but also to describe the epidemiology of the viruses. The detailed analysis of the viral genomes disposed into the environment contributed to the characterization of the dissemination, diversity and seasonality of NoV in its natural host population. In future studies, environmental surveillance and molecular analysis should be complemented with a quantitative viral risk assessment for estimating the disease burden from viruses in the environment. PMID:22944218

  7. Spatio-temporal oscillations in the Keller-Segel system with logistic growth

    NASA Astrophysics Data System (ADS)

    Ei, Shin-Ichiro; Izuhara, Hirofumi; Mimura, Masayasu

    2014-06-01

    The Keller-Segel system with the logistic growth term is discussed from the spatio-temporal-oscillation point of view. This system exhibits two different types of spatio-temporal oscillations in certain distinct parameter regimes. In this paper, we study the difference between the two types of spatio-temporal oscillations. In particular, the characteristic properties of the behaviors become clear in a limiting system when a certain parameter value tends to zero. Moreover, we demonstrate that the onset of one of the spatio-temporal oscillatory patterns is an infinite-dimensional relaxation oscillation that consists of slow and fast dynamics.

  8. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  9. A multivariate statistical approach to identify the spatio-temporal variation of geochemical process in a hard rock aquifer.

    PubMed

    Thivya, C; Chidambaram, S; Thilagavathi, R; Prasanna, M V; Singaraja, C; Adithya, V S; Nepolian, M

    2015-09-01

    A study has been carried out in crystalline hard rock aquifers of Madurai district, Tamil Nadu, to identify the spatial and temporal variations and to understand sources responsible for hydrogeochemical processes in the region. Totally, 216 samples were collected for four seasons [premonsoon (PRM), southwest monsoon (SWM), northeast monsoon (NWM), and postmonsoon (POM)]. The Na and K ions are attributed from weathering of feldspars in charnockite and fissile hornblende gneiss. The results also indicate that monsoon leaches the U ions in the groundwater and later it is reflected in the (222)Rn levels also. The statistical relationship on the temporal data reflects the fact that Ca, Mg, Na, Cl, HCO3, and SO4 form the spinal species, which are the chief ions playing the significant role in the geochemistry of the region. The factor loadings of the temporal data reveal the fact that the predominant factor is anthropogenic process and followed by natural weathering and U dissolution. The spatial analysis of the temporal data reveals that weathering is prominent in the NW part and that of distribution of U and (222)Rn along the NE part of the study area. This is also reflected in the cluster analysis, and it is understood that lithology, land use pattern, lineaments, and groundwater flow direction determine the spatial variation of these ions with respect to season. PMID:26239570

  10. Spatio-temporal Laplacian pyramid coding for action recognition.

    PubMed

    Shao, Ling; Zhen, Xiantong; Tao, Dacheng; Li, Xuelong

    2014-06-01

    We present a novel descriptor, called spatio-temporal Laplacian pyramid coding (STLPC), for holistic representation of human actions. In contrast to sparse representations based on detected local interest points, STLPC regards a video sequence as a whole with spatio-temporal features directly extracted from it, which prevents the loss of information in sparse representations. Through decomposing each sequence into a set of band-pass-filtered components, the proposed pyramid model localizes features residing at different scales, and therefore is able to effectively encode the motion information of actions. To make features further invariant and resistant to distortions as well as noise, a bank of 3-D Gabor filters is applied to each level of the Laplacian pyramid, followed by max pooling within filter bands and over spatio-temporal neighborhoods. Since the convolving and pooling are performed spatio-temporally, the coding model can capture structural and motion information simultaneously and provide an informative representation of actions. The proposed method achieves superb recognition rates on the KTH, the multiview IXMAS, the challenging UCF Sports, and the newly released HMDB51 datasets. It outperforms state of the art methods showing its great potential on action recognition. PMID:23912503

  11. Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

    PubMed Central

    Li, Ce; Xue, Jianru; Zheng, Nanning; Lan, Xuguang; Tian, Zhiqiang

    2013-01-01

    Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC). Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value) color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms. PMID:23482090

  12. Spatio-temporal saliency perception via hypercomplex frequency spectral contrast.

    PubMed

    Li, Ce; Xue, Jianru; Zheng, Nanning; Lan, Xuguang; Tian, Zhiqiang

    2013-01-01

    Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC). Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value) color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms. PMID:23482090

  13. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  14. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  15. A semiparametric spatio-temporal model for solar irradiance data

    DOE PAGESBeta

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  16. Dynamic proximity of spatio-temporal sequences.

    PubMed

    Horn, David; Dror, Gideon; Quenet, Brigitte

    2004-09-01

    Recurrent networks can generate spatio-temporal neural sequences of very large cycles, having an apparent random behavior. Nonetheless a proximity measure between these sequences may be defined through comparison of the synaptic weight matrices that generate them. Following the dynamic neural filter (DNF) formalism we demonstrate this concept by comparing teacher and student recurrent networks of binary neurons. We show that large sequences, providing a training set well exceeding the Cover limit, allow for good determination of the synaptic matrices. Alternatively, assuming the matrices to be known, very fast determination of the biases can be achieved. Thus, a spatio-temporal sequence may be regarded as spatio-temporal encoding of the bias vector. We introduce a linear support vector machine (SVM) variant of the DNF in order to specify an optimal weight matrix. This approach allows us to deal with noise. Spatio-temporal sequences generated by different DNFs with the same number of neurons may be compared by calculating correlations of the synaptic matrices of the reconstructed DNFs. Other types of spatio-temporal sequences need the introduction of hidden neurons, and/or the use of a kernel variant of the SVM approach. The latter is being defined as a recurrent support vector network (RSVN). PMID:15484877

  17. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  18. Mapping spatio-temporal filtering algorithms used in fluoroscopy to single core and multicore DSP architectures

    NASA Astrophysics Data System (ADS)

    Dasgupta, Udayan; Ali, Murtaza

    2011-03-01

    Low dose X-ray image sequences, as obtained in fluoroscopy, exhibit high levels of noise that must be suppressed in real-time, while preserving diagnostic structures. Multi-step adaptive filtering approaches, often involving spatio-temporal filters, are typically used to achieve this goal. In this work typical fluoroscopic image sequences, corrupted with Poisson noise, were processed using various filtering schemes. The noise suppression of the schemes was evaluated using objective image quality measures. Two adaptive spatio-temporal schemes, the first one using object detection and the second one using unsharp masking, were chosen as representative approaches for different fluoroscopy procedures and mapped on to Texas Instrument's (TI) high performance digital signal processors (DSP). The paper explains the fixed point design of these algorithms and evaluates its impact on overall system performance. The fixed point versions of these algorithms are mapped onto the C64x+TM core using instruction-level parallelism to effectively use its VLIW architecture. The overall data flow was carefully planned to reduce cache and data movement overhead, while working with large medical data sets. Apart from mapping these algorithms on to TI's single core DSP architecture, this work also distributes the operations to leverage multi-core DSP architectures. The data arrangement and flow were optimized to minimize inter-processor messaging and data movement overhead.

  19. Application of Geostatistical Methods and Machine Learning for spatio-temporal Earthquake Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Schaefer, A. M.; Daniell, J. E.; Wenzel, F.

    2014-12-01

    Earthquake clustering tends to be an increasingly important part of general earthquake research especially in terms of seismic hazard assessment and earthquake forecasting and prediction approaches. The distinct identification and definition of foreshocks, aftershocks, mainshocks and secondary mainshocks is taken into account using a point based spatio-temporal clustering algorithm originating from the field of classic machine learning. This can be further applied for declustering purposes to separate background seismicity from triggered seismicity. The results are interpreted and processed to assemble 3D-(x,y,t) earthquake clustering maps which are based on smoothed seismicity records in space and time. In addition, multi-dimensional Gaussian functions are used to capture clustering parameters for spatial distribution and dominant orientations. Clusters are further processed using methodologies originating from geostatistics, which have been mostly applied and developed in mining projects during the last decades. A 2.5D variogram analysis is applied to identify spatio-temporal homogeneity in terms of earthquake density and energy output. The results are mitigated using Kriging to provide an accurate mapping solution for clustering features. As a case study, seismic data of New Zealand and the United States is used, covering events since the 1950s, from which an earthquake cluster catalogue is assembled for most of the major events, including a detailed analysis of the Landers and Christchurch sequences.

  20. Integrating satellite imagery and geostatistics of point samples for monitoring spatio-temporal changes of total suspended solids in bay waters: application to Tien Yen Bay (Northern Vietnam)

    NASA Astrophysics Data System (ADS)

    Ha, Nguyen Thi Thu; Koike, Katsuaki

    2011-09-01

    High concentrations of total suspended solids (TSS) in coastal and bay areas strongly affect water quality and aquatic ecosystems. Frequent monitoring of spatiotemporal changes of TSS distribution in such areas is indispensable for understanding sediment fluxes and water cycles, and to preserve ecosystem health. This study aimed to identify appropriate and sufficient tools for assessing changes in TSS distribution in Tien Yen Bay in Northern Vietnam, a typical closed bay, which was selected as the study area because of its rich biodiversity. Initially, a physical based model using the reflectance at the sea surface was developed for estimating TSS concentrations from satellite image data, and a model with an exponential function was identified as suitable for the estimation. This model was fitted appropriately to provide a relationship between reflectance from the MODIS/Terra band 1 (visible red) after the atmospheric correction and the in situ TSS concentrations at 40 points. Ordinary kriging was then shown to be effective in improving the spatial resolution of the MODIS/Terra image-based estimation of the TSS concentration at a 250 m interval, because it could detect TSS variation in detail, in particular in the local estuaries. TSS distributions derived from 12 MODIS/Terra images from November 2009 to October 2010 clarified seasonal changes in TSS during one year. TSS concentrations were high during summer and lower during fall and winter. Such trends were conformable with the hydrodynamics in Tien Yen Bay. Consequently, the proposed method was more effective for TSS estimation than traditional methods using satellite image data only.

  1. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    SciTech Connect

    Schüler, D.; Alonso, S.; Bär, M.; Torcini, A.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  2. Forecasting the Spatio-Temporal Dynamics of the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, J.; Sharma, A.; Veeramani, T.

    2007-12-01

    The spatio-temporal dynamics of the magnetosphere is a crucial component of effective space weather forecasting. The extensive data of the solar wind-magnetosphere interaction has been used to build predictive models of the magnetosphere based on nonlinear dynamical approaches. The time series data of the distributed observations are used to develop spatio-temporal dynamics of the magnetosphere. In this approach the solar wind - magnetosphere coupling is modeled as an input-output system with the solar wind variables as the input and the magnetic field variations at the ground stations as the magnetospheric response. The magnetic field perturbation at the ground and the corresponding solar wind data stations during the solar maximum period are compiled for these studies. The ground magnetometer data are from from CANOPUS, IMAGE and WDC magnetometer chain of stations. This new data set is used to study the spatio-temporal structure, including the coupling between the high and mid-latitude regions. A technique that utilizes the daily rotation of the Earth as a longitudinal sampling process is used to construct a two dimensional representation of the high latitude magnetic perturbations both in magnetic latitude and magnetic local time. This nonlinear model is used to predict the spatial structure of geomagnetic disturbances during intense geospace storms. In order to understand the predictability of space weather, the correlated database is used to study the causal relationships based on information theoretic approaches. This yields the mutual information between the solar wind variables and the ground magnetic field variations, and among the ground stations themselves. The information flow within the coupled system is analyzed by computing the transfer entropy among them.

  3. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  4. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  5. Multiscale recurrence analysis of spatio-temporal data.

    PubMed

    Riedl, M; Marwan, N; Kurths, J

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine. PMID:26723150

  6. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  7. In-situ measurements of pore water stable isotope composition in a semi-arid environment with implications for spatio-temporal variability of unsaturated zone processes.

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Beyer, Matthias; Koeniger, Paul; Hamutoko, Yosefina; Himmelsbach, Thomas

    2015-04-01

    Northern Namibia is a region with high population growth, limited water resources and a transboundary aquifer system where groundwater recharge and groundwater flow processes are not yet well understood. Our study is an interdisciplinary approach to improve the understanding of links between hydrological, geochemical and ecological processes to estimate areas that contribute to recharge a shallow aquifer system. To determine the spatial variability of infiltration and evapotranspiration processes within the critical interface and between the atmosphere and the groundwater nine plots in an area of 9,000 m2 were investigated. Stable isotopes (deuterium, δ2H, and oxygen-18, δ18O) of soil pore water were measured directly in the field using a LGR-DLT100 and commercially available soil gas probes (BGL-30, UMS). Additionally, soil moisture and temperature were recorded. After drift correction of the isotope data the long term precision using a quality check standard for 221 measurement points of a two week period was between 6.3 - 7.4 o for δ2H and 1.3 - 3.6 o for δ18O. Each point was measured with six repetitions were the mean standard deviation for all quality check standards was 1.3 - 1.6 o for δ2H and 0.23 - 0.30 o for δ18O. It could be observed that the quality of the measurements decreased with increasing number of measurements due to a memory effect of the probes enhanced by organic contamination of the membrane pores. However, results support the applicability of an in-situ system for the determination of stable isotopes in soil pore water. Spatially and temporal variability affected by intermitted light rainfall events can be deduced with the observed data.

  8. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage.

    PubMed

    Hovasse, Agnès; Bruneel, Odile; Casiot, Corinne; Desoeuvre, Angélique; Farasin, Julien; Hery, Marina; Van Dorsselaer, Alain; Carapito, Christine; Arsène-Ploetze, Florence

    2016-01-01

    The acid mine drainage (AMD) impacted creek of the Carnoulès mine (Southern France) is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron) attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM)-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with FISH and pyrosequencing-based 16S rRNA gene sequence analysis, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ. PMID:26870729

  9. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage

    PubMed Central

    Hovasse, Agnès; Bruneel, Odile; Casiot, Corinne; Desoeuvre, Angélique; Farasin, Julien; Hery, Marina; Van Dorsselaer, Alain; Carapito, Christine; Arsène-Ploetze, Florence

    2016-01-01

    The acid mine drainage (AMD) impacted creek of the Carnoulès mine (Southern France) is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron) attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM)-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with FISH and pyrosequencing-based 16S rRNA gene sequence analysis, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ. PMID:26870729

  10. Risk management in spatio-temporally varying field by true slime mold

    NASA Astrophysics Data System (ADS)

    Ito, Kentaro; Sumpter, David; Nakagaki, Toshiyuki

    Revealing how lower organisms solve complicated problems is a challenging research area, which could reveal the evolutionary origin of biological information processing. Here we report on the ability of a single-celled organism, true slime mold, to find a smart solution of risk management under spatio-temporally varying conditions. We designed test conditions under which there were three food-locations at vertices of equilateral triangle and a toxic light illuminated the organism on alternating halves of the triangle. We found that the organism behavior depended on the period of the repeated illumination, even though the total exposure time was kept the same . A simple mathematical model for the experimental results is proposed from a dynamical system point of view. We discuss our results in the context of a strategy of risk management by Physarum.

  11. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  12. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  13. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters existed. Soltani and Modarres (2006) classified the sites by using only average rainfall of sites, they did not consider time replications and spatial coordinates. Kerby et.al (2007) purposed spatial clustering method based on likelihood. They took account of the geographic locations through the variance covariance matrix. Their purposed method works like hierarchical clustering methods. Moreovere, it is inappropiriate for time replication data and could not perform well for large number of sites. Tuia.et.al (2008) used scan statistics for identifying spatio-temporal clusters for fire sequences in the Tuscany region in Italy. The scan statistics clustering method was developed by Kulldorff et al. (1997) to detect spatio-temporal clusters in epidemiology and assessing their significance. The purposed scan statistics method is used only for univariate discrete stochastic random variables. In this paper we make use of a very simple approach for spatio-temporal clustering which can create separable and homogeneous clusters. Most of the clustering methods are based on Euclidean distances. It is well known that geographic coordinates are spherical coordinates and estimating Euclidean distances from spherical coordinates is inappropriate. As a transformation from geographic coordinates to rectangular (D-plane) coordinates we use the Lambert projection method. The partition around medoids clustering method is incorporated on the data including D-plane coordinates. Ordinary kriging is taken as validity measure for the precipitation data. The kriging results for clusters are more accurate and have less variation compared to complete monitoring network precipitation data. References Casto.V.E and Murray.A.T (1997). Spatial Clustering with Data Mining with Genetic Algorithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8573 Kaufman.L and Rousseeuw.P.J (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley series of Probability and Mathematical Statistics, New York. Kulldorf.M (1997). A spatial scan statistic. Commun. Stat.-Theor. Math. 26(6), 1481-1496 Kerby. A , Marx. D, Samal. A and Adamchuck. V. (2007). Spatial Clustering Using the Likelihood Function. Seventh IEEE International Conference on Data Mining - Workshops Steinhaus.H (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801- 804 Snyder, J. P. (1987). Map Projection: A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 104-110 Sap.M.N and Awan. A.M (2005). Finding Spatio-Temporal Patterns in Climate Data Using Clustering. Proceedings of the International Conference on Cyberworlds (CW'05) Soltani.S and Modarres.R (2006). Classification of Spatio -Temporal Pattern of Rainfall in Iran: Using Hierarchical and Divisive Cluster Analysis. Journal of Spatial Hydrology Vol.6, No.2 Tuia.D, Ratle.F, Lasaponara.R, Telesca.L and Kanevski.M (2008). Scan Statistics Analysis for Forest Fire Clusters. Commun. in Nonlinear science and numerical simulation 13,1689-1694.

  14. Spatio-temporal autocorrelation measures for nonstationary series: A new temporally detrended spatio-temporal Moran's index

    NASA Astrophysics Data System (ADS)

    Shen, Chenhua; Li, Chaoling; Si, Yali

    2016-01-01

    In order to measure the spatio-temporal autocorrelation's degree for spatio-temporal nonstationary series, the new temporally detrended global and local spatio-temporal Moran's indexes (TDGSTI and TDLSTI) are proposed. The implementation of the new Moran's indexes is illustrated through artificial and real examples. Analyses of the influencing factors on TDGSTI are performed. A statistical test of TDGSTI is taken. The Moran's scatter plot, which discloses the spatio-temporal cluster pattern's characteristics and pattern's change, is extended. TDGSTI is found to reveal the autocorrelation level of spatio-temporal objects. For a positive TDGSTI, the higher the TDGSTI, the higher the autocorrelation level, and vice versa. TDGSTI is closely related to time-scale s, time-lag h and spatio-temporal weight matrix. For s ? h, TDGSTI is significant, while for s ? h and s < h, TDGSTI is insignificant. TDGSTI has clear potential to test the spatio-temporal autocorrelation's degree for spatio-temporal nonstationary series in other research fields.

  15. An integrated environment for spatio-temporal analysis, simulation, and representation for public health research

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Xu, Bing; Liang, Song

    2006-10-01

    Geographic space, as the arena within which all of the natural and social processes occur, and time, have become key research components of social science for the past two decades. However, most GIS software packages lack the predictive and analytic capabilities for complex problems, such as spatial statistical methods and spatial modeling. Meanwhile, the spatio-temporally explicit representation of complex, heterogeneous and dynamic geographic data sets is a particularly challenging issue. Many efforts have been made in developing tools for effective representation of health data, spatio-temporal analysis of the data, and the dynamic process simulation of disease transmission. To meet this demand, we attempted to develop a tool for integrating spatio-temporal analysis, simulation and representation of health data and processes. In this paper, we will introduce some methods for spatial temporal data analysis and their applications in public health. We'll describe the conceptual model of spatial temporal process simulation and the process-oriented spatio-temporal data model adopted in the tool we developed. After that, we'll present the framework of our integrated research toolkit, and demonstrate how to conduct analysis, modeling, and simulation with this software. Finally, we will discuss some issues for future studies.

  16. Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans

    ERIC Educational Resources Information Center

    Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.

    2011-01-01

    Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…

  17. A Spatio-Temporal Downscaler for Output From Numerical Models.

    PubMed

    Berrocal, Veronica J; Gelfand, Alan E; Holland, David M

    2010-06-01

    Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial coverage of the region of interest, high temporal resolution, no missing data but consequential calibration concerns. The second tends to be sparsely collected in space with coarser temporal resolution, often with missing data but, where recorded, provides, essentially, the true value. Accommodating the spatial misalignment between the two types of data is of fundamental importance for both improved predictions of exposure as well as for evaluation and calibration of the numerical model. In this article we propose a simple, fully model-based strategy to downscale the output from numerical models to point level. The static spatial model, specified within a Bayesian framework, regresses the observed data on the numerical model output using spatially-varying coefficients which are specified through a correlated spatial Gaussian process.As an example, we apply our method to ozone concentration data for the eastern U.S. and compare it to Bayesian melding (Fuentes and Raftery 2005) and ordinary kriging (Cressie 1993; Chilès and Delfiner 1999). Our results show that our method outperforms Bayesian melding in terms of computing speed and it is superior to both Bayesian melding and ordinary kriging in terms of predictive performance; predictions obtained with our method are better calibrated and predictive intervals have empirical coverage closer to the nominal values. Moreover, our model can be easily extended to accommodate for the temporal dimension. In this regard, we consider several spatio-temporal versions of the static model. We compare them using out-of-sample predictions of ozone concentration for the eastern U.S. for the period May 1-October 15, 2001. For the best choice, we present a summary of the analysis. Supplemental material, including color versions of Figures 4, 5, 6, 7, and 8, and MCMC diagnostic plots, are available online. PMID:21113385

  18. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  19. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.

    PubMed

    Ugarte, María Dolores; Adin, Aritz; Goicoa, Tomas; Militino, Ana Fernandez

    2014-12-01

    Spatio-temporal disease mapping comprises a wide range of models used to describe the distribution of a disease in space and its evolution in time. These models have been commonly formulated within a hierarchical Bayesian framework with two main approaches: an empirical Bayes (EB) and a fully Bayes (FB) approach. The EB approach provides point estimates of the parameters relying on the well-known penalized quasi-likelihood (PQL) technique. The FB approach provides the posterior distribution of the target parameters. These marginal distributions are not usually available in closed form and common estimation procedures are based on Markov chain Monte Carlo (MCMC) methods. However, the spatio-temporal models used in disease mapping are often very complex and MCMC methods may lead to large Monte Carlo errors and a huge computation time if the dimension of the data at hand is large. To circumvent these potential inconveniences, a new technique called integrated nested Laplace approximations (INLA), based on nested Laplace approximations, has been proposed for Bayesian inference in latent Gaussian models. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with PQL via a simulation study. The spatio-temporal distribution of male brain cancer mortality in Spain during the period 1986-2010 is also analysed. PMID:24713158

  20. Research on spatio-temporal ontology based on description logic

    NASA Astrophysics Data System (ADS)

    Huang, Yongqi; Ding, Zhimin; Zhao, Zhui; Ouyang, Fucheng

    2008-10-01

    DL, short for Description Logic, is aimed at getting a balance between describing ability and reasoning complexity. Users can adopt DL to write clear and formalized concept description for domain model, which makes ontology description possess well-defined syntax and semantics and helps to resolve the problem of spatio-temporal reasoning based on ontology. This paper studies on basic theory of DL and relationship between DL and OWL at first. By analyzing spatio-temporal concepts and relationship of spatio-temporal GIS, the purpose of this paper is adopting ontology language based on DL to express spatio-temporal ontology, and employing suitable ontology-building tool to build spatio-temporal ontology. With regard to existing spatio-temporal ontology based on first-order predicate logic, we need to transform it into spatio-temporal ontology based on DL so as to make the best of existing research fruits. This paper also makes a research on translating relationships between DL and first-order predicate logic.

  1. A spatio-temporal extension to the map cube operator

    NASA Astrophysics Data System (ADS)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  2. Numerical spatio-temporal characterization of Listeria monocytogenes biofilms.

    PubMed

    Mosquera-Fernández, M; Rodríguez-López, P; Cabo, M L; Balsa-Canto, E

    2014-07-16

    As the structure of biofilms plays a key role in their resistance and persistence, this work presents for the first time the numerical characterization of the temporal evolution of biofilm structures formed by three Listeria monocytogenes strains on two types of stainless-steel supports, AISI 304 SS No. 2B and AISI 316 SS No. 2R. Counting methods, motility tests, fluorescence microscopy and image analysis were combined to study the dynamic evolution of biofilm formation and structure. Image analysis was performed with several well-known parameters as well as a newly defined parameter to quantify spatio-temporal distribution. The results confirm the interstrain variability of L. monocytogenes species regarding biofilm structure and structure evolution. Two types of biofilm were observed: homogeneous or flat and heterogeneous or clustered. Differences in clusters and in attachment and detachment processes were due mainly to the topography and composition of the two surfaces although an effect due to motility was also found. PMID:24858448

  3. Spatio-temporal characteristics of Trichel pulse at low pressure

    NASA Astrophysics Data System (ADS)

    He, Shoujie; Jing, Ha

    2014-01-01

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C3Пu → B3Пg transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  4. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10??s and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}?{sub u} ? B{sup 3}?{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  5. Design and implementation of segment oriented spatio-temporal model in urban panoramic maps

    NASA Astrophysics Data System (ADS)

    Li, Haiting; Fei, Lifan; Peng, Qingshan; Li, Yanhong

    2009-10-01

    Object-oriented spatio-temporal model is directed by human cognition that each object has what/where/when attributes. The precise and flexible structure of such models supports multi-semantics of space and time. This paper reviews current research of spatio-temporal models using object-oriented approach and proposed a new spatio-temporal model based on segmentation in order to resolve the updating problem of some special GIS system by taking advantages of object-oriented spatio-temporal model and adopting category theory. Category theory can be used as a unifying framework for specifying complex systems and it provides rules on how objects may be joined. It characterizes the segments of object through mappings between them. The segment-oriented spatio-temporal model designed for urban panoramic maps is described and implemented. We take points and polylines as objects in this model in the management of panoramic map data. For the randomness of routes which transportation vehicle adopts each time, road objects in this model are split into some segments by crossing points. The segments still remains polyline type, but the splitting makes it easier to update the panoramic data when new photos are captured. This model is capable of eliminating redundant data and accelerating data access when panoramas are unchanged. For evaluation purpose, the data types and operations are designed and implemented in PostgreSQL and the results of experiments come out to prove that this model is efficient and expedient in the application of urban panoramic maps.

  6. The spatio-temporal signatures of category-selective responses to natural images as evidenced with fast periodic visual stimulation.

    PubMed

    Jacques, Corentin; Retter, Talia; Rossion, Bruno

    2015-01-01

    Humans are extremely rapid at categorizing visual inputs, an ability which relies on occipito-temporal brain processes. Functional neuroimaging studies have identified the spatial organization of neural responses in these regions to ecologically-relevant categories such as faces, bodyparts or houses. However, much less is known about the spatio-temporal dynamics of these category-selective responses at the system level of organization. Here we investigate this issue by recording scalp electroencephalogram (EEG) during fast periodic visual stimulation (FPVS) with natural images (Rossion et al., 2015). Eleven subjects viewed 60 seconds sequences of natural images of various object categories displayed at a base frequency of 6 Hz (6 images/second), in which images of either faces, bodyparts or houses appeared every 5 images (oddball frequency =6Hz/5 =1.2Hz). Category-selective oddball responses manifest at the 1.2Hz oddball frequency and harmonics (2.4Hz, 3.6Hz, etc.). While significant oddball responses were observed for all categories over occipito-temporal regions, responses were much stronger for faces than for limbs and houses. Further, scalp topography pattern analyses point to distinct neural sources across category-selective responses, with responses to faces, bodyparts and houses respectively maximal at ventral occipito-temporal, lateral occipito-temporal, and dorso-medial occipital channels. Time-domain analyses indicate that EEG responses are dissociable across categories at multiple spatio-temporal windows from around 110ms to 500ms post-stimulus onset, with faces eliciting up to five distinct selective responses. These observations go well beyond traditional face-selective EEG responses as identified using transient stimulus presentation (i.e., N170) by indicating that multiple ecologically-relevant categories generate unique spatio-temporal signatures over posterior scalp regions. Finally, these findings highlight the power of the FPVS approach to reveal the spatio-temporal signatures of high-level visual processing at the system level. Rossion, B., et al. (2015). Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. Journal of Vision. Meeting abstract presented at VSS 2015. PMID:26326380

  7. Design and implementation of spatio-temporal database of water and soil loss

    NASA Astrophysics Data System (ADS)

    Lu, XinHai; Bian, Fulin; Tan, Xiaojun

    2008-12-01

    This paper analyzed the features and limitations of several typical spatio-temporal data models. "spatio-temporal cube": the main disadvantage is that the target change will produce great data redundancy when under non-consecutive circumstances. "Snapshots": it repeatedly saves graphics and attribute of no changes which resulted in waste of storage spaces, and it is impossible to reflect space objects under the same domain and the relationship between the attributes. "Base State with Amendments": merely modify changing object, but it's not suitable for continuous variation space object. "space-frame composite": currently, the model is lacking of sound framework structure and application model. "Object-oriented spatio-temporal model": The modeling concept, theoretical foundation and technical realization has not yet reached a consensus, it's not mature enough. In allusion to the features of the spatial database of water and soil loss, this essay expounded the characteristics of spatiotemporal databases. Spatial features in many practical circumstances ( such as thematic maps in soil and water conservation projects and space elements of soil erosion distribution map) have spatial data features, and also change with time, consequently, required us to establish spatio-temporal database, STDB, which can capture time data and space data at the same time. This analysis based on "ArcSDE versioning mechanisms" temporal and spatial database implement technologies, discussed the construction methods, process and data features of the database, and introduced the implementation of historical data rebuilding and version merging.

  8. Spatio-temporal dynamics of the magnetosphere during intense geospace storms

    NASA Astrophysics Data System (ADS)

    Chen, J.; Sharma, A.

    2006-05-01

    During geomagnetically active periods the magnetosphere exhibits global, regional and local features. The global features are in general captured by the geomagnetic indices and the regional and local features are measured by spacecraft-based imagers and ground-based instruments. The global features of the magnetosphere have been studied extensively using nonlinear dynamical techniques, such as phase space reconstruction from observational data. The time series data of the distributed observations are used to develop spatio-temporal dynamics of the magnetosphere using phase space reconstruction techniques. In this approach the solar wind - magnetosphere coupling is modeled as an input-output system with the solar wind variables as the input and the ground-based magnetic field variations as the magnetospheric response. The magnetic field perturbation at 57 ground stations during year 2002 and the corresponding solar wind data are compiled for this study. The ground magnetometer data are from the three chains of stations: CANOPUS (13), IMAGE (26) and WDC (18). This new data set, with 1-minute resolution, is used to study the spatio-temporal structure, including the coupling between the high and mid-latitude regions. A technique that utilizes the daily rotation of the Earth as a longitudinal sampling process is used to construct a two dimensional representation of the high latitude magnetic perturbations both in magnetic latitude and magnetic local time. This linear and nonlinear model is used to predict the spatial structure of geomagnetic disturbances during intense geospace storms. From the point of view of space weather the predictions of the spatial structure are crucial, as it is important to identify the regions of strong disturbances during intense geospace storms

  9. Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment

    NASA Technical Reports Server (NTRS)

    Delin, K. A.; Jackson, S. P.; Johnson, D. W.; Burleigh, S. C.; Woodrow, R. R.; McAuley, M.; Britton, J. T.; Dohm, J. M.; Ferre, T. P. A.; Ip, Felipe

    2004-01-01

    The Sensor Web is a macroinstrument concept that allows for the spatio-temporal understanding of an environment through coordinated efforts between multiple numbers and types of sensing platforms, including, in its most general form, both orbital and terrestrial and both fixed and mobile. Each of these platforms, or pods, communicates within its local neighborhood and thus distributes information to the instrument as a whole. The result of sharing and continual processing of this information among all the Sensor Web elements will result in an information flow and a global perception of and reactive capability to the environment. As illustrated, the Sensor Web concept also allows for the recursive notion of a web of webs with individual distributed instruments possibly playing the role of a single node point on a larger Sensor Web instrument. In particular, the fusion of inexpensive, yet sophisticated, commercial technology from both the computation and telecommunication revolutions has enabled the development of practical, fielded, and embedded in situ systems that have been the focus of the NASA/JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/). These Sensor Webs are complete systems consisting of not only the pod elements that wirelessly communicate among themselves, but also interfacing and archiving software that allows for easy use by the end-user. Previous successful deployments have included environments as diverse as coastal regions, Antarctica, and desert areas. The Sensor Web has broad implications for Earth and planetary science and will revolutionize the way experiments and missions are conceived and performed. As part of our current efforts to develop a macrointelligence within the system, we have deployed a Sensor Web at the Central Avra Valley Storage and Recovery Project (CAVSARP) facility located west of Tucson, AZ. This particular site was selected because it is ideal for studying spatio-temporal phenomena and for providing a test site for more sophisticated hydrological studies in the future.

  10. Spatio-temporal fluctuations in immiscible polymeric binary mixtures: towards the realization of a signal/information processing device with hierarchical instabilities

    NASA Astrophysics Data System (ADS)

    Maruyama, Ryota; Asakawa, Naoki

    2014-09-01

    A design of a bio-inspired signal/information processing device and the fabrication of a stochastic delay-derivative element (SDDE) using an immiscible polymer binary mixture of poly(L-lactic acid) with poly(?-caprolactone) are described. A functional aspect of bio-inspired signal/information processing using both analogue electric circuits and numerical simulations are shown. Nano-thin films of polymeric binary mixtures were explored to realize the SDDE.

  11. Hirarchical Bayesian Spatio-Temporal Interpolation including Covariates

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Mohsin, Muhammad; Spoeck, Gunter; Pilz, Juergen

    2010-05-01

    The space-time interpolation of precipitation has significant contribution to river control,reservoir operations, forestry interest and flash flood watches etc. The changes in environmental covariates and spatial covariates make space-time estimation of precipitation a challenging task. In our earlier paper [1], we used transformed hirarchical Bayesian sapce-time interpolation method for predicting the amount of precipiation. In present paper, we modified the [2] method to include covarites which varaies with respect to space-time. The proposed method is applied to estimating space-time monthly precipitation in the monsoon periods during 1974 - 2000. The 27-years monthly average data of precipitation, temperature, humidity and wind speed are obtained from 51 monitoring stations in Pakistan. The average monthly precipitation is used response variable and temperature, humidity and wind speed are used as time varying covariates. Moreovere the spatial covarites elevation, latitude and longitude of same monitoring stations are also included. The cross-validation method is used to compare the results of transformed hierarchical Bayesian spatio-temporal interpolation with and without including environmental and spatial covariates. The software of [3] is modified to incorprate enviornmental covariates and spatil covarites. It is observed that the transformed hierarchical Bayesian method including covarites provides more accuracy than the transformed hierarchical Bayesian method without including covarites. Moreover, the five potential monitoring cites are selected based on maximum entropy sampaling design approach. References [1] I.Hussain, J.Pilz,G. Spoeck and H.L.Yu. Spatio-Temporal Interpolation of Precipitation during Monsoon Periods in Pakistan. submitted in Advances in water Resources,2009. [2] N.D. Le, W. Sun, and J.V. Zidek, Bayesian multivariate spatial interpolation with data missing by design. Journal of the Royal Statistical Society. Series B (Methodological), 501-510, 1997. [3] N.D. Le, and J.V. Zidek, Statistical analysis of environmental space-time processes, Springer Verlag, (2006), PP. 272-294

  12. Spatio-temporal population estimates for risk management

    NASA Astrophysics Data System (ADS)

    Cockings, Samantha; Martin, David; Smith, Alan; Martin, Rebecca

    2013-04-01

    Accurate estimation of population at risk from hazards and effective emergency management of events require not just appropriate spatio-temporal modelling of hazards but also of population. While much recent effort has been focused on improving the modelling and predictions of hazards (both natural and anthropogenic), there has been little parallel advance in the measurement or modelling of population statistics. Different hazard types occur over diverse temporal cycles, are of varying duration and differ significantly in their spatial extent. Even events of the same hazard type, such as flood events, vary markedly in their spatial and temporal characteristics. Conceptually and pragmatically then, population estimates should also be available for similarly varying spatio-temporal scales. Routine population statistics derived from traditional censuses or surveys are usually static representations in both space and time, recording people at their place of usual residence on census/survey night and presenting data for administratively defined areas. Such representations effectively fix the scale of population estimates in both space and time, which is unhelpful for meaningful risk management. Over recent years, the Pop24/7 programme of research, based at the University of Southampton (UK), has developed a framework for spatio-temporal modelling of population, based on gridded population surfaces. Based on a data model which is fully flexible in terms of space and time, the framework allows population estimates to be produced for any time slice relevant to the data contained in the model. It is based around a set of origin and destination centroids, which have capacities, spatial extents and catchment areas, all of which can vary temporally, such as by time of day, day of week, season. A background layer, containing information on features such as transport networks and landuse, provides information on the likelihood of people being in certain places at specific times. Unusual patterns associated with special events can also be modelled and the framework is fully volume preserving. Outputs from the model are gridded population surfaces for the specified time slice, either for total population or by sub-groups (e.g. age). Software to implement the models (SurfaceBuilder247) has been developed and pre-processed layers for typical time slices for England and Wales in 2001 and 2006 are available for UK academic purposes. The outputs and modelling framework from the Pop24/7 programme provide significant opportunities for risk management applications. For estimates of mid- to long-term cumulative population exposure to hazards, such as in flood risk mapping, populations can be produced for numerous time slices and integrated with flood models. For applications in emergency response/ management, time-specific population models can be used as seeds for agent-based models or other response/behaviour models. Estimates for sub-groups of the population also permit exploration of vulnerability through space and time. This paper outlines the requirements for effective spatio-temporal population models for risk management. It then describes the Pop24/7 framework and illustrates its potential for risk management through presentation of examples from natural and anthropogenic hazard applications. The paper concludes by highlighting key challenges for future research in this area.

  13. Unavoidable Errors: A Spatio-Temporal Analysis of Time-Course and Neural Sources of Evoked Potentials Associated with Error Processing in a Speeded Task

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2008-01-01

    The detection of errors is known to be associated with two successive neurophysiological components in EEG, with an early time-course following motor execution: the error-related negativity (ERN/Ne) and late positivity (Pe). The exact cognitive and physiological processes contributing to these two EEG components, as well as their functional…

  14. Unavoidable Errors: A Spatio-Temporal Analysis of Time-Course and Neural Sources of Evoked Potentials Associated with Error Processing in a Speeded Task

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2008-01-01

    The detection of errors is known to be associated with two successive neurophysiological components in EEG, with an early time-course following motor execution: the error-related negativity (ERN/Ne) and late positivity (Pe). The exact cognitive and physiological processes contributing to these two EEG components, as well as their functional…

  15. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers.

    PubMed

    Knowles, L Lacey; Alvarado-Serrano, Diego F

    2010-09-01

    Understanding the genetic consequences of shifting species distributions is critical for evaluating the impact of climate-induced distributional changes. However, the demographic expansion associated with the colonization process typically takes place across a heterogeneous environment, with population sizes and migration rates varying across the landscape. Here we describe an approach for coupling ecological-niche models (ENMs) with demographic and genetic models to explore the genetic consequences of distributional shifts across a heterogeneous landscape. Analyses of a flightless grasshopper from the sky islands of the Rocky Mountains of North America are used to show how biologically informed predictions can be generated about the genetic consequences of a colonization process across a spatially and temporally heterogeneous landscape (i.e. the suitability of habitats for the montane species differs across the landscape and is itself not static, with the displacement of contemporary populations into glacial refugia). By using (i) ENMs for current climatic conditions and the last glacial maximum to (ii) parameterize a demographic model of the colonization process, which then (iii) informs coalescent simulations, a set of models can be generated that capture different processes associated with distributional shifts. We discuss how the proposed approach for model generation can be integrated into a statistical framework for estimating key demographic parameters and testing hypotheses about the conditions for which distributional shifts may (or may not) enhance species divergence, including the importance of habitat stability, past gene-flow among currently isolated populations, and maintenance of refugial populations in multiple geographic regions. PMID:20723059

  16. A new point process model for trajectory-based events annotation

    NASA Astrophysics Data System (ADS)

    Ballas, Nicolas; Delezoide, Bertrand; Pr"teux, Françoise

    2012-01-01

    Human actions annotation in videos has received an increase attention from the scientific community these last years mainly due to its large implication in many computer vision applications. The current leading paradigm to perform human actions annotation is based on local features. Local features robust to geometric transformations and occlusion are extracted from a video and aggregated to obtain a global video signature. However, current aggregation schemes such as Bag-of-Words or spatio-temporal grids have no or limited information about the local features spatio-temporal localization in videos. It has been shown that local features localization can be hepful for detecting a concept or an action. In this work we improve on the aggregation step by embedding local features spatio-temporal information in the final video representation by introducing a point process model. We propose an event recognition system involving two main steps: (1) local features extraction based on robust point trajectories, and (2) a global action representation capturing the spatio-temporal context information through an innovative point process clustering. A point process provides indeed a well-defined formalism to characterize local features localization along with their interactions information. Results are evaluated on the HOllywood in Human Action (HOHA) dataset showing an improvement over the state-of-art.

  17. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos.

    PubMed

    Cicin-Sain, Damjan; Pulido, Antonio Hermoso; Crombach, Anton; Wotton, Karl R; Jiménez-Guri, Eva; Taly, Jean-François; Roma, Guglielmo; Jaeger, Johannes

    2015-01-01

    We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution. PMID:25404137

  18. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  19. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 ?M for DO, 0.40 ?g L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 ?atm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal ecosystems. During the same period in the sWEC, the tidal cycle was the main driver of air-sea CO2 fluxes with a mean difference in pCO2 values between spring and neap tides of + 50 ?atm. An extraction of day/night data at 49.90°N showed that the mean day-night differences accounted for 16% of the mean CO2 sink during the 5 months of the study period implying that the diel biological cycle was also significant for air-sea CO2 flux computations. The 2 years of deployment of our FerryBox allowed an excellent survey of the variability of biogeochemical parameters from inter-annual to diurnal time scales and provided new insights into the dynamics of air-sea CO2 fluxes in the contrasted ecosystems of the WEC.

  20. Analysis of non-ergodic behaviour in spatio-temporal coherence properties of speckle light

    NASA Astrophysics Data System (ADS)

    Réfrégier, Philippe

    Spatio-temporal coherence properties of light scattered by rough surfaces that leads to speckle fluctuations are analysed. It is demonstrated that the scattered light is non-ergodic with the disorder due to the scattering process. Although the mutual coherence matrix vanishes with isotropic polarization fluctuations, it is shown that spatio-temporal coherence properties can be described with interference experiments that can be obtained between different speckles of the scattered light. For non-singular scattering processes, the maximal value of the modulus of the Wolf degree of coherence is analysed in the spatial time domain. This approach is also applied to totally unpolarized incident light with an isotropic and spatially independent scattering process. The mean value and the standard deviation of the Wolf degree of coherence are then determined from the coherence properties of the incident light.

  1. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data

    USGS Publications Warehouse

    Wikle, C.K.; Royle, J. Andrew

    2005-01-01

    Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.

  2. Spatio-temporal chaos in a chemotaxis model

    NASA Astrophysics Data System (ADS)

    Painter, Kevin J.; Hillen, Thomas

    2011-02-01

    In this paper we explore the dynamics of a one-dimensional Keller-Segel type model for chemotaxis incorporating a logistic cell growth term. We demonstrate the capacity of the model to self-organise into multiple cellular aggregations which, according to position in parameter space, either form a stationary pattern or undergo a sustained spatio-temporal sequence of merging (two aggregations coalesce) and emerging (a new aggregation appears). This spatio-temporal patterning can be further subdivided into either a time-periodic or time-irregular fashion. Numerical explorations into the latter indicate a positive Lyapunov exponent (sensitive dependence to initial conditions) together with a rich bifurcation structure. In particular, we find stationary patterns that bifurcate onto a path of periodic patterns which, prior to the onset of spatio-temporal irregularity, undergo a “periodic-doubling” sequence. Based on these results and comparisons with other systems, we argue that the spatio-temporal irregularity observed here describes a form of spatio-temporal chaos. We discuss briefly our results in the context of previous applications of chemotaxis models, including tumour invasion, embryonic development and ecology.

  3. Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Chengtao; Zhou, Fan; Chen, Yaowu

    2013-10-01

    The exhaustive block partition search process in high efficiency video coding (HEVC) imposes a very high computational complexity on test module of HEVC encoder (HM). A fast coding unit (CU) depth algorithm using the spatio-temporal correlation of the depth information to fasten the search process is proposed. The depth of the coding tree unit (CTU) is predicted first by using the depth information of the spatio-temporal neighbor CTUs. Then, the depth information of the adjacent CU is incorporated to skip some specific depths when encoding the sub-CTU. As compared with the original HM encoder, experimental results show that the proposed algorithm can save more than 20% encoding time on average for intra-only, low-delay, low-delay P slices, and random access cases with almost the same rate-distortion performance.

  4. Chromatin Structure Exhibits Spatio-Temporal Heterogeneity within the Cell Nucleus

    PubMed Central

    Banerjee, Bidisha; Bhattacharya, Dipanjan; Shivashankar, G.V.

    2006-01-01

    Local chromatin compaction undergoes dynamic perturbations to regulate genetic processes. To address this, the direct measurement of the fluidity of chromatin structure is carried out in single live cells using steady-state anisotropy imaging and polarization modulation microscopy. Fluorescently tagged core and linker histones are used to probe different structural aspects of chromatin compaction. A graded spatial heterogeneity in compaction is observed for the chromatin besides the distinct positional ordering of core and linker histones. These spatio-temporal features are maintained by active processes and perturbed during death. With cell cycle, the distribution in compaction heterogeneity continually changes maximizing during M-G1 transition where it displays bimodal behavior. Such measurements of spatio-temporal chromatin fluidity could have broader implications in understanding chromatin remodeling within living cells. PMID:16815897

  5. A Distributed Spatio-Temporal EEG/MEG Inverse Solver

    PubMed Central

    Hämäläinen, Matti S.; Golland, Polina

    2009-01-01

    We propose a novel ?1?2-norm inverse solver for estimating the sources of EEG/MEG signals. Developed based on the standard ?1-norm inverse solvers, this sparse distributed inverse solver integrates the ?1-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and “spiky” reconstructed signals often produced by the currently used sparse solvers. The joint spatio-temporal model leads to a cost function with an ?1?2-norm regularizer whose minimization can be reduced to a convex second-order cone programming (SOCP) problem and efficiently solved using the interior-point method. The efficient computation of the SOCP problem allows us to implement permutation tests for estimating statistical significance of the inverse solution. Validation with simulated and real MEG data shows that the proposed solver yields source time course estimates qualitatively similar to those obtained through dipole fitting, but without the need to specify the number of dipole sources in advance. Furthermore, the ?1?2-norm solver achieves fewer false positives and a better representation of the source locations than the conventional ?2 minimum-norm estimates. PMID:18603008

  6. A distributed spatio-temporal EEG/MEG inverse solver

    PubMed Central

    Ou, Wanmei; Hämäläinen, Matti S.; Golland, Polina

    2009-01-01

    We propose a novel ?1?2-norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard ?1-norm inverse solvers, this sparse distributed inverse solver integrates the ?1-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and “spiky” reconstructed signals often produced by the currently used sparse solvers. The joint spatio-temporal model leads to a cost function with an ?1?2-norm regularizer whose minimization can be reduced to a convex second-order cone programming (SOCP) problem and efficiently solved using the interior-point method. The efficient computation of the SOCP problem allows us to implement permutation tests for estimating statistical significance of the inverse solution. Validation with simulated and human MEG data shows that the proposed solver yields source time course estimates qualitatively similar to those obtained through dipole fitting, but without the need to specify the number of dipole sources in advance. Furthermore, the ?1?2-norm solver achieves fewer false positives and a better representation of the source locations than the conventional ?2 minimum-norm estimates. PMID:18979728

  7. Decomposition of the complex system into nonlinear spatio-temporal modes: algorithm and application to climate data mining

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry

    2015-04-01

    Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems. 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.

  8. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    NASA Astrophysics Data System (ADS)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.

  9. Spatio-Temporal Analysis of Early Brain Development.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Gilmore, John H; Lin, Weili; Gerig, Guido

    2010-01-01

    Analysis of human brain development is a crucial step for improved understanding of neurodevelopmental disorders. We focus on normal brain development as is observed in the multimodal longitudinal MRI/DTI data of neonates to two years of age. We present a spatio-temporal analysis framework using Gompertz function as a population growth model with three different spatial localization strategies: voxel-based, data driven clustering and atlas driven regional analysis. Growth models from multimodal imaging channels collected at each voxel form feature vectors which are clustered using the Dirichlet Process Mixture Models (DPMM). Clustering thus combines growth information from different modalities to subdivide the image into voxel groups with similar properties. The processing generates spatial maps that highlight the dynamic progression of white matter development. These maps show progression of white matter maturation where primarily, central regions mature earlier compared to the periphery, but where more subtle regional differences in growth can be observed. Atlas based analysis allows a quantitative analysis of a specific anatomical region, whereas data driven clustering identifies regions of similar growth patterns. The combination of these two allows us to investigate growth patterns within an anatomical region. Specifically, analysis of anterior and posterior limb of internal capsule show that there are different growth trajectories within these anatomies, and that it may be useful to divide certain anatomies into subregions with distinctive growth patterns. PMID:25328368

  10. A spatio-temporal model of housing prices based on individual sales transactions over time

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Wu, Peggy

    2009-12-01

    A spatio-temporal model of housing price trends is developed that focuses on individual housing sales over time. The model allows for both the spatio-temporal lag effects of previous sales in the vicinity of each housing sale, and for general autocorrelation effects over time. A key feature of this model is the recognition of the unequal spacing between individual housing sales over time. Hence the residuals are modeled as a first-order autoregressive process with unequally spaced events. The maximum-likelihood estimation of this model is developed in detail, and tested in terms of simulations based on selected data. In addition, the model is applied to a small data set in the Philadelphia area.

  11. Activity Changes Induced by Spatio-Temporally Correlated Stimuli in Cultured Cortical Networks

    NASA Astrophysics Data System (ADS)

    Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko

    Activity-dependent plasticity probably plays a key role in learning and memory in biological information processing systems. Though long-term potentiation and depression have been extensively studied in the filed of neuroscience, little is known on the mechanisms for integrating these modifications on network-wide activity changes. In this report, we studied effects of spatio-temporally correlated stimuli on the neuronal network activity. Rat cortical neurons were cultured on substrates with 64 embedded micro-electrodes and the evoked responses were extracellularly recorded and analyzed. We compared spatio-temporal patterns of the responses between before and after repetitive application of correlated stimuli. After the correlated stimuli, the networks showed significantly different responses from those in the initial states. The modified activity reflected structures of the repeatedly applied correlated stimuli. The results suggested that spatiotemporally correlated inputs systematically induced modification of synaptic strengths in neuronal networks, which could serve as an underlying mechanism of associative memory.

  12. Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach

    PubMed Central

    Chen, Dongmei; Racine, Jeffrey S.; Ong, SengHuat; Chen, Yue; Zhao, Genming; Jiang, Qingwu

    2011-01-01

    Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the “average” spatial pattern of disease risk, thereby masking time trajectories of disease risk. In this study we propose a new idea titled “spatio-temporal kernel density estimation (stKDE)” that employs hybrid kernel (i.e., weight) functions to evaluate the spatio-temporal disease risks. This approach not only can make full use of sample data but also “borrows” information in a particular manner from neighboring points both in space and time via appropriate choice of kernel functions. Monte Carlo simulations show that the proposed method performs substantially better than the traditional (i.e., frequency-based) kernel density estimation (trKDE) which has been used in applied settings while two illustrative examples demonstrate that the proposed approach can yield superior results compared to the popular trKDE approach. In addition, there exist various possibilities for improving and extending this method. PMID:21423612

  13. Time reversal and the spatio-temporal matched filter

    SciTech Connect

    Lehman, S K; Poggio, A J; Kallman, J S; Meyer, A W; Candy, J V

    2004-03-08

    It is known that focusing of an acoustic field by a time-reversal mirror (TRM) is equivalent to a spatio-temporal matched filter under conditions where the Green's function of the field satisfies reciprocity and is time invariant, i.e. the Green's function is independent of the choice of time origin. In this letter, it is shown that both reciprocity and time invariance can be replaced by a more general constraint on the Green's function that allows a TRM to implement the spatio-temporal matched filter even when conditions are time varying.

  14. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    SciTech Connect

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstrating a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.

  15. Dynamical Cell Assembly Hypothesis - Theoretical Possibility of Spatio-temporal Coding in the Cortex.

    PubMed

    Tsukada, Minoru; Ichinose, Natsuhiro; Aihara, Kazuyuki; Ito, Hiroyuki; Fujii, Hiroshi

    1996-11-01

    This paper is an attempt to understand how knowledge and events are represented and processed in the brain. An important point is the question of what carries information in the brain - the mean firing rate or the timing of spikes? The idea we want to pursue is that, contrary to the traditional view, the brain might use higher order statistics, which means in essence that timing of spikes plays a critical role in encoding, representing, and processing knowledge and events in the brain.A recently revealed salient nature of cortical pyramidal cells, i.e., the high variability of inter-spike intervals suggests that a cortical neuron may function effectively as a coincidence detector. At the same time, non-classical experimental phenomena of task-related, short time-scaled dynamical modulations of temporal correlations between neurons suggest a non-classical view on the dynamics working in the brain. In response to contexts or external events, a group of neurons, a dynamical cell assembly, spontaneously organizes, linked temporarily by coincident timing of incident spikes, showing correlated firing with each other. This is an emergent property of neuronal populations in the cortex.We make a theoretical exploration on issues as (1) the description of such emergent dynamics of dynamical cell assemblies based on the working hypothesis that a cortica neuron functions effectively as a coincidence detector, and (2) the principle of spatio-temporal coding based on the hypothetical emergent dynamics. Note that the conventional rate coding hypothesis does not give satisfactory answers to fundamental questions on the representation and processing of knowledge or events in the brain, e.g., the questions of cross-modular integration of information or the binding problem, and representation of hierarchical knowledge etc.The first goal is to give a non-encyclopedic review on (1) the temporal structure of spike sequences, focusing on the question of the basic code in the brain; (2) the paradigms on representation of knowledge and events proposed from a theoretical or experimental basis. The classical paradigms of Hebb and Barlow with their experimental and theoretical critiques, and more recently proposed experiment-based paradigms are reviewed. Also a review is given on (3) the experimentally observed spatio-temporal structure of spike dynamics.The second goal is to give a description of the dynamical cell assembly - the central concept in this paper. Aside from the question of physiological basis, we make a theoretical study, under a working hypothesis that a cortical neuron functions effectively as a coincidence detector, on the emergent dynamics of cell assemblies, and also examine how the observed experimental data could be explained within this theoretical setting.We also try to give the principle of spatio-temporal coding based on the dynamical cell assembly framework. A key concept is the internal mechanism of "dialogue" among neuronal pools in the brain. This provides a dynamical foundation of bi-directional interactions for the linkage of distant modules to create integrated information. We present a simple model in order to illustrate the working principle of coincidence detector systems. Relations with other temporal coding paradigms are also discussed. Copyright 1996 Elsevier Science Ltd. PMID:12662537

  16. Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Ghosh, S. K.

    2015-07-01

    Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.

  17. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  18. Robust visual tracking with dual spatio-temporal context trackers

    NASA Astrophysics Data System (ADS)

    Sun, Shiyan; Zhang, Hong; Yuan, Ding

    2015-12-01

    Visual tracking is a challenging problem in computer vision. Recent years, significant numbers of trackers have been proposed. Among these trackers, tracking with dense spatio-temporal context has been proved to be an efficient and accurate method. Other than trackers with online trained classifier that struggle to meet the requirement of real-time tracking task, a tracker with spatio-temporal context can run at hundreds of frames per second with Fast Fourier Transform (FFT). Nevertheless, the performance of the tracker with Spatio-temporal context relies heavily on the learning rate of the context, which restricts the robustness of the tracker. In this paper, we proposed a tracking method with dual spatio-temporal context trackers that hold different learning rate during tracking. The tracker with high learning rate could track the target smoothly when the appearance of target changes, while the tracker with low learning rate could percepts the occlusion occurring and continues to track when the target starts to emerge again. To find the target among the candidates from these two trackers, we adopt Normalized Correlation Coefficient (NCC) to evaluate the confidence of each sample. Experimental results show that the proposed algorithm performs robustly against several state-of-the-art tracking methods.

  19. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  20. Spatio-temporal evaluation matrices for geospatial data

    NASA Astrophysics Data System (ADS)

    Triglav, Joc; Petrovi?, Dušan; Stopar, Bojan

    2011-02-01

    The global geospatial community is investing substantial effort in providing tools for geospatial data-quality information analysis and systematizing the criteria for geospatial data quality. The importance of these activities is increasing, especially in the last decade, which has witnessed an enormous expansion of geospatial data use in general and especially among mass users. Although geospatial data producers are striving to define and present data-quality standards to users and users increasingly need to assess the fitness for use of the data, the success of these activities is still far from what is expected or required. As a consequence, neglect or misunderstanding of data quality among users results in misuse or risks. This paper presents an aid in spatio-temporal quality evaluation through the use of spatio-temporal evaluation matrices (STEM) and the index of spatio-temporal anticipations (INSTANT) matrices. With the help of these two simple tools, geospatial data producers can systematically categorize and visualize the granularity of their spatio-temporal data, and users can present their requirements in the same way using business intelligence principles and a Web 2.0 approach. The basic principles and some examples are presented in the paper, and potential further applied research activities are briefly described.

  1. Fast Spatio-Temporal Data Mining from Large Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.

    1995-01-01

    Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.

  2. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  3. Studies on spatio-temporal filtering of GNSS-derived coordinates

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Bogusz, Janusz; Kłos, Anna; Figurski, Mariusz

    2015-04-01

    The information about lithospheric deformations may be obtained nowadays by analysis of velocity field derived from permanent GNSS (Global Navigation Satellite System) observations. Despite developing more and more reliable models, the permanent stations residuals must still be considered as coloured noise. Meeting the GGOS (Global Geodetic Observing System) requirements, we are obliged to investigate the correlations between residuals, which are the result of common mode error (CME). This type of error may arise from mismodelling of: satellite orbits, the Earth Orientation Parameters, satellite antenna phase centre variations or unmodelling of large scale atmospheric effects. The above described together cause correlations between stochastic parts of coordinate time series obtained at stations located of even few thousands kilometres from each other. Permanent stations that meet the aforementioned terms form the regional (EPN - EUREF Permanent Network) or local sub-networks of global (IGS - International GNSS Service) network. Other authors (Wdowinski et al., 1997; Dong et al., 2006) dealt with spatio-temporal filtering and indicated three major regional filtering approaches: the stacking, the Principal Component Analysis (PCA) based on the empirical orthogonal function and the Karhunen-Loeve expansion. The need for spatio-temporal filtering is evident today, but the question whether the size of the network affects the accuracy of station's position and its velocity still remains unanswered. With the aim to determine the network's size, for which the assumption of spatial uniform distribution of CME is retained, we used stacking approach. We analyzed time series of IGS stations with daily network solutions processed by the Military University of Technology EPN Local Analysis Centre in Bernese 5.0 software and compared it with the JPL (Jet Propulsion Laboratory) PPP (Precice Point Positioning). The method we propose is based on the division of local GNSS networks into concentric ring-shaped areas. Such an approach allows us to specify the maximum size of the network, where the evident uniform spatial response can be still noticed. In terms of reliable CMEs extraction, the local networks have to be up to 500-600 kilometres extent depending on its character (location). In this study we examined three approaches of spatio-temporal filtering based on stacking procedure. First was based on non-weighted (Wdowinski et. al., 1997) and second on weighted average formula, where the weights are formed by the RMS of individual station position in the corresponding epoch (Nikolaidis, 2002). The third stacking approach, proposed here, was previously unused. It combines the weighted stacking together with the distance between the station and network barycentre into one approach. The analysis allowed to determine the optimal size of local GNSS network and to select the appropriate stacking method for obtaining the most stable solutions for e.g. geodynamical studies. The values of L1 and L2 norms, RMS values of time series (describing stability of the time series) and Pearson correlation coefficients were calculated for the North, East and Up components from more than 200 permanent stations twice: before performing the filtration and after weighted stacking approach. We showed the improvement in the quality of time series analysis using MLE (Maximum Likelihood Estimation) to estimate noise parameters. We demonstrated that the relative RMS improvement of 10, 20 and 30% reduces the noise amplitudes of about 20, 35 and 45%, respectively, what causes the velocity uncertainty to be reduced of 0.3 mm/yr (for the assumption of 7-years of data and flicker noise). The relative decrement of spectral index kappa is 25, 35 and 45%, what means lower velocity uncertainty of even 0.2 mm/yr (when assuming 7 years of data and noise amplitude of 15 mm/yr^-kappa/4) . These results refer to the growing demands on the stability of the series due to their use to realize the kinematic reference frames and for geodynamical studies.

  4. An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  5. An accessible method for implementing hierarchical models with spatio-temporal abundance data.

    PubMed

    Ross, Beth E; Hooten, Mevin B; Koons, David N

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, 'INLA'). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time. PMID:23166658

  6. An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data

    PubMed Central

    Ross, Beth E.; Hooten, Mevin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time. PMID:23166658

  7. Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece)

    NASA Astrophysics Data System (ADS)

    Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Schaff, D.; Tsaklidis, G.

    2015-12-01

    The 2013 Aigion earthquake swarm that took place in the west part of Corinth Gulf is investigated for revealing faulting and seismicity properties of the activated area. The activity started on May 21 and was appreciably intense in the next 3 months. The recordings of the Hellenic Unified Seismological Network (HUSN), which is adequately dense around the affected area, were used to accurately locate 1501 events. The double difference (hypoDD) technique was employed for the manually picked P and S phases along with differential times derived from waveform cross-correlation for improving location accuracy. The activated area with dimensions 6 × 2 km is located approximately 5 km SE of Aigion. Focal mechanisms of 77 events with M ≥ 2.0 were determined from P wave first motions and used for the geometry identification of the ruptured segments. Spatio-temporal distribution of earthquakes revealed an eastward and westward hypocentral migration from the starting point suggesting the division of the seismic swarm into four major clusters. The hypocentral migration was corroborated by the Coulomb stress change calculation, indicating that four fault segments involved in the rupture process successively failed by stress change encouragement. Examination of fluid flow brought out that it cannot be unambiguously considered as the driving mechanism for the successive failures.

  8. Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece)

    NASA Astrophysics Data System (ADS)

    Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Schaff, D.; Tsaklidis, G.

    2016-04-01

    The 2013 Aigion earthquake swarm that took place in the west part of Corinth Gulf is investigated for revealing faulting and seismicity properties of the activated area. The activity started on May 21 and was appreciably intense in the next 3 months. The recordings of the Hellenic Unified Seismological Network (HUSN), which is adequately dense around the affected area, were used to accurately locate 1501 events. The double difference ( hypoDD) technique was employed for the manually picked P and S phases along with differential times derived from waveform cross-correlation for improving location accuracy. The activated area with dimensions 6 × 2 km is located approximately 5 km SE of Aigion. Focal mechanisms of 77 events with M ≥ 2.0 were determined from P wave first motions and used for the geometry identification of the ruptured segments. Spatio-temporal distribution of earthquakes revealed an eastward and westward hypocentral migration from the starting point suggesting the division of the seismic swarm into four major clusters. The hypocentral migration was corroborated by the Coulomb stress change calculation, indicating that four fault segments involved in the rupture process successively failed by stress change encouragement. Examination of fluid flow brought out that it cannot be unambiguously considered as the driving mechanism for the successive failures.

  9. Spatio-temporal Outlier Detection in Precipitation Data

    NASA Astrophysics Data System (ADS)

    Wu, Elizabeth; Liu, Wei; Chawla, Sanjay

    The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available and the need to understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-k spatial outliers over several time periods. The top-k spatial outliers are found using the Exact-Grid Top- k and Approx-Grid Top- k algorithms, which are an extension of algorithms developed by Agarwal et al. [1]. Since they use the Kulldorff spatial scan statistic, they are capable of discovering all outliers, unaffected by neighbouring regions that may contain missing values. After generating the outlier sequences, we show one way they can be interpreted, by comparing them to the phases of the El Niño Southern Oscilliation (ENSO) weather phenomenon to provide a meaningful analysis of the results.

  10. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    SciTech Connect

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positive semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.

  11. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    DOE PAGESBeta

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less

  12. A Hierarchical Bayesian Approach for Learning Sparse Spatio-Temporal Decomposition of Multichannel EEG

    PubMed Central

    Wu, Wei; Chen, Zhe; Gao, Shangkai; Brown, Emery N.

    2011-01-01

    Multichannel electroencephalography (EEG) offers a non-invasive tool to explore spatio-temporal dynamics of brain activity. With EEG recordings consisting of multiple trials, traditional signal processing approaches that ignore inter-trial variability in the data may fail to accurately estimate the underlying spatio-temporal brain patterns. Moreover, precise characterization of such inter-trial variability per se can be of high scientific value in establishing the relationship between brain activity and behavior. In this paper, a statistical modeling framework is introduced for learning spatiotemporal decomposition of multiple-trial EEG data recorded under two contrasting experimental conditions. By modeling the variance of source signals as random variables varying across trials, the proposed two-stage hierarchical Bayesian model is able to capture inter-trial amplitude variability in the data in a sparse way where a parsimonious representation of the data can be obtained. A variational Bayesian (VB) algorithm is developed for statistical inference of the hierarchical model. The efficacy of the proposed modeling framework is validated with the analysis of both synthetic and real EEG data. In the simulation study we show that even at low signal-to-noise ratios our approach is able to recover with high precision the underlying spatiotemporal patterns and the evolution of source amplitude across trials; on two brain-computer interface (BCI) data sets we show that our VB algorithm can extract physiologically meaningful spatio-temporal patterns and make more accurate predictions than other two widely used algorithms: the common spatial patterns (CSP) algorithm and the Infomax algorithm for independent component analysis (ICA). The results demonstrate that our statistical modeling framework can serve as a powerful tool for extracting brain patterns, characterizing trial-to-trial brain dynamics, and decoding brain states by exploiting useful structures in the data. PMID:21420499

  13. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Kornelsen, K. C.; Coulibaly, P.

    2013-04-01

    This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR) probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm) or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  14. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Kornelsen, K. C.; Coulibaly, P.

    2012-12-01

    This paper introduces and describes the hourly high resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR) probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a cold and snowy climate and to capture soil moisture transitions in areas that have different topography, soil and land-cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal Canadian climate causes a transition in soil moisture patterns at seasonal time scales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was equally dominated by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm) or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting http://www.hydrology.mcmaster.ca.

  15. Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity

    PubMed Central

    Wang, Grace I.

    2012-01-01

    The spatio-temporal pattern of auditory nerve (AN) activity, representing the relative timing of spikes across the tonotopic axis, contains cues to perceptual features of sounds such as pitch, loudness, timbre, and spatial location. These spatio-temporal cues may be extracted by neurons in the cochlear nucleus (CN) that are sensitive to relative timing of inputs from AN fibers innervating different cochlear regions. One possible mechanism for this extraction is “cross-frequency” coincidence detection (CD), in which a central neuron converts the degree of coincidence across the tonotopic axis into a rate code by preferentially firing when its AN inputs discharge in synchrony. We used Huffman stimuli (Carney LH. J Neurophysiol 64: 437–456, 1990), which have a flat power spectrum but differ in their phase spectra, to systematically manipulate relative timing of spikes across tonotopically neighboring AN fibers without changing overall firing rates. We compared responses of CN units to Huffman stimuli with responses of model CD cells operating on spatio-temporal patterns of AN activity derived from measured responses of AN fibers with the principle of cochlear scaling invariance. We used the maximum likelihood method to determine the CD model cell parameters most likely to produce the measured CN unit responses, and thereby could distinguish units behaving like cross-frequency CD cells from those consistent with same-frequency CD (in which all inputs would originate from the same tonotopic location). We find that certain CN unit types, especially those associated with globular bushy cells, have responses consistent with cross-frequency CD cells. A possible functional role of a cross-frequency CD mechanism in these CN units is to increase the dynamic range of binaural neurons that process cues for sound localization. PMID:22972956

  16. A general science-based framework for dynamical spatio-temporal models

    USGS Publications Warehouse

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.

  17. Working with Spatio-Temporal Data Type

    NASA Astrophysics Data System (ADS)

    Raza, A.

    2012-07-01

    Several aspects of spatiotemporal databases have been explored in past decades, ranging from basic data structure to query processing and indexing. But today, operational temporal GIS does not exist. The key impediments have been the complexity of integrating space and time and the lack of standards. OpenGIS standards for simple feature access (spatial type) do exist, but unlike the spatial type, standards for spatiotemporal data type do not exist. This paper explores a new approach to modeling space and time to provide the basis for implementing a temporal GIS. This approach is based on the concept of data types in databases. A data type provides constructors, accessors, and operators. Most commercial and open source databases provide data types to deal with the spatial component of a GIS, called spatial type. Oracle Spatial, DB2 Spatial Extender and Informix Spatial DataBlade, ST_Geometry for PostgreSQL and Oracle from Esri, PostGIS for PostgreSQL, etc., are some examples. This new spatiotemporal data type is called spatiotemporal type (STT). This STT is implemented in PostgreSQL, an open source relational database management system. The STT is an extension of Esri's ST_Geometry type for PostgreSQL, in which each spatial object has a life span. Constructors, accessors, and relational functions are provided to create STT and support spatial, spatiotemporal, and temporal queries. Some functions are extended based on OpenGIS standards for the spatial type. Examples are provided to demonstrate the application of these functions. The paper concludes with limitations and challenges of implementing STT.

  18. A navigating system for ventilation network spatio-temporal control

    SciTech Connect

    Tominaga, Yuusaku

    1999-07-01

    This paper presents a navigation system for spatio-temporal control of mine ventilation network to help keep miners safe in mine emergency situations such as mine fire, spontaneous combustion, and gas emission. The system is composed of sensors, computer simulation and binary controllers. The ventilation sensors are placed in specific branches of the ventilation network to monitor ventilation parameters such as air velocity. The Horonai coal mine, Hokkaido, Japan is used as an example to illustrate the applicability of the navigation system as on and in providing a safe evacuation route and to estimate the time interval to achieve steady airflow on and in determining distribution in the network.

  19. Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template

    PubMed Central

    Guizard, Nicolas; Fonov, Vladimir S.; García-Lorenzo, Daniel; Nakamura, Kunio; Aubert-Broche, Bérengère; Collins, D. Louis

    2015-01-01

    Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scanners and other physiological effects may also introduce variability in the measurement. We propose to use 4D non-linear registration with spatio-temporal regularization to correct for potential longitudinal inconsistencies in the context of structure segmentation. The major contribution of this article is the use of individual template creation with spatio-temporal regularization of the deformation fields for each subject. We validate our method with different sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regularization yields more consistent rates of change of global structures resulting in better statistical power to detect significant changes over time and between populations. PMID:26301716

  20. Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template.

    PubMed

    Guizard, Nicolas; Fonov, Vladimir S; García-Lorenzo, Daniel; Nakamura, Kunio; Aubert-Broche, Bérengère; Collins, D Louis

    2015-01-01

    Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scanners and other physiological effects may also introduce variability in the measurement. We propose to use 4D non-linear registration with spatio-temporal regularization to correct for potential longitudinal inconsistencies in the context of structure segmentation. The major contribution of this article is the use of individual template creation with spatio-temporal regularization of the deformation fields for each subject. We validate our method with different sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regularization yields more consistent rates of change of global structures resulting in better statistical power to detect significant changes over time and between populations. PMID:26301716

  1. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  2. An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution.

    PubMed

    Buckwar, Evelyn; Riedler, Martin G

    2011-12-01

    In this paper, we present a mathematical description for excitable biological membranes, in particular neuronal membranes. We aim to model the (spatio-) temporal dynamics, e.g., the travelling of an action potential along the axon, subject to noise, such as ion channel noise. Using the framework of Piecewise Deterministic Processes (PDPs) we provide an exact mathematical description-in contrast to pseudo-exact algorithms considered in the literature-of the stochastic process one obtains coupling a continuous time Markov chain model with a deterministic dynamic model of a macroscopic variable, that is coupling Markovian channel dynamics to the time-evolution of the transmembrane potential. We extend the existing framework of PDPs in finite dimensional state space to include infinite-dimensional evolution equations and thus obtain a stochastic hybrid model suitable for modelling spatio-temporal dynamics. We derive analytic results for the infinite-dimensional process, such as existence, the strong Markov property and its extended generator. Further, we exemplify modelling of spatially extended excitable membranes with PDPs by a stochastic hybrid version of the Hodgkin-Huxley model of the squid giant axon. Finally, we discuss the advantages of the PDP formulation in view of analytical and numerical investigations as well as the application of PDPs to structurally more complex models of excitable membranes. PMID:21243359

  3. Interesting Spatio-Temporal Region Discovery Computations Over Gpu and Mapreduce Platforms

    NASA Astrophysics Data System (ADS)

    McDermott, M.; Prasad, S. K.; Shekhar, S.; Zhou, X.

    2015-07-01

    Discovery of interesting paths and regions in spatio-temporal data sets is important to many fields such as the earth and atmospheric sciences, GIS, public safety and public health both as a goal and as a preliminary step in a larger series of computations. This discovery is usually an exhaustive procedure that quickly becomes extremely time consuming to perform using traditional paradigms and hardware and given the rapidly growing sizes of today's data sets is quickly outpacing the speed at which computational capacity is growing. In our previous work (Prasad et al., 2013a) we achieved a 50 times speedup over sequential using a single GPU. We were able to achieve near linear speedup over this result on interesting path discovery by using Apache Hadoop to distribute the workload across multiple GPU nodes. Leveraging the parallel architecture of GPUs we were able to drastically reduce the computation time of a 3-dimensional spatio-temporal interest region search on a single tile of normalized difference vegetative index for Saudi Arabia. We were further able to see an almost linear speedup in compute performance by distributing this workload across several GPUs with a simple MapReduce model. This increases the speed of processing 10 fold over the comparable sequential while simultaneously increasing the amount of data being processed by 384 fold. This allowed us to process the entirety of the selected data set instead of a constrained window.

  4. Event Detection using Twitter: A Spatio-Temporal Approach

    PubMed Central

    Cheng, Tao; Wicks, Thomas

    2014-01-01

    Background Every day, around 400 million tweets are sent worldwide, which has become a rich source for detecting, monitoring and analysing news stories and special (disaster) events. Existing research within this field follows key words attributed to an event, monitoring temporal changes in word usage. However, this method requires prior knowledge of the event in order to know which words to follow, and does not guarantee that the words chosen will be the most appropriate to monitor. Methods This paper suggests an alternative methodology for event detection using space-time scan statistics (STSS). This technique looks for clusters within the dataset across both space and time, regardless of tweet content. It is expected that clusters of tweets will emerge during spatio-temporally relevant events, as people will tweet more than expected in order to describe the event and spread information. The special event used as a case study is the 2013 London helicopter crash. Results and Conclusion A spatio-temporally significant cluster is found relating to the London helicopter crash. Although the cluster only remains significant for a relatively short time, it is rich in information, such as important key words and photographs. The method also detects other special events such as football matches, as well as train and flight delays from Twitter data. These findings demonstrate that STSS is an effective approach to analysing Twitter data for event detection. PMID:24893168

  5. Mining fuzzy association rules in spatio-temporal databases

    NASA Astrophysics Data System (ADS)

    Shu, Hong; Dong, Lin; Zhu, Xinyan

    2008-12-01

    A huge amount of geospatial and temporal data have been collected through various networks of environment monitoring stations. For instance, daily precipitation and temperature are observed at hundreds of meteorological stations in Northeastern China. However, these massive raw data from the stations are not fully utilized for meeting the requirements of human decision-making. In nature, the discovery of geographical data mining is the computation of multivariate spatio-temporal correlations through the stages of data mining. In this paper, a procedure of mining association rules in regional climate-changing databases is introduced. The methods of Kriging interpolation, fuzzy cmeans clustering, and Apriori-based logical rules extraction are employed subsequently. Formally, we define geographical spatio-temporal transactions and fuzzy association rules. Innovatively, we make fuzzy data conceptualization by means of fuzzy c-means clustering, and transform fuzzy data items with membership grades into Boolean data items with weights by means ofλ-cut sets. When the algorithm Apriori is executed on Boolean transactions with weights, fuzzy association rules are derived. Fuzzy association rules are more nature than crisp association rules for human cognition about the reality.

  6. Spatio-temporal habitat heterogeneity across an Alpine stream system

    NASA Astrophysics Data System (ADS)

    Dickson, N.; Brown, L. E.; Carrivick, J. L.; Fureder, L.

    2009-04-01

    Alpine stream systems provide unique habitats for riverine biota as a result of their dynamic flow, water temperature and suspended sediment regimes. Understanding how these spatio-temporal physicochemical variations influence macroinvertebrate communities could provide insights into how alpine lotic ecosystems are likely to respond to climate change or other more direct human influences (abstraction/regulation). However, detailed year-round data sets are rare for alpine stream systems, yet such knowledge is clearly a prerequisite to obtaining a holistic understanding of how these ecosystems function. This paper reports findings from year-round data collection at the Odenwinkelkees Glacier braidplain, Austrian Alps. Repeat aerial photography showed that the extent of flowing channels varied both diurnally and seasonally primarily as a consequence of meltwater pulses. Analysis of physicochemical data revealed high heterogeneity of flow regimes, water temperature and turbidity both spatially (reach to basin-scale) and temporally. For example the average discharge and turbidity were lower for predominantly groundwater-fed sites compared with meltwater-fed channels but water temperature was higher. This heterogeneity appears to play a key ‘filtering' role underpinning spatio-temporal patterns of benthic macroinvertebrates.

  7. Spatio-temporal prediction and inference by V1 neurons.

    PubMed

    Guo, Kun; Robertson, Robert G; Pulgarin, Maribel; Nevado, Angel; Panzeri, Stefano; Thiele, Alexander; Young, Malcolm P

    2007-08-01

    In normal vision, visual scenes are predictable, as they are both spatially and temporally redundant. Evidence suggests that the visual system may use the spatio-temporal regularities of the external world, available in the retinal signal, to extract information from the visual environment and better reconstruct current and future stimuli. We studied this by recording neuronal responses of primary visual cortex (area V1) in anaesthetized and paralysed macaques during the presentation of dynamic sequences of bars, in which spatio-temporal regularities and local information were independently manipulated. Most V1 neurons were significantly modulated by events prior to and distant from stimulation of their classical receptive fields (CRFs); many were more strongly tuned to prior and distant events than they were to CRFs bars; and several showed tuning to prior information without any CRF stimulation. Hence, V1 neurons do not simply analyse local contours, but impute local features to the visual world, on the basis of prior knowledge of a visual world in which useful information can be distributed widely in space and time. PMID:17714195

  8. The spatio-temporal spectrum of turbulent flows.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2015-12-01

    Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711

  9. Combinatorial binding predicts spatio-temporal cis-regulatory activity.

    PubMed

    Zinzen, Robert P; Girardot, Charles; Gagneur, Julien; Braun, Martina; Furlong, Eileen E M

    2009-11-01

    Development requires the establishment of precise patterns of gene expression, which are primarily controlled by transcription factors binding to cis-regulatory modules. Although transcription factor occupancy can now be identified at genome-wide scales, decoding this regulatory landscape remains a daunting challenge. Here we used a novel approach to predict spatio-temporal cis-regulatory activity based only on in vivo transcription factor binding and enhancer activity data. We generated a high-resolution atlas of cis-regulatory modules describing their temporal and combinatorial occupancy during Drosophila mesoderm development. The binding profiles of cis-regulatory modules with characterized expression were used to train support vector machines to predict five spatio-temporal expression patterns. In vivo transgenic reporter assays demonstrate the high accuracy of these predictions and reveal an unanticipated plasticity in transcription factor binding leading to similar expression. This data-driven approach does not require previous knowledge of transcription factor sequence affinity, function or expression, making it widely applicable. PMID:19890324

  10. A GRASS GIS based Spatio-Temporal Algebra for Raster-, 3D Raster- and Vector Time Series Data

    NASA Astrophysics Data System (ADS)

    Leppelt, Thomas; Gebbert, Sören

    2015-04-01

    Enhancing the well known and widely used map algebra proposed by Dr. Charles Dana Tomlin [1] with the time dimension is an ongoing research topic. The efficient processing of large time series of raster, 3D raster and vector datasets, e. g. raster datasets for temperature or precipitations on continental scale, requires a sophisticated spatio-temporal algebra that is capable of handling datasets with different temporal granularities and spatio-temporal extents. With the temporal enabled GRASS GIS [2] and the GRASS GIS Temporal Framework new spatio-temporal data types are available in GRASS GIS 7, called space time datasets. These space time datasets represent time series of raster, 3D raster and vector map layers. Furthermore the temporal framework provides a wide range of functionalities to support the implementation of a temporal algebra. While spatial capabilities of GRASS GIS are used to perform the spatial processing of the time stamped map layers that are registered in a space time dataset, the temporal processing is provided by the GRASS GIS temporal framework that supports time intervals and time instances. Mixing time instance and time intervals as well as gaps, overlapping or inclusion of intervals and instances is possible. Hence this framework allows an arbitrary layout of the time dimension. We implemented two ways to process space time datasets with arbitrary temporal layout, the temporal topology and the granularity based spatio-temporal algebra. The algebra provides the functionality to define complex spatio-temporal topological operators that process time and space in a single expression. The algebra includes methods to select map layers from space time datasets based on their temporal relations, to temporally shift time stamped map layers, to create temporal buffer and to snap time instances of time stamped map layers to create a valid temporal topology. In addition spatio-temporal operations can be evaluated within conditional statements. These operations can be assigned to space time datasets or to the results of operations between space time datasets. The temporal vector algebra adds spatial overlay and buffer operations that can be performed on temporal related vector map layers that are registered in space time vector datasets. Whereas the temporal raster and 3D raster algebra uses a subset of the arithmetic operators and spatial functions from the raster algebra in GRASS GIS. It provides in addition spatio-temporal neighborhood operators and spatio-temporal functions. All operations between multiple space time datasets can be combined in nested expressions and are preprocessed by meta data topology analysis before the relevant expressions are computed with parallel processing. [1] Tomlin, C. Dana., 1990. Geographic Information Systems and Cartographic Modeling. Englewood Cliffs, NJ: Prentice-Hall. [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12.

  11. Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons

    PubMed Central

    Hayward, Vincent; Terekhov, Alexander V.; Wong, Sheng-Chao; Geborek, Pontus; Bengtsson, Fredrik; Jörntell, Henrik

    2014-01-01

    A common method to explore the somatosensory function of the brain is to relate skin stimuli to neurophysiological recordings. However, interaction with the skin involves complex mechanical effects. Variability in mechanically induced spike responses is likely to be due in part to mechanical variability of the transformation of stimuli into spiking patterns in the primary sensors located in the skin. This source of variability greatly hampers detailed investigations of the response of the brain to different types of mechanical stimuli. A novel stimulation technique designed to minimize the uncertainty in the strain distributions induced in the skin was applied to evoke responses in single neurons in the cat. We show that exposure to specific spatio-temporal stimuli induced highly reproducible spike responses in the cells of the cuneate nucleus, which represents the first stage of integration of peripheral inputs to the brain. Using precisely controlled spatio-temporal stimuli, we also show that cuneate neurons, as a whole, were selectively sensitive to the spatial and to the temporal aspects of the stimuli. We conclude that the present skin stimulation technique based on localized differential tractions greatly reduces response variability that is exogenous to the information processing of the brain and hence paves the way for substantially more detailed investigations of the brain's somatosensory system. PMID:24451390

  12. Dissecting spatio-temporal protein networks driving human heart development and related disorders

    PubMed Central

    Lage, Kasper; Møllgård, Kjeld; Greenway, Steven; Wakimoto, Hiroko; Gorham, Joshua M; Workman, Christopher T; Bendsen, Eske; Hansen, Niclas T; Rigina, Olga; Roque, Francisco S; Wiese, Cornelia; Christoffels, Vincent M; Roberts, Amy E; Smoot, Leslie B; Pu, William T; Donahoe, Patricia K; Tommerup, Niels; Brunak, Søren; Seidman, Christine E; Seidman, Jonathan G; Larsen, Lars A

    2010-01-01

    Aberrant organ development is associated with a wide spectrum of disorders, from schizophrenia to congenital heart disease, but systems-level insight into the underlying processes is very limited. Using heart morphogenesis as general model for dissecting the functional architecture of organ development, we combined detailed phenotype information from deleterious mutations in 255 genes with high-confidence experimental interactome data, and coupled the results to thorough experimental validation. Hereby, we made the first systematic analysis of spatio-temporal protein networks driving many stages of a developing organ identifying several novel signaling modules. Our results show that organ development relies on surprisingly few, extensively recycled, protein modules that integrate into complex higher-order networks. This design allows the formation of a complicated organ using simple building blocks, and suggests how mutations in the same genes can lead to diverse phenotypes. We observe a striking temporal correlation between organ complexity and the number of discrete functional modules coordinating morphogenesis. Our analysis elucidates the organization and composition of spatio-temporal protein networks that drive the formation of organs, which in the future may lay the foundation of novel approaches in treatments, diagnostics, and regenerative medicine. PMID:20571530

  13. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  14. Mapping Spatio-Temporal Diffusion inside the Human Brain Using a Numerical Solution of the Diffusion Equation

    PubMed Central

    Zhan, Wang; Jiang, Li; Loew, Murray; Yang, Yihong

    2008-01-01

    Diffusion is an important mechanism for molecular transport in living biological tissues. Diffusion magnetic resonance imaging (dMRI) provides a unique probe to examine microscopic structures of the tissues in vivo, but current dMRI techniques usually ignore the spatio-temporal evolution process of the diffusive medium. In the present study, we demonstrate the feasibility to reveal the spatio-temporal diffusion process inside the human brain based on a numerical solution of the diffusion equation. Normal human subjects were scanned with a diffusion tensor imaging (DTI) technique on a 3-Tesla MRI scanner, and the diffusion tensor in each voxel was calculated from the DTI data. The diffusion equation, a partial-derivative description of Fick’s Law for the diffusion process, was discretized into equivalent algebraic equations. A finite-difference method was employed to obtain the numerical solution of the diffusion equation with a Crank-Nicholson iteration scheme to enhance the numerical stability. By specifying boundary and initial conditions, the spatio-temporal evolution of the diffusion process inside the brain can be virtually reconstructed. Our results exhibit similar medium profiles and diffusion coefficients as those of light fluorescence dextrans measured in integrative optical imaging experiments. The proposed method highlights the feasibility to non-invasively estimate the macroscopic diffusive transport time for a molecule in a given region of the brain. PMID:18440744

  15. Resolving Trends in Antarctic Ice Sheet Mass Loss and Glacio-isostatic Adjustment Through Spatio-temporal Source-separation

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Schoen, N.; Zammit-Mangion, A.; Rougier, J.; Flament, T.; Luthcke, S. B.; Petrie, E. J.; Rémy, F.

    2013-12-01

    There remains considerable inconsistency between different methods and approaches for determining ice mass trends for Antarctica from satellite observations. There are three approaches that can provide near global coverage for mass trends: altimetry, gravimetry and mass budget calculations. All three approaches suffer from a source separation problem where other geophysical processes limit the capability of the method to resolve the origin and magnitude of a mass change. A fourth approach, GPS vertical motion, provides localised estimates of mass change due to elastic uplift and an indirect estimate of GIA. Each approach has different source separation issues and different spatio-temporal error characteristics. In principle, it should be possible to combine the data and process covariances to minimize the uncertainty in the solution and to produce robust, posterior errors for the trends. In practice, this is a challenging problem in statistics because of the large number of degrees of freedom, the variable spatial and temporal sampling between the different observations and the fact that some processes remain under-sampled, such as firn compaction. Here, we present a novel solution to this problem using the latest methods in statistical modelling of spatio-temporal processes. We use Bayesian hierarchical modelling and employ stochastic partial differential equations to capture our physical understanding of the key processes that influence our observations. Due to the huge number of observations involved (> 10^8) methods are required to reduce the dimensionality of the problem and care is required in treatment of the observations as they are not independent. Here, we focus mainly on the results rather than the full suite of methods and we present time evolving fields of surface mass balance, ice dynamic-driven mass loss, and firn compaction for the period 2003-2009, derived from a combination of ICESat, ENVISAT, GRACE, InSAR, GPS and regional climate model output data. We also present a time-invariant GIA field and an elastic vertical motion field for the bedrock. All fields are solved for simultaneously alongside posterior errors that are consistent with the full suite of observations and priors. The framework we have developed can incorporate other data, such as shallow/deep ice core records of accumulation, coffee-can point measurements of mass balance, and snow radar data. The framework can also be applied to other ice masses and components of the climate system that suffer similar source separation issues: for example, solving the sea level budget.

  16. Spatio-temporal Characterization of the Motion of Beating and Fibrillating Myocardial Cells

    NASA Astrophysics Data System (ADS)

    Koss, Jordan; Coppersmith, Susan

    2000-03-01

    We discuss our spatio-temporal analysis of video images of the motion of chicken myocyte tissue cultures. These chicken myocardial cells form a standard biological model for testing the efficacy of drugs and other clinical techniques in restoring organized contraction after a simulated event of cardiac arrest. Our analysis provides a novel means for measuring the strength of regenerated contractions. Additionally, under certain circumstances, the culture of myocardial cells can be driven into a state of fibrillation. We can quantify the visually obvious fact that both the time sequence at individual points as well as the degree of synchronization of the motion at spatially separated points in normally beating tissue are quite different than those in fibrillatory tissue. We compare our work to the results of analyzing electrocardiogram (EKG) traces of fibrillations.

  17. Spatio-temporal response of maize yield to edaphic and meteorological conditions in a saline farmland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatio-temporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work were to understand the spatio-temporal variabilit...

  18. Multilevel Methodology for Simulation of Spatio-Temporal Systems with Heterogeneous Activity; Application to Spread of Valley Fever Fungus

    USGS Publications Warehouse

    Jammalamadaka, Rajanikanth

    2009-01-01

    This report consists of a dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Graduate College, The University of Arizona, 2008. Spatio-temporal systems with heterogeneity in their structure and behavior have two major problems associated with them. The first one is that such complex real world systems extend over very large spatial and temporal domains and consume so many computational resources to simulate that they are infeasible to study with current computational platforms. The second one is that the data available for understanding such systems is limited because they are spread over space and time making it hard to obtain micro and macro measurements. This also makes it difficult to get the data for validation of their constituent processes while simultaneously considering their global behavior. For example, the valley fever fungus considered in this dissertation is spread over a large spatial grid in the arid Southwest and typically needs to be simulated over several decades of time to obtain useful information. It is also hard to get the temperature and moisture data (which are two critical factors on which the survival of the valley fever fungus depends) at every grid point of the spatial domain over the region of study. In order to address the first problem, we develop a method based on the discrete event system specification which exploits the heterogeneity in the activity of the spatio-temporal system and which has been shown to be effective in solving relatively simple partial differential equation systems. The benefit of addressing the first problem is that it now makes it feasible to address the second problem. We address the second problem by making use of a multilevel methodology based on modeling and simulation and systems theory. This methodology helps us in the construction of models with different resolutions (base and lumped models). This allows us to refine an initially constructed lumped model with detailed physics-based process models and assess whether they improve on the original lumped models. For that assessment, we use the concept of experimental frame to delimit where the improvement is needed. This allows us to work with the available data, improve the component models in their own experimental frame and then move them to the overall frame. In this dissertation, we develop a multilevel methodology and apply it to a valley fever model. Moreover, we study the model's behavior in a particular experimental frame of interest, namely the formation of new sporing sites.

  19. Spatio-temporal Averaging of Removal Rate constants in River Networks: Is there an Emergent Pattern?

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Zanardo, S.; Donner, S. D.; Ye, S.; Sivapalan, M.

    2009-12-01

    Scaling of nutrient loads across river networks is a function of complex interactions between hydrologic and biogeochemical processes that modulate the contaminant input signals from the hillslope via aggregation and attenuation in a converging network. We examined the inter-annual variability in stream nutrient delivery ratio (NDR) as moderated by the coupling between hydrologic and biogeochemical processes across the climate-landscape continuum. Experimental and modeling studies at the reach scale suggest an inverse dependence of the biogeochemical cycling rate constant (k; T-1) on the stream stage (h, L). This inverse function was implemented in the THMB large-scale hydrology and biogeochemistry model to describe nutrient processing at the reach scale, and simulate nitrogen export across Mississippi Basin. The spatio-temporally averaged reaction rate (kavg) constant from THMB exhibited similar inverse dependence on the stage at the outlet of large basins (~50,000 km2). Such emergent k-h dependence is hypothesized to be indicative of fractal scaling behavior of in-stream biogeochemical processing. Two parsimonious models were developed to scale up from the reach-scale to watershed scale, and explore the spatio-temporal averaging within the network under diverse climate forcing conditions. The first model was derived from THREW, and was enhanced by adding a two-compartment biogeochemical reaction module. The second model used the inverse k-h dependence at the daily time scale, without invoking the two-compartment model, similar to that used in the basin-scale model. Preliminary analyses indicated that temporal averaging decreased the exponent of the k-h relationship at smaller spatial scales (e.g., first- or second- order watersheds); however, the relationship converged towards the reach-scale dependence function at larger scales. The average k value at the smaller scales, and the trajectory of convergence, is a function of climatic (e.g., rainfall frequency,depth) and geomorphic (e.g., network structure, channel dimensions) controls. The reach-scale k-h relationship thus acts as an “attractor” for the entire system, such that at larger spatial scales an effective k, derived solely from the mean stage at the watershed outlet, is adequate to describe nutrient processing within the entire network. Implications of this unique spatio-temporal averaging behavior on the development of predictive models that describe nutrient loads in catchments across scales are discussed.

  20. Distributed spatio-temporal outlier detection in sensor networks

    NASA Astrophysics Data System (ADS)

    Jun, Minwook C.; Jeong, H.; Kuo, C.-C. J.

    2005-06-01

    A spatio-temporal filtering method is proposed to detect outliers in wireless sensor networks in this work. Outliers are assumed to be uncorrelated in time and space, and modeled as an alpha-stable distribution. The proposed algorithm consists of collaborative time-series estimation, variogram application, and principle component analysis (PCA). It is realized on self-organized clusters that can manage the data locally. Conceptually, each node detects any temporally abnormal data and transmits the rectified data to a local cluster-head, which detects any survived spatial outliers and determines the faulty sensors accordingly. As a result, faulty sensors do not burden the sink to achieve the following two goals simultaneously, i.e., enhancing the data quality and reducing the communication cost in wireless sensor networks. It is demonstrated that the maximum outlier detection rate is around 94% when the noise level is alpha=0.9.

  1. Spatio-temporal distribution of malaria in Yunnan Province, China.

    PubMed

    Hui, Feng-Ming; Xu, Bing; Chen, Zhang-Wei; Cheng, Xiao; Liang, Lu; Huang, Hua-Bing; Fang, Li-Qun; Yang, Hong; Zhou, Hong-Ning; Yang, Heng-Lin; Zhou, Xiao-Nong; Cao, Wu-Chun; Gong, Peng

    2009-09-01

    The spatio-temporal distribution pattern of malaria in Yunnan Province, China was studied using a geographic information system technique. Both descriptive and temporal scan statistics revealed seasonal fluctuation in malaria incidences in Yunnan Province with only one peak during 1995-2000, and two apparent peaks from 2001 to 2005. Spatial autocorrelation analysis indicated that malaria incidence was not randomly distributed in the province. Further analysis using spatial scan statistics discovered that the high risk areas were mainly clustered at the bordering areas with Myanmar and Laos, and in Yuanjiang River Basin. There were obvious associations between Plasmodium vivax and Plasmodoium falciparum malaria incidences and climatic factors with a clear 1-month lagged effect, especially in cluster areas. All these could provide information on where and when malaria prevention and control measures would be applied. These findings imply that countermeasures should target high risk areas at suitable times, when climatic factors facilitate the transmission of malaria. PMID:19706922

  2. Spatio-temporal environmental data tide corrections for reconnaissance operations

    NASA Astrophysics Data System (ADS)

    Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn

    2005-06-01

    Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local tide variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of tide corrections provided for the area and time of interest by the Naval Research Laboratory tide prediction code PCTides. For each geographic position of the AQS-20 sonar, a tide height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.

  3. Spatio-Temporal Structure of Hooded Gull Flocks

    PubMed Central

    Yomosa, Makoto; Mizuguchi, Tsuyoshi; Hayakawa, Yoshinori

    2013-01-01

    We analyzed the spatio-temporal structure of hooded gull flocks with a portable stereo camera system. The 3-dimensional positions of individuals were reconstructed from pairs of videos. The motions of each individual were analyzed, and both gliding and flapping motions were quantified based on the velocity time series. We analyzed the distributions of the nearest neighbor’s position in terms of coordinates based on each individual’s motion. The obtained results were consistent with the aerodynamic interaction between individuals. We characterized the leader-follower relationship between individuals by a delay time to mimic the direction of a motion. A relation between the delay time and a relative position was analyzed quantitatively, which suggested the basic properties of the formation flight that maintains order in the flock. PMID:24339960

  4. Spatio-temporal activity of lightnings over Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.

    2012-04-01

    Extreme precipitation events are always associated with convective weather conditions driving to intense lightning activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of lightnings, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. Lightning affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. An operational lightning detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded lightnings (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with lightnings incidence. Lightning activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.

  5. Spatio-temporal clustering of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  6. SPATIO-TEMPORAL COMPLEXITY OF THE AORTIC SINUS VORTEX

    PubMed Central

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-01-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calific aortic valve disease. We characterize the spatio-temporal characteristics of aortic sinus voxtex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High resolution time-resolved (2KHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in time-scales as revealed using time bin averaged vectors and corresponding instantaneous streamlines. There exist small time-scale vortices and a large time-scale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatio-temporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and time-scales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics. PMID:25067881

  7. A Spatio-temporal Model of African Animal Trypanosomosis Risk

    PubMed Central

    Dicko, Ahmadou H.; Percoma, Lassane; Sow, Adama; Adam, Yahaya; Mahama, Charles; Sidibé, Issa; Dayo, Guiguigbaza-Kossigan; Thévenon, Sophie; Fonta, William; Sanfo, Safietou; Djiteye, Aligui; Salou, Ernest; Djohan, Vincent; Cecchi, Giuliano; Bouyer, Jérémy

    2015-01-01

    Background African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking. Methodology/Principal Findings We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a “one layer-one model” approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%), showed a positive correlation but less predictive power with serological status (r2 = 22%) aggregated at the village level but was not related to the illness status (r2 = 2%). Conclusions/Significance The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases. PMID:26154506

  8. Spatio-Temporal Transmission Patterns of Black-Band Disease in a Coral Community

    PubMed Central

    Zvuloni, Assaf; Artzy-Randrup, Yael; Stone, Lewi; Kramarsky-Winter, Esti; Barkan, Roy; Loya, Yossi

    2009-01-01

    Background Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. Methodology/Principal Findings 3,175 susceptible and infected corals were mapped over an area of 10×10 m in Eilat (northern Gulf of Aqaba, Red Sea) and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006–December 2007). Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number). We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. Conclusions/Significance Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms) in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points out that infected corals surviving a disease season appear to play a major role in the re-introduction of the disease to the coral community in the following season. PMID:19337384

  9. Writer Identification Using Super Paramagnetic Clustering and Spatio Temporal Neural Network

    NASA Astrophysics Data System (ADS)

    Taghavi Sangdehi, Seyyed Ataollah; Faez, Karim

    This paper discusses use of Super Paramagnetic Clustering (SPC) and Spatio Temporal Artificial Neuron in on-line writer identification, on Farsi handwriting. In online cases, speed and automation are advantages of one method on others, therefore we used unsupervised and relatively quick clustering method, which in comparison with conventional approaches, give us better result. Moreover, regardless of various parameters that available from acquisition systems, we only consider to displacement of pen tip at determined direction that lead to quick system due to its quick preprocessing and clustering. Also we use a threshold that remove displacement between disconnected point of a word that lead to a better classification result on on-line Farsi writers.

  10. Spatio-temporal characteristics of self-pulse in hollow cathode discharge

    SciTech Connect

    Jing, Ha; He, Shoujie

    2015-02-15

    The characteristics of self-pulse in hollow cathode discharge at low pressure have been investigated. The voltage-current (V-I) curves, the influence of ballast resistor on the self-pulses, and the evolution of current and voltage are measured. Both the axial and radial spatio-temporal discharge images of self-pulse are recorded. The results show that there exists the hysteresis effect in the present hollow cathode discharge. The high value of ballast resistors is favourable for the observation of self-pulses. The process of the self-pulse can be divided into three stages from the temporal discharge images, i.e., the pre-discharge, the transition from mainly axial electric field to mainly radial electric field, and the decaying process. The self-pulse is suggested to originate from the mode transition of the discharge in essence.

  11. Big Data Standards in Action: Spatio-Temporal Analytics with EarthServer

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2014-05-01

    In the transatlantic EarthServer initiative, a set of value-adding services on massive spatio-temporal data are being established for all Earth Sciences. Already at a volume exceeding 10 Terabyte in total, several of the services will break the 100 TB barrier this summer. The common EarthServer platform rigorously relies on the open OGC standards only. At the heart is the core OGC Big Geo Data standard, Web Coverage Service (WCS), together with its analytics extension Web Coverage Processing Service (WCPS). We present OGC's coverage data and processing model. On the example of the WCS Core Reference Implementation, rasdaman, we discuss how scalable implementations are supported. Time and Internet permitting a live demo will be included.

  12. Spatio-temporal characteristics of self-pulse in hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Jing, Ha; He, Shoujie

    2015-02-01

    The characteristics of self-pulse in hollow cathode discharge at low pressure have been investigated. The voltage-current (V-I) curves, the influence of ballast resistor on the self-pulses, and the evolution of current and voltage are measured. Both the axial and radial spatio-temporal discharge images of self-pulse are recorded. The results show that there exists the hysteresis effect in the present hollow cathode discharge. The high value of ballast resistors is favourable for the observation of self-pulses. The process of the self-pulse can be divided into three stages from the temporal discharge images, i.e., the pre-discharge, the transition from mainly axial electric field to mainly radial electric field, and the decaying process. The self-pulse is suggested to originate from the mode transition of the discharge in essence.

  13. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  14. Predicting gross primary production with high spatio-temporal resolution remote sensing datasets at regional scale

    NASA Astrophysics Data System (ADS)

    Fu, D.; Chen, B.

    2012-04-01

    Remote sensing has great potential for estimating gross primary production (GPP) without resorting to interpolation of many surface observations. Meanwhile, it can be applied to analyzing the variation of GPP at different ecosystems across a wide range of spatial, temporal, and spectral resolutions. However, the availability of input data for remote-sensing-based GPP models is the bottleneck. The input data of remote-sensing-based greenness and radiation (GR) model is more independent on climate or ground-based observations, and the result is promising. Previous work using this modeling approach only used coarse spatial resolution data (e.g. MODerate resolution Imaging Spectroradiometer, MODIS), the estimated spatio-temporal distributions of GPP with higher resolution remains unclear. To overcome this limitation, a modified image fusion method was developed based on Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (mESTARFM), producing images with high spatial and temporal resolutions based on Landsat Thematic Mapper (TM) / Enhanced TM Plus (ETM+) (high spatial resolution, low temporal resolution) and MODIS (low spatial resolution, high temporal resolution). Meanwhile, the Simple Analytical Footprint model on Eulerian coordinates (SAFE) model to estimate the flux tower's footprint, which will be helpful for GR model's calibration, and improve the accuracy of GPP estimate. In the study, twelve flux sites belonging to Fluxnet-Canada Research Network (FCRN)/Canadian Carbon Program (CCP) were selected, covering grassland, forest, and wetland biomes. The remote sensing dataset acquired in this study for each site include MODIS reflectance product (MOD09A1, 500 m), Landsat TM /ETM+ (30 m), MODIS BRDF/ Albedo model parameter product (MCD43A1, 500 m), MODIS BRDF/ Albedo quality product (MCD43A2, 500 m). The steps are as follows:: (i) Landsat TM /ETM+ and MODIS data were used as mESTARFM inputs to produce reflectance datasets with high spatio-temporal resolution; (ii) the estimated GPP is produced by GR model using available reflectance data with high spatial resolution; (iii) the GR model's calibration process is done combined with SAFE model's pure footprint result and the observations of flux sites; (iv) the spatio-temporal distribution of GPP values at regional scale are predicted with specific parameters correspond to different ecosystem.

  15. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two-dimensional flow field in the rotating flow. For this purpose, we generated artificial images for lid-driven cavity flow where true velocity field can be manipulated and validated with respect to the proposed CASTI algorithm. As a result, the CASTI was successfully performed to capture two-dimensional velocity vector in the given cavity flow.

  16. Impact of spatio-temporal sampling on the evaluation of models with observations

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Gryspeerdt, Edward; Weigum, Natalie; Tsyro, Svetlana; Schulz, Michael; Stier, Philip

    2015-04-01

    Global models and observations differ strongly in their spatio-temporal sampling. First, Model results are typical of large gridboxes (100 km), while observations are made over much smaller areas (1 to 10 km). Second, model results are always available in contrast to observations that are intermittent due to sampling strategies, retrieval limitations and instrument failure/maintenance. We investigate the consequences of spatio-temporal sampling for the evaluation of models with observations and find them to be significant (differences up to 100% in monthly or yearly averages due to sampling alone). Using high resolution WRF-Chem and EMEP simulations, we study the impact of evaluating low resolution global models with highly localised observations. Results suggest that significant differences due to the spatial aggregation alone will exist between models and observations, even after averaging data over e.g. a month. When using realistic observational sampling, these differences will be even bigger. Results depend on the concerned observable: a column-integrated property like AOT, easily advected by the flow, will exhibit smaller differences than a surface property like PM2.5, especially if that surface property shows little advection (e.g. number density). We explain these results qualitatively as a consequence of flow structure and aerosol source length-scales. Furthermore, we show that proper temporal collocation of model data with the observations and further spatial aggregation of the observations can reduce (but not entirely remove!) these sampling-induced differences. We point out that even temporal collocation is by no means a standard procedure for researchers and often it is simply assumed that 'over time' issues due to sampling will average out (we show they will not).

  17. Spatio-Temporal Parameters of Endosomal Signaling in Cancer: Implications for New Treatment Options.

    PubMed

    Stasyk, Taras; Huber, Lukas A

    2016-04-01

    The endo/lysosomal system in cells provides membranous platforms to assemble specific signaling complexes and to terminate signal transduction, thus, is essential for physiological signaling. Endocytic organelles can significantly extend signaling of activated cell surface receptors, and may additionally provide distinct locations for the generation of specific signaling outputs. Failures of regulation at different levels of endocytosis, recycling, degradation as well as aberrations in specific endo/lysosomal signaling pathways, such as mTORC1, might lead to different diseases including cancer. Therefore, a better understanding of spatio-temporal compartmentalization of sub-cellular signaling might provide an opportunity to interfere with aberrant signal transduction in pathological processes by novel combinatorial therapeutic approaches. J. Cell. Biochem. 117: 836-843, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc. PMID:26506511

  18. Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Volodin, Evgeny; Loskutov, Evgeny

    2014-05-01

    Natural systems are in general space-distributed, and their evolution represents a broad spectrum of temporal scales. The multiscale nature may be resulted from multiplicity of mechanisms governing the system behaviour, and a large number of feedbacks and nonlinearities. A way to reveal and understand the underlying mechanisms as well as to model corresponding sub-systems is decomposition of the full (complex) system into well separated spatio-temporal patterns ("modes") that evolve with essentially different time scales. In the report a new method of a similar decomposition is discussed. The method is based on generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding space-distributed time series in basis of spatio-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points. The method is applied to decomposition of the Earth's climate system: on the base of 156 years time series of SST anomalies distributed over the globe [2] two climatic modes possessing by noticeably different time scales (3-5 and 9-11 years) are separated. For more accurate exclusion of "too slow" (and thus not represented correctly) processes from real data the numerically produced STEOF basis is used. For doing this the time series generated by the INM RAS Coupled Climate Model [3] is utilized. Relations of separated modes to ENSO and PDO are investigated. Possible development of the suggested approach in order to the separation of the modes that are nonlinearly uncorrelated is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/ 3. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm

  19. Extensive spatio-temporal assessment of flood events by application of pair-copulas

    NASA Astrophysics Data System (ADS)

    Schulte, M.; Schumann, A. H.

    2015-06-01

    Although the consequences of floods are strongly related to their peak discharges, a statistical classification of flood events that only depends on these peaks may not be sufficient for flood risk assessments. In many cases, the flood risk depends on a number of event characteristics. In case of an extreme flood, the whole river basin may be affected instead of a single watershed, and there will be superposition of peak discharges from adjoining catchments. These peaks differ in size and timing according to the spatial distribution of precipitation and watershed-specific processes of flood formation. Thus, the spatial characteristics of flood events should be considered as stochastic processes. Hence, there is a need for a multivariate statistical approach that represents the spatial interdependencies between floods from different watersheds and their coincidences. This paper addresses the question how these spatial interdependencies can be quantified. Each flood event is not only assessed with regard to its local conditions but also according to its spatio-temporal pattern within the river basin. In this paper we characterise the coincidence of floods by trivariate Joe-copula and pair-copulas. Their ability to link the marginal distributions of the variates while maintaining their dependence structure characterizes them as an adequate method. The results indicate that the trivariate copula model is able to represent the multivariate probabilities of the occurrence of simultaneous flood peaks well. It is suggested that the approach of this paper is very useful for the risk-based design of retention basins as it accounts for the complex spatio-temporal interactions of floods.

  20. Spatial Distribution of Tree Species Governs the Spatio-Temporal Interaction of Leaf Area Index and Soil Moisture across a Forested Landscape

    PubMed Central

    Naithani, Kusum J.; Baldwin, Doug C.; Gaines, Katie P.; Lin, Henry; Eissenstat, David M.

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests. PMID:23554915

  1. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape.

    PubMed

    Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (?) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and ?. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in ?. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests. PMID:23554915

  2. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ?. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  3. Quantifying Uncertainty in Spatio-temporal Forest Composition Changes Inferred from Fossil Pollen Records

    NASA Astrophysics Data System (ADS)

    Dawson, A.; Paciorek, C. J.; McLachlan, J. S.; Goring, S. J.; Williams, J. W.; Jackson, S. T.

    2014-12-01

    Understanding past compositional changes in vegetation provides insight about ecosystem dynamics in response to changing environments. Past vegetation reconstructions rely predominantly on fossil pollen data from sedimentary lake cores, which acts as a proxy record for the surrounding vegetation. Stratigraphic changes in these pollen records allow us to infer changes in composition and species distributions. Pollen records collected from a network of sites allow us to make inference about the spatio-temporal changes in vegetation over thousands of years. However, the complexity of the relationship between pollen deposits and surrounding vegetation, as well as the spatially sparse set of fossil pollen sites are important sources of uncertainty. In addition, uncertainty arises from the carbon dating and age-depth modelling processes. To reconstruct vegetation composition including uncertainty for the Upper Midwestern USA, we build a Bayesian hierarchical model that links vegetation composition to fossil pollen data via a dispersal model. In the calibration phase, we estimate the relationship between vegetation and pollen for the settlement era using Public Land Survey data and a network of pollen records. In the prediction phase, parameter estimates obtained during the calibration phase are used to estimate latent species distributions and relative abundances over the last 2500 years. We account for additional uncertainty in the pollen records by: allowing expert palynologists to identify pre-settlement pollen samples to be included in our calibration data, and through the incorporation of age uncertainty obtained from the Bayesian age-depth model BACON in our prediction data. Resulting spatio-temporal composition and abundance estimates will be used to improve forecasting capabilities of ecosystem models.

  4. Adaptive OFDM waveform design for spatio-temporal-sparsity exploited STAP radar

    NASA Astrophysics Data System (ADS)

    Sen, Satyabrata; Barhen, Jacob

    2015-05-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of- freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully-adaptive OFDM-STAP, we propose a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we propose to optimally design the transmit OFDM signals by maximizing the output signal- to-interference-plus-noise ratio (SINR) in order to improve the STAP-performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity- based technique and adaptive waveform design.

  5. Spatio-temporal soil moisture patterns across gradients of vegetation and topography

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2014-05-01

    Soil moisture dynamics control hydrological processes on various scales: changes in local water storage and potential activation of preferential flow paths influence connectivity and runoff from hillslopes and ultimately the discharge response of the stream. The spatio-temporal patterns of soil moisture, however, are dependent on a combination of local parameters such as soil type, vegetation and topography as well as meteorological conditions, antecedent moisture and seasonality. In an integrative monitoring study carried out within the CAOS observatory in Luxemburg (http://www.caos-project.de/), soil moisture was measured at 21 sites with 3 soil moisture profiles each. These sites include grassland as well as forest on the one hand and cover different hillslope positions on the other hand. This setup allows us to study both vegetation and topographic effects. The spatio-temporal patterns of soil moisture were analysed using two approaches: 1) we examined temporal persistence of soil moisture patterns with rank stability plots and addressed the variability within and between sites for contrasting meteorological conditions. 2) In a next step we focused on specific hydrologic events: two periods during summer recession were distinguished, first the drying out of the soils during a period of no precipitation, but also the continuing decline even after summer rains have started. Furthermore, the soil moisture response to three different rainfall events was examined, varying in intensity and antecedent moisture conditions. The emerging contrasts in patterns were put into context of site-specific characteristics such as vegetation and topographical position to identify controls on soil moisture dynamics for our range of sites. Ultimately, linking similarity in soil moisture response in landscapes to these controls can elucidate the hydrological functioning of landscape units and thus facilitate modelling efforts.

  6. Spatio-Temporal Downscaling of Precipitation by means of a Weather Generator

    NASA Astrophysics Data System (ADS)

    Thober, S.; Samaniego, L. E.

    2012-12-01

    Hydrological extremes like floods and droughts are causing severe socio-economic damages. Distributed well parameterized precipitation-runoff models are able to reproduce important hydrological state variables (observed hydrographs, soil moisture among others). To assess the impacts of climate change on the hydrological cycle, information about the future state of the climatological system has to be taken into account. A standard approach consists on downscaling climate projections provided by Regional Climate Models (RCMs). RCM data is often resolved at spatio-temporal scales coarser than required by hydrological applications. Therefore, multiple statistical downscaling schemes, incorporating various mathematical techniques, have been developed over the past decades. One class of Statistical Downscaling schemes are Weather Generators (WG). These algorithms provide meteorological time series as the realization of a stochastic process. First, single- and multi-site models were developed, whereas recently, the generation at sub-daily scales and on gridded spatial resolution has been of increasing interest. Most of the WG incorporate the monthly cycle of precipitation by deriving parameter sets for each calendar month of the year. Given these fixed parameters, it implies that precipitation variability at these scales are underestimated. An important subset of WG are Multi-Scale WG, for which the scaling laws have been revised, since finer resolved rainfall data has become available. This led to statistically more sound scaling procedures, such as copula-based downscaling schemes. In this work, a framework for a Multi-Scale WG is proposed, which exploits the statistical scaling behavior expressed by copulas. This methodology ensures that precipitation properties are matched at various spatial and temporal scales, ranging from 4km to 32km, and from days to seasons, respectively. The basic idea is to generate rainfall occurrences and intensities conditioned on the values at larger spatio-temporal scales, for which the strongest dependence was identified. Furthermore, it exploits the fact, that precipitation properties are easier to represent at resolutions being rather coarse than fine. For instance the probability of a dry time step is significant at daily and sub-daily scales, but decreases to zero as weekly or even monthly and seasonal time periods are considered (depending on the region). This study incorporates a gridded, daily data set for the domain of Germany, which was made available by the German Weather Service. This data set spans over the time period from 1961 to 2000 at a 1~km resolution and incorporates data from rain gauges under the assumption, that the elevation, location and aspect govern the main climatological properties of rainfall distribution. This data was aggregated to the different spatio-temporal scales investigated in this study. The proposed methodology provides statistically reasonable precipitation time series at the resolution required by hydrological applications. Moreover, it is able to realistically resemble rainfall variability at coarser spatio-temporal scales. Nevertheless, it remains an open question, whether rainfall extremes, which are not covered by RCMs, are satisfactorily represented.

  7. Spatio-temporal self-organization in mudstones.

    SciTech Connect

    Dewers, Thomas A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

  8. Spatio-temporal distribution of human lifespan in China

    PubMed Central

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-01-01

    Based on the data of latest three Chinese population censuses (1990–2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI. PMID:26346713

  9. Spatio-temporal distribution of human lifespan in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-09-01

    Based on the data of latest three Chinese population censuses (1990-2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI.

  10. Spatio-temporal distribution of human lifespan in China.

    PubMed

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-01-01

    Based on the data of latest three Chinese population censuses (1990-2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI. PMID:26346713

  11. Spatio-temporal expression of chromogranin A during zebrafish embryogenesis.

    PubMed

    Xie, Jing; Wang, Wei-Qing; Liu, Ting-Xi; Deng, Min; Ning, Guang

    2008-09-01

    Chromogranin A (CHGA), a protein participating in the biogenesis of dense core secretory granules in various neuroendocrine tissues, plays a critical role in the release of hormones/peptides and the pathogenesis of pheochromocytoma. However, little is known about the developmental origin of CHGA-expressing cells during embryogenesis. Here, we report the structural characterization and spatio-temporal expression pattern of zebrafish (Danio rerio) ortholog of mammalian CHGA. The earliest expression of chga transcripts was observed at 16 h post fertilization in the developing cranial ganglia as six distinct cellular masses arranged bilaterally as strings of beads in the dorsal root ganglia (DRG) precursors along the dorsal trunk. With development advancing, the chga transcripts were expressed abundantly in diencephalon, mesencephalon, and rhombencephalon as well as in the DRG. Interestingly, double in situ hybridization assay of chga with genes expressed in pronephros (Wilms' tumor suppressor 1, wt1), adrenal cortex (side-chain cleavage enzyme, scc), and sympathoadrenal neuron/chromaffin cell (dopamine-beta-hydroxylase, dbh), respectively, showed that the chga-expressing cells are spatially separated from wt1-, scc-, and dbh-positive cell populations during early embryonic development. The pronephros region does not express chga even up to 7 days post fertilization, while chga positive-staining cells bind in the brain and DRG, indicating that chga may play an important role in nervous system development during the early embryonic stages. PMID:18586978

  12. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  13. Stability and dynamics of spatio-temporal structures

    SciTech Connect

    Riecke, H.

    1993-03-01

    The main goal of the project supported in this grant is to contribute to the understanding of localized spatial and spatio-temporal structures far from thermodynamic equilibrium. Here we report on our progress in the study of two classes of systems. (1) We have started to investigate localized wave-pulses in binary-mixture convection. This work is based on our recently derived extension of the conventionally used complex Ginzburg-Landau equations. We are considering three regimes: Dispersion-less supercritical waves; strongly dispersive subcritical waves; and localized waves as bound states of fronts between dispersionless subcritical waves and the motionless conductive state. (2) We have completed our investigation of steady domain structures in which domains of structures with different wave numbers alternate, separated by domain walls. In particular, we have studied their regimes of existence and stability within the framework of a Ginzburg-Landau equation and have compared it to previous results. Those were based on a long-wavelength approximation, which misses certain aspects which turn out to be important for the stability of the domain structures in realistic situations. In addition, we give a description of our work on resonantly forced waves in two-dimensional anisotropic systems.

  14. Workload induced spatio-temporal distortions and safety of flight

    SciTech Connect

    Barrett, C.L.; Weisgerber, S.A.; Naval Weapons Center, China Lake, CA )

    1989-01-01

    A theoretical analysis of the relationship between cognitive complexity and the perception of time and distance is presented and experimentally verified. Complex tasks produce high rates of mental representation which affect the subjective sense of duration and, through the subjective time scale, the percept of distance derived from dynamic visual cues (i.e., visual cues requiring rate integration). The analysis of the interrelationship of subjective time and subjective distance yields the prediction that, as a function of cognitive complexity, distance estimates derived from dynamic visual cues will be longer than the actual distance whereas estimates based on perceived temporal duration will be shorter than the actual distance. This prediction was confirmed in an experiment in which subjects (both pilots and non-pilots) estimated distances using either temporal cues or dynamic visual cues. The distance estimation task was also combined with secondary loading tasks in order to vary the overall task complexity. The results indicated that distance estimates based on temporal cues were underestimated while estimates based on visual cues were overestimated. This spatio-temporal distortion effect increased with increases in overall task complexity. 30 refs., 6 figs., 1 tab.

  15. Spatio-temporal data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Nguyen, H. M.; Katzfuss, M.; Cressie, N.; Braverman, A. J.

    2011-12-01

    No single remote-sensing instrument currently provides measurements of the CO2 concentration near the surface, but inferences can be made by considering a weighted difference of total column CO2 concentration observed by the Greenhouse gases Observing Satellite (GOSAT) with mid-tropospheric CO2 concentration observed by the Atmospheric Infrared Sounder (AIRS). However, data from these two instruments have different resolutions and measurement-error characteristics. Furthermore, while daily data are sparse relative to the entire globe, the spatio-temporal domains are large and the AIRS dataset is massive. We describe a spatial-temporal data fusion methodology based on the Kalman filter and smoother that can combine complementary datasets to optimally estimate lower atmospheric CO2 concentration, properly handle spatial and temporal dependence, and estimate CO2 concentration in the data gaps. We show that predictions from our methodology match up well with validation data from NOAA. Our method is designed for massive remote sensing datasets and accounts for differences in instrument footprints and measurement-error characteristics.

  16. An object-relational spatio-temporal geoscience data model

    NASA Astrophysics Data System (ADS)

    Le, Hai Ha; Gabriel, Paul; Gietzel, Jan; Schaeben, Helmut

    2013-08-01

    A model for spatially and temporally indexed multi-dimensional geoscience data has been developed by first embedding a combinatorial topological model in terms of G-Maps in the domain Rm×Time(m?N), and then converting it into an object-relational model which can easily be implemented in an object-relational database system. Geoscience objects referring to space and time often have complex geometries which are usually partitioned into simpler cells and have geometrical, topological, geological, geophysical, geochemical and other relevant properties assigned to their cells. These objects may exist in a Euclidean space Rm of arbitrary dimension m depending on which properties are chosen as "coordinates", where usually m=3 and refers to three spatial dimensions, and evolve in one dimensional valid time (Time). The valid time is independent of geometry, topology and properties but not vice versa, i.e., the geometry of an object, for example, and all its properties are modeled as functions of the valid time. Then the objects are assumed to be sampled at arbitrary but fixed instances of time, and their evolution between these instances is modeled by appropriate interpolation. The structure of the data model is well adapted to the interpolation required to represent the objects in between the instances of their observation. The data model provides the basis prerequisite of our envisioned spatio-temporal geoscience information system.

  17. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  18. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  19. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy.

    PubMed

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  20. Spatio-temporal drought forecasting within Bayesian networks

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; Moradkhani, Hamid

    2014-05-01

    Spatial variations of future droughts across the Gunnison River Basin in CO, USA, are evaluated in this study, using a recently developed probabilistic forecast model. The Standardized Runoff Index (SRI) is employed to analyze drought status across the spatial extent of the basin. The runoff generated at each spatial unit of the basin is estimated by a distributed-parameter and physically-based hydrologic model. Using the historical runoff at each spatial unit, a statistical forecast model is developed within Bayesian networks. The forecast model applies a family of multivariate distribution functions to forecast future drought conditions given the drought status in the past. Given the runoff in the past (January-June), the forecast model is applied in estimating the runoff across the basin in the forecast period (July-December). The main advantage of the forecast model is its probabilistic features in analyzing future droughts. It develops conditional probabilities of a given forecast variable, and returns the highest probable forecast along with an assessment of the uncertainty around that value. Bayesian networks can also estimate the probability of future droughts with different severities, given the drought status of the predictor period. Moreover, the model can be used to generate maps showing the runoff variation over the basin with the particular chance of occurrence in the future. Our results indicate that the statistical method applied in this study is a useful procedure in probabilistic forecast of future droughts given the spatio-temporal characteristics of droughts in the past. The techniques presented in this manuscript are suitable for probabilistic drought forecasting and have potential to improve drought characterization in different applications.

  1. Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters

    PubMed Central

    Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian–and thereby probabilistic–framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms–a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects’ performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject ‘prototypes’ (like ? - or ? -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session. PMID:24551050

  2. Ultrashort relativistic electron bunches and spatio-temporal radiation biology

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Faure, J.; Malka, V.

    2008-08-01

    The intensive developments of terawatt Ti:Sa lasers permit to extend laser-plasma interactions into the relativistic regime, providing very-short electron or proton bunches. Experimental researches developed at the interface of laser physics and radiation biology, using the combination of sub-picosecond electron beams in the energy range 2-15 MeV with femtosecond near-IR optical pulses might conjecture the real-time investigation of penetrating radiation effects. A perfect synchronization between the particle beam (pump) and optical beam at 820 nm (probe) allows subpicosecond time resolution. This emerging domain involves high-energy radiation femtochemistry (HERF) for which the early spatial energy deposition is decisive for the prediction of cellular and tissular radiation damages. With vacuum-focused intensities of 2.7 x 1019 W cm-2 and a high energy electron total charge of 2.5 nC, radiation events have been investigated in the temporal range 10-13 - 10-10s. The early radiation effects of secondary electron on biomolecular sensors may be investigated inside sub-micrometric ionisation, considering the radial direction of Gaussian electron bunches. It is shown that short range electron-biosensor interactions lower than 10 A take place in nascent track structures triggered by penetrating radiation bunches. The very high dose delivery 1013 Gy s-1 performed with laser plasma accelerator may challenge our understanding of nanodosimetry on the time scale of molecular target motions. High-quality ultrashort penetrating radiation beams open promising opportunities for the development of spatio-temporal radiation biology, a crucial domain of cancer therapy, and would favor novating applications in nanomedicine such as highly-selective shortrange pro-drug activation.

  3. Spatio-temporal coupling of EEG signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Senger, Vanessa; Müller, Jens; Tetzlaff, Ronald

    2011-05-01

    Approximately 1% of the world's population suffer from epileptic seizures throughout their lives that mostly come without sign or warning. Thus, epilepsy is the most common chronical disorder of the neurological system. In the past decades, the problem of detecting a pre-seizure state in epilepsy using EEG signals has been addressed in many contributions by various authors over the past two decades. Up to now, the goal of identifying an impending epileptic seizure with sufficient specificity and reliability has not yet been achieved. Cellular Nonlinear Networks (CNN) are characterized by local couplings of dynamical systems of comparably low complexity. Thus, they are well suited for an implementation as highly parallel analogue processors. Programmable sensor-processor realizations of CNN combine high computational power comparable to tera ops of digital processors with low power consumption. An algorithm allowing an automated and reliable detection of epileptic seizure precursors would be a"huge step" towards the vision of an implantable seizure warning device that could provide information to patients and for a time/event specific treatment directly in the brain. Recent contributions have shown that modeling of brain electrical activity by solutions of Reaction-Diffusion-CNN as well as the application of a CNN predictor taking into account values of neighboring electrodes may contribute to the realization of a seizure warning device. In this paper, a CNN based predictor corresponding to a spatio-temporal filter is applied to multi channel EEG data in order to identify mutual couplings for different channels which lead to a enhanced prediction quality. Long term EEG recordings of different patients are considered. Results calculated for these recordings with inter-ictal phases as well as phases with seizures will be discussed in detail.

  4. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    NASA Astrophysics Data System (ADS)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally, verify that distances between the deforestation warning and the roads explain part of the significant clustering.

  5. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

    PubMed Central

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  6. SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data

    NASA Astrophysics Data System (ADS)

    Rivest, Sonia; Bédard, Yvan; Proulx, Marie-Josée; Nadeau, Martin; Hubert, Frederic; Pastor, Julien

    To support their analytical processes, today's organizations deploy data warehouses and client tools such as OLAP (On-Line Analytical Processing) to access, visualize, and analyze their integrated, aggregated and summarized data. Since a large part of these data have a spatial component, better client tools are required to take full advantage of the geometry of the spatial phenomena or objects being analyzed. With this regard, Spatial OLAP (SOLAP) technology offers promising possibilities. A SOLAP tool can be defined as "a type of software that allows rapid and easy navigation within spatial databases and that offers many levels of information granularity, many themes, many epochs and many display modes synchronized or not: maps, tables and diagrams" [Bédard, Y., Proulx, M.J., Rivest, S., 2005. Enrichissement du OLAP pour l'analyse géographique: exemples de réalisation et différentes possibilités technologiques. In: Bentayeb, F., Boussaid, O., Darmont, J., Rabaseda, S. (Eds.), Entrepôts de Données et Analyse en ligne, RNTI B_1. Paris: Cépaduès, pp. 1-20]. SOLAP tools offer a new user interface and are meant to be client applications sitting on top of multi-scale spatial data warehouses or datacubes. As they are based on the multidimensional paradigm, they facilitate the interactive spatio-temporal exploration of data. The purpose of this paper is to discuss how SOLAP concepts support spatio-temporal exploration of data and then to present the geovisualization, interactivity, and animation features of the SOLAP software developed by our research group. This paper first reviews the general concepts behind OLAP and SOLAP systems. This is followed by a discussion of how these SOLAP concepts support spatio-temporal exploration of data. In the subsequent section, SOLAP software is introduced along with features that enable geovisualization, interactivity and animation.

  7. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  8. Spatio-temporal resolution of primary processes of photosynthesis.

    PubMed

    Junge, Wolfgang

    2015-01-01

    Technical progress in laser-sources and detectors has allowed the temporal and spatial resolution of chemical reactions down to femtoseconds and Å-units. In photon-excitable systems the key to chemical kinetics, trajectories across the vibrational saddle landscape, are experimentally accessible. Simple and thus well-defined chemical compounds are preferred objects for calibrating new methodologies and carving out paradigms of chemical dynamics, as shown in several contributions to this Faraday Discussion. Aerobic life on earth is powered by solar energy, which is captured by microorganisms and plants. Oxygenic photosynthesis relies on a three billion year old molecular machinery which is as well defined as simpler chemical constructs. It has been analysed to a very high precision. The transfer of excitation between pigments in antennae proteins, of electrons between redox-cofactors in reaction centres, and the oxidation of water by a Mn4Ca-cluster are solid state reactions. ATP, the general energy currency of the cell, is synthesized by a most agile, rotary molecular machine. While the efficiency of photosynthesis competes well with photovoltaics at the time scale of nanoseconds, it is lower by an order of magnitude for crops and again lower for bio-fuels. The enormous energy demand of mankind calls for engineered (bio-mimetic or bio-inspired) solar-electric and solar-fuel devices. PMID:25824647

  9. On the angle between the first and second Lyapunov vectors in spatio-temporal chaos

    NASA Astrophysics Data System (ADS)

    Pazó, D.; López, J. M.; Rodríguez, M. A.

    2013-06-01

    In a dynamical system the first Lyapunov vector (LV) is associated with the largest Lyapunov exponent and indicates—at any point on the attractor—the direction of maximal growth in tangent space. The LV corresponding to the second largest Lyapunov exponent generally points in a different direction, but tangencies between both vectors can in principle occur. Here we find that the probability density function (PDF) of the angle ? spanned by the first and second LVs should be expected to be approximately symmetric around ?/4 and to peak at 0 and ?/2. Moreover, for small angles we uncover a scaling law for the PDF Q of ?l = ln?? with the system size L: Q(?l) = L-1/2f(?lL-1/2). We give a theoretical argument that justifies this scaling form and also explains why it should be universal (irrespective of the system details) for spatio-temporal chaos in one spatial dimension. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  10. Hydrograph transposition to ungauged basin accounting for spatio-temporal rainfall variability

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Cudennec, Christophe

    2013-04-01

    Lack of measurements is one of the main issues in hydrological modelling. However, neighbours and nested gauged catchment are precious sources of information to understand the catchment behaviours within one region. Extracting the maximum of information from those points of measurements, that could be then transposed to ungauged catchment, is still a great challenge. We propose a methodology to transpose hydrological information from gauged catchments to ungauged ones, in order to simulate streamflow hydrographs. It uses geomorphology-based hydrological modelling, which is particularly well adapted to ungauged basins thanks to its robustness, generality and flexibility. We develop a geomorphology-based model on the gauged catchment which has been built in order to capture the main behaviour of the basin. Its transfer function considers the different dynamics of the catchment through the combination of velocities and width functions. Moreover, the explicit structure of the model enables to easily create a map of isochrone areas describing the time to the outlet. Therefore, spatially distributed rainfall can then be split into those isochrone areas, permitting the transfer function to deal with spatio-temporal variability of rainfall. Once the model calibrated, using a particle swarm optimisation algorithm, its transfer function is inversed to assess the net rainfall time series. In this way, we obtained a standardized variable which is used to estimate discharge in ungauged basin. Therefore, net rainfall time series is transposed and convoluted on the ungauged catchment using its own transfer function. Spatio-temporal rainfall variability between basins is considered through a correction of this net rainfall time series. This correction is based on differences between mean gross rainfall observation among those two catchments. This methodology is applied on pairs of basins among 6 gauged basins (from 5km² to 316km²) located in Brittany, France. For the benefit of the exercise, within each pair of basins, one is considered as "gauged" and the other one as "ungauged". Different spatial configurations of pairs of basins are compared. Results demonstrates the benefit of a well defined transfer function, as well as the importance of considering rainfall variability. Finally, through the assessment of transposition efficiency, this framework is presented as an original way to describe and understand hydrological similarities in catchment behavior.

  11. Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects

    NASA Astrophysics Data System (ADS)

    Bachmair, S.; Weiler, M.; Troch, P. A.

    2012-05-01

    Generalizable process knowledge on hillslope hydrological dynamics is still very poor, yet indispensable for numerous theoretical and practical applications. To gain insight into the organization of hillslope hydrological dynamics we intercompared 90 observations of shallow water table dynamics at three neighboring large-scale (33 × 75 m) hillslopes with similar slope, aspect, curvature, geologic, and pedologic properties but differences in vegetation cover (grassland, coniferous forest, and mixed forest) over a time period of 9 months. High-resolution measurements of water table fluctuations, rainfall, and discharge in the creek at the foot of all hillslopes allowed a good system characterization. The aim of this study was to explore the spatio-temporal variability of water table fluctuations within and between hillslopes, the effect of event and antecedent characteristics on the observed dynamics, and how the hillslope subsurface flow (SSF) response is reflected in the runoff response. To intercompare the SSF behavior we conducted an event-based analysis of the percentage of well activation, several metrics characterizing the shape and timing of the water table response curves, rainfall characteristics, antecedent wetness conditions, and several runoff response metrics. The analysis reveals that there are distinct differences in SSF response between the grassland hillslope and the forested hillslopes, with a lower frequency of well activation and absolute water table rise at the grassland hillslope. Second, spatial patterns of water table dynamics differ between wet fall/winter/spring (predominantly saturation of the lower part of the hillslope, weaker water table response, and slower response times) and dry summer conditions (whole-hillslope activation but higher spatial variability, generally stronger water table dynamics, and quicker response times). The observed seasonally changing water table dynamics suggest the development of a preferential flow network during high-intensity rainstorms under dry summer conditions. Third, catchment runoff is strongly driven by hillslope dynamics, yet contrasting hydrographs during events with similar hillslope dynamics indicate the influence of additional processes. Overall, the observed high spatio-temporal variability of seemingly homogeneous hillslopes calls for rethinking of current monitoring strategies and developing and testing new conceptual models of hillslope hydrologic processes.

  12. Quantifying spatio-temporal variability of soil water storage and their controls at multiple scales

    NASA Astrophysics Data System (ADS)

    Biswas, Asim

    2014-05-01

    Soil water is the primary limiting factor in semiarid ecosystems and determinant of environmental health. The distribution of soil water in space and time has important hydrologic applications. However, the spatio-temporal variability of soil water is a major challenge in hydrology as their distribution in the landscape is controlled many factors and processes acting in different intensities over a variety of scales. Quantification of these variability and their dominant controls at multiple scales can only lead to a better understanding on the soil water dynamics in space and time and on the underlying processes causing the variability. In order to quantify spatio-temporal variability, soil water content (later converted to soil water storage, SWS) was measured down to 1.4 m (0.2 m depth interval) at 128 regularly spaced locations along a transect of 576 m over a five-year period from the Hummocky landscape of central Canada. The spatial pattern of SWS was very similar (large values of Spearman's rank correlation coefficient) over the entire study period and was almost a mirror image of the spatial pattern of the relative elevation. The similarity was stronger within a season (intra-season) than the same season from different years (inter-annual) and between seasons (inter-season). The variability at multiple scales was quantified using the wavelet transform. The strongest large scale (>72 m) variability contributed from the macro-topography and a moderate medium scale (18-72 m) variability contributed from the landform elements were persistent over the entire measurement period (time stability). The locations and the scales of the most persistent spatial patterns over time and depth were quantified using the wavelet coherency. The changes in the persistent patterns indicated the changes in the scales and locations of underlying hydrological processes, which can be used to identify change in sampling domain. The similarities/dissimilarities in the spatial pattern between the surface and sub-surface measurements at different scales and locations were used to infer the whole profile hydrological dynamics (depth persistence). The variability in SWS spatial patterns was controlled by different factors at different scales. Scale specific dominant controls were identified after separating the variance contribution of each scale towards the overall variance using the Hilbert-Huang transform. The large scale macro-topographical control and medium scale landform control were much stronger than very large scale soil textural control on SWS. The scale-specific relationship with controlling factors improved the prediction of SWS.

  13. Investigation on the dominant factors controlling the spatio-temporal distribution of soil moisture in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, G.; Hildebrandt, A.; Samaniego-Eguiguren, L.; Kreutziger, Y.; Attinger, S.

    2009-04-01

    The spatio-temporal distribution of soil moisture in the unsaturated zone influences the vegetation growth, governs the runoff generation processes as well as the energy balance at the interface between biosphere and the atmosphere, by influencing evapotranspiration. A better understanding of the spatio-temporal variability and dependence of soil moisture on living versus abiotic environment would lead to an improved representation of the soil-vegetation-atmosphere processes in hydrological and climate models. The Jena Experiment site (Germany) was established October 2001 in order to analyse the interaction between plant diversity and ecosystem processes. The main experiment covers 92 plots of 20 x 20 m arranged into a grid, on which a mixture of up to 60 grassland species and of one to four plant functional groups have been seeded. Each of these plots is equipped with at least one measurement tube for soil moisture. Measurements have been conducted weekly for four growing seasons (SSF). Here, we use geostatistical methods, like variograms and multivariate regressions, to investigate in how far abiotic environment and ecosystem explain the spatial and temporal variation of soil moisture at the Jena Experiment site. We test the influence of the soil environment, biodiversity, leaf area index and groundwater table. The poster will present the results of this analysis.

  14. Source characterization and spatio-temporal evolution of the metal pollution in the sediments of the Basque estuaries (Bay of Biscay).

    PubMed

    Legorburu, Irati; Rodríguez, José Germán; Borja, Angel; Menchaca, Iratxe; Solaun, Oihana; Valencia, Victoriano; Galparsoro, Ibon; Larreta, Joana

    2013-01-15

    According to Water Framework Directive requirements, Member States must identify and analyze effects derived from human pressures in aquatic systems. As different kind of pressures can impact water bodies at different scales, analyses of spatio-temporal evolution of water bodies becomes essential in order to understand ecosystem responses. In this investigation, an analysis of spatio-temporal evolution of sedimentary metal pollution (Cd, Cr, Cu, Hg, Ni, Pb, Zn) in 12 Basque estuaries (Bay of Biscay) is presented. Data collected in extensive sampling surveys is the basis for the GIS-based statistical approach used. The implementation of pollution abatement measures is reflected in a long-term decontamination process, mostly evident in estuaries with highest historical sediment pollution levels. Spatial evolution is determined by either naturally occurring or human driven processes. Such spatial processes are more obviously being reflected in estuaries with lower historical sediment pollution levels. PMID:23218773

  15. An Adaptive Organization Method of Geovideo Data for Spatio-Temporal Association Analysis

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhu, Q.; Zhang, Y. T.; Du, Z. Q.; Zhou, Y.; Xie, X.; He, F.

    2015-07-01

    Public security incidents have been increasingly challenging to address with their new features, including large-scale mobility, multi-stage dynamic evolution, spatio-temporal concurrency and uncertainty in the complex urban environment, which require spatio-temporal association analysis among multiple regional video data for global cognition. However, the existing video data organizational methods that view video as a property of the spatial object or position in space dissever the spatio-temporal relationship of scattered video shots captured from multiple video channels, limit the query functions on interactive retrieval between a camera and its video clips and hinder the comprehensive management of event-related scattered video shots. GeoVideo, which maps video frames onto a geographic space, is a new approach to represent the geographic world, promote security monitoring in a spatial perspective and provide a highly feasible solution to this problem. This paper analyzes the large-scale personnel mobility in public safety events and proposes a multi-level, event-related organization method with massive GeoVideo data by spatio-temporal trajectory. This paper designs a unified object identify(ID) structure to implicitly store the spatio-temporal relationship of scattered video clips and support the distributed storage management of massive cases. Finally, the validity and feasibility of this method are demonstrated through suspect tracking experiments.

  16. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    PubMed

    Raghavan, Ram K; Neises, Daniel; Goodin, Douglas G; Andresen, Daniel A; Ganta, Roman R

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  17. RSTFC: A Novel Algorithm for Spatio-Temporal Filtering and Classification of Single-Trial EEG.

    PubMed

    Qi, Feifei; Li, Yuanqing; Wu, Wei

    2015-12-01

    Learning optimal spatio-temporal filters is a key to feature extraction for single-trial electroencephalogram (EEG) classification. The challenges are controlling the complexity of the learning algorithm so as to alleviate the curse of dimensionality and attaining computational efficiency to facilitate online applications, e.g., brain-computer interfaces (BCIs). To tackle these barriers, this paper presents a novel algorithm, termed regularized spatio-temporal filtering and classification (RSTFC), for single-trial EEG classification. RSTFC consists of two modules. In the feature extraction module, an l2 -regularized algorithm is developed for supervised spatio-temporal filtering of the EEG signals. Unlike the existing supervised spatio-temporal filter optimization algorithms, the developed algorithm can simultaneously optimize spatial and high-order temporal filters in an eigenvalue decomposition framework and thus be implemented highly efficiently. In the classification module, a convex optimization algorithm for sparse Fisher linear discriminant analysis is proposed for simultaneous feature selection and classification of the typically high-dimensional spatio-temporally filtered signals. The effectiveness of RSTFC is demonstrated by comparing it with several state-of-the-arts methods on three brain-computer interface (BCI) competition data sets collected from 17 subjects. Results indicate that RSTFC yields significantly higher classification accuracies than the competing methods. This paper also discusses the advantage of optimizing channel-specific temporal filters over optimizing a temporal filter common to all channels. PMID:25730834

  18. Transfer of spatio-temporal multifractal properties of rainfall to simulated surface runoff

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Giangola-Murzyn, Agathe; Richard, Julien; Abbes, Jean-Baptiste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Willinger, Bernard; Cardinal, Hervé; Thouvenot, Thomas

    2014-05-01

    In this paper we suggest to use scaling laws and more specifically Universal Multifractals (UM) to analyse in a spatio-temporal framework both the radar rainfall and the simulated surface runoff. Such tools have been extensively used to analyse and simulate geophysical fields extremely variable over wide range of spatio-temporal scales such as rainfall, but have not often if ever been applied to surface runoff. Such novel combined analysis helps to improve the understanding of the rainfall-runoff relationship. Two catchments of the chair "Hydrology for resilient cities" sponsored by Véolia, and of the European Interreg IV RainGain project are used. They are both located in the Paris area: a 144 ha flat urban area in the Seine-Saint-Denis County, and a 250 ha urban area with a significant portion of forest located on a steep hillside of the Bièvre River. A fully distributed urban hydrological model currently under development called Multi-Hydro is implemented to represent the catchments response. It consists in an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. The fully distributed model is tested with pixels of size 5, 10 and 20 m. In a first step the model is validated for three rainfall events that occurred in 2010 and 2011, for which the Météo-France radar mosaic with a resolution of 1 km in space and 5 min in time is available. These events generated significant surface runoff and some local flooding. The sensitivity of the model to the rainfall resolution is briefly checked by stochastically generating an ensemble of realistic downscaled rainfall fields (obtained by continuing the underlying cascade process which is observed on the available range of scales) and inputting them into the model. The impact is significant on both the simulated sewer flow and surface runoff. Then rainfall fields are generated with the help of discrete multifractal cascades and inputted in the numerical hydrological model. It appears that the outputs (maps of water depth and velocity) of the hydrological model exhibit a scaling behaviour both in space and time. Various sets of UM parameters are tested. The three UM parameters of the various processes at stake are then compared which enables to analyse how the extremes are either dampened or enhanced. This hints at innovative techniques to quantify the extremes at very high resolution (typically 1 m) without having to run the model at these resolutions which would require too much time especially for real time applications.

  19. Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)

    NASA Astrophysics Data System (ADS)

    Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.

    2013-12-01

    Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.

  20. The changing spatio-temporal dynamics of thaw lake development, Seward Peninsula, Alaska.

    NASA Astrophysics Data System (ADS)

    Cooper, Michael; Rees, Gareth; Bartsch, Annett

    2014-05-01

    Contemporary anthropogenic climatic warming is having an accelerated, and more pronounced effect upon Arctic regions than any other environment on Earth. Increased surface temperatures have led to widespread permafrost degradation and a shift in dynamics. One landscape manifestation of localised permafrost decay, seen to be ubiquitous across low-lying tundra regions of Alaska, Canada and Siberia, is the thermokarst lake - or 'thaw' lake. These features are seen to be truly dynamic, with a relatively rapid evolution and decay. The exact impacts of climatic perturbation on thaw lake development are in contention; however, recent studies have suggested an increased vulnerability of these features, owing to the susceptibility of the fundamental processes of initiation, expansion and drainage to climatic variation. It is often hypothesised that with current trends, thaw lakes will see a net increase in expansion rate, and areal extent, with a potential for increased drainage events. Increased permafrost thaw and thermokarst activity has also led to shifts in biogeochemical cycles, leading to an amplified release from large carbon reservoirs currently sequestered within permafrost. An example of carbon release exhibited from thaw lakes is that of methane ebullition (gas bubble formation); this has been theorised to have the potential to initiate a major positive climatic feedback leading to a continued rise in global temperatures. Due to the remote nature and large area over which these landforms occur, remotely sensed data has been widely used in order to both accurately classify features and measure change over spatially large and great temporal extents. As well as studies interpreting data collected in the visible and near-infrared spectra, studies have recently made use of radar or microwave products in order to capture imagery avoiding adverse atmospheric conditions, most notably cloud cover. Data from Envisat ASAR operating in Wide Swath Mode was acquired for this study region; however, the core of this research relied upon the analysis of the changing lake morphology using visible and near-infrared spectra from MODIS and Landsat products. This research explored: (1) intra-annual variability of freeze-thaw cycles and resultant effects on thaw lake development; and (2) the spatio-temporal trends and changing dynamism of thaw lake activity. Research presented here within suggests that although climatic trends do indeed influence widespread changes within thaw lake characteristics, site-specific phenomena of sediment type and ice-content and fluvial activity also play integral roles. Understanding and observing changing spatio-temporal dynamics, particularly on an intra-annual basis, has helped to gather more information concerning complex lake processes, and increase the understanding of permafrost decay and thaw lake development.

  1. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

    PubMed

    Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël

    2012-05-01

    1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. PMID:22268371

  2. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.

  3. Northern gannets anticipate the spatio-temporal occurrence of their prey.

    PubMed

    Pettex, E; Bonadonna, F; Enstipp, M R; Siorat, F; Grémillet, D

    2010-07-15

    Seabirds, as other marine top predators, are often assumed to forage in an unpredictable environment. We challenge this concept and test the hypothesis that breeding Northern gannets (Morus bassanus) anticipate the spatio-temporal occurrence of their prey in the English Channel. We analyzed 23 foraging tracks of Northern gannets breeding on Rouzic Island (Brittany) that were recorded using GPS loggers during 2 consecutive years. All birds commuted between the breeding colony and foraging areas located at a mean distance of 85 km and 72 km (in 2005 and 2006, respectively) from the colony. Mean linearity indices of the outbound and inbound trips were between 0.83 and 0.87, approaching a beeline path to and from the foraging area. Additional parameters (flight speed, and number and duration of stopovers at sea) for the outbound and inbound trip were not statistically different, indicating that birds are capable of locating these feeding areas in the absence of visual clues, and to pin-point their breeding site when returning from the sea. Our bearing choice analysis also revealed that gannets anticipate the general direction of their foraging area during the first 30 min and the first 10 km of the trip. These results strongly suggest that birds anticipate prey location, rather than head into a random direction until encountering a profitable area. Further investigations are necessary to identify the mechanisms involved in seabird resource localization, such as sensorial abilities, memory effects, public information or a combination of these factors. PMID:20581265

  4. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images.

    PubMed

    Yang, Lei; Ren, Yanyun; Hu, Huosheng; Tian, Bo

    2015-01-01

    In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. PMID:26378540

  5. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images

    PubMed Central

    Yang, Lei; Ren, Yanyun; Hu, Huosheng; Tian, Bo

    2015-01-01

    In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. PMID:26378540

  6. Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules

    PubMed Central

    Lelandais, Gaëlle; Saint-Georges, Yann; Geneix, Colette; Al-Shikhley, Liza; Dujardin, Geneviève; Jacq, Claude

    2009-01-01

    Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31 genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties. Thus, mRNAs of modules expressed “early” are mostly translated in the vicinity of mitochondria under the control of the Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections between nuclear transcription and cytoplasmic site-specific translation. PMID:19521515

  7. Geovisualization Approaches for Spatio-temporal Crime Scene Analysis - Towards 4D Crime Mapping

    NASA Astrophysics Data System (ADS)

    Wolff, Markus; Asche, Hartmut

    This paper presents a set of methods and techniques for analysis and multidimensional visualisation of crime scenes in a German city. As a first step the approach implies spatio-temporal analysis of crime scenes. Against this background a GIS-based application is developed that facilitates discovering initial trends in spatio-temporal crime scene distributions even for a GIS untrained user. Based on these results further spatio-temporal analysis is conducted to detect variations of certain hotspots in space and time. In a next step these findings of crime scene analysis are integrated into a geovirtual environment. Behind this background the concept of the space-time cube is adopted to allow for visual analysis of repeat burglary victimisation. Since these procedures require incorporating temporal elements into virtual 3D environments, basic methods for 4D crime scene visualisation are outlined in this paper.

  8. Why risk managers need information about spatio-temporal variability of natural hazards. Examples from practice

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas

    2013-04-01

    Integrated risk management consists of risk prevention, early warning, intervention during an event and restoration/re-construction after an event. The prevention phase consists of land use planning measures with a long-term time horizon and of structural measures that sometimes have a lifespan of more than 30-50 years. In this case, it is important to analyse the long-term evolvement of natural risks due to climate changes or land use changes. Besides of this, the spatial and temporal variability of a natural hazard process during the course of an event is also important. The shift from "static" hazard and risk assessment towards a "dynamic" assessment offers benefits for improving the intervention phase in risk management. This contribution describes some examples and points out the benefits of this shift for risk management. One example is the variable disposition of small alpine catchments for runoff and its relevance for early warning. The disposition for runoff depends on the actual status of environmental variables such as soil moisture and the snowpack characteristics. A feasibility study showed how the monitoring of soil moisture and the status of the snowpack can be incorporated into a rule base for describing the temporal variability of the disposition for high runoff in alpine catchments. The study showed that this information about the system state of alpine catchments can be used to improve the assessment of the consequences of a weather forecast for risk management. Another example is the use of snowpack and weather monitoring and traffic intensity measurements for avalanche risk management on alpine roads. Here, the information about the spatio-temporal variability of the snow avalanches and the presence of vehicles can be used for improving the procedures for road closure and re-opening. Another example is the preparation of intervention plans for fire brigades and other relief units during urban floods. The simulation of the temporal evolvement of a single flood event (time horizon of 0-24 hours) provides information for the elaboration of the intervention tactic. The following questions can be answered only by knowing the temporal and spatial evolvement during an event itself: Which intervention priorities have to be set if the resources of the relief units are limited? Which early interventions could be turn out to be unhelpful because in a later step the object to be protected will be flooded anyway? What is the time available for setting up object protection measures and other flood protection measures? The most important factor to implement the theory in practice is the focus on the interlinkages between the simulation of all possible scenarios in advance (scenario techniques, analysing the time-steps in flood simulation), the monitoring system (now-casting, real-time-data), the scenarios of intervention measures and their interdependency with the hazard scenarios. The interlinkages can be set up and described with the expert system approach.

  9. Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium

    PubMed Central

    Schneider, Johannes; Klein, Teresa; Mielich-Süss, Benjamin; Koch, Gudrun; Franke, Christian; Kuipers, Oscar P.; Kovács, Ákos T.; Sauer, Markus; Lopez, Daniel

    2015-01-01

    Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. PMID:25909364

  10. Spatio-temporal evolution of shoreline changes along the coast between sousse- Monastir (Eastearn of Tunisia)

    NASA Astrophysics Data System (ADS)

    Fathallah, S.; Ben Amor, R.; Gueddari, M.

    2009-04-01

    Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.

  11. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses.

    PubMed

    Pariente, G; Quéré, F

    2015-05-01

    We introduce a new class of spatio-temporally coupled ultrashort laser beams, which are obtained by superimposing Laguerre-Gauss beams whose azimuthal mode index is correlated to their frequency. These beams are characterized by helical structures for their phase and intensity profiles, which both encode the orbital angular momentum carried by the light. They can easily be engineered in the optical range, and are naturally produced at shorter wavelengths when attosecond pulses are generated by intense femtosecond Laguerre-Gauss laser beams. These spatio-temporal "light springs" will allow for the transfer of the orbital angular momentum to matter by stimulated Raman scattering. PMID:25927778

  12. A registration strategy for long spatio-temporal aerial remote sensing image sequence

    NASA Astrophysics Data System (ADS)

    Cao, Yutian; Yan, Dongmei; Li, Jianming; Wang, Gang

    2015-12-01

    A novel registration strategy for aerial image sequence is put forward to adapt to the long spatio-temporal span of the aerial remote sensing imaging. By setting keyframe, this strategy aligns all images in sequence to a unified datum with high registration sustainability and precision. The contrast experiment on different registration strategies is carried out based on SIFT feature matching of mid-infrared aerial sequences. The experiment results show that the proposed strategy performs well on long spatio-temporal sequences with different imaging resolutions and scenes.

  13. Insight into others’ minds: spatio-temporal representations by intrinsic frame of reference

    PubMed Central

    Sun, Yanlong; Wang, Hongbin

    2014-01-01

    Recent research has seen a growing interest in connections between domains of spatial and social cognition. Much evidence indicates that processes of representing space in distinct frames of reference (FOR) contribute to basic spatial abilities as well as sophisticated social abilities such as tracking other’s intention and belief. Argument remains, however, that belief reasoning in social domain requires an innately dedicated system and cannot be reduced to low-level encoding of spatial relationships. Here we offer an integrated account advocating the critical roles of spatial representations in intrinsic frame of reference. By re-examining the results from a spatial task (Tamborello etal., 2012) and a false-belief task (Onishi and Baillargeon, 2005), we argue that spatial and social abilities share a common origin at the level of spatio-temporal association and predictive learning, where multiple FOR-based representations provide the basic building blocks for efficient and flexible partitioning of the environmental statistics. We also discuss neuroscience evidence supporting these mechanisms. We conclude that FOR-based representations may bridge the conceptual as well as the implementation gaps between the burgeoning fields of social and spatial cognition. PMID:24592226

  14. Spatio-temporal behavior of microwave sheath-voltage combination plasma source

    NASA Astrophysics Data System (ADS)

    Kar, Satyananda; Kousaka, Hiroyuki; Raja, Laxminarayan L.

    2015-05-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the spatio-temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions, and the density is in amplitude order of 1011 cm-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition, and higher density plasma (1012 cm-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.

  15. A Kinect based sign language recognition system using spatio-temporal features

    NASA Astrophysics Data System (ADS)

    Memiş, Abbas; Albayrak, Songül

    2013-12-01

    This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.

  16. Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Gusrizal

    2014-10-01

    We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR.

  17. Insight into others' minds: spatio-temporal representations by intrinsic frame of reference.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2014-01-01

    Recent research has seen a growing interest in connections between domains of spatial and social cognition. Much evidence indicates that processes of representing space in distinct frames of reference (FOR) contribute to basic spatial abilities as well as sophisticated social abilities such as tracking other's intention and belief. Argument remains, however, that belief reasoning in social domain requires an innately dedicated system and cannot be reduced to low-level encoding of spatial relationships. Here we offer an integrated account advocating the critical roles of spatial representations in intrinsic frame of reference. By re-examining the results from a spatial task (Tamborello etal., 2012) and a false-belief task (Onishi and Baillargeon, 2005), we argue that spatial and social abilities share a common origin at the level of spatio-temporal association and predictive learning, where multiple FOR-based representations provide the basic building blocks for efficient and flexible partitioning of the environmental statistics. We also discuss neuroscience evidence supporting these mechanisms. We conclude that FOR-based representations may bridge the conceptual as well as the implementation gaps between the burgeoning fields of social and spatial cognition. PMID:24592226

  18. Disentangling multidimensional spatio-temporal data into their common and aberrant responses

    SciTech Connect

    Chang, Young Hwan; Korkola, James; Amin, Dhara N.; Moasser, Mark M.; Carmena, Jose M.; Gray, Joe W.; Tomlin, Claire J.; Lisacek, Frederique

    2015-04-22

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures and how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.

  19. Spatio-temporal patterns of stratification on the Northwest Atlantic shelf

    NASA Astrophysics Data System (ADS)

    Li, Yun; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Sun, Yunfang; Beardsley, Robert C.; Ji, Rubao

    2015-05-01

    A spatially explicit stratification climatology is constructed for the Northwest Atlantic continental shelf using daily averaged hydrographic fields from a 33-year high-resolution, data-assimilated reanalysis dataset. The high-resolution climatology reveals considerable spatio-temporal heterogeneity in seasonal variability with strong interplay between thermal and haline processes. Regional differences in the magnitude and phasing of the seasonal cycle feature earlier development/breakdown in the Middle Atlantic Bight (MAB) and larger peaks on the shelf than in the Gulf of Maine (GoM). The relative contribution of the thermal and haline components to the overall stratification is quantified using a novel diagram composed of two key ratios. The first relates the vertical temperature gradient to the vertical salinity gradient, and the second relates the thermal expansion coefficient to the haline contraction coefficient. Two distinct regimes are identified: the MAB region is thermally-dominated through a larger portion of the year, whereas the Nova Scotian Shelf and the eastern GoM have a tendency towards haline control during the year. The timing of peak stratification and the beginning/end of thermally-positive and thermally-dominant states are examined. Their spatial distributions indicate a prominent latitudinal shift and regionality, having implications for the seasonal cycle of ecosystem dynamics and its interannual variability.

  20. Spatio-temporal Kinetics of Nontypeable Haemophilus influenzae(NTHi) Biofilms

    NASA Astrophysics Data System (ADS)

    Dhanji, Aleya; Rosas, Lucia; Ray, William; Jayaprakash, Ciriyam; Bakaletz, Lauren; Das, Jayajit

    2014-03-01

    Bacteria can form complex spatial structures known as biofilms. Biofilm formation is frequently associated with chronic infections due to the greatly enhanced antibiotic resistance of resident bacteria. However, our understanding of the role of basic processes, such as bacteria replication and resource consumption, in controlling the development and temporal change of the spatial structure remains rudimentary. Here, we examine the growth of cultured biofilms by the opportunistic pathogen NTHi. Through spatial information extracted from confocal microscopy images, we quantitatively characterize the biofilm structure as it evolves over time. We find that the equal-time height-height pair correlation function decreases with distance and scales with time for small length scales. Furthermore, both the surface roughness and the correlation length perpendicular to the surface growth direction increase with time initially and then decrease. We construct a spatially resolved agent based model beginning with the simplest possible case of a single bacteria species Fisher-Kolmogorov-Petrovsky-Piscounov equation. We show that it cannot describe the observed spatio-temporal behavior and suggest an improved two-species model that better captures the dynamics of the NTHi system. Supported by The Research Institute at Nationwide Children's Hospital.

  1. Spatio-Temporal Variability in Fecal Indicator Bacteria Concentrations at Huntington Beach: Connections to Physical Forcing

    NASA Astrophysics Data System (ADS)

    Rippy, M. A.; Feddersen, F.; Leichter, J.; Omand, M.; Moore, D. F.; McGee, C.; Franks, P. J.

    2007-05-01

    Two major factors determine the spatial and temporal distributions of fecal indicator bacteria (FIB) at a given beach: local circulation & mixing patterns, and bacterial inactivation rates. High frequency and spatial resolution bacterial sampling combined with measurements of physical processes can be used to infer inactivation rates, enabling differentiation between dilution & mortality as factors driving variability in nearshore FIB abundance. A FIB sampling experiment (HB06) took place on 16 October 2006, at Huntington State Beach, a site selected due to its persistent problems with FIB pollution. Water samples were taken at 20-minute intervals (from 6:50am to 11:50am) at ten locations; four in an alongshore transect spanning 1 km at the shoreline, and the remainder in a 300-m long cross-shore transect. All samples were analyzed for FIB concentration (Total Coliforms, E. coli & Enterococci) and, for a subset, species level Enterococcus composition was determined. As part of the HB06 experiment, currents, temperature, waves, and chlorophyll fluorescence were measured simultaneously in the cross-shore direction with rapid CTD casts 300 m offshore. Results indicate that E. coli and Enterococcus concentrations exhibit exponential decreases with time, with smaller decay rates associated with depth and with sites in the Talbert Marsh and Santa Ana River. FIB concentrations are also noticeably lower farther offshore (300 m). Spatio-temporal patterns in FIB concentration will be presented in conjunction with the nearshore physical data allowing the relationship between physical dynamics and biological variability to be addressed.

  2. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    PubMed

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. PMID:25480008

  3. Interactive visual exploration of a large spatio-temporal dataset: reflections on a geovisualization mashup.

    PubMed

    Wood, Jo; Dykes, Jason; Slingsby, Aidan; Clarke, Keith

    2007-01-01

    Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporaldatasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the dataset, the specific tools used and the 'mashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here. PMID:17968062

  4. Spatio-temporal activity in real time (STAR): Optimization of regional fMRI feedback

    PubMed Central

    Magland, Jeremy F.; Tjoa, Christopher W.; Childress, Anna Rose

    2011-01-01

    The use of real-time feedback has expanded fMRI from a brain probe to include potential brain interventions with significant therapeutic promise. However, whereas time-averaged blood oxygenation level-dependent (BOLD) signal measurement is usually sufficient for probing a brain state, the real-time (frame-to-frame) BOLD signal is noisy, compromising feedback accuracy. We have developed a new real-time processing technique (STAR) that combines noise-reduction properties of multi-voxel (e.g., whole-brain) techniques with the regional specificity critical for therapeutics. Nineteen subjects were given real-time feedback in a cognitive control task (imagining repetitive motor activity vs. spatial navigation), and were all able to control a visual feedback cursor based on whole-brain neural activity. The STAR technique was evaluated, retrospectively, for five a priori regions of interest in these data, and was shown to provide significantly better (frame-by-frame) classification accuracy than a regional BOLD technique. In addition to regional feedback signals, the output of the STAR technique includes spatio-temporal activity maps (movies) providing insight into brain dynamics. The STAR approach offers an appealing optimization for real-time fMRI applications requiring an anatomically-localized feedback signal. PMID:21232612

  5. Impacts of cattle grazing on spatio-temporal variability of soil moisture and above-ground live plant biomass in mixed grasslands

    NASA Astrophysics Data System (ADS)

    Virk, Ravinder

    Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB heterogeneity over time was observed for heavy grazing intensity. All grazing intensities showed decrease in spatial range (patch size) over time indicating that grazing is a patchy process. The study demonstrates that cattle grazing with variable intensity can maintain and change the spatial patterns of vegetation in the studied region. Using a modelling approach, the relative degrees to which grazing intensity and soil properties affect grassland productivity and carbon dynamics at longer time-periods were investigated. Both grass productivity and carbon dynamics are sensitive to variability in soil texture and grazing intensity. Moderate grazing is predicted to be the best option in terms of maintaining sufficient heterogeneity to support species diversity, as well as for carbon management in the mixed grassland ecosystem.

  6. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  7. On the spatio-temporal dynamics of soil moisture at the field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we review the state of the art of characterizing and analyzing spatio-temporal dynamics of soil moisture content at the field scale. We discuss measurement techniques that have become available in recent years and that provide unique opportunities to characterize field scale soil mois...

  8. Statistical Analysis of Spatio-temporal Variations of Sea Surface Height Observed by Topex Altimeter

    NASA Technical Reports Server (NTRS)

    Fabrikant, A.; Glazman, R. E.; Greysukh, A.

    1994-01-01

    Using non-gridded Topex altimeter data, high resolution 2-d power spectra and spatio-temporal autocorrelation functions of sea surface height (SSH) variations are estimated and employed for studying anisotropic SSH fields varying in a broad range of scales.

  9. a Framework for Online Spatio-Temporal Data Visualization Based on HTML5

    NASA Astrophysics Data System (ADS)

    Mao, B.; Wu, Z.; Cao, J.

    2012-07-01

    Web is entering a new phase - HTML5. New features of HTML5 should be studied for online spatio-temporal data visualization. In the proposed framework, spatio-temporal data is stored in the data server and is sent to user browsers with WebSocket. Public geo-data such as Internet digital map is integrated into the browsers. Then animation is implemented through the canvas object defined by the HTML5 specification. To simulate the spatio-temporal data source, we collected the daily location of 15 users with GPS tracker. The current positions of the users are collected every minute and are recorded in a file. Based on this file, we generate a real time spatio-temporal data source which sends out current user location every second.By enlarging the real time scales by 60 times, we can observe the movement clearly. The data transmitted with WebSocket is the coordinates of users' current positions, which will can be demonstrated in client browsers.

  10. Evaluating the impact of spatio-temporal scale on CPUE standardization

    NASA Astrophysics Data System (ADS)

    Tian, Siquan; Han, Chan; Chen, Yong; Chen, Xinjun

    2013-09-01

    This study focused on the quantitative evaluation of the impact of the spatio-temporal scale used in data collection and grouping on the standardization of CPUE (catch per unit effort). We used the Chinese squid-jigging fishery in the northwestern Pacific Ocean as an example to evaluate 24 scenarios at different spatio-temporal scales, with a combination of four levels of temporal scale (weekly, biweekly, monthly, and bimonthly) and six levels of spatial scale (longitude×latitude: 0.5°×0.5°, 0.5°×1°, 0.5°×2°, 1°×0.5°, 1°×1°, and 1°×2°). We applied generalized additive models and generalized linear models to analyze the 24 scenarios for CPUE standardization, and then the differences in the standardized CPUE among these scenarios were quantified. This study shows that combinations of different spatial and temporal scales could have different impacts on the standardization of CPUE. However, at a fine temporal scale (weekly) different spatial scales yielded similar results for standardized CPUE. The choice of spatio-temporal scale used in data collection and analysis may create added uncertainty in fisheries stock assessment and management. To identify a cost-effective spatio-temporal scale for data collection, we recommend a similar study be undertaken to facilitate the design of effective monitoring programs.

  11. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery

    PubMed Central

    Sa?lam, Bülent; Bilgili, Ertu?rul; Durmaz, Bahar Dinç; Kad?o?ullar?, Ali ?hsan; Küçük, Ömer

    2008-01-01

    Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.

  12. Analysis and Modeling of spatio-temporal Patterns of Carbon and Water Fluxes in Production Fields of Winter Wheat and Sugar Beet

    NASA Astrophysics Data System (ADS)

    Kupisch, M.; Langensiepen, M.; van Wijk, M.; Stadler, A.; Ewert, F.

    2011-12-01

    Gas exchange of CO2 and water vapour are important processes that determine crop growth and yield. Understanding their spatio-temporal variability at field level is necessary for accurate simulation of crop growth in fields with heterogeneous growing conditions and for parameterizing soil-vegetation-atmosphere transfer (SVAT) models. Accordingly, relationships between the spatio-temporal patterns of assimilation and transpiration rates and environmental (e.g. soil) heterogeneity are of specific interest. A particular challenge refers then to the appropriate method of up-scaling of these relationships from the leaf to the canopy and field level. Therefore, gas-exchange (CO2 and water vapour) was measured at different points in winter wheat and sugar beet fieldsboth at leaf and at canopy level in a nearly biweekly cycle during the growing seasons 2010 and 2011. The measurements comprised also C/N-content of leaf, leaf area index, soil water content and soil nitrogen content. The results revealed a strong spatial heterogeneity of carbon and water canopy fluxes across the fields. While canopy measurements had a temporal variability with distinct diurnal and seasonal patterns, the temporal (and spatial) variability of leaf level photosynthesisand transpirationwas comparably small.Further analysis suggests that the observed spatial and seasonal variability of canopy measurements was mainly caused by field heterogeneity in LAI and less by gas exchange rates per unit leaf area. However, both crops differed in their response to drought stress: while wheat responded mainly through irreversible reduction in green leaf area, the canopy assimilation rate of sugar beets decreases only temporarily with no observed effects in LAI. The obtained datasets from both years are the basis for parameterizing a crop growth model with canopy assimilation and transpiration components and for developing appropriate up-scaling methods from leaf to field. Our results indicate that it is important to consider field heterogeneityfor parameterizing large-scale SVAT models. We will show to which extend the simulation results at field scale are affected by the up-scaling method.

  13. Spatio-temporal variation in European starling reproductive success at multiple small spatial scales

    PubMed Central

    Brickhill, Daisy; Evans, Peter GH; Reid, Jane M

    2015-01-01

    Understanding population dynamics requires spatio-temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small-scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long-term data to test the hypothesis that small-scale spatio-temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio-temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio-temporal variation would not have been detected if season-long RS had not been measured. Such small-scale spatio-temporal variation should be incorporated into empirical and theoretical treatments of population dynamics. PMID:26380670

  14. Spatio-temporal variation in European starling reproductive success at multiple small spatial scales.

    PubMed

    Brickhill, Daisy; Evans, Peter Gh; Reid, Jane M

    2015-08-01

    Understanding population dynamics requires spatio-temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small-scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long-term data to test the hypothesis that small-scale spatio-temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio-temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio-temporal variation would not have been detected if season-long RS had not been measured. Such small-scale spatio-temporal variation should be incorporated into empirical and theoretical treatments of population dynamics. PMID:26380670

  15. An Expectation-Maximization Method for Spatio-Temporal Blind Source Separation Using an AR-MOG Source Model

    PubMed Central

    Hild, Kenneth E.; Attias, Hagai T.; Nagarajan, Srikantan S.

    2009-01-01

    In this paper, we develop a maximum-likelihood (ML) spatio-temporal blind source separation (BSS) algorithm, where the temporal dependencies are explained by assuming that each source is an autoregressive (AR) process and the distribution of the associated independent identically distributed (i.i.d.) inovations process is described using a mixture of Gaussians. Unlike most ML methods, the proposed algorithm takes into account both spatial and temporal information, optimization is performed using the expectation-maximization (EM) method, the source model is adapted to maximize the likelihood, and the update equations have a simple, analytical form. The proposed method, which we refer to as autoregressive mixture of Gaussians (AR-MOG), outperforms nine other methods for artificial mixtures of real audio. We also show results for using AR-MOG to extract the fetal cardiac signal from real magnetocardiographic (MCG) data. PMID:18334368

  16. Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise

    PubMed Central

    Zammit-Mangion, Andrew; Rougier, Jonathan; Schön, Nana; Lindgren, Finn; Bamber, Jonathan

    2015-01-01

    Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. PMID:25937792

  17. MUSIC seeded multi-dipole MEG modeling using the Constrained Start Spatio-Temporal modeling procedure.

    PubMed

    Ranken, D M; Stephen, J M; George, J S

    2004-01-01

    The Constrained Start Spatio-Temporal modeling program (CSST) is an objective multi-dipole, multi-start MEG/EEG analysis procedure that randomly selects from 100 to 100,000 initial dipole configurations, and runs a nonlinear simplex search on each of these configurations employing a reduced Chi-square statistic as the minimization criterion, to obtain a set of dipole configurations that best fit the data [Ranken, 2002]. A parallel version of CSST is implemented in IDL and MPI, making CSST usable on a single computer, or on a Linux cluster. We have now developed a multi-resolution version of MUSIC [Mosher, 1992] [Mosher, 1998] that provides an 80% or more reduction in the number of forward calculations needed to obtain results comparable to a 160,000 point MUSIC scan, on a 2 mm grid that defines a brain volume. The multi-resolution MUSIC scan provides an improved set of initial dipole estimates for the CSST analysis. In preliminary tests on real and simulated MEG data, with model orders ranging between 5 and 7 dipoles, the best performance improvements were obtained by mixing in 1 to 3 dipole locations randomly drawn from the best MUSIC locations, with randomly selected locations from the brain volume to complete the selected model order. We have also developed an improved method for sampling the brain volume for initial configurations. These improvements have led to a 75% reduction in the number of starting configurations required to obtain 5-10 best solutions with equal or lower reduced Chi-square values, when compared to the best solutions from the previous version of CSST. PMID:16012631

  18. Homogeneous Geovisualization of Coastal Areas from Heterogeneous Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Masse, A.; Christophe, S.

    2015-08-01

    On coastal areas, recent increase in production of open-access high-quality data over large areas reflects high interests in modeling and geovisualization, especially for applications of sea level rise prediction, ship traffic security and ecological protection. Research interests are due to tricky challenges from the intrinsic nature of the coastal area, which is composed of complex geographical objects of which spatial extents vary in time, especially in the intertidal zone (tides, sands, etc.). Another interest is the complex modeling of this area based on imprecise cartographic objects (coastline, highest/lowest water level, etc.). The challenge of visualizing such specific area comes thus from 3D+t information, i.e. spatio-temporal data, and their visual integration. In this paper, we present a methodology for geovisualization issues over coastal areas. The first challenge consists in integrating multi-source heterogeneous data, i.e. raster and vector, terrestrial and hydrographic data often coming from various `paradigms', while providing a homogeneous geovisualization of the coastal area and in particular the phenomenon of the water depth. The second challenge consists in finding various possibilities to geovisualize this dynamic geographical phenomenon in controlling the level of photorealism in hybrid visualizations. Our approach is based on the use of a high-resolution Digital Terrain Model (DTM) coming from high resolution LiDAR data point cloud, tidal and topographic data. We present and discuss homogeneous hybrid visualizations, based on LiDAR and map, and on, LiDAR and orthoimagery, in order to enhance the realism while considering the water depth.

  19. Exploring spatio-temporal patterns of mortality using mixed effects models.

    PubMed

    Pickle, L W

    A linear mixed effects (LME) model previously used for a spatial analysis of mortality data for a single time period is extended to include time trends and spatio-temporal interactions. This model includes functions of age and time period that can account for increasing and decreasing death rates over time and age, and a change-point of rates at a predetermined age. A geographic hierarchy is included that provides both regional and small area age-specific rate estimates, stabilizing rates based on small numbers of deaths by sharing information within a region. The proposed log-linear analysis of rates allows the use of commercially available software for parameter estimation, and provides an estimator of overdispersion directly as the residual variance. Because of concerns about the accuracy of small area rate estimates when there are many instances of no observed deaths, we consider potential sources of error, focusing particularly on the similarity of likelihood inferences using the LME model for rates as compared to an exact Poisson-normal mixed effects model for counts. The proposed LME model is applied to breast cancer deaths which occurred among white women during 1979-1996. For this example, application of diagnostics for multiparameter likelihood comparisons suggests a restriction of age to a minimum of either 25 or 35, depending on whether small area rate estimates are required. Investigation into a convergence problem led to the discovery that the changes in breast cancer geographic patterns over time are related more to urbanization than to region, as previously thought. Published in 2000 by John Wiley & Sons, Ltd. PMID:10960851

  20. Spatio-temporal variability of ionospheric Total Electron Content (TEC) over the Indian subcontinent derived from geodetic GPS network

    NASA Astrophysics Data System (ADS)

    Vijayan, M.; Kannoth, S.; Varghese, G.; Earnest, A.; Jade, S.; Bhatt, B. C.; Gupta, S. S.

    2013-12-01

    We present, for the first time, Ionospheric Total Electron Content (TEC) computed from dual frequency GPS data observed by Indian geodetic GPS network and neighboring IGS stations for more than a decade (2001-2012) (figure 1). Indian geodetic GPS network has more than 30 stations well spread across the Indian subcontinent, primarily, to study the tectonics of the Indian plate. Each station has geodetic grade dual frequency GPS receiver which are operated in continuous mode by making observations at every 30s since 2001. The ionospheric TEC presented here is computed from the code and phase GPS measurements using the software IONODETECT developed at CSIR 4PI. This decadal scale ionospheric data set covers from maxima of 23rd to maxima of 24th solar cycle with a broad spatial coverage from 35S to 56N and 38E to 134E (figure1). The GPS TEC computed at every 30 seconds over each sub-ionospheric point correlates well with International Reference Ionosphere(IRI) 2012 model in longer time scale, however, a strong spatio-temporal dependence in correlation is clearly observed. In addition a site specific, nearly systematic night time bias between GPS TEC and IRI-12 is noted. The advantage of using the systematic bias for correcting Differential Code Bias (DCB) in computing GPS TEC is discussed. We also discuss in detail the equatorial ionospheric processes and regional characteristics of Equatorial Ionization Anomaly (EIA) through latitudinal, diurnal, seasonal, and inter-annual variability of decadal scale GPS TEC computed over Indian subcontinent. EIA anomaly crust maxima during local noon on 30th November 2004 is clearly visible in the figure 1. The TEC variations associated with solar flares and solar maxima and minima during the solar cycles are also discussed to understand the impact of space weather on equatorial and mid latitude ionosphere as well as on navigation. Vertical TEC (VTEC) at each sub ionospheric pierce points (SIP) on 30th November 2004 from 0UTC to 2359UTC. The red triangles are GPS stations.

  1. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  2. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, T.; Gascuel-Odoux, C.; Durand, P.; Weiler, M.

    2015-08-01

    Several controls are known to affect water quality of stream networks during flow recession periods such as solute leaching processes, surface water - groundwater interactions as well as biogeochemical in-stream retention processes. Throughout the stream network combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered as functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on synoptic sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analyzing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrates from sub-catchments. Thereby, we have been able to distinguish between nitrate sinks and sources per stream reaches and sub-catchments. For nitrate sources we have determined their permanent and temporally impact on stream water quality and for nitrate sinks we have found increasing nitrate removal efficiencies from up- to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resources management.

  3. Spatio-Temporal Variations of Evapotranspiration in the Lake Selin Co Basin (Tibetan Plateau) from 2003 to 2012

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W.

    2014-12-01

    Over the Tibetan Plateau (TP), lake expansion/shrinkage has been found closely correlated to the changing evapotranspiration (ET) patterns. Lake Selin Co is the largest endorheic lake on the TP, but the spatio-temporal changes of ET and its controlling factors in this lake basin are still not well understood. In this study, the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM, for land area), Penman-Monteith method (unfrozen period of water area) and a simple sublimation estimation approach (frozen period of water area) were used to estimate the spatio-temporal variations of ET in the Lake Selin Co Basin from 2003 to 2012. The causes for the variations are also discussed. By comparing with MODIS land surface temperature (LST) data, WEB-DHM successfully reproduced the spatial pattern and basin-averaged values of nighttime and daytime LST. Compared with the ET reference values estimated from water balance method, our method showed better performance than global ET products in reproducing annual basin-averaged ET. The modeled ET at point scale matches well with in situ daily measurements from 10 October to 10 November 2012 (RMSE = 0.82 mm/day). The increase of precipitation makes ET from the land area an increasing trend, except in winter. ET from the water area is an integrated effect of climate factors on annual and seasonal scales. The decline of wind speed and the increase of vapor pressure deficit may offset the effect of increasing temperature and contribute to an insignificant decreasing trend of annual ET from the water area.

  4. Analysis of air quality trace gas spatio-temporal variability over the USA using the WRF-chem regional model

    NASA Astrophysics Data System (ADS)

    Boynard, A.; Edwards, D. P.; Pfister, G.

    2010-12-01

    Ozone and carbon monoxide play key roles in the photo-chemical processes occurring in the atmosphere, with strong consequences for tropospheric chemistry, air quality and climate. Both molecules are highly variable, particularly in the troposphere, and need to be accurately monitored in order to provide a better insight into, for example, pollution episode development and pollution transport on regional to global scales. In this work, we analyse ozone and carbon monoxide concentrations simulated by the WRF chem regional model over the USA in order to characterize their geographical and temporal variations at the surface, in the lowermost troposphere and in the free troposphere along with their spatio-temporal correlations. In addition to model sensitivity studies, carbon monoxide tracers for different emission sources are used to differentiate the variability due to dynamics, photochemistry and emissions. We also present comparisons with surface measurements available from several ground-based stations over the USA.

  5. Disentangling multidimensional spatio-temporal data into their common and aberrant responses

    DOE PAGESBeta

    Chang, Young Hwan; Korkola, James; Amin, Dhara N.; Moasser, Mark M.; Carmena, Jose M.; Gray, Joe W.; Tomlin, Claire J.; Lisacek, Frederique

    2015-04-22

    With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures andmore » how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.« less

  6. Spatio-temporal filtering for determination of common mode error in regional GNSS networks

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Gruszczynski, Maciej; Figurski, Mariusz; Klos, Anna

    2015-04-01

    The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually estimated with the regional spatial filtering, such as the "stacking". In this paper, we show the stacking approach for the set of ASG-EUPOS permanent stations, assuming that spatial distribution of the CME is uniform over the whole region of Poland (more than 600 km extent). The ASG-EUPOS is a multifunctional precise positioning system based on the reference network designed for Poland. We used a 5- year span time series (2008-2012) of daily solutions in the ITRF2008 from Bernese 5.0 processed by the Military University of Technology EPN Local Analysis Centre (MUT LAC). At the beginning of our analyses concerning spatial dependencies, the correlation coefficients between each pair of the stations in the GNSS network were calculated. This analysis shows that spatio-temporal behaviour of the GPS-derived time series is not purely random, but there is the evident uniform spatial response. In order to quantify the influence of filtering using CME, the norms L1 and L2 were determined. The values of these norms were calculated for the North, East and Up components twice: before performing the filtration and after stacking. The observed reduction of the L1 and L2 norms was up to 30% depending on the dimension of the network. However, the question how to define an optimal size of CME-analysed subnetwork remains unanswered in this research, due to the fact that our network is not extended enough.

  7. A method of estimating spatio-temporally distributed groundwater recharge using integrated surface-subsurface modelling

    NASA Astrophysics Data System (ADS)

    Chung, Il Moon; Kim, Nam Won; Lee, Jeongwoo; Sophocleous, Marios

    2010-05-01

    In general, there have been various methods of estimating groundwater recharge such as baseflow separation approaches, water budget analyses based on lumped conceptual models, and the water table fluctuation method (WTF) by using data from groundwater monitoring wells. However, groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, so these methods have various limitations in dealing with these characteristics. To overcome these limitations, we present a novel application of estimating recharge based on water balance components from the combined SWAT-MODFLOW model, which is an integrated surface-ground water model. During the process of computing recharge, the time delay is very important factor. SWAT model uses single linear reservoir storage module with an exponential decay weighting function for accounting time delay through vadose zone. However, single reservoir module has limitation on the long delay time. So we suggest a multi-reservoir storage routing module instead of single one, which represents a more realistic time delay through the vadose zone. By using this module, the parameter related to the delay time could be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater levels as well as simulated watershed runoff with observed ones. This method is applied to several watersheds in Korea for the purpose of testing the procedure for proper estimation of spatio-temporal groundwater recharge distribution. As this application procedure of estimating recharge has the advantages of the effectiveness of a watershed model as well as the accuracy of the WTF method, the estimated daily recharge rate could be thought as an improved estimate reflecting the heterogeneity of hydrogeology, climatic conditions, land use, as well as the physical behavior of water in soil layers and aquifers.

  8. Spatio-Temporal Dynamics of Cholera during the First Year of the Epidemic in Haiti

    PubMed Central

    Gaudart, Jean; Rebaudet, Stanislas; Barrais, Robert; Boncy, Jacques; Faucher, Benoit; Piarroux, Martine; Magloire, Roc; Thimothe, Gabriel; Piarroux, Renaud

    2013-01-01

    Background In October 2010, cholera importation in Haiti triggered an epidemic that rapidly proved to be the world's largest epidemic of the seventh cholera pandemic. To establish effective control and elimination policies, strategies rely on the analysis of cholera dynamics. In this report, we describe the spatio-temporal dynamics of cholera and the associated environmental factors. Methodology/Principal findings Cholera-associated morbidity and mortality data were prospectively collected at the commune level according to the World Health Organization standard definition. Attack and mortality rates were estimated and mapped to assess epidemic clusters and trends. The relationships between environmental factors were assessed at the commune level using multivariate analysis. The global attack and mortality rates were 488.9 cases/10,000 inhabitants and 6.24 deaths/10,000 inhabitants, respectively. Attack rates displayed a significantly high level of spatial heterogeneity (varying from 64.7 to 3070.9 per 10,000 inhabitants), thereby suggesting disparate outbreak processes. The epidemic course exhibited two principal outbreaks. The first outbreak (October 16, 2010–January 30, 2011) displayed a centrifugal spread of a damping wave that suddenly emerged from Mirebalais. The second outbreak began at the end of May 2011, concomitant with the onset of the rainy season, and displayed a highly fragmented epidemic pattern. Environmental factors (river and rice fields: p<0.003) played a role in disease dynamics exclusively during the early phases of the epidemic. Conclusion Our findings demonstrate that the epidemic is still evolving, with a changing transmission pattern as time passes. Such an evolution could have hardly been anticipated, especially in a country struck by cholera for the first time. These results argue for the need for control measures involving intense efforts in rapid and exhaustive case tracking. PMID:23593516

  9. Spatio-temporal variation of drought in China during 1961-2012: A climatic perspective

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Yang, Dawen; Yang, Hanbo; Li, Zhe; Qin, Yue; Shen, Yan

    2015-07-01

    Understanding the spatial and temporal variation of drought is essentially important in drought assessment. In most previous studies, drought event is usually identified in space and time separately, ignoring the nature of the dynamic processes. In order to better understand how drought changes have taken place in China during the past half-century, we carried out a comprehensive analysis of their spatio-temporal variation based on multiple drought indices from a climatic perspective. A 3-dimensional clustering method is developed to identify drought events in China from 1961 to 2012 based on the 0.25° gridded indices of SPI3 (3 months Standardized Precipitation Index), RDI3 (3 months Reconnaissance Drought Index) and SPEI3 (3 months Standardized Precipitation Evapotranspiration Index). Drought events are further characterized by five parameters: duration, affected area, severity, intensity, and centroid. Remotely sensed soil moisture data were used to validate the rationality of identified drought events. The results show that the two most severe drought events in the past half century which occurred in the periods 1962-1963 and 2010-2011 swept more than half of the non-arid regions in China. Large magnitude droughts were usually centered in the region from North China Plain to the downstream of Yangtze River. The western part of North China Plain, Loess Plateau, Sichuan Basin and Yunnan-Guizhou Plateau had a significant drying trend, which is mainly caused by the significant decrease of precipitation. The three drought indices have almost the same performance in the humid regions, while SPI and RDI were found to be more appropriate than SPEI in the arid regions.

  10. Phlegra Montes - Spatio-Temporal Distribution of Ice and Debris at Martian Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Schulz, J.; van Gasselt, S.; Orgel, C.

    2014-04-01

    Mars hosts an abundance of landforms indicative of near-subsurface ice. Lobate debris aprons belong to a group of well-studied but still enigmatic ice-related landforms which have been identified at mid-latitudes between 30o and 50o in both hemispheres. While nature and origin of ice in these aprons are still controversially debated there is a general consensus that these features are sensitive to climate variability and, consequently, a potential indicator of past climate conditions, and potential water reservoirs today. The northern hemisphere hosts three populations of debris aprons: the Tempe Terra/Mareotis Fossae(TT) region [2, 5], the Deuteronilus/Protonilus Mensae (DPM) [1, 4, 9], and the Phlegra Montes region (PM) [3]. In southern latitudes the impact-basins rims of Argyre (AP) and Hellas Planitiae/Promethei Terra (HP) host a similar, albeit less well-pronounced set of features [1, 2, 6]. While most research is being concentrated on the HP, TT and DPM areas, studies discussing the population of the PM (located at 165o E, 30-50o N, see figure 1) are rather sparse [3, 14, 15, 16] although features are generally well-developed, representative due to their spatial distribution and wellimaged by high-resolution instruments. We performed an integrated spatio-temporal analysis of the PM population and focus on the age distribution of debris aprons in order to constrain their formation age. Our research is motivated by the assumption that if young-Amazonian climate variations have controlled formation and appearance of geomorphic landforms on Mars, we should observe traces of this process in PM as latitudinal trends and variations should provide measurable characteristics. If so, and if surface ages based on crater-frequency analysis are consistent with these assumptions, the exact timing of climate shifts may be assessable.

  11. Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England, 2000-2002.

    PubMed

    Gabriel, E; Wilson, D J; Leatherbarrow, A J H; Cheesbrough, J; Gee, S; Bolton, E; Fox, A; Fearnhead, P; Hart, C A; Diggle, P J

    2010-10-01

    A total of 969 isolates of Campylobacter jejuni originating in the Preston, Lancashire postcode district over a 3-year period were characterized using multi-locus sequence typing. Recently developed statistical methods and a genetic model were used to investigate temporal, spatial, spatio-temporal and genetic variation in human C. jejuni infections. The analysis of the data showed statistically significant seasonal variation, spatial clustering, small-scale spatio-temporal clustering and spatio-temporal interaction in the overall pattern of incidence, and spatial segregation in cases classified according to their most likely species-of-origin. PMID:20202286

  12. Automated classification of LV regional wall motion based on spatio-temporal profiles from cardiac cine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis

    2013-11-01

    Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.

  13. Salmonella enterica Serovar Napoli Infection in Italy from 2000 to 2013: Spatial and Spatio-Temporal Analysis of Cases Distribution and the Effect of Human and Animal Density on the Risk of Infection

    PubMed Central

    Graziani, Caterina; Luzzi, Ida; Owczarek, Slawomir; Dionisi, Anna Maria; Busani, Luca

    2015-01-01

    Background Salmonella Napoli is uncommon in Europe. In Italy however, it has been growing in importance since 2000. To date, no risk factors have been identified to account for its rise. This study aims at describing the epidemiology, spatial and spatio-temporal patterns of S. Napoli in Italy from 2000 to 2013, and to explore the role of several environmental correlates, namely urbanization, altitude and number of livestock farms, on the risk of S. Napoli infection among humans. Method Data were obtained from Enter-Net Italy, a network of diagnostic laboratories. The data were aggregated at the municipality level. Descriptive epidemiology, multivariate regression models, spatial and spatio-temporal analyses were performed on the number of cases and incidence rates. Results S. Napoli showed an expanding trend at the national level, and an increasing number of cases. Compared to the other main serovars in Italy, the risk of S. Napoli infection was higher in the age group <1 year, and lower in the other age groups. Although urbanization and the number of farms were associated with the risk of S. Napoli infection to some extent, their role in the epidemiology of the disease remains inconclusive. S. Napoli cases showed a positive global spatial autocorrelation as well as a significant spatio-temporal interaction. Twenty-four spatial and spatio-temporal clusters were identified, seven purely spatial and 17 spatio-temporal, mainly in north-western Italy. Most of the clusters were in areas characterized by urban and industrial settlements surrounded by agricultural land and an abundance of freshwater bodies. Conclusions Our results point to the presence, in a number of areas in Italy, of a Salmonella of public health concern originating in the environment. This highlights the increasing relevance of environmental, non-food-related sources of human exposure to enteric pathogens. PMID:26558381

  14. Identifying causal gateways and mediators in complex spatio-temporal systems

    PubMed Central

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F.; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-01-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific–Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events. PMID:26443010

  15. Kronecker PCA based spatio-temporal modeling of video for dismount classification

    NASA Astrophysics Data System (ADS)

    Greenewald, Kristjan H.; Hero, Alfred O.

    2014-06-01

    We consider the application of KronPCA spatio-temporal modeling techniques1, 2 to the extraction of spatiotemporal features for video dismount classification. KronPCA performs a low-rank type of dimensionality reduction that is adapted to spatio-temporal data and is characterized by the T frame multiframe mean ? and covariance ? of p spatial features. For further regularization and improved inverse estimation, we also use the diagonally corrected KronPCA shrinkage methods we presented in.1 We apply this very general method to the modeling of the multivariate temporal behavior of HOG features extracted from pedestrian bounding boxes in video, with gender classification in a challenging dataset chosen as a specific application. The learned covariances for each class are used to extract spatiotemporal features which are then classified, achieving competitive classification performance.

  16. Reconstruction of dynamic PET data using spatio-temporal wavelet l(1) regularization.

    PubMed

    Verhaeghe, Jeroen; Van De Ville, Dimitri; Khalidov, Ildar; Unser, Michael; D'Asseler, Yves; Lemahieu, Ignace

    2007-01-01

    Tomographic reconstruction from PET data is an ill-posed problem that requires regularization. Recently, Daubechies et al. [1] proposed an l (1) regularization of the wavelet coefficients that can be optimized using iterative thresholding schemes. In this paper, we extend this approach for the reconstruction of dynamic (spatio-temporal) PET data. Instead of using classical wavelets in the temporal dimension, we introduce exponential-spline wavelets that are specially tailored to model time activity curves (TACs) in PET. We show the usefulness of spatio-temporal regularization and the superior performance of E-spline wavelets over conventional Battle-Lemarié wavelets for a 1-D TAC fitting experiment and a tomographic reconstruction experiment. PMID:18003524

  17. Spatio-temporal pattern of viral meningitis in Michigan, 1993-2001

    NASA Astrophysics Data System (ADS)

    Greene, Sharon K.; Schmidt, Mark A.; Stobierski, Mary Grace; Wilson, Mark L.

    2005-05-01

    To characterize Michigan's high viral meningitis incidence rates, 8,803 cases from 1993-2001 were analyzed for standard epidemiological indices, geographic distribution, and spatio-temporal clusters. Blacks and infants were found to be high-risk groups. Annual seasonality and interannual variability in epidemic magnitude were apparent. Cases were concentrated in southern Michigan, and cumulative incidence was correlated with population density at the county level (r=0.45, p<0.001). Kulldorff's Scan test identified the occurrence of spatio-temporal clusters in Lower Michigan during July-October 1998 and 2001 (p=0.01). More extensive data on cases, laboratory isolates, sociodemographics, and environmental exposures should improve detection and enhance the effectiveness of a Space-Time Information System aimed at prevention.

  18. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  19. A model for optimizing file access patterns using spatio-temporal parallelism

    SciTech Connect

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk; Ahrens, James; Bauer, Andy; Chaudhary, Aashish; Miller, Ross G.; Shipman, Galen M.; Williams, Dean N.

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible file access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.

  20. Identifying causal gateways and mediators in complex spatio-temporal systems.

    PubMed

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-01-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events. PMID:26443010

  1. Identifying the dynamics of complex spatio-temporal systems by spatial recurrence properties

    PubMed Central

    Mocenni, Chiara; Facchini, Angelo; Vicino, Antonio

    2010-01-01

    Complex spatio-temporal systems may exhibit irregular behaviors when driven far from equilibrium. Reaction-diffusion systems often lead to the formation of patterns and spatio-temporal chaos. When a limited number of observations is available, the reconstruction and identification of complex dynamical regimes become challenging problems. A method based on spatial recurrence properties is proposed to deal with this problem: generalized recurrence plots and generalized recurrence quantification analysis are exploited to show that detection of structural changes in spatially distributed systems can be performed by setting up appropriate diagrams accounting for different spatial recurrences. The method has been tested on two prototypical systems forming complex patterns: the complex Ginzburg–Landau equation and the Schnakenberg system. This work allowed us to identify changes in the stability of spiral wave solutions in the former system and to analyze the Turing bifurcations in the latter. PMID:20404202

  2. A spatio-temporal absorbing state model for disease and syndromic surveillance.

    PubMed

    Heaton, Matthew J; Banks, David L; Zou, Jian; Karr, Alan F; Datta, Gauri; Lynch, James; Vera, Francisco

    2012-08-30

    Reliable surveillance models are an important tool in public health because they aid in mitigating disease outbreaks, identify where and when disease outbreaks occur, and predict future occurrences. Although many statistical models have been devised for surveillance purposes, none are able to simultaneously achieve the important practical goals of good sensitivity and specificity, proper use of covariate information, inclusion of spatio-temporal dynamics, and transparent support to decision-makers. In an effort to achieve these goals, this paper proposes a spatio-temporal conditional autoregressive hidden Markov model with an absorbing state. The model performs well in both a large simulation study and in an application to influenza/pneumonia fatality data. PMID:22388709

  3. Multi-antenna spectrum sensing by exploiting spatio-temporal correlation

    NASA Astrophysics Data System (ADS)

    Ali, Sadiq; Ramírez, David; Jansson, Magnus; Seco-Granados, Gonzalo; López-Salcedo, José A.

    2014-12-01

    In this paper, we propose a novel mechanism for spectrum sensing that leads us to exploit the spatio-temporal correlation present in the received signal at a multi-antenna receiver. For the proposed mechanism, we formulate the spectrum sensing scheme by adopting the generalized likelihood ratio test (GLRT). However, the GLRT degenerates in the case of limited sample support. To circumvent this problem, several extensions are proposed that bring robustness to the GLRT in the case of high dimensionality and small sample size. In order to achieve these sample-efficient detection schemes, we modify the GLRT-based detector by exploiting the covariance structure and factoring the large spatio-temporal covariance matrix into spatial and temporal covariance matrices. The performance of the proposed detectors is evaluated by means of numerical simulations, showing important advantages over existing detectors.

  4. Identifying causal gateways and mediators in complex spatio-temporal systems

    NASA Astrophysics Data System (ADS)

    Runge, Jakob; Petoukhov, Vladimir; Donges, Jonathan F.; Hlinka, Jaroslav; Jajcay, Nikola; Vejmelka, Martin; Hartman, David; Marwan, Norbert; Paluš, Milan; Kurths, Jürgen

    2015-10-01

    Identifying regions important for spreading and mediating perturbations is crucial to assess the susceptibilities of spatio-temporal complex systems such as the Earth's climate to volcanic eruptions, extreme events or geoengineering. Here a data-driven approach is introduced based on a dimension reduction, causal reconstruction, and novel network measures based on causal effect theory that go beyond standard complex network tools by distinguishing direct from indirect pathways. Applied to a data set of atmospheric dynamics, the method identifies several strongly uplifting regions acting as major gateways of perturbations spreading in the atmosphere. Additionally, the method provides a stricter statistical approach to pathways of atmospheric teleconnections, yielding insights into the Pacific-Indian Ocean interaction relevant for monsoonal dynamics. Also for neuroscience or power grids, the novel causal interaction perspective provides a complementary approach to simulations or experiments for understanding the functioning of complex spatio-temporal systems with potential applications in increasing their resilience to shocks or extreme events.

  5. DSTiPE Algorithm for Fuzzy Spatio-Temporal Risk Calculation in Wireless Environments

    SciTech Connect

    Kurt Derr; Milos Manic

    2008-09-01

    Time and location data play a very significant role in a variety of factory automation scenarios, such as automated vehicles and robots, their navigation, tracking, and monitoring, to services of optimization and security. In addition, pervasive wireless capabilities combined with time and location information are enabling new applications in areas such as transportation systems, health care, elder care, military, emergency response, critical infrastructure, and law enforcement. A person/object in proximity to certain areas for specific durations of time may pose a risk hazard either to themselves, others, or the environment. This paper presents a novel fuzzy based spatio-temporal risk calculation DSTiPE method that an object with wireless communications presents to the environment. The presented Matlab based application for fuzzy spatio-temporal risk cluster extraction is verified on a diagonal vehicle movement example.

  6. The use of spatio-temporal correlation to forecast critical transitions

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.

  7. Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros

    PubMed Central

    Arab, Ali

    2015-01-01

    Epidemiological data often include excess zeros. This is particularly the case for data on rare conditions, diseases that are not common in specific areas or specific time periods, and conditions and diseases that are hard to detect or on the rise. In this paper, we provide a review of methods for modeling data with excess zeros with focus on count data, namely hurdle and zero-inflated models, and discuss extensions of these models to data with spatial and spatio-temporal dependence structures. We consider a Bayesian hierarchical framework to implement spatial and spatio-temporal models for data with excess zeros. We further review current implementation methods and computational tools. Finally, we provide a case study on five-year counts of confirmed cases of Lyme disease in Illinois at the county level. PMID:26343696

  8. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  9. Spatio-temporal dynamics of a three interacting species mathematical model inspired in physics

    NASA Astrophysics Data System (ADS)

    Sánchez-Garduño, Faustino; Breña-Medina, Víctor F.

    2008-02-01

    In this paper we study both, analytically and numerically, the spatio-temporal dynamics of a three interacting species mathematical model. The populations take the form of pollinators, a plant and herbivores; the model consists of three nonlinear reaction-diffusion-advection equations. In view of considering the full model, as a previous step we firstly analyze a mutualistic interaction (pollinator-plant), later on a predator-prey (plant-herbivore) interaction model is studied and finally, we consider the full model. In all cases, the purely temporal dynamics is given; meanwhile for the spatio-temporal dynamics, we use numerical simulations, corresponding to those parameter values for which we obtain interesting temporal dynamics.

  10. Spatio-temporal modelling of disease incidence with missing covariate values.

    PubMed

    Holland, R C; Jones, G; Benschop, J

    2015-06-01

    The search for an association between disease incidence and possible risk factors using surveillance data needs to account for possible spatial and temporal correlations in underlying risk. This can be especially difficult if there are missing values for some important covariates. We present a case study to show how this problem can be overcome in a Bayesian analysis framework by adding to the usual spatio-temporal model a component for modelling the missing data. PMID:25338646

  11. Synchronization and control in time-delayed complex networks and spatio-temporal patterns

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Kurths, J.; Schöll, E.

    2016-02-01

    This special topics issue is a collection of contributions on the recent developments of control and synchronization in time delayed systems and space time chaos. The various articles report interesting results on time delayed complex networks; fractional order delayed models; dynamics of spatio-temporal patterns; stochastic models etc. Experimental analysis on synchronization, dynamics and control of chaos are also well investigated using Field Programmable Gate Array (FPGA), circuit realizations and chemical reactions.

  12. Spatio-temporal Transmission and Environmental Determinants of Schistosomiasis Japonica in Anhui Province, China

    PubMed Central

    Hu, Yi; Li, Rui; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Sun, Liqian; Zhang, Zhijie; Jiang, Qingwu

    2015-01-01

    Background Schistosomiasis japonica still remains of public health and economic significance in China, especially in the lake and marshland areas along the Yangtze River Basin, where the control of transmission has proven difficult. In the study, we investigated spatio-temporal variations of S. japonicum infection risk in Anhui Province and assessed the associations of the disease with key environmental factors with the aim of understanding the mechanism of the disease and seeking clues to effective and sustainable schistosomiasis control. Methodology/Principal Findings Infection data of schistosomiasis from annual conventional surveys were obtained at the village level in Anhui Province, China, from 2000 to 2010 and used in combination with environmental data. The spatio-temporal kriging model was used to assess how these environmental factors affected the spatio-temporal pattern of schistosomiasis risk. Our results suggested that seasonal variation of the normalized difference vegetation index (NDVI), seasonal variation of land surface temperature at daytime (LSTD), and distance to the Yangtze River were negatively significantly associated with risk of schistosomiasis. Predictive maps showed that schistosomiasis prevalence remained at a low level and schistosomiasis risk mainly evolved along the Yangtze River. Schistosomiasis risk also followed a focal spatial pattern, fluctuating temporally with a peak (the largest spatial extent) in 2005 and then contracting gradually but with a scattered distribution until 2010. Conclusion The fitted spatio-temporal kriging model can capture variations of schistosomiasis risk over space and time. Combined with techniques of geographic information system (GIS) and remote sensing (RS), this approach facilitates and enriches risk modeling of schistosomiasis, which in turn helps to identify prior areas for effective and sustainable control of schistosomiasis in Anhui Province and perhaps elsewhere in China. PMID:25659112

  13. Hydroxyl spatio-temporal statistics for turbulent partially premixed opposed-jet flames

    NASA Astrophysics Data System (ADS)

    Venkatesan, Krishna Kumar

    Turbulent flows display fluctuations spanning a wide spectrum of both length and time scales. The most energetic fluctuations are typically contained in large-scale eddies characterized by integral length and time scales. In turbulent opposed-flows, the predominance of young turbulence and the influence of the stagnation plane complicate the interpretation of spatial and temporal structures. Therefore, it is essential to understand both the temporal and spatial behavior of large-scale structures in such opposed flows. In this context, two-point, picosecond time-resolved laser-induced fluorescence (PITLIF) has been used to resolve both integral length and time scales, thus providing unique spatial statistics in addition to temporal statistics. The interpretation of spatial and temporal structures is further complicated by their dependence on both local turbulent Reynolds number and equivalence ratio, as affected by changes in internal structure and flame thickness. Hence, simultaneous PLIF/PIV measurements were employed to investigate spatial OH structures and flame-velocity interactions. Hydroxyl single-point time-series measurements have been obtained in opposed-jet nonpremixed flames to study the independent effects of jet velocity (U) on Reynolds number (Re) and strain rate (SR) using time-scale correlations. The combined effect of Re and SR on the integral time scale behaves approximately as U-1.35 in these opposed-jet nonpremixed flames. Two-point, time-series experiments with associated PLIF/PIV measurements were employed to investigate flamelet spatio-temporal scales, extinction and reignition mechanisms, and flame-velocity interactions in turbulent opposed jet, partially premixed and double flames. Filtered OH length scales corresponding to radial OH fluctuations, were obtained from the spatial autocorrelation function. The axial change in length scale is more pronounced for flames with lower bulk Re and greater partial premixing. A stochastic time-series simulation, using a combined mixture-fraction and progress-variable approach and based on measured OH time scales, has been performed to extract scalar time scales in opposed jet double flames. In contrast to the partially-premixed and nonpremixed flames, where the ratio of OH to underlying scalar time scales is ˜0.3, the time-scale ratio for the double flames is ˜0.5. As compared to nonpremixed flames, OH in double flames is distributed across a broader spatial and mixture-fraction space, thereby inducing relatively slower OH fluctuations.

  14. Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the spatio-temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasise biological control of pests. Wild populations of Trichogramma Westwood egg parasitoids are utilised for biological suppression of the potentially resistan...

  15. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  16. Integration of spatio-temporal contrast sensitivity with a multi-slice channelized Hotelling observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali N.; Espig, Kathryn S.; Marchessoux, Cedric; Krupinski, Elizabeth A.; Bakic, Predrag R.; Kimpe, Tom R. L.; Maidment, Andrew D. A.

    2013-03-01

    Barten's model of spatio-temporal contrast sensitivity function of human visual system is embedded in a multi-slice channelized Hotelling observer. This is done by 3D filtering of the stack of images with the spatio-temporal contrast sensitivity function and feeding the result (i.e., the perceived image stack) to the multi-slice channelized Hotelling observer. The proposed procedure of considering spatio-temporal contrast sensitivity function is generic in the sense that it can be used with observers other than multi-slice channelized Hotelling observer. Detection performance of the new observer in digital breast tomosynthesis is measured in a variety of browsing speeds, at two spatial sampling rates, using computer simulations. Our results show a peak in detection performance in mid browsing speeds. We compare our results to those of a human observer study reported earlier (I. Diaz et al. SPIE MI 2011). The effects of display luminance, contrast and spatial sampling rate, with and without considering foveal vision, are also studied. Reported simulations are conducted with real digital breast tomosynthesis image stacks, as well as stacks from an anthropomorphic software breast phantom (P. Bakic et al. Med Phys. 2011). Lesion cases are simulated by inserting single micro-calcifications or masses. Limitations of our methods and ways to improve them are discussed.

  17. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  18. Spatio-temporal characterization techniques of high-power femtosecond laser chains

    NASA Astrophysics Data System (ADS)

    Gallet, Valentin; Pariente, Gustave; Kahaly, Subhendu; Gobert, Olivier; Quéré, Fabien

    2014-03-01

    In this letter, we propose two techniques capable of spatio-temporally characterizing high-power femtosecond laser chains. We demonstrate a new implementation of SEA TADPOLE. To avoid the problems induced by the the significant spatial jittering of the focal spot on high-power laser chains, our setup is adapted to collimated beams. In addition, a fibered light source is also used to correct the phase fluctuations. This experimental setup allows identifying any spatiotemporal distortions such as the pulse front tilt for instance. In this paper, to the best of our knowledge, we present the very first spatio-temporal characterization done on a TW laser. However, a SEA TADPOLE measurement is not immediate since it requires scanning the beam over the two transverse dimensions which prevent us from studying the shot-to-shot laser fluctuations. This is why, we developed MUFFIN, a single-shot technique capable of spatio-temporally characterizing a laser pulse along its two transverse dimensions. First experimental results obtained with this technique are presented here.

  19. Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram

    NASA Astrophysics Data System (ADS)

    Jirsa, V. K.; Friedrich, R.; Haken, H.

    We reconstruct the entire experimentally observed spatio-temporal signal of a human magnetoencephalogram (MEG) observed in a sensori-motor-coordination experiment by Kelso et al. In this experiment, when an acoustic stimulus frequency is changed systematically, a spontaneous transition in coordination occurs at a critical frequency in both the motor behavior and brain signals. Here we present a stepwise approach for the reconstruction of the spatio-temporal signal: First, we identify the order parameters and recall a theoretical model by the present authors and Kelso which reproduces the temporal dynamics of the order parameters. Second, we use the variational method by Uhl et al. in order to determine the spatial modes of the order parameters. Third, we present a variational method for the reconstruction of the remaining spatio-temporal signal and determine the spatial modes and temporal dynamics of the enslaved variables and possible order parameter modifications. The obtained set of spatial modes proves to be a fixed spatial base system of the observed temporal dynamics in the brain.

  20. Effects on orientation perception of manipulating the spatio-temporal prior probability of stimuli.

    PubMed

    Guo, Kun; Nevado, Angel; Robertson, Robert G; Pulgarin, Maribel; Thiele, Alexander; Young, Malcolm P

    2004-01-01

    Spatial and temporal regularities commonly exist in natural visual scenes. The knowledge of the probability structure of these regularities is likely to be informative for an efficient visual system. Here we explored how manipulating the spatio-temporal prior probability of stimuli affects human orientation perception. Stimulus sequences comprised four collinear bars (predictors) which appeared successively towards the foveal region, followed by a target bar with the same or different orientation. Subjects' orientation perception of the foveal target was biased towards the orientation of the predictors when presented in a highly ordered and predictable sequence. The discrimination thresholds were significantly elevated in proportion to increasing prior probabilities of the predictors. Breaking this sequence, by randomising presentation order or presentation duration, decreased the thresholds. These psychophysical observations are consistent with a Bayesian model, suggesting that a predictable spatio-temporal stimulus structure and an increased probability of collinear trials are associated with the increasing prior expectation of collinear events. Our results suggest that statistical spatio-temporal stimulus regularities are effectively integrated by human visual cortex over a range of spatial and temporal positions, thereby systematically affecting perception. PMID:15246751

  1. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Huang, Bo; Lin, Chuan-Yao

    2015-02-01

    This paper explores the spatio-temporal patterns of particulate matter (PM) in Taiwan based on a series of methods. Using fuzzy c-means clustering first, the spatial heterogeneity (six clusters) in the PM data collected between 2005 and 2009 in Taiwan are identified and the industrial and urban areas of Taiwan (southwestern, west central, northwestern, and northern Taiwan) are found to have high PM concentrations. The PM10-PM2.5 relationship is then modeled with global ordinary least squares regression, geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR). The GTWR and GWR produce consistent results; however, GTWR provides more detailed information of spatio-temporal variations of the PM10-PM2.5 relationship. The results also show that GTWR provides a relatively high goodness of fit and sufficient space-time explanatory power. In particular, the PM2.5 or PM10 varies with time and space, depending on weather conditions and the spatial distribution of land use and emission patterns in local areas. Such information can be used to determine patterns of spatio-temporal heterogeneity in PM that will allow the control of pollutants and the reduction of public exposure.

  2. Controlling for localised spatio-temporal autocorrelation in long-term air pollution and health studies

    PubMed Central

    Mitchell, Richard

    2014-01-01

    Estimating the long-term health impact of air pollution using an ecological spatio-temporal study design is a challenging task, due to the presence of residual spatio-temporal autocorrelation in the health counts after adjusting for the covariate effects. This autocorrelation is commonly modelled by a set of random effects represented by a Gaussian Markov random field (GMRF) prior distribution, as part of a hierarchical Bayesian model. However, GMRF models typically assume the random effects are globally smooth in space and time, and thus are likely to be collinear to any spatially and temporally smooth covariates such as air pollution. Such collinearity leads to poor estimation performance of the estimated fixed effects, and motivated by this epidemiological problem, this paper proposes new GMRF methodology to allow for localised spatio-temporal smoothing. This means random effects that are either geographically or temporally adjacent are allowed to be autocorrelated or conditionally independent, which allows more flexible autocorrelation structures to be represented. This increased flexibility results in improved fixed effects estimation compared with global smoothing models, which is evidenced by our simulation study. The methodology is then applied to the motivating study investigating the long-term effects of air pollution on respiratory ill health in Greater Glasgow, Scotland between 2007 and 2011. PMID:24648100

  3. A SPATIO-TEMPORAL DOWNSCALER FOR OUTPUT FROM NUMERICAL MODELS

    EPA Science Inventory

    Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial cove...

  4. Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Fiener, P.; Koyama, C. N.; Bogena, H. R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; Schneider, K.

    2015-01-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors, such as topography, soil properties, vegetation type, management, and meteorological conditions. The role of these factors in controlling the spatial patterns and temporal dynamics is often not well known. The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a variety of land use types, on different spatial scales (plot to meso-scale catchment) and with different methods (point measurements, remote sensing, and modeling). We apply a uniform set of tools to determine method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil moisture and their temporal development were analyzed using nine different datasets from the Rur catchment in Western Germany. For all datasets we found negative linear relationships between the coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was larger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis of the soil moisture patterns we identified three groups of datasets with similar values for sill and range of the theoretical variogram: (i) modeled and measured datasets from the forest sub-catchment (patterns mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii) modeled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding scale breaks were found between different datasets. The factors causing these scale breaks are consistent with the findings of the geostatistical analysis. Furthermore, the joined analysis of the different datasets showed that small differences in soil moisture dynamics, especially at the upper and lower bounds of soil moisture (at maximum porosity and wilting point of the soils) can have a large influence on the soil moisture patterns and their autocorrelation structure. Depending on the prevalent type of land use and the time of year, vegetation causes a decrease or an increase of spatial variability in the soil moisture pattern.

  5. Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China.

    PubMed

    Ma, Yue; Zhang, Tao; Liu, Lei; Lv, Qiang; Yin, Fei

    2015-01-01

    Bacillary dysentery (BD) remains a big public health problem in China. Effective spatio-temporal monitoring of BD incidence is important for successful implementation of control and prevention measures. This study aimed to examine the spatio-temporal pattern of BD and analyze socio-economic factors that may affect BD incidence in Sichuan province, China. Firstly, we used space-time scan statistic to detect the high risk spatio-temporal clusters in each year. Then, bivariate spatial correlation and Bayesian spatio-temporal model were utilized to examine the associations between the socio-economic factors and BD incidence. Spatio-temporal clusters of BD were mainly located in the northern-southern belt of the midwest area of Sichuan province. The proportion of primary industry, the proportion of rural population and the rates of BD incidence show statistically significant positive correlation. The proportion of secondary industry, proportion of tertiary Industry, number of beds in hospitals per thousand persons, medical and technical personnel per thousand persons, per capital GDP and the rate of BD incidence show statistically significant negative correlation. The best fitting spatio-temporal model showed that medical and technical personnel per thousand persons and per capital GDP were significantly negative related to the risk of BD. PMID:26469274

  6. Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China

    PubMed Central

    Ma, Yue; Zhang, Tao; Liu, Lei; Lv, Qiang; Yin, Fei

    2015-01-01

    Bacillary dysentery (BD) remains a big public health problem in China. Effective spatio-temporal monitoring of BD incidence is important for successful implementation of control and prevention measures. This study aimed to examine the spatio-temporal pattern of BD and analyze socio-economic factors that may affect BD incidence in Sichuan province, China. Firstly, we used space-time scan statistic to detect the high risk spatio-temporal clusters in each year. Then, bivariate spatial correlation and Bayesian spatio-temporal model were utilized to examine the associations between the socio-economic factors and BD incidence. Spatio-temporal clusters of BD were mainly located in the northern-southern belt of the midwest area of Sichuan province. The proportion of primary industry, the proportion of rural population and the rates of BD incidence show statistically significant positive correlation. The proportion of secondary industry, proportion of tertiary Industry, number of beds in hospitals per thousand persons, medical and technical personnel per thousand persons, per capital GDP and the rate of BD incidence show statistically significant negative correlation. The best fitting spatio-temporal model showed that medical and technical personnel per thousand persons and per capital GDP were significantly negative related to the risk of BD. PMID:26469274

  7. Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns.

    PubMed

    Latorre, Roberto; Aguirre, Carlos; Rabinovich, Mikhail I; Varona, Pablo

    2013-01-01

    The inferior olive (IO) is a neural network belonging to the olivo-cerebellar system whose neurons are coupled with electrical synapses and display subthreshold oscillations and spiking activity. The IO is frequently proposed as the generator of timing signals to the cerebellum. Electrophysiological and imaging recordings show that the IO network generates complex spatio-temporal patterns. The generation and modulation of coherent spiking activity in the IO is one key issue in cerebellar research. In this work, we build a large scale IO network model of electrically coupled conductance-based neurons to study the emerging spatio-temporal patterns of its transient neuronal activity. Our modeling reproduces and helps to understand important phenomena observed in IO in vitro and in vivo experiments, and draws new predictions regarding the computational properties of this network and the associated cerebellar circuits. The main factors studied governing the collective dynamics of the IO network were: the degree of electrical coupling, the extent of the electrotonic connections, the presence of stimuli or regions with different excitability levels and the modulatory effect of an inhibitory loop (IL). The spatio-temporal patterns were analyzed using a discrete wavelet transform to provide a quantitative characterization. Our results show that the electrotonic coupling produces quasi-synchronized subthreshold oscillations over a wide dynamical range. The synchronized oscillatory activity plays the role of a timer for a coordinated representation of spiking rhythms with different frequencies. The encoding and coexistence of several coordinated rhythms is related to the different clusterization and coherence of transient spatio-temporal patterns in the network, where the spiking activity is commensurate with the quasi-synchronized subthreshold oscillations. In the presence of stimuli, different rhythms are encoded in the spiking activity of the IO neurons that nevertheless remains constrained to a commensurate value of the subthreshold frequency. The stimuli induced spatio-temporal patterns can reverberate for long periods, which contributes to the computational properties of the IO. We also show that the presence of regions with different excitability levels creates sinks and sources of coordinated activity which shape the propagation of spike wave fronts. These results can be generalized beyond IO studies, as the control of wave pattern propagation is a highly relevant problem in the context of normal and pathological states in neural systems (e.g., related to tremor, migraine, epilepsy) where the study of the modulation of activity sinks and sources can have a potential large impact. PMID:24046731

  8. An interactive spatio-temporal knowledge-discovery environment for solid Earth Science education

    NASA Astrophysics Data System (ADS)

    Landgrebe, T. C.; Müller, R. D.; EathByte Group

    2011-12-01

    Geographic information systems form a core part of Earth Science education and teaching, allowing the ever-growing repositories of digital geo-data to be integrated and visualised in a unified fashion. These systems cope with the wide variety of spatial data types, each with their own properties and metadata, allowing for a better understanding of how Earth processes operate. A unique requirement for the Earth Sciences is to take into account plate motion and crustal deformation processes acting through time, thus altering the various spatial relationships. The open-source GPlates software (www.gplates.org) infrastructure has become a standard tool for this type of analysis, providing the ability to reconstruct various datasets through time interactively by attaching arbitrary data to tectonic plates. Combining vast datasets in this manner is increasing the analysis complexity, with traditional visualisation-based approaches becoming ineffective in extracting necessary information and discovering new insights. In addressing this, GPlates has been extended with two key technologies, manifesting itself as a powerful interactive knowledge-discovery platform. The first technology is a "data coregistration" tool, in which desired relationships between various datasets are recursively defined, thus providing the key link between a qualitative visualisation environment and a quantitative multivariate statistical analysis framework. The second technology is a data-mining environment (Orange, http://orange.biolab.si), better suited to coping with complexities due to large datasets, high dimensionality, spatial and temporal dynamics, different data types etc. The data-mining tool has a diverse library of components allowing for interactive filtering, combining, transforming and pattern analysis of incoming data. Attached to the data-mining tool is a visual-programming environment in which underlying software complexities are abstracted from the user, allowing for the rapid prototyping of analysis work-flows without requiring programming expertise. A plug-in framework allows for the construction of new spatio-temporal data processing components, which is seeing the functionality and flexibility of this environment increasing rapidly, aided by an open-source model. The resultant ensemble of technologies lends itself to becoming a frontier teaching and research tool, providing the necessary abstraction of complexity required to better understand how the various complex Earth processes acted through time resulting in the familiar spatial configuration we observe today.

  9. A spatio-temporal screening tool for outlier detection in long term / large scale air quality observation time series and monitoring networks

    NASA Astrophysics Data System (ADS)

    Kracht, Oliver; Reuter, Hannes I.; Gerboles, Michel

    2013-04-01

    We present a consolidated screening tool for the detection of outliers in air quality monitoring data, which considers both attribute values and spatio-temporal relationships. Furthermore, an application example of warnings on abnormal values in time series of PM10 datasets in AirBase is presented. Spatial or temporal outliers in air quality datasets represent stations or individual measurements which differ significantly from other recordings within their spatio-temporal neighbourhood. Such abnormal values can be identified as being extreme compared to their neighbours, even though they do not necessarily require to differ significantly from the statistical distribution of the entire population. The identification of such outliers can be of interest as the basis of data quality control systems when several contributors report their measurements to the collection of larger datasets. Beyond this, it can also provide a simple solution to investigate the accuracy of station classifications. Seen from another viewpoint, it can be used as a tool to detect irregular air pollution emission events (e.g. the influence of fires, wind erosion events, or other accidental situations). The presented procedure for outlier detection was designed based on already existing literature. Specifically, we adapted the "Smooth Spatial Attribute Method" that was first developed for the identification of outlier values in networks of traffic sensors [1]. Since a free and extensible simulation platform was considered important, all codes were prototyped in the R environment which is available under the GNU General Public License [2]. Our algorithms are based on the definition of a neighbourhood for each air quality measurement, corresponding to a spatio-temporal domain limited by time (e.g., +/- 2 days) and distance (e.g., +/- 1 spherical degrees) around the location of ambient air monitoring stations. The objective of the method is that within such a given spatio-temporal domain, in which the attribute values of neighbours have a relationship due to the emission, transport and reaction of air pollutants, abnormal values can be detected by extreme values of their attributes compared to the attribute values of their neighbours. This comparison basically requires a spatio-temporal smoothing, i.e. a specific rule by which data points are averaged within a neighbourhood. The calculation of such reference basis has the effect of a low pass filter, meaning that high frequencies of the signal are removed from the data while preserving low frequencies. In this context, the choice of an appropriate kernel smoother function (e.g., nearest neighbour smoother, weighted kernel average smoother, etc.) is of particular importance. Our presentation will emphasize the effects bound to the selection of the corresponding weighting functions, like inverse squared normalized Euclidean distance or inverse squared Mahalanobis distance etc., and discuss the appropriateness and shortcomings of the different approaches. Corresponding parameter selections related to the extent of the spatio-temporal domain and the final test statistics for outlier thresholding are evaluated by sensitivity analysis. [1] R Development Core Team (2012): R: A language and environment for statistical computing. http://www.R-project.org/ [2] Shekhar S., Lu C. T. and Zhang P. (2003): A Unified Approach to Spatial Outliers Detection. GeoInformatica, 7(2).

  10. Spatio-temporal stability of 1D Kerr cavity solitons

    NASA Astrophysics Data System (ADS)

    Gelens, L.; Parra-Rivas, P.; Leo, F.; Gomila, D.; Matias, Manuel A.; Coen, S.

    2014-05-01

    The Lugiato-Lefever equation (LLE) has been extensively studied since its derivation in 1987, when this meanfield model was introduced to describe nonlinear optical cavities. The LLE was originally derived to describe a ring cavity or a Fabry-Perot resonator with a transverse spatial extension and partially filled with a nonlinear medium but it has also been shown to be applicable to other types of cavities, such as fiber resonators and microresonators. Depending on the parameters used, the LLE can present a monostable or bistable input-output response curve. A large number of theoretical studies have been done in the monostable regime, but the bistable regime has remained widely unexplored. One of the reasons for this was that previous experimental setups were not able to works in such regimes of the parameter space. Nowadays the possibility of reaching such parameter regimes experimentally has renewed the interest in the LLE. In this contribution, we present an in-depth theoretical study of the different dynamical regimes that can appear in parameter space, focusing on the dynamics of localized solutions, also known as cavity solitons (CSs). We show that time-periodic oscillations of a 1D CS appear naturally in a broad region of parameter space. More than this oscillatory regime, which has been recently demonstrated experimentally,1 we theoretically report on several kinds of chaotic dynamics. We show that the existence of CSs and their dynamics is related with the spatial dynamics of the system and with the presence of a codimension-2 point known as a Fold-Hopf bifurcation point. These dynamical regimes can become accessible by using devices such as microresonators, for instance widely used for creating optical frequency combs.

  11. Spatio-temporal vegetation effects on slope stability

    NASA Astrophysics Data System (ADS)

    Dani, Andrea; Alliu, Ergys; Togni, Marco; Preti, Federico

    2010-05-01

    The effects of tree vegetation on slope stability is well known and it is still object of research and analysis from both a modelling and quantitative point of view. However, tree vegetation has been constantly subjected to silvicultural activity either in strictly productive areas or in other more conservative areas which were meant to contrast the hydrogeological risk. From this point of view, it appears immediately important to understand the evolution resistance dynamics of root systems, which gives the possibility to correctly evaluate either the positive or negative effects of programmed cuts on woods. The aim of this work is then to try to determine which conditions are actually present and what the evolution of the mechanical characteristics of root systems (and consequently of slope stability) can be. In this purpose, we started an experimental design, by sampling and carrying out field and laboratory measurements on beech cuttings root systems. Two kinds of samples were taken into account: living beech cuttings from protected area beechwoods in order to determine the current characteristics of them and dead beech cuttings (cut in the previous years and at present in degradation) in order to have an indication of the evolution of the root mechanical characteristics. Therefore tensile strength of single roots sampled from beech stumps of plants cut in the years 2008, 2006, 2004 and 2002 at a height of about 1450 metres above sea level on SW facing slopes in High Garfagnana (a mountain in the North of Tuscany) have been also analysed. Lliving beech roots from areas at a height of 800, 1450 and 1600 metres above sea level (minimum, intermediate and maximum limit of distribution areas of local beechwoods) in a sufficient quantity as to determine the stress/strain curve have been sampled and tested, to verify if the height difference of growing areas is a factor able to influence the mechanical characteristics of living plants.

  12. Spatio-temporal Interplay of RWTs and Cyclones in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Schuster, M.; Ulbrich, U.

    2014-12-01

    We examine the relation of Rossby-Wave-Trains (RWTs) and cyclones in the North Atlantic. Extra-tropical cyclones are known to have high socioeconomic impacts (high windspeed and large amounts of precipitation). Long lived RWTs have been shown to be precursors for extreme events. Therefore they may impact the predictability of mid-latitude (extreme) weather systems. Current results point at the following relationship: The weakening or dissolving of a long lived RWT that was prevalent over the U.S. and the eastern Pacific for up to 5 days facilitates the genesis of a cyclone downstream - in the whole North Atlantic. In turn, the temporal and spacial coincidence of a newly developing or rather reinforcing RWT off the western coast of Europe and these pre-existing cyclone leads to a strengthening of the cyclone and triggers an explosive development just off the European coast. We apply automated schemes for the identification and tracking of RWTs and cyclones, respectively and relate their characteristics, with a focus on the impact for European climate. By evaluating reanalysis and model data of historical/uninitialized hindcast simulations, we aim to identify spatio-temporal connections between these objectively identified RWTs and cyclones. We then evaluate the interplay of RWT and cyclones in initialized hindcasts and a two way nested (TWN) model simulation. All named simulations are part of the MiKlip project (decadal climate prediction; funded by the German Ministry of Education and Research - BMBF). We also evaluate the decadal variability of cyclones and RWTs in the MiKlip simulations. For our TWN model setup, the regional climate model COSMO-CLM (CCLM) is nested into the atmosphere- ocean general circulation model ECHAM6/MPI-OM (MPI-ESM) in order to investigate the feedback of the meso-scales on the large scales and vice versa. Focus is laid on the development and propagation of synoptic systems (e.g. Rossby Wave Trains and cyclones) that are affecting Europe. The Two-Way-Nested region, thus the CCLM domain, covers Central America and the North Atlantic (CANA) and therefore includes the Gulf stream region, whose prevalent strong meridional SST gradients favor the development of perturbations which then propagate downstream, commonly develop into extra-tropical cyclones and strike Europe.

  13. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.

  14. A spatio-temporal model of wrinkling in photopolymerised networks

    NASA Astrophysics Data System (ADS)

    Hennessy, Matthew; Vitale, Alessandra; Stavrinou, Paul; Matar, Omar; Cabral, Joao

    2015-03-01

    Photopolymerisation is a common solidification process whereby crosslinked polymer networks are created by illuminating a monomer-rich bath with collimated light. In addition, photopolymerisation is extensively employed industrially and shows exceptional promise for advanced three-dimensional patterning of functional surfaces. Under conditions of strong optical attenuation and limited mass and thermal diffusion, polymerisation occurs in a localised region which propagates from the illuminated surface into the bulk as a travelling wave with a planar wavefront. Under specific conditions that we set out to map, this planar wavefront may become unstable and the surface of the resulting gel can acquire a wrinkled morphology. We believe this instability is mechanical in nature and arises from compressive stresses that are generated during frontal photopolymerization. In this talk, we will present a novel mathematical model that captures both the photopolymerisation with wrinkling processes. We show that by coupling photopolymerisation with wrinkling in a controlled manner, a number of interesting and industrially relevant patterns can be achieved.

  15. Spatio-temporal colour correction of strongly degraded movies

    NASA Astrophysics Data System (ADS)

    Islam, A. B. M. Tariqul; Farup, Ivar

    2011-01-01

    The archives of motion pictures represent an important part of precious cultural heritage. Unfortunately, these cinematography collections are vulnerable to different distortions such as colour fading which is beyond the capability of photochemical restoration process. Spatial colour algorithms-Retinex and ACE provide helpful tool in restoring strongly degraded colour films but, there are some challenges associated with these algorithms. We present an automatic colour correction technique for digital colour restoration of strongly degraded movie material. The method is based upon the existing STRESS algorithm. In order to cope with the problem of highly correlated colour channels, we implemented a preprocessing step in which saturation enhancement is performed in a PCA space. Spatial colour algorithms tend to emphasize all details in the images, including dust and scratches. Surprisingly, we found that the presence of these defects does not affect the behaviour of the colour correction algorithm. Although the STRESS algorithm is already in itself more efficient than traditional spatial colour algorithms, it is still computationally expensive. To speed it up further, we went beyond the spatial domain of the frames and extended the algorithm to the temporal domain. This way, we were able to achieve an 80 percent reduction of the computational time compared to processing every single frame individually. We performed two user experiments and found that the visual quality of the resulting frames was significantly better than with existing methods. Thus, our method outperforms the existing ones in terms of both visual quality and computational efficiency.

  16. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.

  17. Reduced-Rank Spatio-Temporal Modeling of Air Pollution Concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution1

    PubMed Central

    Olives, Casey; Sheppard, Lianne; Lindström, Johan; Sampson, Paul D.; Kaufman, Joel D.; Szpiro, Adam A.

    2016-01-01

    There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals. This model utilizes monitoring data from existing regulatory networks and supplementary MESA Air monitoring data to predict concentrations for individual cohort members. In general, spatio-temporal models are limited in their efficacy for large data sets due to computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal model. To do so, we apply low-rank kriging to account for spatial variation in the mean process and discuss the limitations of this approach. As an alternative, we represent spatial variation using thin plate regression splines. We compare the performance of the outlined models using EPA and MESA Air monitoring data for predicting concentrations of oxides of nitrogen (NOx)—a pollutant of primary interest in MESA Air—in the Los Angeles metropolitan area via cross-validated R2. Our findings suggest that use of reduced-rank models can improve computational efficiency in certain cases. Low-rank kriging and thin plate regression splines were competitive across the formulations considered, although TPRS appeared to be more robust in some settings.

  18. Spatio-temporal Visualization for Environmental Decision Support

    SciTech Connect

    Bhaduri, Budhendra L.; Shankar, Mallikarjun; Sorokine, Alexandre; Ganguly, Auroop R.

    2009-01-01

    Traditional visualization of earth surface features has been addressed through visual exploration, analysis, synthesis, and presentation of observable geospatial data. However, characterizing the changes in their observable and unobservable properties of geospatial features is critical for planning and policy formulation. Recent approaches are addressing modeling and visualization of the temporal dynamics that describe observed and/or predicted physical and socioeconomic processes using vast volumes of earth observation (imagery and other geophysical) data from remote sensor networks. This paper provides an overview of selected geospatial modeling and simulation, exploratory analysis of earth observation data, and high performance visualization research at Oak Ridge National Laboratory for developing novel data driven approaches for geospatial knowledge discovery and visualization relevant to environmental decision support.

  19. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.

    PubMed

    Ohshima, Daisuke; Arimoto-Matsuzaki, Kyoko; Tomida, Taichiro; Takekawa, Mutsuhiro; Ichikawa, Kazuhisa

    2015-06-01

    Stress granules (SGs) are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER) stress, chemicals (e.g. arsenite), and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly. PMID:26115353

  20. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly

    PubMed Central

    Ohshima, Daisuke; Arimoto-Matsuzaki, Kyoko; Tomida, Taichiro; Takekawa, Mutsuhiro; Ichikawa, Kazuhisa

    2015-01-01

    Stress granules (SGs) are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER) stress, chemicals (e.g. arsenite), and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly. PMID:26115353

  1. Spatio-temporal dynamics of pneumonia in bighorn sheep

    USGS Publications Warehouse

    Cassirer, E. Frances; Plowright, Raina K.; Manlove, Kezia R.; Cross, Paul C.; Dobson, Andrew P.; Potter, Kathleen A.; Hudson, Peter J.

    2013-01-01

    Bighorn sheep mortality related to pneumonia is a primary factor limiting population recovery across western North America, but management has been constrained by an incomplete understanding of the disease. We analysed patterns of pneumonia-caused mortality over 14 years in 16 interconnected bighorn sheep populations to gain insights into underlying disease processes. 2. We observed four age-structured classes of annual pneumonia mortality patterns: all-age, lamb-only, secondary all-age and adult-only. Although there was considerable variability within classes, overall they differed in persistence within and impact on populations. Years with pneumonia-induced mortality occurring simultaneously across age classes (i.e. all-age) appeared to be a consequence of pathogen invasion into a naïve population and resulted in immediate population declines. Subsequently, low recruitment due to frequent high mortality outbreaks in lambs, probably due to association with chronically infected ewes, posed a significant obstacle to population recovery. Secondary all-age events occurred in previously exposed populations when outbreaks in lambs were followed by lower rates of pneumonia-induced mortality in adults. Infrequent pneumonia events restricted to adults were usually of short duration with low mortality. 3. Acute pneumonia-induced mortality in adults was concentrated in fall and early winter around the breeding season when rams are more mobile and the sexes commingle. In contrast, mortality restricted to lambs peaked in summer when ewes and lambs were concentrated in nursery groups. 4. We detected weak synchrony in adult pneumonia between adjacent populations, but found no evidence for landscape-scale extrinsic variables as drivers of disease. 5. We demonstrate that there was a >60% probability of a disease event each year following pneumonia invasion into bighorn sheep populations. Healthy years also occurred periodically, and understanding the factors driving these apparent fade-out events may be the key to managing this disease. Our data and modelling indicate that pneumonia can have greater impacts on bighorn sheep populations than previously reported, and we present hypotheses about processes involved for testing in future investigations and management.

  2. Spatio-temporal evolution of the H ? L back transition

    SciTech Connect

    Miki, K.; Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Chiba 277-8587 ; Diamond, P. H.; Center for Momentum Transport and Flow Organization, University of California, San Diego, California 92093 ; Schmitz, L.; McDonald, D. C.; Estrada, T.; Gürcan, Ö. D.; Tynan, G. R.

    2013-06-15

    Since ITER will operate close to threshold and with limited control, the H ? L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model [Miki et al., Phys. Plasmas 19, 092306 (2012)], we investigate ELM-free H ? L back transition dynamics in order to isolate transport physics effects. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-downs reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in the profile gradient scale length is characterized by the Nusselt number, where Nu=?{sub i,turb}/?{sub i,neo}. Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number, where Pr{sub ped}=D{sub ped}/?{sub i,neo}. We expect the H-mode to be somewhat more resilient in density than in temperature.

  3. Measurement of spatio-temporal transport in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2010-03-01

    The live cell is a highly dynamical system with complicated biophysical and biochemical processes taking place at diverse spatiotemporal scales. Though it is well known that microtubules and actin filaments play important roles in intracellular transport, their dynamic behavior is not entirely understood. We propose a unified approach to studying transport in live cells. We used Spatial Light Interference Microscopy, a quantitative phase imaging method developed in our laboratory, to extract cell mass distributions over broad spatiotemporal scales. The dispersion relations for this transport dynamics, i.e. frequency bandwidth vs. spatial frequencies, reveal deterministic mass transport at large spatial scales (w˜q) and diffusive transport at small spatial scales (w˜q̂2). At submicron scales, we observed a w˜q̂3 behavior, which indicates whip-like movements of protein filaments. Further control experiments where both the microtubule and actin polymerization were blocked suggests that essentially actin governs the long spatial scales behavior and microtubules the short scales. This label-free method enables us to access different components of cell dynamics and quantify diffusion coefficients and speed of motor proteins.

  4. Spatio-temporal dynamics in the flood exposure due to land use changes

    NASA Astrophysics Data System (ADS)

    Cammerer, H.; Thieken, A.

    2012-04-01

    Flood risk is expected to intensify in the future in many regions of the world. Consequently, the resulting flood damage is very likely to increase further on. Comprehensive flood risk analyses which are not only reliable for the contemporary state require therefore the consideration of the main drivers that influence flood risk. Human-induced changes in land use as well as climate change impacts on hydrological processes turned out to play a key role in future-orientated flood risk assessments. Even if there is strong evidence that global climate change will amplify flood risk especially in mountainous areas like the European Alps the accumulation of people and their assets in flood plains are seen as main causes of increasing flood risk. Therefore the analysis of spatio-temporal dynamics in the flood exposure due to land use changes is a crucial part for long-term and more robust flood risk analyses. Within the frame of a study in the region of Reutte in Tyrol (Austria) flood risk time series for the next decades are developed by estimating the hazard potential as well as the flood impact, i.e. the flood losses. For the latter, future flood exposed residential and industrial areas are assessed by applying a spatially explicit land use change model and various inundation scenarios. The land use simulations for the alpine study area were calculated by means of the CLUE-S model, respectively the newer Version Dyna-CLUE. This model simulates the spatial pattern of land-use in reaction to pre-defined changes of the future land use demand, suitable locations which are identified by means of logistic regression and user-specified decision rules as well as spatial policies (e.g. area zoning plans and danger zoning plans). For now, inundation areas were derived from the past flood event in August 2005 and the HORA project where flood extents for different recurrence intervals were simulated. The intersection of these flood plains with various land use scenarios allows finally an estimation of changes in the future flood exposure. This information is not only essential for a further application in deriving potential flood losses but also an important basis for an appropriate, foresightful and sustainable spatial planning.

  5. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.

  6. Sensitivity Analysis of a Spatio-Temporal Avalanche Forecasting Model Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Matasci, G.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    The recent progress in environmental monitoring technologies allows capturing extensive amount of data that can be used to assist in avalanche forecasting. While it is not straightforward to directly obtain the stability factors with the available technologies, the snow-pack profiles and especially meteorological parameters are becoming more and more available at finer spatial and temporal scales. Being very useful for improving physical modelling, these data are also of particular interest regarding their use involving the contemporary data-driven techniques of machine learning. Such, the use of support vector machine classifier opens ways to discriminate the ``safe'' and ``dangerous'' conditions in the feature space of factors related to avalanche activity based on historical observations. The input space of factors is constructed from the number of direct and indirect snowpack and weather observations pre-processed with heuristic and physical models into a high-dimensional spatially varying vector of input parameters. The particular system presented in this work is implemented for the avalanche-prone site of Ben Nevis, Lochaber region in Scotland. A data-driven model for spatio-temporal avalanche danger forecasting provides an avalanche danger map for this local (5x5 km) region at the resolution of 10m based on weather and avalanche observations made by forecasters on a daily basis at the site. We present the further work aimed at overcoming the ``black-box'' type modelling, a disadvantage the machine learning methods are often criticized for. It explores what the data-driven method of support vector machine has to offer to improve the interpretability of the forecast, uncovers the properties of the developed system with respect to highlighting which are the important features that led to the particular prediction (both in time and space), and presents the analysis of sensitivity of the prediction with respect to the varying input parameters. The purpose of the sensitivity analysis is to shed light on the particular abilities of the model in assessing the likelihood of avalanche releases under evolving meteorological/snowpack conditions. Both spatial resolution (the abilities to produce reliable forecasts for individual avalanche paths) and temporal behaviour of the model are explored in details. Based on the sensitivity analysis, the uncertainty estimation for the provided forecasts is discussed. Particularly, the ensembles of prediction models are run and analysed in order to estimate the variability of the provided forecast and assess the uncertainty coming from the variety of sources: imprecise input data, uncertainty in weather forecast, sub-optimal parameters of the prediction model and variability in the choice of the training dataset.

  7. Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome

    PubMed Central

    Ruzich, Emily; Witzel, Thomas; Maeda, Yumi; Malatesta, Cristina; Morse, Leslie R.; Audette, Joseph; Hämäläinen, Matti; Kettner, Norman; Napadow, Vitaly

    2012-01-01

    Neuroimaging data demonstrate that carpal tunnel syndrome, a peripheral neuropathy, is accompanied by maladaptive central neuroplasticity. To further investigate this phenomenon, we collected magnetoencephalography data from 12 patients with carpal tunnel syndrome and 12 healthy control subjects undergoing somatosensory stimulation of the median nerve-innervated Digits 2 and 3, as well as Digit 5, which is innervated by the ulnar nerve. Nerve conduction velocity and psychophysical data were acquired to determine whether standard clinical measures correlated with brain response. In subjects with carpal tunnel syndrome, but not healthy controls, sensory nerve conduction velocity for Digits 2 and 3 was slower than Digit 5. However, somatosensory M20 latencies for Digits 2 and 3 were significantly longer than those of Digit 5. The extent of the M20 delay for median nerve-innervated Digit 2 was positively correlated with decreasing nerve conduction velocity and increasing pain severity. Thus, slower peripheral nerve conduction in carpal tunnel syndrome corresponds to greater delays in the first somatosensory cortical response. Furthermore, spectral analysis demonstrated weaker post-stimulus beta event-related desynchronization and earlier and shorter event-related synchronization in subjects with carpal tunnel syndrome. The extent of the decreased event-related desynchronization for median nerve-innervated digits was positively correlated with paraesthesia severity. We propose that ongoing paraesthesias in median nerve-innervated digits render their corresponding sensorimotor cortical areas ‘busy’, thus reducing their capacity to process external stimulation. Finally, subjects with carpal tunnel syndrome demonstrated a smaller cortical source separation for Digits 2 and 3 compared with healthy controls. This supports our hypothesis that ongoing paraesthesias promote blurring of median nerve-innervated digit representations through Hebbian plasticity mechanisms. In summary, this study reveals significant correlation between the clinical severity of carpal tunnel syndrome and the latency of the early M20, as well as the strength of long latency beta oscillations. These temporal magnetoencephalography measures are novel markers of neuroplasticity in carpal tunnel syndrome and could be used to study central changes that may occur following clinical intervention. PMID:23043143

  8. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle

    NASA Astrophysics Data System (ADS)

    Fossette, Sabrina; Hobson, Victoria J.; Girard, Charlotte; Calmettes, Beatriz; Gaspar, Philippe; Georges, Jean-Yves; Hays, Graeme C.

    2010-05-01

    Understanding food web functioning through the study of natural bio-indicators may constitute a valuable and original approach. In the context of jellyfish proliferation in many overexploited marine ecosystems studying the spatio-temporal foraging patterns of the giant "jellyvore" leatherback turtle turns out to be particularly relevant. Here we analyzed long-term tracking data to assess spatio-temporal foraging patterns in 21 leatherback turtles during their pluri-annual migration in the Northern Atlantic. Through an analytical approach based on the animal's own motion (independent of currents) and diving behavior distinct zones of high and low foraging success were identified. High foraging success occurred in a sub-equatorial zone spanning the width of the Atlantic and at high (>30°N) latitudes. Between these zones in the centre of North Atlantic gyre there was low foraging success. This "ocean desert" area was traversed at high speed by leatherbacks on their way to more productive areas at higher latitudes. Animals traveled slowly in high foraging success areas and dived shallower (17.2 ± 8.0 km day - 1 and 53.6 ± 33.1 m mean ± SD respectively) than in low foraging success areas (51.0 ± 13.1 km day - 1 and 81.8 ± 56.2 m mean ± SD respectively). These spatio-temporal foraging patterns seem to relatively closely match the main features of the integrated meso-zooplankton distribution in the North Atlantic. Our method of defining high foraging success areas is intuitive and relatively easy to implement but also takes into account the impact of oceanic currents on animal's behavior.

  9. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets.

    PubMed

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-04-13

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. PMID:26953173

  10. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (?2?=?7587, df?=?7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  11. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level.

    PubMed

    Ling, Cheong Y; Gruebner, Oliver; Krämer, Alexander; Lakes, Tobia

    2014-11-01

    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy. PMID:25545931

  12. A Spatio-Temporal Algorithmic Procedure for Environmental Policymaking in the Municipality of Arkalochori in the Greek Island of Crete

    NASA Astrophysics Data System (ADS)

    Batzias, F. A.; Sidiras, D. K.; Giannopoulos, Ch.; Spetsidis, I.

    2009-08-01

    This work deals with a methodological framework designed/developed under the form of a spatio-temporal algorithmic procedure for environmental policymaking at local level. The procedure includes 25 activity stages and 9 decision nodes, putting emphasis on (i) mapping on GIS layers water supply/demand and modeling of aquatic pollution coming from point and non-point sources, (ii) environmental monitoring by periodically measuring the main pollutants in situ and in the laboratory, (iii) design of environmental projects, decomposition of them into sub-projects and combination of the latter to form attainable alternatives, (iv) multicriteria ranking of alternatives, according to a modified Delphi method, by using as criteria the expected environmental benefit, the attitude of inhabitants, the priority within the programme of regional development, the capital required for the investment and the operating cost, and (v) knowledge Base (KB) operation/enrichment, functioning in combination with a data mining mechanism to extract knowledge/information/data from external Bases. An implementation is presented referring to the Municipality of Arkalochori in the Greek island of Crete.

  13. Associating approximate paths and temporal sequences of noisy detections: Application to the recovery of spatio-temporal cancer cell trajectories.

    PubMed

    Dorfer, Matthias; Kazmar, Tomáš; Šmíd, Mat?j; Sing, Sanchit; Kneißl, Julia; Keller, Simone; Debeir, Olivier; Luber, Birgit; Mattes, Julian

    2016-01-01

    In this paper we address the problem of recovering spatio-temporal trajectories of cancer cells in phase contrast video-microscopy where the user provides the paths on which the cells are moving. The paths are purely spatial, without temporal information. To recover the temporal information associated to a given path we propose an approach based on automatic cell detection and on a graph-based shortest path search. The nodes in the graph consist of the projections of the cell detections onto the geometrical cell path. The edges relate nodes which correspond to different frames of the sequence and potentially to the same cell and trajectory. In this directed graph we search for the shortest path and use it to define a temporal parametrization of the corresponding geometrical cell path. An evaluation based on 286 paths of 7 phase contrast microscopy videos shows that our algorithm allows to recover 92% of trajectory points with respect to the associated ground truth. We compare our method with a state-of-the-art algorithm for semi-automated cell tracking in phase contrast microscopy which requires interactively placed starting points for the cells to track. The comparison shows that supporting geometrical paths in combination with our algorithm allow us to obtain more reliable cell trajectories. PMID:25987193

  14. Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems

    SciTech Connect

    Yanchuk, S.; Wolfrum, M.; Perlikowski, P.; Stefański, A.; Kapitaniak, T.

    2015-03-15

    We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.

  15. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  16. Population dynamics of wetland fishes: Spatio-temporal patterns synchronized by hydrological disturbance?

    USGS Publications Warehouse

    Ruetz, C. R., III; Trexler, J.C.; Jordan, F.; Loftus, W.F.; Perry, S.A.

    2005-01-01

    1. Drought is a natural disturbance that can cause widespread mortality of aquatic organisms in wetlands. We hypothesized that seasonal drying of marsh surfaces (i.e. hydrological disturbance) shapes spatio-temporal patterns of fish populations. 2. We tested whether population dynamics of fishes were synchronized by hydrological disturbance (Moran effect) or distance separating study sites (dispersal). Spatio-temporal patterns were examined in local populations of five abundant species at 17 sites (sampled five times per year from 1996 to 2001) in a large oligotrophic wetland. 3. Fish densities differed significantly across spatio-temporal scales for all species. For all species except eastern mosquitofish (Gambusia holbrooki), a significant portion of spatio-temporal variation in density was attributed to drying events (used as a covariate). 4. We observed three patterns of response to hydrological disturbance. Densities of bluefin killifish (Lucania goodei), least killifish (Heterandria formosa), and golden top-minnow (Fundulus chrysotus) were usually lowest after a dry down and recovered slowly. Eastern mosquitofish showed no distinct response to marsh drying (i.e. they recovered quickly). Flagfish (Jordanella floridae) density was often highest after a dry down and then declined. Population growth after a dry down was often asymptotic for bluefin killifish and golden topminnow, with greatest asymptotic density and longest time to recovery at sites that dried infrequently. 5. Fish population dynamics were synchronized by hydrological disturbance (independent of distance) and distance separating study sites (independent of hydrological disturbance). Our ability to separate the relative importance of the Moran effect from dispersal was strengthened by a weak association between hydrological synchrony and distance among study sites. Dispersal was the primary mechanism for synchronous population dynamics of flagfish, whereas hydrological disturbance was the primary mechanism for synchronous population dynamics of the other species examined. 6. Species varied in the relative role of the Moran effect and dispersal in homogenizing their population dynamics, probably as a function of life history and ability to exploit dry-season refugia. ?? 2005 British Ecological Society.

  17. Spatio-Temporal Variation and Prediction of Ischemic Heart Disease Hospitalizations in Shenzhen, China

    PubMed Central

    Wang, Yanxia; Du, Qingyun; Ren, Fu; Liang, Shi; Lin, De-nan; Tian, Qin; Chen, Yan; Li, Jia-jia

    2014-01-01

    Ischemic heart disease (IHD) is a leading cause of death worldwide. Urban public health and medical management in Shenzhen, an international city in the developing country of China, is challenged by an increasing burden of IHD. This study analyzed the spatio-temporal variation of IHD hospital admissions from 2003 to 2012 utilizing spatial statistics, spatial analysis, and space-time scan statistics. The spatial statistics and spatial analysis measured the incidence rate (hospital admissions per 1,000 residents) and the standardized rate (the observed cases standardized by the expected cases) of IHD at the district level to determine the spatio-temporal distribution and identify patterns of change. The space-time scan statistics was used to identify spatio-temporal clusters of IHD hospital admissions at the district level. The other objective of this study was to forecast the IHD hospital admissions over the next three years (2013–2015) to predict the IHD incidence rates and the varying burdens of IHD-related medical services among the districts in Shenzhen. The results show that the highest hospital admissions, incidence rates, and standardized rates of IHD are in Futian. From 2003 to 2012, the IHD hospital admissions exhibited similar mean centers and directional distributions, with a slight increase in admissions toward the north in accordance with the movement of the total population. The incidence rates of IHD exhibited a gradual increase from 2003 to 2012 for all districts in Shenzhen, which may be the result of the rapid development of the economy and the increasing traffic pollution. In addition, some neighboring areas exhibited similar temporal change patterns, which were also detected by the spatio-temporal cluster analysis. Futian and Dapeng would have the highest and the lowest hospital admissions, respectively, although these districts have the highest incidence rates among all of the districts from 2013 to 2015 based on the prediction using the GM (1,1). In addition, the combined analysis of the prediction of IHD hospital admissions and the general hospital distributions shows that Pingshan and Longgang might experience the most serious burden of IHD hospital services in the near future, although Futian would still have the greatest number and the highest incidence rate of hospital admissions for IHD. PMID:24806191

  18. Spatio-temporal description of the cavitating flow behavior around NACA 2412 hydrofoil

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.; Sedlá?, M.; Kozák, J.; Habán, V.; Huzlík, R.

    2015-12-01

    Spatio-temporal description of the cavitating flow around hydrofoil with 8 degrees incidence using proper orthogonal decomposition (POD) is presented. POD is a suitable tool, which provides information not only about the flow dynamics, but also about relevance of different flow structures. POD also enables to track energy transport within the domain and energy transfer among the eigenmodes of the flow field. Analysis documents change of the flow structure for decreasing cavitation number, which can be most likely attributed to sheet/cloud cavitation transition.

  19. Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses

    NASA Astrophysics Data System (ADS)

    Giudici, M.; Tredicce, J. R.; Vaschenko, G.; Rocca, J. J.; Menoni, C. S.

    1998-12-01

    We have measured the time average spatial intensity distribution and the spatio-temporal evolution of the spectrally resolved radiation emitted from broad-area vertical cavity surface emitting lasers (VCSEL) when pumped by a fast current pulse. We show that an intrinsic symmetry break exists due to geometrical asymmetry of the device structure and that the frequency separation between different modes allows the evaluation of the asymmetry factor. The space-time behavior shows the appearance of higher-order modes coexisting or alternating in time. The dynamical behavior shows a chirping in frequency.

  20. Spatio-temporal Dynamics of Pond Use and Recruitment in Florida Gopher Frogs (Rana Capito aesopus)

    SciTech Connect

    Greenberg, C.H.

    2000-05-16

    We examined spatio-temporal dynamics of the Florida Gopher frog breeding and juvenile recruitment. Ponds were situated in a hardwood or pine-savanna matrix of upland forest. Movement was monitored from 1994-1999. Adult pond use was low but relatively constant. Juvenile recruitment was higher in the upland savanna matrix. Body size was negatively correlated with the number of juveniles exiting the pond in only one year suggesting intraspecific competition is one of many factors. Most immigration occurred in May through August and was unrelated to rainfall.

  1. Spatio-temporal variability of soil respiration in a spruce-dominated headwater catchment in western Germany

    NASA Astrophysics Data System (ADS)

    Bossa, A. Y.; Diekkrüger, B.

    2014-01-01

    CO2 production and transport from forest floors is an important component of the carbon cycle and is closely related to the global atmosphere CO2 concentration. If we are to understand the feedback between soil processes and atmospheric CO2, we need to know more about the spatio-temporal variability of this soil respiration under different environmental conditions. In this study, long-term measurements were conducted in a spruce-dominated forest ecosystem in western Germany. Multivariate analysis-based similarities between different measurements sites led to the detection of site clusters along two CO2 emission axes: (1) mainly controlled by soil temperature and moisture condition, and (2) mainly controlled by root biomass and the forest floor litter. The combined effects of soil temperature and soil moisture were used as a time-dependent rating factor affecting the optimal CO2 production and transport at cluster level. High/moderate/weak time-dependent rating factors were associated with the different clusters. The process-based most distant clusters were identified using specified pattern characteristics: the reaction rates in the soil layers, the activation energy for bio-chemical reactions, the water sorption and desorption constant, the root biomass factor, the litter layer factor and the organic matter factor. A HYDRUS-1D model system was inversely used to compute soil hydraulic parameters from soil moisture measurements. Heat transport parameters were adjusted based on observed soil temperatures. The results were used to adjust CO2 production and transport characteristics such as the molecular diffusion coefficient of carbon dioxide in air and water and the CO2 production by soil microorganisms and plant roots under optimal conditions for each cluster. Although the uncertainty associated with the HYDRUS-1-D simulations is higher, the results were consistent with both the multivariate clustering and the time-dependent rating of site production/transport. Finally, four clusters with significantly different environmental conditions (i.e., permanent high soil moisture condition, accumulated litter amount, high variability in soil moisture content, dominant temperature-dependence) were found relevant in explaining the spatio-temporal variability of CO2 efflux and providing reference specific characteristic values for the investigated area.

  2. Spatio-temporal variability of soil respiration in a spruce-dominated headwater catchment in western Germany

    NASA Astrophysics Data System (ADS)

    Bossa, A. Y.; Diekkrüger, B.

    2014-08-01

    CO2 production and transport from forest floors is an important component of the carbon cycle and is closely related to the global atmosphere CO2 concentration. If we are to understand the feedback between soil processes and atmospheric CO2, we need to know more about the spatio-temporal variability of this soil respiration under different environmental conditions. In this study, long-term measurements were conducted in a spruce-dominated forest ecosystem in western Germany. Multivariate analysis-based similarities between different measurement sites led to the detection of site clusters along two CO2 emission axes: (1) mainly controlled by soil temperature and moisture condition, and (2) mainly controlled by root biomass and the forest floor litter. The combined effects of soil temperature and soil moisture were used as a time-dependent rating factor affecting the optimal CO2 production and transport at cluster level. High/moderate/weak time-dependent rating factors were associated with the different clusters. The process-based, most distant clusters were identified using specified pattern characteristics: the reaction rates in the soil layers, the activation energy for bio-chemical reactions, the soil moisture dependency parameter, the root biomass factor, the litter layer factor and the organic matter factor. A HYDRUS-1D model system was inversely used to compute soil hydraulic parameters from soil moisture measurements. Heat transport parameters were calibrated based on observed soil temperatures. The results were used to adjust CO2 productions by soil microorganisms and plant roots under optimal conditions for each cluster. Although the uncertainty associated with the HYDRUS-1D simulations is higher, the results were consistent with both the multivariate clustering and the time-dependent rating of site production. Finally, four clusters with significantly different environmental conditions (i.e. permanent high soil moisture condition, accumulated litter amount, high variability in soil moisture content, and dominant temperature dependence) were found to be relevant in explaining the spatio-temporal variability of CO2 efflux and providing reference-specific characteristic values for the investigated area.

  3. Spatio-temporal effects of low severity grassland fire on soil colour

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Bolutiene, Violeta; Pranskevicius, Mantas; Úbeda, Xavier; Jordán, Antonio; Zavala, Lorena; Mataix-Solera, Jorge

    2013-04-01

    Fire changes soil properties directly, through temperature, or indirectly with ash deposition and the temporal elimination of vegetal cover. Both influences change soil colour and soil properties. The degree of changes depends on fire severity that has important implications on soil organic matter, texture, mineralogy and hydrological properties and type of ash produced. The ash colour is different according to the temperature of combustion and burned specie and this property will have implications on soil colour. In addition, ash properties have a strong spatial variability. The aim of this work is to study the spatio-temporal effects of a low severity grassland fire on soil colour occurred in Lithuania, near Vilnius city (54° 42' N, 25° 08' E, 158 m.a.s.l.). After the fire it was designed a plot of 20x20m in a burned and unburned flat area. Soil colour was analysed immediately after the fire, and 2, 5, 7 and 9 months after the fire. In each sampling 25 soil samples were collected, carried out to the laboratory, dried at room temperature (20-24° C) and sieved with the <2mm mesh. Soil colour was observed with the Munsell colour chart and the soil chroma value (CV) was observed. Since data did not respected the Gaussian distribution a neperian logarithmic (ln) transformation was applied. Differences among time and between plots were observed with the repeated measures ANOVA test, followed by a Tukey HSD test. Differences were significant at a p<0.05. The spatial variability (SV) was assessed with the coefficient of variation using non transformed data. The results showed differences among time at a p<0.001, treatment at a p<0.01 and time x treatment at a p<0.01. This means that fire during the first 9 months changed significantly soil colour. The CV of the burned plot was lower than the control plot (darker colour), that is attributed to the deposition of charred material and charcoal. This ash produced in this fire was mainly black coloured. With the time the soil of the burned plot became lighter, due the movement of charred material and charcoal in depth through soil profile. After the fire SV was higher in the burned plot (13.27%) than in the unburned plot (7.95%). This major variability might be attributed to ash influence, since this fire did nit had direct effects on soil. Despite the reduced CV, some patches burned at higher severity, and ash was dark and light grey and this might had influences on soil colour SV. In the following measurements SV was very similar, but always slightly higher in the control plot than in the burned plot. Two months, unburned 15.52% and burned, 14.70%. Five months, unburned, 14.78% and burned 14.42%, Seven months, unburned, 15.15% and burned, 14.67%. Nine months, unburned, 18.96% and burned 17.84%. After the fire ash can be (re)distributed uncountable times. In the immediate period after the fire, finner ash produced at higher severities is easily transported by wind and can remix (Pereira et al., 2013a, Pereira et al., 2013b) and change soil colour. In this fire, vegetation recovered very fast, thus this process might occurred only in the first weeks after the fire (Pereira et al., 2013c). Since vegetation recovered fast, soil colour SV depended on carbon and charred material movement in depth soil profile. Further studies are needed on the soil colour evolution after the fire, since can be an indicator of soil properties such as temperature reached with implications in other soil properties. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council, Spanish Ministry of Science and Innovation for funding through the HYDFIRE project CGL2010-21670-C02-01, FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/) and to Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya. References Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development (In press) DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A. Burguet, M. (2013b) Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4 (1), 1545-1584. doi:10.5194/sed-4-1-2012 Pereira, P., Pranskevicius, M., Cepanko, V., Vaitkute, D., Pundyte, N., Ubeda, X., Mataix-Soler, J., Cerda, A., Martin, D.A. (2013c) Short time vegetation recovers after a spring grassland fire in Lithuania. Temporal and slope position effect, Flamma, 4(1), 13-17.

  4. A spatio-temporal filtering approach to denoising of single-trial ERP in rapid image triage.

    PubMed

    Yu, Ke; Shen, Kaiquan; Shao, Shiyun; Ng, Wu Chun; Kwok, Kenneth; Li, Xiaoping

    2012-03-15

    Conventional search for images containing points of interest (POI) in large-volume imagery is costly and sometimes even infeasible. The rapid image triage (RIT) system which is a human cognition guided computer vision technique is potentially a promising solution to the problem. In the RIT procedure, images are sequentially presented to a subject at a high speed. At the instant of observing a POI image, unique POI event-related potentials (ERP) characterized by P300 will be elicited and measured on the scalp. With accurate single-trial detection of such unique ERP, RIT can differentiate POI images from non-POI images. However, like other brain-computer interface systems relying on single-trial detection, RIT suffers from the low signal-to-noise ratio (SNR) of the single-trial ERP. This paper presents a spatio-temporal filtering approach tailored for the denoising of single-trial ERP for RIT. The proposed approach is essentially a non-uniformly delayed spatial Gaussian filter that attempts to suppress the non-event related background electroencephalogram (EEG) and other noises without significantly attenuating the useful ERP signals. The efficacy of the proposed approach is illustrated by both simulation tests and real RIT experiments. In particular, the real RIT experiments on 20 subjects show a statistically significant and meaningful average decrease of 9.8% in RIT classification error rate, compared to that without the proposed approach. PMID:22155383

  5. Spatio-Temporal Transcript Profiling of Rice Roots and Shoots in Response to Phosphate Starvation and Recovery[W][OPEN

    PubMed Central

    Secco, David; Jabnoune, Mehdi; Walker, Hayden; Shou, Huixia; Wu, Ping; Poirier, Yves; Whelan, James

    2013-01-01

    Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation–induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants. PMID:24249833

  6. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  7. Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems

    NASA Astrophysics Data System (ADS)

    Marwan, Norbert; Kurths, Jürgen

    2015-09-01

    We present here two promising techniques for the application of the complex network approach to continuous spatio-temporal systems that have been developed in the last decade and show large potential for future application and development of complex systems analysis. First, we discuss the transforming of a time series from such systems to a complex network. The natural approach is to calculate the recurrence matrix and interpret such as the adjacency matrix of an associated complex network, called recurrence network. Using complex network measures, such as transitivity coefficient, we demonstrate that this approach is very efficient for identifying qualitative transitions in observational data, e.g., when analyzing paleoclimate regime transitions. Second, we demonstrate the use of directed spatial networks constructed from spatio-temporal measurements of such systems that can be derived from the synchronized-in-time occurrence of extreme events in different spatial regions. Although there are many possibilities to investigate such spatial networks, we present here the new measure of network divergence and how it can be used to develop a prediction scheme of extreme rainfall events.

  8. Spatio-temporal variations in soil hydrology of a typical semiarid sand-meadow-desert landscape

    NASA Astrophysics Data System (ADS)

    Duan, L.; Liu, T.; Wang, X.; Wang, G.; Ma, L.; Luo, Y.

    2011-02-01

    A good understanding of the interrelations between land cover alteration and changes in hydrologic conditions (e.g., soil moisture) as well as soil physicochemical properties (e.g., fine particles and nutrients) is crucial for maintaining the fragile hydrologic and environmental conditions of semiarid land, such as the Horqin Sandy Land in China, but is lacking in existing literature. The objectives of this study were to examine: (1) spatio-temporal variations of soil moisture and physicochemical properties in semiarid land; and (2) how those variations are influenced by land cover alteration. Using the data collected in a 9.71 km2 well-instrumented area of the Horqin Sandy Land, this study examined by visual examination and statistical analyses the spatio-temporal variations of soil moisture and physicochemical properties. The results indicated that for the study area, the soil moisture and physicochemical properties were dependent on local topography, soil texture, vegetation density, and human activity. Long-term reclamation for agriculture was found to reduce soil moisture by over 23% and significantly (p-value < 0.05) lower the contents of soil organic matter, fine particles, and nutrients.

  9. Spatio-temporal dynamics of security investments in an interdependent risk environment

    NASA Astrophysics Data System (ADS)

    Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.

    2012-10-01

    In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.

  10. Spatio-temporal dynamics in the phenology of croplands across the Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Duncan, John M. A.; Dash, Jadunandan; Atkinson, Peter M.

    2014-08-01

    Spatio-temporal dynamics in land surface phenology parameters observed over croplands can inform on crop-climate interactions and, elucidate local to regional scale vulnerabilities either due to climate change or prevailing sub-optimal agricultural practices. Here, we observe spatio-temporal trends in land surface phenology parameters (cropping intensity, length of growing season and productivity) for kharif and rabi cropping seasons from satellite data across the Indo-Gangetic Plains from 1982 to 2006. The productivity of the Indo-Gangetic Plains croplands is of regional importance and is a vital component of Indian national food security efforts. Aside from local and intra-state heterogeneity in observed trends there was a clear west-to-east gradient in cropping intensity. Key observed trends include increasing cropping intensity in the eastern IGP, increasing number of growing days per year in Bihar, Uttar Pradesh and Haryana and increasing productivity in both cropping seasons across the IGP. This information is a crucial input to integrated assessments of the croplands to ensure management of the agricultural system shifts towards a trajectory of climate-resilience and environmental sustainability. To create spatially explicit time-series, at a spatial resolution of 8 km across the IGP of the following LSP parameters: (i) cropping intensity, (ii) LGS and (iii) agro-ecosystem productivity. To quantify normal conditions, inter-annual variation and long-term trends in these LSP parameters at an 8 km spatial resolution across the IGP croplands.

  11. Spatio-temporal dynamics of dengue 2009 outbreak in Córdoba City, Argentina.

    PubMed

    Estallo, E L; Carbajo, A E; Grech, M G; Frías-Céspedes, M; López, L; Lanfri, M A; Ludueña-Almeida, F F; Almirón, W R

    2014-08-01

    During 2009 the biggest dengue epidemic to date occurred in Argentina, affecting almost half the country. We studied the spatio-temporal dynamics of the outbreak in the second most populated city of the country, Córdoba city. Confirmed cases and the results of an Aedes aegypti monitoring during the outbreak were geolocated. The imported cases began in January, and the autochthonous in March. Thirty-three percent of the 130 confirmed cases were imported, and occurred mainly at the center of the city. The autochthonous cases were more frequent in the outskirts, specially in the NE and SE. Aedes aegypti infestation showed no difference between neighborhoods with or without autochthonous cases, neither between neighborhoods with autochthonous vs. imported cases. The neighborhoods with imported cases presented higher population densities. The majority of autochthonous cases occurred at ages between 25 and 44 years old. Cases formed a spatio-temporal cluster of up to 20 days and 12km. According to a mathematical model that estimates the required number of days needed for transmission according to daily temperature, the number of cases begun to fall when more than 15.5 days were needed. This may be a coarse estimation of mean mosquito survival in the area, provided that the study area is close to the global distribution limit of the vector, and that cases prevalence was very low. PMID:24795212

  12. Visual tracking with spatio-temporal Dempster-Shafer information fusion.

    PubMed

    Li, Xi; Dick, Anthony; Shen, Chunhua; Zhang, Zhongfei; van den Hengel, Anton; Wang, Hanzi

    2013-08-01

    A key problem in visual tracking is how to effectively combine spatio-temporal visual information from throughout a video to accurately estimate the state of an object. We address this problem by incorporating Dempster-Shafer (DS) information fusion into the tracking approach. To implement this fusion task, the entire image sequence is partitioned into spatially and temporally adjacent subsequences. A support vector machine (SVM) classifier is trained for object/nonobject classification on each of these subsequences, the outputs of which act as separate data sources. To combine the discriminative information from these classifiers, we further present a spatio-temporal weighted DS (STWDS) scheme. In addition, temporally adjacent sources are likely to share discriminative information on object/nonobject classification. To use such information, an adaptive SVM learning scheme is designed to transfer discriminative information across sources. Finally, the corresponding DS belief function of the STWDS scheme is embedded into a Bayesian tracking model. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracking approach. PMID:23529089

  13. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey.

    PubMed

    Sekertekin, Aliihsan; Kutoglu, Senol Hakan; Kaya, Sinasi

    2016-01-01

    The aim of this study is to analyze spatio-temporal variability in Land Surface Temperature (LST) in and around the city of Zonguldak as a result of the growing urbanization and industrialization during the last decade. Three Landsat 5 data and one Landsat 8 data acquired on different dates were exploited in acquiring LST maps utilizing mono-window algorithm. The outcomes obtained from this study indicate that there exists a significant temperature rise in the region for the time period between 1986 and 2015. Some cross sections were selected in order to examine the relationship between the land use and LST changes in more detail. The mean LST difference between 1986 and 2015 in ERDEMIR iron and steel plant (6.8 °C), forestland (3 °C), city and town centers (4.2 °C), municipal rubbish tip (-3.9 °C), coal dump site (12.2 °C), and power plants' region (7 °C) were presented. In addition, the results indicated that the mean LST difference between forestland and city centers was approximately 5 °C, and the difference between forestland and industrial enterprises was almost 8 °C for all years. Spatio-temporal variability in LST in Zonguldak was examined in that study and due to the increase in LST, policy makers and urban planners should consider LST and urban heat island parameters for sustainable development. PMID:26666659

  14. Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells.

    PubMed

    Talwar, Shefali; Kumar, Abhishek; Rao, Madan; Menon, Gautam I; Shivashankar, G V

    2013-02-01

    Stem cells integrate signals from the microenvironment to generate lineage-specific gene expression programs upon differentiation. Undifferentiated cell nuclei are easily deformable, with an active transcriptome, whereas differentiated cells have stiffer nuclei and condensed chromatin. Chromatin organization in the stem cell state is known to be highly dynamic but quantitative characterizations of its plasticity are lacking. Using fluorescence imaging, we study the spatio-temporal dynamics of nuclear architecture and chromatin compaction in mouse embryonic stem (ES) cells and differentiated states. Individual ES cells exhibit a relatively narrow variation in chromatin compaction, whereas primary mouse embryonic fibroblasts (PMEF) show broad distributions. However, spatial correlations in chromatin compaction exhibit an emergent length scale in PMEFs, although they are unstructured and longer ranged in ES cells. We provide evidence for correlated fluctuations with large amplitude and long intrinsic timescales, including an oscillatory component, in both chromatin compaction and nuclear area in ES cells. Such fluctuations are largely frozen in PMEF. The role of actin and Lamin A/C in modulating these fluctuations is described. A simple theoretical formulation reproduces the observed dynamics. Our results suggest that, in addition to nuclear plasticity, correlated spatio-temporal structural fluctuations of chromatin in undifferentiated cells characterize the stem cell state. PMID:23442906

  15. Correlated Spatio-Temporal Fluctuations in Chromatin Compaction States Characterize Stem Cells

    PubMed Central

    Talwar, Shefali; Kumar, Abhishek; Rao, Madan; Menon, Gautam I.; Shivashankar, G.V.

    2013-01-01

    Stem cells integrate signals from the microenvironment to generate lineage-specific gene expression programs upon differentiation. Undifferentiated cell nuclei are easily deformable, with an active transcriptome, whereas differentiated cells have stiffer nuclei and condensed chromatin. Chromatin organization in the stem cell state is known to be highly dynamic but quantitative characterizations of its plasticity are lacking. Using fluorescence imaging, we study the spatio-temporal dynamics of nuclear architecture and chromatin compaction in mouse embryonic stem (ES) cells and differentiated states. Individual ES cells exhibit a relatively narrow variation in chromatin compaction, whereas primary mouse embryonic fibroblasts (PMEF) show broad distributions. However, spatial correlations in chromatin compaction exhibit an emergent length scale in PMEFs, although they are unstructured and longer ranged in ES cells. We provide evidence for correlated fluctuations with large amplitude and long intrinsic timescales, including an oscillatory component, in both chromatin compaction and nuclear area in ES cells. Such fluctuations are largely frozen in PMEF. The role of actin and Lamin A/C in modulating these fluctuations is described. A simple theoretical formulation reproduces the observed dynamics. Our results suggest that, in addition to nuclear plasticity, correlated spatio-temporal structural fluctuations of chromatin in undifferentiated cells characterize the stem cell state. PMID:23442906

  16. Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision

    PubMed Central

    Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson

    2014-01-01

    The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339

  17. Spatio-temporal dynamics in collective frog choruses examined by mathematical modeling and field observations.

    PubMed

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized. PMID:24463569

  18. A geomatic methodology for spatio-temporal analysis of climatologic variables and water related diseases

    NASA Astrophysics Data System (ADS)

    Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.

    2009-04-01

    The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.

  19. Spatio-temporal Variability of Nitrate Across Scales in Texas Aquifers

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Mohanty, B. P.

    2010-12-01

    Nitrate (NO3-) is considered the most prevalent contaminant in groundwater (GW). NO3- in GW shows significant spatio-temporal variability which comes from interaction among multiple geophysical factors such as source availability (land use), thickness and composition of the vadose zone, types of aquifers (confined or unconfined), aquifer heterogeneity (geological and alluvial), and precipitation characteristics etc. The present work seeks to describe the spatio-temporal variability of NO3- at multiple scales in two different hydrogeologic settings— the Trinity and Ogallala Aquifers in Texas at three spatial scales, fine (25 km.×25 km.), intermediate (50 km.×50 km.), and coarse (100 km.×100 km.) grids. An entropy-based approach was used to analyze spatial-temporal variability of NO3- within the aquifers. The Hurst exponent was used to evaluate the long-term persistence and trend in the variability of NO3-. The results demonstrate that the spatial variability of NO3- is controlled by the effect of soil type, irrigation-pumping, and local flow at the small scale and by the complex interactions between rivers and aquifers along with land use at the intermediate scale, and by lithology and geology at the coarse scale. The trends of variability of NO3- show long term persistence at the intermediate and coarse scales.

  20. Context aware spatio-temporal cell tracking in densely packed multilayer tissues.

    PubMed

    Chakraborty, Anirban; Roy-Chowdhury, Amit K

    2015-01-01

    Modern live imaging technique enables us to observe the internal part of a tissue over time by generating serial optical images containing spatio-temporal slices of hundreds of tightly packed cells. Automated tracking of plant and animal cells from such time lapse live-imaging datasets of a developing multicellular tissue is required for quantitative, high throughput analysis of cell division, migration and cell growth. In this paper, we present a novel cell tracking method that exploits the tight spatial topology of neighboring cells in a multicellular field as contextual information and combines it with physical features of individual cells for generating reliable cell lineages. The 2D image slices of multicellular tissues are modeled as a conditional random field and pairwise cell to cell similarities are obtained by estimating marginal probability distributions through loopy belief propagation on this CRF. These similarity scores are further used in a spatio-temporal graph labeling problem to obtain the optimal and feasible set of correspondences between individual cell slices across the 4D image dataset. We present results on (3D+t) confocal image stacks of Arabidopsis shoot meristem and show that the method is capable of handling many visual analysis challenges associated with such cell tracking problems, viz. poor feature quality of individual cells, low SNR in parts of images, variable number of cells across slices and cell division detection. PMID:25461334

  1. A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli

    PubMed Central

    Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.

    2007-01-01

    The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760

  2. GeoMesa: a distributed architecture for spatio-temporal fusion

    NASA Astrophysics Data System (ADS)

    Hughes, James N.; Annex, Andrew; Eichelberger, Christopher N.; Fox, Anthony; Hulbert, Andrew; Ronquest, Michael

    2015-05-01

    Recent advances in distributed databases and computing have transformed the landscape of spatio-temporal machine learning. This paper presents GeoMesa, a distributed spatio-temporal database built on top of Hadoop and column-family databases such as Accumulo and HBase, that includes a suite of tools for indexing, managing and analyzing both vector and raster data. The indexing techniques use space filling curves to map multi-dimensional data to the single lexicographic list managed by the underlying distributed database. In contrast to traditional non-distributed RDBMS, GeoMesa is capable of scaling horizontally by adding more resources at runtime; the index rebalances across the additional resources. In the raster domain, GeoMesa leverages Accumulo's server-side iterators and aggregators to perform raster interpolation and associative map algebra operations in parallel at query time. The paper concludes with two geo-time data fusion examples: using GeoMesa to aggregate Twitter data by keywords; and georegistration to drape full-motion video (FMV) over terrain.

  3. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  4. Hierarchical Bayesian spatio-temporal modeling and entropy-based network design

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jin, B.; Chan, E.

    2012-12-01

    Typical spatio-temporal data include temperature, precipitation, atmospheric pressure, ozone concentration, personal income, infection prevalence, mosquito populations, among others. To model such data in a given region by hierarchical Bayesian kriging is undertaken in this paper. In addition, an environmental network design problem is also explored. For demonstration, we consider the ozone concentrations in the Toronto region of Ontario, Canada. There are many missing observations in the data. To proceed, we first formulate the hierarchical spatio-temporal model in terms of observed data. We then fill in some missing observations such that the data has the staircase structure. Thus, in light of Le and Zidek (2006), we model the ozone concentrations in Toronto region by hierarchical Bayesian kriging and derive a conditional predictive distribution of the ozone concentrations over unknown locations. To decide if a new monitoring station needs to be added or an existing station can be closed down, we solve this environmental network design problem by using the principle of maximum entropy.

  5. Linking spatio-temporal patterns in land cover dynamics with regional climate factors and recent weather: Application to the Flint Hills of Kansas and Oklahoma

    SciTech Connect

    Henebry, G.M.; Goodin, D.G.; Su, H.

    1995-06-01

    A key obstacle to developing regional models of ecosystem dynamics is representation of spatio-temporal variation in constituent patterns and processes. Simple resealing of site-specific ecological data or simulations to broader spatial scales is unlikely to capture regional spatio-temporal dynamics. Yet logistical constraints usually require synoptic weather data to be synthesized from sparse data networks. We seek a simple top-down model that links remotely-sensed vegetation cover with antecedent meteorological forcings to generate boundary conditions for site-specific fine-resolution data and simulations of tallgrass prairie. We developed several candidate models using AVHRR NDVI maximum biweekly composites of the Flint Hills from 1990-1993 and data from a network of more than 60 weather stations across the 40,000 km2 region. Models combined parameters derived from exemplary land cover trajectories, spatial structure (lacunarity and correlation length), and running weighted sums of weather data. Spectral-temporal models were easier to fit; lacunarity was more sensitive than correlation length; compositing effects were strong.

  6. Spatio-temporal groundwater recharge assessment using a lumped-parameter distributed model of the unsaturated zone (pyEARTH-2D)

    NASA Astrophysics Data System (ADS)

    Francés, Alain Pascal; Berhe, Ermias; Lubczynski, Maciek

    2010-05-01

    Numerical flow models are nowadays a powerful and widely used tool for groundwater management. Their reliability requires both an accurate physical representation of an aquifer system and appropriate boundary conditions. While the hydraulic parameters like hydraulic conductivity (K) and storativity (S) are spatially dependent and time invariant, groundwater fluxes such as recharge (R), evapotranspiration from groundwater (ETg) and groundwater inflow/outflow (Qgw) can vary in both space and time. Multiplicity of combinations between parameters and fluxes leads to a non-uniqueness of model solutions which limits their reliability and forecasting capability. We propose to constrain groundwater models at the catchment scale by the spatio-temporal assessment of fluxes in the unsaturated zone. Although the physically based models that involve the Darcy's law and the conservation of mass through the Richard's equation constitute the most appropriate tools for fluxes assessment in the unsaturated zone, they are computationally demanding and require a complex parameterization and boundary condition definition, which restricts their application to large and regional scales. We have thus chosen to develop and apply a lumped-parameter unsaturated zone model because it uses simplified representations of the physical processes and limits the number of parameters. We present in this study the development and application of a spatio-temporal recharge model (pyEARTH-2D) coupled with the numerical flow model MODFLOW at the catchment scale. pyEARTH-2D is a lumped-parameter distributed (grid-based) model that shares the same spatial discretization of the MODFLOW model for coupling purpose. pyEARTH-2D solves the water balance in the topsoil layer using linear relations between fluxes and soil moisture on a daily basis. The partitioning of rainfall is done by taking into consideration interception, evapotranspiration, percolation, soil moisture storage and surface storage and runoff. The input driving forces (rainfall and potential evapotranspiration) and the calibration state variables (hydraulic heads, soil moisture) time series are obtained through Automatic Data Acquisition System (ADAS) monitoring network. Parameterization of the soil reservoir requires basic soil hydraulic properties (soil porosity, specific retention, wilting point, saturated hydraulic conductivity and thickness) that can be obtained by standard field survey and laboratory measurements in the different soil zones of the catchment. Data integration using a combination of techniques such as remote sensing and statistics are used to determine soil properties spatially. The transient calibration of the coupled models is typically done against: (i) soil moisture of the recharge model pyEARTH-2D; (ii) hydraulic heads of the MODFLOW groundwater model. The coupling of pyEARTH-2D and MODFLOW is done through dynamic link of the parameter estimation algorithm PEST in which the simultaneous calibration of both models takes place. For each iterative cycle, recharge output is implemented in the MODFLOW model while the depth of the water table computed by MODFLOW is returned back to pyEARTH-2D in the next time step. The developed coupling procedure was tested in the Pisões (Portugal) and Sardon (Spain) catchments. In these two study case, the pyEARTH-2D and MODFLOW coupling approach solution was compared with the standard solution applying Recharge and Evapotranspiration packages of MODFLOW with regard to the goodness of fit and the similarity of the temporal trends between the simulated and observed hydraulic heads. Current developments of the pyEARTH-2D recharge model focus towards: i) improving the depth-wise discretization and parametrization of the unsaturated zone to represent the several soil horizons (pyEARTH-q3D); ii) partitioning of subsurface fluxes into unsaturated and saturated zone components to be able to quantify groundwater uptake by plants and loss of groundwater by direct evaporation from water table.

  7. Spatio-Temporal Patterns of Schistosomiasis Japonica in Lake and Marshland Areas in China: The Effect of Snail Habitats

    PubMed Central

    Hu, Yi; Gao, Jie; Chi, Meina; Luo, Can; Lynn, Henry; Sun, Liqian; Tao, Bo; Wang, Decheng; Zhang, Zhijie; Jiang, Qingwu

    2014-01-01

    The progress of the integrated control policy for schistosomiasis implemented since 2005 in China, which is aiming at reducing the roles of bovines and humans as infection sources, may be challenged by persistent presence of infected snails in lake and marshland areas. Based on annual parasitologic data for schistosomiasis during 2004–2011 in Xingzi County, a spatio-temporal kriging model was used to investigate the spatio-temporal pattern of schistosomiasis risk. Results showed that environmental factors related to snail habitats can explain the spatio-temporal variation of schistosomiasis. Predictive maps of schistosomiasis risk illustrated that clusters of the disease fluctuated during 2004–2008; there was an extensive outbreak in 2008 and attenuated disease occurrences afterwards. An area with an annually constant cluster of schistosomiasis was identified. Our study suggests that targeting snail habitats located within high-risk areas for schistosomiasis would be an economic and sustainable way of schistosomiasis control in the future. PMID:24980498

  8. Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses.

    PubMed

    Qiao, J; Papa, J; Liu, X

    2015-10-01

    Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. A 1.5-meter deformable grating has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings. PMID:26480107

  9. Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China.

    PubMed

    Li, Lan; Xi, Yuliang; Ren, Fu

    2016-01-01

    Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six-year period. The purely spatial scan statistics analysis showed significant spatial clusters of high and low incidence rates; the purely temporal scan statistics showed the temporal cluster with a three-year period from 2009 to 2011 characterized by a high incidence rate; and the space-time scan statistics analysis showed significant spatio-temporal clusters. The distribution of the mean centres (MCs) showed that the general distributions of the NSPRP MCs and NSPTBP MCs were to the east of the incidence rate MCs. Conversely, the general distributions of the RSPRP MCs and the RSPTBP MCs were to the south of the incidence rate MCs. Based on the combined analysis of MC distribution characteristics and trajectory similarities, the NSP trajectory was most similar to the incidence rate trajectory. Thus, more attention should be focused on the discovery of NSP patients in the western part of Beijing, whereas the northern part of Beijing needs intensive treatment for RSP patients. PMID:26959048

  10. Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetic levels.

    PubMed

    Baselga, Andrés; Fujisawa, Tomochika; Crampton-Platt, Alexandra; Bergsten, Johannes; Foster, Peter G; Monaghan, Michael T; Vogler, Alfried P

    2013-01-01

    A correlation of species and genetic diversity has been proposed but not uniformly supported. Large-scale DNA barcoding provides qualitatively novel data to test for correlations across hierarchical levels (genes, genealogies and species), and may help to unveil the underlying processes. Here we analyse sequence variation in communities of aquatic beetles across Europe (>5,000 individuals) to test for self-similarity of beta diversity patterns at multiple hierarchical levels. We show that community similarity at all levels decreases exponentially with geographic distance, and initial similarity is correlated with the lineage age, consistent with a molecular clock. Log-log correlations between lineage age, number of lineages, and range sizes, reveal a fractal geometry in time and space, indicating a spatio-temporal continuum of biodiversity across scales. Simulations show that these findings mirror dispersal-constrained models of haplotype distributions. These novel macroecological patterns may be explained by neutral evolutionary processes, acting continuously over time to produce multi-scale regularities of biodiversity. PMID:23695686

  11. Spatio-temporal changes of photosynthesis in carnivorous plants in response to prey capture, retention and digestion

    PubMed Central

    2010-01-01

    Carnivorous plants have evolved modified leaves into the traps that assist in nutrient uptake from captured prey. It is known that the traps of carnivorous plants usually have lower photosynthetic rates than assimilation leaves as a result of adaptation to carnivory. However, a few recent studies have indicated that photosynthesis and respiration undergo spatio-temporal changes during prey capture and retention, especially in the genera with active trapping mechanisms. This study describes the spatio-temporal changes of effective quantum yield of photochemical energy conversion in photosystem II (?PSII) in response to ant-derived formic acid during its capture and digestion. PMID:20523127

  12. Spatio-temporal clustering of cholera: The impact of flood control in Matlab, Bangladesh, 1983–2003

    PubMed Central

    Carrel, Margaret A.; Emch, Michael; Streatfield, Peter K.; Yunus, Mohammad

    2009-01-01

    Introducing flood control to an area of endemic waterborne diseases could have significant impacts on spatio-temporal occurrence of cholera. Using 21-years of data from Bangladesh, we conducted cluster analysis to explore changes in spatial and temporal distribution of cholera incidence since construction of flood control structures. Striking changes in temporal cluster patterns emerged, including a shift from dry season to rainy season clusters following flood protection and delayed clustering inside the protected areas. Spatial differences in pre-flood protection and post-protection cholera clusters are weaker. Changes in spatio-temporal cholera clustering, associated with implementation of flood protection strategies, could affect local cholera prevention efforts. PMID:19217821

  13. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    SciTech Connect

    Hilbert, V.; Rödel, C.; Zastrau, U.; Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S.; Döppner, T.; Ma, T.; Fletcher, L.; Förster, E.; Glenzer, S. H.; Lee, H. J.; Hartley, N. J.; Kazak, L.; Komar, D.; Skruszewicz, S.; and others

    2014-09-08

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5?nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  14. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  15. Spatio-Temporal Analysis of Micro Economic Activities in Rome Reveals Patterns of Mixed-Use Urban Evolution.

    PubMed

    Fiasconaro, Alessandro; Strano, Emanuele; Nicosia, Vincenzo; Porta, Sergio; Latora, Vito

    2016-01-01

    Understanding urban growth is one with understanding how society evolves to satisfy the needs of its individuals in sharing a common space and adapting to the territory. We propose here a quantitative analysis of the historical development of a large urban area by investigating the spatial distribution and the age of commercial activities in the whole city of Rome. We find that the age of activities of various categories presents a very interesting double exponential trend, with a transition possibly related to the long-term economical effects determined by the oil crisis of the Seventies. The diversification of commercial categories, studied through various measures of entropy, shows, among other interesting features, a saturating behaviour with the density of activities. Moreover, different couples of commercial categories exhibit over the years a tendency to attract in space. Our results demonstrate that the spatio-temporal distribution of commercial activities can provide important insights on the urbanisation processes at work, revealing specific and non trivial socio-economical dynamics, as the presence of crisis periods and expansion trends, and contributing to the characterisation of the maturity of urban areas. PMID:26982028

  16. Spatio-Temporal Analysis of Micro Economic Activities in Rome Reveals Patterns of Mixed-Use Urban Evolution

    PubMed Central

    Fiasconaro, Alessandro; Strano, Emanuele; Nicosia, Vincenzo; Porta, Sergio; Latora, Vito

    2016-01-01

    Understanding urban growth is one with understanding how society evolves to satisfy the needs of its individuals in sharing a common space and adapting to the territory. We propose here a quantitative analysis of the historical development of a large urban area by investigating the spatial distribution and the age of commercial activities in the whole city of Rome. We find that the age of activities of various categories presents a very interesting double exponential trend, with a transition possibly related to the long-term economical effects determined by the oil crisis of the Seventies. The diversification of commercial categories, studied through various measures of entropy, shows, among other interesting features, a saturating behaviour with the density of activities. Moreover, different couples of commercial categories exhibit over the years a tendency to attract in space. Our results demonstrate that the spatio-temporal distribution of commercial activities can provide important insights on the urbanisation processes at work, revealing specific and non trivial socio-economical dynamics, as the presence of crisis periods and expansion trends, and contributing to the characterisation of the maturity of urban areas. PMID:26982028

  17. Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data.

    PubMed

    Ashdown, George; Pandži?, Elvis; Cope, Andrew; Wiseman, Paul; Owen, Dylan

    2015-01-01

    Filamentous-actin plays a crucial role in a majority of cell processes including motility and, in immune cells, the formation of a key cell-cell interaction known as the immunological synapse. F-actin is also speculated to play a role in regulating molecular distributions at the membrane of cells including sub-membranous vesicle dynamics and protein clustering. While standard light microscope techniques allow generalized and diffraction-limited observations to be made, many cellular and molecular events including clustering and molecular flow occur in populations at length-scales far below the resolving power of standard light microscopy. By combining total internal reflection fluorescence with the super resolution imaging method structured illumination microscopy, the two-dimensional molecular flow of F-actin at the immune synapse of T cells was recorded. Spatio-temporal image correlation spectroscopy (STICS) was then applied, which generates quantifiable results in the form of velocity histograms and vector maps representing flow directionality and magnitude. This protocol describes the combination of super-resolution imaging and STICS techniques to generate flow vectors at sub-diffraction levels of detail. This technique was used to confirm an actin flow that is symmetrically retrograde and centripetal throughout the periphery of T cells upon synapse formation. PMID:26709554

  18. A novel spatio-temporal scale based on ocean currents unravels environmental drivers of reproductive timing in a marine predator.

    PubMed

    Afán, Isabel; Chiaradia, André; Forero, Manuela G; Dann, Peter; Ramírez, Francisco

    2015-07-01

    Life-history strategies have evolved in response to predictable patterns of environmental features. In practice, linking life-history strategies and changes in environmental conditions requires comparable space-time scales between both processes, a difficult match in most marine system studies. We propose a novel spatio-temporal and dynamic scale to explore marine productivity patterns probably driving reproductive timing in the inshore little penguin (Eudyptula minor), based on monthly data on ocean circulation in the Southern Ocean, Australia. In contrast to what occurred when considering any other fixed scales, little penguin's highly variable laying date always occurred within the annual peak of ocean productivity that emerged from our newly defined dynamic scale. Additionally, local sea surface temperature seems to have triggered the onset of reproduction, acting as an environmental cue informing on marine productivity patterns at our dynamic scale. Chlorophyll-a patterns extracted from this scale revealed that environment factors in marine ecosystems affecting breeding decisions are related to a much wider region than foraging areas that are commonly used in current studies investigating the link between animals' life history and their environment. We suggest that marine productivity patterns may be more predictable than previously thought when environmental and biological data are examined at appropriate scales. PMID:26063848

  19. A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection.

    PubMed

    Cheng, Zhang; Hoffmann, Alexander

    2016-04-21

    Although HIV viremia in infected patients proceeds in a manner that may be accounted for by deterministic mathematical models, single virus-cell encounters following initial HIV exposure result in a variety of outcomes, only one of which results in a productive infection. The development of single molecule tracking techniques in living cells allows studies of intracellular transport of HIV, but it remains less clear what its impact may be on viral integration efficiency. Here, we present a stochastic intracellular mathematical model of HIV replication that incorporates microtubule transport of viral components. Using this model, we could study single round infections and observe how viruses entering cells reach one of three potential fates - degradation of the viral RNA genome, formation of LTR circles, or successful integration and establishment of a provirus. Our model predicts global trafficking properties, such as the probability and the mean time for a HIV viral particle to reach the nuclear pore. Interestingly, our model predicts that trafficking determines neither the probability or time of provirus establishment - instead, they are a function of vRNA degradation and reverse transcription reactions. Thus, our spatio-temporal model provides novel insights into the HIV infection process and may constitute a useful tool for the identification of promising drug targets. PMID:26860658

  20. Assessing spatio-temporal variability of rainfall using a simple physically based statistical model

    NASA Astrophysics Data System (ADS)

    Hutchinson, M. F.; Xu, T.; Kesteven, J.

    2010-12-01

    Reliable assessment of spatio-temporal variability of observed rainfall is difficult in the current climate because of the complex spatial variability displayed by daily and shorter time scale rainfall data. As demonstrated in a recent analysis of Canadian daily precipitation data by Hutchinson et al. (2009), direct interpolation of short time scale precipitation data is a poor way to address spatial patterns of rainfall extremes. Addressing the behaviour of projected future precipitation extremes is made even more difficult by the limited temporal and spatial resolution of precipitation as simulated by global climate models. The “uniform drizzle” that tends to be produced by these models makes the assessment of even straightforward statistics, such as daily rainfall occurrence, problematic. Putting aside significant inter-model variability, the more reliable outputs of global models include mean fluxes, such as monthly rainfall amounts, and associated insight into the nature of the modelled precipitation in relation to forcing synoptic systems. The truncated power of normal distribution, as described by Hutchinson (1995), offers a relatively simple way to make progress. Two of the three model parameters are simply calibrated in terms of monthly mean fluxes and the model is able to accurately describe precipitation extremes. These model parameters can also be robustly determined from serially incomplete data. It can be argued that the model has a broad physical process basis by modelling rainfall as an event that occurs as an appropriate threshold is exceeded. This analysis extends the approach of Stidd (1954, 1973) who suggested the cube root as a universal normalising power. We show that the power parameter, once robustly calibrated, displays a broadly spatially varying distribution of around 0.5. This corresponds well with the two dimensional synoptic convergence that is required to produce precipitation. The power parameter appears to be related to the degree of convection associated with observed precipitation, a key aspect of current and projected future precipitation. The paper demonstrates the accuracy and interpretability of the model in describing daily rainfall variability and extremes in the current climate. The mean rainfall is a dominant factor in the observed trends but there are also significant departures from this dependence. The model offers a robust observational benchmark against which more sophisticated models of atmospheric variability can be compared. References: Hutchinson, M.F., Mckenney, D.W., Lawrence, K., Pedlar, J., Hopkinson, R., Milewska, E. and Papadopol, P. 2009. Development and testing of Canada-wide interpolated spatial models of daily minimum/maximum temperature and precipitation for 1961-2003. Journal of Applied Meteorology and Climatology 48(4): 725-741. Hutchinson, M.F. 1995. Stochastic space-time weather models from ground-based data. Agricultural and Forest Meteorology 73: 237-264. Stidd, C.K., 1954. The use of correlation fields in relating precipitation to circulation. Journal of Meteorology 11:202-213. Stidd, C.K., 1973. Estimating the precipitation climate. Water Resources Research 9: 1235-1241.

  1. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    NASA Astrophysics Data System (ADS)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    Malaria is the leading cause of morbidity and mortality in Malawi with more than 6 million episodes reported each year. Malaria poses a huge economic burden to Malawi in terms of the direct cost of treating malaria patients and also indirect costs resulting from workdays lost in agriculture and industry and absenteeism from school. Malawi implements malaria control activities within the Roll Back Malaria framework, with the objective to provide those most at risk (i.e. children under five years, pregnant woman and individuals with suppressed immune systems) access to personal and community protective measures. However, at present there is no mechanism by which to target the most 'at risk' populations ahead of an impending epidemic. Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the mosquito and the availability of breeding sites, but also socio-economic conditions such as levels of urbanisation, poverty and education, which influence human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for modelling of malaria risk in space and time. Using an age-stratified spatio-temporal dataset of malaria cases at the district level from July 2004 - June 2011, we use a spatio-temporal modelling framework to model variations in malaria risk in Malawi. Climatic and topographic variations are accounted for using an interpolation method to relate gridded products to administrative districts. District level data is tested in the model to account for confounding factors, including the proportion of the population living in urban areas; residing in traditional housing; with no toilet facilities; who do not attend school, etc, the number of health facilities per population and yearly estimates of insecticide-treated mosquito net distribution. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a negative binomial generalised linear mixed model (GLMM) is adopted, which includes structured and unstructured spatial and temporal random effects. The parameters in this spatio-temporal Bayesian hierarchical model are estimated using Markov Chain Monte Carlo (MCMC). This allows posterior predictive distributions for disease risk to be derived for each spatial location and time period. A novel visualisation technique is then used to display seasonal probabilistic forecasts of malaria risk, derived from the developed model using pre-defined risk category thresholds, on a map. This technique allows decision makers to identify areas where the model predicts with certainty a particular malaria risk category (high, medium or low); in order to effectively target limited resources to those districts most at risk for a given season.

  2. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    NASA Astrophysics Data System (ADS)

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-10-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure.

  3. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.

  4. Spatio-temporal variations of black carbon concentrations in the Megacity Beijing.

    PubMed

    Schleicher, Nina; Norra, Stefan; Fricker, Mathieu; Kaminski, Uwe; Chen, Yizhen; Chai, Fahe; Wang, Shulan; Yu, Yang; Cen, Kuang

    2013-11-01

    The spatial and temporal distribution and the flux of black carbon (BC) concentration in Beijing were continuously investigated over a two-year period at five sites to highlight the relative influence of contributing sources. The results demonstrate firstly that there is significant spatio-temporal variability of BC in Beijing. Highest concentrations occurred during winter primarily due to stagnant meteorological conditions, and seasonal BC sources, such as coal combustion for heating purposes. Biomass burning was identified as a minor seasonal source during the summer months. BC also varied spatially with higher concentrations in the SE of Beijing and lower concentrations in the NW, due to the differing emission intensity of various local BC sources such as traffic and industry. Frequently, overnight BC concentrations were higher due to specific meteorological conditions, such as the lower urban mixing layer height and various anthropogenic activities, such as exclusive night-time heavy duty vehicle traffic in the inner-city. PMID:23978522

  5. Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, María. A.; Martínez, Fabio; Romero, Eduardo

    2015-12-01

    An accurate right ventricular (RV) function quantification is important to support the evaluation, diagnosis and prognosis of several cardiac pathologies and to complement the left ventricular function assessment. However, expert RV delineation is a time consuming task with high inter-and-intra observer variability. In this paper we present an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas or multi-atlas methods, this approach estimates the RV using exclusively information from the sequence itself. For so doing, a spatio-temporal analysis segments the heart at the basal slice, segmentation that is then propagated to the apex by using a non-rigid-registration strategy. The proposed approach achieves an average Dice Score of 0:79 evaluated with a set of 48 patients.

  6. Spatio-temporal distribution and natural variation of metabolites in citrus fruits.

    PubMed

    Wang, Shouchuang; Tu, Hong; Wan, Jian; Chen, Wei; Liu, Xianqing; Luo, Jie; Xu, Juan; Zhang, Hongyan

    2016-05-15

    To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species. PMID:26775938

  7. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms.

    PubMed

    Rieckher, Matthias; Kyparissidis-Kokkinidis, Ilias; Zacharopoulos, Athanasios; Kourmoulakis, Georgios; Tavernarakis, Nektarios; Ripoll, Jorge; Zacharakis, Giannis

    2015-01-01

    We describe a customizable and cost-effective light sheet microscopy (LSM) platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP), which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT) modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples. PMID:26000610

  8. Holographic frequency resolved optical gating for spatio-temporal characterization of ultrashort optical pulse

    NASA Astrophysics Data System (ADS)

    Mehta, Nikhil; Yang, Chuan; Xu, Yong; Liu, Zhiwen

    2014-09-01

    We introduce a novel method for characterizing the spatio-temporal evolution of ultrashort optical field by recording the spectral hologram of frequency resolved optical gating (FROG) trace. We show that FROG holography enables the measurement of phase (up to an overall constant) and group delay of the pulse which cannot be measured by conventional FROG method. To illustrate our method, we perform numerical simulation to generate holographic collinear FROG (cFROG) trace of a chirped optical pulse and retrieve its complex profile at multiple locations as it propagates through a hypothetical dispersive medium. Further, we experimentally demonstrate our method by retrieving a 67 fs pulse at three axial locations in the vicinity of focus of an objective lens and compute its group delay.

  9. Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.

    2014-01-01

    Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed

  10. Spatio-temporal video segmentation with shape growth or shrinkage constraint.

    PubMed

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H

    2014-09-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures. PMID:25020092

  11. Climate change forecasts, long-term spatio-temporal prediction and the resilience of dry ecosystems

    NASA Astrophysics Data System (ADS)

    Shafran-Natan, Rakefet; Svoray, Tal; Avi, Perevolotsky

    2010-05-01

    Primary production is an important indicator to climatic changes in drylands, while reduction in productivity has many consequences on ecosystem functioning. We suggest that the response of dry ecosystems to climate change should lead to a change in spatial patterns of grasses without a substantial change in ecosystem resilience. We used field data and a recently published spatio-temporally explicit model to study factors affecting long-term variation in primary production in two dry ecosystems: semi-arid (SAE) and Mediterranean (DME) dominated by annual vegetation. The model was operated in both patch and landscape scales and was executed along 30 years (1979-2008) at SAE and along 21 years (1986-1990; 1993-2008) at DME. Model predictions were validated against samples that were harvested in each site at the end of the growing season, over 15 seasons (1994-2008) at SAE (0.63

  12. A flood risk curve development for inundation disaster considering spatio-temporal rainfall distribution

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Yorozu, K.

    2015-06-01

    To manage flood disaster with an exceeding designed level, flood risk control based on appropriate risk assessment is essential. To make an integrated economic risk assessment by flood disaster, a flood risk curve, which is a relation between flood inundation damage and its exceedance probability, plays an important role. This research purposes a method to develop a flood risk curve by utilizing a probability distribution function of annual maximum rainfall through rainfall-runoff and inundation simulations so that risk assessment can consider climate and socio-economic changes. Among a variety of uncertainties, the method proposed in this study considered spatio-temporal rainfall distributions that have high uncertainty for damage estimation. The method was applied to the Yura-gawa river basin (1882 km2) in Japan; and the annual economic benefit of an existing dam in the basin was successfully quantified by comparing flood risk curves with/without the dam.

  13. The study of spatio-temporal reasoning model and application in the digital tobacco

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Cui, Weihong

    2007-06-01

    This paper combined the studied task and the project of "digital tobacco" and in the backgroun of completely analyzed the current various spatio-temporal reasoning models, and then advanced the technical route by combining the object-oriented technology, and applied this model in the management of tobacco planting of the "Digital tobacco 3S system in YunNan province". Through the application of management of rotating parcels, the mode of management of parcels in this area transferred from the traditional mode to the scientific and modern mode. Consequently, this mode would increase the rationality and scientific component in the planting, monitoring, maintenance and management etc, and then gained the maximal economic benefit.

  14. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    NASA Astrophysics Data System (ADS)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  15. Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay

    SciTech Connect

    Dimitrijevic, D. R.; Maluckov, A. A.

    2010-01-21

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  16. Transition to Spatio-Temporal Chaos with Increasing Length in the Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Trail, Collin; Tomlin, Brett; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    Calculations based up the Reaction-Diffusion model (H. Riecke and H.-G. Paap, Europhys. Lett. 14), 1235 (1991).have proven to be suggestive for a wide variety of pattern forming systems, including Taylor-Couette flow with hourglass geometry(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. Seeking insight to guide experimental investigations, we extend these calculations. Previous calculations indicated that in smaller systems, only temporal chaos, located in a small region, would be observed, while in longer systems instabilities would form over a wide region. Our simulations explore this transition from purely temporal chaos to spatio-temporal chaos as the length of the system is increased.

  17. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed

    PubMed Central

    Nichols, Eric J.; Hutt, Axel

    2015-01-01

    Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case. PMID:26539105

  18. A collaborative large spatio-temporal data visual analytics architecture for emergence response

    NASA Astrophysics Data System (ADS)

    Guo, D.; Li, J.; Cao, H.; Zhou, Y.

    2014-02-01

    The unconventional emergency, usually outbreaks more suddenly, and is diffused more quickly, but causes more secondary damage and derives more disaster than what it is usually expected. The data volume and urgency of emergency exceeds the capacity of current emergency management systems. In this paper, we propose a three-tier collaborative spatio-temporal visual analysis architecture to support emergency management. The prototype system, based on cloud computation environment, supports aggregation of massive unstructured and semi-structured data, integration of various computing model sand algorithms; collaborative visualization and visual analytics among users with a diversity of backgrounds. The distributed data in 100TB scale is integrated in a unified platform and shared with thousands of experts and government agencies by nearly 100 models. The users explore, visualize and analyse the big data and make a collaborative countermeasures to emergencies.

  19. Assessing the spatio-temporal variations of the completeness magnitude for seismic events in Venezuela

    NASA Astrophysics Data System (ADS)

    Vasquez, R.; Bravo, L.

    2013-05-01

    We investigate the spatio temporal variation of the completeness magnitude Mc, for a set of 18774 well localized earthquakes registered by the Venezuelan Seismological Network over the period 2000-2010. In the entire seismicity region we defined two-dimensional grids of different sizes in order to map the Mc: 11 km, 22 km, 55 km and 111 km. We calculated the completeness magnitude using the Maximum Curvature method (MAXC) for every particular cell taking at least 15 earthquakes to perform computations. The results show an overall variation from 2.0 to 3.6. We found different thresholds and ranges of Mc depending on the dimension of the seismicity zone: western region from 2.2 to 2.8, north central from 2.0 to 3.2 and eastern region from 2.2 to 3.2. We also include remarks in border seismicity, close to Colombia and Trinidad, where the largest Mc values are estimated.

  20. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  1. A Customized Light Sheet Microscope to Measure Spatio-Temporal Protein Dynamics in Small Model Organisms

    PubMed Central

    Rieckher, Matthias; Kourmoulakis, Georgios; Tavernarakis, Nektarios; Ripoll, Jorge; Zacharakis, Giannis

    2015-01-01

    We describe a customizable and cost-effective light sheet microscopy (LSM) platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP), which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT) modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples. PMID:26000610

  2. Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident

    PubMed Central

    Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji

    2013-01-01

    The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073

  3. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    PubMed Central

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-01-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure. PMID:26511660

  4. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders

    PubMed Central

    Wang, Xin; Pinto-Duarte, António; Margarita Behrens, M.; Zhou, Xianjin; Sejnowski, Terrence J.

    2015-01-01

    Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies. PMID:26459883

  5. Spatio-temporal evolution of the L ? H and H ? L transitions

    NASA Astrophysics Data System (ADS)

    Miki, K.; Diamond, P. H.; Fedorczak, N.; Gürcan, Ö. D.; Malkov, M.; Lee, C.; Kosuga, Y.; Tynan, G.; Xu, G. S.; Estrada, T.; McDonald, D.; Schmitz, L.; Zhao, K. J.

    2013-07-01

    Understanding the L ? H and H ? L transitions is crucial to successful ITER operation. In this paper we present novel theoretical and modelling study results on the spatio-temporal dynamics of the transition. We place a special emphasis on the role of zonal flows and the micro ? macro connection between dynamics and the power threshold (PT) dependences. The model studied evolves five coupled fields in time and one space dimension, in simplified geometry. The content of this paper is (a) the model fundamentals and the space-time evolution during the L ? I ? H transition, (b) the physics origin of the well-known ?B-drift asymmetry in PT, (c) the role of heat avalanches in the intrinsic variability of the L ? H transition, (d) the dynamics of the H ? L back transition and the physics of hysteresis, (e) conclusion and discussion, with a special emphasis on the implications of transition dynamics for the L ? H power threshold scalings.

  6. Spatio-temporal propagation of cascading overload failures in spatially embedded networks.

    PubMed

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  7. Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders.

    PubMed

    Wang, Xin; Pinto-Duarte, António; Margarita Behrens, M; Zhou, Xianjin; Sejnowski, Terrence J

    2015-01-01

    Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies. PMID:26459883

  8. Geographic boundary analysis in spatial and spatio-temporal epidemiology: Perspective and prospects

    PubMed Central

    Jacquez, Geoffrey M.

    2010-01-01

    Geographic boundary analysis is a relatively new approach that is just beginning to be applied in spatial and spatio-temporal epidemiology to quantify spatial variation in health outcomes, predictors and correlates; generate and test epidemiologic hypotheses; to evaluate health-environment relationships; and to guide sampling design. Geographic boundaries are zones of rapid change in the value of a spatially distributed variable, and mathematically may be defined as those locations with a large second derivative of the spatial response surface. Here we introduce a pattern analysis framework based on Value, Change and Association questions, and boundary analysis is shown to fit logically into Change and Association paradigms. This article addresses fundamental questions regarding what boundary analysis can tell us in public health and epidemiology. It explains why boundaries are of interest, illustrates analysis approaches and limitations, and concludes with prospects and future research directions. PMID:21218153

  9. Spatio-temporal brain activation profiles associated with line bisection judgments and double simultaneous visual stimulation.

    PubMed

    Billingsley, R L; Simos, P G; Sarkari, S; Fletcher, J M; Papanicolaou, A C

    2004-06-01

    We used magnetic source imaging (MSI) to investigate the spatio-temporal patterns of brain activity associated with line bisection judgments and double simultaneous visual stimulation in 14 healthy adults. Consistent with lesion and hemodynamic neuroimaging studies, we found the greatest number of activity sources in right inferior parietal cortex. These sources were most prominent, on average, between 200 and 300 ms after the onset of single (left, right, or center) target stimuli. A greater number of significant activity sources were found in right inferior parietal, occipital, and prefrontal cortices during bilateral compared with unilateral stimulus presentation. Based on these observations, we suggest that a more parsimonious physiological explanation of visual extinction than the hemispheric rivalry account may be the additional neuronal excitation required in right occipital and parietal cortices for accurate bilateral visual perception. PMID:15135973

  10. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    PubMed Central

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  11. Spatio-temporal EEG power spectral patterns during a short daytime nap.

    PubMed

    Luo, Z; Honda, K; Inoué, S

    2001-06-01

    This is an approach to investigate topographic changes in electroencephalographic (EEG) spectral power during pre- and post-nap wakefulness as well as stages 1 (S1) and 2 (S2) NREM sleep in 12 subjects. Delta- and theta-band power significantly increased in the frontal and central regions during S1 and S2 with an increase in inter- and intra-hemispheric correlations. Beta-band power significantly increased in the frontal, central and parietal regions during S2 with an increase in interhemispheric correlation. In contrast, alpha-band power significantly decreased in the parietal-occipital regions during S1 and S2 with a decrease in interhemispheric correlation. Thus, daytime nap modulated spatio-temporal patterns of EEG power spectral patterns in wide scalp regions. PMID:11422838

  12. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  13. Measures of spatio-temporal accuracy for time series land cover data

    NASA Astrophysics Data System (ADS)

    Tsutsumida, Narumasa; Comber, Alexis J.

    2015-09-01

    Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatio-temporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multi-temporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed.

  14. Spatio-Temporal Simulation of First Pass Drug Perfusion in the Liver

    PubMed Central

    Schwen, Lars Ole; Krauss, Markus; Niederalt, Christoph; Gremse, Felix; Kiessling, Fabian; Schenk, Andrea; Preusser, Tobias; Kuepfer, Lars

    2014-01-01

    The liver is the central organ for detoxification of xenobiotics in the body. In pharmacokinetic modeling, hepatic metabolization capacity is typically quantified as hepatic clearance computed as degradation in well-stirred compartments. This is an accurate mechanistic description once a quasi-equilibrium between blood and surrounding tissue is established. However, this model structure cannot be used to simulate spatio-temporal distribution during the first instants after drug injection. In this paper, we introduce a new spatially resolved model to simulate first pass perfusion of compounds within the naive liver. The model is based on vascular structures obtained from computed tomography as well as physiologically based mass transfer descriptions obtained from pharmacokinetic modeling. The physiological architecture of hepatic tissue in our model is governed by both vascular geometry and the composition of the connecting hepatic tissue. In particular, we here consider locally distributed mass flow in liver tissue instead of considering well-stirred compartments. Experimentally, the model structure corresponds to an isolated perfused liver and provides an ideal platform to address first pass effects and questions of hepatic heterogeneity. The model was evaluated for three exemplary compounds covering key aspects of perfusion, distribution and metabolization within the liver. As pathophysiological states we considered the influence of steatosis and carbon tetrachloride-induced liver necrosis on total hepatic distribution and metabolic capacity. Notably, we found that our computational predictions are in qualitative agreement with previously published experimental data. The simulation results provide an unprecedented level of detail in compound concentration profiles during first pass perfusion, both spatio-temporally in liver tissue itself and temporally in the outflowing blood. We expect our model to be the foundation of further spatially resolved models of the liver in the future. PMID:24625393

  15. Elucidating the spatio-temporal dynamics of an emerging wildlife pathogen using approximate Bayesian computation.

    PubMed

    Rey, Olivier; Fourtune, Lisa; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Roche, Benjamin; Blanchet, Simon

    2015-11-01

    Emerging pathogens constitute a severe threat for human health and biodiversity. Determining the status (native or non-native) of emerging pathogens, and tracing back their spatio-temporal dynamics, is crucial to understand the eco-evolutionary factors promoting their emergence, to control their spread and mitigate their impacts. However, tracing back the spatio-temporal dynamics of emerging wildlife pathogens is challenging because (i) they are often neglected until they become sufficiently abundant and pose socio-economical concerns and (ii) their geographical range is often little known. Here, we combined classical population genetics tools and approximate Bayesian computation (i.e. ABC) to retrace the dynamics of Tracheliastes polycolpus, a poorly documented pathogenic ectoparasite emerging in Western Europe that threatens several freshwater fish species. Our results strongly suggest that populations of T. polycolpus in France emerged from individuals originating from a unique genetic pool that were most likely introduced in the 1920s in central France. From this initial population, three waves of colonization occurred into peripheral watersheds within the next two decades. We further demonstrated that populations remained at low densities, and hence undetectable, during 10 years before a major demographic expansion occurred, and before its official detection in France. These findings corroborate and expand the few historical records available for this emerging pathogen. More generally, our study demonstrates how ABC can be used to determine the status, reconstruct the colonization history and infer key evolutionary parameters of emerging wildlife pathogens with low data availability, and for which samples from the putative native area are inaccessible. PMID:26416083

  16. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  17. Spatio-Temporal Canopy Complexity and Leaf Acclimation to Variable Canopy Microhabitats.

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.

    2014-12-01

    The theory that forests become carbon (C) neutral with maturity has recently been challenged. While a growing body of evidence shows that net C accumulation continues in forests that are centuries old, the reasons remain poorly known. Increasing canopy structural complexity, quantified by high variability in leaf distribution, has been proposed as a mechanism for sustained rates of C assimilation in mature forests. The goal of our research was to expand on these findings and explore a new idea of spatio-temporal canopy structural complexity as a mechanism linking canopy structure to function (C assimilation).Our work takes place at the UMBS AmeriFlux core facility (US-UMB) in northern Michigan, USA. Canopy structure was quantified over 6 seasons with portable canopy LiDAR (PCL) and canopy spatial microhabitat variability was studied using hemispherical photographs from different heights within the canopy. We found a more even distribution of irradiance in more structurally complex canopies within a single year, and furthermore, that between-year variability of spatial leaf arrangement decreased with increasing canopy complexity. We suggest that in complex canopies less redistribution of leaf material over time may lead to more similar light microhabitats within and among years. Conversely, in less complex canopies this relationship can lead to a year-to-year time lag in morphological leaf acclimation since the effects of the previous-year's light environment are reflected in the morphological characteristics of current-year leaves.Our study harnesses unique spatio-temporal resolution measurements of canopy structure and microhabitat that can inform better management strategies seeking to maximize forest C uptake. Future research quantifying the relationship between canopy structure and light distribution will improve performance of ecosystem models that currently lack spatially explicit canopy structure information.

  18. Spatio-Temporal Variability of the North Sea Cod Recruitment in Relation to Temperature and Zooplankton

    PubMed Central

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  19. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years

    PubMed Central

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km2 in 1981 to 485.0 km2 in 2005 and then suddenly decreased to 341.3 km2 in 2010. Similarly, submerged vegetation increased from 127.0 km2 in 1981 to 366.5 km2 in 2005, and then decreased to 163.3 km2. Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km2 in 1981 to 146.2 km2 in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  20. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years.

    PubMed

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km(2) in 1981 to 485.0 km(2) in 2005 and then suddenly decreased to 341.3 km(2) in 2010. Similarly, submerged vegetation increased from 127.0 km(2) in 1981 to 366.5 km(2) in 2005, and then decreased to 163.3 km(2). Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km(2) in 1981 to 146.2 km(2) in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  1. Spatio-temporal distribution of floating objects in the German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Thiel, Martin; Hinojosa, Iván A.; Joschko, Tanja; Gutow, Lars

    2011-04-01

    Floating objects facilitate the dispersal of marine and terrestrial species but also represent a major environmental hazard in the case of anthropogenic plastic litter. They can be found throughout the world's oceans but information on their abundance and the spatio-temporal dynamics is scarce for many regions of the world. This information, however, is essential to evaluate the ecological role of floating objects. Herein, we report the results from a ship-based visual survey on the abundance and composition of flotsam in the German Bight (North Sea) during the years 2006 to 2008. The aim of this study was to identify potential sources of floating objects and to relate spatio-temporal density variations to environmental conditions. Three major flotsam categories were identified: buoyant seaweed (mainly fucoid brown algae), natural wood and anthropogenic debris. Densities of these floating objects in the German Bight were similar to those reported from other coastal regions of the world. Temporal variations in flotsam densities are probably the result of seasonal growth cycles of seaweeds and fluctuating river runoff (wood). Higher abundances were often found in areas where coastal fronts and eddies develop during calm weather conditions. Accordingly, flotsam densities were often higher in the inner German Bight than in areas farther offshore. Import of floating objects and retention times in the German Bight are influenced by wind force and direction. Our results indicate that a substantial amount of floating objects is of coastal origin or introduced into the German Bight from western source areas such as the British Channel. Rapid transport of floating objects through the German Bight is driven by strong westerly winds and likely facilitates dispersal of associated organisms and gene flow among distant populations.

  2. Urban green spatio- temporal changes assessment through time-series satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2015-10-01

    Understanding spatio-temporal changes of urban environments is essential for regional and local planning and environmental management. With the rapid changes of Bucharest city in Romania during past decades, green spaces have been fragmented and dispersed causing impairment and dysfunction of these urban elements. The main goal of this study is to address these tasks in synergy with in-situ data and new analytical methods. Spatio- temporal monitoring of urban vegetation land cover changes is important for policy decisions, regulatory actions and subsequent land use activities. This study explored the use of time-series MODIS Terra/Aqua Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) and evapotranspiration (ET) data to provide vegetation change detection information for metropolitan area of Bucharest. Training and validation are based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2002- 2014 was assessed to be of 87%, with a reasonable balance between change commission errors (20.24%), change omission errors (25.65%), and Kappa coefficient of 0.72. Annual change detection rates across the urban/periurban areas over the study period (2002-2014) were estimated at 0.79% per annum in the range of 0.46% (2002) to 0.77% (2014).Vegetation dynamics in urban areas at seasonal and longer timescales reflect large-scale interactions between the terrestrial biosphere and the climate system. Extracted green space areas were further analyzed quantitatively in relation with air quality data and extreme climate events. The results have been analyzed in terms of environmental impacts and future climate trends.

  3. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  4. Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering

    NASA Astrophysics Data System (ADS)

    Chidean, Mihaela I.; Muñoz-Bulnes, Jesús; Ramiro-Bargueño, Julio; Caamaño, Antonio J.; Salcedo-Sanz, Sancho

    2015-06-01

    Over the last decades, different machine learning techniques have been used to detect climate change patterns, mostly using data from measuring stations located in different parts of the world. Some previous studies focus on temperature as primary variable of study, though there have been other works focused on precipitation or even wind speed as objective variable. In this paper, we use the self-organized Second Order Data Coupled Clustering (SODCC) algorithm to carry out a spatio-temporal analysis of temperature patterns in Europe. By applying the SODCC we identify three different regimes of spatio-temporal correlations based on their geographical extent: small, medium, and large-scale regimes. Based on these regimes, it is possible to detect a change in the spatio-temporal trend of air temperature, reflecting a shift in the extent of the correlations in stations in the Iberian Peninsula and Southern France. We also identify an oscillating spatio-temporal trend in the Western Asia region and a stable medium-scale regime affecting the British Isles. These results are found to be consistent with previous studies in climate change. The patterns obtained with the SODCC algorithm may represent a signal of climate change to be taken into account, and so the SODCC could be used as detection method.

  5. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions.

    PubMed

    Wang, Lin; Watmough, James; Yu, Fang

    2015-08-01

    In this paper, we study a diffusive plant-herbivore system with homogeneous and nonhomogeneous Dirichlet boundary conditions. Stability of spatially homogeneous steady states is established. We also derive conditions ensuring the occurrence of Hopf bifurcation and steady state bifurcation. Interesting transient spatio-temporal behaviors including oscillations in one or both of space and time are observed through numerical simulations. PMID:25974343

  6. Anatomical co-registration using spatio-temporal features of a non-contact near-infrared optical scanner

    NASA Astrophysics Data System (ADS)

    Jung, Young-Jin; Gonzalez, Jean; Rodriguez, Suset; Velez Mejia, Maximiliano; Clark, Gabrielle; Godavarty, Anuradha

    2014-02-01

    Non-contact based near-infrared (NIR) optical imaging devices are developed for non-invasive imaging of deep tissues in various clinical applications. Most of these devices focus on obtaining the spatial information for anatomical co-registration of blood vessels as in sub-surface vein localization applications. In the current study, the anatomical co-registration of blood vessels based on spatio-temporal features was performed using NIR optical imaging without the use of external contrast agents. A 710 nm LED source and a compact CCD camera system were employed during simple cuff (0 to 60 mmHg) experiment in order to acquire the dynamic NIR data from the dorsum of a hand. The spatio-temporal features of dynamic NIR data were extracted from the cuff experimental study to localize vessel according to blood dynamics. The blood vessels shape is currently reconstructed from the dynamic data based on spatio-temporal features. Demonstrating the spatio-temporal feature of blood dynamic imaging using a portable non-contact NIR imaging device without external contrast agents is significant for applications such as peripheral vascular diseases.

  7. Spatio-temporal dynamics and laterality effects of face inversion, feature presence and configuration, and face outline

    PubMed Central

    Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric

    2014-01-01

    Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044

  8. [Spatio-temporal pattern of larvae and eggs of gastrointestinal nematodes in cattle pastures in Veracruz, Mexico].

    PubMed

    Flota-Bañuelos, Carolina; Martínez, Imelda; López-Collado, José; Vargas Mendoza, Mónica; González Hernández, Hector; Fajersson, Pernilla

    2013-12-01

    The spatial and temporal distribution of gastrointestinal nematodes of cattle has been little studied in Mexico. Previous studies have described periods of higher larval presence, vertical and horizontal migration in grasslands, and the frequency of adult nematodes; as well as the effect of pasture trichomes on the migration and survival of Haemonchus larvae. The aim of this study was to determine the time-space layout and spread of gastrointestinal nematode larvae on pasture, and to estimate the effect of ivermectin applied to cattle on the time-dependent abundance of their eggs in a ranch in Veracruz. To determine the spatio-temporal arrangement, monthly morning grass samples were obtained from 30 sampling points from July 2008 to June 2009. Third stage larvae (L3) from each point were counted, and aggregation patterns were estimated through variance/mean and negative binomial K indices. Additionally, the number of eggs per gram in cattle feces was determined, from samples with (CI) and without ivermectin (SI), using standard techniques. A total of 20 276 L(3) larvae were recovered in the pasture, of which an 80% corresponded to Haemonchus contortus. The highest nematode density with more than 5 000L(3)/kgDM was detected in October 2008, and the lowest in February and March 2009. The L3 showed an aggregated spatial pattern of varying intensity throughout the year. The number of eggs in the stool was not reduced with the ivermectin application to cattle, which suggested a failure of control. However, the highest parasite loads were observed from July to November 2008. We concluded that the application of ivermectin was not effective to control nematodes eggs, and that L3 populations fluctuated on pasture for ten months, providing an infection source to grazing animals afterwards. PMID:24432531

  9. Spatio-temporal dynamics of soil water in a semi-arid Mediterranean ecosystem: implications for plant dynamics and spatial pattern.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Moret-Fernández, David; Arroyo, Antonio I.; de Frutos, Ángel; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Soil water presents high temporal and spatial variability in drylands. The temporal variability is determined by the heterogeneous and unpredictable rainfall pattern in these ecosystems. The spatial variability is associated to the well-known "source-sink" eco-hydrological dynamics occurring in drylands, related to the patchy vegetation and bare soil structure with water run-off generated on the bare soil patches and water infiltration preferentially into vegetated areas. These run-off - run-on systems has been extensively studied and the processes involved are well known, including the role of different plant types capturing the water run-on, increasing infiltration and reducing evaporation under plant canopies. However, integrative studies of hydrological and ecological processes in a whole ecosystem during a prolonged time period are scarce, despite the relevance of this approach to understand the role of hydrological processes (and what hydrological process are most important) determining plant dynamics and spatial pattern. We present an eco-hydrological study conducted in a semiarid Mediterranean ecosystem in the Middle Ebro Valley (NE Spain), where soil water content and patterns of plant establishment were followed during 30 months in 4 microsites: open bare areas, under two shrub species (Salsola vermiculata and Artemisia herba-alba) and one perennial grass species (Lygeum spartum). These 4 microsites represent the vast majority of the land in the ecosystem under study. Water infiltration, photosynthetic photon flux and soil temperature were also recorded in the 4 microsites. Simultaneously, seedling establishment and survival were recorded twice per year in the same microsites. Lygeum spartum was the microsite with the largest increment in water infiltration, and with the largest reduction in both solar radiation and soil temperature when compared with the measurement in the open bare areas. However, soil water content after rainfall under the canopy of Salsola vermiculata was the largest, indicating that canopy interception could be a less relevant process under the canopy of S. vermiculata than under the canopy of L. spartum. Moreover, there was an interactive effect of the soil water content before rainfall and the magnitude of the rainfall with the microsite (i.e. wet bare soils infiltrated more water than dry bare soils, being this difference less relevant in the vegetated microsites). Patterns of seedling establishment and survival correlated to patterns in soil water content, pointing out the relevance of the eco-hydrological spatio-temporal heterogeneity in the dynamics and spatial pattern of plant communities. Seedling establishment occurs in the first centimetres of soil, where competition for water (under Lygeum spartum) and evaporation (in the open bare soil areas) seems to reduce the water availability for plant establishment.

  10. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression.

    PubMed

    Serag, Ahmed; Aljabar, Paul; Ball, Gareth; Counsell, Serena J; Boardman, James P; Rutherford, Mary A; Edwards, A David; Hajnal, Joseph V; Rueckert, Daniel

    2012-02-01

    Medical imaging has shown that, during early development, the brain undergoes more changes in size, shape and appearance than at any other time in life. A better understanding of brain development requires a spatio-temporal atlas that characterizes the dynamic changes during this period. In this paper we present an approach for constructing a 4D atlas of the developing brain, between 28 and 44 weeks post-menstrual age at time of scan, using T1 and T2 weighted MR images from 204 premature neonates. The method used for the creation of the average 4D atlas utilizes non-rigid registration between all pairs of images to eliminate bias in the atlas toward any of the original images. In addition, kernel regression is used to produce age-dependent anatomical templates. A novelty in our approach is the use of a time-varying kernel width, to overcome the variations in the distribution of subjects at different ages. This leads to an atlas that retains a consistent level of detail at every time-point. Comparisons between the resulting atlas and atlases constructed using affine and non-rigid registration are presented. The resulting 4D atlas has greater anatomic definition than currently available 4D atlases created using various affine and non-rigid registration approaches, an important factor in improving registrations between the atlas and individual subjects. Also, the resulting 4D atlas can serve as a good representative of the population of interest as it reflects both global and local changes. The atlas is publicly available at www.brain-development.org. PMID:21985910

  11. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Gran, Fredrik; Jensen, Jorgen A.

    2005-04-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acoustic energy, the signal to noise ratio will increase. However, to focus the data properly using the STA approach, the transmitters have to be separated from each other. This is done by dividing the available spectrum into several subbands with a small overlap. Separating different transmitters can be done by bandpass filtering. Therefore, the separation can be done instantaneously without the need for further transmissions, unlike spatial encoding relying on Hadamard or Golay coding schemes, where several transmissions have to be made before the decoding can be done. Motion artifacts from the decoding can, thus, be avoided. To further increase the transmitted energy, the excitation waveforms are designed as linear frequency modulated (FM) signals. This makes it possible to maintain the full excitation amplitude during most of the transmission. The design of the separation filters will also be discussed. The method was tested using the experimental ultrasound scanner RASMUS and evaluated using a reference setup with a linear FM excitation waveform and STA beamforming. The point spread function (PSF) was measured on a wire phantom in water. A wire phantom with an attenuating medium was also measured, where the proposed method achieved approximately 2 cm improvement in penetration depth. The signal to noise ratio was also measured, where the gain was approx. 7 dB in comparison to the reference.

  12. Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis.

    PubMed

    Ozbek, O; Millet, E; Anikster, Y; Arslan, O; Feldman, M

    2007-06-01

    Genetic structure of natural populations of wild crop relatives has been the subject of many studies. Yet, most of them focused on the assessment of spatial genetic diversity, while information on long-term variation, affected by yearly changes, has been considered only in few cases. The present study aimed therefore, to estimate the spatio-temporal genetic variation in populations of wild emmer wheat, the progenitor of domesticated wheat, and to assess the contribution of spatial versus temporal factors to the maintenance of genetic variation in a population. Single spikes were collected in the years 1988 and 2002 from plants that grew in the same sampling points, from six different habitats in the Ammiad conservation site, Eastern Galilee, Israel. Seeds were planted in a nursery and DNA was extracted from each plant and analyzed by the AFLP method. Fourteen primer combinations yielded 1,545 bands of which 50.0 and 48.8% were polymorphic in the years 1988 and 2002, respectively. Genetic diversity was much larger within populations than between populations and the temporal genetic diversity was considerably smaller than the spatial one. Nevertheless, population genetic structure may vary to some degree in different years, mainly due to fluctuations in population size because of yearly rainfall variations. This may lead to predominance of different genotypes in different years. Clustering the plants by their genetic distances grouped them according to their habitats, indicating the existence of genotype-environment affinities. The significance of the results in relation to factors affecting the maintenance of polymorphism in natural populations is discussed. PMID:17447050

  13. Spatio-Temporal Sensitivity of MODIS Land Surface Temperature Anomalies Indicates High Potential for Large-Scale Land Cover Change Detection in Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Muster, S.; Langer, M.; Abnizova, A.; Young, K. L.; Boike, J.

    2014-12-01

    The accelerated warming Arctic climate may alter the surface energy balance locally and regionally of which a changing land surface temperature (LST) is a key indicator. Modelling current and anticipated changes of the surface energy balance requires an understanding of the spatio-temporal interactions between LST and land cover. This paper investigated the accuracy of MODIS LST V5 1 km level 3 product and its spatio-temporal sensitivity to land cover properties in a Canadian High Arctic permafrost landscape. Land cover ranged from fully vegetated moss/segde grass tundra to sparsely vegetated bare soil and barren areas. Daily mean MODIS LST were compared to in-situ radiometer measurements over wet tundra for three summers and two winters in 2008, 2009, and 2010. MODIS LST showed an accuracy of 1.8°C and a RMSE of 3.8°C in the total observation period including both summer and winter. Agreement was lowest during summer 2009 and freeze-back periods which were associated with prevailing overcast conditions. A multi-year anomaly analysis revealed robust spatio-temporal patterns taking into account the found uncertainty and different atmospheric conditions. Summer periods with regional mean LST larger than 5°C showed highest spatial diversity with four distinct anomaly classes. Dry ridge areas heated up most whereas wetland areas and dry barren surfaces with high albedo were coolest. Mean inter-annual differences of LST anomalies for different land cover classes were less than 1°C. However, spatial pattern showed fewer positive anomalies in 2010 suggesting differences in surface moisture due to inter­annual differences in the amount of end-of-winter snow. Presented summer LST anomalies might serve as a baseline against which to evaluate past and future changes in land surface properties with regard to the surface energy balance. Sub-temporal heterogeneity due to snow or ice on/off as well as the effect of subpixel water bodies has to be taken into account. A multi-sensor approach combining thermal satellite measurements with high-resolution optical and radar imagery therefore promises to be an effective tool for a dynamic, process-based ecosystem monitoring scheme.

  14. Quantifying the spatio-temporal dynamics of woody plant encroachment using an integrative remote sensing, GIS, and spatial modeling approach

    NASA Astrophysics Data System (ADS)

    Buenemann, Michaela

    Despite a longstanding universal concern about and intensive research into woody plant encroachment (WPE)---the replacement of grasslands by shrub- and woodlands---our accumulated understanding of the process has either not been translated into sustainable rangeland management strategies or with only limited success. In order to increase our scientific insights into WPE, move us one step closer toward the sustainable management of rangelands affected by or vulnerable to the process, and identify needs for a future global research agenda, this dissertation presents an unprecedented critical, qualitative and quantitative assessment of the existing literature on the topic and evaluates the utility of an integrative remote sensing, GIS, and spatial modeling approach for quantifying the spatio-temporal dynamics of WPE. Findings from this research suggest that gaps in our current understanding of WPE and difficulties in devising sustainable rangeland management strategies are in part due to the complex spatio-temporal web of interactions between geoecological and anthropogenic variables involved in the process as well as limitations of presently available data and techniques. However, an in-depth analysis of the published literature also reveals that aforementioned problems are caused by two further crucial factors: the absence of information acquisition and reporting standards and the relative lack of long-term, large-scale, multi-disciplinary research efforts. The methodological framework proposed in this dissertation yields data that are easily standardized according to various criteria and facilitates the integration of spatially explicit data generated by a variety of studies. This framework may thus provide one common ground for scientists from a diversity of fields. Also, it has utility for both research and management. Specifically, this research demonstrates that the application of cutting-edge remote sensing techniques (Multiple Endmember Spectral Mixture Analysis, fuzzy logic-based change detection) to conventional medium spatial and spectral resolution imagery (Landsat Thematic Mapper, Landsat Enhanced Thematic Mapper Plus, ASTER) can be used to generate spatially explicit estimates of temporal changes in the abundance of woody plants and other surface materials. The research also shows that spatial models (Geographically Weighted Regression, Weights of Evidence, Weighted Logistic Regression) integrating this timely remotely sensed information with readily available GIS data can yield reasonably accurate estimates of an area's relative vulnerability to WPE and of the importance of anthropogenic and geoecological variables influencing the process. Such models may also be used for the testing of existing and generation of new scientific hypotheses about WPE, for evaluating the impact of natural or human-induced modifications of a landscape on the landscape's vulnerability to WPE, and for identifying target areas for conservation, restoration, or other management objectives. In sum, this dissertation demonstrates that integrative remote sensing, GIS, and spatial modeling approaches have enormous potential for addressing questions relevant to both rangelands research and management. However, it also suggests that much work remains to be done before we can translate our understanding of WPE into sustainable rangeland management strategies. In particular, we need to more fully explore the limitations and potentials of currently available data and techniques for quantifying WPE; build structures for data sharing and integration; develop a set of relevant standards; more actively engage in collaborative research efforts; and foster cross-cutting dialogues among researchers, managers, and communities.

  15. In-situ, high spatio-temporal resolution measurements of CO2 flux and isotopic composition on Mammoth Mountain, CA

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.; Marino, B.; Bergfeld, D.; Fischer, M. L.; Hancyk, J.; Xu, L.

    2010-12-01

    Measurement of CO2 emissions from volcano flanks and in ground waters has become an integral part of many monitoring programs, as spatial and temporal variations in these emissions may be indicative of volcanic unrest. The source and magnitude of CO2 emissions have been intensely studied at Mammoth Mountain, a dacitic volcano located on the rim of Long Valley caldera, California. These observations, combined with multiple geophysical data sets, suggest that unrest at Mammoth Mountain is driven by periodic release of CO2-rich magmatic fluid derived from basaltic dikes and sills at mid-crustal depths. While measurements of CO2 flux and determination of CO2 sources at volcanoes can place important constraints on gas transport and its relationship to volcanic activity, the spatio-temporal resolution of these measurements has been limited by the time and cost associated with making “point” CO2 flux measurements using the accumulation chamber (AC) method and sample collection and analysis of isotopic (14C-CO2 and 13C-CO2) compositions. We present a novel instrument platform for real-time monitoring of spatio-temporal distribution, emission rate and source of CO2 in volcanic systems. Time and space averaged CO2 fluxes are measured every half hour by the eddy covariance (EC) method. Least-squares inversions of EC data and modeled footprint functions provide estimates of CO2 emission rate and surface flux spatial distribution. AC measurements of soil CO2 flux yield detailed maps of flux spatial distribution and comparative emission rate estimates. A new field-portable isotopic analyzer provides, for the first time, in-situ, high frequency measurements of 14C and 13C compositions of CO2 in the atmosphere, soil gas, and dissolved in ground water. We tested the CO2 flux-monitoring component of this platform at the Horseshoe Lake tree kill area on Mammoth Mountain from 8 September to 24 October 2006. EC CO2 fluxes ranged from 218 to 3500 g m-2d-1. Maps of surface CO2 flux were simulated based on AC measurements made repeatedly on a grid over a ten-day period; large meteorologically driven variations in surface flux distributions and emission rates (16 to 52 t d-1) were observed. Using footprint modeling, we compared EC to AC measurements of CO2 flux. Half-hour EC CO2 fluxes were moderately correlated (R2 = 0.42) with AC fluxes, whereas average-daily EC and AC fluxes were well correlated (R2 = 0.70). The integrated CO2 flux and isotopic monitoring platform will be deployed and tested in Fall 2010 at Mammoth Mountain. EC and AC measurements of CO2 fluxes will be made at the Horseshoe Lake tree kill area and modeled CO2 surface flux distributions and emission rates will be compared. Measurements of 14C and 13C compositions of atmospheric, soil, and ground water CO2 will provide real-time determination of CO2 source.

  16. Spatio-temporal variability of water vapor investigated by lidar and FTIR vertical soundings above Mt. Zugspitze

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2014-11-01

    Water vapor is the most important greenhouse gas and its spatio-temporal variability strongly exceeds that of all other greenhouse gases. However, this variability has hardly been studied quantitatively so far. We present an analysis of a five-year period of water vapor measurements in the free troposphere above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer on the summit of Mt. Zugspitze and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL) at the Schneefernerhaus research station. The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. The SD of differences between both instruments ?IWV calculated for varied subsets of data serves as a measure of variability. The different subsets are based on various spatial and temporal matching criteria. Within a time interval of 20 min, the spatial variability becomes significant for horizontal distances above 2 km, but only in the warm season (?IWV = 0.35 mm). However, it is not sensitive to the horizontal distance during the winter season. The variability of IWV within a time interval of 30 min peaks in July and August (?IWV > 0.55 mm, mean horizontal distance = 2.5 km and has its minimum around midwinter (?IWV < 0.2 mm, mean distance > 5 km). The temporal variability of IWV is derived by selecting subsets of data from both instruments with optimal volume matching. For a short time interval of 5 min, the variability is 0.05 mm and increases to more than 0.5 mm for a time interval of 15 h. The profile variability of water vapor is determined by analyzing subsets of water vapor profiles recorded by the DIAL within time intervals from 1 to 5 h. For all altitudes, the variability increases with widened time intervals. The lowest relative variability is observed in the lower free troposphere around an altitude of 4.5 km. Above 5 km, the relative variability increases continuously up to the tropopause by about a factor of 3. Analysis of the covariance of the vertical variability reveals an enhanced variability of water vapor in the upper troposphere above 6 km. It is attributed to a more coherent flow of heterogeneous air masses, while the variability at lower altitudes is also driven by local atmospheric dynamics. By studying the short-term variability of vertical water vapor profiles recorded within a day, we come to the conclusion that the contribution of long-range transport and the advection of heterogeneous layer structures may exceed the impact of local convection by one order of magnitude even in the altitude range between 3 and 5 km.

  17. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.

    PubMed

    Kasabov, Nikola K

    2014-04-01

    The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. PMID:24508754

  18. Individual and spatio-temporal variations in the home range behaviour of a long-lived, territorial species.

    PubMed

    Campioni, Letizia; Delgado, María del Mar; Lourenço, Rui; Bastianelli, Giulia; Fernández, Nestor; Penteriani, Vincenzo

    2013-06-01

    Despite the fact that investigations of home range behaviour have exponentially evolved on theoretical, analytical and technological grounds, the factors that shape animal home range behaviour still represent an unsolved question and a challenging field of research. However, home range studies have recently begun to be approached under a new integrated conceptual framework, considering home range behaviour as the result of the simultaneous influences of temporal, spatial and individual-level processes, with potential consequences at the population level. Following an integrated approach, we studied the influence of both external and internal factors on variations in the home range behaviour of 34 radiotagged eagle owl (Bubo bubo) breeders. Home range behaviour was characterised through complementary analysis of space use, movement patterns and rhythms of activity at multiple spatio-temporal scales. The effects of the different phases of the biological cycle became considerably evident at the level of movement patterns, with males travelling longer distances than females during incubation and nestling periods. Both external (i.e. habitat structure and composition) and internal (i.e. sex and health state) factors explained a substantial amount of the variation in home range behaviour. At the broader temporal scale, home range and core area size were negatively correlated with landscape heterogeneity. Males showed (1) smaller home range and core area sizes, (2) more complex home range internal structure and (3) higher rates of movement. The better the physiological condition of the individuals, the simpler the internal home range structure. Finally, inter- and intra-individual effects contributed to shaping space use and movement patterns during the biological cycle. Because of the plurality of behavioural and ecological processes simultaneously involved in home range behaviour, we claim that an integrative approach is required for adequate investigation of its temporal and spatial variation. PMID:23086505

  19. Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion.

    PubMed

    Seyer, Alexandre; Cantiello, Michela; Bertrand-Michel, Justine; Roques, Véronique; Nauze, Michel; Bézirard, Valérie; Collet, Xavier; Touboul, David; Brunelle, Alain; Coméra, Christine

    2013-01-01

    Intestinal absorption of dietary fat is a complex process mediated by enterocytes leading to lipid assembly and secretion of circulating lipoproteins as chylomicrons, vLDL and intestinal HDL (iHDL). Understanding lipid digestion is of importance knowing the correlation between excessive fat absorption and atherosclerosis. By using time-of-flight secondary ion mass spectrometry (TOF-SIMS), we illustrated a spatio-temporal localization of fat in mice duodenum, at different times of digestion after a lipid gavage, for the first time. Fatty acids progressively increased in enterocytes as well as taurocholic acid, secreted by bile and engaged in the entero-hepatic re-absorption cycle. Cytosolic lipid droplets (CLD) from enterocytes were originally purified separating chylomicron-like, intermediate droplets and smaller HDL-like. A lipidomic quantification revealed their contents in triglycerides, free and esterified cholesterol, phosphatidylcholine, sphingomyelin and ceramides but also in free fatty acids, mono- and di-acylglycerols. An acyl-transferase activity was identified and the enzyme monoacylglycerol acyl transferase 2 (MGAT2) was immunodetected in all CLD. The largest droplets was also shown to contain the microsomal triglyceride transfer protein (MTTP), the acyl-coenzyme A-cholesterol acyltransferases (ACAT) 1 and 2, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). This highlights the fact that during the digestion of fats, enterocyte CLD contain some enzymes involved in the different stages of the metabolism of diet fatty acids and cholesterol, in anticipation of the crucial work of endoplasmic reticulum in the process. The data further underlines the dual role of chylomicrons and iHDL in fat digestion which should help to efficiently complement lipid-lowering therapy. PMID:23560035

  20. Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats.

    PubMed

    Cui, Yuan-Yuan; Xu, Hao; Wu, Huang-Hui; Qi, Jian; Shi, Juan; Li, Yun-Qing

    2014-01-01

    Diabetic neuropathic pain (DNP) is one of the most common clinical manifestations of diabetes mellitus (DM), which is characterized by prominent mechanical allodynia (DMA). However, the molecular mechanism underlying it has not fully been elucidated. In this study, we examined the spatio-temporal expression of a major nociceptive channel protein transient receptor potential vanilloid 1 (TRPV1) and analyzed its functional involvement by intrathecal (i.t.) application of TRPV1 antagonists in streptozocin (STZ)-induced DMA rat models. Western blot and immunofluorescent staining results showed that TRPV1 protein level was significantly increased in the soma of the dorsal root ganglion (DRG) neurons on 14 days after STZ treatment (DMA 14 d), whereas those in spinal cord and skin (mainly from the central and peripheral processes of DRG neurons) had already been enhanced on DMA 7 d to peak on DMA 14 d. qRT-PCR experiments confirmed that TRPV1 mRNA level was significantly up-regulated in the DRG on DMA 7 d, indicating a preceding translation of TRPV1 protein in the soma but preferential distribution of this protein to the processes under the DMA conditions. Cell counting assay based on double immunostaining suggested that increased TRPV1-immunoreactive neurons were likely to be small-sized and CGRP-ergic. Finally, single or multiple intrathecal applications of non-specific or specific TRPV1 antagonists, ruthenium red and capsazepine, at varying doses, effectively alleviated DMA, although the effect of the former was more prominent and long-lasting. These results collectively indicate that TRPV1 expression dynamically changes during the development of DMA and this protein may play important roles in mechanical nociception in DRG neurons, presumably through facilitating the release of CGRP. PMID:25020137

  1. Domain-specific perceptual causality in children depends on the spatio-temporal configuration, not motion onset

    PubMed Central

    Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina

    2013-01-01

    Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308

  2. Spatio-Temporal Expression and Functional Involvement of Transient Receptor Potential Vanilloid 1 in Diabetic Mechanical Allodynia in Rats

    PubMed Central

    Wu, Huang-Hui; Qi, Jian; Shi, Juan; Li, Yun-Qing

    2014-01-01

    Diabetic neuropathic pain (DNP) is one of the most common clinical manifestations of diabetes mellitus (DM), which is characterized by prominent mechanical allodynia (DMA). However, the molecular mechanism underlying it has not fully been elucidated. In this study, we examined the spatio-temporal expression of a major nociceptive channel protein transient receptor potential vanilloid 1 (TRPV1) and analyzed its functional involvement by intrathecal (i.t.) application of TRPV1 antagonists in streptozocin (STZ)-induced DMA rat models. Western blot and immunofluorescent staining results showed that TRPV1 protein level was significantly increased in the soma of the dorsal root ganglion (DRG) neurons on 14 days after STZ treatment (DMA 14 d), whereas those in spinal cord and skin (mainly from the central and peripheral processes of DRG neurons) had already been enhanced on DMA 7 d to peak on DMA 14 d. qRT-PCR experiments confirmed that TRPV1 mRNA level was significantly up-regulated in the DRG on DMA 7 d, indicating a preceding translation of TRPV1 protein in the soma but preferential distribution of this protein to the processes under the DMA conditions. Cell counting assay based on double immunostaining suggested that increased TRPV1-immunoreactive neurons were likely to be small-sized and CGRP-ergic. Finally, single or multiple intrathecal applications of non-specific or specific TRPV1 antagonists, ruthenium red and capsazepine, at varying doses, effectively alleviated DMA, although the effect of the former was more prominent and long-lasting. These results collectively indicate that TRPV1 expression dynamically changes during the development of DMA and this protein may play important roles in mechanical nociception in DRG neurons, presumably through facilitating the release of CGRP. PMID:25020137

  3. Spatio-Temporal Dynamics of Exploited Groundfish Species Assemblages Faced to Environmental and Fishing Forcings: Insights from the Mauritanian Exclusive Economic Zone

    PubMed Central

    Kidé, Saïkou Oumar; Manté, Claude; Dubroca, Laurent; Demarcq, Hervé; Mérigot, Bastien

    2015-01-01

    Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages’ structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997–2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment. PMID:26505198

  4. Spatio-Temporal Dynamics of Exploited Groundfish Species Assemblages Faced to Environmental and Fishing Forcings: Insights from the Mauritanian Exclusive Economic Zone.

    PubMed

    Kidé, Saïkou Oumar; Manté, Claude; Dubroca, Laurent; Demarcq, Hervé; Mérigot, Bastien

    2015-01-01

    Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages' structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997-2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment. PMID:26505198

  5. Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling

    PubMed Central

    2009-01-01

    Background Development of the cerebral cortex requires highly specific spatio-temporal regulation of gene expression. It is proposed that transcriptome profiling of the cerebral cortex at various developmental time points or regions will reveal candidate genes and associated molecular pathways involved in cerebral corticogenesis. Results Serial analysis of gene expression (SAGE) libraries were constructed from C57BL/6 mouse cerebral cortices of age embryonic day (E) 15.5, E17.5, postnatal day (P) 1.5 and 4 to 6 months. Hierarchical clustering analysis of 561 differentially expressed transcripts showed regionalized, stage-specific and co-regulated expression profiles. SAGE expression profiles of 70 differentially expressed transcripts were validated using quantitative RT-PCR assays. Ingenuity pathway analyses of validated differentially expressed transcripts demonstrated that these transcripts possess distinctive functional properties related to various stages of cerebral corticogenesis and human neurological disorders. Genomic clustering analysis of the differentially expressed transcripts identified two highly transcribed genomic loci, Sox4 and Sox11, during embryonic cerebral corticogenesis. These loci feature unusual overlapping sense and antisense transcripts with alternative polyadenylation sites and differential expression. The Sox4 and Sox11 antisense transcripts were highly expressed in the brain compared to other mouse organs and are differentially expressed in both the proliferating and differentiating neural stem/progenitor cells and P19 (embryonal carcinoma) cells. Conclusions We report validated gene expression profiles that have implications for understanding the associations between differentially expressed transcripts, novel targets and related disorders pertaining to cerebral corticogenesis. The study reports, for the first time, spatio-temporally regulated Sox4 and Sox11 antisense transcripts in the brain, neural stem/progenitor cells and P19 cells, suggesting they have an important role in cerebral corticogenesis and neuronal/glial cell differentiation. PMID:19799774

  6. Spatio-temporal evolution of female lung cancer mortality in a region of Spain, is it worth taking migration into account?

    PubMed Central

    Zurriaga, Oscar; Vanaclocha, Hermelinda; Martinez-Beneito, Miguel A; Botella-Rocamora, Paloma

    2008-01-01

    Background The Comunitat Valenciana (CV) is a tourist region on the Mediterranean coast of Spain with a high rate of retirement migration. Lung cancer in women is the cancer mortality cause that has increased most in the CV during the period 1991 to 2000. Moreover, the geographical distribution of risk from this cause in the CV has been previously described and a non-homogenous pattern was determined. The present paper studies the spatio-temporal distribution of lung cancer mortality for women in the CV during the period 1987–2004, in order to gain some insight into the factors, such as migration, that have had an influence on these changes. Methods A novel methodology, consisting of a Bayesian hierarchical model, is used in this paper. Such a model allows the handling of data with a very high disaggregation, while at the same time taking advantage of its spatial and temporal structure. Results The spatio-temporal pattern which was found points to geographical differences in the time trends of risk. In fact, the southern coastal side of the CV has had a higher increase in risk, coinciding with the settlement of a large foreign community in that area, mainly comprised of elderly people from the European Union. Conclusion Migration has frequently been ignored as a risk factor in the description of the geographical risk of lung cancer and it is suggested that this factor should be considered, especially in tourist regions. The temporal component in disease mapping provides a more accurate depiction of risk factors acting on the population. PMID:18234124

  7. DynaPop-X: A population dynamics model applied to spatio-temporal exposure assessment - Implementation aspects from the CRISMA project

    NASA Astrophysics Data System (ADS)

    Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann

    2014-05-01

    In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J.K., Hunter, G.J. (2007) A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935-953. Aubrecht, C., Fuchs, S., Neuhold, C. (2013a) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216. Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2013b) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163. Bhaduri, B. (2008) Population distribution during the day. In S. Shekhar & X. Hui, eds., Encyclopedia of GIS. Springer US, 880-885. Cockings, S., Martin, D. & Leung, S. (2010) Population 24/7: building space-time specific population surface models. In M. Haklay, J. Morley, & H. Rahemtulla, eds., Proceedings of the GIS Research UK 18th Annual conference. GISRUK 2010. London, UK, 41-47. Freire, S., Aubrecht, C. (2012) Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533-3543.

  8. Optimizing Spatio-Temporal Sampling Designs of Synchronous, Static, or Clustered Measurements

    NASA Astrophysics Data System (ADS)

    Helle, Kristina; Pebesma, Edzer

    2010-05-01

    When sampling spatio-temporal random variables, the cost of a measurement may differ according to the setup of the whole sampling design: static measurements, i.e. repeated measurements at the same location, synchronous measurements or clustered measurements may be cheaper per measurement than completely individual sampling. Such "grouped" measurements may however not be as good as individually chosen ones because of redundancy. Often, the overall cost rather than the total number of measurements is fixed. A sampling design with grouped measurements may allow for a larger number of measurements thus outweighing the drawback of redundancy. The focus of this paper is to include the tradeoff between the number of measurements and the freedom of their location in sampling design optimisation. For simple cases, optimal sampling designs may be fully determined. To predict e.g. the mean over a spatio-temporal field having known covariance, the optimal sampling design often is a grid with density determined by the sampling costs [1, Ch. 15]. For arbitrary objective functions sampling designs can be optimised relocating single measurements, e.g. by Spatial Simulated Annealing [2]. However, this does not allow to take advantage of lower costs when using grouped measurements. We introduce a heuristic that optimises an arbitrary objective function of sampling designs, including static, synchronous, or clustered measurements, to obtain better results at a given sampling budget. Given the cost for a measurement, either within a group or individually, the algorithm first computes affordable sampling design configurations. The number of individual measurements as well as kind and number of grouped measurements are determined. Random locations and dates are assigned to the measurements. Spatial Simulated Annealing is used on each of these initial sampling designs (in parallel) to improve them. In grouped measurements either the whole group is moved or single measurements within the group, e.g. static measurements may be moved to another location or the sampling times may be rearranged. After several optimisation steps, the objective functions of the sampling designs are compared. Only for the best ones optimisation is pursued. After several iterations the sampling designs are selected again. Thus more and more of the low performing sampling designs are deleted and computational effort is concentrated on the most promising candidates. The use case is optimisation of a monitoring sampling design for a river. We use a flow model to simulate the spread of a pollutant that enters the system at different locations with known, location-dependent probabilities and at random times. The objective function to be minimised is the amount of pollution that is not detected. Keywords: spatio-temporal sampling design, static sample, synchronous sample, spatial simulated annealing, cost function References [1] Jaap de Gruijter, Dick Brus, Marc Bierkens, and Martin Knotters. Sampling for Natural Ressource Monitoring. Springer, 2006. [2] J. W. van Groenigen. Spatial simulated annealing for optimizing sampling, In: GeoENV I Geostatistics for environmental applications, pages 351 - 361, 1997.

  9. Spatio-temporal Trends in Hydrology at the Turkey Lakes Watershed: Insights from 35 Years of Monitoring

    NASA Astrophysics Data System (ADS)

    Webster, K. L.; Beall, F.; Semkin, R.

    2014-12-01

    The Turkey Lake Watershed (TLW) is located on the Precambrian Shield in central Ontario, Canada and has been the site of multi-discipline ecosystem research since 1979. The 10.5 km2 watershed is within the Great Lakes - St. Lawrence forest region with an uneven-aged tolerant hardwood forest having 90% of the basal area as mature to over-mature sugar maple. Podzolic soils and small forested wetlands have developed in the complex topography of the watershed where variable glacial till deposits occur over predominantly metamorphic silicate bedrock. Within the watershed, 13 first-order catchments that vary in size and topography have been monitored to elucidate spatio-temporal processes controlling run-off patterns. Over the 35 year period mean annual air temperatures at the TLW have increased at a rate of 0.75 oC per decade, with large inter-annual climate variability due to the influence of regional climate oscillations. As a result of warmer climate there has been a decline in annual export of water, as well as, changes in the seasonal distribution of runoff, Snowmelt has been occurring earlier and the number of zero-flow days are increasing. Declines in runoff were greater for catchments with steep slopes and less for those with shallow slopes and wetland areas. The large year to year variability in weather conditions made detecting the impacts on runoff from different harvesting treatments in 1997 difficult. These changes and fluctuations in water yields induced by fluctuating and changing climate have been shown to have had large consequences on element (carbon, nitrogen and sulphur) cycling within and export from catchments.

  10. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites. PMID:25592734

  11. Spatio-temporal regulation of Wnt and retinoic acid signaling by tbx16/spadetail during zebrafish mesoderm differentiation

    PubMed Central

    2010-01-01

    Background A complex network of signaling pathways and transcription factors regulates vertebrate mesoderm development. Zebrafish mutants provide a powerful tool for examining the roles of individual genes in such a network. spadetail (spt) is a mutant with a lesion in tbx16, a T-box transcription factor involved in mesoderm development; the mutant phenotype includes disrupted primitive red blood cell formation as well as disrupted somitogenesis. Despite much recent progress, the downstream targets of tbx16 remain incompletely understood. The current study was carried out to test whether any of the five major signaling pathways are regulated by tbx16 during two specific stages of mesoderm development: primitive red blood cell formation in the intermediate mesoderm and somite formation in the tail paraxial mesoderm. This test was performed using Gene Set Enrichment Analysis, which identifies coordinated changes in expression among a priori sets of genes associated with biological features or processes. Results Our Gene Set Enrichment Analysis results identify Wnt and retinoic acid signaling as likely downstream targets of tbx16 in the developing zebrafish intermediate mesoderm, the site of primitive red blood cell formation. In addition, such results identify retinoic acid signaling as a downstream target of tbx16 in the developing zebrafish posterior somites. Finally, using candidate gene identification and in situ hybridization, we provide expression domain information for 25 additional genes downstream of tbx16 that are outside of both pathways; 23 were previously unknown downstream targets of tbx16, and seven had previously uncharacterized expression in zebrafish. Conclusions Our results suggest that (1) tbx16 regulates Wnt signaling in the developing zebrafish intermediate mesoderm, the site of primitive red blood cell formation, and (2) tbx16 regulates retinoic acid signaling at two distinct embryonic locations and developmental stages, which may imply ongoing spatio-temporal regulation throughout mesoderm development. PMID:20828405

  12. A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.

    PubMed

    Hendrickson, Phillip J; Yu, Gene J; Dong Song; Berger, Theodore W

    2015-08-01

    This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatiotemporal "clustering". To identify the network property or properties responsible for generating such firing "clusters", we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" that organize the processing of entorhinal signals. PMID:26737346

  13. A spatio-temporal Fourier-transform approach to acousto-optic interaction of light beams with cw and pulsed ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Tarn, Chen-Wen; Banerjee, Partha P.

    1991-10-01

    We use a spatio-temporal Fourier-transform approach and a perturbation technique to analyze acousto-optic interaction between an input optical beam of arbitrary profile and pulsed ultrasound. We write the sound field as a superposition of a time- harmonic constant-amplitude wave and a modulated pulse. While the scattering of the input light beam by the former component can be effectively handled using a spatial Fourier-transform technique, the additional contribution can be analyzed using a spatio- temporal Fourier-transform approach. Numerical results, calculated using the equivalent spatial and spatio-temporal transfer functions, are shown for the case of Bragg diffraction.

  14. Detection of Spatio-temporal variations of rainfall and temperature extremes over India

    NASA Astrophysics Data System (ADS)

    Hari, V.; Karmakar, S.; Ghosh, S.

    2012-12-01

    Hydrologic disturbances are commonly associated with the phenomenal occurrence of extreme events. The human kind has always been facing problem with hydrologic extremes in terms of deaths and economic loss. Hence, a complete analysis of observed extreme events will have a substantial role in planning, designing and management of the water resource systems. In India, the occurrence of extreme events, such as heavy rainfall, which is directly associated with the flash flood have been observed. For example; in 2005, Mumbai city of India suffered a huge economic damage, due to the record rainfall of 94 cm in a day. In the same year, two other major cities Chennai and Bangalore had also experienced the flash floods due to the heavy rainfall. Hence, occurrence of these recent events instigates researchers to investigate long term variation and trend of extreme rainfall over India. Very few previous studies have been conducted in India either considering a particular region or by considering a single extreme rainfall variable (either frequency or intensity of rainfall). In the present study, rainfall variables such as intensity, duration, frequency and volume are considered to investigate spatio-temporal variations for the entire India. The peak over threshold method with 95 percentile is considered to delineate the extreme variables from the observed rainfall data available (at 1×1 deg) for a period of 1901-2004. The temporal variability is determined by implementing a moving window of 30 years. As well as, the correlation analysis is conducted with the implementation of non-parametric coefficients. The spatio-temporal variability of 50 year return level (RL) for the rainfall intensity is determined considering Generalized Pareto and non-parametric kernel distributions as best fit. To identify the significant changes in the derived RL from first to last time window, a bootstrap-based approach proposed by Kharin and Zwiers (2005, Jl. of Climate, 18, 1156-1173) is implemented. The results from this study exhibit the observable changes in the rainfall extreme events that occurred over India in past century. The country experienced large spatial heterogeneity of all the four rainfall variables, even in the meteorologically homogeneous regions. The correlation analyses show that the maximum grids are having positive correlation, however for the duration-frequency, a significant correlation is observed in few grids, with most of the grids showing no correlation. The spatial variation of RL shows spatial heterogeneity and trend analyses exhibit lack of uniformity throughout India. The change in RL shows significant positive change in mainly during past 50 years. The possible reason could be urbanization and change in climate variables. Hence for further investigation, this analysis will be associated with the temperature extremes data throughout India.

  15. The Spatio-temporal Statistical Structure and Ergodic Behaviour of Scalar Turbulence Within a Rod Canopy

    NASA Astrophysics Data System (ADS)

    Ghannam, Khaled; Poggi, Davide; Porporato, Amilcare; Katul, Gabriel G.

    2015-12-01

    Connections between the spatial and temporal statistics of turbulent flow, and their possible convergence to ensemble statistics as assumed by the ergodic hypothesis, are explored for passive scalars within a rod canopy. While complete ergodicity is not expected to apply over all the spatial domain within such heterogeneous flows, the fact that canopy turbulence exhibits self-similar characteristics at a given depth within the canopy encourages a discussion on necessary conditions for an `operational' ergodicity framework. Flows between roughness elements such as within canopies exhibit features that distinguish them from their well-studied classical boundary-layer counterparts. These differences are commonly attributed to short-circuiting of the energy cascade and the prevalence of intermittent von Kármán vortex streets in the deeper layers of the canopy. Using laser-induced fluorescence measurements at two different depths within a rod canopy situated in a large flume, the spatio-temporal statistical properties and concomitant necessary conditions for ergodicity of passive scalar turbulence statistics are evaluated. First, the integral time and length scales are analyzed and their corresponding maximum values are used to guide the construction of an ensemble of independent realizations from repeated spatio-temporal concentration measurements. As a statistical analysis for an operational ergodicity check, a Kolmogorov-Smirnov test on the distributions of temporal and spatial concentration series against the ensemble was conducted. The outcome of this test reveals that ergodicity is reasonably valid over the entire domain except close to the rod elements where wake-induced inhomogeneities and damped turbulence prevail. The spatial concentration statistics within a grid-cell (square domain formed by four corner rods) appear to be less ergodic than their temporal counterparts, which is not surprising given the periodicity and persistence of von Kármán vortices in the flow field. Also, a local advection velocity of dominant eddies is inferred using lagged cross-correlations of scalar concentration time series at different spatial locations. The computed probability density function of this advection velocity agrees well with the laser Doppler anemometry measurements for the same rod canopy.

  16. Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama Zone, Southern Ethiopia

    PubMed Central

    Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt

    2015-01-01

    Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama Zone in southern Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama Zone. The findings can be used to guide TB control programs to devise effective TB control strategies for the geographic areas characterized by the highest CNRs. Further studies are required to understand the factors associated with clustering based on individual level locations and investigation of cases. PMID:26030162

  17. Spatio-temporal modeling with GIS and remote sensing for schistosomiasis control in Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Bing

    Schistosomiasis is a water-borne parasitic disease endemic in tropical and subtropical areas. Its transmission requires certain kind of snail as the intermediate host. Some efforts have been made to mapping snail habitats with remote sensing and schistosomiasis transmission modeling. However, the modeling is limited to isolated residential groups and does not include spatial interaction among those groups. Remotely sensed data are only used in snail habitat classification, not in estimation of snail abundance that is an important parameter in schistosomiasis transmission modeling. This research overcomes the above two problems using innovative geographic information system (GIS) and remote sensing technology. A mountainous environment near Xichang, China, is chosen as the test site. Environmental and epidemiological data are stored in a GIS to support modeling. Snail abundance is estimated from land-cover and land-use fractions derived from high spatial resolution IKONOS satellite data. Spatial interaction is determined in consideration of neighborhoods, group areas, relative slopes among groups, and natural barriers. Land-cover and land-use information extracted from 4 m high resolution IKONOS data is used as reference in scaling up to the regional level. The scale-up is done with coarser resolution satellite data including Landsat Thematic Mapper (TM), EO-1 Advanced Land Imager (ALI) and Hyperion data all at 30 m resolution. Snail abundance is estimated by regressing snail survey data with land-cover and land-use fractions. An R2 of 0.87 is obtained between the average snail density predicted and that surveyed at the group level. With such a model, a snail density map is generated for all residential groups in the study area. A spatio-temporal model of schistosomiasis transmission is finally built to incorporate the spatial interaction caused by miracidia and cercaria migration. Comparing the model results with and without spatial interaction has revealed a number of advantages of the spatio-temporal model. Particularly, with the inclusion of spatial interaction, more effective control of schistosomiasis transmission over the whole study area can be achieved.

  18. Identifying the spatio-temporal trends in snow cover in upper Euphrates basin using remote sensing

    NASA Astrophysics Data System (ADS)

    Sürer, S.; Akyürek, Z.; Arda ?orman, A.; ?orman, A. ?.; Ünal ?orman, A.

    2009-04-01

    The Euphrates and Tigris are the two major rivers which serve as the most important water resources in the Middle East. The precipitation falls mostly in the form of snow over higher elevations of Euphrates Basin and remains on the ground for nearly half of the year. Monitoring of this snow covered area (SCA) which is a key element for hydrological cycle is crucial for making accurate forecasts of snowmelt discharge especially for energy production, flood control, irrigation and reservoir operation optimization in the upper Euphrates basin. Remote sensing allows detection of spatio-temporal patterns of snow cover across large areas in inaccessible terrain like Eastern part of Turkey which is highly mountainous. In this study the seasonal evaluation of snow cover from 2000 to 2008 is performed by using eight-day snow cover products (MOD10C2). The MOD10C2 is a climate modeling grid product at a 0.05o resolution with global coverage and 8-day availability. The utility of the snow recognition product (SNOBS-1b) of EUMETSAT Hydrological Application Facility (HSAF) project in obtaining snow cover area is also analyzed. The SNOBS-1b snow cover product is a daily product having 0.05o resolution. The final version of SNOBS-1b product has started to be produced since January 2008 by the project team members (METU, AU). Therefore the comparison in retrieving snow cover area from MOD10C2 and SNOBS-1b was performed for the snow year 2007-2008 for eastern part of Turkey. In comparison of the snow cover area for the period of 2000-2008, an earlier melting was observed in the last three years compared to the previous years. This early melting was seen obviously at lower elevation zones (lower than 2000 m) of the basin. At elevation zones having higher elevations than 2000m, the spatio-temporal pattern of snow cover does not show too much variation among the years. In order to investigate the warming trend in the study area, the long term precipitation and temperature data collected at meteorological stations located in the basin were used. Using the snowmelt runoff model (SRM), the relationship among air temperature, precipitation, snow cover and runoff is analyzed. The potential effects of climate change on the runoff characteristics of the upper Euphrates basin are discussed.

  19. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area

    PubMed Central

    Boulangeat, Isabelle; Georges, Damien; Dentant, Cédric; Bonet, Richard; Van Es, Jérémie; Abdulhak, Sylvain; Zimmermann, Niklaus E.; Thuiller, Wilfried

    2014-01-01

    Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity pasturing to maintain high levels of plant diversity in this system. PMID:25722538

  20. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich spatio-temporal and oscillatory dynamics can evolve from a relatively small number of interacting local circuits. PMID:26635545

  1. Spatio-temporal earthquake risk assessment for the Lisbon Metropolitan Area - A contribution to improving standard methods of population exposure and vulnerability analysis

    NASA Astrophysics Data System (ADS)

    Freire, Sérgio; Aubrecht, Christoph

    2010-05-01

    The recent 7.0 M earthquake that caused severe damage and destruction in parts of Haiti struck close to 5 PM (local time), at a moment when many people were not in their residences, instead being in their workplaces, schools, or churches. Community vulnerability assessment to seismic hazard relying solely on the location and density of resident-based census population, as is commonly the case, would grossly misrepresent the real situation. In particular in the context of global (climate) change, risk analysis is a research field increasingly gaining in importance whereas risk is usually defined as a function of hazard probability and vulnerability. Assessment and mapping of human vulnerability has however generally been lagging behind hazard analysis efforts. Central to the concept of vulnerability is the issue of human exposure. Analysis of exposure is often spatially tied to administrative units or reference objects such as buildings, spanning scales from the regional level to local studies for small areas. Due to human activities and mobility, the spatial distribution of population is time-dependent, especially in metropolitan areas. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective risk analysis and emergency management. Therefore, accounting for the spatio-temporal dynamics of human vulnerability correlates with recent recommendations to improve vulnerability analyses. Earthquakes are the prototype for a major disaster, being low-probability, rapid-onset, high-consequence events. Lisbon, Portugal, is subject to a high risk of earthquake, which can strike at any day and time, as confirmed by modern history (e.g. December 2009). The recently-approved Special Emergency and Civil Protection Plan (PEERS) is based on a Seismic Intensity map, and only contemplates resident population from the census as proxy for human exposure. In the present work we map and analyze the spatio-temporal distribution of population in the daily cycle to re-assess exposure to earthquake hazard in the Lisbon Metropolitan Area, home to almost three million people. New high-resolution (50 m grids) daytime and nighttime population distribution maps are developed using dasymetric mapping. The modeling approach uses areal interpolation to combine best-available census data and statistics with land use and land cover data. Mobility statistics are considered for mapping daytime distribution, and empirical parameters used for interpolation are obtained from a previous effort in high resolution population mapping of part of the study area. Finally, the population distribution maps are combined with the Seismic Hazard Intensity map to: (1) quantify and compare human exposure to seismic intensity levels in the daytime and nighttime periods, and (2) derive nighttime and daytime overall Earthquake Risk maps. This novel approach yields previously unavailable spatio-temporal population distribution information for the study area, enabling refined and more accurate earthquake risk mapping and assessment. Additionally, such population exposure datasets can be combined with different hazard maps to improve spatio-temporal assessment and risk mapping for any type of hazard, natural or man-made. We believe this improved characterization of vulnerability and risk can benefit all phases of the disaster management process where human exposure has to be considered, namely in emergency planning, risk mitigation, preparedness, and response to an event.

  2. The influence of the inhomogeneous gain profile on the spatio-temporal dynamics of broad-area class B lasers

    NASA Astrophysics Data System (ADS)

    Cabrera-Granado, E.; Odín Soler Rus, M.; Guerra, J. M.

    2010-03-01

    A study on the spatio-temporal dynamics of broad-area Nd:YAG (yttrium aluminium garnet), Nd-doped phosphate glass and Nd-doped silicate glass lasers is presented to show the influence of the inhomogeneous gain profile and cross-relaxation phenomena on the spatio-temporal dynamics of the system. The suppression of the order-disorder transition shown in Cabrera et al (2006 Opt. Lett. 31 1067) for homogeneously broadened class B lasers is found for both glass lasers, independently of the strength of the cross-relaxation mechanisms. The results obtained indicate that a higher degree of inhomogeneous broadening leads to suppression of the filamentation in the transverse intensity pattern.

  3. The Critical Role of Golgi Cells in Regulating Spatio-Temporal Integration and Plasticity at the Cerebellum Input Stage

    PubMed Central

    D'Angelo, Egidio

    2008-01-01

    The discovery of the Golgi cell is bound to the foundation of the Neuron Doctrine. Recently, the excitable mechanisms of this inhibitory interneuron have been investigated with modern experimental and computational techniques raising renewed interest for the implications it might have for cerebellar circuit functions. Golgi cells are pacemakers with preferential response frequency and phase-reset in the theta-frequency band and can therefore impose specific temporal dynamics to granule cell responses. Moreover, through their connectivity, Golgi cells determine the spatio-temporal organization of cerebellar activity. Finally, Golgi cells, by controlling granule cell depolarization and NMDA channel unblock, regulate the induction of long-term synaptic plasticity at the mossy fiber – granule cell synapse. Thus, the Golgi cells can exert an extensive control on spatio-temporal signal organization and information storage in the granular layer playing a critical role for cerebellar computation. PMID:18982105

  4. Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nasser, Hassan; Marre, Olivier; Cessac, Bruno

    2013-03-01

    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In the first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have focused on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In the second part, we present a new method based on Monte Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles.

  5. Spatio-temporal templates of transient attention revealed by classification images.

    PubMed

    Megna, Nicola; Rocchi, Francesca; Baldassi, Stefano

    2012-02-01

    Visual attention is captured by transient signals in the periphery of the visual field, allowing enhanced perceptual representations in spatial tasks. However, it has been reported that the same cues impair performance in temporal tasks (e.g., Yeshurun, 2004; Yeshurun & Levy, 2003). This findings suggest that transient attention enhances the activity of slow, high-resolution channels, like parvocellular neurons, and/or shuts off faster channels better sensitive to low spatial frequencies, such as the ones of the magnocellular system. To test this idea, we have measured the spatio-temporal perceptive fields for transiently cued signals at various eccentricities using the classification images (CI) technique. At near eccentricities transient attention caused the perceptual templates to be sharper in space and characterized by much stronger high spatial frequency components. At the same time, they show a consistently larger temporal integration window. These effects of attention on perceptual filters are strongly reduced at far eccentricities and disappear when using longer target-cue lags. These data provide evidence in support of the parvocellular model of transient, exogenous attention, showing that in the presence of a well timed spatial cue observers rely on noisy evidence lasting longer and with finer spatial configurations. PMID:22186227

  6. A Spatio-Temporal Approach To Evolution Of Spatial Homogeneity Of Monsoon Extremes Over India

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Banerjee, B.; Sandeep, S.; Ravindran, A. M.

    2014-12-01

    There is a growing literature on climate change w.r.t. severe changes in extreme events related to the Monsoon rainfall over India. Evidence of increasing spatial variability of extreme rainfall triggers several aspects such as: how are the spatially homogeneous regions or clusters changing w.r.t. extreme rainfall over time? Is there detectable evidences of changes in cluster behavior? Can we arrive at a forecast? Purpose of this study is twofold: firstly, we introduce a novel discrete-time finite state-space hidden Markov models with non-constant transition matrix depending on a set of exogenous covariates including cluster level temporal information. We present a space-time varying dynamic with conditionally independent Generalized Extreme value (GEV) distribution as modeling extremes. Secondly, we introduce a model based spatio-temporal clustering algorithm based on the latter model. We illustrate this technique based on Monsoon rainfall data and show that the cluster characteristics are significantly changing along with the number of clusters. We also obtain one step ahead future patterns of the clusters.

  7. Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language.

    PubMed

    Shanableh, Tamer; Assaleh, Khaled; Al-Rousan, M

    2007-06-01

    This paper presents various spatio-temporal feature-extraction techniques with applications to online and offline recognitions of isolated Arabic Sign Language gestures. The temporal features of a video-based gesture are extracted through forward, backward, and bidirectional predictions. The prediction errors are thresholded and accumulated into one image that represents the motion of the sequence. The motion representation is then followed by spatial-domain feature extractions. As such, the temporal dependencies are eliminated and the whole video sequence is represented by a few coefficients. The linear separability of the extracted features is assessed, and its suitability for both parametric and nonparametric classification techniques is elaborated upon. The proposed feature-extraction scheme was complemented by simple classification techniques, namely, K nearest neighbor (KNN) and Bayesian, i.e., likelihood ratio, classifiers. Experimental results showed classification performance ranging from 97% to 100% recognition rates. To validate our proposed technique, we have conducted a series of experiments using the classical way of classifying data with temporal dependencies, namely, hidden Markov models (HMMs). Experimental results revealed that the proposed feature-extraction scheme combined with simple KNN or Bayesian classification yields comparable results to the classical HMM-based scheme. Moreover, since the proposed scheme compresses the motion information of an image sequence into a single image, it allows for using simple classification techniques where the temporal dimension is eliminated. This is actually advantageous for both computational and storage requirements of the classifier. PMID:17550118

  8. Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary

    NASA Astrophysics Data System (ADS)

    Artigas, M. L.; Llebot, C.; Ross, O. N.; Neszi, N. Z.; Rodellas, V.; Garcia-Orellana, J.; Masqué, P.; Piera, J.; Estrada, M.; Berdalet, E.

    2014-03-01

    Understanding the spatio-temporal variability of phytoplankton in aquaculture zones is necessary for the prevention and/or prediction of harmful algal bloom events. Synoptic cruises, time series analyses of physical and biological parameters, and 3D modeling were combined to investigate the variability of phytoplankton biomass in Alfacs Bay at basin scale. This microtidal estuary located in the NW Mediterranean is an important area of shellfish and finfish exploitation, which is regularly affected by toxic outbreaks. Observations showed the existence of a preferential phytoplankton accumulation area on the NE interior of the bay. This pattern can be observed throughout the year, and we show that it is directly linked to the physical forc