These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Task-specific functional brain geometry from model maps.  

PubMed

In this paper we propose model maps to derive and represent the intrinsic functional geometry of a brain from functional magnetic resonance imaging (fMRI) data for a specific task. Model maps represent the coherence of behavior of individual fMRI-measurements for a set of observations, or a time sequence. The maps establish a relation between individual positions in the brain by encoding the blood oxygen level dependent (BOLD) signal over a time period in a Markov chain. They represent this relation by mapping spatial positions to a new metric space, the model map. In this map the Euclidean distance between two points relates to the joint modeling behavior of their signals and thus the co-dependencies of the corresponding signals. The map reflects the functional as opposed to the anatomical geometry of the brain. It provides a quantitative tool to explore and study global and local patterns of resource allocation in the brain. To demonstrate the merit of this representation, we report quantitative experimental results on 29 fMRI time sequences, each with sub-sequences corresponding to 4 different conditions for two groups of individuals. We demonstrate that drug abusers exhibit lower differentiation in brain interactivity between baseline and reward related tasks, which could not be quantified until now. PMID:18979834

Langs, Georg; Samaras, Dimitris; Paragios, Nikos; Honorio, Jean; Alia-Klein, Nelly; Tomasi, Dardo; Volkow, Nora D; Goldstein, Rita Z

2008-01-01

2

Functional specificity in the human brain: A window into the functional architecture of the mind  

E-print Network

Nancy Kanwisher1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, CambridgeFunctional specificity in the human brain: A window into the functional architecture of the mind for review February 22, 2010) Is the human mind/brain composed of a set of highly specialized components

Kanwisher, Nancy

3

Functional specificity for high-level linguistic processing in the human brain  

E-print Network

Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain ...

Fedorenko, Evelina G.

4

In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data  

E-print Network

In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data by Danial #12;2 #12;3 In Search of Functional Specificity in the Brain: Generative Models for Group fMRI Data an exploratory framework for design and analysis of fMRI studies. In our framework, the experimenter presents

Golland, Polina

5

Functional specificity for high-level linguistic processing in the human brain  

E-print Network

Govern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 ContributedFunctional specificity for high-level linguistic processing in the human brain Evelina Fedorenkoa,1 , Michael K. Behra , and Nancy Kanwishera,b,1 a Brain and Cognitive Sciences Department and b Mc

Kanwisher, Nancy

6

Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood  

PubMed Central

Background Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors. Results Distinct tissue-specific patterns of DNA methylation were identified, with a highly significant over-representation of tissue-specific differentially methylated regions (TS-DMRs) observed at intragenic CpG islands and low CG density promoters. A large proportion of TS-DMRs were located near genes that are differentially expressed across brain regions. TS-DMRs were significantly enriched near genes involved in functional pathways related to neurodevelopment and neuronal differentiation, including BDNF, BMP4, CACNA1A, CACA1AF, EOMES, NGFR, NUMBL, PCDH9, SLIT1, SLITRK1 and SHANK3. Although between-tissue variation in DNA methylation was found to greatly exceed between-individual differences within any one tissue, we found that some inter-individual variation was reflected across brain and blood, indicating that peripheral tissues may have some utility in epidemiological studies of complex neurobiological phenotypes. Conclusions This study reinforces the importance of DNA methylation in regulating cellular phenotype across tissues, and highlights genomic patterns of epigenetic variation across functionally distinct regions of the brain, providing a resource for the epigenetics and neuroscience research communities. PMID:22703893

2012-01-01

7

Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment  

ERIC Educational Resources Information Center

We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

2012-01-01

8

Electro-acupuncture at different acupoints modulating the relative specific brain functional network  

NASA Astrophysics Data System (ADS)

Objective: The specific brain effects of acupoint are important scientific concern in acupuncture. However, previous acupuncture fMRI studies focused on acupoints in muscle layer on the limb. Therefore, researches on acupoints within connective tissue at trunk are warranted. Material and Methods: Brain effects of acupuncture on abdomen at acupoints Guanyuan (CV4) and Zhongwan (CV12) were tested using fMRI on 21 healthy volunteers. The data acquisition was performed at resting state, during needle retention, electroacupuncture (EA) and post-EA resting state. Needling sensations were rated after every electroacupuncture (EA) procedure. The needling sensations and the brain functional activity and connectivity were compared between CV4 and CV12 using SPSS, SPM2 and the local and remote connectivity maps. Results and conclusion: EA at CV4 and CV12 induced apparent deactivation effects in the limbic-paralimbic-neocortical network. The default mode of the brain was modified by needle retention and EA, respectively. The functional brain network was significantly changed post EA. However, the minor differences existed between these two acupoints. The results demonstrated similarity between functional brain network mode of acupuncture modulation and functional circuits of emotional and cognitive regulation. Acupuncture may produce analgesia, anti-anxiety and anti-depression via the limbic-paralimbic-neocortical network (LPNN).

Fang, Jiliang; Wang, Xiaoling; Wang, Yin; Liu, Hesheng; Hong, Yang; Liu, Jun; Zhou, Kehua; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing

2010-11-01

9

Topographically specific functional connectivity between visual field maps in the human brain  

Microsoft Academic Search

Neural activity in mammalian brains exhibits large spontaneous fluctuations whose structure reveals the intrinsic functional connectivity of the brain on many spatial and temporal scales. Between remote brain regions, spontaneous activity is organized into large-scale functional networks. To date, it has remained unclear whether the intrinsic functional connectivity between brain regions scales down to the fine detail of anatomical connections,

Jakob Heinzle; Thorsten Kahnt; John-Dylan Haynes

2011-01-01

10

Functional specificity in the human brain: A window into the functional architecture of the mind  

E-print Network

Is the human mind/brain composed of a set of highly specialized components, each carrying out a specific aspect of human cognition, or is it more of a general-purpose device, in which each component participates in a wide ...

Kanwisher, Nancy

11

Functional specificity for high-level linguistic processing in the human brain  

PubMed Central

Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain regions. For the critical case of language, conflicting answers arise from the neuropsychological literature, which features striking dissociations between deficits in linguistic and nonlinguistic abilities, vs. the neuroimaging literature, which has argued for overlap between activations for linguistic and nonlinguistic processes, including arithmetic, domain general abilities like cognitive control, and music. Here, we use functional MRI to define classic language regions functionally in each subject individually and then examine the response of these regions to the nonlinguistic functions most commonly argued to engage these regions: arithmetic, working memory, cognitive control, and music. We find little or no response in language regions to these nonlinguistic functions. These data support a clear distinction between language and other cognitive processes, resolving the prior conflict between the neuropsychological and neuroimaging literatures. PMID:21885736

Fedorenko, Evelina; Behr, Michael K.; Kanwisher, Nancy

2011-01-01

12

Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells  

PubMed Central

Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-Riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with Km and Vmax values of 19 ± 3 µM and 0.235 ± 0.012 picomoles/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca++/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-Riboflavin. Apical and baso-lateral uptake of [3H]-Riboflavin clearly indicate that riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. Blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. PMID:22683359

Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

2012-01-01

13

Non-verbal emotion communication training induces specific changes in brain function and structure.  

PubMed

The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

2013-01-01

14

Topographically specific functional connectivity between visual field maps in the human brain.  

PubMed

Neural activity in mammalian brains exhibits large spontaneous fluctuations whose structure reveals the intrinsic functional connectivity of the brain on many spatial and temporal scales. Between remote brain regions, spontaneous activity is organized into large-scale functional networks. To date, it has remained unclear whether the intrinsic functional connectivity between brain regions scales down to the fine detail of anatomical connections, for example the fine-grained topographic connectivity structure in visual cortex. Here, we show that fMRI signal fluctuations reveal a detailed retinotopically organized functional connectivity structure between the visual field maps of remote areas of the human visual cortex. The structured coherent fluctuations were even preserved in complete darkness when all visual input was removed. While the topographic connectivity structure was clearly visible in within hemisphere connections, the between hemisphere connectivity structure differs for representations along the vertical and horizontal meridian respectively. These results suggest a tight link between spontaneous neural activity and the fine-grained topographic connectivity pattern of the human brain. Thus, intrinsic functional connectivity reflects the detailed connectivity structure of the cortex at a fine spatial scale. It might thus be a valuable tool to complement anatomical studies of the human connectome, which is one of the keys to understand the functioning of the human brain. PMID:21376818

Heinzle, Jakob; Kahnt, Thorsten; Haynes, John-Dylan

2011-06-01

15

Cyclooxygenase-2-specific Inhibitor Improves Functional Outcomes, Provides Neuroprotection, and Reduces Inflammation in a Rat Model of Traumatic Brain Injury  

PubMed Central

OBJECTIVE Increases in brain cyclooxygenase-2 (COX2) are associated with the central inflammatory response and with delayed neuronal death, events that cause secondary insults after traumatic brain injury. A growing literature supports the benefit of COX2-specific inhibitors in treating brain injuries. METHODS DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)phenyl-2(5H)-furanone] is a third-generation, highly specific COX2 enzyme inhibitor. DFU treatments (1 or 10 mg/kg intraperitoneally, twice daily for 3 d) were initiated either before or after traumatic brain injury in a lateral cortical contusion rat model. RESULTS DFU treatments initiated 10 minutes before injury or up to 6 hours after injury enhanced functional recovery at 3 days compared with vehicle-treated controls. Significant improvements in neurological reflexes and memory were observed. DFU initiated 10 minutes before injury improved histopathology and altered eicosanoid profiles in the brain. DFU 1 mg/kg reduced the rise in prostaglandin E2 in the brain at 24 hours after injury. DFU 10 mg/kg attenuated injury-induced COX2 immunoreactivity in the cortex (24 and 72 h) and hippocampus (6 and 72 h). This treatment also decreased the total number of activated caspase-3–immunoreactive cells in the injured cortex and hippocampus, significantly reducing the number of activated caspase-3–immunoreactive neurons at 72 hours after injury. DFU 1 mg/kg amplified potentially anti-inflammatory epoxyeicosatrienoic acid levels by more than fourfold in the injured brain. DFU 10 mg/kg protected the levels of 2-arachidonoyl glycerol, a neuro-protective endocannabinoid, in the injured brain. CONCLUSION These improvements, particularly when treatment began up to 6 hours after injury, suggest exciting neuroprotective potential for COX2 inhibitors in the treatment of traumatic brain injury and support the consideration of Phase I/II clinical trials. PMID:15730585

Gopez, Jonas J.; Yue, Hongfei; Vasudevan, Ram; Malik, Amir S.; Fogelsanger, Lester N.; Lewis, Shawn; Panikashvili, David; Shohami, Esther; Jansen, Susan A.; Narayan, Raj K.; Strauss, Kenneth I.

2006-01-01

16

A simple view of the brain through a frequency-specific functional connectivity measure.  

PubMed

Here we develop a measure of functional connectivity describing the degree of covariability between a brain region and the rest of the brain. This measure is based on previous formulas for the mutual information (MI) between clusters of regions in the frequency domain. Under the current scenario, the MI can be given as a simple monotonous function of the multiple coherence and it leads to an easy visual representation of connectivity patterns. Computationally efficient formulas, adequate for short time series, are presented and applied to functional magnetic resonance imaging (fMRI) data measured in subjects (N=34) performing a working memory task or being at rest. While resting state coherence in high (0.17-0.25 Hz) and middle (0.08-0.17 Hz) frequency intervals is bilaterally salient in several limbic and temporal areas including the insula, the amygdala, and the primary auditory cortex, low frequencies (<0.08 Hz) have greatest connectivity in frontal structures. Results from the comparison between resting and N-back conditions show enhanced low frequency coherence in many of the areas previously reported in standard fMRI activation studies of working memory, but task related reductions in high frequency connectivity are also found in regions of the default mode network. Finally, potentially confounding effects of head movement and regional volume on MI are identified and addressed. PMID:17919927

Salvador, R; Martínez, A; Pomarol-Clotet, E; Gomar, J; Vila, F; Sarró, S; Capdevila, A; Bullmore, E

2008-01-01

17

Brain imaging and brain function  

SciTech Connect

This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

Sokoloff, L.

1985-01-01

18

Human Functional Brain Imaging  

E-print Network

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

Rambaut, Andrew

19

Specificity of Hemodynamic Brain Responses to Painful Stimuli: A functional near-infrared spectroscopy study  

PubMed Central

Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain. PMID:25820289

Yücel, Meryem A.; Aasted, Christopher M.; Petkov, Mihayl P.; Borsook, David; Boas, David A.; Becerra, Lino

2015-01-01

20

Specificity of Hemodynamic Brain Responses to Painful Stimuli: A functional near-infrared spectroscopy study.  

PubMed

Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain. PMID:25820289

Yücel, Meryem A; Aasted, Christopher M; Petkov, Mihayl P; Borsook, David; Boas, David A; Becerra, Lino

2015-01-01

21

Human Functional Brain Imaging  

E-print Network

forward: speculations on the future of human functional brain imaging 30 4.1 More solution-focused, October 2009 1. The Wellcome Trust has provided substantial funding for neuroscience and mental health

Rambaut, Andrew

22

Normal glucose uptake in the brain and heart requires an endothelial cell-specific HIF-1?–dependent function  

PubMed Central

Although intimately positioned between metabolic substrates in the bloodstream and the tissue parenchymal cells that require these substrates, a major role of the vascular endothelium in the regulation of tissue metabolism has not been widely appreciated. We hypothesized that via control of transendothelial glucose transport and contributing paracrine mechanisms the endothelium plays a major role in regulating organ and tissue glucose metabolism. We further hypothesized that the hypoxia-inducible factor -1? (HIF-1?) plays an important role in coordinating these endothelial functions. To test these hypotheses, we generated mice with endothelial cell-specific deletion of HIF-1?. Loss of HIF in the endothelium resulted in significantly increased fasting blood glucose levels, a blunted insulin response with delayed glucose clearance from the blood after i.v. loading, and significantly decreased glucose uptake into the brain and heart. Endothelial HIF-1? knockout mice also exhibited a reduced cerebrospinal fluid/blood glucose ratio, a finding consistent with reduced transendothelial glucose transport and a diagnostic criterion for the Glut1 deficiency genetic syndrome. Endothelial cells from these mice demonstrated decreased Glut1 levels and reduced glucose uptake that was reversed by forced expression of Glut1. These data strongly support an important role of the vascular endothelium in determining whole-organ glucose metabolism and indicate that HIF-1? is a critical mediator of this function. PMID:23047702

Huang, Yan; Lei, Li; Liu, DingGang; Jovin, Ion; Russell, Raymond; Johnson, Randall S.; Di Lorenzo, Annarita; Giordano, Frank J.

2012-01-01

23

Brain foods: the effects of nutrients on brain function  

Microsoft Academic Search

It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or

Fernando Gómez-Pinilla

2008-01-01

24

Brain Hemispheric Functioning.  

ERIC Educational Resources Information Center

Four articles consider brain hemisphere functioning of gifted students as it relates to gifted programs; alternation of education methodologies; spatial ability as an element of intellectual gifted functioning; and the interaction between hemisphere specialization, imagery, creative imagination, and sex differentiation. (SB)

Roeper Review, 1981

1981-01-01

25

Functional Brain Imaging  

PubMed Central

Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. The Technology Being Reviewed Functional Brain Imaging Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. Review Strategy The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for H

2006-01-01

26

Functional Brain Basis of Hypnotizability  

PubMed Central

Context Focused hypnotic concentration is a model for brain control over sensation and behavior. Pain and anxiety can be effectively alleviated by hypnotic suggestion, which modulates activity in brain regions associated with focused attention, but the specific neural network underlying this phenomenon is not known. Objective The main goal of the study was to investigate the brain basis of hypnotizability. Design Cross sectional, in-vivo neuroimaging study. Setting Academic medical center at Stanford University School of Medicine. Patients 12 adults with high and 12 adults with low hypnotizability. Main Outcome Measures (1) functional MRI (fMRI) to measure functional connectivity networks at rest including default-mode, salience and executive-control networks, (2) structural T1 MRI to measure regional grey and white matter volumes, and (3) diffusion tensor imaging (DTI) to measure white matter microstructural integrity. Results High-compared to low-hypnotizable individuals showed greater functional connectivity between left dorsolateral prefrontal cortex (DLPFC), an executive-control region of the brain, and the salience network composed of the dorsal anterior cingulate cortex (dACC), anterior insula, amygdala, and ventral striatum, involved in detecting, integrating, and filtering relevant somatic, autonomic, and emotional information, using independent component analysis (ICA). Seed based analysis confirmed elevated functional coupling between the dACC and the DLPFC in high, compared to low, hypnotizables. These functional differences were not due to variation in brain structure in these regions, including regional grey and white matter volumes and white matter microstructure. Conclusions Our results provide novel evidence that altered functional connectivity in DLPFC and dACC may underlie hypnotizability. Future studies focusing on how these functional networks change and interact during hypnosis are warranted. PMID:23026956

Hoeft, Fumiko; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan; Haas, Brian W.; Bammer, Roland; Menon, Vinod; Spiegel, David

2015-01-01

27

Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia.  

PubMed

Neuregulin 1 (NRG1) is essential for the development and function of multiple organ systems, and its dysregulation has been linked to diseases such as cancer and schizophrenia. Recently, altered expression of a novel isoform (type IV) in the brain has been associated with schizophrenia-related genetic variants, especially rs6994992 (SNP8NRG243177). Here we have isolated and characterized full-length NRG1 type IV cDNAs from the adult and fetal human brain and identified novel splice variants of NRG1. Full-length type IV spans 1.8 kb and encodes a putative protein of 590 amino acids with a predicted molecular mass of approximately 66 kDa. The transcript consists of 11 exons with an Ig-like domain, an epidermal growth factor-like (EGF) domain, a beta-stalk, a transmembrane domain, and a cytoplasmic "a-tail," placing it in the beta1a NRG1 subclass. NRG1 type IV was not detected in any tissues except brain and a putative type IV NRG1 protein of 66 kDa was similarly brain-specific. Type IV transcripts are more abundantly expressed in the fetal brain, where, in addition to the full-length structure, two novel type IV variants were identified. In vitro luciferase-reporter assays demonstrate that the 5' promoter region upstream of type IV is functional, with differential activity associated with genetic variation at rs6994992, and that promoter competition may impact on type IV expression. Our data suggest that type IV is a unique brain-specific NRG1 that is differentially expressed and processed during early development, is translated, and its expression regulated by a schizophrenia risk-associated functional promoter or single nucleotide polymorphism (SNP). PMID:17565985

Tan, Wei; Wang, Yanhong; Gold, Bert; Chen, Jingshan; Dean, Michael; Harrison, Paul J; Weinberger, Daniel R; Law, Amanda J

2007-08-17

28

Association of Parent Ratings of Executive Function With Global- and Setting-Specific Behavioral Impairment After Adolescent Traumatic Brain Injury  

PubMed Central

Objective To determine the association of primary caregiver-rated behavioral and metacognitive aspects of executive function (EF) with impaired functioning after adolescent traumatic brain injury (TBI). Design Multicenter cross-sectional study. Setting Outpatient. Participants Primary caregivers and children (N = 132) aged 12 to 17 years who sustained a moderate or severe TBI within the past 1 to 6 months. Interventions Not applicable. Main Outcome Measures Primary caregiver ratings of EF, tests of memory and processing speed (PS), and a structured parent interview to assess clinical impairments in behavioral functioning were used. Logistic regression was used to examine the relation of ratings of EF with clinical ratings of impairment in global adolescent functioning and in functioning in the home, school, and community settings after controlling for sex, race, socioeconomic status, injury severity, and performance on the tests of memory and PS. Results Caregiver ratings of poor EF were associated with impairment in both global behavioral functioning (odds ratio [OR] = 4.73; 95% confidence interval [CI], 1.54–14.52; P<.01) and community functioning (OR = 13.28; 95% CI, 1.94–90.87; P<.01). Conclusions Caregiver ratings of deficits in EF were associated with impaired behavioral functioning after adolescent TBI and were independent of performance on tests of memory and processing speed. Understanding the relation of EF with clinical impairments as manifested in different settings will help hone assessment batteries and focus treatments where they are needed most. PMID:23131527

Kurowski, Brad G.; Wade, Shari L.; Kirkwood, Michael W.; Brown, Tanya M.; Stancin, Terry; Cassedy, Amy; Taylor, H. Gerry

2013-01-01

29

Modulating Brain Oscillations to Drive Brain Function  

PubMed Central

Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

Thut, Gregor

2014-01-01

30

High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression  

PubMed Central

We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv) fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain. PMID:18414675

Kuhlman, Sandra J.; Huang, Z. Josh

2008-01-01

31

Brain foods: the effects of nutrients on brain function  

PubMed Central

It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness. PMID:18568016

Gómez-Pinilla, Fernando

2009-01-01

32

Network Assemblies in the Functional Brain  

PubMed Central

Purpose of review This review focuses on recent advances in functional connectivity MRI and renewed interest in knowing the large-scale functional network assemblies in the brain. We also consider some methodological aspects of graph theoretical analysis. Recent findings Network science applied to neuroscience is quickly growing in recent years. The characterization of the functional connectomes in normal and pathological brain conditions is now a priority for researchers in the neuropsychiatric field and current findings have provided new insights regarding the pivotal role of network epicenters and specific configurations of the functional networks in the brain. Summary Functional connectivity and its analytical tools are providing organization of the functional brain that will be key for the understanding of pathologies in neurology. PMID:22766721

Sepulcre, Jorge; Sabuncu, Mert R.; Johnson, Keith A.

2012-01-01

33

Nova regulates brain-specific splicing to shape the synapse  

Microsoft Academic Search

Alternative RNA splicing greatly increases proteome diversity and may thereby contribute to tissue-specific functions. We carried out genome-wide quantitative analysis of alternative splicing using a custom Affymetrix microarray to assess the role of the neuronal splicing factor Nova in the brain. We used a stringent algorithm to identify 591 exons that were differentially spliced in the brain relative to immune

Jernej Ule; Aljaž Ule; Joanna Spencer; Alan Williams; Jing-Shan Hu; Melissa Cline; Hui Wang; Tyson Clark; Claire Fraser; Matteo Ruggiu; Barry R Zeeberg; David Kane; John N Weinstein; John Blume; Robert B Darnell

2005-01-01

34

Emerging concepts of brain function.  

PubMed

For over 40 years, since I first obtained evidence for nonsynaptic diffusion neurotransmission (most scientists call it Volume Transmission), I have been convinced that we scientists were ignoring organizational dynamics other than the mechanistic synaptic organization of the brain. For many years it was an uneasy feeling, since I was aware there are so many avenues to explore in brain function. I have wondered how much we scientists have ignored, in our quest to understand how the brain really works, due to our efforts to "be scientific". In addition to the difficulty of understanding how the brain functions, how could we even begin to explore the human experience? In this paper I will first discuss some emerging concepts of brain function. I will then comment on the development of concepts that have been a part of my own research experience. PMID:15988797

Bach-Y-Rita, Paul

2005-06-01

35

Methods for functional brain imaging  

E-print Network

Magnetic resonance imaging (MRI) has demonstrated the potential for non-invasive mapping of structure and function (fMRI) in the human brain. In this thesis, we propose a series of methodological developments towards ...

Witzel, Thomas, Ph. D. Massachusetts Institute of Technology

2011-01-01

36

Functional Imaging: Is the Resting Brain Resting?  

E-print Network

Functional Imaging: Is the Resting Brain Resting? It is often assumed that the human brain only the function of this resting activity. R. Chris Miall1 and Edwin M. Robertson2 The human brain has a large, that an efficient strategy would be to use the brain only when absolutely necessary. But does the human brain

Miall, Chris

37

Evidence that increased 5-HT release evokes region-specific effects on blood-oxygenation level-dependent functional magnetic resonance imaging responses in the rat brain.  

PubMed

This study aimed to determine the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a non-invasive means of detecting effects of increased 5-HT release in brain. Changes in blood-oxygenation level-dependent (BOLD) contrast induced by administration of the 5-HT-releasing agent, fenfluramine, were measured in selected brain regions of halothane-anesthetized rats. Initial immunohistochemical measurements of the marker of neural activation, Fos, confirmed that in halothane-anesthetized rats fenfluramine (10 mg/kg i.v.) evoked cellular responses in cortical regions which were attenuated by pre-treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (300 mg/kg i.p. once daily for 2 days). Fenfluramine-induced Fos was demonstrated in numerous glutamatergic pyramidal neurons (Fos/excitatory amino acid carrier 1 (EAAC1) co-labeled), but also a small number of GABA interneurons (Fos/glutamic acid decarboxylase (GAD)(67) colabeled). Fenfluramine (10 mg/kg i.v.) evoked changes in BOLD signal intensity in a number of cortical and sub-cortical regions with the greatest effects being observed in the nucleus accumbens (-13.0%+/-2.7%), prefrontal cortex (-10.1%+/-3.2%) and motor cortex (+2.3%+/-1.0%). Pre-treatment with p-chlorophenylalanine, significantly attenuated the response to fenfluramine (10 mg/kg i.v.) in all regions with the exception of the motor cortex which showed a trend. These experiments demonstrate that increased 5-HT release evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in almost all regions by 5-HT depletion. These findings support the use of fMRI imaging methods as a non-invasive tool to study 5-HT function in animal models, with the potential for extension to clinical studies. PMID:19174180

Preece, M A; Taylor, M J; Raley, J; Blamire, A; Sharp, T; Sibson, N R

2009-03-17

38

Lead poisoning and brain cell function  

SciTech Connect

Exposure to excessive amounts of inorganic lead during the toddler years may produce lasting adverse effects upon brain function. Maximal ingestion of lead occurs at an age when major changes are occurring in the density of brain synaptic connections. The developmental reorganization of synapses is, in part, mediated by protein kinases, and these enzymes are particularly sensitive to stimulation by lead. By inappropriately activating specific protein kinases, lead poisoning may disrupt the development of neural networks without producing overt pathological alterations. The blood-brain barrier is another potential vulnerable site for the neurotoxic action of lead. protein kinases appear to regulate the development of brain capillaries and the expression of the blood-brain barrier properties. Stimulation of protein kinase by lead may disrupt barrier development and alter the precise regulation of the neuronal environment that is required for normal brain function. Together, these findings suggest that the sensitivity of protein kinases to lead may in part underlie the brain dysfunction observed in children poisoned by this toxicant.

Goldstein, G.W. (Johns Hopkins School of Medicine, Baltimore, MD (USA) Kennedy Institute, Baltimore, MD (USA))

1990-11-01

39

Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials  

PubMed Central

The response of the rat visual system to flashes of blue light has been studied by blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). The BOLD temporal response is dependent on the number of flashes presented and demonstrates a refractory period that depends on flash frequency. Activated brain regions included the primary and secondary visual cortex, superior colliculus (SC), dorsal Lateral Geniculate (DLG), and Lateral Posterior Nucleus (LP), which were found to exhibit differing temporal responses. To explain these differences, the BOLD neurovascular response function was modeled. A second order differential equation was developed and solved numerically to arrive at region-specific response functions. Included in the model are the light input from the diode (duty cycle), a refractory period, a transient response following onset and cessation of stimulus, and a slow adjustment to changes in the average level of the signal. Constants in the differential equation were evaluated for each region by fitting the model to the experimental BOLD response from a single flash, and the equation was then solved for multiple flashes. The simulation mimics the major features of the data; however, remaining differences in the frequency dependence of the response between the cortical and subcortical regions were unexplained. We hypothesized that these discrepancies were due to regional-specific differences in neuronal response to flash frequency. To test this hypothesis, cortical visual evoked potentials (VEPs) were recorded using the same stimulation protocol as the fMRI. Cortical VEPs were more suppressed than subcortical VEPs as flash frequency increased, supporting our hypothesis. This is the first report that regional differences in neuronal activation to the same stimulus lead to differential BOLD activation. PMID:18406628

Pawela, Christopher P.; Hudetz, Anthony G.; Ward, B. Douglas; Schulte, Marie L.; Li, Rupeng; Kao, Dennis S.; Mauck, Matthew C.; Cho, Younghoon R.; Neitz, Jay; Hyde, James S.

2008-01-01

40

Natriuretic Hormones in Brain Function  

PubMed Central

Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed. PMID:25506340

Hodes, Anastasia; Lichtstein, David

2014-01-01

41

Specific binding of atrial natriuretic factor in brain microvessels.  

PubMed Central

Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. We examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using 125I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity (dissociation constant, approximately 10(-10) M) and with a binding capacity of 58 fmol/mg of protein. The binding of 125I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function. Images PMID:2882516

Chabrier, P E; Roubert, P; Braquet, P

1987-01-01

42

Organization and Functions of the Brain  

Microsoft Academic Search

\\u000a This chapter gives an overview of the brain organization and functions performed by different parts of the brain. We will\\u000a try to answer the following questions: How is the human brain organized at the macroscopic and microscopic levels? Which functions\\u000a are performed by the brain? How is the organization of the human brain related to its functions? These and many

Lubica Benuskova; Nikola Kasabov

43

Did brain-specific genes evolve faster in humans than in chimpanzees?  

E-print Network

Did brain-specific genes evolve faster in humans than in chimpanzees? Peng Shi* , Margaret A distinctive characteristics of humans among primates is the size, organization and function of the brain among the five sets of brain-specific genes, none of them supports human acceleration. On the contrary

Zhang, Jianzhi

44

Frequency-specific network topologies in the resting human brain  

PubMed Central

A community is a set of nodes with dense inter-connections, while there are sparse connections between different communities. A hub is a highly connected node with high centrality. It has been shown that both “communities” and “hubs” exist simultaneously in the brain's functional connectivity network (FCN), as estimated by correlations among low-frequency spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signal changes (0.01–0.10 Hz). This indicates that the brain has a spatial organization that promotes both segregation and integration of information. Here, we demonstrate that frequency-specific network topologies that characterize segregation and integration also exist within this frequency range. In investigating the coherence spectrum among 87 brain regions, we found that two frequency bands, 0.01–0.03 Hz (very low frequency [VLF] band) and 0.07–0.09 Hz (low frequency [LF] band), mainly contributed to functional connectivity. Comparing graph theoretical indices for the VLF and LF bands revealed that the network in the former had a higher capacity for information segregation between identified communities than the latter. Hubs in the VLF band were mainly located within the anterior cingulate cortices, whereas those in the LF band were located in the posterior cingulate cortices and thalamus. Thus, depending on the timescale of brain activity, at least two distinct network topologies contributed to information segregation and integration. This suggests that the brain intrinsically has timescale-dependent functional organizations. PMID:25566037

Sasai, Shuntaro; Homae, Fumitaka; Watanabe, Hama; Sasaki, Akihiro T.; Tanabe, Hiroki C.; Sadato, Norihiro; Taga, Gentaro

2014-01-01

45

Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains  

PubMed Central

Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

2013-01-01

46

Nutrition, brain function and behavior.  

PubMed

Current food intake has been shown to directly affect neurotransmission, with resultant modification of behavior. The role of vitamin co-factors in brain function is discussed, with emphasis on changes in mood and neurological function with deficiency. The use of megadoses of vitamins for the treatment of psychiatric diseases has little scientific support at this time. Current research also does not substantiate the Feingold thesis of improvement in childhood hyperkinesis when an additive-free diet is consumed. The effects of medications used to moderate mood are related to changes in nutrient intake that in turn alters weight status. In addition, the effect of certain nutrients modifying the dose response to mood altering drugs has been discussed. Finally evidence for mood state directly affecting the capacity of the body to utilize nutrients is presented. PMID:6269100

Strain, G W

1981-08-01

47

Aging and functional brain networks  

SciTech Connect

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

Tomasi D.; Tomasi, D.; Volkow, N.D.

2011-07-11

48

Development of auditory-specific brain rhythm in infants.  

PubMed

Human infants rapidly develop their auditory perceptual abilities and acquire culture-specific knowledge in speech and music in the second 6 months of life. In the adult brain, neural rhythm around 10 Hz in the temporal lobes is thought to reflect sound analysis and subsequent cognitive processes such as memory and attention. To study when and how such rhythm emerges in infancy, we examined electroencephalogram (EEG) recordings in infants 4 and 12 months of age during sound stimulation and silence. In the 4-month-olds, the amplitudes of narrowly tuned 4-Hz brain rhythm, recorded from bilateral temporal electrodes, were modulated by sound stimuli. In the 12-month-olds, the sound-induced modulation occurred at faster 6-Hz rhythm at temporofrontal locations. The brain rhythms in the older infants consisted of more complex components, as even evident in individual data. These findings suggest that auditory-specific rhythmic neural activity, which is already established before 6 months of age, involves more speed-efficient long-range neural networks by the age of 12 months when long-term memory for native phoneme representation and for musical rhythmic features is formed. We suggest that maturation of distinct rhythmic components occurs in parallel, and that sensory-specific functions bound to particular thalamo-cortical networks are transferred to newly developed higher-order networks step by step until adult hierarchical neural oscillatory mechanisms are achieved across the whole brain. PMID:21226773

Fujioka, Takako; Mourad, Nasser; Trainor, Laurel J

2011-02-01

49

Brain dynamics promotes function Carlos Lourenco  

E-print Network

Brain dynamics promotes function Carlos Louren¸co 1 Faculty of Sciences of the University of Lisbon, 1049-001 Lisboa - Portugal Abstract. Dynamical structure in the brain promotes biological func- tion. Computational scientists have new opportunities to receive 'algorithmic' inspiration from brain processes

Lisboa, Universidade Técnica de

50

Functional brain imaging using near-infrared technology  

Microsoft Academic Search

In the last decade, functional near-infrared spectroscopy (fNIR) has been introduced as a new neuroimaging modality with which to conduct functional brain imaging studies [1]?[24]. fNIR technology uses specific wavelengths of light, irradiated through the scalp, to enable the noninvasive measurement of changes in the relative ratios of deoxygenated hemoglobin (deoxy-Hb) and oxygenated hemoglobin (oxy-Hb) during brain activity. This technology

Meltem Izzetoglu; SCOTT C. BUNCE; Kurtulus Izzetoglu; Banu Onaral; A. K. Pourrezaei

2007-01-01

51

Bioengineered functional brain-like cortical tissue  

PubMed Central

The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

Tang-Schomer, Min D.; White, James D.; Tien, Lee W.; Schmitt, L. Ian; Valentin, Thomas M.; Graziano, Daniel J.; Hopkins, Amy M.; Omenetto, Fiorenzo G.; Haydon, Philip G.; Kaplan, David L.

2014-01-01

52

Bioengineered functional brain-like cortical tissue.  

PubMed

The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

Tang-Schomer, Min D; White, James D; Tien, Lee W; Schmitt, L Ian; Valentin, Thomas M; Graziano, Daniel J; Hopkins, Amy M; Omenetto, Fiorenzo G; Haydon, Philip G; Kaplan, David L

2014-09-23

53

The Efficiency of a Small-World Functional Brain Network  

NASA Astrophysics Data System (ADS)

We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.

Zhao, Qing-Bai; Zhang, Xiao-Fei; Sui, Dan-Ni; Zhou, Zhi-Jin; Chen, Qi-Cai; Tang, Yi-Yuan

2012-04-01

54

The development of Human Functional Brain Networks  

PubMed Central

Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

2010-01-01

55

Dietary amino acids and brain function.  

PubMed

Two groups of amino acids--the aromatic and the acidic amino acids--are reputed to influence brain function when their ingestion in food changes the levels of these amino acids in the brain. The aromatic amino acids (tryptophan, tyrosine, phenylalanine) are the biosynthetic precursors for the neurotransmitters serotonin, dopamine, and norepinephrine. Single meals, depending on their protein content, can rapidly influence uptake of aromatic amino acid into the brain and, as a result, directly modify their conversion to neurotransmitters. Such alterations in the production of transmitters can directly modify their release from neurons and, thus, influence brain function. The acidic amino acids glutamate and aspartate are themselves brain neurotransmitters. However, they do not have ready access to the brain from the circulation or the diet. As a result, the ingestion of proteins, which are naturally rich in aspartate and glutamate, has no effect on the level of acidic amino acid in the brain (or, thus, on brain function by this mechanism). Nevertheless, the food additives monosodium glutamate and aspartame (which contains aspartate) have been reputed to raise the level of acidic amino acid in the brain (when ingested in enormous amounts), to modify brain function, and even to cause neuronal damage. Despite such claims, a substantial body of published evidence clearly indicates that the brain is not affected by ingestion of aspartame and is affected by glutamate only when the amino acid is administered alone in extremely large doses. Therefore, when consumed in the diet neither compound presents a risk to normal brain function. PMID:7903674

Fernstrom, J D

1994-01-01

56

Energetic cost of brain functional connectivity  

PubMed Central

The brain's functional connectivity is complex, has high energetic cost, and requires efficient use of glucose, the brain's main energy source. It has been proposed that regions with a high degree of functional connectivity are energy efficient and can minimize consumption of glucose. However, the relationship between functional connectivity and energy consumption in the brain is poorly understood. To address this neglect, here we propose a simple model for the energy demands of brain functional connectivity, which we tested with positron emission tomography and MRI in 54 healthy volunteers at rest. Higher glucose metabolism was associated with proportionally larger MRI signal amplitudes, and a higher degree of connectivity was associated with nonlinear increases in metabolism, supporting our hypothesis for the energy efficiency of the connectivity hubs. Basal metabolism (in the absence of connectivity) accounted for 30% of brain glucose utilization, which suggests that the spontaneous brain activity accounts for 70% of the energy consumed by the brain. The energy efficiency of the connectivity hubs was higher for ventral precuneus, cerebellum, and subcortical hubs than for cortical hubs. The higher energy demands of brain communication that hinges upon higher connectivity could render brain hubs more vulnerable to deficits in energy delivery or utilization and help explain their sensitivity to neurodegenerative conditions, such as Alzheimer’s disease. PMID:23898179

Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D.

2013-01-01

57

Toward discovery science of human brain function  

Microsoft Academic Search

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain

B. B. Biswal; M. Mennes; X.-N. Zuo; S. Gohel; C. Kelly; S. M. Smith; C. F. Beckmann; J. S. Adelstein; R. L. Buckner; S. Colcombe; A.-M. Dogonowski; M. Ernst; D. Fair; M. Hampson; M. J. Hoptman; J. S. Hyde; V. J. Kiviniemi; R. Kotter; S.-J. Li; C.-P. Lin; M. J. Lowe; C. Mackay; D. J. Madden; K. H. Madsen; D. S. Margulies; H. S. Mayberg; K. McMahon; C. S. Monk; S. H. Mostofsky; B. J. Nagel; J. J. Pekar; S. J. Peltier; S. E. Petersen; V. Riedl; S. A. R. B. Rombouts; B. Rypma; B. L. Schlaggar; S. Schmidt; R. D. Seidler; G. J. Siegle; C. Sorg; G.-J. Teng; J. Veijola; A. Villringer; M. Walter; L. Wang; X.-C. Weng; S. Whitfield-Gabrieli; P. Williamson; C. Windischberger; Y.-F. Zang; H.-Y. Zhang; F. X. Castellanos; M. P. Milham

2010-01-01

58

Functional Specificity among Ribosomal Proteins  

E-print Network

Functional Specificity among Ribosomal Proteins Regulates Gene Expression Suzanne Komili,1.cell.2007.08.037 SUMMARY Duplicated genes escape gene loss by confer- ring a dosage benefit or evolving- somal proteins. Prior studies have suggested that these duplicated proteins are functionally redundant

Roth, Frederick

59

Functional connectivity hubs in the human brain  

Microsoft Academic Search

Brain networks appear to have few and well localized regions with high functional connectivity density (hubs) for fast integration of neural processing, and their dysfunction could contribute to neuropsychiatric diseases. However the variability in the distribution of these brain hubs is unknown due in part to the overwhelming computational demands associated to their localization. Recently we developed a fast algorithm

Dardo Tomasi; Nora D. Volkow

2011-01-01

60

Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease  

PubMed Central

Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging. PMID:18584043

Supekar, Kaustubh; Menon, Vinod; Rubin, Daniel; Musen, Mark; Greicius, Michael D.

2008-01-01

61

Computational role of disinhibition in brain function  

E-print Network

Neurons are connected to form functional networks in the brain. When neurons are combined in sequence, nontrivial effects arise. One example is disinhibition; that is, inhibition to another inhibitory factor. Disinhibition may be serving...

Yu, Yingwei

2009-06-02

62

BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System  

E-print Network

BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System Mei-Yu Hsiao & Chien and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (Brain. 1992), is a non-invasive approach for studying human brain function. Due to the increasing popularity

Chen, Chein Chung

63

Degree of musical expertise modulates higher order brain functioning.  

PubMed

Using functional magnetic resonance imaging, we show for the first time that levels of musical expertise stepwise modulate higher order brain functioning. This suggests that degree of training intensity drives such cerebral plasticity. Participants (non-musicians, amateurs, and expert musicians) listened to a comprehensive set of specifically composed string quartets with hierarchically manipulated endings. In particular, we implemented 2 irregularities at musical closure that differed in salience but were both within the tonality of the piece (in-key). Behavioral sensitivity scores (d') of both transgressions perfectly separated participants according to their level of musical expertise. By contrasting brain responses to harmonic transgressions against regular endings, functional brain imaging data showed compelling evidence for stepwise modulation of brain responses by both violation strength and expertise level in a fronto-temporal network hosting universal functions of working memory and attention. Additional independent testing evidenced an advantage in visual working memory for the professionals, which could be predicted by musical training intensity. The here introduced findings of brain plasticity demonstrate the progressive impact of musical training on cognitive brain functions that may manifest well beyond the field of music processing. PMID:22832388

Oechslin, Mathias S; Van De Ville, Dimitri; Lazeyras, François; Hauert, Claude-Alain; James, Clara E

2013-09-01

64

Detecting disease-specific patterns of brain structure using cortical pattern matching and a population-based probabilistic brain atlas  

PubMed Central

The rapid creation of comprehensive brain image databases mandates the development of mathematical algorithms to uncover disease specific patterns of brain structure and function in human populations. We describe our construction of probabilistic atlases that store detailed information on how the brain varies across age and gender, across time, in health and disease, and in large human populations. Specifically, we introduce a mathematical framework based on covariant partial differential equations (PDEs), pull-backs of mappings under harmonic flows, and high-dimensional random tensor fields to encode variations in cortical patterning, asymmetry and tissue distribution in a population-based brain image database (N =94 scans). We use this information to detect disease-specific abnormalities in Alzheimer's disease and schizophrenia, including dynamic changes over time. Illustrative examples are chosen to show how group patterns of cortical organization, asymmetry, and disease-specific trends can be resolved that are not apparent in individual brain images. Finally, we create four-dimensional (4D) maps that store probabilistic information on the dynamics of brain change in development and disease. Digital atlases that generate these maps show considerable promise in identifying general patterns of structural and functional variation in diseased populations, and revealing how these features depend on demographic, genetic, clinical and therapeutic parameters. PMID:21218175

Thompson, Paul M.; Mega, Michael S.; Vidal, Christine; Rapoport, Judith L.; Toga, Arthur W.

2008-01-01

65

Gender Differences in Brain Functional Connectivity Density  

PubMed Central

The neural bases of gender differences in emotional, cognitive, and socials behaviors are largely unknown. Here, magnetic resonance imaging data from 336 women and 225 men revealed a gender dimorphism in the functional organization of the brain. Consistently across five research sites, women had 14% higher local functional connectivity density (lFCD) and up to 5% higher gray matter density than men in cortical and subcortical regions. The negative power scaling of the lFCD was steeper for men than for women, suggesting that the balance between strongly and weakly connected nodes in the brain is different across genders. The more distributed organization of the male brain than that of the female brain could help explain the gender differences in cognitive style and behaviors and in the prevalence of neuropsychiatric diseases (i.e., autism spectrum disorder). PMID:21425398

Tomasi, Dardo; Volkow, Nora D.

2011-01-01

66

Weight-conserving characterization of complex functional brain networks  

Microsoft Academic Search

Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures

Mikail Rubinov; Olaf Sporns

2011-01-01

67

Toward discovery science of human brain function.  

PubMed

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID:20176931

Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

2010-03-01

68

Network analysis, complexity, and brain function  

Microsoft Academic Search

distributed properties [1]. Instead, modern views focus extensively on the struc-ture and dynamics of large-scale neuronal networks, especially those of the cerebral cortex and associated thalamocortical circuits whose activation underlies human perception and cognition [2,3]. Both, localized and distributed aspects of brain function naturally emerge from this network perspective. This essay highlights several unique characteristics of brain networks and explores

Olaf Sporns

2002-01-01

69

The Brain Prize 2014: complex human functions.  

PubMed

Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? PMID:25303794

Grigaityte, Kristina; Iacoboni, Marco

2014-11-01

70

Project X functional requirements specification  

SciTech Connect

Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility is designed to support programs in elementary particle and nuclear physics, with possible applications to nuclear energy research. A Functional Requirements Specification has been developed in order to establish performance criteria for the Project X complex in support of these multiple missions, and to assure that the facility is designed with sufficient upgrade capability to provide U.S. leadership for many decades to come. This paper will briefly review the previously described Functional Requirements, and then discuss their recent evolution.

Holmes, S.D.; Henderson, S.D.; Kephart, R.; Kerby, J.; Kourbanis, I.; Lebedev, V.; Mishra, S.; Nagaitsev, S.; Solyak, N.; Tschirhart, R.; /Fermilab

2012-05-01

71

Mapping brain function in freely moving subjects  

PubMed Central

Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject’s natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease. PMID:15465134

Holschneider, Daniel P.; Maarek, Jean-Michel I.

2014-01-01

72

Functional Brain Imaging of Nicotinic Effects on Higher Cognitive Processes  

PubMed Central

Significant advances in human functional brain imaging offer new opportunities for direct observation of the effects of nicotine, novel nicotinic agonists and nicotinic antagonists on human cognitive and behavioral performance. Careful research over the last decade has enabled investigators to explore the role of nicotinic systems on the functional neuroanatomy and neural circuitry of cognitive tasks in domains such as selective attention, working memory, episodic memory, cognitive control, and emotional processing. In addition, recent progress in understanding functional connectivity between brain regions utilized during cognitive and emotional processes offers new opportunities for examining drug effects on network-related activity. This review will critically summarize available nicotinic functional brain imaging studies focusing on the specific cognitive domains of attention, memory, behavioral control, and emotional processing. Generally speaking, nicotine appears to increase task-related activity in non-smokers and deprived smokers, but not active smokers. By contrast, nicotine or nicotinic stimulation decreases the activity of structures associated with the default mode network. These particular patterns of activation and/or deactivation may be useful for early drug development and may be an efficient and cost-effective method of screening potential nicotinic agents. Further studies will have to be done to clarify whether such activity changes correlate with cognitive or affective outcomes that are clinically relevant. The use of functional brain imaging will be a key tool for probing pathologic changes related to brain illness and for nicotinic drug development. PMID:21684262

Newhouse, Paul A.; Potter, Alexandra S.; Dumas, Julie A.; Thiel, Christiane M.

2011-01-01

73

Strengthening connections: functional connectivity and brain plasticity  

PubMed Central

The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into effects of experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypothesis for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology. PMID:24496903

Kelly, Clare; Castellanos, F. Xavier

2014-01-01

74

Progesterone Receptors: Form and Function in Brain  

PubMed Central

Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPR? and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

2008-01-01

75

Endocannabinoid Functions in Neurogenesis, Neuronal Migration, and Specification  

Microsoft Academic Search

Endocannabinoids act as retrograde messengers thus controlling many synapses in the postnatal brain. In contrast, the concept\\u000a that endocannabinoid functions are pivotal to fundamental developmental processes, including progenitor proliferation and\\u000a fate specification, lineage segregation, neuronal migration, differentiation and survival, in the embryonic brain has just\\u000a begun to emerge. Understanding the basic developmental and signaling principles controlled by endocannabinoids is pertinent

Tibor Harkany; Manuel Guzmán; Yasmin L. Hurd

76

Whole-Brain Functional Connectivity Identification of Functional Dyspepsia  

PubMed Central

Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients’ dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course. PMID:23799056

Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M.; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

2013-01-01

77

Encoding and Retrieving Faces and Places: Distinguishing Process- and Stimulus-Specific Differences in Brain Activity  

ERIC Educational Resources Information Center

Among the most fundamental issues in cognitive neuroscience is how the brain may be organized into process-specific and stimulus-specific regions. In the episodic memory domain, most functional neuroimaging studies have focused on the former dimension, typically investigating the neural correlates of various memory processes. Thus, there is little…

Prince, Steven E.; Dennis, Nancy A.; Cabeza, Roberto

2009-01-01

78

Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury  

PubMed Central

Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

2011-01-01

79

Brain imaging methods used in experimental brain research such as Positron Emission Tomography (PET) and Functional  

E-print Network

ABSTRACT Brain imaging methods used in experimental brain research such as Positron Emission and are best understood in the context of the underlying 3D brain anatomy. In this paper, we present a novel Brain Mapping, Functional Imaging 1 INTRODUCTION Although the human brain is no longer the black box

Mueller, Klaus

80

Integrating Retinoic Acid Signaling with Brain Function  

ERIC Educational Resources Information Center

The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

2009-01-01

81

Understanding of Brain Function Multivariate Pattern Analysis  

E-print Network

provide new insights into the functional properties of the brain. However, unlike the wealth of software groups to fully assess their potential with respect to cognitive neuroscience research. Here, a novel to interface with the wealth of existing machine-learning packages. The framework is presented in this thesis

Bucci, David J.

82

The Role of Sleep in Emotional Brain Function  

PubMed Central

Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by longstanding clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (1) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep, (2) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning, and (3) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on post-traumatic stress disorder and major depression. PMID:24499013

Goldstein, Andrea N.; Walker, Matthew P.

2014-01-01

83

Avoiding specific region of brain during whole-brain radiotherapy prevents memory loss  

Cancer.gov

Limiting the amount of radiation absorbed in the hippocampal portion of the brain during whole-brain radiotherapy (WBRT) for brain metastases preserves memory function in patients for up to six months after treatment, according to research presented at the American Society for Radiation Oncology's (ASTRO's) 55th Annual Meeting by researchers from the University of Wisconsin School of Medicine and Public Health, home of the UW Paul P. Carbone Comprehensive Cancer Center.

84

Exploring brain function with magnetic resonance imaging  

Microsoft Academic Search

Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional

F. Di Salle; E. Formisano; D. E. J. Linden; R. Goebel; S. Bonavita; A. Pepino; F. Smaltino; G. Tedeschi

1999-01-01

85

Electromagnetic inverse applications for functional brain imaging  

SciTech Connect

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

Wood, C.C.

1997-10-01

86

Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses  

PubMed Central

One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Kanwisher et al., 1997; Brett et al., 2002; Saxe et al., 2006; Fedorenko & Kanwisher, 2009, 2011; Fedorenko et al., 2010). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that multiple runs were acquired per subject, even if no explicit “localizer” task was included. PMID:22784644

Nieto-Castañón, Alfonso; Fedorenko, Evelina

2012-01-01

87

Electroencephalographic imaging of higher brain function  

NASA Technical Reports Server (NTRS)

High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

1999-01-01

88

Homological scaffolds of brain functional networks  

PubMed Central

Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

2014-01-01

89

Nicotine Increases Brain Functional Network Efficiency  

PubMed Central

Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985

Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.

2012-01-01

90

Impacts of Brain Serotonin Deficiency following Tph2 Inactivation on Development and Raphe Neuron Serotonergic Specification  

PubMed Central

Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2?/?) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/? mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT1A and 5-HT1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis. PMID:22912815

Gutknecht, Lise; Araragi, Naozumi; Merker, Sören; Waider, Jonas; Sommerlandt, Frank M. J.; Mlinar, Boris; Baccini, Gilda; Mayer, Ute; Proft, Florian; Hamon, Michel; Schmitt, Angelika G.; Corradetti, Renato; Lanfumey, Laurence; Lesch, Klaus-Peter

2012-01-01

91

Individual diversity of functional brain network economy.  

PubMed

On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders. PMID:25411715

Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

2015-04-01

92

Scientists Examine How Brain Structure and Function Change During Adolescence  

MedlinePLUS

... 18/2013 Inside Neuroscience: Scientists Examine How Brain Structure and Function Change During Adolescence Regions of the ... scientists described emerging research revealing the ways brain structure and function change during adolescence, and how early ...

93

The formation and function of the brain ventricular system  

E-print Network

The brain ventricular system is composed of a highly conserved set of cavities that contain cerebrospinal fluid (CSF), a protein-rich fluid essential for brain function. However, little is known about the function of ...

Chang, Jessica T. (Jessica Tzung-Min)

2012-01-01

94

[Contribution of brain function analysis to the evolution of neurorehabilitation].  

PubMed

Recent studies of functional neuroimaging and clinical neurophysiology have implied that functional recovery after stroke is associated with use-dependent plasticity of the damaged brain. However the property of the reorganized neural network depends on site and size of the lesion, which makes it difficult to assess what the adaptive plasticity is. From clinical point of view there is accumulating randomized controlled trials for the benefit of task-oriented rehabilitative intervention including constraint-induced movement therapy, robotics, and body-weight supported treadmill training. However dose-matched control intervention is usually as effective as a specific intervention. This raises a question regarding the specificity of a task-oriented intervention. Second question is whether such intervention goes beyond the biological destiny of human. Specifically there is no known strategy enhancing recovery of severely impaired hand. To augment functional gain, several methods of neuro-modulation may bring break-through on the assumption that they induce greater adaptive plasticity. Such neuro-modulative methods include neuropharmacological modulation, brain stimulation using transcranial magnetic stimulation and direct current stimulation, peripheral nerve stimulation, neurofeedback using real-time fMRI and real-time fNIRS, and brain-machine interface. A preliminary randomized controlled trial regarding real-time feedback of premotor activities revealed promising results for recovery of paretic hand in patients with stroke. PMID:23196554

Miyai, Ichiro; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Kawano, Teiji; Yagura, Hajime

2012-01-01

95

When “altering brain function” becomes “mind control”  

PubMed Central

Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. “Under what conditions does ‘altering brain function’ qualify as ‘mind control’?” In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control. PMID:25352789

Koivuniemi, Andrew; Otto, Kevin

2014-01-01

96

The Construction of Common and Specific Significance Subnetworks of Alzheimer's Disease from Multiple Brain Regions  

PubMed Central

Alzheimer's disease (AD) is a progressively and fatally neurodegenerative disorder and leads to irreversibly cognitive and memorial damage in different brain regions. The identification and analysis of the dysregulated pathways and subnetworks among affected brain regions will provide deep insights for the pathogenetic mechanism of AD. In this paper, commonly and specifically significant subnetworks were identified from six AD brain regions. Protein-protein interaction (PPI) data were integrated to add molecular biological information to construct the functional modules of six AD brain regions by Heinz algorithm. Then, the simulated annealing algorithm based on edge weight is applied to predicting and optimizing the maximal scoring networks for common and specific genes, respectively, which can remove the weak interactions and add the prediction of strong interactions to increase the accuracy of the networks. The identified common subnetworks showed that inflammation of the brain nerves is one of the critical factors of AD and calcium imbalance may be a link among several causative factors in AD pathogenesis. In addition, the extracted specific subnetworks for each brain region revealed many biologically functional mechanisms to understand AD pathogenesis. PMID:25866779

Mou, Xiaoyang; Zhang, Na; Zeng, Weiming; Li, Shasha; Yang, Yang

2015-01-01

97

Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations  

PubMed Central

Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.

2015-01-01

98

Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations.  

PubMed

Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

Kadakkuzha, Beena M; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V

2015-01-01

99

Functional topography: multidimensional scaling and functional connectivity in the brain.  

PubMed

In neuroimaging, functional mapping usually implies mapping function into an anatomical space, for example, using statistical parametric mapping to identify activation foci, or the characterization of distributed changes with spatial modes (eigenimages or principal components) (Friston et al., 1993a). This article is about a complementary approach, namely, mapping anatomy into a functional space. We describe a simple variant of multidimensional scaling (principal coordinates analysis; Gower, 1966) that uses functional connectivity as its metric. The scaling transformation maps anatomy into a functional space. The topography, or proximity relationships, in this space embody the functional connectivity among brain regions. The higher the functional connectivity, the closer the regions. Functional connectivity is defined here as the correlation between remote neurophysiological events. The technique represents a descriptive characterization of anatomically distributed changes in the brain that reveals the structure of corticocortical interactions in terms of functional correlations. To illustrate the approach we have analyzed data from normal subjects and schizophrenic patients obtained with PET during the performance of word generation tasks. In particular, we focus on prefrontotemporal integration in normal subjects and show that, in schizophrenia, the left temporal regions and prefrontal cortex evidence abnormal functional connectivity. PMID:8670646

Friston, K J; Frith, C D; Fletcher, P; Liddle, P F; Frackowiak, R S

1996-01-01

100

Brain region-specific gene expression profiles in freshly isolated rat microglia  

PubMed Central

Microglia are important cells in the brain that can acquire different morphological and functional phenotypes dependent on the local situation they encounter. Knowledge on the region-specific gene signature of microglia may hold valuable clues for microglial functioning in health and disease, e.g., Parkinson’s disease (PD) in which microglial phenotypes differ between affected brain regions. Therefore, we here investigated whether regional differences exist in gene expression profiles of microglia that are isolated from healthy rat brain regions relevant for PD. We used an optimized isolation protocol based on a rapid isolation of microglia from discrete rat gray matter regions using density gradients and fluorescent-activated cell sorting. Application of the present protocol followed by gene expression analysis enabled us to identify subtle differences in region-specific microglial expression profiles and show that the genetic profile of microglia already differs between different brain regions when studied under control conditions. As such, these novel findings imply that brain region-specific microglial gene expression profiles exist that may contribute to the region-specific differences in microglia responsivity during disease conditions, such as seen in, e.g., PD.

Doorn, Karlijn J.; Brevé, John J. P.; Drukarch, Benjamin; Boddeke, Hendrikus W.; Huitinga, Inge; Lucassen, Paul J.; van Dam, Anne-Marie

2015-01-01

101

A Bayesian Model of Category-Specific Emotional Brain Responses  

PubMed Central

Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

2015-01-01

102

A bayesian model of category-specific emotional brain responses.  

PubMed

Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories-fear, anger, disgust, sadness, or happiness-is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

2015-04-01

103

Clinton Woolsey: Functional Brain Mapping Pioneer  

PubMed Central

Dr. Clinton Woolsey was a leading twentieth century neuroscientist for almost four decades. His most significant achievements were the novel use and refinement of evoked potential techniques to functionally map mammalian brains, the discovery of secondary cortical areas, and a wide repertoire of comparative neurofunctional studies across many species. We discuss his life and work through a historical context with contemporaries, highlight the primitive state of brain mapping before Woolsey, and his involvement in advancing its rapid development through work at both Johns Hopkins University and University of Wisconsin in Madison. Dr. Woolsey’s lasting impact on basic and clinical neuroscience, neurosurgery, and neurology and his important roles as a scientific mentor and leader are also described. PMID:25105696

Lyon, Will; Mehta, Tej I.; Pointer, Kelli B.; Walden, Daniel; Elmayan, Ardem; Swanson, Kyle I.; Kuo, John S.

2014-01-01

104

Transgenerational epigenetic effects on brain functions.  

PubMed

Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have strong heritable components. Despite intense research efforts, genetic loci that substantially account for disease heritability have not yet been identified. Over the last several years, epigenetic processes have emerged as important factors for many brain diseases, and the discovery of epigenetic processes in germ cells has raised the possibility that they may contribute to disease heritability and disease risk. This review examines epigenetic mechanisms in complex diseases and summarizes the most illustrative examples of transgenerational epigenetic inheritance in mammals and their relevance for brain function. Environmental factors that can affect molecular processes and behavior in exposed individuals and their offspring, and their potential epigenetic underpinnings, are described. Possible routes and mechanisms of transgenerational transmission are proposed, and the major questions and challenges raised by this emerging field of research are considered. PMID:23062885

Bohacek, Johannes; Gapp, Katharina; Saab, Bechara J; Mansuy, Isabelle M

2013-02-15

105

Personality Is Reflected in the Brain's Intrinsic Functional Architecture  

PubMed Central

Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453

Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.

2011-01-01

106

Brain structural and functional correlates of resilience to Bipolar Disorder  

PubMed Central

Background: Resilient adaptation can be construed in different ways, but as used here it refers to adaptive brain responses associated with avoidance of psychopathology despite expressed genetic predisposition to Bipolar Disorder (BD). Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives remain free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive responses that pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders Study (VIBES) which includes BD patients, asymptomatic relatives and controls. Participants underwent extensive investigations including brain structural (sMRI) and functional magnetic resonance imaging (fMRI). We present results from sMRI voxel-based-morphometry and from conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT), a task of cognitive control during conflict resolution. All analyses were implemented using Statistical Parametric Mapping software version 5 (SPM5). Resilience in relatives was operationalized as the lifetime absence of clinical-range symptoms. Results: Resilient relatives of BD patients expressed structural, functional, and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity. Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex during the SCWT. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a bipolar genotype. PMID:22363273

Frangou, Sophia

2011-01-01

107

Functional Geometry Alignment and Localization of Brain Areas  

E-print Network

Functional Geometry Alignment and Localization of Brain Areas Georg Langs, Polina Golland Computer@bwh.harvard.edu, lrigolo@bwh.harvard.edu agolby@bwh.harvard.edu Abstract Matching functional brain regions across. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can

Golland, Polina

108

Split My Brain A Case Study of Seizure Disorder and Brain Function  

NSDL National Science Digital Library

This case study involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain. The case was written for an introductory psychology course, but could be adapted for any course that covers brain anatomy, neurological disorders, or rehabilitation therapies.

Julia Omarzu

2004-01-01

109

Fast optical imaging of human brain function.  

PubMed

Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods) emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so) interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years) may provide descriptions of localized (to sub-cm level) brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed. PMID:20631845

Gratton, Gabriele; Fabiani, Monica

2010-01-01

110

Cooling After Cardiac Arrest May Help Preserve Brain Function  

MedlinePLUS

... sharing features on this page, please enable JavaScript. Cooling After Cardiac Arrest May Help Preserve Brain Function ... Cardiac Arrest MONDAY, April 6, 2015 (HealthDay News) -- Cooling the body might help prevent or lessen brain ...

111

Early Brain Stimulation May Help Stroke Survivors Recover Language Function  

MedlinePLUS

... Making News on Heart.org Learn More Early brain stimulation may help stroke survivors recover language function ... and strokeassociation.org Share Related Images Infographic - Thiel-Brain Stimulation copyright American Heart Association Download (311.8 ...

112

Specific and Evolving Resting-State Network Alterations in Post-Concussion Syndrome Following Mild Traumatic Brain Injury  

PubMed Central

Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the DSM-IV criteria) at 6 months post-injury compared with 38 mild traumatic brain injury patients with no post-concussion syndrome and 34 healthy controls. All patients underwent magnetic resonance imaging examinations at the subacute (1–3 weeks) and late (6 months) phases after injury. Group-wise differences in functional brain networks were analyzed using graph theory measures. Patterns of long-range functional networks alterations were found in all mild traumatic brain injury patients. Mild traumatic brain injury patients with post-concussion syndrome had greater alterations than patients without post-concussion syndrome. In patients with post-concussion syndrome, changes specifically affected temporal and thalamic regions predominantly at the subacute stage and frontal regions at the late phase. Our results suggest that the post-concussion syndrome is associated with specific abnormalities in functional brain network that may contribute to explain deficits typically observed in PCS patients. PMID:23755237

Messé, Arnaud; Caplain, Sophie; Pélégrini-Issac, Mélanie; Blancho, Sophie; Lévy, Richard; Aghakhani, Nozar; Montreuil, Michèle; Benali, Habib; Lehéricy, Stéphane

2013-01-01

113

Data-driven analysis of functional brain interactions during free listening to music and speech.  

PubMed

Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech. PMID:24526569

Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

2014-02-14

114

Correspondence of the brain's functional architecture during activation and rest.  

PubMed

Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest." PMID:19620724

Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F

2009-08-01

115

Functional connectivity of the insula in the resting brain.  

PubMed

The human insula is hidden in the depth of the cerebral hemisphere by the overlying frontal and temporal opercula, and consists of three cytoarchitectonically distinct regions: the anterior agranular area, posterior granular area, and the transitional dysgranular zone; each has distinct histochemical staining patterns and specific connectivity. Even though there are several studies reporting the functional connectivity of the insula with the cingulated cortex, its relationships with other brain areas remain elusive in humans. Therefore, we decided to use resting state functional connectivity to elucidate in details its connectivity, in terms of cortical and subcortical areas, and also of lateralization. We investigated correlations in BOLD fluctuations between specific regions of interest of the insula and other brain areas of right-handed healthy volunteers, on both sides of the brain. Our findings document two major complementary networks involving the ventral-anterior and dorsal-posterior insula: one network links the anterior insula to the middle and inferior temporal cortex and anterior cingulate cortex, and is primarily related to limbic regions which play a role in emotional aspects; the second links the middle-posterior insula to premotor, sensorimotor, supplementary motor and middle-posterior cingulate cortices, indicating a role for the insula in sensorimotor integration. The clear bipartition of the insula was confirmed by negative correlation analysis. Correlation maps are partially lateralized: the salience network, related to the ventral anterior insula, displays stronger connections with the anterior cingulate cortex on the right side, and with the frontal cortex on the left side; the posterior network has stronger connections with the superior temporal cortex and the occipital cortex on the right side. These results are in agreement with connectivity studies in primates, and support the use of resting state functional analysis to investigate connectivity in the living human brain. PMID:21111053

Cauda, Franco; D'Agata, Federico; Sacco, Katiuscia; Duca, Sergio; Geminiani, Giuliano; Vercelli, Alessandro

2011-03-01

116

Cell-specific Posttranslational Events Affect Functional Expression at the Plasma Membrane but not Tetrodotoxin Sensitivity of the Rat Brain IIA Sodium Channel a-Subunit Expressed in Mammalian Cells  

Microsoft Academic Search

The rat brain IIA Na+ channel a-subunit was expressed and studied in mammalian cells. Cells were infected with a re- combinant vaccinia virus (VV) carrying the bacteriophage T7 RNA polymerase gene and were transfected with cDNA en- coding the IIA Na+ channel a-subunit under control of a T7 promoter. Whole-cell patch-clamp recording showed that functional IIA channels were expressed efficiently

Xian-cheng Yang; Cesar Labarca; Joel Narge; Begonia Y. Ho; I Orna Elroy-Stein; Bernard Moss; Norman Davidson; Henry A. Lester

1992-01-01

117

Human-specific transcriptional networks in the brain  

PubMed Central

Summary Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene co-expression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes co-expressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a new window through which to view the foundation of uniquely human cognitive capacities. PMID:22920253

Konopka, Genevieve; Friedrich, Tara; Davis-Turak, Jeremy; Winden, Kellen; Oldham, Michael C.; Gao, Fuying; Chen, Leslie; Wang, Guang-Zhong; Luo, Rui; Preuss, Todd M.; Geschwind, Daniel H.

2013-01-01

118

A new algorithm for spatiotemporal analysis of brain functional connectivity.  

PubMed

Specific networks of interacting neuronal assemblies distributed within and across distinct brain regions underlie brain functions. In most cognitive tasks, these interactions are dynamic and take place at the millisecond time scale. Among neuroimaging techniques, magneto/electroencephalography - M/EEG - allows for detection of very short-duration events and offers the single opportunity to follow, in time, the dynamic properties of cognitive processes (sub-millisecond temporal resolution). In this paper, we propose a new algorithm to track the functional brain connectivity dynamics. During a picture naming task, this algorithm aims at segmenting high-resolution EEG signals (hr-EEG) into functional connectivity microstates. The proposed algorithm is based on the K-means clustering of the connectivity graphs obtained from the phase locking value (PLV) method applied on hr-EEG. Results show that the analyzed evoked responses can be divided into six clusters representing distinct networks sequentially involved during the cognitive task, from the picture presentation and recognition to the motor response. PMID:25583381

Mheich, A; Hassan, M; Khalil, M; Berrou, C; Wendling, F

2015-03-15

119

Ivermectin excretion by isolated functionally intact brain endothelial capillaries  

PubMed Central

Functionally intact brain endothelial capillaries were isolated from porcine brain. p-Glycoprotein was localized at the lumenal membrane of intact capillaries by immunohistochemistry using a murine monoclonal antibody and a secondary FITC fluorescent labelled anti-mouse IgG. Western blot staining of p-glycoprotein in isolated endothelial cells confirmed the immunohistochemistry. Excretion of the fluorescent labelled anthelmintic drug Ivermectin (BODIPY-Ivermectin) was studied in the isolated brain endothelial capillaries. Drug accumulation in the capillary lumen was visualized by fluorescence confocal laser scanning microscopy and was measured by image analysis. Secretion of BODIPY-Ivermectin into the capillary lumen exhibited characteristics of specific and energy-dependent transport. Steady state lumenal fluorescence intensity averaged 1.6 times cellular fluorescence and was reduced 3?–?4 times below cellular levels when metabolism was inhibited by NaCN. BODIPY-Ivermectin secretion was inhibited in a concentration-dependent manner by unlabeled Ivermectin. In addition, lumenal but not cellular fluorescence intensity was significantly decreased when capillaries were incubated with PSC-833, Cyclosporin A or Verapamil, all inhibitors of p-glycoprotein. Conversely, unlabelled Ivermectin reduced the p-glycoprotein (Pgp)-mediated secretion of a fluorescent derivative of Verapamil, (BODIPY-Verapamil). BODIPY-Ivermectin secretion was not affected in the presence of Leucotriene C4 (LTC4), a potent inhibitor of multidrug resistance related protein (mrp)-mediated transport processes. In addition, excretion of Fluorescein-Methotrexate, an mrp-substrate, was not inhibited by Ivermectin. Uptake experiments with isolated porcine brain capillary cells showing increased cellular uptake of BODIPY-Ivermectin in the presence of unlabelled drug or PSC-833 supported the findings of a Pgp interaction in intact capillaries. The data are consistent with BODIPY-Ivermectin and Ivermectin being transported across the lumenal membrane of brain capillaries. For the first time Pgp-interaction of Ivermectin at the blood brain barrier is demonstrated on a cellular level in an intact vascular tissue. PMID:11159725

Nobmann, Stephanie; Bauer, Björn; Fricker, Gert

2001-01-01

120

Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks.  

PubMed

The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with ?PET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach. PMID:24231358

Michaelides, Michael; Anderson, Sarah Ann R; Ananth, Mala; Smirnov, Denis; Thanos, Panayotis K; Neumaier, John F; Wang, Gene-Jack; Volkow, Nora D; Hurd, Yasmin L

2013-12-01

121

Resilience of human brain functional coactivation networks under thresholding  

E-print Network

Recent studies have demonstrated the existence of community structure and rich club nodes, (i.e., highly interconnected, high degree hub nodes), in human brain functional networks. The cognitive relevance of the detected modules and hubs has also been demonstrated, for both task based and default mode networks, suggesting that the brain self-organizes into patterns of co-activated sets of regions for performing specific tasks or in resting state. In this paper, we report studies on the resilience or robustness of this modular structure: under systematic erosion of connectivity in the network under thresholding, how resilient is the modularity and hub structure? The results show that the network shows show strong resilience properties, with the modularity and hub structure maintaining itself over a large range of connection strengths. Then, at a certain critical threshold that falls very close to 0, the connectivity, the modularity, and hub structure suddenly break down, showing a phase transition like propert...

Sarkar, S; Weng, H

2014-01-01

122

Brain microvascular function during cardiopulmonary bypass  

SciTech Connect

Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

1987-11-01

123

Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects  

PubMed Central

Aging alters brain structure and function. Personal health markers and modifiable lifestyle factors are related to individual brain aging as well as to the risk of developing Alzheimer's disease (AD). This study used a novel magnetic resonance imaging (MRI)-based biomarker to assess the effects of 17 health markers on individual brain aging in cognitively unimpaired elderly subjects. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE) score indicates accelerated atrophy and is considered a risk factor for developing AD. Within this cross-sectional, multi-center study 228 cognitively unimpaired elderly subjects (118 males) completed an MRI at 1.5Tesla, physiological and blood parameter assessments. The multivariate regression model combining all measured parameters was capable of explaining 39% of BrainAGE variance in males (p < 0.001) and 32% in females (p < 0.01). Furthermore, markers of the metabolic syndrome as well as markers of liver and kidney functions were profoundly related to BrainAGE scores in males (p < 0.05). In females, markers of liver and kidney functions as well as supply of vitamin B12 were significantly related to BrainAGE (p < 0.05). In conclusion, in cognitively unimpaired elderly subjects several clinical markers of poor health were associated with subtle structural changes in the brain that reflect accelerated aging, whereas protective effects on brain aging were observed for markers of good health. Additionally, the relations between individual brain aging and miscellaneous health markers show gender-specific patterns. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of subtly abnormal patterns of brain aging probably preceding cognitive decline and development of AD. PMID:24904408

Franke, Katja; Ristow, Michael; Gaser, Christian

2014-01-01

124

Maturation of Widely Distributed Brain Function Subserves Cognitive Development  

Microsoft Academic Search

Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive\\/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible to characterize changes in brain activity during cognitive development. In order to investigate the cognitive and brain maturation subserving the ability to

Beatriz Luna; Keith R. Thulborn; Douglas P. Munoz; Elisha P. Merriam; Krista E. Garver; Nancy J. Minshew; Matcheri S. Keshavan; Christopher R. Genovese; William F. Eddy; John A. Sweeney

2001-01-01

125

Electric source imaging of human brain functions.  

PubMed

We review recent methodological advances in electromagnetic source imaging and present EEG data from our laboratory obtained by application of these methods. There are two principal steps in our analysis of multichannel electromagnetic recordings: (i) the determination of functionally relevant time periods in the ongoing electric activity and (ii) the localization of the sources in the brain that generate these activities recorded on the scalp. We propose a temporal segmentation of the time-varying activity, which is based on determination of changes in the topography of the electric fields, as an approach to the first step, and a distributed linear inverse solution based on realistic head models as an approach to the second step. Data from studies of visual motion perception, visuo-motor transfer, mental imagery, semantic decision, and cognitive interference illustrate that this analysis allows us to define the patterns of electric activity that are present at given time periods after stimulus presentation, as well as those time periods where significantly different patterns appear between different stimuli and tasks. The presented data show rapid and parallel activation of different areas within complex neuronal networks, including early activity of brain regions remote from the primary sensory areas. In addition, the data indicate information exchange between homologous areas of the two hemispheres in cases where unilateral stimulus presentation requires interhemispheric transfer. PMID:11690607

Michel, C M; Thut, G; Morand, S; Khateb, A; Pegna, A J; Grave de Peralta, R; Gonzalez, S; Seeck, M; Landis, T

2001-10-01

126

Brain surface conformal parameterization with algebraic functions.  

PubMed

In medical imaging, parameterized 3D surface models are of great interest for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on algebraic functions. By solving the Yamabe equation with the Ricci flow method, we can conformally map a brain surface to a multi-hole disk. The resulting parameterizations do not have any singularities and are intrinsic and stable. To illustrate the technique, we computed parameterizations of several types of anatomical surfaces in MRI scans of the brain, including the hippocampi and the cerebral cortices with various landmark curves labeled. For the cerebral cortical surfaces, we show the parameterization results are consistent with selected landmark curves and can be matched to each other using constrained harmonic maps. Unlike previous planar conformal parameterization methods, our algorithm does not introduce any singularity points. It also offers a method to explicitly match landmark curves between anatomical surfaces such as the cortex, and to compute conformal invariants for statistical comparisons of anatomy. PMID:17354864

Wang, Yalin; Gu, Xianfeng; Chan, Tony F; Thompson, Paul M; Yau, Shing-Tung

2006-01-01

127

Magnetic Resonance Imaging of Brain Function and Neurochemistry  

E-print Network

Magnetic Resonance Imaging of Brain Function and Neurochemistry KAMIL UGURBIL, DAE-SHIK KIM, TIM ANDERSEN, AND GREGOR ADRIANY Invited Paper In the past decade, magnetic resonance imaging (MRI) research approaches to map brain function. This capability, often referred to as functional magnetic resonance imaging

Duong, Timothy Q.

128

Mapping distributed brain function and networks with diffuse optical tomography  

NASA Astrophysics Data System (ADS)

Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

2014-06-01

129

Mapping distributed brain function and networks with diffuse optical tomography  

PubMed Central

Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson’s disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging. PMID:25083161

Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

2014-01-01

130

Algorithms for enhanced spatiotemporal imaging of human brain function  

E-print Network

Studies of human brain function require technologies to non-invasively image neuronal dynamics with high spatiotemporal resolution. The electroencephalogram (EEG) and magnetoencephalogram (MEG) measure neuronal activity ...

Krishnaswamy, Pavitra

2014-01-01

131

Brain structural and functional development: genetics and experience.  

PubMed

Brain development is the result of the combined work of genes and environment. In this paper we first briefly discuss how, in terms of cellular and molecular plasticity mechanisms, the richness of early environment can control developmental trajectories and can induce long-term changes in neural circuits that underlie enduring changes in brain structure and function. We then see that experience most effectively moulds neural circuit development during specific time windows called critical periods. After the closure of these privileged windows for plasticity, it is very difficult to promote repair from 'errors' in brain development. As an example, congenital cataracts, refractive defects, or strabismus, if not precociously corrected during development, cause permanent deficit in visual acuity of the affected eye, a condition known as amblyopia. Little or no recovery from amblyopia is possible in the adult. However, recent results show that by using protocols of enriched environment it is possible to design interventions, which, by acting on specific plasticity factors, enhance adult cortical plasticity and allow recovery from amblyopia. This suggests that a better knowledge of how experience and environment engage endogenous plasticity factors could help to design interventions aimed at promoting recovery from neurodevelopmental defects, even after the end of critical periods. PMID:25690109

Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto

2015-04-01

132

Specific neurons of brain cortex and cerebellum are PIPPin positive.  

PubMed

We recently cloned a cDNA encoding an RNA-binding protein, that we called PIPPin, which is highly enriched in the rat brain and contains two putative double stranded RNA-binding domains (PIP1 and PIP2) and a central cold shock domain (CSD). Here we report that PIPPin is specifically enriched in some pyramidal neurons of the cerebral cortex and in the Purkinje cells of the cerebellum. We also show that PIPPin inhibits translation of H1(o) and H3.3 mRNA in a cell-free system. The results reported suggest that PIPPin down-regulates histone variant expression in the developing rat brain. PMID:10923677

Nastasi, T; Muzi, P; Beccari, S; Bellafiore, M; Dolo, V; Bologna, M; Cestelli, A; Di Liegro, I

2000-07-14

133

Chemotherapy altered brain functional connectivity in women with breast cancer: a pilot study.  

PubMed

Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, 1 month after, and 1 year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity 1 month after chemotherapy that partially returned to baseline at 1 year in the dorsal attention network. Decreased connectivity was seen in the default mode network at 1 month and 1 year following chemotherapy. In addition, increased subjective memory complaints were noted at 1 month and 1 year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment. PMID:23852814

Dumas, Julie A; Makarewicz, Jenna; Schaubhut, Geoffrey J; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A

2013-12-01

134

Chemotherapy Altered Brain Functional Connectivity in Women with Breast Cancer: A Pilot Study  

PubMed Central

Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, one month after, and one year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity one month after chemotherapy that partially returned to baseline at one year in the dorsal attention network. Decreased connectivity was seen in the default mode network at one month and one year following chemotherapy. In addition, increased subjective memory complaints were noted at one month and one year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment. PMID:23852814

Dumas, Julie A.; Makarewicz, Jenna; Schaubhut, Geoffrey J.; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A.

2013-01-01

135

Cytokine Signaling Modulates Blood-Brain Barrier Function  

PubMed Central

The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease. PMID:21834767

Pan, Weihong; Stone, Kirsten P.; Hsuchou, Hung; Manda, Vamshi K.; Zhang, Yan; Kastin, Abba J.

2014-01-01

136

Effects of the diet on brain function  

NASA Technical Reports Server (NTRS)

The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

Fernstrom, J. D.

1981-01-01

137

Culturing Layer-Specific Neocortical Neurons as a Cell Replacement Therapy Following Traumatic Brain Injury  

PubMed Central

Neurophysiological changes resulting from traumatic brain injury (TBI) can result in adverse changes in behavior including mood instability and cognitive dysfunction. Cell death following TBI likely contributes to these altered behaviors and remains an elusive but attractive target for therapies aiming at functional recovery. Previously we demonstrated that neural progenitor cells derived from embryonic rats can be transplanted into donor neonatal rat brain slices and, over the course of 2?weeks in culture, mature into neurons that express neuronal immunohistochemical markers and develop electrophysiological profiles consistent with excitatory and inhibitory interneurons. Here we examine the potential of generating electrophysiologically mature neurons with a layer-specific phenotype as a next step in developing a therapy designed to rebuild a damaged cortical column with the functionally appropriate neuronal subtypes. Preliminary results suggest that neurons derived from passaged neurospheres and grown in dissociated cell culture develop GABAergic and presumed glutamatergic phenotypes and that the percentage of GABAergic cells increases as a function of passage. After 2?weeks in culture, the neurons have a mix of immature and mature neuronal electrophysiological profiles and receive synaptic inputs from surrounding neurons. Subsets of cells expressing neuron specific markers also express layer-specific markers such as Cux1, ER81, and ROR?. Future studies will investigate the potential of transplanting layer-specific neurons generated and isolated in vitro into the neocortex of neonatal brain slices and their potential to maintain their phenotype and integrate into the host tissue. PMID:24432011

Cramer, Nathan Peter; Chatterjee, Mitali; Lischka, Fritz Walter; Juliano, Sharon L.

2014-01-01

138

A default mode of brain function  

Microsoft Academic Search

A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain

Marcus E. Raichle; Ann Mary MacLeod; Abraham Z. Snyder; William J. Powers; Debra A. Gusnard; Gordon L. Shulman

2001-01-01

139

Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression  

PubMed Central

Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

2014-01-01

140

Imaging structural and functional brain networks in temporal lobe epilepsy  

PubMed Central

Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

2013-01-01

141

Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI.  

PubMed

The brain is the characteristic of a complex structure. By representing brain function, measured with EEG, MEG, and fMRI, as an abstract network, methods for the study of complex systems can be applied. These network studies have revealed insights in the complex, yet organized, architecture that is evidently present in brain function. We will discuss some technical aspects of formation and assessment of the functional brain networks. Moreover, the results that have been reported in this respect in the last years, in healthy brains as well as in functional brain networks of subjects with a neurological or psychiatrical disease, will be reviewed. PMID:23158686

van Straaten, Elisabeth C W; Stam, Cornelis J

2013-01-01

142

[Selenium deficiency and brain functions: the significance for methylmercury toxicity].  

PubMed

Selenium has been long recognized as one of the essential trace elements. Although many selenoproteins have been identified in the last decade, the physiological roles of Se and selenoproteins remain to be elucidated. Since iodothyronine deiodinases (DIs), which regulate the tissue levels of thyroid hormone, are (likely to be) selenoproteins, Se might have specific roles for developing brain. In fact, when rodents are depleted of Se perinatally, the thyroid hormone economy of the fetus is disturbed, which may lead to the abnormal development of the brain and to the abnormal postnatal behavior observed in Se-deficient animals. When the animals were depleted of Se after weaning, when the role of thyroid hormone on brain development is minimal, neurochemical and neurophysiological alterations were found in the dopaminergic system. These postnatally-depleted rodents also showed abnormal open-field behavior, which was distinct from that observed with perinatally-depleted animals. The molecular events that convert Se-deficient status to these neurochemical, neurophysiological, and behavioral functions are largely unknown, and need to be further examined. The interaction between Se and mercury compounds has also been the focus of many research, but there have been few reports on the interaction between the physiological (nutritional) level of Se and the toxicity of prenatal methylmercury (MeHg). Experimental findings showed that Se-deficient rodents are more susceptible to the prenatal toxicity of MeHg. It is noteworthy that MeHg specifically altered the metabolism of Se in fetal/neonatal brain. Significance of the alteration of the activities of selenoenzymes such as glutathione peroxidase and DIs in animals by prenatal MeHg exposure are discussed in relation to the neurobehavioral toxicity of MeHg. PMID:11265129

Watanabe, C

2001-01-01

143

What Is the Function of Mind and Brain?  

Microsoft Academic Search

Byrnes and Fox (1998) provide a useful and important overview of the ways in which cognitive neuroscientific research can inform educational research and practice, but leave unanswered the question: What is the function of mind and brain? An understanding of the function of mind and brain has implications for research in cognitive neuroscience and in educational psychology, and a number

David C. Geary

1998-01-01

144

Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury  

ERIC Educational Resources Information Center

Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

2012-01-01

145

Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling  

PubMed Central

The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content. DOI: http://dx.doi.org/10.7554/eLife.02862.001 PMID:25275323

Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

2014-01-01

146

Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.  

PubMed

The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content. PMID:25275323

Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

2014-01-01

147

Structure-function relationships in human brain development  

E-print Network

The integration of anatomical, functional, and developmental approaches in cognitive neuroscience is essential for generating mechanistic explanations of brain function. In this thesis, I first establish a proof-of-principle ...

Saygin, Zeynep Mevhibe

2012-01-01

148

Functional Neuroanatomy of Executive Function after Neonatal Brain Injury in Adults Who Were Born Very Preterm  

PubMed Central

Individuals who were born very preterm (VPT; <33 gestational weeks) are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI) the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD), 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH), 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads (‘easy’ and ‘hard’ letters). Two groups of VPT individuals (PVH+VD; n?=?10, UPVH; n?=?8) performed an n-back task with three cognitive loads (1-, 2-, 3-back). Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory) may be particularly sensitive to the extent of neonatal brain injury. PMID:25438043

Kalpakidou, Anastasia K.; Allin, Matthew P. G.; Walshe, Muriel; Giampietro, Vincent; McGuire, Philip K.; Rifkin, Larry; Murray, Robin M.; Nosarti, Chiara

2014-01-01

149

Brain serotonin and pituitary-adrenal functions  

NASA Technical Reports Server (NTRS)

It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

1973-01-01

150

Infrared Imaging System for Studying Brain Function  

NASA Technical Reports Server (NTRS)

A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be stored in a relational database for comparison with corresponding responses previously observed in other subjects.

Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

2007-01-01

151

Regional brain atrophy development is related to specific aspects of clinical dysfunction in multiple sclerosis.  

PubMed

Brain atrophy in multiple sclerosis (MS) is thought to reflect irreversible tissue damage leading to persistent clinical deficit. Little is known about the rate of atrophy in specific brain regions in relation to specific clinical deficits. We determined the displacement of the brain surface between two T1-weighted MRI images obtained at baseline and after a median follow-up time of 2.2 years for 79 recently diagnosed, mildly disabled MS patients. Voxel- and cluster-wise permutation-based statistics were used to identify brain regions in which atrophy development was significantly related to Expanded Disability Status Scale (EDSS), Timed Walk Test (TWT), Paced Auditory Serial Addition Test (PASAT) and 9-Hole Peg Test (HPT). Clusters were considered significant at a corrected cluster-wise p-value of 0.05. Worse EDSS change-score and worse follow-up EDSS were related to atrophy development of periventricular and brainstem regions and right-sided parietal, occipital and temporal regions. Worse PASAT at follow-up was significantly related to atrophy of the ventricles. A worse TWT change-score and worse follow-up TWT were exclusively related to atrophy around the ventricles and of the brainstem. Worse HPT change-score and worse follow-up HPT of either arm were significantly related to the atrophy of widely distributed peripheral regions, as well as atrophy of periventricular and brainstem regions. Our findings suggest that decline in ambulatory function is related to atrophy of central brain regions exclusively, whereas decline in neurologically more complex tasks for coordinated hand function is related to atrophy of both central and peripheral brain regions. PMID:17889567

Jasperse, Bas; Vrenken, Hugo; Sanz-Arigita, Ernesto; de Groot, Vincent; Smith, Stephen M; Polman, Chris H; Barkhof, Frederik

2007-11-15

152

Efficiency of weak brain connections support general cognitive functioning.  

PubMed

Brain network topology provides valuable information on healthy and pathological brain functioning. Novel approaches for brain network analysis have shown an association between topological properties and cognitive functioning. Under the assumption that "stronger is better", the exploration of brain properties has generally focused on the connectivity patterns of the most strongly correlated regions, whereas the role of weaker brain connections has remained obscure for years. Here, we assessed whether the different strength of connections between brain regions may explain individual differences in intelligence. We analyzed-functional connectivity at rest in ninety-eight healthy individuals of different age, and correlated several connectivity measures with full scale, verbal, and performance Intelligent Quotients (IQs). Our results showed that the variance in IQ levels was mostly explained by the distributed communication efficiency of brain networks built using moderately weak, long-distance connections, with only a smaller contribution of stronger connections. The variability in individual IQs was associated with the global efficiency of a pool of regions in the prefrontal lobes, hippocampus, temporal pole, and postcentral gyrus. These findings challenge the traditional view of a prominent role of strong functional brain connections in brain topology, and highlight the importance of both strong and weak connections in determining the functional architecture responsible for human intelligence variability. PMID:24585433

Santarnecchi, Emiliano; Galli, Giulia; Polizzotto, Nicola Riccardo; Rossi, Alessandro; Rossi, Simone

2014-09-01

153

Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors  

PubMed Central

Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5?-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

2014-01-01

154

Ribosome profiling reveals a cell-type-specific translational landscape in brain tumors.  

PubMed

Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5'-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

Gonzalez, Christian; Sims, Jennifer S; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A; Amendolara, Benjamin; Bruce, Jeffrey N; Canoll, Peter; Sims, Peter A

2014-08-13

155

Time-Invariant Person-Specific Frequency Templates in Human Brain Activity Itai Doron,1  

E-print Network

Time-Invariant Person-Specific Frequency Templates in Human Brain Activity Itai Doron,1 Eyal Hulata (Received 18 January 2006; published 26 June 2006) The various human brain tasks are performed at different) partitioning of the brain activity into personal state-specific frequency bands. For that, we perform temporal

Jacob, Eshel Ben

156

The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging  

PubMed Central

Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

2014-01-01

157

Development of Large-Scale Functional Brain Networks in Children  

PubMed Central

The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

Supekar, Kaustubh; Musen, Mark; Menon, Vinod

2009-01-01

158

Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain  

SciTech Connect

Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain.

Yadav, Sanjay [Developmental Toxicology Division, Industrial Toxicology Research Centre, PO Box 80, Mahatma Gandhi Marg, Lucknow-226 001, U.P. (India); Johri, Ashu [Developmental Toxicology Division, Industrial Toxicology Research Centre, PO Box 80, Mahatma Gandhi Marg, Lucknow-226 001, U.P. (India); Dhawan, Alok [Developmental Toxicology Division, Industrial Toxicology Research Centre, PO Box 80, Mahatma Gandhi Marg, Lucknow-226 001, U.P. (India); Seth, Prahlad K. [Developmental Toxicology Division, Industrial Toxicology Research Centre, PO Box 80, Mahatma Gandhi Marg, Lucknow-226 001, U.P. (India); Parmar, Devendra [Developmental Toxicology Division, Industrial Toxicology Research Centre, PO Box 80, Mahatma Gandhi Marg, Lucknow-226 001, U.P. (India)]. E-mail: parmar_devendra@hotmail.com

2006-11-15

159

State-related functional integration and functional segregation brain networks in schizophrenia  

PubMed Central

Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. PMID:24094882

Yu, Qingbao; Sui, Jing; Kiehl, Kent A.; Pearlson, Godfrey; Calhoun, Vince D.

2013-01-01

160

Evidence for hubs in human functional brain networks  

PubMed Central

Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

2013-01-01

161

The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.  

PubMed

Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. PMID:24962172

Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

2014-11-01

162

Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128  

PubMed Central

MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases. PMID:24555688

2014-01-01

163

Functional specializations for music processing in the human newborn brain.  

PubMed

In adults, specific neural systems with right-hemispheric weighting are necessary to process pitch, melody, and harmony as well as structure and meaning emerging from musical sequences. It is not known to what extent the specialization of these systems results from long-term exposure to music or from neurobiological constraints. One way to address this question is to examine how these systems function at birth, when auditory experience is minimal. We used functional MRI to measure brain activity in 1- to 3-day-old newborns while they heard excerpts of Western tonal music and altered versions of the same excerpts. Altered versions either included changes of the tonal key or were permanently dissonant. Music evoked predominantly right-hemispheric activations in primary and higher order auditory cortex. During presentation of the altered excerpts, hemodynamic responses were significantly reduced in the right auditory cortex, and activations emerged in the left inferior frontal cortex and limbic structures. These results demonstrate that the infant brain shows a hemispheric specialization in processing music as early as the first postnatal hours. Results also indicate that the neural architecture underlying music processing in newborns is sensitive to changes in tonal key as well as to differences in consonance and dissonance. PMID:20176953

Perani, Daniela; Saccuman, Maria Cristina; Scifo, Paola; Spada, Danilo; Andreolli, Guido; Rovelli, Rosanna; Baldoli, Cristina; Koelsch, Stefan

2010-03-01

164

Cell-specific blood–brain barrier regulation in health and disease: a focus on hypoxia  

PubMed Central

The blood–brain barrier (BBB) is a complex vascular structure consisting of microvascular endothelial cells that line the vessel wall, astrocyte end-feet, pericytes, as well as the basal lamina. BBB cells act in concert to maintain the characteristic impermeable and low paracellular flux of the brain vascular network, thus ensuring a homeostatic neuronal environment. Alterations in BBB stability that occur during injury have dire consequences on disease progression and it is clear that BBB cell-specific responses, positive or negative, must make a significant contribution to injury outcome. Reduced oxygenation, or hypoxia, is a characteristic of many brain diseases that significantly increases barrier permeability. Recent data suggest that hypoxia-inducible factor (HIF-1), the master regulator of the hypoxic response, probably mediates many hypoxic effects either directly or indirectly via its target genes. This review discusses current knowledge of physiological cell-specific regulation of barrier function, their responses to hypoxia as well as consequences of hypoxic-and HIF-1-mediated mechanisms on barrier integrity during select brain diseases. In the final sections, the potential of current advances in targeting HIF-1 as a therapeutic strategy will be overviewed. PMID:24641185

Engelhardt, S; Patkar, S; Ogunshola, O O

2014-01-01

165

Functional photoacoustic tomography of animal brains  

E-print Network

This research is primarily focused on laser-based non-invasive photoacoustic tomography of small animal brains. Photoacoustic tomography, a novel imaging modality, was applied to visualize the distribution of optical absorptions in small...

Wang, Xueding

2005-11-01

166

Structural and functional clusters of complex brain networks  

Microsoft Academic Search

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on

Lucia Zemanov; Changsong Zhou

2006-01-01

167

Operating Characteristics of Executive Functioning Tests Following Traumatic Brain Injury  

Microsoft Academic Search

The primary purposes of this study were to determine if controls, and mild and moderate\\/severe traumatic brain injury (TBI) patients performed differently on a battery of executive functioning (EF) tests, and to identify the operating characteristics of EF tests in this population. Participants consisted of 46 brain-injured individuals and 24 healthy controls. All participants completed an extensive battery of EF

Jason A. Demery; Michael J. Larson; Neha K. Dixit; Russell M. Bauer; William M. Perlstein

2010-01-01

168

Mapping cognitive brain function with modern high-resolution electroencephalography  

Microsoft Academic Search

High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. While electroencephalography (EEG) provides temporal resolution in the millisecond range, which would seem to make it an ideal complement to other imaging modalities, traditional EEG technology and practice provides insufficient spatial detail to identify relationships between brain electrical events and structures and

Alan Gevins; Harrison Leong; Michael E. Smith; Jian Le; Robert Du

1995-01-01

169

Individual Variability in Functional Connectivity Architecture of the Human Brain  

E-print Network

and development, guiding intervention, and interpreting statistical maps in neuroimaging. INTRODUCTION The humanNeuron Article Individual Variability in Functional Connectivity Architecture of the Human Brain another is rooted in individual differences in brain anatomy and connectivity. Here, we used repeated

Hayar, Abdallah

170

Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization  

ERIC Educational Resources Information Center

The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

2009-01-01

171

Videogame training strategy-induced change in brain function during a complex visuomotor task.  

PubMed

Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. PMID:22504276

Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

2012-07-01

172

Brain functional connectivity and the pathophysiology of schizophrenia.  

PubMed

In the last decade there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neuronal responses are associated with synchronized oscillatory activity in various frequency ranges suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia. Consequently, disturbances in neural synchronization may represent the functional relationship of disordered connectivity of cortical networks underlying the characteristic fragmentation of mind and behavior in schizophrenia. In recent studies the synchronization of oscillatory activity in the experience of characteristic symptoms such as auditory verbal hallucinations and thought blocks have been studied in patients with schizophrenia. Studies involving analysis of EEG activity obtained from individuals in resting state (in cage Faraday, isolated from external influences and with eyes closed). In patients with schizophrenia and persistent auditory verbal hallucinations (AVHs) observed a temporary increase in the synchronization phase of ? and high ? oscillations of the electroencephalogram (EEG) compared with those of healthy controls and patients without AVHs . This functional hyper-connection manifested in time windows corresponding to experience AVHs, as noted by the patients during the recording of EEG and observed in speech related cortical areas. In another study an interaction of theta and gamma oscillations engages in the production and experience of AVHs. The results showed increased phase coupling between theta and gamma EEG rhythms in the left temporal cortex during AVHs experiences. A more recent study, approaches the thought blocking experience in terms of functional brain connectivity. Thought blocks (TBs) are characterized by regular interruptions of the flow of thought. Outward signs are abrupt and repeated interruptions in the flow of conversation or actions while subjective experience is that of a total and uncontrollable emptying of the mind. In the very limited bibliography regarding TB, the phenomenon is thought to be conceptualized as a disturbance of consciousness that can be attributed to stoppages of continuous information processing due to an increase in the volume of information to be processed. In an attempt to investigate potential expression of the phenomenon on the functional properties of electroencephalographic (EEG) activity, an EEG study was contacted in schizophrenic patients with persisting auditory verbal hallucinations (AVHs) who additionally exhibited TBs. Phase synchronization analyses performed on EEG segments during the experience of TBs showed that synchrony values exhibited a long-range common mode of coupling (grouped behavior) among the left temporal area and the remaining central and frontal brain areas. These common synchrony-fluctuation schemes were observed for 0.5 to 2 s and were detected in a 4-s window following the estimated initiation of the phenomenon. The observation was frequency specific and detected in the broad alpha band region (6-12 Hz). The introduction of synchrony entropy (SE) analysis applied on the cumulative synchrony distribution showed that TB states were characterized by an explicit preference of the system to be functioned at low values of synchrony, while the synchrony values are broadly distributed during the recovery state. The results indicate that during TB states, the phase locking of several brain areas were converged uniformly in a narrow band of low synchrony values and in a distinct time window, impeding thus the ability of the system to recruit and to process information during this time window. The results of this study seem to have greater importance on neuronal correlation of consciousness. The brain is a highly distributed system in which numerous operations are executed in parallel and that lacks a single coordinating center. This rais

Angelopoulos, E

2014-01-01

173

Functional connectivity of the rodent brain using optical imaging  

NASA Astrophysics Data System (ADS)

The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.

Guevara Codina, Edgar

174

Affective state-dependent changes in the brain functional network in major depressive disorder.  

PubMed

In major depressive disorder (MDD), as a network-level disease, the pathophysiology would be displayed to a wide extent over the brain. Moreover, the network-wide changes could be dependent on the context of affective processing. In this study, we sought affective state-dependent changes of the brain functional network by applying a graph-theoretical approach to functional magnetic resonance imaging data acquired in 13 patients with MDD and 12 healthy controls who were exposed to video clips inducing the negative, neutral or positive affective state. For each affective condition, a group-wise brain functional network was constructed based on partial correlation of mean activity across subjects between brain areas. Network parameters, global and local efficiencies, were measured from the brain functional network. Compared with controls', patients' brain functional network shifted to the regular network in the topological architecture, showing decreased global efficiency and increased local efficiency, during negative and neutral affective processing. Further, the shift to the regular network in patients was most evident during negative affective processing. MDD is proposed to provoke widespread changes across the whole brain in an affective state-dependent manner, specifically in the negative affective state. PMID:24249787

Park, Chang-hyun; Wang, Sheng-Min; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

2014-09-01

175

Complex Networks - A Key to Understanding Brain Function  

ScienceCinema

The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

Olaf Sporns

2010-01-08

176

Complex Networks - A Key to Understanding Brain Function  

SciTech Connect

The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

Olaf Sporns

2008-01-23

177

Intersubject variability of and genetic effects on the brain's functional connectivity during infancy.  

PubMed

Infancy is a period featuring a high level of intersubject variability but the brain basis for such variability and the potential genetic/environmental contributions remain largely unexplored. The assessment of the brain's functional connectivity during infancy by the resting state functional magnetic resonance imaging (rsfMRI) technique (Biswal et al., 1995) provides a unique means to probe the brain basis of intersubject variability during infancy. In this study, an unusually large typically developing human infant sample including 58 singletons, 132 dizygotic twins, and 98 monozygotic twins with rsfMRI scans during the first 2 years of life was recruited to delineate the spatial and temporal developmental patterns of both the intersubject variability of and genetic effects on the brain's functional connectivity. Through systematic voxelwise functional connectivity analyses, our results revealed that the intersubject variability at birth features lower variability in primary functional areas but higher values in association areas. Although the relative pattern remains largely consistent, the magnitude of intersubject variability undergoes an interesting U-shaped growth during the first 2 years of life. Overall, the intersubject variability patterns during infancy show both adult-like and infant-specific characteristics (Mueller et al., 2013). On the other hand, age-dependent genetic effects were observed showing significant but bidirectional relationships with intersubject variability. The temporal and spatial patterns of the intersubject variability of and genetic contributions to the brain's functional connectivity documented in this study shed light on the largely uncharted functional development of the brain during infancy. PMID:25143609

Gao, Wei; Elton, Amanda; Zhu, Hongtu; Alcauter, Sarael; Smith, J Keith; Gilmore, John H; Lin, Weili

2014-08-20

178

Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.  

PubMed

Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. PMID:25461715

Pujol, Jesus; Del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

2015-03-01

179

Dynamical intrinsic functional architecture of the brain during absence seizures.  

PubMed

Epilepsy is characterized by recurrent and temporary brain dysfunction due to discharges of interconnected groups of neurons. The brain of epilepsy patients has a dynamic bifurcation that switches between epileptic and normal states. The dysfunctional state involves large-scale brain networks. It is very important to understand the network mechanisms of seizure initiation, maintenance, and termination in epilepsy. Absence epilepsy provides a unique model for neuroimaging investigation on dynamic evolutions of brain networks over seizure repertoire. By using a dynamic functional connectivity and graph theoretical analyses to study absence seizures (AS), we aimed to obtain transition of network properties that account for seizure onset and offset. We measured resting-state functional magnetic resonance imaging and simultaneous electroencephalography (EEG) from children with AS. We used simultaneous EEG to define the preictal, ictal and postictal intervals of seizures. We measured dynamic connectivity maps of the thalamus network and the default mode network (DMN), as well as functional connectome topologies, during the three different seizure intervals. The analysis of dynamic changes of anti-correlation between the thalamus and the DMN is consistent with an inhibitory effect of seizures on the default mode of brain function, which gradually fades out after seizure onset. Also, we observed complex transitions of functional network topology, implicating adaptive reconfiguration of functional brain networks. In conclusion, our work revealed novel insights into modifications in large-scale functional connectome during AS, which may contribute to a better understanding the network mechanisms of state bifurcations in epileptogenesis. PMID:23913255

Liao, Wei; Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Ji, Gong-Jun; Zhang, Han; Wang, Jue; Wang, Zhengge; Chen, Guanghui; Tian, Lei; Jiao, Qing; Zang, Yu-Feng; Lu, Guangming

2014-11-01

180

Breakdown of the brain's functional network modularity with awareness.  

PubMed

Neurobiological theories of awareness propose divergent accounts of the spatial extent of brain changes that support conscious perception. Whereas focal theories posit mostly local regional changes, global theories propose that awareness emerges from the propagation of neural signals across a broad extent of sensory and association cortex. Here we tested the scalar extent of brain changes associated with awareness using graph theoretical analysis applied to functional connectivity data acquired at ultra-high field while subjects performed a simple masked target detection task. We found that awareness of a visual target is associated with a degradation of the modularity of the brain's functional networks brought about by an increase in intermodular functional connectivity. These results provide compelling evidence that awareness is associated with truly global changes in the brain's functional connectivity. PMID:25759440

Godwin, Douglass; Barry, Robert L; Marois, René

2015-03-24

181

Neuron-glia networks: integral gear of brain function  

E-print Network

Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been ...

Perea, Gertrudis

182

Functional Outcomes in a Postacute Brain Injury Rehabilitation Program  

Microsoft Academic Search

The purpose of this study was to evaluate functional outcomes among individuals with acquired brain injury who received treatment at a postacute brain injury rehabilitation program over a 3-year period (2008 to 2010). Participation in community and\\/or social roles, supervision required, and adaptive functioning outcomes were evaluated in a sample of 109 adults (71% male, 29% female; 88.1% White, 11.9%

Esther Brahmstadt

2012-01-01

183

Relationship Between Neurocognitive Function and Quality of Life After Whole-Brain Radiotherapy in Patients With Brain Metastasis  

SciTech Connect

Purpose: To examine the relationship between neurocognitive function (NCF) and quality of life (QOL) in patients with brain metastases after whole-brain radiotherapy. Patients and Methods: A total of 208 patients from the whole-brain radiotherapy arm of a Phase III trial (PCI-P120-9801), who underwent regular NCF and QOL (ADL [activities of daily living] and FACT-Br [Functional Assessment of Cancer Therapy-Brain-specific]) testing, were analyzed. Spearman's rank correlation was calculated between NCF and QOL, using each patient's own data, at each time point. To test the hypothesis that NCF declines before QOL changes, the predictive effect of NCF from previous visits on QOL was studied with a linear mixed-effects model. Neurocognitive function or QOL deterioration was defined relative to each patient's own baseline. Lead or lag time, defined as NCF deterioration before or after the date of QOL decline, respectively, was computed. Results: At baseline, all NCF tests showed statistically significant correlations with ADL, which became stronger at 4 months. A similar observation was made with FACT-Br. Neurocognitive function scores from previous visits predicted ADL (p < 0.05 for seven of eight tests) or FACT-Br. Scores on all eight NCF tests deteriorated before ADL decline (net lead time 9-153 days); and scores on six of eight NCF tests deteriorated before FACT-Br (net lead time 9-82 days). Conclusions: Neurocognitive function and QOL are correlated. Neurocognitive function scores from previous visits are predictive of QOL. Neurocognitive function deterioration precedes QOL decline. The sequential association between NCF and QOL decline suggests that delaying NCF deterioration is a worthwhile treatment goal in brain metastases patients.

Li Jing; Bentzen, Soren M. [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Li Jialiang [Department of Statistics and Applied Probability, National University of Singapore (Singapore); Renschler, Markus [Oncology Clinical Development, Pharmacyclics, Sunnyvale, CA (United States); Mehta, Minesh P. [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States)], E-mail: mehta@humonc.wisc.edu

2008-05-01

184

SEGMENTATION OF PATIENT SPECIFIC MEG/EEG SKULL, SCALP, AND BRAIN MODELS FROM MRI  

E-print Network

SEGMENTATION OF PATIENT SPECIFIC MEG/EEG SKULL, SCALP, AND BRAIN MODELS FROM MRI Belma Dogdas California, LA, CA 90089-2564 ABSTRACT We present an automated method for segmenting skull, scalp, and brain and morphology to produce a scalp mask. The brain and scalp masks provide boundaries between which the skull must

Leahy, Richard M.

185

A Patient-Specific Segmentation Framework for Longitudinal MR Images of Traumatic Brain Injury  

E-print Network

A Patient-Specific Segmentation Framework for Longitudinal MR Images of Traumatic Brain Injury Bo of California, Los Angeles, California. ABSTRACT Traumatic brain injury (TBI) is a major cause of death, Longitudinal analysis 1. INTRODUCTION Traumatic brain injury (TBI) occurs when an external force traumatically

Utah, University of

186

Detecting Disease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and  

E-print Network

Detecting Disease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and a Population-Based Probabilistic Brain Atlas Paul M. Thompson PhD1 , Michael S. Mega MD PhD1 , Christine Vidal1 , Judith L. Rapoport MD2 , and Arthur W. Toga PhD1 1 Laboratory of Neuro Imaging, Division of Brain Mapping

Thompson, Paul

187

Functional imaging of the brain with/sup 18/F-fluorodeoxyglucose  

SciTech Connect

A techniques is reported by which it is possible to determine which regions of the human brain become functionally active in response to a specific stimulus. The method utilizes /sup 18/F-2-fluoro-2-deoxyglucose ((/sup 18/F)-FDG) administered as a bolus. (/sup 18/F)-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation. The subject is then scanned during administration of a physiologic stimulus by position emission tomography and the three-dimensional distribution of /sup 18/F activity in the brain determined. (ACR)

Reivich, M; Greenberg, J; Alavi, A; Hand, P; Rintelmann, W; Rosenquist, A; Christman, D; Fowler, J; MacGregor, R; Wolf, A

1980-01-01

188

Memory Networks in Tinnitus: A Functional Brain Image Study  

PubMed Central

Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

2014-01-01

189

Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal  

PubMed Central

We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise. PMID:22557963

Fernando, Chrisantha; Szathmáry, Eörs; Husbands, Phil

2012-01-01

190

Antigen-Specific T Helper Cell Function  

PubMed Central

Distinguishing between the development of functional potential in antigen-specific T helper (Th) cells and the delivery of these specialized functions in vivo has been difficult to resolve. Here, we quantify the frequency of cytokine-producing cells within the primary and memory B10.BR Th cell response to pigeon cytochrome c (PCC). In vitro analysis of acquired functional potential indicated no Th1/Th2 cytokine polarity at the peak of the primary response with surprisingly little evidence for the selective preservation of interleukin (IL)-2, tumor necrosis factor (TNF)-?, IL-4, and interferon (IFN)-? potentials into the memory compartment. However, the expression of these functional potentials appears tightly regulated in vivo. The staggered appearance of primary response cytokines directly ex vivo contrasts markedly with their rapid coordinate expression in the memory response. Frequencies of IL-2–, TNF-?–, IFN-?–, and IL-10–expressing memory responders increased over their primary response counterparts, but were still markedly lower than revealed in vitro. IL-4–, IFN-?–, and IL-10–expressing Th cells remained at low but stable frequencies over the first 6 d of the memory response. Analysis of T cell receptor ? chain sequences of IL-4– and TNF-?–expressing PCC-specific Th cells provides evidence for early functional commitment among clonal progeny. These data indicate that the development of functional potential is a consequence of initial antigen experience, but delivery of specialized functions is differentially regulated in primary and memory immune responses. PMID:11067879

Panus, Joanne Fanelli; McHeyzer-Williams, Louise J.; McHeyzer-Williams, Michael G.

2000-01-01

191

ORIGINAL ARTICLES Disruption of Functional Brain Networks  

E-print Network

of studying altered brain network topology and dynamics in AD. Key words: dementia; eigenvector centrality-state Introduction In Alzheimer's disease (AD), the most prevalent form of dementia, imaging techniques have been symptoms in AD (Pievani et al., 2011). Since cognition depends heavily on an efficient interac- tion

Van Mieghem, Piet

192

Generating Text from Functional Brain Images  

PubMed Central

Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

Pereira, Francisco; Detre, Greg; Botvinick, Matthew

2011-01-01

193

Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging  

Microsoft Academic Search

Functional magnetic resonance imaging (FMRI) was used to identify candidate language processing areas in the intact hu- man brain. Language was defined broadly to include both phonological and lexical-semantic functions and to exclude sensory, motor, and general executive functions. The language activation task required phonetic and semantic analysis of aurally presented words and was compared with a control task involving

Jeffrey R. Binder; Julie A. Frost; Thomas A. Hammeke; Robert W. Cox; Stephen M. Rao; Thomas Prieto

1997-01-01

194

Quetiapine modulates functional connectivity in brain aggression networks.  

PubMed

Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

2013-07-15

195

Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.  

PubMed

Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. PMID:25399806

Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

2015-01-01

196

Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging  

PubMed Central

SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

2010-01-01

197

Brain Research, 368(1986)79-86 79 Sensory-Specific Satiety: Food-Specific Reduction in Responsiveness of Ventral  

E-print Network

Brain Research, 368(1986)79-86 79 Elsevier BRE 11522 Sensory-Specific Satiety: Food signify food6. While experiments in which the effect of hunger on the responsiveness of this population of basal fore- brain neurons to food were being performed, it was observed that if a neuron had ceased

Rolls, Edmund T.

198

Apolipoprotein E ?4 modulates functional brain connectome in Alzheimer's disease.  

PubMed

The apolipoprotein E (APOE) ?4 allele is a well-established genetic risk factor for Alzheimer's disease (AD). Recent research has demonstrated an APOE ?4-mediated modulation of intrinsic functional brain networks in cognitively normal individuals. However, it remains largely unknown whether and how APOE ?4 affects the brain's functional network architecture in patients with AD. Using resting-state functional MRI and graph-theory approaches, we systematically investigated the topological organization of whole-brain functional networks in 16 APOE ?4 carriers and 26 matched noncarriers with AD at three levels: global whole-brain, intermediate module, and regional node/connection. Neuropsychological analysis showed that the APOE ?4 carriers performed worse on delayed memory but better on a late item generation of a verbal fluency task (associated with executive function) than noncarriers. Whole-brain graph analyses revealed that APOE ?4 significantly disrupted whole-brain topological organization as characterized by (i) reduced parallel information transformation efficiency; (ii) decreased intramodular connectivity within the posterior default mode network (pDMN) and intermodular connectivity of the pDMN and executive control network (ECN) with other neuroanatomical systems; and (iii) impaired functional hubs and their rich-club connectivities that primarily involve the pDMN, ECN, and sensorimotor systems. Further simulation analysis indicated that these altered connectivity profiles of the pDMN and ECN largely accounted for the abnormal global network topology. Finally, the changes in network topology exhibited significant correlations with the patients' cognitive performances. Together, our findings suggest that the APOE genotype modulates large-scale brain networks in AD and shed new light on the gene-connectome interaction in this disease. Hum Brain Mapp 36:1828-1846, 2015. © 2015 Wiley Periodicals, Inc. PMID:25619771

Wang, Jinhui; Wang, Xiao; He, Yi; Yu, Xin; Wang, Huali; He, Yong

2015-05-01

199

Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies.  

PubMed

Despite significant advances in multimodal imaging techniques and analysis approaches, unimodal studies are still the predominant way to investigate brain changes or group differences, including structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and electroencephalography (EEG). Multimodal brain studies can be used to understand the complex interplay of anatomical, functional and physiological brain alterations or development, and to better comprehend the biological significance of multiple imaging measures. To examine the function-structure associations of the brain in a more comprehensive and integrated manner, we reviewed a number of multimodal studies that combined two or more functional (fMRI and/or EEG) and structural (sMRI and/or DTI) modalities. In this review paper, we specifically focused on multimodal neuroimaging studies on cognition, aging, disease and behavior. We also compared multiple analysis approaches, including univariate and multivariate methods. The possible strengths and limitations of each method are highlighted, which can guide readers when selecting a method based on a given research question. In particular, we believe that multimodal fusion approaches will shed further light on the neuronal mechanisms underlying the major structural and functional pathophysiological features of both the healthy brain (e.g. development) or the diseased brain (e.g. mental illness) and, in the latter case, may provide a more sensitive measure than unimodal imaging for disease classification, e.g. multimodal biomarkers, which potentially can be used to support clinical diagnosis based on neuroimaging techniques. PMID:24084066

Sui, Jing; Huster, Rene; Yu, Qingbao; Segall, Judith M; Calhoun, Vince D

2014-11-15

200

Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis  

Microsoft Academic Search

OBJECTIVETo support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours.METHODSRetrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral\\/contralateral ratio of activation—that is, movements of the paretic hand

F E Roux; K Boulanouar; D Ibarrola; M Tremoulet; F Chollet; I Berry

2000-01-01

201

Near to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique for Visualization  

E-print Network

conditions. The brain activity plot is the mean change in deoxygenated hemoglobin over 130 trials of each near-infrared spectroscopy (fNIRS) is an emerging technology for brain imaging being developedNear to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique

Tomkins, Andrew

202

Functional Connectivity between Brain Areas Estimated by Analysis of Gamma Waves  

PubMed Central

The goal of this study is to investigate functional connectivity between different brain regions by analyzing the temporal relationship of the maxima of gamma waves recorded in multiple brain areas. Local field potentials were recorded from motor cortex, hippocampus, entorhinal cortex and piriform cortex of rats. Gamma activity was filtered and separated into two bands; high (65–90Hz) and low (30–55Hz) gamma. Maxima for gamma activity waves were detected and functional connectivity between different brain regions was determined using Shannon entropy for perievent histograms for each pair channels. Significant Shannon entropy values were reported as connectivity factors. We defined a connectivity matrix based the connectivity factors between different regions. We found that maxima of low and high frequency gamma occur in strong temporal relationship between some brain areas, indicating the existence of functional connections between these areas. The spatial pattern of functional connections between brain areas was different for slow wave sleep and waking states. However for each behavioral state in the same animal the pattern of functional connections was stable over time within 30 minutes of continuous analysis and over a 5 day period. With the same electrode montage the pattern of functional connectivity varied from one subject to another. Analysis of the temporal relationship of maxima of gamma waves between various brain areas could be a useful tool for investigation of functional connections between these brain areas. This approach could be applied for analysis of functional alterations occurring in these connections during different behavioral tasks and during processes related to learning and memory. The specificity in the connectivity pattern from one subject to another can be explained by the existence of unique functional networks for each subject. PMID:23376499

Kheiri, Farshad; Bragin, Anatol; Engel, Jerome

2013-01-01

203

Control of a specific motor program by a small brain area in zebrafish  

PubMed Central

Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically-evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum (avOT) and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step toward a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish. PMID:23641200

Fajardo, Otto; Zhu, Peixin; Friedrich, Rainer W.

2013-01-01

204

Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity  

PubMed Central

Manipulative parasites can alter the phenotype of intermediate hosts in various ways. However, it is unclear whether such changes are just by-products of infection or adaptive and enhance transmission to the final host. Here, we show that the alteration of serotonergic activity is functionally linked to the alteration of specific behaviour in the amphipod Gammarus pulex infected with acanthocephalan parasites. Pomphorhynchus laevis and, to a lesser extent, Pomphorhynchus tereticollis altered phototactism, but not geotactism, in G. pulex, whereas the reverse was true for Polymorphus minutus. Serotonin (5-hydroxytryptamine, 5-HT) injected to uninfected G. pulex mimicked the altered phototactism, but had no effect on geotactism. Photophilic G. pulex infected with P. laevis or P. tereticollis showed a 40% increase in brain 5-HT immunoreactivity compared to photophobic, uninfected individuals. In contrast, brain 5-HT immunoreactivity did not differ between P. minutus-infected and uninfected G. pulex. Finally, brain 5-HT immunoreactivity differed significantly among P. tereticollis-infected individuals in accordance with their degree of manipulation. Our results demonstrate that altered 5-HT activity is not the mere consequence of infection by acanthocephalans but is specifically linked to the disruption of host photophobic behaviour, whereas the alteration of other behaviours such as geotactism may rely on distinct physiological routes. PMID:17015346

Tain, Luke; Perrot-Minnot, Marie-Jeanne; Cézilly, Frank

2006-01-01

205

Effect of short-term exposure to hexachlorophene on rat brain cell specific marker enzymes.  

PubMed

Seven cell specific marker enzymes in brain and optic nerve and morphological evaluation by light microscopy were used to characterize the neurotoxicity associated with exposure of rats to hexachlorophene (HCP; 40 mg/kg/day, po, for 9 days). In vitro exposure to HCP at concentrations up to 100 microM had no direct inhibitory effect on the marker enzymes, validating their use in evaluating brain function in vivo. Rats exhibited a reduction in body weight gain, weakness, and ataxia of the hind limbs by the ninth day of HCP exposure. At 24 hr following the last day of exposure to HCP, the activities of the three neuron specific enzymes, glutamic acid decarboxylase, tyrosine hydroxylase, and choline acetyltransferase, in rat brain were unchanged from those of the vehicle-treated control group. Of the two astroglial enzyme markers measured, a small but significant increase was observed in the activity of nonneuronal enolase in the cerebellum and glutamine synthetase in the hippocampus of HCP-treated rats. The optic nerve appeared to be the most sensitive tissue in that the activity of both the astroglial marker, nonneuronal enolase, and the myelin marker, 2',3'-cyclic nucleotide phosphohydrolase, was significantly decreased following HCP exposure. This decrease in enzyme activity is consistent with the histological observations demonstrating extensive vacuolization and edema in the optic nerve after exposure to HCP. PMID:2906023

Kung, M P; Nickerson, P A; Sansone, F M; Olson, J R; Kostyniak, P J; Adolf, M A; Lein, P J; Roth, J A

1988-10-01

206

Human brain functional MRI and DTI visualization with virtual reality  

PubMed Central

Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

Chen, Bin; Moreland, John; Zhang, Jingyu

2011-01-01

207

Deep-brain electrical microstimulation is an effective tool to explore functional characteristics of somatosensory neurons in the rat brain.  

PubMed

In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES) of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS) via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks. PMID:25695538

Jiang, Han-Jia; Chen, Kuang-Hsuan; Jaw, Fu-Shan

2015-01-01

208

Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction  

PubMed Central

The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions. PMID:25209275

Wang, Danhong; Buckner, Randy L.

2014-01-01

209

Fluid intelligence and brain functional organization in aging yoga and meditation practitioners  

PubMed Central

Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629

Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.

2014-01-01

210

Neuronal Migration Depends on Intact Peroxisomal Function in Brain and in Extraneuronal Tissues  

Microsoft Academic Search

Functional peroxisome deficiency, as encountered in Zellweger syndrome, causes a specific impairment of neuronal migration. Although the molecular mechanisms underlying the neuronal migration defect are at present unknown, the excess of very long chain fatty acids in brain, a consequence of peroxisomal-oxidation deficiency, has often been hypothesized to play a major role. The purpose of the present study was to

Anneleen Janssen; Pierre Gressens; Markus Grabenbauer; Eveline Baumgart; Arno Schad; Ilse Vanhorebeek; Annelies Brouwers; Peter E. Declercq; Dariush Fahimi; Philippe Evrard; Luc Schoonjans; Peter Carmeliet; Guy Mannaerts; Paul Van Veldhoven; Myriam Baes

2003-01-01

211

Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer  

E-print Network

-invasive patient-specific hyperthermia treatment of pediatric brain cancer Matthew J Burfeindt1 , Earl Zastrow1 adjuvant to other treatment modalities for a variety of cancers (e.g., Overgaard et al 1995, Kapp 1996, VanMicrowave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain

Sheridan, Jennifer

212

Identification of Injury Specific Proteins in a Cell Culture Model of Traumatic Brain Injury  

PubMed Central

The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers. PMID:23409102

Lööv, Camilla; Shevchenko, Ganna; Geeyarpuram Nadadhur, Aishwarya; Clausen, Fredrik; Hillered, Lars; Wetterhall, Magnus; Erlandsson, Anna

2013-01-01

213

Magnetic resonance and the human brain: anatomy, function and metabolism.  

PubMed

The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

2006-05-01

214

Inferring Functional Brain States Using Temporal Evolution of Regularized Classifiers  

PubMed Central

We present a framework for inferring functional brain state from electrophysiological (MEG or EEG) brain signals. Our approach is adapted to the needs of functional brain imaging rather than EEG-based brain-computer interface (BCI). This choice leads to a different set of requirements, in particular to the demand for more robust inference methods and more sophisticated model validation techniques. We approach the problem from a machine learning perspective, by constructing a classifier from a set of labeled signal examples. We propose a framework that focuses on temporal evolution of regularized classifiers, with cross-validation for optimal regularization parameter at each time frame. We demonstrate the inference obtained by this method on MEG data recorded from 10 subjects in a simple visual classification experiment, and provide comparison to the classical nonregularized approach. PMID:18350130

Zhdanov, Andrey; Hendler, Talma; Ungerleider, Leslie; Intrator, Nathan

2007-01-01

215

Rehabilitation of Executive Functioning in Patients with Frontal Lobe Brain Damage with Goal Management Training  

PubMed Central

Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke) affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task as well as the Tower Test, a visuospatial problem-solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits. PMID:21369362

Levine, Brian; Schweizer, Tom A.; O'Connor, Charlene; Turner, Gary; Gillingham, Susan; Stuss, Donald T.; Manly, Tom; Robertson, Ian H.

2011-01-01

216

Structural and functional organization of a developing brain and formation of cognitive functions in child ontogeny  

Microsoft Academic Search

Results of multidisciplinary studies, including neuromorphological, neurophysiological, neuropsychological, and psychphysiological\\u000a studies, are reviewed. They allow the brain mechanisms of cognition formation and development during maturation to be identified.\\u000a The role of regulatory (modulatory) brain systems in forming the cognitive function in the child is demonstrated. Data on\\u000a considerable changes in the brain systems responsible for the development of cognitive functions

M. M. Bezrukikh; R. I. Machinskaya; D. A. Farber

2009-01-01

217

Effect of tumor resection on the characteristics of functional brain networks J. M. Hernndez,1  

E-print Network

Effect of tumor resection on the characteristics of functional brain networks H. Wang,1 L. Douw,2 J. The functional brain networks of a group of patients with brain tumors are measured before and after tumor with brain tumors before and after surgery, the aim of which was to remove the tumor. In brain tumor patients

Van Mieghem, Piet

218

Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?  

PubMed Central

The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5–4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium—a primary visual processing region—neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds. PMID:21208955

Lesku, John A.; Vyssotski, Alexei L.; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C.

2011-01-01

219

Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?  

PubMed

The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds. PMID:21208955

Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

2011-08-22

220

BranchedChain Amino Acids and Brain Function  

Microsoft Academic Search

Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain

John D. Fernstrom

221

A Large-Scale Model of the Functioning Brain  

Microsoft Academic Search

A central challenge for cognitive and systems neuroscience is to relate the incredibly complex behavior of animals to the equally complex activity of their brains. Recently described, large-scale neural models have not bridged this gap between neural activity and biological function. In this work, we present a 2.5-million-neuron model of the brain (called “Spaun”) that bridges this gap by exhibiting

Chris Eliasmith; Terrence C. Stewart; Xuan Choo; Trevor Bekolay; Travis DeWolf; Yichuan Tang; Daniel Rasmussen

2012-01-01

222

Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke.  

PubMed

Recently, we have developed a new hybrid-rehabilitation combining 5Hz repetitive transcranial magnetic stimulation and extensor motor training of the paretic upper-limb for stroke patients with flexor hypertonia. We previously showed that the extensor-specific plastic change in M1 was associated with beneficial effects of our protocol (Koganemaru et al., 2010). Here, we investigated whether extensor-specific multiregional brain reorganization occurred after the hybrid-rehabilitation using functional magnetic resonance imaging. Eleven chronic stroke patients were scanned while performing upper-limb extensor movements. Untrained flexor movements were used as a control condition. The scanning and clinical assessments were done before, immediately and 2 weeks after the hybrid-rehabilitation. As a result, during the trained extensor movements, the imaging analysis showed a significant reduction of brain activity in the ipsilesional sensorimotor cortex, the contralesional cingulate motor cortex and the contralesional premotor cortex in association with functional improvements of the paretic hands. The activation change was not found for the control condition. Our results suggested that use-dependent plasticity induced by repetitive motor training with brain stimulation might be related to task-specific multi-regional brain reorganization. It provides a key to understand why repetitive training of the target action is one of the most powerful rehabilitation strategies to help patients. PMID:25450315

Koganemaru, Satoko; Sawamoto, Nobukatsu; Aso, Toshihiko; Sagara, Akiko; Ikkaku, Tomoko; Shimada, Kenji; Kanematsu, Madoka; Takahashi, Ryosuke; Domen, Kazuhisa; Fukuyama, Hidenao; Mima, Tatsuya

2015-03-01

223

Functional magnetic resonance imaging (FMRI) of the human brain  

Microsoft Academic Search

Functional magnetic resonance imaging (FMRI) can provide detailed images of human brain that reflect localized changes in cerebral blood flow and oxygenation induced by sensory, motor, or cognitive tasks. This review presents methods for gradient-recalled echo-planar functional magnetic resonance imaging (FMRI). Also included is a discussion of the hypothesized basis of FMRI, imaging hardware, a unique visual stimulation apparatus, image

Edgar A. DeYoe; Peter Bandettini; Jay Neitz; David Miller; Paula Winans

1994-01-01

224

Adaptation of Brain Functional and Structural Networks in Aging  

PubMed Central

The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging. PMID:25875816

Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

2015-01-01

225

Adaptation of brain functional and structural networks in aging.  

PubMed

The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging. PMID:25875816

Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

2015-01-01

226

Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid  

SciTech Connect

Transferrin, radiolabeled with In-111, can be coinjected into glioblastoma multiforme lesions, and subsequent scintigraphic imaging can demonstrate the biokinetics of the cytotoxic transferrin. The administration of [sup 111]In transferrin into a brain tumor results in distribution of radioactivity in the brain, brain tumor, and the cerebrospinal fluid (CSF). Information about absorbed radiation doses to these regions, as well as other nearby tissues and organs, is important for evaluating radiation-related risks from this procedure. The radiation dose is usually estimated for a mathematical representation of the human body. We have included source/target regions for the eye, lens of the eye, spinal column, spinal CSF, cranial CSF, and a 100-g tumor within the brain of an adult male phantom developed by Cristy and Eckerman. The spinal column, spinal CSF, and the eyes have not been routinely included in photon transport simulations. Specific absorbed fractions (SAFs) as a function of photon energy were calculated using the ALGAMP computer code, which utilizes Monte Carlo techniques for simulating photon transport. The ALGAMP code was run three times, with the source activity distributed uniformly within the tumor, cranial CSF, and the spinal CSF volumes. These SAFs, which were generated for 12 discrete photon energies ranging from 0.01 to 4.0 MeV, were used with decay scheme data to calculate [ital S]-values needed for estimating absorbed doses. [ital S]-values for [sup 111]In are given for three source regions (brain tumor, cranial CSF, and spinal CSF) and all standard target regions/organs, the eye and lens, as well as to tissues within these source regions. [ital S]-values for the skeletal regions containing active marrow are estimated. These results are useful in evaluating the radiation doses from intracranial administration of [sup 111]In transferrin.

Evans, J.F. (Nuclear Engineering Program, Ohio State University, Columbus (Ohio (United States))); Stubbs, J.B. (Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States))

1995-03-01

227

Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images  

SciTech Connect

In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E. [Univ. of Michigan, Ann Arbor, MI (United States)

1994-06-01

228

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain*†  

PubMed Central

Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. PMID:25309643

Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J.

2014-01-01

229

Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces  

PubMed Central

Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

Mandonnet, Emmanuel; Duffau, Hugues

2014-01-01

230

Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces.  

PubMed

Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

Mandonnet, Emmanuel; Duffau, Hugues

2014-01-01

231

Allelic specificity of Ube3a expression in the mouse brain during postnatal development.  

PubMed

Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS. PMID:24254964

Judson, Matthew C; Sosa-Pagan, Jason O; Del Cid, Wilmer A; Han, Ji Eun; Philpot, Benjamin D

2014-06-01

232

Automated identification of cell-type-specific genes in the mouse brain by image computing of expression patterns  

PubMed Central

Background Differential gene expression patterns in cells of the mammalian brain result in the morphological, connectional, and functional diversity of cells. A wide variety of studies have shown that certain genes are expressed only in specific cell-types. Analysis of cell-type-specific gene expression patterns can provide insights into the relationship between genes, connectivity, brain regions, and cell-types. However, automated methods for identifying cell-type-specific genes are lacking to date. Results Here, we describe a set of computational methods for identifying cell-type-specific genes in the mouse brain by automated image computing of in situ hybridization (ISH) expression patterns. We applied invariant image feature descriptors to capture local gene expression information from cellular-resolution ISH images. We then built image-level representations by applying vector quantization on the image descriptors. We employed regularized learning methods for classifying genes specifically expressed in different brain cell-types. These methods can also rank image features based on their discriminative power. We used a data set of 2,872 genes from the Allen Brain Atlas in the experiments. Results showed that our methods are predictive of cell-type-specificity of genes. Our classifiers achieved AUC values of approximately 87% when the enrichment level is set to 20. In addition, we showed that the highly-ranked image features captured the relationship between cell-types. Conclusions Overall, our results showed that automated image computing methods could potentially be used to identify cell-type-specific genes in the mouse brain. PMID:24947138

2014-01-01

233

Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/hyperactivity disorder  

PubMed Central

Attention-deficit/hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood, and there is great interest in understanding its neurobiological basis. A prominent neurodevelopmental hypothesis proposes that ADHD involves a lag in brain maturation. Previous work has found support for this hypothesis, but examinations have been limited to structural features of the brain (e.g., gray matter volume or cortical thickness). More recently, a growing body of work demonstrates that the brain is functionally organized into a number of large-scale networks, and the connections within and between these networks exhibit characteristic patterns of maturation. In this study, we investigated whether individuals with ADHD (age 7.2–21.8 y) exhibit a lag in maturation of the brain’s developing functional architecture. Using connectomic methods applied to a large, multisite dataset of resting state scans, we quantified the effect of maturation and the effect of ADHD at more than 400,000 connections throughout the cortex. We found significant and specific maturational lag in connections within default mode network (DMN) and in DMN interconnections with two task positive networks (TPNs): frontoparietal network and ventral attention network. In particular, lag was observed within the midline core of the DMN, as well as in DMN connections with right lateralized prefrontal regions (in frontoparietal network) and anterior insula (in ventral attention network). Current models of the pathophysiology of attention dysfunction in ADHD emphasize altered DMN–TPN interactions. Our finding of maturational lag specifically in connections within and between these networks suggests a developmental etiology for the deficits proposed in these models. PMID:25225387

Sripada, Chandra S.; Kessler, Daniel; Angstadt, Mike

2014-01-01

234

Laterality Patterns of Brain Functional Connectivity: Gender Effects  

PubMed Central

Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

Tomasi, Dardo; Volkow, Nora D.

2012-01-01

235

Assortative mixing in functional brain networks during epileptic seizures  

NASA Astrophysics Data System (ADS)

We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

Bialonski, Stephan; Lehnertz, Klaus

2013-09-01

236

Neuron-glia networks: integral gear of brain function  

PubMed Central

Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been largely ignored. The strategic position of astrocyte processes facing synapses and the astrocyte ability to uptake neurotransmitters and release neuroactive substances, so-called “gliotransmitters”, provide the scenario for prolific neuron-astrocyte signaling. From studies at single-cell level to animal behavior, recent advances in technology and genetics have revealed the impact of astrocyte activity in brain function from cellular and synaptic physiology, neuronal circuits to behavior. The present review critically discusses the consequences of astrocyte signaling on synapses and networks, as well as its impact on neuronal information processing, showing that some crucial brain functions arise from the coordinated activity of neuron-glia networks. PMID:25414643

Perea, Gertrudis; Sur, Mriganka; Araque, Alfonso

2014-01-01

237

Linking human brain local activity fluctuations to structural and functional network architectures  

PubMed Central

Activity of cortical local neuronal populations fluctuates continuously, and a large proportion of these fluctuations are shared across populations of neurons. Here we seek organizational rules that link these two phenomena. Using neuronal activity, as identified by functional MRI (fMRI) and for a given voxel or brain region, we derive a single measure of full bandwidth brain-oxygenation-level-dependent (BOLD) fluctuations by calculating the slope, ?, for the log-linear power spectrum. For the same voxel or region, we also measure the temporal coherence of its fluctuations to other voxels or regions, based on exceeding a given threshold, ?, for zero lag correlation, establishing functional connectivity between pairs of neuronal populations. From resting state fMRI, we calculated whole-brain group-averaged maps for ? and for functional connectivity. Both maps showed similar spatial organization, with a correlation coefficient of 0.75 between the two parameters across all brain voxels, as well as variability with hodology. A computational model replicated the main results, suggesting that synaptic low-pass filtering can account for these interrelationships. We also investigated the relationship between ? and structural connectivity, as determined by diffusion tensor imaging-based tractography. We observe that the correlation between ? and connectivity depends on attentional state; specifically, ? correlated more highly to structural connectivity during rest than while attending to a task. Overall, these results provide global rules for the dynamics between frequency characteristics of local brain activity and the architecture of underlying brain networks. PMID:23396160

Baria, A.T.; Mansour, A.; Huang, L.; Baliki, M.N.; Cecchi, G.A.; Mesulam, M.M.; Apkarian, A.V.

2013-01-01

238

Functionally Enigmatic Genes: A Case Study of the Brain Ignorome  

PubMed Central

What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes. PMID:24523945

Pandey, Ashutosh K.; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W.

2014-01-01

239

PET scans relate clinical picture to more specific nerve function  

SciTech Connect

This article describes the historical development of the use of positron emission tomography in studies of brain chemistry and the specific pathways associated with specific disease states. Fluorine-18 is used to label dopa since dopa can cross the blood-brain barrier. This radiopharmaceutical has been used to study the role of dopamine in Parkinson's disease and other motor disorders. The new PET technologies may also allow insight into the cause of variable responses to levo-dopa therapy.

Ziporyn, T.

1985-02-15

240

Space shuttle configuration accounting functional design specification  

NASA Technical Reports Server (NTRS)

An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

1974-01-01

241

Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks  

NASA Astrophysics Data System (ADS)

How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

Zhou, Changsong; Zemanová, Lucia; Zamora, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

2006-12-01

242

Brain-specific interleukin-1 receptor accessory protein in sleep regulation  

PubMed Central

Interleukin (IL)-1? is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1?/IL-1 receptor complex signaling requires adaptor proteins, e.g., the IL-1 receptor brain-specific accessory protein (AcPb). We have cloned and characterized rat AcPb, which shares substantial homologies with mouse AcPb and, compared with AcP, is preferentially expressed in the brain. Furthermore, rat somatosensory cortex AcPb mRNA varied across the day with sleep propensity, increased after sleep deprivation, and was induced by somnogenic doses of IL-1?. Duration of NREM sleep was slightly shorter and duration of REM sleep was slightly longer in AcPb knockout than wild-type mice. In response to lipopolysaccharide, which is used to induce IL-1?, sleep responses were exaggerated in AcPb knockout mice, suggesting that, in normal mice, inflammation-mediated sleep responses are attenuated by AcPb. We conclude that AcPb has a role in sleep responses to inflammatory stimuli and, possibly, in physiological sleep regulation. PMID:22174404

Taishi, Ping; Davis, Christopher J.; Bayomy, Omar; Zielinski, Mark R.; Liao, Fan; Clinton, James M.; Smith, Dirk E.

2012-01-01

243

Temporally-independent functional modes of spontaneous brain activity.  

PubMed

Resting-state functional magnetic resonance imaging has become a powerful tool for the study of functional networks in the brain. Even "at rest," the brain's different functional networks spontaneously fluctuate in their activity level; each network's spatial extent can therefore be mapped by finding temporal correlations between its different subregions. Current correlation-based approaches measure the average functional connectivity between regions, but this average is less meaningful for regions that are part of multiple networks; one ideally wants a network model that explicitly allows overlap, for example, allowing a region's activity pattern to reflect one network's activity some of the time, and another network's activity at other times. However, even those approaches that do allow overlap have often maximized mutual spatial independence, which may be suboptimal if distinct networks have significant overlap. In this work, we identify functionally distinct networks by virtue of their temporal independence, taking advantage of the additional temporal richness available via improvements in functional magnetic resonance imaging sampling rate. We identify multiple "temporal functional modes," including several that subdivide the default-mode network (and the regions anticorrelated with it) into several functionally distinct, spatially overlapping, networks, each with its own pattern of correlations and anticorrelations. These functionally distinct modes of spontaneous brain activity are, in general, quite different from resting-state networks previously reported, and may have greater biological interpretability. PMID:22323591

Smith, Stephen M; Miller, Karla L; Moeller, Steen; Xu, Junqian; Auerbach, Edward J; Woolrich, Mark W; Beckmann, Christian F; Jenkinson, Mark; Andersson, Jesper; Glasser, Matthew F; Van Essen, David C; Feinberg, David A; Yacoub, Essa S; Ugurbil, Kamil

2012-02-21

244

Toward discovery science of human brain function  

E-print Network

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating ...

Gabrieli, Susan

245

Hyperbaric oxygen therapy improves cognitive functioning after brain injury  

PubMed Central

Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region. PMID:25206655

Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

2013-01-01

246

Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.  

PubMed

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC. PMID:24718287

Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

2014-08-01

247

Structure, Expression, and Functional Analysis of a Na^+Dependent Glutamate\\/Aspartate Transporter from Rat Brain  

Microsoft Academic Search

Transport systems specific for L-glutamate and L-aspartate play an important role in the termination of neurotransmitter signals at excitatory synapses. We describe here the structure and function of a 66-kDa glycoprotein that was purified from rat brain and identified as an L-glutamate\\/L-aspartate transporter (GLAST). A GLAST-specific cDNA clone was isolated from a rat brain cDNA library. The cDNA insert encodes

Thorsten Storck; Stefan Schulte; Kay Hofmann; Wilhelm Stoffel

1992-01-01

248

Fluctuations in Neuronal Activity: Clues to Brain Function  

NASA Astrophysics Data System (ADS)

Recordings from neuronal preparations, either in vitro or in the intact brain, are characterized by fluctuations, what is commonly considered as "noise". Due to the current recording and analysis methods, it is not feasible to separate what we term noise, from the "meaningful" neuronal activity. We propose that fluctuations serve to maintain brain activity in an optimal state for cognitive processing, not allowing it to fall into long-term periodic behaviour. We have studied fluctuations in magnetoencephalographic (MEG) recordings from normal subjects and epileptic patients, in electroencephalographic (EEG) recordings from children with impact injury, as well as in intracerebral electrophysiological recordings in freely moving rats. Specifically, we have determined phase locking patterns between brain areas from these recordings, which display fluctuations at different scales. We submit the idea that the variability in phase synchronization affords a more complete search of all possible phase differences in a hypothetical phase-locking state space that contributes to brain information processing. In brain pathologies, like epileptiform activity here studied, different levels of fluctuations in phase synchrony may favour the generation of stable synchronized states that characterize epileptic seizures. While the border between noise and high-dimensional dynamics is fuzzy, the scrutiny of neuronal fluctuations at different levels will provide important insights to the unravelling of the relation between brain and behaviour.

Pérez Velazquez, José L.; Guevara, Ramón; Belkas, Jason; Wennberg, Richard; Senjanoviè, Goran; García Dominguez, Luis

2005-08-01

249

Efficiency and Cost of Economical Brain Functional Networks  

PubMed Central

Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI) in a factorial design: two groups of healthy old (N = 11; mean age = 66.5 years) and healthy young (N = 15; mean age = 24.7 years) volunteers were each scanned twice in a no-task or “resting” state following placebo or a single dose of a dopamine receptor antagonist (sulpiride 400 mg). Functional connectivity between 90 cortical and subcortical regions was estimated by wavelet correlation analysis, in the frequency interval 0.06–0.11 Hz, and thresholded to construct undirected graphs. These brain functional networks were small-world and economical in the sense of providing high global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the network, but this effect was differentially localised and did not interact with the effect of age. Brain functional networks have economical small-world properties—supporting efficient parallel information transfer at relatively low cost—which are differently impaired by normal aging and pharmacological blockade of dopamine transmission. PMID:17274684

Achard, Sophie; Bullmore, Ed

2007-01-01

250

MMPI2 validity scales versus domain specific measures in detection of factitious traumatic brain injury  

Microsoft Academic Search

A known group methodology was used to compare the predictive accuracies of MMPI-2 validity scales and malingered amnesia measures in the detection of real versus feigned traumatic brain-injury. The domain specific compliance measures were consistently more accurate in the separation of factitious brain-injury patients (n = 68) from severe brain-injury patients (N = 56). Among MMPI-2 measures, only scale Sc

Manfred F. Greiffenstein; Thomas Gola; W. John Baker

1995-01-01

251

Structural and functional clusters of complex brain networks  

NASA Astrophysics Data System (ADS)

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

Zemanová, Lucia; Zhou, Changsong; Kurths, Jürgen

2006-12-01

252

Brain-specific expression of an exogenous gene after i.v. administration  

PubMed Central

The treatment of brain diseases with gene therapy requires the gene to be expressed throughout the central nervous system, and this is possible by using gene targeting technology that delivers the gene across the blood–brain barrier after i.v. administration of a nonviral formulation of the gene. The plasmid DNA is targeted to brain with pegylated immunoliposomes (PILs) using a targeting ligand such as a peptidomimetic mAb, which binds to a transporting receptor on the blood–brain barrier. The present studies adapt the PIL gene targeting technology to the mouse by using the rat 8D3 mAb to the mouse transferrin receptor. Tissue-specific expression in brain and peripheral organs of different exogenous genes (?-galactosidase, luciferase) is examined at 1–3 days after i.v. injection in adult mice of the exogenous gene packaged in the interior of 8D3-PIL. The expression plasmid is driven either by a broadly expressed promoter, simian virus 40, or by a brain-specific promoter taken from the 5? flanking sequence of the human glial fibrillary acidic protein (GFAP) gene. The transgene is expressed in both brain and peripheral tissues when the simian virus 40 promoter is used, but the expression of the exogenous gene is confined to the brain when the transgene is under the influence of the brain-specific GFAP promoter. Confocal microscopy colocalizes immunoreactive bacterial ?-galactosidase with immunoreactive GFAP in brain astrocytes. These studies indicate that tissue-specific gene expression in brain is possible after the i.v. administration of a nonviral vector with the combined use of gene targeting technology and tissue-specific gene promoters. PMID:11592987

Shi, Ningya; Zhang, Yun; Zhu, Chunni; Boado, Ruben J.; Pardridge, William M.

2001-01-01

253

Functional bimodality in the brain networks of preterm and term human newborns.  

PubMed

The spontaneous brain activity exhibits long-range spatial correlations detected using functional magnetic resonance imaging (fMRI) signals in newborns when (1) long neuronal pathways are still developing, and (2) the electrical brain activity consists of developmentally unique, intermittent events believed to guide activity-dependent brain wiring. We studied this spontaneous electrical brain activity using multichannel electroencephalography (EEG) of premature and fullterm babies during sleep to assess the development of spatial integration during last months of gestation. Correlations of frequency-specific amplitudes were found to follow a robust bimodality: During low amplitudes (low mode), brain activity exhibited very weak spatial correlations. In contrast, the developmentally essential high-amplitude events (high mode) showed strong spatial correlations. There were no clear spatial patterns in the early preterm, but clear frontal and parieto-occipital modules at term age. A significant fronto-occipital gradient was also seen in the development of the graph measure clustering coefficient. Strikingly, no bimodality was found in the fMRI recordings of the fullterm babies, suggesting that early EEG activity and fMRI signal reflect different mechanisms of spatial coordination. The results are compatible with the idea that early developing human brain exhibits intermittent long-range spatial connections that likely provide the endogenous guidance for early activity-dependent development of brain networks. PMID:23650289

Omidvarnia, Amir; Fransson, Peter; Metsäranta, Marjo; Vanhatalo, Sampsa

2014-10-01

254

Memory Function Before and After Whole Brain Radiotherapy in Patients With and Without Brain Metastases  

SciTech Connect

Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy, prophylactic cranial irradiation patients performed worse than TCI patients or than controls on most test scores. During and after WBRT, verbal memory function was influenced by pretreatment cognitive status (p < 0.001) and to a lesser extent by WBRT. Acute (T1) radiation effects on verbal memory function were only observed in TCI patients (p = 0.031). Subacute (T3) radiation effects on verbal memory function were observed in both TCI and prophylactic cranial irradiation patients (p = 0.006). These effects were more pronounced in patients with above-average performance at baseline. Visual memory and attention were not influenced by WBRT. Conclusions: The results of our study have shown that WBRT causes cognitive dysfunction immediately after the beginning of RT in patients with brain metastases only. At 6-8 weeks after the end of WBRT, cognitive dysfunction was seen in patients with and without brain metastases. Because cognitive dysfunction after WBRT is restricted to verbal memory, patients should not avoid WBRT because of a fear of neurocognitive side effects.

Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)], E-mail: grit.welzel@radonk.ma.uni-heidelberg.de; Fleckenstein, Katharina [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schaefer, Joerg; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Mai, Sabine K.; Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

2008-12-01

255

Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain  

NASA Astrophysics Data System (ADS)

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

1998-12-01

256

Neuroinflammation and Brain Functional Disconnection in Alzheimer’s Disease  

PubMed Central

Neuroinflammation and brain functional disconnection result from ?-amyloid (A?) accumulation and play fundamental roles in the pathogenesis of Alzheimer’s disease (AD). We investigated possible correlations between these two AD-associated phenomena using DTI-based tractography and immunologic analyses in people with amnestic mild cognitive impairment (aMCI) and AD. DTI-Analyses focused on corpus callosum (CC). We found that frontal CC regions were preserved with respect to the posterior ones in aMCI; in these individuals significant correlations were seen between DTI-derived metrics in frontal-parietal CC areas and A?42-stimulated BDNF-producing CD4+ T lymphocytes and PDL-1-expressing CD14+ cells. These associations were lost in AD where DTI data involving the same CC areas correlated instead with A?42-stimulated interleukin (IL)-21 producing CD4+ T lymphocytes. Higher susceptibility to PDL-1-mediated apoptosis of A?42-specific lymphocytes and BDNF-associated survival of existing neurons could contribute to the relative CC structure preservation seen in aMCI. These potentially protective mechanisms are lost in frank AD, when severe alterations in the CC are mirrored in peripheral blood by proinflammatory cytokines-producing T cells. Monitoring of immune cells in peripheral blood could have a prognostic value in AD. PMID:24324435

Baglio, Francesca; Saresella, Marina; Preti, Maria Giulia; Cabinio, Monia; Griffanti, Ludovica; Marventano, Ivana; Piancone, Federica; Calabrese, Elena; Nemni, Raffaello; Clerici, Mario

2013-01-01

257

Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology  

E-print Network

sensitive target organ for steroid hormones, which differentiate the neural substrate and thereby exertSteroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology March 1, 2000) Steroid hormone action during brain development exerts profound effects on reproductive

258

Grammaticality sensitivity in children with early focal brain injury and children with specific language impairment  

E-print Network

effortlessly in most children, there are some who struggle with language learning. Despite much researchGrammaticality sensitivity in children with early focal brain injury and children with specific detection were examined in typically developing children, children with focal brain lesions (FL) acquired

259

COGNITIVE NEUROSCIENCE Development of auditory-specific brain rhythm in infants  

E-print Network

and music in the second 6 months of life. In the adult brain, neural rhythm around 10 Hz in the temporalCOGNITIVE NEUROSCIENCE Development of auditory-specific brain rhythm in infants Takako Fujioka,1 plasticity, EEG frequency band analysis, event-related oscillations, maturation Abstract Human infants

Trainor, Laurel J.

260

Predictors of physical functioning in postoperative brain tumor patients.  

PubMed

A cross-sectional predictive design was used to study the relationships among recovery symptoms, mood state, and physical functioning and to identify predictors of physical functioning in patients who underwent surgery for brain tumor at the first follow-up visit (2 weeks) after hospital discharge. The sample included 88 patients who were 18 years or older, had full level of consciousness, and underwent first-time surgery for brain tumor without other adjuvant treatments from a tertiary hospital in Bangkok, Thailand. Descriptive statistics, Pearson product-moment correlation coefficient, and multiple regression were used for data analysis. The results revealed that most participants were women (75%) with an average age of 45.18 ± 11.49 years, having benign brain tumors (91%) and pathological results as meningioma (48.9%). The most common recovery symptoms were pain (mean = 3.2, SD = 2.6) and sleep disturbance (mean = 3.1, SD = 3.0). As for mood state, the problem of confusion was found the most (mean = 4.6, SD = 2.7). The physical functioning problem found the most was work aspect (mean = 66.3, SD = 13.3). Recovery symptoms had positive relationships with physical functioning and mood state (r = .406, .716; p < .01), respectively. At the same time, mood state had positive relationships with physical functioning (r = .288, p < .01). Recovery symptoms, total mood disturbance, fatigue, and vigor were statistically significant predictors of physical functioning and could explain variance of postoperative physical functioning in these patients at 2 weeks after discharge by 35%. Total mood disturbance was the strongest predictor of physical functioning followed by vigor, fatigue, and recovery symptom, respectively. Interventions to improve physical functioning in postoperative brain tumor patients during home recovery should account for not only recovery symptom management but also mood state. PMID:25565598

Tankumpuan, Thitipong; Utriyaprasit, Ketsarin; Chayaput, Prangtip; Itthimathin, Parunut

2015-02-01

261

Prechemotherapy alterations in brain function in women with breast cancer  

Microsoft Academic Search

Despite clinical reports of cognitive deficits associated with cancer chemotherapy, the underlying brain mechanisms are not clear. This research examined selective attention and working memory using functional magnetic resonance imaging (fMRI) in women before chemotherapy for localized breast cancer. Patients were tested with an established selective attention and working memory task during fMRI. Compared with healthy controls, patients showed (a)

Bernadine Cimprich; Patricia Reuter-Lorenz; James Nelson; Patricia M. Clark; Barbara Therrien; Daniel Normolle; Marc G. Berman; Daniel F. Hayes; Douglas C. Noll; Scott Peltier; Robert C. Welsh

2010-01-01

262

Functional brain mapping of the relaxation response and meditation  

Microsoft Academic Search

Meditation is a conscious mental process that induces a set of integrated physiologic changes termed the relaxation response. Functional magnetic resonance imaging (fMRI) was used to identify and characterize the brain regions that are active during a simple form of meditation. Significant ( p , 10?7) signal increases were observed in the group-averaged data in the dorsolateral prefrontal and parietal

Sara W. Lazar; George Bush; Randy L. Gollub; Gregory L. Fricchione; Gurucharan Khalsa; Herbert Benson

2000-01-01

263

Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation  

PubMed Central

Objectives: To describe functional recovery after surgical resection of low grade gliomas (LGG) in eloquent brain areas, and discuss the mechanisms of compensation. Methods: Seventy-seven right-handed patients without deficit were operated on for a LGG invading primary and/or secondary sensorimotor and/or language areas, as shown anatomically by pre-operative MRI and intraoperatively by electrical brain stimulation and cortico-subcortical mapping. Results: Tumours involved 31 supplementary motor areas, 28 insulas, 8 primary somatosensory areas, 4 primary motor areas, 4 Broca's areas, and 2 left temporal language areas. All patients had immediate post-operative deficits. Recovery occurred within 3 months in all except four cases (definitive morbidity: 5%). Ninety-two percent of the lesions were either totally or extensively resected on post-operative MRI. Conclusions: These findings suggest that spatio-temporal functional re-organisation is possible in peritumoural brain, and that the process is dynamic. The recruitment of compensatory areas with long term perilesional functional reshaping would explain why: before surgery, there is no clinical deficit despite the tumour growth in eloquent regions; immediately after surgery, the occurrence of a deficit, which could be due to the resection of invaded areas participating (but not essential) to the function; and why three months after surgery, almost complete recovery had occurred. This brain plasticity, which decreases the long term risk of surgical morbidity, may be used to extend the limits of surgery in eloquent areas. PMID:12810776

Duffau, H; Capelle, L; Denvil, D; Sichez, N; Gatignol, P; Lopes, M; Mitchell, M; Sichez, J; Van Effenterre, R

2003-01-01

264

Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness  

ERIC Educational Resources Information Center

As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

Kalbfleisch, M. Layne; Gillmarten, Charles

2013-01-01

265

Functional craniology and brain evolution: from paleontology to biomedicine  

PubMed Central

Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes. PMID:24765064

Bruner, Emiliano; de la Cuétara, José Manuel; Masters, Michael; Amano, Hideki; Ogihara, Naomichi

2014-01-01

266

?7 Nicotinic Acetylcholine Receptor-Specific Antibody Induces Inflammation and Amyloid ?42 Accumulation in the Mouse Brain to Impair Memory  

PubMed Central

Nicotinic acetylcholine receptors (nAChRs) expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of ?-amyloid (A?42), memory deficit and neuroinflammation. Previously we found that ?7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that ?7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of ?7 nAChR subunit ?7(1-208) or injected with bacterial lipopolysaccharide (LPS) for 5 months. We studied their behavior and the presence of ?3, ?4, ?7, ?2 and ?4 nAChR subunits, A?40 and A?42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with ?7(1-208) resulted in region-specific decrease of ?7 and ?4?2 and increase of ?3?4 nAChRs, accumulation of A?42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred ?7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1) neuroinflammation is sufficient to provoke the decrease of ?7 and ?4?2 nAChRs, A?42 accumulation and memory impairment in mice and (2) ?7(1-208) nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease. PMID:25816313

Lykhmus, Olena; Voytenko, Larysa; Koval, Lyudmyla; Mykhalskiy, Sergiy; Kholin, Victor; Peschana, Kateryna; Zouridakis, Marios; Tzartos, Socrates; Komisarenko, Sergiy; Skok, Maryna

2015-01-01

267

The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia  

PubMed Central

The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive “pruning” of short-distance functional connections in schizophrenia. PMID:22275481

Vértes, Petra E.; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T.; Gogtay, Nitin

2013-01-01

268

The Functional Connectivity Landscape of the Human Brain  

PubMed Central

Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

2014-01-01

269

The Role of Noise in Brain Function  

NASA Astrophysics Data System (ADS)

Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.

Roy, S.; Llinás, R.

2012-12-01

270

Transcriptional activity of human brain estrogen receptor-? splice variants: evidence for cell type-specific regulation.  

PubMed

Estrogen receptor ? (ER?) isoforms with complex types of alternative splicing are naturally present in the human brain and may affect canonical receptor signaling. In the present study we investigated transcriptional activity of common ER? splice variants from this group with different molecular defects: MB1 (intron retention), TADDI (small deletion between exons 3 and 4 with an insert), the ? (deletion) 3(?)-7(*)/819 (complete skipping of exons 4, 5 and 6 and partial deletion of exons 3 and 7) and the ?3-6 (lacking exons 3, 4, 5 and 6) in HeLa and M17 cells upon stimulation with (17?)estradiol or insulin-like growth factor 1 (IGF-1). In HeLa cells, all these splice variants showed the dominant negative function that was more pronounced for the TADDI. In M17 cells the dominant negative variants appeared to be the MB1 and the ?3-6, whereas TADDI turned out to be a clearly dominant positive variant. In M17 cells mRNA levels of ?3-6 and ?3(*)-7(*)/819 variants increased following (17?)estradiol administration. In Hela cells (17?)estradiol up-regulated the IGF-1 receptor mRNA levels in cultures transfected with MB1, TADDI and ?3(*)-7(*)/819. Our data demonstrate that ER? splice variants show differential levels of the transcriptional activity in a cell type-specific way and that IGF-1 signaling pathways are differentially employed in a cell-type specific manner depending on the level of the discrete ER? splice variants expressed. Functional properties of various ER? splice variants and their cell type-specificity should, thus, be considered as potential confounders of estrogen therapy effects on the brain. PMID:23333800

Ishunina, T A; Sluiter, A A; Swaab, D F; Verwer, R W H

2013-03-15

271

Anatomical and functional assemblies of brain BOLD oscillations  

PubMed Central

Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

2011-01-01

272

Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein  

SciTech Connect

Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

Zencir, Sevil [Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100 (Turkey)] [Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100 (Turkey); Ovee, Mohiuddin [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States)] [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Dobson, Melanie J. [Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2 (Canada)] [Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2 (Canada); Banerjee, Monimoy [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States)] [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Topcu, Zeki, E-mail: zeki.topcu@ege.edu.tr [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100 (Turkey)] [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100 (Turkey); Mohanty, Smita, E-mail: mohansm@auburn.edu [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States)] [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States)

2011-08-12

273

Three-Dimensional Simulation of Carmustine Delivery to a Patient-Specific Brain Tumor  

E-print Network

This study presents the recent development of three-dimensional patient-specific simulation of carmustine delivery to brain tumor that highlights several crucial factors affecting the delivery. The simulation utilizes the ...

Arifin, Davis Yohanes

274

Covert brand recognition engages emotion-specific brain networks.  

PubMed

Consumer goods' brands have become a major driver of consumers' choice: they have got symbolic, relational and even social properties that add substantial cultural and affective value to goods and services. Therefore, measuring the role of brands in consumers' cognitive and affective processes would be very helpful to better understand economic decision making. This work aimed at finding the neural correlates of automatic, spontaneous emotional response to brands, showing how deeply integrated are consumption symbols within the cognitive and affective processes of individuals. Functional magnetic resonance imaging (fMRI) was measured during a visual oddball paradigm consisting in the presentation of scrambled pictures as frequent stimuli, colored squares as targets, and brands and emotional pictures (selected from the International Affective Picture System [IAPS]) as emotionally-salient distractors. Affective rating of brands was assessed individually after scanning by a validated questionnaire. Results showed that, similarly to IAPS pictures, brands activated a well-defined emotional network, including amygdala and dorsolateral prefrontal cortex, highly specific of affective valence. In conclusion, this work identified the neural correlates of brands within cognitive and affective processes of consumers. PMID:23479459

Casarotto, Silvia; Ricciardi, Emiliano; Romani, Simona; Dalli, Daniele; Pietrini, Pietro

2012-12-01

275

Reconceptualizing functional brain connectivity in autism from a developmental perspective  

PubMed Central

While there is almost universal agreement amongst researchers that autism is associated with alterations in brain connectivity, the precise nature of these alterations continues to be debated. Theoretical and empirical work is beginning to reveal that autism is associated with a complex functional phenotype characterized by both hypo- and hyper-connectivity of large-scale brain systems. It is not yet understood why such conflicting patterns of brain connectivity are observed across different studies, and the factors contributing to these heterogeneous findings have not been identified. Developmental changes in functional connectivity have received inadequate attention to date. We propose that discrepancies between findings of autism related hypo-connectivity and hyper-connectivity might be reconciled by taking developmental changes into account. We review neuroimaging studies of autism, with an emphasis on functional magnetic resonance imaging studies of intrinsic functional connectivity in children, adolescents and adults. The consistent pattern emerging across several studies is that while intrinsic functional connectivity in adolescents and adults with autism is generally reduced compared with age-matched controls, functional connectivity in younger children with the disorder appears to be increased. We suggest that by placing recent empirical findings within a developmental framework, and explicitly characterizing age and pubertal stage in future work, it may be possible to resolve conflicting findings of hypo- and hyper-connectivity in the extant literature and arrive at a more comprehensive understanding of the neurobiology of autism. PMID:23966925

Uddin, Lucina Q.; Supekar, Kaustubh; Menon, Vinod

2013-01-01

276

Specificity and divergence in the neurobiologic effects of different metallothioneins after brain injury.  

PubMed

Brain injury and neuroinflammation are pathophysiologic contributors to acute and chronic neurologic disorders, which are progressive diseases not fully understood. Mammalian metallothioneins I and II (MT-I&II) have significant neuroprotective functions, but the precise mechanisms underlying these effects are still unknown. To gain insight in this regard, we have evaluated whether a distant, most likely single-domain MT (Drosophila MTN) functions similarly to mammalian MT-I&II (recombinant mouse MT-I and human MT-IIa and native rabbit MT-II) after cryogenic injury to the cortex in Mt1&2 KO mice. All the recombinant proteins showed similar neuroprotective properties to native MT-II, significantly reducing brain inflammation (macrophages, T cells, and pro-inflammatory cytokines), oxidative stress, neurodegeneration, and apoptosis. These results in principle do not support specific protein-protein interactions as the mechanism underlying the neuroprotective effects of these proteins because a non-homologous and structurally unrelated MT such as Drosophila MTN functions similarly to mammalian MTs. We have also evaluated for the first time the neurobiologic effects of exogenous MT-III, a major CNS MT isoform. Human rMT-III, in contrast to human nMT-IIa, did not affect inflammation, oxidative stress, and apoptosis, and showed opposite effects on several growth factors, neurotrophins, and markers of synaptic growth and plasticity. Our data thus highlight specific and divergent roles of exogenous MT-III vs. the MT-I&II isoforms that are consistent with those attributed to the endogenous proteins, and confirm the suitability of recombinant synthesis for future therapeutic use that may become relevant to clinical neurology. PMID:16493670

Penkowa, Milena; Tio, Laura; Giralt, Mercedes; Quintana, Albert; Molinero, Amalia; Atrian, Silvia; Vasák, Milan; Hidalgo, Juan

2006-05-01

277

Phospholipase D in brain function and Alzheimer’s disease  

PubMed Central

Alzheimer’s disease is the most common neurodegenerative disorder. Although lipids are major constituents of brain, their role in Alzheimer’s disease pathogenesis is poorly understood. Much attention has been given to cholesterol, but growing evidence suggests that other lipids, such as phospholipids, might play an important role in this disorder. In this review, we will summarize the evidence linking phospholipase D, a phosphatidic acid-synthesizing enzyme, to multiple aspects of normal brain function and to Alzheimer’s disease. The role of phospholipase D in signaling mechanisms downstream of beta-amyloid as well as in the trafficking and processing of amyloid precursor protein will be emphasized. PMID:20399893

Oliveira, Tiago Gil; Di Paolo, Gilbert

2012-01-01

278

Cochlear implants: matching the prosthesis to the brain and facilitating desired plastic changes in brain function  

PubMed Central

The cochlear implant (CI) is one of the great success stories of modern medicine. A high level of function is provided for most patients. However, some patients still do not achieve excellent or even good results using the present-day devices. Accumulating evidence is pointing to differences in the processing abilities of the “auditory brain” among patients as a principal contributor to this remaining and still large variability in outcomes. In this chapter, we describe a new approach to the design of CIs that takes these differences into account and thereby may improve outcomes for patients with compromised auditory brains. PMID:21867799

Wilson, Blake S.; Dorman, Michael F.; Woldorff, Marty G.; Tucci, Debara L.

2013-01-01

279

Totally tubular: the mystery behind function and origin of the brain ventricular system  

E-print Network

Totally tubular: the mystery behind function and origin of the brain ventricular system Laura Anne School, 240 Longwood Ave, Boston, MA, USA A unique feature of the vertebrate brain is the ventricular by neu- roepithelium. While CSF is critical for both adult brain function and embryonic brain development

Lowery, Laura Anne

280

Nanoparticle-Mediated Brain-Specific Drug Delivery, Imaging, and Diagnosis  

Microsoft Academic Search

Central nervous system (CNS) diseases represent the largest and fastest-growing area of unmet medical need. Nanotechnology\\u000a plays a unique instrumental role in the revolutionary development of brain-specific drug delivery, imaging, and diagnosis.\\u000a With the aid of nanoparticles of high specificity and multifunctionality, such as dendrimers and quantum dots, therapeutics,\\u000a imaging agents, and diagnostic molecules can be delivered to the brain

Hu Yang

2010-01-01

281

Specific Binding and Characteristics of 18?-Glycyrrhetinic Acid in Rat Brain  

PubMed Central

18?-Glycyrrhetinic acid (GA) is the aglycone of glycyrrhizin that is a component of Glycyrrhiza, and has several pharmacological actions in the central nervous system. Recently, GA has been demonstrated to reach the brain by crossing the blood-brain barrier in rats after oral administration of a Glycyrrhiza-containing traditional Japanese medicine, yokukansan. These findings suggest that there are specific binding sites for GA in the brain. Here we show evidence that [3H]GA binds specifically to several brain areas by quantitative autoradiography; the density was higher in the hippocampus, moderate in the caudate putamen, nucleus accumbens, amygdala, olfactory bulb, cerebral cortex, thalamus, and mid brain, and lower in the brain stem and cerebellum. Several kinds of steroids, gap junction-blocking reagents, glutamate transporter-recognized compounds, and glutamate receptor agonists did not inhibit the [3H]GA binding. Microautoradiography showed that the [3H]GA signals in the hippocampus were distributed in small non-neuronal cells similar to astrocytes. Immunohistochemical analysis revealed that immunoreactivity of 11?-hydroxysteroid dehydrogenase type-1 (11?-HSD1), a defined molecule recognized by GA, was detected mainly in neurons, moderately in astrocytes, and very slightly in microglial cells, of the hippocampus. These results demonstrate that specific binding sites for GA exist in rat brain tissue, and suggest that the pharmacological actions of GA may be related to 11?-HSD1 in astrocytes. This finding provides important information to understand the pharmacology of GA in the brain. PMID:24752617

Mizoguchi, Kazushige; Kanno, Hitomi; Ikarashi, Yasushi; Kase, Yoshio

2014-01-01

282

Region-Specific Protein Abundance Changes in the Brain of MPTP-induced Parkinson’s Disease Mouse Model  

SciTech Connect

Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 non-redundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with significant MPTP-induced changes across different brain regions. 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit significant abundance changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. One of the interesting proteins is ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-? pathway, which exhibited altered abundances in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of proteome changes underlying both nigrostriatal pathways and other brain regions potentially involved in MPTP-induced neurodegeneration. The observed molecular changes provide a valuable reference resource for future hypothesis-driven functional studies of PD.

Zhang, Xu; Zhou, Jianying; Chin, Mark H.; Schepmoes, Athena A.; Petyuk, Vladislav A.; Weitz, Karl K.; Petritis, Brianne O.; Monroe, Matthew E.; Camp, David G.; Wood, Stephen A.; Melega, William P.; Bigelow, Diana J.; Smith, Desmond J.; Qian, Weijun; Smith, Richard D.

2010-02-15

283

Partial sleep in the context of augmentation of brain function  

PubMed Central

Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs. PMID:24822040

Pigarev, Ivan N.; Pigareva, Marina L.

2014-01-01

284

In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging  

PubMed Central

Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

2007-01-01

285

Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography  

PubMed Central

The analysis of spontaneous functional connectivity (sFC) reveals the statistical connections between regions of the brain consistent with underlying functional communication networks within the brain. In this work, we describe the implementation of a complete all-to-all network analysis of resting state neuronal activity from magnetoencephalography (MEG). Using graph theory to define networks at the dipole level, we established functionally defined regions by k-means clustering cortical surface locations using Eigenvector centrality (EVC) scores from the all-to-all adjacency model. Permutation testing was used to estimate regions with statistically significant connections compared to empty room data, which adjusts for spatial dependencies introduced by the MEG inverse problem. In order to test this model, we performed a series of numerical simulations investigating the effects of the MEG reconstruction on connectivity estimates. We subsequently applied the approach to subject data to investigate the effectiveness of our method in obtaining whole brain networks. Our findings indicated that our model provides statistically robust estimates of functional region networks. Application of our phase locking network methodology to real data produced networks with similar connectivity to previously published findings, specifically, we found connections between contralateral areas of the arcuate fasciculus that have been previously investigated. The use of data-driven methods for neuroscientific investigations provides a new tool for researchers in identifying and characterizing whole brain functional connectivity networks. PMID:25018690

Schmidt, Benjamin T.; Ghuman, Avniel S.; Huppert, Theodore J.

2014-01-01

286

Understanding Structural-Functional Relationships in the Human Brain: A Large-Scale Network Perspective.  

PubMed

Relating the brain's structural connectivity (SC) to its functional connectivity (FC) is a fundamental goal in neuroscience because it is capable of aiding our understanding of how the relatively fixed SC architecture underlies human cognition and diverse behaviors. With the aid of current noninvasive imaging technologies (e.g., structural MRI, diffusion MRI, and functional MRI) and graph theory methods, researchers have modeled the human brain as a complex network of interacting neuronal elements and characterized the underlying structural and functional connectivity patterns that support diverse cognitive functions. Specifically, research has demonstrated a tight SC-FC coupling, not only in interregional connectivity strength but also in network topologic organizations, such as community, rich-club, and motifs. Moreover, this SC-FC coupling exhibits significant changes in normal development and neuropsychiatric disorders, such as schizophrenia and epilepsy. This review summarizes recent progress regarding the SC-FC relationship of the human brain and emphasizes the important role of large-scale brain networks in the understanding of structural-functional associations. Future research directions related to this topic are also proposed. PMID:24962094

Wang, Zhijiang; Dai, Zhengjia; Gong, Gaolang; Zhou, Changsong; He, Yong

2014-06-24

287

Understanding specific effects of prenatal alcohol exposure on brain structure in young adults.  

PubMed

Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical and subcortical regions of interest (ROIs) were evaluated both through a group difference approach and a parametric approach. In the group difference approach (comparing among two PAE and a control groups), a disproportionate PAE effect was found in several occipital and temporal regions. This result is inconsistent with previous studies with child samples. Moreover, a gender difference in PAE effect was shown in some cortical ROIs. These findings suggest that sampling and gender may be important factors for interpreting specific PAE effects on human brain. With the parametric approach, it was demonstrated that the higher the PAE level, the smaller the entire brain, the lower the IQ. Several cortical and subcortical ROIs also exhibited a negative correlation between the PAE level and ROI volume. Furthermore, our data showed that the PAE effect on the brain could not be interpreted by the PAE effect on general physical growth until the young adult age. This study provides valuable insight into specific effects of PAE on human brain and suggests important implications for future studies in this field. PMID:21692145

Chen, Xiangchuan; Coles, Claire D; Lynch, Mary E; Hu, Xiaoping

2012-07-01

288

USEFULLNESS OF FUNCTIONAL MRI ASSOCIATED WITH PET SCAN AND EVOKED POTENTIALS IN THE EVALUATION OF BRAIN FUNCTIONS AFTER  

E-print Network

USEFULLNESS OF FUNCTIONAL MRI ASSOCIATED WITH PET SCAN AND EVOKED POTENTIALS IN THE EVALUATION concordance between fMRI and brain functions suggested by EP and metabolic activity demonstrated with PET OF BRAIN FUNCTIONS AFTER SEVERE BRAIN INJURY : preliminary results. INTERET DE L'IRM FONCTIONNELLE ASSOCIEE

Paris-Sud XI, Université de

289

Functional Brain Image Analysis Using Joint Function-Structure Priors  

PubMed Central

We propose a new method for context-driven analysis of functional magnetic resonance images (fMRI) that incorporates spatial relationships between functional parameter clusters and anatomical structure directly for the first time. We design a parametric scheme that relates functional and structural spatially-compact regions in a single unified manner. Our method is motivated by the fact that the fMRI and anatomical MRI (aMRI) have consistent relations that provide configurations and context that aid in fMRI analysis. We develop a statistical decision-making strategy to estimate new fMRI parameter images (based on a General Linear Model-GLM) and spatially-clustered zones within these images. The analysis is based on the time-series data and contextual information related to appropriate spatial grouping of parameters in the functional data and the relationship of this grouping to relevant gray matter structure from the anatomical data. We introduce a representation for the joint prior of the functional and structural information, and define a joint probability distribution over the variations of functional clusters and the related structure contained in a set of training images. We estimate the Maximum A Posteriori (MAP) functional parameters, formulating the function-structure model in terms of level set functions. Results from 3D fMRI and aMRI show that this context-driven analysis potentially extracts more meaningful information than the standard GLM approach. PMID:20543899

Yang, Jing; Papademetris, Xenophon; Staib, Lawrence H.; Schultz, Robert T.; Duncan, James S.

2010-01-01

290

Totally Tubular: The Mystery behind Function and Origin of the Brain Ventricular System  

PubMed Central

Summary A unique feature of the vertebrate brain is the brain ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system. PMID:19274662

Lowery, Laura Anne; Sive, Hazel

2010-01-01

291

Sleep restriction impairs blood-brain barrier function.  

PubMed

The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

2014-10-29

292

Beneficial effect of renal transplantation on cognitive brain function.  

PubMed

Cognitive brain dysfunction is a common complication of end-stage renal disease. To investigate the cerebral effect of renal transplantation, we studied P300 event-related potentials--an objective marker of cognitive brain function--trailmaking test and Mini-mental state in 15 chronic hemodialysis patients and 45 matched healthy subjects. Before transplantation, patients showed prolonged P300 latency (364 vs. 337 ms, P < 0.01), smaller amplitude (15.2 vs. 19.1 microV) and scored lower (P < 0.05) in trailmaking test and Mini-mental state as compared to healthy subjects. Following renal transplantation (14 months), P300 latency decreased (337 ms, P < 0.01 vs. before) and amplitude increased (17.4 microV, P < 0.05 vs. before), indicating improved cognitive brain function. The trailmaking test and Mini-mental state tended to improve. Following transplantation, P300 findings, trailmaking test and Mini-mental state were not different from healthy subjects. Additional studies following erythropoietin treatment in 6 of the 15 hemodialysis patients revealed decreased (improved) P300 latency (351 vs. 379 ms before, P < 0.05) with further decrease following transplantation (341 ms, P = 0.06). Our findings indicate that cognitive brain dysfunction in hemodialysis patients may be fully reversed by successful renal transplantation. PMID:8648927

Kramer, L; Madl, C; Stockenhuber, F; Yeganehfar, W; Eisenhuber, E; Derfler, K; Lenz, K; Schneider, B; Grimm, G

1996-03-01

293

Control channels in the brain and their influence on brain executive functions  

NASA Astrophysics Data System (ADS)

In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

2014-05-01

294

Sex differences in normal age trajectories of functional brain networks.  

PubMed

Resting-state functional magnetic resonance image (rs-fMRI) is increasingly used to study functional brain networks. Nevertheless, variability in these networks due to factors such as sex and aging is not fully understood. This study explored sex differences in normal age trajectories of resting-state networks (RSNs) using a novel voxel-wise measure of functional connectivity, the intrinsic connectivity distribution (ICD). Males and females showed differential patterns of changing connectivity in large-scale RSNs during normal aging from early adulthood to late middle-age. In some networks, such as the default-mode network, males and females both showed decreases in connectivity with age, albeit at different rates. In other networks, such as the fronto-parietal network, males and females showed divergent connectivity trajectories with age. Main effects of sex and age were found in many of the same regions showing sex-related differences in aging. Finally, these sex differences in aging trajectories were robust to choice of preprocessing strategy, such as global signal regression. Our findings resolve some discrepancies in the literature, especially with respect to the trajectory of connectivity in the default mode, which can be explained by our observed interactions between sex and aging. Overall, results indicate that RSNs show different aging trajectories for males and females. Characterizing effects of sex and age on RSNs are critical first steps in understanding the functional organization of the human brain. Hum Brain Mapp 36:1524-1535, 2015. © 2014 Wiley Periodicals, Inc. PMID:25523617

Scheinost, Dustin; Finn, Emily S; Tokoglu, Fuyuze; Shen, Xilin; Papademetris, Xenophon; Hampson, Michelle; Constable, R Todd

2015-04-01

295

Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity  

PubMed Central

Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of ?6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of ?6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of ?6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

2014-01-01

296

Beneficial effect of atypical antipsychotics on prefrontal brain function in acute psychotic disorders.  

PubMed

Disturbance of prefrontal brain functions is assumed to be responsible for prominent psychopathological symptoms in psychotic disorders. Treatment with atypical, in contrast to typical antipsychotics is considered as a possible strategy for an improvement of prefrontal brain function. In the present study, response control as a specific prefrontal brain function was assessed by means of the Nogo-anteriorization (NGA) derived from the event-related potentials elicited during a Go-NoGo task in a consecutive sample of 39 patients suffering from acute psychotic disorders (brief psychotic disorders, 298.8, n = 34 and schizoaffective disorders, 295.70, n = 5; cycloid psychoses according to the Leonhard classification). A highly significant positive correlation between the amount of antipsychotic medication in terms of chlorpromazine equivalents per day and the NGA as a measure of prefrontal response control was only found in the subgroup of patients treated exclusively or predominantly with atypical antipsychotics but not for those treated with typical antipsychotics. These results are in line with the notion that atypical antipsychotics may exert a beneficial effect on prefrontal brain function. PMID:15645162

Ehlis, Ann-Christine; Zielasek, Jürgen; Herrmann, Martin J; Ringel, Thomas; Jacob, Christian; Fallgatter, Andreas J

2005-10-01

297

Revealing Topological Organization of Human Brain Functional Networks with Resting-State Functional near Infrared Spectroscopy  

PubMed Central

Background The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. Results We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Conclusions Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders. PMID:23029235

Zhao, Tengda; Shu, Ni; He, Yong

2012-01-01

298

Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases  

PubMed Central

Background Primary and secondary brain cancers are highly treatment resistant, and their marked angiogenesis attracts interest as a potential therapeutic target. Recent observations reveal that the microvascular endothelium of primary high-grade gliomas expresses prostate specific membrane antigen (PSMA). Breast cancers express PSMA and they frequently form secondary brain tumors. Hence we report here our pilot study addressing the feasibility of PSMA targeting in brain and metastatic breast tumors, by examining PSMA levels in all glioma grades (19 patients) and in breast cancer brain metastases (5 patients). Methods Tumor specimens were acquired from archival material and normal brain tissues from autopsies. Tissue were stained and probed for PSMA, and the expression levels imaged and quantified using automated hardware and software. PSMA staining intensities of glioma subtypes, breast tumors, and breast tumor brain metastases were compared statistically versus normals. Results Normal brain microvessels (4 autopsies) did not stain for PSMA, while a small proportion (<5%) of healthy neurons stained, and were surrounded by an intact blood brain barrier. Tumor microvessels of the highly angiogenic grade IV gliomas showed intense PSMA staining which varied between patients and was significantly higher (p?brain. Grade I gliomas showed moderate vessel staining, while grade II and III gliomas had no vessel staining, but a few (<2%) of the tumor cells stained. Both primary breast cancer tissues and the associated brain metastases exhibited vascular PSMA staining, although the intensity of staining was generally less for the metastatic lesions. Conclusions Our results align with and extend previous data showing PSMA expression in blood vessels of gliomas and breast cancer brain metastases. These results provide a rationale for more comprehensive studies to explore PSMA targeted agents for treating secondary brain tumors with PSMA expressing vasculature. Moreover, given that PSMA participates in angiogenesis, cell signaling, tumor survival, and invasion, characterizing its expression may help guide later investigations of the poorly understood process of low grade glioma progression to glioblastoma. PMID:24645697

2014-01-01

299

Reorganization of functionally connected brain subnetworks in high-functioning autism  

E-print Network

Background: Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Methods: Thirteen subjects with ASD and 13 matched-pair controls watched a 68 minutes movie during functional magnetic resonance imaging. For each subject, we computed Pearson`s correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 27 individuals with ASD from the ABIDE resting-state database were included to test the reproducibility of the results. Results: Between-group differences...

Glerean, Enrico; Salmi, Juha; Kujala, Rainer; Lahnakoski, Juha; Roine, Ulrika; Nummenmaa, Lauri; Leppämäki, Sami; Wendt, Taina Nieminen-von; Tani, Pekka; Saramäki, Jari; Sams, Mikko; Jääskeläinen, Iiro P

2015-01-01

300

Molecular Diversity of Glutamate Receptors and Implications for Brain Function  

Microsoft Academic Search

The glutamate receptors mediate excitatory neurotransmission in the brain and are important in memory acquisition, learning, and some neurodegenerative disorders. This receptor family is classified in three groups: the N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-kainate, and metabotropic receptors. Recent molecular studies have shown that many receptor subtypes exist in all three groups of the receptors and exhibit heterogeneity in function and expression

Shigetada Nakanishi

1992-01-01

301

Automated Talairach Atlas labels for functional brain mapping  

Microsoft Academic Search

An automated coordinate-based system to retrieve brain labels from the 1988 Talairach Atlas, called the Talairach Daemon (TD), was previously introduced (Lancaster et al., 1997). In the present study, the TD system and its 3-D database of labels for the 1988 Talairach atlas were tested for labeling of functional activation foci. TD system labels were compared with author-designated labels of

Jack L. Lancaster; Marty G. Woldorff; Lawrence M. Parsons; Mario Liotti; Catarina S. Freitas; Lacy Rainey; Peter V. Kochunov; Dan Nickerson; Shawn A. Mikiten; Peter T. Fox

2000-01-01

302

Normalizing hematocrit in dialysis patients improves brain function  

Microsoft Academic Search

Recombinant human erythropoietin (rHuEPO) treatment has been shown to improve brain and cognitive function in anemic dialysis patients. Significant debate continues, however, regarding the appropriate target hematocrit (Hct) that will lead to the greatest benefits while considering possible side effects and costs of rHuEPO. Current practice results in an Hct averaging only 31% to 32% in dialysis patients, a level

Janiece L. Pickett; David C. Theberge; Warren S. Brown; Suzanne U. Schweitzer; Allen R. Nissenson

1999-01-01

303

Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities  

PubMed Central

Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600

Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian

2012-01-01

304

Mapping of CBV changes in 5-HT(1A) terminal fields by functional MRI in the mouse brain.  

PubMed

Visualization of brain activity in humans and animals using functional magnetic resonance imaging (fMRI) is an established method for translational neuropsychopharmacology. It is useful to study the activity of defined brain structures, however it requires further refinement to allow more specific cellular analyses, like for instance, the activity of selected pools of brain cells. Here, we investigated brain activity in serotonergic pathways in the adult mouse brain by using acute pharmacological challenge of 5-hydroxytryptamine (5-HT) 1A receptors. We show that administration of the 5-HT(1A) receptor agonist 8-OH-DPAT prompts a dose-dependent reduction in local cerebral blood volume (CBV) in brain areas rich in neurons expressing post-synaptic 5-HT(1A) receptor, including the prefrontal cortex, hippocampus and amygdalar nuclei. Region-specific inhibition of the response by co-injection of 8-OH-DPAT with the selective 5-HT(1A) receptor antagonist WAY-100635, or in 5-HT(1A) knock-out mice, suggests that 5-HT(1A) receptors are the primary targets of the agonist. Overall, the data demonstrate the feasibility of mapping region-specific serotonergic transmission in the adult mouse brain in vivo by non-invasive fMRI. The method opens novel perspectives for investigating 5-HT(1A) receptor functions in mouse models of human pathologies resulting from a dysfunction of the 5-HT(1A) receptor or the serotonergic system, including depression and anxiety. PMID:20656461

Mueggler, Thomas; Razoux, Florence; Russig, Holger; Buehler, Anna; Franklin, Tamara B; Baltes, Christof; Mansuy, Isabelle M; Rudin, Markus

2011-04-01

305

Brain basis of early parent–infant interactions: psychology, physiology, and in vivo functional neuroimaging studies  

PubMed Central

Parenting behavior critically shapes human infants’ current and future behavior. The parent–infant relationship provides infants with their first social experiences, forming templates of what they can expect from others and how to best meet others’ expectations. In this review, we focus on the neurobiology of parenting behavior, including our own functional magnetic resonance imaging (fMRI) brain imaging experiments of parents. We begin with a discussion of background, perspectives and caveats for considering the neurobiology of parent–infant relationships. Then, we discuss aspects of the psychology of parenting that are significantly motivating some of the more basic neuroscience research. Following that, we discuss some of the neurohormones that are important for the regulation of social bonding, and the dysregulation of parenting with cocaine abuse. Then, we review the brain circuitry underlying parenting, proceeding from relevant rodent and nonhuman primate research to human work. Finally, we focus on a study-by-study review of functional neuroimaging studies in humans. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support aspects of parent response to infants, including the emotion, attention, motivation, empathy, decision-making and other thinking that are required to navigate the complexities of parenting. Specifically, infant stimuli activate basal forebrain regions, which regulate brain circuits that handle specific nurturing and caregiving responses and activate the brain’s more general circuitry for handling emotions, motivation, attention, and empathy – all of which are crucial for effective parenting. We argue that an integrated understanding of the brain basis of parenting has profound implications for mental health. PMID:17355399

Swain, James E.; Lorberbaum, Jeffrey P.; Kose, Samet; Strathearn, Lane

2015-01-01

306

Autism-specific maternal autoantibodies recognize critical proteins in developing brain  

E-print Network

Autism-specific maternal autoantibodies recognize critical proteins in developing brain D-Picciotto2,3,4 , IN Pessah2,3,7 and J Van de Water1,2,3 Autism spectrum disorders (ASDs of maternal autoantibody-related (MAR) autism. Exclusive reactivity to specific antigen combinations was noted

Cai, Long

307

PROTEIN III, A NEURON-SPECIFIC PHOSPHOPROTEIN: VARIANT FORMS FOUND IN HUMAN BRAIN  

EPA Science Inventory

Recent work in the laboratory has shown the presence of many neuron-specific phosphoproteins in the mammalian nervous system. Two of these proteins, Protein III and Synapsin I, are specifically associated with synaptic vesicles in neurons throughout the brain. Protein III consist...

308

90 Brain Research, 520 (1990) 90-102 Immunocytochemical localization of the neural-specific regulatory  

E-print Network

adenosine monophosphate; Protein kinase; Regulatory subunit; Postsynaptic site The cellular and subceilular of the neural-specific regulatory subunit of the type II cyclic AMP-dependent protein kinase to postsynaptic-specific regulatory subunit of the type II cyclic AMP-dependent protein kinase (RII-B), was analyzed in rat brains

Scott, John D.

309

Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis  

PubMed Central

Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

2013-01-01

310

Functional magnetic resonance imaging reflects changes in brain functioning with sedation.  

PubMed

Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd. PMID:12404614

Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

2000-12-01

311

IR Principles for Content-based Indexing and Retrieval of Functional Brain Images  

E-print Network

in by blood flow, soon after, and this change will brighten the brain re- gion in the image. In a typical fIR Principles for Content-based Indexing and Retrieval of Functional Brain Images Bing Bai, Paul of a "library of brain images", which implies not only a repository of brain images, but also efficient search

312

Wavelets and statistical analysis of functional magnetic resonance images of the human brain  

E-print Network

Wavelets and statistical analysis of functional magnetic resonance images of the human brain Ed. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain Bullmore Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke

Breakspear, Michael

313

Scientists Probe Immune System's Role in Brain Function and Neurological Disease  

E-print Network

Scientists Probe Immune System's Role in Brain Function and Neurological Disease Bridget M. Kuehn E in normal brain development and in the healthy adult brain. Studies also suggest that per- turbations of these roles may under- lie some neurological diseases. Contrary to dogma that the blood- brain barrier

Boulanger, Lisa

314

Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury  

ERIC Educational Resources Information Center

Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

2010-01-01

315

Altered functional brain networks in Prader–Willi syndrome  

PubMed Central

Prader–Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating-related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting-state functional MRI techniques to investigate abnormal brain networks related to eating disorders in children with PWS. First, we applied amplitude of low-frequency fluctuation analysis to define the regions of interest that showed significant alterations in resting-state brain activity levels in patients compared with their sibling control group. We then applied a functional connectivity (FC) analysis to these regions of interest in order to characterize interactions among the brain regions. Our results demonstrated that patients with PWS showed decreased FC strength in the medial prefrontal cortex (MPFC)/inferior parietal lobe (IPL), MPFC/precuneus, IPL/precuneus and IPL/hippocampus in the default mode network; decreased FC strength in the pre-/postcentral gyri and dorsolateral prefrontal cortex (DLPFC)/orbitofrontal cortex (OFC) in the motor sensory network and prefrontal cortex network, respectively; and increased FC strength in the anterior cingulate cortex/insula, ventrolateral prefrontal cortex (VLPFC)/OFC and DLPFC/VLPFC in the core network and prefrontal cortex network, respectively. These findings indicate that there are FC alterations among the brain regions implicated in eating as well as rewarding, even during the resting state, which may provide further evidence supporting the use of PWS as a model to study obesity and to provide information on potential neural targets for the medical treatment of overeating. PMID:23335390

Zhang, Yi; Zhao, Heng; Qiu, Siyou; Tian, Jie; Wen, Xiaotong; Miller, Jennifer L.; von Deneen, Karen M.; Zhou, Zhenyu; Gold, Mark S.; Liu, Yijun

2013-01-01

316

On the effects of testosterone on brain behavioral functions  

PubMed Central

Testosterone influences the brain via organizational and activational effects. Numerous relevant studies on rodents and a few on humans focusing on specific behavioral and cognitive parameters have been published. The results are, unfortunately, controversial and puzzling. Dosing, timing, even the application route seem to considerably affect the outcomes. In addition, the methods used for the assessment of psychometric parameters are a bit less than ideal regarding their validity and reproducibility. Metabolism of testosterone contributes to the complexity of its actions. Reduction to dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion to estradiol by aromatase converts the androgen to estrogen activity. Recently, the non-genomic effects of testosterone on behavior bypassing the nuclear receptors have attracted the interest of researchers. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences. PMID:25741229

Celec, Peter; Ostatníková, Daniela; Hodosy, Július

2015-01-01

317

Brain region-specific altered expression and association of mitochondria-related genes in autism  

PubMed Central

Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (??Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. Conclusions Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted. PMID:23116158

2012-01-01

318

Lateralization of Cognitive Functions in Aphasia after Right Brain Damage  

PubMed Central

Purpose The lateralization of cognitive functions in crossed aphasia in dextrals (CAD) has been explored and compared mainly with cases of aphasia with left hemisphere damage. However, comparing the neuropsychological aspects of CAD and aphasia after right brain damage in left-handers (ARL) could potentially provide more insights into the effect of a shift in the laterality of handedness or language on other cognitive organization. Thus, this case study compared two cases of CAD and one case of ARL. Materials and Methods The following neuropsychological measures were obtained from three aphasic patients with right brain damage (two cases of CAD and one case of ARL); language, oral and limb praxis, and nonverbal cognitive functions (visuospatial neglect and visuospatial construction). Results All three patients showed impaired visuoconstructional abilities, whereas each patient showed a different level of performances for oral and limb praxis, and visuospatial neglect. Conclusion Based on the analysis of these three aphasic patients' performances, we highlighted the lateralization of language, handedness, oral and limb praxis, visuospatial neglect and visuospatial constructive ability in aphasic patients with right brain damage. PMID:22476990

Ha, Ji-Wan; Hwang, Yu Mi; Sim, Hyunsub

2012-01-01

319

Heritability of human brain functioning as assessed by electroencephalography  

SciTech Connect

To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilities for the delta, theta, alpha, and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. 44 refs., 5 figs., 4 tabs.

Beijsterveldt, C.E.M. van; Geus, E.J.C. de; Boomsma, D.I. [and others

1996-03-01

320

Functional transcranial brain imaging by optical-resolution photoacoustic microscopy  

NASA Astrophysics Data System (ADS)

Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO2) along vascular branching has been imaged in a precapillary arteriolar tree and a postcapillary venular tree, respectively. To the best of our knowledge, this is the first report on in vivo volumetric imaging of brain microvascular morphology and oxygenation down to single capillaries through intact mouse skulls. It is anticipated that: (i) chronic imaging enabled by this minimally invasive procedure will advance the study of cortical plasticity and neurological diseases; (ii) revealing the neuroactivity-dependent changes in hemoglobin concentration and oxygenation will facilitate the understanding of neurovascular coupling at the capillary level; and (iii) combining functional OR-PAM and high-resolution blood flowmetry will have the potential to explore cellular pathways of brain energy metabolism.

Hu, Song; Maslov, Konstantin; Tsytsarev, Vassiliy; Wang, Lihong V.

2009-07-01

321

The effects of methylphenidate on whole brain intrinsic functional connectivity.  

PubMed

Methylphenidate (MPH) is an indirect dopaminergic and noradrenergic agonist that is used to treat attention deficit hyperactivity disorder and that has shown therapeutic potential in neuropsychiatric diseases such as depression, dementia, and Parkinson's disease. While effects of MPH on task-induced brain activation have been investigated, little is known about how MPH influences the resting brain. To investigate the effects of 40 mg of oral MPH on intrinsic functional connectivity, we used resting state fMRI in 54 healthy male subjects in a double-blind, randomized, placebo-controlled study. Functional connectivity analysis employing ICA revealed seven resting state networks (RSN) of interest. Connectivity strength between the dorsal attention network and the thalamus was increased after MPH intake. Other RSN located in association cortex areas, such as the left and right frontoparietal networks and the executive control network, showed MPH-induced connectivity increase to sensory-motor and visual cortex regions and connectivity decrease to cortical and subcortical components of cortico-striato-thalamo-cortical circuits (CST). RSN located in sensory-motor cortex areas showed the opposite pattern with MPH-induced connectivity increase to CST components and connectivity decrease to sensory-motor and visual cortex regions. Our results provide evidence that MPH does not only alter intrinsic connectivity between brain areas involved in sustained attention, but that it also induces significant changes in the cortico-cortical and cortico-subcortical connectivity of many other cognitive and sensory-motor RSN. PMID:24862742

Mueller, Sophia; Costa, Anna; Keeser, Daniel; Pogarell, Oliver; Berman, Albert; Coates, Ute; Reiser, Maximilian F; Riedel, Michael; Möller, Hans-Jürgen; Ettinger, Ulrich; Meindl, Thomas

2014-11-01

322

The novel brain-specific tryptophan hydroxylase-2 gene in panic disorder.  

PubMed

Panic disorder is a common psychiatric disorder characterized by recurrent anxiety attacks and anticipatory anxiety. Due to the severity of the symptoms of the panic attacks and the frequent additional occurrence of agoraphobia, panic disorder is an often debilitating disease. Elevation of central serotonin levels by drugs such as clomipramine represents one of the most effective treatment options for panic disorder. This points to an important role of dysregulation of the serotonergic system in the genetic etiology of panic disorder. The novel brain-specific 5-HT synthesizing enzyme, tryptophan hydroxylase-2 (TPH2), which represents the rate-limiting enzyme of 5-HT production in the brain, may therefore be of particular importance in panic disorder. We focused on the putative transcriptional control region of TPH2 and identified two novel common single nucleotide polymorphisms (SNPs) of TPH2 in and close to this region. Moreover, a recently described loss-of-function mutation of TPH2 which results in an 80% reduction of serotonin production, was assessed. In an analysis of the putative transcriptional control region SNPs in a sample of panic disorder patients and controls no association of the disorder with the TPH2 SNPs or haplotypes was found. Moreover, the loss-of-function R441H mutation of TPH2 was not present in the panic disorder patients. The results of this first study of TPH2 in panic disorder argue against an importance of allelic variation of TPH2 in the pathogenesis of panic disorder with or without agoraphobia. PMID:16401665

Mössner, Rainald; Freitag, Christine M; Gutknecht, Lise; Reif, Andreas; Tauber, Ralf; Franke, Petra; Fritze, Jürgen; Wagner, Gerd; Peikert, Gregor; Wenda, Berit; Sand, Philipp; Rietschel, Marcella; Garritsen, Henk; Jacob, Christian; Lesch, K Peter; Deckert, Jürgen

2006-07-01

323

Age-Specific Effects of Voluntary Exercise on Memory and the Older Brain  

PubMed Central

Background Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. Method We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. Results We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Conclusions Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. PMID:22795967

Siette, Joyce; Westbrook, R. Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J.

2014-01-01

324

Interhemispheric functional connectivity following prenatal or perinatal brain injury predicts receptive language outcome.  

PubMed

Early brain injury alters both structural and functional connectivity between the cerebral hemispheres. Despite increasing knowledge on the individual hemispheric contributions to recovery from such injury, we know very little about how their interactions affect this process. In the present study, we related interhemispheric structural and functional connectivity to receptive language outcome following early left hemisphere stroke. We used functional magnetic resonance imaging to study 14 people with neonatal brain injury, and 25 age-matched controls during passive story comprehension. With respect to structural connectivity, we found that increased volume of the corpus callosum predicted good receptive language outcome, but that this is not specific to people with injury. In contrast, we found that increased posterior superior temporal gyrus interhemispheric functional connectivity during story comprehension predicted better receptive language performance in people with early brain injury, but worse performance in typical controls. This suggests that interhemispheric functional connectivity is one potential compensatory mechanism following early injury. Further, this pattern of results suggests refinement of the prevailing notion that better language outcome following early left hemisphere injury relies on the contribution of the contralesional hemisphere (i.e., the "right-hemisphere-take-over" theory). This pattern of results was also regionally specific; connectivity of the angular gyrus predicted poorer performance in both groups, independent of brain injury. These results present a complex picture of recovery, and in some cases, such recovery relies on increased cooperation between the injured hemisphere and homologous regions in the contralesional hemisphere, but in other cases, the opposite appears to hold. PMID:23536076

Dick, Anthony Steven; Raja Beharelle, Anjali; Solodkin, Ana; Small, Steven L

2013-03-27

325

Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players.  

PubMed

Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery, elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts. PMID:25616246

Wolf, Sebastian; Brölz, Ellen; Keune, Philipp M; Wesa, Benjamin; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

2015-02-01

326

Analyzing the association between functional connectivity of the brain and intellectual performance  

PubMed Central

Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528

Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.

2015-01-01

327

Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations  

PubMed Central

Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.

2014-01-01

328

Specific receptors for synthetic GH secretagogues in the human brain and pituitary gland  

Microsoft Academic Search

In vitro studies have been performed to demonstrate and characterize specific binding sites for synthetic GH secre- tagogues (sGHS) on membranes from pituitary gland and diVerent human brain regions. A binding assay for sGHS was established using a peptidyl sGHS (Tyr-Ala-hexarelin) which had been radioiodinated to high specific activity at the Tyr residue. Specific binding sites for 125I-labelled Tyr-Ala-hexarelin were

G Muccioli; C Ghe; M C Ghigo; M Papotti; E Arvat; M F Boghen; MHL Nilsson; R Deghenghi; H Ong; E Ghigo

1998-01-01

329

Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS)  

PubMed Central

Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients with BBS, which parallel the findings, described in BBS mutant mouse models. Some of these brain abnormalities may be progressive and associated with the reported neurological and behavioral problems. Further future correlation of these MRI scan findings with detailed neurologic and neuropsychological exams together with genotype data will provide better understanding of the pathophysiology of BBS. PMID:21794117

2011-01-01

330

TE-Dependent Spatial and Spectral Specificity of Functional Connectivity  

PubMed Central

Previous studies suggest that spontaneous fluctuations in the resting-state fMRI (RS-fMRI) signal may reflect fluctuations in transverse relaxation time (T2*) rather than spin density (S0). However, such S0 and T2* features have not been well characterized. In this study, spatial and spectral characteristics of functional connectivity on sensorimotor, default-mode, dorsal attention, and primary visual systems were examined using a multiple gradient-echo sequence at 3T. In the spatial domain, we found broad, local correlations at short echo times (TE ? 14 ms) due to dominant S0 contribution, whereas long-range connections mediated by T2* became explicit at TEs longer than 22 ms. In the frequency domain, compared with the flat spectrum of S0, spectral power of the T2*-weighted signal elevated significantly with increasing TE, particularly in the frequency ranges of 0.008-0.023 Hz and 0.037-0.043 Hz. Using the S0 spectrum as a reference, we propose two indices to measure spectral signal change (SSC) and spectral contrast-to-noise ratio (SCNR), respectively, for quantifying the RS-fMRI signal. These indices demonstrated TE dependency of connectivity-related fluctuation strength, resembling functional contrasts in activation-based fMRI. These findings further confirm that large-scale functional circuit connectivity based on BOLD contrast may be constrained within specific frequency ranges in every brain network, and the spectral features of S0 and T2* could be valuable for interpreting and quantifying RS-fMRI data. PMID:22119650

Wu, Changwei W.; Gu, Hong; Zou, Qihong; Lu, Hanbing; Stein, Elliot A.; Yang, Yihong

2012-01-01

331

Sleep-disordered breathing: effects on brain structure and function  

PubMed Central

Sleep-disordered breathing is accompanied by neural injury that affects a wide range of physiological systems which include processes for sensing chemoreception and airflow, driving respiratory musculature, timing circuitry for coordination of breathing patterning, and integration of blood pressure mechanisms with respiration. The damage also occurs in regions mediating emotion and mood, as well as areas regulating memory and cognitive functioning, and appears in structures that serve significant glycemic control processes. The injured structures include brain areas involved in hormone release and action of major neurotransmitters, including those playing a role in depression. The injury is reflected in a range of structural magnetic resonance procedures, and also appears as functional distortions of evoked activity in brain areas mediating vital autonomic and breathing functions. The damage is preferentially unilateral, and includes axonal projections; the asymmetry of the injury poses unique concerns for sympathetic discharge and potential consequences for arrhythmia. Sleep-disordered breathing should be viewed as a condition that includes central nervous system injury and impaired function; the processes underlying injury remain unclear. PMID:23643610

Harper, Ronald M.; Kumar, Rajesh; Ogren, Jennifer A.; Macey, Paul M.

2013-01-01

332

Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation  

PubMed Central

Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1?, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

2014-01-01

333

A Self-Study Tutorial using the Allen Brain Explorer and Brain Atlas to Teach Concepts of Mammalian Neuroanatomy and Brain Function.  

PubMed

The Allen Brain Atlas is a repository of neuroanatomical data concerning the mouse brain. The core of the database is a Nissl-stained reference atlas of the brain accompanied by in situ hybridization data for essentially the entire mouse genome. This database is freely available at the Allen Institute for Brain Science website, as is an innovative tool to explore the database, the Brain Explorer. This tool is downloaded and installed on your own computer. I have developed a self-study tutorial, "Explorations with the Allen Brain Explorer", which uses the Brain Explorer and the Brain Atlas to teach fundamentals of mammalian neuroanatomy and brain function. In this tutorial background information and step-by-step exercises on the use of the Brain Explorer are given using PowerPoint as a platform. To do the tutorial both the PowerPoint and the Brain Explorer are opened on the computer and the students switch from one program to the other as they go, in a step-wise fashion, through the various exercises. There are two main groups of exercises, titled "The Basics" and "Explorations", with both groups accessed from a PowerPoint "Start Menu" by clicking on dynamic links to the appropriate exercises. Most exercises have a number of dynamic links to PowerPoint slides where background information for the exercises is given or the neuroanatomical data collected from the Brain Atlas is discussed. PMID:23493964

Jenks, Bruce G

2009-01-01

334

Support vector machine classification and characterization of age-related reorganization of functional brain networks  

PubMed Central

Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

2012-01-01

335

Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs.  

PubMed

The degree of correspondence between objective performance and subjective beliefs varies widely across individuals. Here we demonstrate that functional brain network connectivity measured before exposure to a perceptual decision task covaries with individual objective (type-I performance) and subjective (type-II performance) accuracy. Increases in connectivity with type-II performance were observed in networks measured while participants directed attention inward (focus on respiration), but not in networks measured during states of neutral (resting state) or exogenous attention. Measures of type-I performance were less sensitive to the subjects' specific attentional states from which the networks were derived. These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states. PMID:23801762

Barttfeld, Pablo; Wicker, Bruno; McAleer, Phil; Belin, Pascal; Cojan, Yann; Graziano, Martín; Leiguarda, Ramón; Sigman, Mariano

2013-07-01

336

Brain Activity and Functional Coupling Changes Associated with Self-Reference Effect during Both  

E-print Network

Brain Activity and Functional Coupling Changes Associated with Self-Reference Effect during Both of the present work was thus to highlight brain changes associated with SRE in terms of activity and functional compared to a semantic control condition. We found that SRE was associated with brain changes during

Paris-Sud XI, Université de

337

Correlation between structural and functional changes in brain in an idiopathic headache syndrome  

Microsoft Academic Search

Fundamental to the concept of idiopathic or primary headache, including migraine, tension-type headache and cluster headache, is the currently accepted view that these conditions are due to abnormal brain function with completely normal brain structure. Cluster headache is one such idiopathic headache with many similarities to migraine, including normal brain structure on magnetic resonance imaging and abnormal function in the

A. May; J. Ashburner; C. Büchel; D. J. McGonigle; K. J. Friston; R. S. J. Frackowiak; P. J. Goadsby

1999-01-01

338

New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain  

E-print Network

REVIEWS New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain architecture of networks in the living human brain with diffusion tensor imaging (DTI). We also highlight transmission across networks in the human brain (functional and effective connectivity). Key Words: Diffusion

Penny, Will

339

Hubs of brain functional networks are radically reorganized in comatose patients  

E-print Network

Hubs of brain functional networks are radically reorganized in comatose patients S. Achard , C Human brain networks have topological properties in common with many other complex systems, prompting the question: what aspects of brain network organization are critical for distinctive functional properties

Boyer, Edmond

340

Predictive Modeling of fMRI Brain States using Functional Canonical Correlation Analysis  

E-print Network

Predictive Modeling of fMRI Brain States using Functional Canonical Correlation Analysis S Abstract. We present a novel method for predictive modeling of human brain states from functional for prediction of naturalistic stimuli from unknown fMRI data shows that the method nds highly predictive brain

Smeulders, Arnold

341

Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review  

ERIC Educational Resources Information Center

This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

2013-01-01

342

Acute Toluene Exposure and Rat Visual Function in Proportion to Momentary Brain Concentration  

Microsoft Academic Search

Acute exposure to toluene was assessed in two experiments to determine the relationship between brain toluene concentration and changes in neurophysiological function. The concentration of toluene in brain tissue at the time of assessment was estimated using a physiologically based pharmacokinetic model. Brain neurophysiological function was measured using pattern-elicited visual evoked potentials (VEP) recorded from electrodes located over visual cortex

William K. Boyes; Mark Bercegeay; Quentin Todd Krantz; Elaina M. Kenyon; Ambuja S. Bale; Timothy J. Shafer; Philip J. Bushnell; Vernon A. Benignus

2007-01-01

343

Studying brain function with near-infrared spectroscopy concurrently with electroencephalography  

E-print Network

Studying brain function with near-infrared spectroscopy concurrently with electroencephalography Y an electroencephalography (EEG) standard multi-channel cap, we can perform functional brain mapping of hemodynamic response-infrared spectroscopy, electroencephalography, evoked potentials, brain imaging 1. INTRODUCTION NIRS and EEG are non

Fantini, Sergio

344

Performance on an episodic encoding task yields further insight into functional brain development  

E-print Network

Performance on an episodic encoding task yields further insight into functional brain development August 2006 To further characterize changes in functional brain development that are associated in the direction predicted by the endpoint analysis. We conclude that the patterns of brain activation associated

345

Functional brain networks develop from a "local to distributed" organization.  

PubMed

The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways. PMID:19412534

Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

2009-05-01

346

Functional Specificity of Superior Parietal Mediation of Spatial Shifting  

Microsoft Academic Search

Using event-related functional magnetic resonance imaging (fMRI) we determined how brain activity changes when an attended target shifts its location. In the main experiment, a white square could appear at 10 possible eccentricities along the horizontal meridian. It remained on the screen for a variable period of time and then changed location. At any time the stimulus could dim briefly.

R. Vandenberghe; D. R. Gitelman; T. B. Parrish; M. M. Mesulam

2001-01-01

347

Neuronal lineage-specific induction of phospholipase Cepsilon expression in the developing mouse brain.  

PubMed

Phospholipase C is a key enzyme of intracellular signal transduction in the central nervous system. We and others recently discovered a novel class of phospholipase C, phospholipase Cepsilon, which is regulated by Ras and Rap small GTPases. As a first step toward analysis of its function, we have examined the spatial and temporal expression patterns of phospholipase Cepsilon during mouse development by in situ hybridization and immunohistochemistry. Around embryonic day 10.5, abundant expression of phospholipase Cepsilon is observed specifically in the outermost layer of the neural tube. On embryonic day 12 and later, it is observed mainly in the marginal zone of developing brain and spinal cord as well as in other regions undergoing neuronal differentiation, such as the retina and olfactory epithelium. The phospholipase Cepsilon-expressing cells almost invariably express microtubule-associated protein 2, but hardly express nestin or glial fibrillary acidic protein, indicating that the expression of phospholipase Cepsilon is induced specifically in cells committed to the neuronal lineage. The expression of phospholipase Cepsilon persists in the terminally differentiated neurons and exhibits no regional specificity. Further, an in vitro culture system of neuroepithelial stem cells is employed to show that abundant expression of phospholipase Cepsilon occurs in parallel with the loss of nestin expression as well as with the induction of microtubule-associated protein 2 expression and neuronal morphology. Also, glial fibrillary acidic protein-positive glial lineage cells do not exhibit the high phospholipase Cepsilon expression. These results suggest that the induction of phospholipase Cepsilon expression may be a specific event associated with the commitment of the neural precursor cells to the neuronal lineage. PMID:12752375

Wu, Dongmei; Tadano, Makoto; Edamatsu, Hironori; Masago-Toda, Misa; Yamawaki-Kataoka, Yuriko; Terashima, Toshio; Mizoguchi, Akira; Minami, Yasuhiro; Satoh, Takaya; Kataoka, Tohru

2003-04-01

348

Mitochondrial activity and brain functions during cortical depolarization  

NASA Astrophysics Data System (ADS)

Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

Mayevsky, Avraham; Sonn, Judith

2008-12-01

349

Behavioral relevance of the dynamics of the functional brain connectome.  

PubMed

While many previous studies assumed the functional connectivity (FC) between brain regions to be stationary, recent studies have demonstrated that FC dynamically varies across time. However, two challenges have limited the interpretability of dynamic FC information. First, a principled framework for selecting the temporal extent of the window used to examine the dynamics is lacking and this has resulted in ad-hoc selections of window lengths and subsequent divergent results. Second, it is unclear whether there is any behavioral relevance to the dynamics of the functional connectome in addition to that obtained from conventional static FC (SFC). In this work, we address these challenges by first proposing a principled framework for selecting the extent of the temporal windows in a dynamic and data-driven fashion based on statistical tests of the stationarity of time series. Further, we propose a method involving three levels of clustering-across space, time, and subjects-which allow for group-level inferences of the dynamics. Next, using a large resting-state functional magnetic resonance imaging and behavioral dataset from the Human Connectome Project, we demonstrate that metrics derived from dynamic FC can explain more than twice the variance in 75 behaviors across different domains (alertness, cognition, emotion, and personality traits) as compared with SFC in healthy individuals. Further, we found that individuals with brain networks exhibiting greater dynamics performed more favorably in behavioral tasks. This indicates that the ease with which brain regions engage or disengage may provide potential biomarkers for disorders involving altered neural circuitry. PMID:25163490

Jia, Hao; Hu, Xiaoping; Deshpande, Gopikrishna

2014-11-01

350

Functional brain mapping during free viewing of natural scenes  

Microsoft Academic Search

Previous imaging studies have used mostly perceptually abstracted, idealized, or static stimuli to show segregation of function in the cerebral cortex. We wanted to learn whether functional segregation is maintained during more natural, complex, and dynamic conditions when many features have to be processed simultaneously, and identify regions whose activity correlates with the perception of specific features. To achieve this,

Andreas Bartels; Semir Zeki

2004-01-01

351

Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*  

EPA Science Inventory

The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

352

Delta opioid receptors in brain function and diseases  

PubMed Central

Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

Chung, Paul Chu Sin; Kieffer, Brigitte L.

2013-01-01

353

Bayesian network models in brain functional connectivity analysis.  

PubMed

Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and when expert prior knowledge is needed. However, little is done to explore the use of BN in connectivity analysis of fMRI data. In this paper, we present an up-to-date literature review and methodological details of connectivity analyses using BN, while highlighting caveats in a real-world application. We present a BN model of fMRI dataset obtained from sixty healthy subjects performing the stop-signal task (SST), a paradigm widely used to investigate response inhibition. Connectivity results are validated with the extant literature including our previous studies. By exploring the link strength of the learned BN's and correlating them to behavioral performance measures, this novel use of BN in connectivity analysis provides new insights to the functional neural pathways underlying response inhibition. PMID:24319317

Ide, Jaime S; Zhang, Sheng; Li, Chiang-Shan R

2014-01-01

354

Improvement of prefrontal brain function in endogenous psychoses under atypical antipsychotic treatment.  

PubMed

Typical and atypical antipsychotics are thought to exert their effects on different neurotransmitter pathways with specific action of atypical compounds on the prefrontal cortex, but studies directly investigating the effect of those drugs on neurophysiological measures of prefrontal brain function are sparse. We therefore investigated the influence of different antipsychotics on an electrophysiological marker of prefrontal brain function (NoGo anteriorization, NGA) and neuropsychological test scores. For this purpose, 38 patients with endogenous psychoses were investigated at the beginning of a stationary psychiatric treatment and at a 6-week-follow-up. Patients were treated with typical or atypical antipsychotics, or a combination of both. They underwent psychopathological diagnostic and neuropsychological testing, as well as electrophysiological investigations during a Continuous Performance Test. The results indicate that typical and atypical antipsychotics differentially affected the development of the NGA over the course of the treatment, typical antipsychotics tending to result in decreased values at follow-up, and atypical antipsychotics stabilizing, or increasing this parameter. Performance in tests of frontal lobe function generally declined under typical antipsychotics and improved with atypical compounds, changes in Stroop interference correlated with changes in the NGA. We conclude that typical and atypical antipsychotics differ regarding their effect on prefrontal brain function in schizophrenia, atypical neuroleptics often showing a more favorable impact than conventional antipsychotics on respective parameters. PMID:17203015

Ehlis, Ann-Christine; Herrmann, Martin J; Pauli, Paul; Stoeber, Gerald; Pfuhlmann, Bruno; Fallgatter, Andreas J

2007-08-01

355

Crossed-Brain Representation of Verbal and Nonverbal Functions  

PubMed Central

A 74-year-old, left-handed man presented with a rapidly evolving loss of strength in his right leg associated with difficulty in walking. MR images disclosed an extensive left hemisphere tumor. A neuropsychological examination revealed that language was broadly normal but that the patient presented with severe nonlinguistic abnormalities, including hemineglect (both somatic and spatial), constructional defects, and general spatial disturbances; symptoms were usually associated with right hemisphere pathologies. No ideomotor apraxia was found. The implications of crossed-brain representations of verbal and nonverbal functions are analyzed. PMID:25802778

Matute, Esmeralda; Ardila, Alfredo; Rosselli, Monica; Molina Del Rio, Jahaziel; López Elizalde, Ramiro; López, Manuel; Ontiveros, Angel

2015-01-01

356

Functional brain networks underlying detection and integration of disconfirmatory evidence.  

PubMed

Processing evidence that disconfirms a prior interpretation is a fundamental aspect of belief revision, and has clear social and clinical relevance. This complex cognitive process requires (at minimum) an alerting stage and an integration stage, and in the current functional magnetic resonance imaging (fMRI) study, we used multivariate analysis methodology on two datasets in an attempt to separate these sequentially-activated cognitive stages and link them to distinct functional brain networks. Thirty-nine healthy participants completed one of two versions of an evidence integration experiment involving rating two consecutive animal images, both of which consisted of two intact images of animal faces morphed together at different ratios (e.g., 70/30 bird/dolphin followed by 10/90 bird/dolphin). The two versions of the experiment differed primarily in terms of stimulus presentation and timing, which facilitated functional interpretation of brain networks based on differences in the hemodynamic response shapes between versions. The data were analyzed using constrained principal component analysis for fMRI (fMRI-CPCA), which allows distinct, simultaneously active task-based networks to be separated, and these were interpreted using both temporal (task-based hemodynamic response shapes) and spatial (dominant brain regions) information. Three networks showed increased activity during integration of disconfirmatory relative to confirmatory evidence: (1) a network involved in alerting to the requirement to revise an interpretation, identified as the salience network (dorsal anterior cingulate cortex and bilateral insula); (2) a sensorimotor response-related network (pre- and post-central gyri, supplementary motor area, and thalamus); and (3) an integration network involving rostral prefrontal, orbitofrontal and posterior parietal cortex. These three networks were staggered in their peak activity (alerting, responding, then integrating), but at certain time points (e.g., 17s after trial onset) the hemodynamic responses associated with all three networks were simultaneously active. These findings highlight distinct cognitive processes and corresponding functional brain networks underlying stages of disconfirmatory evidence integration, and demonstrate the power of multivariate and multi-experiment methodology in cognitive neuroscience. PMID:25731997

Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

2015-05-15

357

Functional rearrangements in the human brain during emotional self-regulation with biological feedback.  

PubMed

The concept that functional psychopathology producing phobic syndromes is mediated by a specific deficiency in the integrative activity of the brain as a loss or partial limitation of the ability to recognize subjective experiences was used to develop a special method for mobilizing the selective attention of patients to the time course of subjective states. The fact of recognition of a state was demonstrated by the patient's ability to reproduce it by achieving specific parameters in a biological feedback test based on skin electrical responses. Success was positively reinforced by avoidance of an anxiously expected electrical stimulus. After successful training, patients could spontaneously adaptively correct their general daily behavior. Computer analysis of EEG traces revealed the specific structural-functional features of various states provoked during training. PMID:9513971

Popova, E I; Mikheev, V F; Shuvaev, V T; Ivonin, A A; Chernyakov, G M

1998-01-01

358

Characterization of specific succinate binding site in brain synaptic membranes.  

PubMed

A synaptic receptor for gamma-hydroxybutyric acid (GHB) --a naturally occurring metabolite of succinic acid--interacting succinate has been disclosed in rat and human nucleus accumbens (NA) subcellular fractions, but the molecular properties of this recognition site were not characterised. To address the presumed recognition site for succinate, the pharmacological profile of [3H]succinate binding to synaptic membranes prepared from rat forebrain and human NA samples has been investigated. Specific [3H]succinate binding sites in the human NA synaptic membrane fraction showed a strong pH-dependence and were characterized by binding of succinate (IC50 succinate=2.9+/-0.6 microM), GHB (IC50 GHB=2.1 +/-1.3 microM) and gap junction blocker carbenoxolone (IC50 = 7.1 +/-5.8 microM). A similar [3H]succinate binding profile was found in rat forebrain synaptic membrane fractions. We conclude the existence of a pHo-dependent synaptic membrane binding site for the intermediary metabolite succinate. The pharmacological properties of this recognition site may possibly suggest the existence of a hemichannel-like target protein for succinate. PMID:17451069

Molnár, Tünde; Fekete, Erzsébet Kutiné; Kardos, Julianna; Palkovits, Miklós

2007-03-30

359

Relationship between specific gravity, water content, and serum protein extravasation in various types of vasogenic brain edema  

Microsoft Academic Search

Vasogenic brain edema was induced in cats by cold injury (six animals), brain tumors (five animals), and brain abscesses (six animals). Water and electrolyte content, specific gravity, blood volume, and the amount of extravasated serum proteins were determined in small tissue samples taken from gray and white matter at various distances from the lesion. Edema was strictly confined to the

H.-W. Bothe; W. Bodsch; K.-A. Hossmann

1984-01-01

360

Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain.  

PubMed

A significant and selective deficiency of ethanolamine plasmalogen (PPE) relative to phosphatidylethanolamine was identified in post mortem brain samples from patients with Alzheimer's disease (AD). This lipid defect showed anatomic specificity, being more marked at a site of neurodegeneration in AD brain than in a region relatively spared by the disease (mid-temporal cortex vs. cerebellum) and disease specificity for AD: it was not observed at the primary site of neurodegeneration in Huntington's disease (caudate nucleus) nor Parkinson's disease (substantia nigra). PPE deficiency parallels an inherent tendency towards membrane bilayer instability previously detected in AD brain which is necessarily due to a change in membrane lipid composition, and which may contribute to AD pathogenesis. PMID:8581486

Ginsberg, L; Rafique, S; Xuereb, J H; Rapoport, S I; Gershfeld, N L

1995-11-01

361

Nanoparticle-mediated Brain-Specific Drug Delivery, Imaging, and Diagnosis  

PubMed Central

Central nervous system (CNS) diseases represent the largest and fastest growing area of unmet medical need. Nanotechnology plays a unique instrumental role in the revolutionary development of brain-specific drug delivery, imaging, and diagnosis. With the aid of nanoparticles of high specificity and multifunctionality, such as dendrimers and quantum dots, therapeutics, imaging agents, and diagnostic molecules can be delivered to the brain across the blood-brain barrier (BBB), enabling considerable progress in the understanding, diagnosis, and treatment of CNS diseases. Nanoparticles used in the CNS for drug delivery, imaging, and diagnosis are reviewed, as well as their administration routes, toxicity, and routes to cross the BBB. Future directions and major challenges are outlined. PMID:20593303

Yang, Hu

2010-01-01

362

Brain  

MedlinePLUS

... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

363

Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function  

PubMed Central

Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied “pathway” analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package. PMID:20838587

Raychaudhuri, Soumya; Korn, Joshua M.; McCarroll, Steven A.; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J.

2010-01-01

364

Cloning and Functional Characterization of a Family of Human and Mouse Somatostatin Receptors Expressed in Brain, Gastrointestinal Tract, and Kidney  

Microsoft Academic Search

Somatostatin is a tetradecapeptide that is widely distributed in the body. It acts on multiple organs including brain, pituitary, gut, exocrine and endocrine pancreas, adrenals, thyroid, and kidneys to inhibit release of many hormones and other secretory proteins. In addition, it functions as a neuropeptide affecting the electrical activity of neurons. Somatostatin exerts its biological effects by binding to specific

Yuichiro Yamada; Steven R. Post; Kenneth Wang; Howard S. Tager; Graeme I. Bell; Susumu Seino

1992-01-01

365

Functional Connectivity among Limbic Brain Areas: Differential Effects of Incubation Temperature and Gonadal Sex in the Leopard Gecko, Eublepharis macularius  

Microsoft Academic Search

The neural basis of individual differences in behavior has been studied primarily by analyzing the properties of specific neural areas. However, because of the organization of the nervous system, it is also plausible that differences in behavior are mediated by differences in the interactivity or functional connectivity among brain nuclei in particular neural circuits. In the leopard gecko, Eublepharis macularius,

Jon T. Sakata; Patricia Coomber; F. Gonzalez-Lima; David Crews

2000-01-01

366

California Verbal Learning Test Indicators of Malingered Neurocognitive Dysfunction: Sensitivity and Specificity in Traumatic Brain Injury  

ERIC Educational Resources Information Center

The present study used well-defined traumatic brain injury (TBI) and mixed neurological (other than TBI) and psychiatric samples to examine the specificity and sensitivity to Malingered Neurocognitive Dysfunction (MND) of four individual California Verbal Learning Test (CVLT) variables and eight composite CVLT malingering indicators. Participants…

Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.; Brennan, Adrianne

2006-01-01

367

Involvement of group S-100 brain specific proteins in the neurophysiological mechanisms of habituation  

Microsoft Academic Search

The possible role of S-100 brain specific proteins and their involvement in the neuronal mechanisms of habituation were investigated in identified neurons of the snail (Helix pomatia). Extracellular application and intracellular injection of antibodies into S-100 proteins caused a rapid and significant reduction of neuronal response to repeated stimulation compared with the control. A considerable reduction in the amplitude of

V. P. Nikitin; B. Lazhetich; M. Baich; V. V. Sherstnev

1987-01-01

368

IN VIVO STAINING OF ASTROCYTES Specific in vivo staining of astrocytes in the whole brain  

E-print Network

become a reference for in vivo staining of the whole astrocytes population in animal modelsIN VIVO STAINING OF ASTROCYTES 1 Specific in vivo staining of astrocytes in the whole brain after or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows

Boyer, Edmond

369

Specific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection of Sulforhodamine Dyes  

E-print Network

become a reference for in vivo staining of the whole astrocytes population in animal modelsSpecific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows

Paris-Sud XI, Université de

370

Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture  

PubMed Central

Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function. PMID:24963329

Qu, Shanshan; Zhang, Jiping; Chen, Junqi; Zhang, Shaoqun; Li, Zhipeng; Chen, Jiarong; Ouyang, Huailiang; Huang, Yong; Tang, Chunzhi

2014-01-01

371

Fetal functional imaging portrays heterogeneous development of emerging human brain networks.  

PubMed

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

2014-01-01

372

Fetal functional imaging portrays heterogeneous development of emerging human brain networks  

PubMed Central

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

2014-01-01

373

ORIGINAL RESEARCH Restored Activation of Primary Motor Area from Motor Reorganization and Improved Motor Function after Brain Tumor Resection  

Microsoft Academic Search

BACKGROUND AND PURPOSE: Reorganization of brain function may result in preservation of motor function in patients with brain tumors. The goal of the present study was to investigate whether function of the primary motor area (M1) was restored and whether motor function improved after brain tumor resection. METHODS: Five patients with metastatic brain tumors located within or near M1 underwent

N. Shinoura; Y. Suzuki; R. Yamada; T. Kodama; M. Takahashi; K. Yagi

374

Estimating brain functional connectivity with sparse multivariate autoregression  

PubMed Central

There is much current interest in identifying the anatomical and functional circuits that are the basis of the brain's computations, with hope that functional neuroimaging techniques will allow the in vivo study of these neural processes through the statistical analysis of the time-series they produce. Ideally, the use of techniques such as multivariate autoregressive (MAR) modelling should allow the identification of effective connectivity by combining graphical modelling methods with the concept of Granger causality. Unfortunately, current time-series methods perform well only for the case that the length of the time-series Nt is much larger than p, the number of brain sites studied, which is exactly the reverse of the situation in neuroimaging for which relatively short time-series are measured over thousands of voxels. Methods are introduced for dealing with this situation by using sparse MAR models. These can be estimated in a two-stage process involving (i) penalized regression and (ii) pruning of unlikely connections by means of the local false discovery rate developed by Efron. Extensive simulations were performed with idealized cortical networks having small world topologies and stable dynamics. These show that the detection efficiency of connections of the proposed procedure is quite high. Application of the method to real data was illustrated by the identification of neural circuitry related to emotional processing as measured by BOLD. PMID:16087441

Valdés-Sosa, Pedro A; Sánchez-Bornot, Jose M; Lage-Castellanos, Agustín; Vega-Hernández, Mayrim; Bosch-Bayard, Jorge; Melie-García, Lester; Canales-Rodríguez, Erick

2005-01-01

375

Brain imaging methods used in experimental brain research such as Positron Emission Tomography (PET) and Functional  

E-print Network

ABSTRACT Brain imaging methods used in experimental brain research such as Positron Emission of methods create statistical parametric maps (SPMs) of the brain on a voxel- basis. In our approach, they are best understood in the context of the underly- ing 3-D brain anatomy. However, despite the power

Mueller, Klaus

376

Functional design specification: NASA form 1510  

NASA Technical Reports Server (NTRS)

The 1510 worksheet used to calculate approved facility project cost estimates is explained. Topics covered include data base considerations, program structure, relationship of the 1510 form to the 1509 form, and functions which the application must perform: WHATIF, TENENTER, TENTYPE, and data base utilities. A sample NASA form 1510 printout and a 1510 data dictionary are presented in the appendices along with the cost adjustment table, the floppy disk index, and methods for generating the calculated values (TENCALC) and for calculating cost adjustment (CONSTADJ). Storage requirements are given.

1979-01-01

377

Brain site-specific proteome changes in aging-related dementia  

PubMed Central

This study is aimed at gaining insights into the brain site-specific proteomic senescence signature while comparing physiologically aged brains with aging-related dementia brains (for example, Alzheimer's disease (AD)). Our study of proteomic differences within the hippocampus (Hp), parietal cortex (pCx) and cerebellum (Cb) could provide conceptual insights into the molecular mechanisms involved in aging-related neurodegeneration. Using an isobaric tag for relative and absolute quantitation (iTRAQ)-based two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-LC-MS/MS) brain site-specific proteomic strategy, we identified 950 proteins in the Hp, pCx and Cb of AD brains. Of these proteins, 31 were significantly altered. Most of the differentially regulated proteins are involved in molecular transport, nervous system development, synaptic plasticity and apoptosis. Particularly, proteins such as Gelsolin (GSN), Tenascin-R (TNR) and AHNAK could potentially act as novel biomarkers of aging-related neurodegeneration. Importantly, our Ingenuity Pathway Analysis (IPA)-based network analysis further revealed ubiquitin C (UBC) as a pivotal protein to interact with diverse AD-associated pathophysiological molecular factors and suggests the reduced ubiquitin proteasome degradation system (UPS) as one of the causative factors of AD. PMID:24008896

Manavalan, Arulmani; Mishra, Manisha; Feng, Lin; Sze, Siu Kwan; Akatsu, Hiroyasu; Heese, Klaus

2013-01-01

378

Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients.  

PubMed

Amnestic mild cognitive impairment (aMCI) patients are thought to be particularly vulnerable to convert to clinical AD where functional disconnection is a major feature of the cortical neuropathology. However, the presence and extent of whole-brain connectivity disturbances is largely unknown in aMCI patients. Twenty-six aMCI patients and eighteen matched healthy subjects were evaluated at baseline and at mean 20 months follow up. Temporal correlations between spatially distinct regions were evaluated by using longitudinal resting-state fMRI. Compared to normal aging controls, patterns of abnormal interregional correlations in widely dispersed brain areas were identified in the patients, which also changed with disease progression. These disturbances were found particularly in subcortical regions and frontal cortex. Importantly, significantly decreased negative functional connection may be specifically associated with the development of aMCI patients. This suggests a compensatory mechanism is underway where local processing deficits are offset by recruitment of more dispersed cortical regions. In addition, the presence of this increased connectivity is seen to eventually weaken with disease progression. The results suggest that patterns of whole-brain functional connection may be a useful risk marker for conversion to AD in aMCI patients. PMID:20851147

Bai, Feng; Liao, Wei; Watson, David R; Shi, Yongmei; Wang, Yi; Yue, Chunxian; Teng, Yuhuan; Wu, Di; Yuan, Yonggui; Jia, Jianping; Zhang, Zhijun

2011-01-20

379

Diffuse optical tomography enhanced by clustered sparsity for functional brain imaging.  

PubMed

Diffuse optical tomography (DOT) is a noninvasive technique which measures hemodynamic changes in the tissue with near infrared light, which has been increasingly used to study brain functions. Due to the nature of light propagation in the tissue, the reconstruction problem is severely ill-posed. For linearized DOT problems, sparsity regularization has achieved promising results over conventional Tikhonov regularization in recent experimental research. As extensions to standard sparsity, it is widely known that structured sparsity based methods are often superior in terms of reconstruction accuracy, when the data follows some structures. In this paper, we exploit the structured sparsity of diffuse optical images. Based on the functional specialization of the brain, it is observed that the in vivo absorption changes caused by a specific brain function would be clustered in certain region(s) and not randomly distributed. Thus, a new algorithm is proposed for this clustered sparsity reconstruction (CSR). Results of numerical simulations and phantom experiments have demonstrated the superiority of the proposed method over the state-of-the-art methods. An example from human in vivo measurements further confirmed the advantages of the proposed CSR method. PMID:25055380

Chen, Chen; Tian, Fenghua; Liu, Hanli; Huang, Junzhou

2014-12-01

380

MIC as an Appropriate Method to Construct the Brain Functional Network  

PubMed Central

Using an effective method to measure the brain functional connectivity is an important step to study the brain functional network. The main methods for constructing an undirected brain functional network include correlation coefficient (CF), partial correlation coefficient (PCF), mutual information (MI), wavelet correlation coefficient (WCF), and coherence (CH). In this paper we demonstrate that the maximal information coefficient (MIC) proposed by Reshef et al. is relevant to constructing a brain functional network because it performs best in the comprehensive comparisons in consistency and robustness. Our work can be used to validate the possible new functional connection measures. PMID:25710031

Yi, Ming; Wu, Xia

2015-01-01

381

MIC as an Appropriate Method to Construct the Brain Functional Network.  

PubMed

Using an effective method to measure the brain functional connectivity is an important step to study the brain functional network. The main methods for constructing an undirected brain functional network include correlation coefficient (CF), partial correlation coefficient (PCF), mutual information (MI), wavelet correlation coefficient (WCF), and coherence (CH). In this paper we demonstrate that the maximal information coefficient (MIC) proposed by Reshef et al. is relevant to constructing a brain functional network because it performs best in the comprehensive comparisons in consistency and robustness. Our work can be used to validate the possible new functional connection measures. PMID:25710031

Zhang, Ziqing; Sun, Shu; Yi, Ming; Wu, Xia; Ding, Yiming

2015-01-01

382

Functionalized nanoscale micelles with brain targeting ability and intercellular microenvironment biosensitivity for anti-intracranial infection applications.  

PubMed

Due to complication factors such as blood-brain barrier (BBB), integrating high efficiency of brain target ability with specific cargo releasing into one nanocarrier seems more important. A brain targeting nanoscale system is developed using dehydroascorbic acid (DHA) as targeting moiety. DHA has high affinity with GLUT1 on BBB. More importantly, the GLUT1 transportation of DHA represents a "one-way" accumulative priority from blood into brain. The artificial micelles are fabricated by a disulfide linkage, forming a bio-responsive inner barrier, which can maintain micelles highly stable in circulation and shield the leakage of entrapped drug before reaching the targeting cells. The designed micelles can cross BBB and be further internalized by brain cells. Once within the cells, the drug release can be triggered by high intracellular level of glutathione (GSH). Itraconazole (ITZ) is selected as the model drug because of its poor brain permeability and low stability in blood. It demonstrates that the functionalized nanoscale micelles can achieve highly effective direct drug delivery to targeting site. Based on the markedly increased stability in blood circulation and improved brain delivery efficiency of ITZ, DHA-modified micelles show highly effective in anti-intracranial infection. Therefore, this smart nanodevice shows a promising application for the treatment of brain diseases. PMID:25124929

Shao, Kun; Zhang, Yu; Ding, Ning; Huang, Shixian; Wu, Jiqin; Li, Jianfeng; Yang, Chunfu; Leng, Qibin; Ye, Liya; Lou, Jinning; Zhu, Liping; Jiang, Chen

2015-01-28

383

Ethanol, not metabolized in brain, significantly reduces brain metabolism, probably via specific GABA(A) receptors  

PubMed Central

Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we used an indirect approach, measuring the effect of alcohol on metabolism of [3-13C]pyruvate in the adult Guinea pig brain cortical tissue slice and comparing the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-13C]ethanol. Ethanol (10, 30 and 60 mM) significantly reduced metabolic flux into all measured isotopomers and reduced all metabolic pool sizes. The metabolic profiles of these three concentrations of ethanol were similar and clustered with that of the ?4?3? positive allosteric modulator DS2 (4-Chloro-N-[2-(2-thienyl)imidazo[1,2a]-pyridin-3-yl]benzamide). Ethanol at a very low concentration (0.1 mM) produced a metabolic profile which clustered with those from inhibitors of GABA uptake, and ligands showing affinity for ?5, and to a lesser extent, ?1-containing GABA(A)R. There was no measureable metabolism of [1,2-13C]ethanol with no significant incorporation of 13C from [1,2-13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabeled ethanol. The reduction in metabolism seen in the presence of ethanol is therefore likely to be due to its actions at neurotransmitter receptors, particularly ?4?3? receptors, and not because ethanol is substituting as a substrate or because of the effects of ethanol catabolites acetaldehyde or acetate. We suggest that the stimulatory effects of very low concentrations of ethanol are due to release of GABA via GAT1 and the subsequent interaction of this GABA with local ?5-containing, and to a lesser extent, ?1-containing GABA(A)R. PMID:24313287

Rae, Caroline D.; Davidson, Joanne E.; Maher, Anthony D.; Rowlands, Benjamin D.; Kashem, Mohammed A.; Nasrallah, Fatima A.; Rallapalli, Sundari K.; Cook, James M; Balcar, Vladimir J.

2014-01-01

384

In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI.  

PubMed

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694

Chan, Kevin C; Fan, Shu-Juan; Chan, Russell W; Cheng, Joe S; Zhou, Iris Y; Wu, Ed X

2014-04-15

385

Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice.  

PubMed

Alzheimer's disease (AD) is a common neurodegenerative disorder with few treatments. The limitations imposed by the blood-brain barrier (BBB) and the non-selective distribution of drugs in the brain have hindered the effective treatment of AD and may result in severe side effects on the normal brains. We developed a dual-functional nanoparticle drug delivery system based on a PEGylated poly (lactic acid) (PLA) polymer. Two targeting peptides that were screened by phage display, TGN and QSH, were conjugated to the surface of the nanoparticles. TGN specifically targets ligands at the BBB, while QSH has good affinity with A?(1-42), which is the main component of amyloid plaque. Tests probing the bEnd.3 cell uptake and in vivo imaging were conducted to determine the best density of TGN on the nanoparticles' surfaces. The optimal amount of QSH was studied using a Thioflavin T (ThT) binding assay and surface plasmon resonance (SPR) experiments. The optimal maleimide/peptide molar ratio was 3 for both TGN and QSH on the surface of the nanoparticles (T3Q3-NP), and these nanoparticles achieved enhanced and precise targeted delivery to amyloid plaque in the brains of AD model mice. A MTT assay also validated the safety of this dual-targeted delivery system; little cytotoxicity was demonstrated with both bEnd.3 and PC 12 cells. In conclusion, the T3Q3-NP might be a valuable targeting system for AD diagnosis and therapy. PMID:24099709

Zhang, Chi; Wan, Xu; Zheng, Xiaoyao; Shao, Xiayan; Liu, Qingfeng; Zhang, Qizhi; Qian, Yong

2014-01-01

386

The temporal structures and functional significance of scale-free brain activity.  

PubMed

Scale-free dynamics, with a power spectrum following P proportional to f(-beta), are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with beta being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

He, Biyu J; Zempel, John M; Snyder, Abraham Z; Raichle, Marcus E

2010-05-13

387

The temporal structures and functional significance of scale-free brain activity  

PubMed Central

SUMMARY Scale-free dynamics, with a power spectrum following P ? f-?, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with ? being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

2010-01-01

388

Negative regulation of NF-?B activity by brain-specific TRIpartite Motif protein 9  

PubMed Central

The TRIpartite Motif (TRIM) family of RING-domain-containing proteins participate in a variety of cellular functions. The ?-transducin repeat-containing protein (?-TrCP), a component of the Skp-Cullin-F-box-containing (SCF) E3 ubiquitin ligase complex, recognizes the NF-?B inhibitor I?B? and precursor p100 for proteasomal degradation and processing respectively. ?-TrCP thus plays a critical role in both canonical and non-canonical NF-?B activation. Here, we report TRIM9 is a negative regulator of NF-?Bactivation. Interaction between the phosphorylated degron motif of TRIM9 and the WD40 repeat region of ?-TrCP prevented ?-TrCP from binding its substrates, stabilizing I?B? and p100 and thereby blocking NF-?B activation. Consequently, expression or depletion of the TRIM9 gene significantly affected NF-?B-induced inflammatory cytokine production. This study not only elucidates a mechanism for TRIM9-mediated regulation of the ?-TrCP SCF complex activity, but also identifies TRIM9 as a brain-specific negative regulator of the NF-?B pro-inflammatory signaling pathway. PMID:25190485

Shi, Mude; Cho, Hyelim; Inn, Kyung-Soo; Yang, Aerin; Zhao, Zhen; Liang, Qiming; Versteeg, Gijs A.; Amini-Bavil-Olyaee, Samad; Wong, Lai-Yee; Zlokovic, Berislav V.; Park, Hee-Sung; García-Sastre, Adolfo; Jung, Jae

2014-01-01

389

The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis  

PubMed Central

Fatty acid synthesis in the central nervous system is implicated in the control of food intake and energy expenditure. An intermediate in this pathway, malonyl-CoA, mediates these effects. Malonyl-CoA is an established inhibitor of carnitine palmitoyltransferase-1 (CPT1), an outer mitochondrial membrane enzyme that controls entry of fatty acids into mitochondria and, thereby, fatty acid oxidation. CPT1c, a brain-specific enzyme with high sequence similarity to CPT1a (liver) and CPT1b (muscle) was recently discovered. All three CPTs bind malonyl-CoA, and CPT1a and CPT1b catalyze acyl transfer from various fatty acyl-CoAs to carnitine, whereas CPT1c does not. These findings suggest that CPT1c has a unique function or activation mechanism. We produced a targeted mouse knockout (KO) of CPT1c to investigate its role in energy homeostasis. CPT1c KO mice have lower body weight and food intake, which is consistent with a role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c KO mice fed a high-fat diet are more susceptible to obesity, suggesting that CPT1c is protective against the effects of fat feeding. CPT1c KO mice also exhibit decreased rates of fatty acid oxidation, which may contribute to their increased susceptibility to diet-induced obesity. These findings indicate that CPT1c is necessary for the regulation of energy homeostasis. PMID:16651524

Wolfgang, Michael J.; Kurama, Takeshi; Dai, Yun; Suwa, Akira; Asaumi, Makoto; Matsumoto, Shun-ichiro; Cha, Seung Hun; Shimokawa, Teruhiko; Lane, M. Daniel

2006-01-01

390

Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions  

Microsoft Academic Search

What happens in the brain when you conjure up a mental image in your mind's eye? We tested whether the particular regions of extrastriate cortex activated during mental imagery depend on the content of the image. Using functional magnetic resonance imaging (fMRI), we demonstrated selective activation within a region of cortex specialized for face perception during mental imagery of faces,

K. M. O'Craven; N. Kanwisher

2000-01-01

391

Patient-specific contour-fitting sheet electrodes for electrocorticographic brain machine interfaces.  

PubMed

Non-invasive localization of certain brain functions may be mapped on a millimeter level. However, the inter-electrode spacing of common clinical brain surface electrodes still remains around 10 mm, and some electrodes fail to measure cortical activity due to unconformable plain electrode sheets. Here, we present details on development of implantable electrodes for attaining higher quality electrocorticographic signals for use in functional brain mapping and brain-machine interfaces. We produced personalized sheet electrodes after the creation of individualized molds using a 3D-printer. We created arrays to fit the surface curvature of the brain and inside the central sulcus, with inter-electrode distances of 2.5 mm. Rat experiments undertaken indicated no long term toxicity. We were also able to custom design, rapidly manufacture, safely implant and confirm the efficacy of personalized electrodes, including the capability to attain meaningful high gamma-band information in an amyotrophic lateral sclerosis patient. This sheet electrode may contribute to the higher performance of BMI's. PMID:25571166

Hirata, Masayuki; Morris, Shayne; Sugata, Hisato; Matsushita, Kojiro; Yanagisawa, Takufumi; Kishima, Haruhiko; Yoshimine, Toshiki

2014-08-01

392

Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.  

PubMed

This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions. PMID:22622772

Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

2012-10-01