Science.gov

Sample records for spectral doppler ultrasound

  1. On the synthesis of sample volumes for real-time spectral Doppler ultrasound simulation.

    PubMed

    Aguilar, Luis A; Steinman, David A; Cobbold, Richard S C

    2010-12-01

    A variety of methods for simulating the ultrasound field produced by transducers are currently used in ultrasound imaging system design. However, simulations can be time-consuming, making them difficult to apply in real-time environments when the observation field changes rapidly with time. This is particularly true for interactive real-time Doppler and B-mode ultrasound simulators designed for use as training tools. In this paper, it is demonstrated that the use of a distribution of monopole sources can be used to simulate the field from a phased linear array and the accuracy should be sufficient for simulating pulsed spectral Doppler. Very good agreement can be achieved in comparison with that obtained by a more exact method and, because of the simplicity of the calculations, real-time simulations of flow in the arterial system becomes possible. Specifically, quantitative measurements were made and compared against an analytic solution for the case of a piston transducer and against Field II for the phased array. The root-mean-square error shows that it is possible to achieve 10% or less error for the latter case. For comparable conditions, the computational speed for the transmit field of phased array using the Field II method as compared with the monopole approach was found to be at least an order of magnitude faster. It is pointed out that the simplicity of the monopole approach provides the opportunity for a further order of magnitude gain. Our findings can have direct application on the simulation of spectral Doppler and other ultrasound techniques for the purpose of teaching and training. PMID:20950935

  2. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  3. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom

    PubMed Central

    Kenwright, David A.; Anderson, Tom; Moran, Carmel M.; Hoskins, Peter R.

    2015-01-01

    Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam–target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam–target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound. PMID:25957754

  4. Relationship between loss of echogenicity and cavitation emissions from echogenic liposomes insonified by spectral Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Kirthi

    Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial

  5. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  6. Doppler ultrasound--basics revisited.

    PubMed

    Eagle, Mary

    Palpation of pedal pulses alone is known to be an unreliable indicator for the presence of arterial disease. Using portable Doppler ultrasound to measure the resting ankle brachial pressure index is superior to palpation of peripheral pulses as an assessment of the adequacy pf the arterial supply in the lower limb. Revisiting basics, this article aims to aid the clinician to understand and perform hand-held Doppler ultrasound effectively while involving the client or patient in the process. The author describes the basics of Doppler ultrasound, how to select correct equipment for the process, and interpretation of results to further enhance clinicians' knowledge. PMID:16835512

  7. [Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology - part 2: color and spectral Doppler artifacts].

    PubMed

    Jenssen, C; Tuma, J; Möller, K; Cui, X W; Kinkel, H; Uebel, S; Dietrich, C F

    2016-06-01

    Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues of the body and with foreign materials. On the one hand, they may be diagnostically helpful. On the other hand, they may be distracting and may lead to misdiagnosis. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review commented on the physics of artifacts and described the most important B-mode artifacts. Part 2 focuses on the clinically relevant artifacts in Doppler and color-coded duplex sonography. Problems and pitfalls of interpretation arising from artifacts, as well as the diagnostic use of Doppler and colour-coded duplex sonography, are discussed. PMID:27284933

  8. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.

    PubMed

    Sava, H; Durand, L G; Cloutier, G

    1999-05-01

    To achieve an accurate estimation of the instantaneous turbulent velocity fluctuations downstream of prosthetic heart valves in vivo, the variability of the spectral method used to measure the mean frequency shift of the Doppler signal (i.e. the Doppler velocity) should be minimised. This paper investigates the performance of various short-time spectral parametric methods such as the short-time Fourier transform, autoregressive modelling based on two different approaches, autoregressive moving average modelling based on the Steiglitz-McBride method, and Prony's spectral method. A simulated Doppler signal was used to evaluate the performance of the above mentioned spectral methods and Gaussian noise was added to obtain a set of signals with various signal-to-noise ratios. Two different parameters were used to evaluate the performance of each method in terms of variability and accurate matching of the theoretical Doppler mean instantaneous frequency variation within the cardiac cycle. Results show that autoregressive modelling outperforms the other investigated spectral techniques for window lengths varying between 1 and 10 ms. Among the autoregressive algorithms implemented, it is shown that the maximum entropy method based on a block data processing technique gives the best results for a signal-to-noise ratio of 20 dB. However, at 10 and 0 dB, the Levinson-Durbin algorithm surpasses the performance of the maximum entropy method. It is expected that the intrinsic variance of the spectral methods can be an important source of error for the estimation of the turbulence intensity. The range of this error varies from 0.38% to 24% depending on the parameters of the spectral method and the signal-to-noise ratio. PMID:10505377

  9. Computer vision approach for ultrasound Doppler angle estimation.

    PubMed

    Saad, Ashraf A; Loupas, Thanasis; Shapiro, Linda G

    2009-12-01

    Doppler ultrasound is an important noninvasive diagnostic tool for cardiovascular diseases. Modern ultrasound imaging systems utilize spectral Doppler techniques for quantitative evaluation of blood flow velocities, and these measurements play a crucial rule in the diagnosis and grading of arterial stenosis. One drawback of Doppler-based blood flow quantification is that the operator has to manually specify the angle between the Doppler ultrasound beam and the vessel orientation, which is called the Doppler angle, in order to calculate flow velocities. In this paper, we will describe a computer vision approach to automate the Doppler angle estimation. Our approach starts with the segmentation of blood vessels in ultrasound color Doppler images. The segmentation step is followed by an estimation technique for the Doppler angle based on a skeleton representation of the segmented vessel. We conducted preliminary clinical experiments to evaluate the agreement between the expert operator's angle specification and the new automated method. Statistical regression analysis showed strong agreement between the manual and automated methods. We hypothesize that the automation of the Doppler angle will enhance the workflow of the ultrasound Doppler exam and achieve more standardized clinical outcome. PMID:18488268

  10. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  11. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  12. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  13. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation. PMID:20350689

  14. The development of a combined b-mode, ARFI, and spectral Doppler ultrasound imaging system for investigating cardiovascular stiffness and hemodynamics

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.

    2011-03-01

    The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.

  15. Duplex Doppler ultrasound study of the temporomandibular joint

    PubMed Central

    Stagnitti, A.; Marini, A.; Impara, L.; Drudi, F.M.; Lo mele, L.; Lillo Odoardi, G.

    2012-01-01

    Introduction The anatomy and physiology of the temporomandibular joint can be studied clinically and by diagnostic imaging. Magnetic resonance imaging (MRI), radiography (X-ray) and computed tomography (CT) have thus for many years contributed to the study of the kinetics in the mandibular condyle. However, also duplex Doppler ultrasound (US) examination is widely used in the study of structures during movement, particularly vascular structures. Materials and methods A total of 30 patients were referred by the Department of Orthodontics to the Department of Radiological, Oncological and Pathological Sciences, University of Rome “La Sapienza”. All patients underwent duplex Doppler ultrasound (US) examination of the temporomandibular joint using Toshiba APLIO SSA-770A equipment and duplex Doppler multi-display technique, which allows simultaneous display of US images and color Doppler signals. A linear phased array probe with crystal elements was used operating at a basic frequency of 6 MHz during pulsed Doppler spectral analysis and 7.5 MHz during US imaging. Results In normal patients a regular alternation in the spectral Doppler waveforms was obtained, while in patients with temporomandibular joint meniscus dysfunction there was no regularity in the sum of the Fourier series with an unsteady waveform pattern related to irregular movements of the temporomandibular joint. Conclusions In all cases duplex Doppler US examination proved able to differentiate between normal and pathological patients and among the latter this technique permitted identification of the most significant aspects of the dysfunctional diseases. PMID:23397016

  16. Doppler ultrasound studies in pelvic inflammatory disease.

    PubMed

    Tinkanen, H; Kujansuu, E

    1992-01-01

    Ten women with tubo-ovarian abscess caused by pelvic inflammatory disease (PID) were investigated by transvaginal Doppler ultrasound during the acute and healing phases of the infection. The pulsatility index (PI) of the uterine arteries was measured and compared with the values obtained from 19 healthy women. Each control patient was investigated three times during a single menstrual cycle. In PID patients, the PI values were significantly lower than in controls in the same phase of the menstrual cycle. When C-reactive protein was > 50, the PI values were lowest and reverted to normal values when the infection subsided. In a case of chronic infection, the PI did not rise to normal despite normal infection parameters. Doppler ultrasound seems to offer a new method of assessing PID. PMID:1487185

  17. Use of Sonicated Albumin (Infoson) to Enhance Arterial Spectral and Color Doppler Imaging

    SciTech Connect

    Abildgaard, Andreas; Egge, Tor S.; Klow, Nils-Einar; Jakobsen, Jarl A.

    1996-04-15

    Purpose: To examine the effect of an ultrasound contrast medium (UCM), Infoson, on Doppler examination of stenotic arteries. Methods: Stenoses were created in the common carotid artery of six piglets, and examined with spectral Doppler and color Doppler imaging during UCM infusion in the left ventricle. Results: UCM caused a mean increase in recorded maximal systolic and end-diastolic velocities of 5% and 6%, respectively, while blood flow remained constant. Increased spectral intensity with UCM was accompanied by spectral broadening. Reduction of spectral intensity by adjustment of Doppler gain counteracted the velocity effects and the spectral broadening. With color Doppler, UCM caused dose-dependent color artifacts outside the artery. Flow in narrow stenoses could be visualized with UCM. Conclusion: The effects of UCM on velocity measurements were slight, and were related to changes in spectral intensity. With color Doppler, UCM may facilitate flow detection, but color artifacts may interfere.

  18. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  19. Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2008-05-01

    A new approach based on the implementation of the automated diagnostic systems for Doppler ultrasound signals classification with the features extracted by eigenvector methods is presented. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the Doppler ultrasound signals. Decision making was performed in two stages: feature extraction by the eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the Doppler ultrasound signals by the combination of eigenvector methods and the classifiers. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the Doppler ultrasound signals and the probabilistic neural networks (PNNs), recurrent neural networks (RNNs) trained on these features achieved high classification accuracies. PMID:18358461

  20. Measurement of Thermal Effects of Doppler Ultrasound: An In Vitro Study

    PubMed Central

    Helmy, Samir; Bader, Yvonne; Koch, Marianne; Tiringer, Denise; Kollmann, Christian

    2015-01-01

    Objective Ultrasound is considered a safe imaging modality and is routinely applied during early pregnancy. However, reservations are expressed concerning the application of Doppler ultrasound in early pregnancy due to energy emission of the ultrasound probe and its conversion to heat. The objective of this study was to evaluate the thermal effects of emitted Doppler ultrasound of different ultrasound machines and probes by means of temperature increase of in-vitro test-media. Methods We investigated the energy-output of 5 vaginal and abdominal probes of 3 ultrasound machines (GE Healthcare, Siemens, Aloka). Two in-vitro test objects were developed at the Center for Medical Physics and Biomedical Engineering, Medical University Vienna (water bath and hydrogel bath). Temperature increase during Doppler ultrasound emission was measured via thermal sensors, which were placed inside the test objects or on the probes’ surface. Each probe was emitting for 5 minutes into the absorbing test object with 3 different TI/MI settings in Spectral Doppler mode. Results During water bath test, temperature increase varied between 0.1 and 1.0°C, depending on probe, setting and focus, and was found highest for spectral Doppler mode alone. Maximum temperature increase was found during the surface heating test, where values up to 2.4°C could be measured within 5 minutes of emission. Conclusions Activation of Doppler ultrasound in the waterbath model causes a significant increase of temperature within one minute. Thermally induced effects on the embryo cannot be excluded when using Doppler ultrasound in early pregnancy. PMID:26302465

  1. Detection of microemboli by transcranial Doppler ultrasound.

    PubMed Central

    Grosset, D G; Georgiadis, D; Kelman, A W; Cowburn, P; Stirling, S; Lees, K R; Faichney, A; Mallinson, A; Quin, R; Bone, I; Pettigrew, L; Brodie, E; MacKay, T; Wheatley, D J

    1996-01-01

    Doppler ultrasound detection of abnormally high-pitched signals within the arterial waveform offers a new method for diagnosis, and potentially for prediction, of embolic complications in at-risk patients. The nature of Doppler "microembolic" signals is of particular interest in patients with prosthetic heart valves, where a high prevalence of these signals is observed. Monitoring the middle cerebral artery with 2-MHz transcranial Doppler ultrasound (TC-2000, Nicolet Biomedical; Warwick, UK), we looked for microemboli signals in 150 patients (95 women and 55 men), and found 1 or more signals during a 30-min recording in 89% of 70 patients with Bjork-Shiley valves (principally monostrut), 54% of 50 patients with Medtronic-Hall valves, and 50% of 30 patients with Carpentier-Edwards valves (p < 0.001, chi 2). In the patients with Bjork-Shiley valves, the mean number of signals per hour was 59 (range, 42-86; 95% confidence interval), which was significantly higher than the mean in patients with Medtronic-Hall and Carpentier-Edwards valves (1.5[range, 0.5-2.5] and 1 [range, 0-5.3], respectively; both p < 0.04, multiple comparisons. Bonferroni correction). In the patients undergoing serial pre- and postoperative studies, the causative role of the valve implant was emphasized. There was no correlation between the number of emboli signals and a prior history of neurologic deficit, cardiac rhythm, previous cardiac surgery, or the intensity of oral anticoagulation, in patients with prosthetic heart valves. In Bjork-Shiley patients, dual (mitral and aortic) valves were associated with more signals than were single valves. In Medtronic-Hall patients, the signal count was greater for valves in the aortic position than it was for valves in the mitral position. Comparative studies of Doppler emboli signals in other clinical settings suggest a difference in composition or size of the underlying maternal between prosthetic valve patients and patients with carotid stenosis. These

  2. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  3. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects.

    PubMed

    Topcuoglu, M Akif

    2012-11-01

    Albeit no direct anatomical information can be obtained, neurosonological methods provide real-time determination of velocity, and spectral waveform of blood flow in basal intracranial arteries adds significant benefit to the care of the patients with neurovascular diseases. Several features, such as relative simplicity in terms of interpretation and performance, significantly low cost, totally non-invasiveness, portability, and excellent temporal resolution, make neurosonology increasingly popular tool for evaluation, planning, and monitoring of treatment, and for determining prognosis in various neurovascular diseases. Usefulness of transcranial Doppler in diagnosing/monitoring subarachnoid hemorrhage related vasospasm and sickle cell vasculopathy is already well known. Utility in diagnosis of intracranial arterial stenosis, acute occlusion and recanalization, intracranial hemodynamic effect of the cervical arterial pathologies, intracranial pressure increase, and cerebral circulatory arrest are also well established. Neurosonological determination of vasomotor reactivity, cerebral autoregulation, neurovascular coupling, and micro-embolic signals detection are useful in the assessment of stroke risk, diagnosis of right-to-left shunting, and monitoring during surgery and interventional procedures. Transcranial Doppler is also an evolving ultrasound method with a therapeutic potential such as augmentation of clot lysis and cerebral delivery of thrombolytic or neuroprotective agent loaded nanobubbles in neurovascular diseases. The aim of this study is to give an overview of current usage of the different ultrasound modalities in different neurovascular diseases. PMID:23050641

  4. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  5. Doppler ultrasound signal denoising based on wavelet frames.

    PubMed

    Zhang, Y; Wang, Y; Wang, W; Liu, B

    2001-05-01

    A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694

  6. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  7. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  8. A Digital Multigate Doppler Method for High Frequency Ultrasound

    PubMed Central

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  9. Real-time digital processing of Doppler ultrasound signals and calculation of flow parameters.

    PubMed

    Schlindwein, F S; Vieira, M H; Vasconcelos, C F; Simpson, D M

    1994-01-01

    Vascular diseases and their complications are responsible for around 27% of deaths in Brazil. Doppler ultrasound is a non-invasive technique that has been used to study blood flow in intact blood vessels since Satomura first reported the potential of the technique in 1959. Because it is non-invasive it makes sequential studies and those in normals feasible. Whereas in contrast angiography only vessel anatomy is displayed, Doppler ultrasound produces dynamic information on blood-flow. It may be used to estimate flow-rates, to image regions of blood flow (colour Doppler), and to help in locating sites of arterial disease, thus complementing X-ray examinations. This paper describes a system based on a Digital Signal Processor for real-time spectrum analysis of Doppler ultrasound signals, real-time display of sonograms, and calculation and analysis of three parameters of clinical interest derived from the Doppler signal. The system comprises a TMS320C25 development board, which acquires the signal and performs spectrum analysis, and a microcomputer, which reads the spectral estimates, displays them as a sonogram in real-time and calculates a set of spectral parameters proposed in the literature. The system permits a maximum sampling frequency of 40.96 kHz, and in the sonogram, 80 power spectra per second (each with 128 frequency bins) are displayed. In a preliminary study, the stability of the haemodynamic parameters and their dependence on a user-defined threshold value is investigated. PMID:7968870

  10. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    PubMed Central

    Ozawa, Hideo; Watanabe, Toyohiko; Uematsu, Katsutoshi; Sasaki, Katsumi; Inoue, Miyabi; Kumon, Hiromi

    2009-01-01

    Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect) caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1) and the sphincteric urethra (V2) were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1), calculated by Qmax/V1, was lower in the group of bladder outlet obstruction (BOO) vs. control group. Velocity ratio (VR), which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS) will dramatically expand the information on voiding function. PMID:19468440

  11. Can Doppler ultrasound-guided oocyte retrieval improve IVF safety?

    PubMed

    Rísquez, Francisco; Confino, Edmond

    2010-10-01

    Transvaginal ultrasound-guided oocyte retrieval has gained universal acceptance with an excellent safety record overall. However, even with contemporary ultrasound resolution, the aspiration needle can injure adjacent pelvic organs and blood vessels and result in external and internal bleeding. Although the idea that Doppler ultrasound might reduce the risk of blood vessel injury during follicular aspiration seems to be plausable, measurement of peritoneal blood loss and the validity of this opinion has never been appropriately tested. Using a proposed classification method in an IVF programme, it was estimated that a significant peritoneal bleeding occurred in 56/898 (6%) of IVF patients. Although Doppler ultrasound was routinely used in all patients, it did not predict 24/53 (45%) of the patients with moderate peritoneal bleeding. In 8/53 cases (15%) with moderate peritoneal bleeding, vaginal bleeding was also detected and correctly predicted during oocyte aspiration using colour Doppler vaginal vessel imaging. Colour Doppler ultrasound guidance is an easily accessible technology with a theoretical promise to improve IVF safety and, with proper usage, has the potential to reduce haemorrhagic complications. PMID:20800546

  12. Pediatric imaging/doppler ultrasound of the chest: Extracardiac diagnosis

    SciTech Connect

    Huhta, J.C.

    1986-01-01

    In this book the author spells out new diagnostic applications in pediatrics for high resolution cross-sectional ultrasonography, and demonstrates the ways in which Doppler techniques complement the cross-sectional method. This reference presents practical, step-by-step methods for non-invasive ultrasound examination of extra-cardiac anatomy and assessment of vascular blood flow.

  13. Fetal and umbilical Doppler ultrasound in high-risk pregnancies

    PubMed Central

    Alfirevic, Zarko; Stampalija, Tamara; Gyte, Gillian ML

    2014-01-01

    Background Abnormal blood flow patterns in fetal circulation detected by Doppler ultrasound may indicate poor fetal prognosis. It is also possible false positive Doppler ultrasound findings could encourage inappropriate early delivery. Objectives The objective of this review was to assess the effects of Doppler ultrasound used to assess fetal well-being in high-risk pregnancies on obstetric care and fetal outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009) and the reference lists of identified studies. Selection criteria Randomised and quasi-randomised controlled trials of Doppler ultrasound for the investigation of umbilical and fetal vessels waveforms in high-risk pregnancies compared to no Doppler ultrasound. Data collection and analysis Two authors independently assessed the studies for inclusion, assessed risk of bias and carried out data extraction. Data entry was checked. Main results Eighteen completed studies involving just over 10,000 women were included. The trials were generally of unclear quality with some evidence of possible publication bias. The use of Doppler ultrasound in high-risk pregnancy was associated a reduction in perinatal deaths (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.52 to 0.98, 16 studies, 10,225 babies, 1.2% versus 1.7 %, numbers needed to treat = 203; 95%CI 103 to 4352). There were also fewer inductions of labour (average RR 0.89, 95% CI 0.80 to 0.99, 10 studies, 5633 women, random effects) and fewer caesarean sections (RR 0.90, 95% CI 0.84 to 0.97, 14 studies, 7918 women). No difference was found in operative vaginal births (RR 0.95, 95% CI 0.80 to 1.14, four studies, 2813 women) nor in Apgar scores less than seven at five minutes (RR 0.92, 95% CI 0.69 to 1.24, seven studies, 6321 babies). Authors’ conclusions Current evidence suggests that the use of Doppler ultrasound in high-risk pregnancies reduced the risk of perinatal deaths and resulted in less

  14. Towards an ideal blood analogue for Doppler ultrasound phantoms.

    PubMed

    Oates, C P

    1991-11-01

    If a phantom is to produce Doppler spectral waveforms accurately matching those that would be obtained in vivo, it is necessary to use a fluid that behaves like blood in vivo, both acoustically and rheologically. The use of blood itself is undesirable and an analogue is required. Blood exhibits non-Newtonian behaviour as a result of aggregation of erythrocytes at low shear rates. This behaviour affects flow not only in sub-millimetre diameter vessels, but also in large scale structures. An alternative to blood is described that uses finely powdered nylon suspended in a mixture of glycerol and water. The nylon particles used have dimensions and density close to those of erythrocytes and they aggregate at low shear rates to give non-Newtonian behaviour. Viscosity may be varied over a wide range by the addition of liquid detergent. Consideration is given to the importance of haematocrit in modelling pulsatile and disturbed flows as it affects the haemodynamics of flow and the backscattered power of an ultrasound beam. This adaptable blood analogue is suitable for use in models of both large structures and fine vessels. PMID:1754614

  15. Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2008-01-01

    The implementation of probabilistic neural networks (PNNs) with the Lyapunov exponents for Doppler ultrasound signals classification is presented. This study is directly based on the consideration that Doppler ultrasound signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making was performed in two stages: computation of Lyapunov exponents as representative features of the Doppler ultrasound signals and classification using the PNNs trained on the extracted features. The present research demonstrated that the Lyapunov exponents are the features which well represent the Doppler ultrasound signals and the PNNs trained on these features achieved high classification accuracies. PMID:17709103

  16. A New Approach to Teaching Human Cardiovascular Physiology Using Doppler Ultrasound.

    ERIC Educational Resources Information Center

    Looker, T.

    1985-01-01

    Explains the principles of the Doppler ultrasound technique and reviews its potential applications to the teaching of cardiovascular physiology. Identifies the instrumentation needed for this technique; provides examples and illustrations of the waveforms from the ultrasound blood velocimeter. (ML)

  17. Embolic Doppler ultrasound signal detection using discrete wavelet transform.

    PubMed

    Aydin, Nizamettin; Marvasti, Farokh; Markus, Hugh S

    2004-06-01

    Asymptomatic circulating emboli can be detected by Doppler ultrasound. Embolic Doppler ultrasound signals are short duration transient like signals. The wavelet transform is an ideal method for analysis and detection of such signals by optimizing time-frequency resolution. We propose a detection system based on the discrete wavelet transform (DWT) and study some parameters, which might be useful for describing embolic signals (ES). We used a fast DWT algorithm based on the Daubechies eighth-order wavelet filters with eight scales. In order to evaluate feasibility of the DWT of ES, two independent data sets, each comprising of short segments containing an ES (N = 100), artifact (N = 100) or Doppler speckle (DS) (N = 100), were used. After applying the DWT to the data, several parameters were evaluated. The threshold values used for both data sets were optimized using the first data set. While the DWT coefficients resulting from artifacts dominantly appear at the higher scales (five, six, seven, and eight), the DWT coefficients at the lower scales (one, two, three, and four) are mainly dominated by ES and DS. The DWT is able to filter out most of the artifacts inherently during the transform process. For the first data set, 98 out of 100 ES were detected as ES. For the second data set, 95 out of 100 ES were detected as ES when the same threshold values were used. The algorithm was also tested with a third data set comprising 202 normal ES; 198 signals were detected as ES. PMID:15217263

  18. Doppler ultrasound and renal artery stenosis: An overview

    PubMed Central

    Granata, A.; Fiorini, F.; Andrulli, S.; Logias, F.; Gallieni, M.; Romano, G.; Sicurezza, E.; Fiore, C.E.

    2009-01-01

    Renovascular disease is a complex disorder, most commonly caused by fibromuscular dysplasia and atherosclerotic diseases. It can be found in one of three forms: asymptomatic renal artery stenosis (RAS), renovascular hypertension, and ischemic nephropathy. Particularly, the atherosclerotic form is a progressive disease that may lead to gradual and silent loss of renal function. Thus, early diagnosis of RAS is an important clinical objective since interventional therapy may improve or cure hypertension and preserve renal function. Screening for RAS is indicated in suspected renovascular hypertension or ischemic nephropathy, in order to identify patients in whom an endoluminal or surgical revascularization is advisable. Screening tests for RAS have improved considerably over the last decade. While captopril renography was widely used in the past, Doppler ultrasound (US) of the renal arteries (RAs), angio-CT, or magnetic resonance angiography (MRA) have replaced other modalities and they are now considered the screening tests of choice. An arteriogram is rarely needed for diagnostic purposes only. Color-Doppler US (CDUS) is a noninvasive, repeatable, relatively inexpensive diagnostic procedure which can accurately screen for renovascular diseases if performed by an expert. Moreover, the evaluation of the resistive index (RI) at Doppler US may be very useful in RAS affected patients for predicting the response to revascularization. However, when a discrepancy exists between clinical data and the results of Doppler US, additional tests are mandatory. PMID:23397022

  19. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams. PMID:11368866

  20. [Discordant growth in twin pregnancy--value of Doppler ultrasound].

    PubMed

    Grab, D; Hütter, W; Haller, T; Sterzik, K; Terinde, R

    1993-01-01

    A 4 MHz continuous-wave Doppler device was used to study uterine and umbilical arterial wave forms in 91 pairs of twins between 18th and 40th week of gestation. Biometry and cord localisation were effected by real-time ultrasound. The results of 182 Doppler flow examinations showed that umbilical flow velocimetry may prove relevant for early identification of twin pregnancies with discordant growth. Depending on the interval between examination and delivery, sensitivity and specificity values between 44% and 66%, and 66% and 73%, respectively, were obtained. A high resistance index in umbilical arteries was indicative of intrauterine growth retardation, at a specificity of 69% and a sensitivity of 44%. For uteroplacental as well as foetoplacental flow velocity waveform assessment, singleton reference values may be used, whereas, by reason of its low sensitivity, Doppler flow velocimetry does not lend itself as a primary diagnostic tool for intrauterine growth retardation. It can signal pathologic blood flow profiles, which are often associated with added risks, such as pregnancy-induced hypertension, foetal acidosis and stillbirth and can contribute to early detection of twin pregnancies that require close clinical and cardiotocographic surveillance. PMID:8440457

  1. Comparison of angiography with continuous wave Doppler ultrasound in the assessment of extracranial arterial disease

    PubMed Central

    Hames, T K; Humphries, K N; Powell, T V; McLellan, D L

    1981-01-01

    Extracranial arterial disease was assessed using non-invasive continuous wave Doppler ultrasound. The results of the Doppler study were compared with those of angiography. There was a positive correlation between the results of angiography and the shape of the Doppler waveform, but the correlation was improved by adding a compression manceuvre to the procedure. Images PMID:7299405

  2. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  3. Long-term effects of in utero Doppler ultrasound scanning--a developmental programming perspective.

    PubMed

    Aiken, C E; Lees, C C

    2012-04-01

    Ultrasound scanning has been used as a diagnostic and screening tool in obstetric practice for over 50 years. There is no evidence of immediate or long-term harm to the developing fetus from exposure to B mode ultrasound. However, exposure to high levels of Doppler ultrasound during early development is increasingly common, and the full safety implications of this exposure are not clear. Doppler ultrasound exposure in utero gives rise to increased apoptosis in animal models, and there is evidence of the effects of exposure to Doppler ultrasound persisting throughout life, with increased non-right-handedness observed in human epidemiological studies. We consider the idea that there may be long-term developmental implications for fetuses exposed to Doppler ultrasound early in gestation. These effects may be mediated via thermal or mechanical disruption to the developing conceptus, giving rise to free radical damage. Excess free radical exposure early in gestation is a strong candidate for the final common pathway underlying developmental programming effects, and gives rise to concern that fetuses exposed to high levels of ultrasound are at risk of a developmental programming effect. It is suggested that there is a need for animal studies of developmental programming using exposure to Doppler ultrasound scanning as the exposure of interest, and for more observational data to be collected in the clinical setting. While these data are collected, it seems prudent to continue to adhere to the principle of 'as low as reasonably achievable' (ALARA) when exposing first-trimester fetuses to Doppler ultrasound. PMID:22325988

  4. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    SciTech Connect

    Zhang, Y; Stekel, S; Tradup, D; Hangiandreou, N

    2014-06-15

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

  5. Renal Doppler ultrasound in patients with hypertension and metabolic syndrom.

    PubMed

    Lubomirova, Mila; Djerassi, Regina; Kiperova, Boryana; Boyanov, Mihail; Christov, Vladimir

    2007-01-01

    Evaluation of the renal changes by conventional and Doppler ultrasound (US) was performed in patients with hypertension and obesity. 67 persons were examined and divided in 3 groups. Group I includes 27 patients--15 M and 12 F, average age 52+/-4.87 with well controlled diabetes mellitus type II and hypertension, Ccr.--139+/-1.31. Group II includes 20 patients--9 M and 11 F, average age 53+/-7 with well controlled hypertension without diabetes, with Ccr 128+/-7.8. Group III--20) pts. 8 F and 12 M, average age 54+/-5 with uncontrolled hypertension without diabetes, with Ccr 128+/-7.8. All examined pts. were with BMI>30 and hyperlipidemia--total cholesterol>6.5 mmol/l. Tests for microalbuminuria were negative in all 3 groups. In all three groups, using conventional US, the following parameters were detected by Aloca 4000 machine: renal (RV) and parenchyma (PV) volumes as well as Doppler parameters RI, PI, Vmax, Vmin, and Vmean. There were no significant differences between RV and PV of all examined groups: Group I--254+/-53, Group II--238+/-38, Group III--263+/-38, p=0.1. The strong correlation between renal volumes and BMI was found (Pearson's r 0.58). There were no significant differences between Vmax, Vmin, Vmean in all three groups. RI is normal <0.7 in all examined patients: Group I--0.63+/-0.06, Group II--0.61+/-0.02, Group III--0.66+/-0.03. RI in group III was significantly higher, p<0.05 compared to RI indices detected in other two groups but remains at normal levels. Intrarenal hemodynamics exhibited no difference in all examined groups. Analysis of the Doppler spectrum of the intrarenal arteries provides an accurate information about renal vascular changes but has no significant advantages in patients with hypertension and obesity with normal renal function and signs of hypertensive nephropathy "benign nephrosclerosis". Nevertheless Duplex Doppler Ultrasound is a noninvasive method which is an important part of the diagnostic algorithm in patients with

  6. Doppler ultrasound study and venous mapping in chronic venous insufficiency.

    PubMed

    García Carriazo, M; Gómez de las Heras, C; Mármol Vázquez, P; Ramos Solís, M F

    2016-01-01

    Chronic venous insufficiency of the lower limbs is very prevalent. In recent decades, Doppler ultrasound has become the method of choice to study this condition, and it is considered essential when surgery is indicated. This article aims to establish a method for the examination, including venous mapping and preoperative marking. To this end, we review the venous anatomy of the lower limbs and the pathophysiology of chronic venous insufficiency and explain the basic hemodynamic concepts and the terminology required to elaborate a radiological report that will enable appropriate treatment planning and communication with other specialists. We briefly explain the CHIVA (the acronym for the French term "cure conservatrice et hémodynamique de l'insuffisance veineuse en ambulatoire"=conservative hemodynamic treatment for chronic venous insufficiency) strategy, a minimally invasive surgical strategy that aims to restore correct venous hemodynamics without resecting the saphenous vein. PMID:26655801

  7. Intraobserver variation in Doppler ultrasound assessment of pulmonary artery pressure.

    PubMed

    Subhedar, N V; Shaw, N J

    1996-07-01

    Intraobserver variation associated with the non-invasive assessment of pulmonary artery pressure (PAP), using measurement of pulmonary artery Doppler derived systolic time intervals, was investigated. Forty pairs of independent ultrasound examinations of the pulmonary artery were performed by a single observer in 20 preterm infants, median gestation 27 weeks (range 24-31 weeks). Median age at study was 17 days (range 1-47 days). paired measurements of acceleration time (AT), ratio between acceleration time and right ventricular ejection time (AT:RVET), corrected AT, and corrected AT:RVET were compared to assess intraobserver agreement. For the corrected AT:RVET ratio, the mean percentage difference between observations was -0.9% (95% confidence intervals -5.0 to 3.1%). The limits of agreement for the two measurements were -26.3 to 24.5%. The coefficient of repeatability was 25.4%. Variation for other indices was similar. Non-invasive assessment of PAP using Doppler derived systolic time intervals is associated with considerable intraobserver variation. PMID:8795360

  8. Evaluation of Post Wall Filter for Doppler Ultrasound Systems

    NASA Astrophysics Data System (ADS)

    Baba, T.

    Recent advances in digital devices permit high-performance signal processing to be performed with ease. In conventional Doppler ultrasound examinations, the weak blood flow signals are separated from clutter signals, such as those from the cardiac valves and walls, using a time domain pre wall filter in order to avoid saturation of the subsequent frequency analyzer. At this time, due to the expanded dynamic range in signal processing, we have conducted investigations to determine whether it is possible to eliminate the pre wall filter and replace it with a post wall filter after the frequency analyzer. The results of these investigations showed that it is possible to obtain frequency characteristics equivalent to those obtained with a pre wall filter by compensating for the sampling function in frequency analysis processing and simplifying Doppler signal processing. Moreover, it was found that both blood inflow signals and mitral valve motion in the left ventricle can be observed without saturation, confirming the feasibility of real-time simultaneous display using a post wall filter.

  9. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.

    PubMed

    Demené, Charlie; Deffieux, Thomas; Pernot, Mathieu; Osmanski, Bruno-Félix; Biran, Valérie; Gennisson, Jean-Luc; Sieu, Lim-Anna; Bergel, Antoine; Franqui, Stéphanie; Correas, Jean-Michel; Cohen, Ivan; Baud, Olivier; Tanter, Mickael

    2015-11-01

    Ultrafast ultrasonic imaging is a rapidly developing field based on the unfocused transmission of plane or diverging ultrasound waves. This recent approach to ultrasound imaging leads to a large increase in raw ultrasound data available per acquisition. Bigger synchronous ultrasound imaging datasets can be exploited in order to strongly improve the discrimination between tissue and blood motion in the field of Doppler imaging. Here we propose a spatiotemporal singular value decomposition clutter rejection of ultrasonic data acquired at ultrafast frame rate. The singular value decomposition (SVD) takes benefits of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters based on high pass temporal filtering. Whereas classical clutter filters operate on the temporal dimension only, SVD clutter filtering provides up to a four-dimensional approach (3D in space and 1D in time). We demonstrate the performance of SVD clutter filtering with a flow phantom study that showed an increased performance compared to other classical filters (better contrast to noise ratio with tissue motion between 1 and 10mm/s and axial blood flow as low as 2.6 mm/s). SVD clutter filtering revealed previously undetected blood flows such as microvascular networks or blood flows corrupted by significant tissue or probe motion artifacts. We report in vivo applications including small animal fUltrasound brain imaging (blood flow detection limit of 0.5 mm/s) and several clinical imaging cases, such as neonate brain imaging, liver or kidney Doppler imaging. PMID:25955583

  10. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  11. Segmental Comparison of Peripheral Arteries by Doppler Ultrasound and CT Angiography

    PubMed Central

    Swaminathan, Ram Kumar; Ganesan, Prakash; Mayavan, Manibharathi

    2016-01-01

    Introduction Diseases of peripheral arterial system are one of the common causes of limb pain, especially in elderly patients. Here we analyse non invasive imaging of peripheral arterial segments. Aim Aim of the study was to compare arterial diseases of extremities using Doppler ultrasound and CT angiography, and to find the better non-invasive modality of choice. Materials and Methods Fifty patients {14 patients with upper limb complaints (15 upper limbs) and 36 patients with lower limb complaints (72 lower limbs)} of peripheral arterial disease underwent Doppler ultrasound (USG) and CT Angiogram (CTA). Arterial systems divided into anatomic segments and luminal narrowing were compared using gray scale Doppler ultrasound and axial images of arterial phase of CT angiogram. Using statistical methods, sensitivity, specificity and accuracy of Doppler ultrasound and CT angiography were determined. Results Six hundred and nineteen arterial segments were studied with CT angiography and Doppler ultrasound. Of which 226 diseased segments were identified in CT angiography. Doppler overestimated narrowing by one grade in 47 segments, by two grade in 11 segments, by three grades in 30 segments and by four grades in 22 segments; underestimated by one grade in 28 segments, by two grades in 9 segments, by three grades in 5 segments and by four grades in 3 segments. Significant statistical difference exists between Doppler USG and CT angiography. Doppler showed good correlation with CT angiography in 74%, but, Doppler overestimated stenosis grade in a significant percentage. The sensitivity, specificity and accuracy of Doppler USG compared with CT angiography was 93.36%, 82.44%, and 86.42%. Conclusion Duplex Doppler can be the first investigation in excluding peripheral arterial disease, especially for evaluation of infra inguinal region of lower limbs and from second part of the subclavian artery in upper limbs. PMID:27042556

  12. Shigeo Satomura: 60 years of Doppler ultrasound in medicine.

    PubMed

    Coman, Ioan M; Popescu, Bogdan A

    2015-01-01

    This year we celebrate 60 years since Shigeo Satomura published the first measurements of the Doppler shift of ultrasonic signals from a beating heart. He demonstrated that Doppler signals can be retrieved from heart movements when insonated with 3 MHz ultrasonic waves. Later, togheter with Ziro Kaneko, he constructed the first Doppler flowmeter to measure the blood flow velocities in peripheral and extracranial brain-supplying vessels using ultrasounds. They proved that ultrasonic Doppler signals from arteries and veins can be recorded from the surface of the skin and pioneered transcutaneous flow analysis in systole and diastole in both normal and diseased blood vessels. These were the first medical applications of Doppler sonography and impressive technologic innovations have been continuing ever since. Over time, Doppler techniques became a key player in diagnostic ultrasound for hemodynamic assessment, replacing cardiac catheterization in many clinical settings. PMID:26699126

  13. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery.

    PubMed

    Tikku, Aseem P; Kumar, Sunil; Loomba, Kapil; Chandra, Anil; Verma, Promila; Aggarwal, Renu

    2010-09-01

    This study evaluated the effectiveness of ultrasound, color Doppler imaging and conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. Fifteen patients who underwent periapical surgery for endodontic pathology were randomly selected. In all patients, periapical lesions were evaluated preoperatively using ultrasound, color Doppler imaging and conventional radiography, to analyze characteristics such as size, shape and dimensions. On radiographic evaluation, dimensions were measured in the superoinferior and mesiodistal direction using image-analysis software. Ultrasound evaluation was used to measure the changes in shape and dimensions on the anteroposterior, superoinferior, and mesiodistal planes. Color Doppler imaging was used to detect the blood-flow velocity. Postoperative healing was monitored in all patients at 1 week and 6 months by using ultrasound and color Doppler imaging, together with conventional radiography. The findings were then analyzed to evaluate the effectiveness of the 3 imaging techniques. At 6 months, ultrasound and color Doppler imaging were significantly better than conventional radiography in detecting changes in the healing of hard tissue at the surgical site (P < 0.004). This study demonstrates that ultrasound and color Doppler imaging have the potential to supplement conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. PMID:20881334

  14. Measurement of mitral valve area in mitral stenosis by Doppler ultrasound.

    PubMed

    Robson, D J; Rodman, M; Flaxman, J C; Mayhew, F A

    1985-09-01

    The mitral valve area in mitral stenosis was determined from Doppler velocity recordings and by cross-sectional echocardiography. There was good agreement (r = 0.93) between the two methods in 18 adult patients with mitral stenosis. The results confirm that the non-invasive continuous wave Doppler ultrasound technique is of diagnostic value in the assessment of mitral stenosis. PMID:4076215

  15. Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA

    PubMed Central

    Hu, Chang-hong; Zhou, Qifa; Shung, K. Kirk

    2009-01-01

    The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and real-time processing capability is achieved. PMID:18986909

  16. Ultrasound and Doppler US in Evaluation of Superficial Soft-tissue Lesions

    PubMed Central

    Toprak, Huseyin; Kiliç, Erkan; Serter, Asli; Kocakoç, Ercan; Ozgocmen, Salih

    2014-01-01

    Improved developments in digital ultrasound technology and the use of high-frequency broadband transducers make ultrasound (US) imaging the first screening tool in investigating superficial tissue lesions. US is a safe (no ionizing radiation), portable, easily repeatable, and cheap form of imaging compared to other imaging modalities. US is an excellent imaging modality to determine the nature of a mass lesion (cystic or solid) and its anatomic relation to adjoining structures. Masses can be characterized in terms of their size, number, component, and vascularity with US and Doppler US especially with power Doppler US. US, however, is operator dependent and has a number of artifacts that can result in misinterpretation. In this review, we emphasize the role of ultrasound, particularly power Doppler, in superficial soft-tissue lesions. PMID:24744969

  17. Combining eigenvector methods and support vector machines for detecting variability of Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2007-05-01

    In this paper, the multiclass support vector machines (SVMs) with the error correcting output codes (ECOC) were presented for detecting variabilities of the multiclass Doppler ultrasound signals. The ophthalmic arterial (OA) Doppler signals were recorded from healthy subjects, subjects suffering from OA stenosis, subjects suffering from ocular Behcet disease. The internal carotid arterial (ICA) Doppler signals were recorded from healthy subjects, subjects suffering from ICA stenosis, subjects suffering from ICA occlusion. Methods of combining multiple classifiers with diverse features are viewed as a general problem in various application areas of pattern recognition. Because of the importance of making the right decision, better classification procedures for Doppler ultrasound signals are searched. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the SVMs trained on the extracted features. The research demonstrated that the multiclass SVMs trained on extracted features achieved high accuracy rates. PMID:17289211

  18. Estimation of flow in aortocoronary grafts with a pulsed ultrasound Doppler meter.

    PubMed

    Segadal, L; Matre, K; Engedal, H; Resch, F; Grip, A

    1982-10-01

    A newly developed pulsed ultrasound Doppler meter was used for measurement of blood flow in aortocoronary vein grafts during operation. The results were compared with measurements obtained with conventional electromagnetic flowmetry. In 27 grafts, excellent agreement was found between electromagnetic flow probes thoroughly calibrated for varying hematocrit on fresh veins in vitro, and a clip-on type of Doppler probe (r = 0.86). In vitro calibration showed a close correspondence (r = 0.98) with the Doppler technique with no dependency on hematocrit and no need for zero calibration. The use of a conventional electromagnetic flowmeter showed strong dependency on recent calibration, both for saline and for varying hematocrit. Zero-calibration was necessary for every single graft measurement. The application of ultrasound Doppler meters of high quality together with clip-on probes of proper design proved to be superior to electromagnetic flowmetry for intraoperative blood flow measurements. PMID:6183771

  19. Sensitivity evaluation of DSA-based parametric imaging using Doppler ultrasound in neurovascular phantoms

    NASA Astrophysics Data System (ADS)

    Balasubramoniam, A.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2016-03-01

    An evaluation of the relation between parametric imaging results obtained from Digital Subtraction Angiography (DSA) images and blood-flow velocity measured using Doppler ultrasound in patient-specific neurovascular phantoms is provided. A silicone neurovascular phantom containing internal carotid artery, middle cerebral artery and anterior communicating artery was embedded in a tissue equivalent gel. The gel prevented movement of the vessels when blood mimicking fluid was pumped through it to obtain Colour Doppler images. The phantom was connected to a peristaltic pump, simulating physiological flow conditions. To obtain the parametric images, water was pumped through the phantom at various flow rates (100, 120 and 160 ml/min) and 10 ml contrast boluses were injected. DSA images were obtained at 10 frames/sec from the Toshiba C-arm and DSA image sequences were input into LabVIEW software to get parametric maps from time-density curves. The parametric maps were compared with velocities determined by Doppler ultrasound at the internal carotid artery. The velocities measured by the Doppler ultrasound were 38, 48 and 65 cm/s for flow rates of 100, 120 and 160 ml/min, respectively. For the 20% increase in flow rate, the percentage change of blood velocity measured by Doppler ultrasound was 26.3%. Correspondingly, there was a 20% decrease of Bolus Arrival Time (BAT) and 14.3% decrease of Mean Transit Time (MTT), showing strong inverse correlation with Doppler measured velocity. The parametric imaging parameters are quite sensitive to velocity changes and are well correlated to the velocities measured by Doppler ultrasound.

  20. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  1. The effect of foot position on Power Doppler Ultrasound grading of Achilles enthesitis.

    PubMed

    Zappia, Marcello; Cuomo, Giovanna; Martino, Maria Teresa; Reginelli, Alfonso; Brunese, Luca

    2016-06-01

    The aim of this study was to determine whether foot position could modify power Doppler grading in evaluation of the Achilles enthesis. Eighteen patients with clinical Achilles enthesitis were studied with power Doppler ultrasound (PDUS) in five different positions of the foot: active and passive dorsiflexion, neutral position, active and passive plantar flexion. The Doppler signal was graded in any position and compared with the others. The Doppler signal was higher with the foot in plantar flexion and decreased gradually, sometimes till to disappear, while increasing dorsiflexion. The Doppler signal was always less during the active keeping of the position of the joint, than during the passive. The PDUS examination of the Achilles enthesis should be performed also with the foot in passive plantar flexion, in order not to underestimate the degree of vascularization. PMID:27002715

  2. [Ultrasound and color Doppler in nephrology. Physical and technical principles].

    PubMed

    Meola, Mario; Petrucci, Ilaria

    2012-01-01

    Sonography is an imaging technique that generates tomographic images using ultrasound. The sound constitutes mechanical energy transmitted in a medium by pressure waves. Sound waves with frequencies greater than 20 kHz are called ultrasounds. Diagnostic ultrasounds use frequencies from 1 to 20 MHz. Ultrasound equipment is composed of a scanner, an image monitor, and different transducers that transform acoustic energy into electrical signals and electrical energy into acoustic energy (piezoelectric effect). The spatial resolution defines the minimum distance between two reflectors or echogenic regions that can be imaged as separate reflectors. The spatial resolution is mainly determined by the array design (linear, curved and sectorial) and by the operative system of the transducer. Modern ultrasound machines are very sophisticated medical devices that often support many transducers, imaging modes and display devices. The scan converter memory is the device in which images are formed and then presented to the monitor and to the hard copy devices. PMID:22388909

  3. Time-resolved volumetric MRI blood flow: a Doppler ultrasound perspective

    NASA Astrophysics Data System (ADS)

    van Pelt, Roy; Oliván Bescós, Javier; Nagel, Eike; Vilanova, Anna

    2014-03-01

    Hemodynamic information is increasingly inspected to assess cardiovascular disease. Abnormal blood-flow patterns include high-speed jet flow and regurgitant flow. Such pathological blood-flow patterns are nowadays mostly inspected by means of color Doppler ultrasound imaging. To date, Doppler ultrasound has been the prevailing modality for blood-flow analysis, providing non-invasive and cost-effective blood-flow imaging. Since recent years, magnetic resonance imaging (MRI) is increasingly employed to measure time-resolved blood-flow data. Albeit more expensive, MRI enables volumetric velocity encoding, providing true vector-valued data with less noise. Domain experts in the field of ultrasound and MRI have extensive experience in the interpretation of blood-flow information, although they employ different analysis techniques. We devise a visualization framework that extends on common Doppler ultrasound visualizations, exploiting the added value of MRI velocity data, and aiming for synergy between the domain experts. Our framework enables experts to explore the advantages and disadvantages of the current renditions of their imaging data. Furthermore, it facilitates the transition from conventional Doppler ultrasound images to present-day high-dimensional velocity fields. To this end, we present a virtual probe that enables direct exploration of MRI-acquired blood-flow velocity data using user-friendly interactions. Based on the probe, Doppler ultrasound inspired visualizations convey both in-plane and through-plane blood-flow velocities. In a compound view, these two-dimensional visualizations are linked to state-of-the-art three-dimensional blood-flow visualizations. Additionally, we introduce a novel volume rendering of the blood-flow velocity data that emphasizes anomalous blood-flow patterns. The visualization framework was evaluated by domain experts, and we present their feedback.

  4. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  5. Atypical Cerebral Lateralisation in Adults with Compensated Developmental Dyslexia Demonstrated Using Functional Transcranial Doppler Ultrasound

    ERIC Educational Resources Information Center

    Illingworth, Sarah; Bishop, Dorothy V. M.

    2009-01-01

    Functional transcranial Doppler ultrasound (fTCD) is a relatively new and non-invasive technique that assesses cerebral lateralisation through measurements of blood flow velocity in the middle cerebral arteries. In this study fTCD was used to compare functional asymmetry during a word generation task between a group of 30 dyslexic adults and a…

  6. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.

    PubMed

    Zhang, Yufeng; Wang, Le; Gao, Yali; Chen, Jianhua; Shi, Xinling

    2007-07-01

    A novel de-noising method for improving the signal-to-noise ratio (SNR) of Doppler ultrasound blood flow signals, called the matching pursuit method, has been proposed. Using this method, the Doppler ultrasound signal was first decomposed into a linear expansion of waveforms, called time-frequency atoms, which were selected from a redundant dictionary named Gabor functions. Subsequently, a decay parameter-based algorithm was employed to determine the decomposition times. Finally, the de-noised Doppler signal was reconstructed using the selected components. The SNR improvements, the amount of the lost component in the original signal and the maximum frequency estimation precision with simulated Doppler blood flow signals, have been used to evaluate a performance comparison, based on the wavelet, the wavelet packets and the matching pursuit de-noising algorithms. From the simulation and clinical experiment results, it was concluded that the performance of the matching pursuit approach was better than those of the DWT and the WPs methods for the Doppler ultrasound signal de-noising. PMID:16996774

  7. Detection of a lumbar foraminal venous varix by Color Doppler Ultrasound.

    PubMed

    Darrieutort-Laffite, Christelle; Desal, Hubert; Berthelot, Jean-Marie; Le Goff, Benoît

    2016-07-01

    Ultrasonography is currently widely used in the rheumatology practice. Although mainly performed to study peripheral joint, several articles have underlined its interest to study spinal anatomy. However, its ability to provide diagnostic features is unknown. We studied the case of a 25-year-old woman having low back pain. Three different imaging modalities (Computed Tomography [CT], Magnetic Resonance Imaging [MRI] and Ultrasound) were used to explore it. CT and MRI showed a foraminal dilation of the lombo-ovarian vein at the L3-L4 level with a scalloping of the lateral edge of L3. We were able to detect it with Color Doppler Ultrasound and a malformation of the inferior vena cava was also found. We showed for the first time that Color Doppler Ultrasound can detect venous malformation of the spine. This imaging modality could help us in the diagnosis of atypical lesions of the spine to confirm their vascular origin. PMID:27068620

  8. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow

    NASA Astrophysics Data System (ADS)

    Jiang, Jingfeng; Strother, Charles; Johnson, Kevin; Baker, Sara; Consigny, Dan; Wieben, Oliver; Zagzebski, James

    2011-03-01

    Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm. The method was tested in a canine aneurysm model by determining velocities in small arteries (3-4 mm diameter) near the aneurysm where there was moderately disturbed flow. Doppler results were compared to velocity measurements in the same arteries acquired with a rapid volumetric phase contrast MR angiography technique named phase contrast vastly undersampled isotropic projection reconstruction magnetic resonance angiography (PC-VIPR MRA). After correcting for intrinsic spectral broadening, there was a high degree of correlation between velocities obtained by the real-time UD and the accelerated PC-MRA technique. The peak systolic velocity yielded a linear correlation coefficient of r = 0.83, end diastolic velocity resulted in r = 0.81, and temporally averaged mean velocity resulted in r = 0.76. The overall velocity waveforms obtained by the two techniques were also highly correlated (r = 0.89 ± 0.06). There were, however, only weak correlations for the pulsatility index (PI: 0.25) and resistive index (RI: 0.14) derived from the two techniques. Results demonstrate that to avoid overestimations of peak systolic velocities, the results for UD must be carefully corrected to compensate for errors caused by intrinsic spectral broadening.

  9. Doppler Ultrasound Detection of Preclinical Changes in Foot Arteries in Early Stage of Type 2 Diabetes

    PubMed Central

    Leoniuk, Jolanta; Łukasiewicz, Adam; Szorc, Małgorzata; Sackiewicz, Izabela; Janica, Jacek; Łebkowska, Urszula

    2014-01-01

    Summary Background There are few reports regarding the changes within the vessels in the initial stage of type 2 diabetes. The aim of this study was to estimate the hemodynamic and morphological parameters in foot arteries in type 2 diabetes subjects and to compare these parameters to those obtained in a control group of healthy volunteers. Material/Methods Ultrasound B-mode, color Doppler and pulse wave Doppler imaging of foot arteries was conducted in 37 diabetic patients and 36 non-diabetic subjects to determine their morphological (total vascular diameter and flow lumen diameter) and functional parameters (spectral analysis). Results In diabetic patients, the overall vascular diameter and wall thickness were statistically significantly larger when compared to the control group in the right dorsalis pedis artery (P=0.01; P=0.001), left dorsalis pedis artery (P=0.007; P=0.006), right posterior tibial artery (P=0.005; P=0.0005), and left posterior tibial artery (P=0.007; P=0.0002). No significant differences were observed in both groups in flow lumen diameters and blood flow parameters (PSV, EDV, PI, RI). In the diabetic group, the level of HbA1c positively correlated with flow resistance index in the right dorsalis pedis artery (r=0.38; P=0.02), right posterior tibial artery (r=0.38; P=0.02) and left posterior tibial artery (r=0.42; P=0.009). The pulsatility index within the dorsalis pedis artery decreased with increased trophic skin changes (r=–0.431, P=0.009). Conclusions In the diabetic group, overall artery diameters larger than and flow lumina comparable to the control group suggest vessel wall thickening occurring in the early stage of diabetes. Doppler flow parameters are comparable in both groups. In the diabetic group, the level of HbA1c positively correlated with flow resistance index and negative correlation was observed between the intensity of trophic skin changes and the pulsatility index. PMID:25202434

  10. The role of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the diagnosis of childhood febrile urinary tract infections

    PubMed Central

    İlarslan, Nisa Eda Çullas; Fitöz, Ömer Suat; Öztuna, Derya Gökmen; Küçük, Nuriye Özlem; Yalçınkaya, Fatma Fatoş

    2015-01-01

    Aim: This study assessed the ability of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the detection of childhood febrile urinary tract infections in comparison with the gold standard reference method: Tc-99m dimercaptosuccinicacid renal cortical scintigraphy. Material and Methods: This prospective study included 60 patients who were hospitalized with a first episode of febrile urinary tract infections. All children were examined with dimercaptosuccinicacid scan and tissue harmonic imaging ultrasound combined with power Doppler ultrasound within the first 3 days of admission. Results: Signs indicative of acute infection were observed in 29 patients according to the results of tissue harmonic imaging ultrasound combined with power Doppler ultrasound while dimercaptosuccinicacid scan revealed abnormal findings in 33 patients. The sensitivity, specificity, positive predictive value and negative predictive value of tissue harmonic imaging combined with power Doppler ultrasound using dimercaptosuccinicacid scintigraphy as the reference method in patients diagnosed with first episode febrile urinary tract infections were calculated as 57.58% (95% confidence interval: 40.81%–72.76%); 62.96% (95% confidence interval: 44.23%–78.47%); 65.52% (95% confidence interval: 52.04%–77%); 54.84% (95% confidence interval: 41.54%–67.52%); respectively. Conclusions: Although current results exhibit inadequate success of power Doppler ultrasound, this practical and radiation-free method may soon be comprise a part of the routine ultrasonographic evaluation of febrile urinary tract infections of childhood if patients are evaluated early and under appropriate sedation. PMID:26265892

  11. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  12. Validation of Doppler ultrasound measurements using particle, image velocimetry in a flow phantom

    NASA Astrophysics Data System (ADS)

    Cosgrove, John; Meagher, Siobhan; Hoskins, Peter; Greated, Clive; Black, Richard

    2001-05-01

    Cardiovascular disease is responsible for over 50% of all deaths in the world and there is a substantial amount of evidence which suggests that abnormal vessel wall shear stress is correlated with the development of atherosclerosis. Wall shear stress is calculated from wall shear rates, the measurement of which is a technically challenging problem for ultrasound. In this study a flow phantom consisting of a meshed-gear pump and corresponding control electronics is used to generate a range of flow waveforms in a straight tube. These flows are measured using Doppler ultrasound and compared to corresponding particle image velocimetry (PIV) measurements and to analytical solutions of the flow equations for a range of Wormersley parameters. Although previous studies have been undertaken calibrating Doppler ultrasound in straight tubes, they have not used PIV. This study serves as a prelude to investigations using PIV to assess the accuracy of Doppler ultrasound in phantoms with anatomically realistic geometries for which there are no analytical solutions to the flow. [Research funded by the Engineering and Physical Sciences Research Council UK.

  13. Cerebral blood flow in the newborn infant: comparison of Doppler ultrasound and /sup 133/xenon clearance

    SciTech Connect

    Greisen, G.; Johansen, K.; Ellison, P.H.; Fredriksen, P.S.; Mali, J.; Friis-Hansen, B.

    1984-03-01

    Two techniques of Doppler ultrasound examination, continuous-wave and range-gated, applied to the anterior cerebral artery and to the internal carotid artery, were compared with /sup 133/xenon clearance after intravenous injection. Thirty-two sets of measurements were obtained in 16 newborn infants. The pulsatility index, the mean flow velocity, and the end-diastolic flow velocity were read from the Doppler recordings. Mean cerebral blood flow was estimated from the /sup 133/Xe clearance curves. The correlation coefficients between the Doppler and the /sup 133/Xe measurements ranged from 0.41 to 0.82. In the subset of 16 first measurements in each infant, there were no statistically significant differences between the correlation coefficients of the various Doppler ultrasound variables, but the correlation coefficients were consistently lower for the pulsatility index than for mean flow velocity or end-diastolic flow velocity, and they were consistently higher for the range-gated than for the continuous-wave Doppler technique.

  14. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  15. Neural migration disorders studied by cerebral ultrasound and colour Doppler flow imaging.

    PubMed Central

    Pellicer, A.; Cabañas, F.; Pérez-Higueras, A.; García-Alix, A.; Quero, J.

    1995-01-01

    Cerebral ultrasound and colour Doppler flow imaging (CDFI) were used to diagnose a wide spectrum of anomalies of cell migration (17 patients): presumed lissencephaly (n = 12); schizencephaly of both fused (n = 2) and open lips (n = 2); hemimegalencephaly (n = 1); and subependymal type grey matter heterotopia (n = 12). The patients with grey matter heterotopia had irregular ventricular margins (n = 10), periventricular hyperechogenic bands (n = 12), and/or periventricular hyperechogenic nodules (n = 7). Some patients had more than one type of migration disorder as well as other central nervous system malformations. Cerebral ultrasound diagnoses were confirmed by magnetic resonance imaging (MRI) or necropsy. It is concluded that colour Doppler flow imaging is a worthwhile addition to the assessment of brain surface anomalies. Images Figure 7 Figure 1 Figures 5 and 6 Figures 3 and 4 Figure 2 PMID:7583607

  16. Duplex ultrasound

    MedlinePlus

    ... ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound records sound waves reflecting off moving objects, such as blood, to ...

  17. Doppler ultrasound in the fetus: a review of current applications.

    PubMed

    De Vore, G R; Brar, H S; Platt, L D

    1987-01-01

    With the recent introduction of Doppler pulsed and continuous wave as well as color-flow mapping, assessment of blood velocity in the human fetus has added a new dimension to fetal assessment. Although investigators initially examined blood flow in the descending aorta and umbilical vein, there was a wide variation in normal values because of the difficulty of accurately measuring the area of the vessels, a requirement for computation of blood volume. Using duplex sector scanners, velocity and blood flow have been obtained from the right and left ventricular chambers and aortic and pulmonic outflow tracts. At the present time the clinical application of the latter measurements is still under investigation. Doppler color-flow mapping appears to be promising for elucidation of abnormal flow in fetuses suspected of having structural and/or functional cardiovascular disease. Because of the difficulty in computing volume flow due to the above mentioned factors, more recently investigators have examined angle independent parameters of blood velocity from the aorta, carotid and umbilical arteries in an attempt to quantify peripheral resistance. This latter technique appears to be promising for elucidation of placental pathology as is found in a number of fetal and placental diseases. PMID:3119673

  18. Feature extraction from Doppler ultrasound signals for automated diagnostic systems.

    PubMed

    Ubeyli, Elif Derya; Güler, Inan

    2005-11-01

    This paper presented the assessment of feature extraction methods used in automated diagnosis of arterial diseases. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Different feature extraction methods were used to obtain feature vectors from ophthalmic and internal carotid arterial Doppler signals. In addition to this, the problem of selecting relevant features among the features available for the purpose of classification of Doppler signals was dealt with. Multilayer perceptron neural networks (MLPNNs) with different inputs (feature vectors) were used for diagnosis of ophthalmic and internal carotid arterial diseases. The assessment of feature extraction methods was performed by taking into consideration of performances of the MLPNNs. The performances of the MLPNNs were evaluated by the convergence rates (number of training epochs) and the total classification accuracies. Finally, some conclusions were drawn concerning the efficiency of discrete wavelet transform as a feature extraction method used for the diagnosis of ophthalmic and internal carotid arterial diseases. PMID:16278106

  19. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  20. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  1. Detection of deeply implanted impedance-switching devices using ultrasound doppler.

    PubMed

    Mari, Jean Martial; Lafon, Cyril; Chapelon, Jean Yves

    2013-06-01

    Communication with and transmission of energy to remote devices, such as deeply-implanted physiological recorders, using ultrasound presents several technical problems. In particular, device detection and piezoelectric sensor targeting remains difficult. Both tasks require differentiating the device from the surrounding fully passive tissues. Like radiofrequency identification devices, ultrasonic transponders have the capacity to rapidly change the impedance of their piezoelectric elements, which modulates their backscattering coefficient and allows the device to "flash" periodically at a very low energy cost, and, in particular situations, to communicate with an external device. A method for localizing the device by interpreting this flashing as movement is presented here. An ultrasound Doppler scan sequence is implemented using a programmable scanner, and radio-frequency data are collected and processed. The data are then analyzed for different excitation lengths and flashing frequencies to determine the optimum detection parameters. Measurements show that 1) detection can be achieved and is maximal when the excitation length reaches that of the Doppler processing window, and 2) when the flashing frequency is in a specific range. A study of the incidence angle also showed that 3) the sensor of the device can be detected over a given angular window. The conclusion is that by using ultrasound color Doppler sequences, impedance-switching piezoelectric devices can be detected under the conditions provided in the present study, and can be distinguished from fully passive structures. PMID:25004471

  2. Gastroduodenal artery steal syndrome during liver transplantation: intraoperative diagnosis with Doppler ultrasound and management.

    PubMed

    Nishida, Seigo; Kadono, Jun; DeFaria, Werviston; Levi, David M; Moon, Jang I; Tzakis, Andreas G; Madariaga, Juan R

    2005-03-01

    Arterial steal syndrome (ASS) after liver transplantation has been reported. ASS causes arterial hypo-perfusion of the graft liver and devastating consequences. However, the diagnosis tends to be delayed. We present the recognized case of a gastroduodenal artery (GDA) steal syndrome that was diagnosed with intraoperative Doppler ultrasound and treated with GDA ligation during the liver transplantation. The patient had variation of hepatic artery anatomy (low bifurcation of the hepatic artery). Graft liver had the common hepatic artery and aberrant left hepatic artery. Doppler ultrasound of the liver was performed after the arterial reconstruction between the donor common hepatic artery and recipient right hepatic artery. It showed low hepatic arterial flow. There is no backflow bleeding from the donor aberrant left hepatic artery stump. After ligating big GDA, hepatic arterial waveform inside the liver drastically improved and strong backflow bleeding was recognized from the donor left aberrant hepatic artery stump. The current case should show the efficacy of intraoperative Doppler ultrasound of the liver on ASS and alert clinician to ligate GDA to prevent ASS if hepatic arterial flows are suboptimal. PMID:15730497

  3. Measurement of normal portal venous blood flow by Doppler ultrasound.

    PubMed

    Brown, H S; Halliwell, M; Qamar, M; Read, A E; Evans, J M; Wells, P N

    1989-04-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the supine position was 864 (188)ml/min (mean 1SD). When standing, the mean volume blood flow was significantly reduced by 26% to 662 (169)ml/min. There was, however, no significant difference between flow when supine and when tilted head down at 20 degrees from the horizontal. PMID:2653973

  4. [Ultrasound and color Doppler applications in chronic kidney disease].

    PubMed

    Meola, Mario; Petrucci, Ilaria

    2012-01-01

    Chronic kidney disease (CKD) encompasses all clinical features and complications during the progression of various kidney conditions towards end-stage renal disease. These conditions include immune and inflammatory diseases such as primary and HCV-related glomerulonephritis; infectious diseases such as pyelonephritis with or without reflux and tuberculosis; vascular diseases such as chronic ischemic nephropathy; hereditary and congenital diseases such as polycystic disease and congenital cystic dysplasia; metabolic diseases including diabetes and hyperuricemia; and systemic diseases (collagen disease, vasculitis, myeloma). During the progression of CKD, ultrasound imaging can differentiate the nature of the renal damage in only 50-70% of cases. Infact, the end-stage kidney appears shrunken, reduced in volume (Ø <9 cm), unstructured, amorphous, with acquired cystic degeneration (small and multiple cysts involving the cortex and medulla) or nephrocalcinosis, but there are rare exceptions, such as polycystic kidney disease, diabetic nephropathy, and secondary inflammatory nephropathies. The main difficulties in the differential diagnosis are encountered in multifactorial CKD, which is commonly presented to the nephrologist at stage 4-5, when the kidney is shrunken, unstructured and amorphous. As in acute renal injury and despite the lack of sensitivity, ultrasonography is essential for assessing the progression of the renal damage and related complications, and for evaluating all conditions that increase the risk of CKD, such as lithiasis, recurrent urinary tract infections, vesicoureteral reflux, polycystic kidney disease and obstructive nephropathy. The timing and frequency of ultrasound scans in CKD patients should be evaluated case by case. In this review we will consider the morphofunctional features of the kidney in all nephropathies that may lead to progressive CKD. PMID:23229668

  5. Combined B-Mode and Multigate Spectral Doppler-Mode Imaging for Flow-Mediated Dilation Investigation

    NASA Astrophysics Data System (ADS)

    Francalanci, Lorenzo; Palombo, Carlo; Ghiadoni, Lorenzo; Bini, Giacomo; Bassi, Luca; Tortoli, Piero

    Flow-mediated dilation (FMD) is an established non-invasive method to assess the endothelial function by ultrasound. Blood flow in the brachial artery is restricted by a cuff for about 5 min: during the reactive hyperemia following occlusion release, the consequent increase in wall shear stress stimulates the endothelial cells to release nitric oxide, a powerful vasodilator that causes relaxation of tunica media smooth muscle. By measuring the arterial diameter change induced by reactive hyperemia, a possible endothelial dysfunction can be detected. The traditional approach consists in the evaluation of arterial diameter changes, while the shear stress increase (i.e. the stimulus for dilation) has not been directly estimated so far. This paper describes an approach to simultaneously measure the wall shear rate (WSR), i.e. the blood velocity gradient near the walls, and the associated diameter changes. The WSR is measured through multigate spectral Doppler (MSD) analysis while B-Mode images are processed to estimate the instantaneous diameter. This approach was implemented in the ULtrasound Advanced Open Platform (ULA-OP), which can be programmed to arbitrarily interleave B- and PW Doppler- Modes. The method implementation and the results of a clinical validation over 15 healthy volunteers are reported.

  6. Dispersion corrections to the Gaussian profile describing the Doppler broadening of spectral lines

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Wcisło, P.; Lisak, D.; Ciuryło, R.

    2016-04-01

    A dispersionally corrected Gaussian profile describing Doppler-broadened spectral line shapes is presented. Proposed corrections include the frequency dependence of the Doppler shifting caused by dispersion as well as by light frequency variation over the whole spectral line shape. It is shown that the frequency dependence of the Doppler shifting can have a non-negligible influence on the line-shape model and can affect the line shape even at the relative level of 10-5. Moreover, this effect also influences the determination of the line position at the level of kilohertz. Finally, the impact of the presented results on the Doppler width thermometry and precise molecular spectroscopy for fundamental studies is emphasized.

  7. Distribution of mean Doppler shift, spectral width, and skewness of coherent 50-MHz auroral radar backscatter

    SciTech Connect

    Watermann, J.; McNamara, A.G. ); Sofko, G.J.; Koehler, J.A. )

    1989-06-01

    Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetric than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.

  8. Cervical tumor characterization by transvaginal color flow Doppler ultrasound.

    PubMed

    Carter, J. R.

    1999-07-01

    The aim of the study was to investigate the blood flow characteristics of benign cervical lesions and invasive cervical tumors and to determine if invasive cervical tumors can be predicted by transvaginal sonography (TVS) and color flow Doppler (CFD). The study design incorporated an open prospective collection of data from patients attending the Women's Cancer Center, University of Minnesota and the Sydney Women's Cancer Center. Inclusion criteria included patients with known benign or malignant cervical pathology. The study group of 66 patients comprised 32 patients with invasive cervical cancer and 34 patients with benign cervical lesions. Benign cervixes were significantly more likely to have absent or normal flow whereas malignant lesions were significantly more likely to have abnormal or increased flow (P < 0.0001). No differences in the uterine or intratumor systolic, diastolic, or mean velocity were found between the two groups. A reduction in the uterine artery pulsatility index (PI) and resistance index (RI) from 1.84 to 1.55 and 0.73 to 0.71, respectively, and also in the intracervical PI from 1.5 to 1.1, in the benign compared to invasive group was found, none of which reached statistical significance. However the intracervical RI was statistically lower (0.62) in malignant tumors compared to patients with benign lesions (0.71) (P = 0.03). The effect of menopause on blood flow characteristics was variable and overall not significant. While the uterine artery systolic velocity was significantly higher in premenopausal women, no such effect was found for the diastolic or mean velocity or the PI and RI. In postmenopausal women, the intratumor PI and RI were higher compared to premenopausal women. In conclusion, transvaginal CFD analysis of the uterine arterial or intratumor bed does not appear to be beneficial in attempting to distinguish benign from malignant cervical tumors. PMID:11240780

  9. A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. I. Theory.

    PubMed

    Vaitkus, P J; Cobbold, R C

    1998-01-01

    A significant improvement in blood velocity estimation accuracy can be achieved by simultaneously processing both temporal and spatial information obtained from a sample volume. Use of the spatial information becomes especially important when the temporal resolution is limited. By using a two-dimensional sequence of spatially sampled Doppler signal "snapshots" an improved estimate of the Doppler correlation matrix can be formed. Processing Doppler data in this fashion addresses the range-velocity spread nature of the distributed red blood cell target, leading to a significant reduction in spectral speckle. Principal component spectral analysis of the "snapshot" correlation matrix is shown to lead to a new and robust Doppler mode frequency estimator. By processing only the dominant subspace of the Doppler correlation matrix, the Cramer-Rao bounds on the estimation error of target velocity is significantly reduced in comparison to traditional narrowband blood velocity estimation methods and achieves almost the same local accuracy as a wideband estimator. A time-domain solution is given for the velocity estimate using the root-MUSIC algorithm, which makes the new estimator attractive for real-time implementation. PMID:18244249

  10. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  11. Noninvasive Assessment of Wall-Shear Rate and Vascular Elasticity using Combined ARFI/SWEI/Spectral Doppler Imaging System

    PubMed Central

    Dumont, Douglas M.; Doherty, Joshua R.; Trahey, Gregg E.

    2012-01-01

    The progression of atherosclerotic disease is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of cardiovascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function and the growth of soft lipid-filled plaques that could help a clinician better predict the occurrence of clinical events such as stroke. Two novel ARFI based imaging techniques, combined on-axis/off-axis ARFI /Spectral Doppler Imaging (SAD-SWEI) and Gated 2D ARFI/Spectral Doppler Imaging (SAD-Gated), were developed to form co-registered depictions of B-mode echogenicity, ARFI displacements, ARF-excited transverse wave velocity estimates and estimates of wall-shear rate throughout the cardiac cycle. Implemented on a commercial ultrasound scanner, the developed techniques were evaluated in tissue-mimicking and steady-state flow phantoms and compared with conventional techniques, other published study results and theoretical values. Initial in vivo feasibility of the method is demonstrated with results obtained from scanning the carotid arteries of five healthy volunteers. Cyclic variations over the cardiac cycle were observed in on-axis displacements, off-axis transverse-wave velocities and wall-shear rates. PMID:21842581

  12. Spectral Doppler interrogation of the patent foramen ovale-a window to left heart hemodynamics.

    PubMed

    Fadel, Bahaa M; Husain, Aysha; Bakarman, Hatem; Dahdouh, Ziad; Salvo, Giovanni Di; Mohty, Dania

    2015-02-01

    Spectral Doppler interrogation of flow across a patent foramen ovale (PFO) allows recording of the instantaneous pressure gradient between left and right atrium (RA). The assessment of RA pressure using the size and collapsibility of the inferior vena cava would thus allow estimation of left atrial (LA) pressure. In this article, we illustrate the value of spectral Doppler interrogation of flow across the PFO by transthoracic echocardiography as a novel and simple tool for the assessment of LA pressure and left cardiac hemodynamics in addition to the conventional noninvasive parameters. PMID:25130954

  13. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  14. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  15. Use of Doppler ultrasound in the management of uteroplacental perfusion during cardiopulmonary bypass in pregnancy.

    PubMed

    Mandel, D C; Pryde, P G; Shah, D M; Iruretagoyena, J I

    2016-08-01

    Cardiopulmonary bypass, the extreme of non-obstetric surgery during pregnancy, presents unique challenges to minimize maternal and fetal risk. We present our experience with a woman who was diagnosed with a left atrial myxoma following an ischemic cerebrovascular accident. We discuss clinical management specific to cardiopulmonary bypass during pregnancy and delivery in the context of a multidisciplinary team approach. We recommend using intermittent Doppler ultrasound as a non-invasive real-time assessment of uteroplacental perfusion during non-obstetric surgery in pregnancy. Monitoring of perfusion facilitates active feedback for appropriate in utero resuscitation in these cases. PMID:27021885

  16. Quantifying the Effects of Radiation on Tumour Vasculature with High-Frequency Three-Dimensional Power Doppler Ultrasound

    NASA Astrophysics Data System (ADS)

    Hupple, Clinton

    Recent evidence suggests that radiation may have a significant effect on tumour vasculature in addition to damaging tumour cell DNA. It is well established that endothelial cells are among the first cells to respond after administration of ionizing radiation in both normal and tumour tissues. It has also been suggested that microvascular dysfunction may regulate tumour response to radiotherapy at high doses. However, due to limitations in imaging the microcirculation this response is not well characterized. Advances in high-frequency ultrasound and computation methods now make it possible to acquire and analyze 3-D ultrasound data of tumour blood flow in tumour microcirculation. This thesis outlines the work done to test the hypothesis that single dose 8 Gy radiotherapy produces changes in tumour blood vessels which can be quantified using high-frequency power Doppler ultrasound. In addition, the issue of reproducibility of power Doppler measurements and the relationship between histopathology and power Doppler measurements have been examined.

  17. /sup 201/Tl perfusion study of ''ischemic'' ulcers of the leg: prognostic ability compared with Doppler ultrasound

    SciTech Connect

    Siegel, M.E.; Stewart, C.A.; Kwong, P.; Sakimura, I.

    1982-04-01

    Thallium 201 perfusion analysis was compared with Doppler ultrasound as a means of determining the healing potential of an ischemic ulcer of the leg in 27 patients. The degree of hyperemia was determined by comparative point counting of the 201Tl distribution in and about the ulcer. Using established Doppler criteria and a hyperemia ratio greater than 1.5:1, ultrasound alone correctly predicted healing in 15 out of 23 cases and 201Tl in 20 out of 23. Ultrasound correctly predicted non-healing in 3 out of 6 cases, compared with 5 out of 6 for 201Tl. The positive predictive value of the 201Tl study was 63%, versus 27% for ultrasound, and the negative predictive value was 95% for 201Tl and 83% for ultrasound. The accuracy of 201Tl and ultrasound was 86% and 62%, respectively. This limited study suggests that 201Tl perfusion scanning is a useful noninvasive test of ulcer healing potential and may be more sensitive than Doppler ultrasound.

  18. [Transanal Doppler ultrasound for prevention of colonic ischemia following abdominal aortic reconstruction].

    PubMed

    Sakurazawa, K

    1991-10-01

    Colonic gangrene is a fatal complication following aorto-iliac reconstruction. Preservation of a sufficient blood flow through both the inferior mesenteric artery (IMA) and the internal iliac artery (IIA) is believed to be important in its prevention. The transanal Doppler ultrasound technique is a new method to explore intraoperative pelvic hemodynamic changes. After identifying the artery responsible for rectal perfusion and then estimating the collateral rectal blood supply which was derived from the superior mesenteric artery (SMA) after aortic clamping, the treatment for the IMA and the IIA was determined. Out of 49 cases of abdominal aortic aneurysm (AAA), 43 cases (88%) were considered to be SMA-dominant, with ligation of the IMA and the IIA being feasible. The IMA and bilateral IIAs could be ligated uneventfully in 14 AAA cases. And, in fact, the reconstruction of the IMA was performed in only 2 cases (4%). Among 21 cases of aorto-iliac occlusive disease (AIOD), 8 cases (38%) were found to be SMA-non-dominant, which suggests a greater importance in the preservation of intrapelvic circulation in AIOD than in AAA. Adequate intraoperative monitoring, by the transanal Doppler ultrasound technique, is essential for the successful prevention of postoperative colonic ischemia. PMID:1961189

  19. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro.

    PubMed

    Barannik, E A; Girnyk, A; Tovstiak, V; Marusenko, A I; Emelianov, S Y; Sarvazyan, A P

    2002-05-01

    In shear wave elasticity imaging (SWEI), mechanical excitation within the tissue is remotely generated using radiation force of focused ultrasound. The induced shear strain is subsequently detected to estimate visco-elastic properties of tissue and thus aid diagnostics. In this paper, the mechanical response of tissue to radiation force was detected using a modified ultrasound Doppler technique. The experiments were performed on tissue mimicking and tissue containing phantoms using a commercial diagnostic scanner. This scanner was modified to control both the pushing and probing beams. The pushing beam was fired repetitively along a single direction while interlaced probing beams swept the surrounding region of interest to detect the induced motion. The detectability of inhomogeneous inclusions using ultrasonic Doppler SWEI method has been demonstrated in this study. The displacement fields measured in elastic phantoms clearly reveal the oscillatory nature of the mechanical relaxation processes in response to impulsive load due to the boundary effects. This relaxation dynamics was also present in cooked muscle tissue, but was not detected in more viscous and less elastic phantom and raw muscles. Presence of a local heterogeneity in the vicinity of the focal region of the pushing beam results in generation of a standing wave field pattern which is manifested in the oscillatory response of the excited region of the tissue. There has been made an assumption that dynamic characteristics of the relaxation process may be used for visualization of inhomogeneities. PMID:12160057

  20. Diagnostic efficacy of color Doppler ultrasound in evaluation of cervical lymphadenopathy

    PubMed Central

    Misra, Deepankar; Panjwani, Sapna; Rai, Shalu; Misra, Akansha; Prabhat, Mukul; Gupta, Prashant; Talukder, Subrata K.

    2016-01-01

    Background: To evaluate the efficacy of color Doppler ultrasound (CDUS) in differentiating benign and malignant cervical lymph nodes by detecting differences in blood flow patterns. Materials and Methods: In this cross-sectional prospective study, 25 untreated patients with clinical evidence of cervical lymphadenopathy were evaluated. CDUS was performed for 80 cervical lymph nodes. The gray scale parameters of the lymph node and intranodal perfusion sites were the key CDUS features used to differentiate between reactive and metastatic lymph nodes. Histopathological confirmations were obtained and compared with the results of CDUS. Results: Initially, 53 cervical lymph nodes were evaluated by clinical examination. Twenty-seven additional lymph nodes (53 + 27 = 80) were discovered by CDUS evaluation. Gray scale parameters for lymph nodes such as size of lymph node, shape of lymph node, and presence or absence of hilum revealed highly significant results (P < 0.0001). Color Doppler flow signals revealed that central/hilar flow was characteristic for benign nodes whereas peripheral/mixed flow was characteristic for malignant nodes, the findings were highly significant (P < 0.0001). Gray scale and color Doppler features are used to differentiate benign and malignant nodes. Conclusion: Within the limitations of this study, CDUS evaluation was found to be highly significant with a high sensitivity and specificity over clinical evaluation CDUS examination provides a prospect to reduce the need for biopsy/fine needle aspiration cytology in reactive nodes. PMID:27274341

  1. Pitfalls of Doppler Measurements for Arterial Blood Flow Quantification in Small Animal Research: A Study Based on Virtual Ultrasound Imaging.

    PubMed

    Swillens, Abigail; Shcherbakova, Darya; Trachet, Bram; Segers, Patrick

    2016-06-01

    High-resolution Doppler is a popular tool for evaluating cardiovascular physiology in mutant mice, though its 1-D nature and spectral broadening processes complicate interpretation of the measurement. Hence, it is crucial for pre-clinical researchers to know how error sources in Doppler assessments reveal themselves in the murine arterial system. Therefore, we performed virtual Doppler experiments in a computer model of an aneurysmatic murine aorta with full control of the imaging and insonified fluid dynamics. We observed significant variability in Doppler performance and derived vascular indices depending on the interrogated flow, operator settings and signal processing. In particular, we found that (i) Doppler spectra in the upper aortic branches and celiac artery exhibited more broadening because of complex out-of-beam flow paths; (ii) mean frequency tracking outperforms tracking of the outer envelope, but is sensitive to errors in angle correction; and (iii) imaging depths deviating much from the elevation focus suffer from decreased spectral quality. PMID:27004960

  2. THE INFLUENCE OF TEMPERATURE VARIATION UPON VASCULAR DYNAMICS IN CATTLE AS MEASURED BY DOPPLER-IMAGE ULTRASOUND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two preliminary studies were performed to determine if Doppler-image ultrasound can be used to document the vascular changes of cattle under hot and cold conditions. At the Brody Environmental Center located at the University of Missouri, three calves per study (320 ± 38 kg) were acclimated to ther...

  3. Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Choi, Bernard; Chen, Zhongping

    2010-11-01

    We report the use of spectral Doppler optical coherence tomography imaging (SDOCTI) for quantitative evaluation of dynamic blood circulation before and after a localized ischemic stroke in a mouse model. Rose Bengal photodynamic therapy (PDT) is used as a noninvasive means for inducing localized ischemia in cortical microvasculature of the mouse. Fast, repeated Doppler optical coherence tomography scans across vessels of interest are performed to record flow dynamic information with high temporal resolution. Doppler-angle-independent flow indices are used to quantify vascular conditions before and after the induced ischemia by the photocoagulation of PDT. The higher (or lower) flow resistive indices are associated with higher (or lower) resistance states that are confirmed by laser speckle flow index maps (of laser speckle imaging). Our in vivo experiments shows that SDOCTI can provide complementary quantified flow information that is an alternative to blood volume measurement, and can be used as a means for cortical microvasculature imaging well suited for small animal studies.

  4. Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis?

    PubMed

    Escudero, D; Otero, J; Quindós, B; Viña, L

    2015-05-01

    Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation. PMID:25583044

  5. Ultrasound Color Doppler Image Segmentation and Feature Extraction in MCP and Wrist Region in Evaluation of Rheumatoid Arthritis.

    PubMed

    Snekhalatha, U; Muthubhairavi, V; Anburajan, M; Gupta, Neelkanth

    2016-09-01

    The present study focuses on automatically to segment the blood flow pattern of color Doppler ultrasound in hand region of rheumatoid arthritis patients and to correlate the extracted the statistical features and color Doppler parameters with standard parameters. Thirty patients with rheumatoid arthritis (RA) and their total of 300 joints of both the hands, i.e., 240 MCP and 60 wrists were examined in this study. Ultrasound color Doppler of both the hands of all the patients was obtained. Automated segmentation of color Doppler image was performed using color enhancement scaling based segmentation algorithm. The region of interest is fixed in the MCP joints and wrist of the hand. Features were extracted from the defined ROI of the segmented output image. The color fraction was measured using Mimics software. The standard parameters such as HAQ score, DAS 28 score, and ESR was obtained for all the patients. The color fraction tends to be increased in wrist and MCP3 joints which indicate the increased blood flow pattern and color Doppler activity as part of inflammation in hand joints of RA. The ESR correlated significantly with the feature extracted parameters such as mean, standard deviation and entropy in MCP3, MCP4 joint and the wrist region. The developed automated color image segmentation algorithm provides a quantitative analysis for diagnosis and assessment of RA. The correlation study between the color Doppler parameters with the standard parameters provides moral significance in quantitative analysis of RA in MCP3 joint and the wrist region. PMID:27449351

  6. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  7. The performance and reliability of wavelet denoising for Doppler ultrasound fetal heart rate signal preprocessing.

    PubMed

    Papadimitriou, S; Papadopoulos, V; Gatzounas, D; Tzigounis, V; Bezerianos, A

    1997-01-01

    The present paper deals with the performance and the reliability of a Wavelet Denoising method for Doppler ultrasound Fetal Heart Rate (FHR) recordings. It displays strong evidence that the denoising process extracts the actual noise components. The analysis is approached with three methods. First, the power spectrum of the denoised FHR displays more clearly an 1/fa scaling law, i.e. the characteristic of fractal time series. Second, the rescaled scale analysis technique reveals a Hurst exponent at the range of 0.7-0.8 that corresponds to a long memory persistent process. Moreover, the variance of the Hurst exponent across time scales is smaller at the denoised signal. Third, a chaotic attractor reconstructed with the embedding dimension technique becomes evident at the denoised signals, while it is completely obscured at the unfiltered ones. PMID:10179728

  8. Comparison of rootMUSIC and discrete wavelet transform analysis of Doppler ultrasound blood flow waveforms to detect microvascular abnormalities in type I diabetes.

    PubMed

    Agnew, Christina Elizabeth; McCann, A J; Lockhart, C J; Hamilton, P K; McVeigh, G E; McGivern, R C

    2011-04-01

    The earliest signs of cardiovascular disease occur in microcirculations. Changes to mechanical and structural properties of these small resistive vessels alter the impedance to flow, subsequent reflected waves, and consequently, flow waveform morphology. In this paper, we compare two frequency analysis techniques: 1) rootMUSIC and 2) the discrete wavelet transform (DWT) to extract features of flow velocity waveform morphology captured using Doppler ultrasound from the ophthalmic artery (OA) in 30 controls and 38 age and sex matched Type I diabetics. Conventional techniques for characterizing Doppler velocity waveforms, such as mean velocity, resistive index, and pulsatility index, revealed no significant differences between the groups. However, rootMUSIC and the DWT provided highly correlated results with the spectral content in bands 2-7 (30-0.8 Hz) significantly elevated in the diabetic group (p < 0.05). The spectral distinction between the groups may be attributable to manifestations of underlying pathophysiological processes in vascular impedance and consequent wave reflections, with bands 5 and 7 related to age. Spectral descriptors of OA blood velocity waveforms are better indicators of preclinical microvascular abnormalities in Type I diabetes than conventional measures. Although highly correlated DWT proved slightly more discriminatory than rootMUSIC and has the advantage of extending to subheart rate frequencies, which may be of interest. PMID:21138796

  9. Physical activity and maternal-fetal circulation measured by Doppler ultrasound

    PubMed Central

    Nguyen, Nghia C.; Evenson, Kelly R.; Savitz, David A.; Chu, Haitao; Thorp, John M.; Daniels, Julie L.

    2012-01-01

    Objective To examine the association of physical activity on maternal-fetal circulation measured by uterine and umbilical artery Doppler flow velocimetry waveforms. Study Design Participants included 781 pregnant women with Doppler ultrasounds of the uterine and umbilical artery and who self-reported past week physical activity. Linear and generalized estimating equation regression models were used to examine these associations. Results Moderate-to-vigorous total and recreational activity were associated with higher uterine artery pulsatility index (PI) and an increased risk of uterine artery notching as compared to reporting no total or recreational physical activity, respectively. Moderate-to-vigorous work activity was associated with lower uterine artery PI and a reduced risk of uterine artery notching as compared to no work activity. No associations were identified with the umbilical circulation measured by the resistance index. Conclusion In this epidemiologic study, recreational and work activity were associated with opposite effects on uterine artery PI and uterine artery notching, though associations were modest in magnitude. PMID:22678142

  10. Multigate transcranial Doppler ultrasound system with real-time embolic signal identification and archival.

    PubMed

    Fan, Lingke; Boni, Enrico; Tortoli, Piero; Evans, David H

    2006-10-01

    An integrated system for acquisition and processing of intracranial and extracranial Doppler signals and automatic embolic signal detection has been developed. The hardware basis of the system is a purpose-built acquisition/processing board that includes a multigate Doppler unit controlled through a computer. The signal-processing engine of the system contains a fast Fourier transform (FFT)-based, spectral-analysis unit and an embolic signal-detection unit using expert system reasoning theory. The system is designed so that up to four receive gates from a single transducer can be used to provide useful reasoning information to the embolic signal-detection unit. Alternatively, two transducers can be used simultaneously, either for bilateral transcranial Doppler (TCD) investigations or for simultaneous intra- and extracranial investigation of different arteries. The structure of the software will allow the future implementation of embolus detection algorithms that use the information from all four channels when a single transducer is used, or of independent embolus detection in two sets of two channels when two transducers are used. The user-friendly system has been tested in-vitro, and it has demonstrated a 93.6% sensitivity for micro-embolic signal (MES) identification. Preliminary in-vivo results also are encouraging. PMID:17036793

  11. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  12. Absolute velocity measurement using three-beam spectral-domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Verma, Y.; Kumar, S.; Gupta, P. K.

    2015-09-01

    We report the development of a three-beam spectral-domain Doppler optical coherence tomography setup that allows single interferometer-based measurement of absolute flow velocity. The setup makes use of galvo-based phase shifting to remove complex conjugate mirror artifact and a beam displacer in the sample arm to avoid cross talk image. The results show that the developed approach allows efficient utilization of the imaging range of the spectral-domain optical coherence tomography setup for three-beam-based velocity measurement.

  13. Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows.

    PubMed

    Franke, S; Lieske, H; Fischer, A; Büttner, L; Czarske, J; Räbiger, D; Eckert, S

    2013-03-01

    We present a novel pulsed-wave ultrasound Doppler system for fluid flow investigations being able to determine two-dimensional vector fields of flow velocities. Electromagnetically-driven liquid metal flows appear as an attractive application field for such a measurement system. Two linear ultrasound transducer arrays each equipped with 25 transducer elements are used to measure the flow field in a square plane of 67×67 mm(2). The application of advanced processing methods as a multi-beam operation, an interlaced echo signal acquisition and a segmental array technique enable high data acquisition rates and concurrently a high spatial resolution, which have not been obtained so far for flow measurements in liquid metals. The extended pulsing strategy and essential operation principles such as the multiplexing electronic concept will be presented within this paper. The capabilities of the measuring system make it suitable for investigations of non-transparent, turbulent flows. Here, we present measurements of liquid metal flows driven by a rotating magnetic field for demonstration purposes. The measuring setup realized here reveals details of the swirling fluid motion in a horizontal section of a cube. Frame acquisition rates up to 30 fps were achieved for a complete two-dimensional flow mapping. PMID:23186828

  14. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler.

    PubMed

    Soler, Marta; Dominguez, Elisabet; Lucas, Xiomara; Novellas, Rosa; Gomes-Coelho, Kassia Valeria; Espada, Yvonne; Agut, Amalia

    2016-08-01

    The aim of this study was to evaluate whether the comparison between the ultrasonographic features of canine mammary tumours, assessed by B-Mode, colour Doppler, power Doppler, spectral Doppler, and histopathologic features, would help to differentiate if a tumour is benign or malignant. Ultrasonographic examinations of 104 tumours were performed. Volume, margins, presence of a capsule, echotexture and presence and distribution of the vascular flow of the tumours were evaluated. All the tumours were surgically removed, submitted for histopathologic examination and classified in two groups: Group I (benign tumours) and Group II (malignant tumours). Echotexture was the only parameter evaluated by B-Mode ultrasonography where significant differences were found (p<0.01), with tumours in Group I being homogeneous and tumours in Group II presenting greater heterogeneity. Presence of vascular flow was observed in most of the tumours from both groups and no differences between them were found. Regarding flow distribution, significant differences were observed between groups (p<0.05). In benign tumours, the most common vascular pattern was the peripheral, showing significant differences (p<0.05) compared to mixed and central patterns. In malignant tumours the mixed pattern was the most frequent. Also significant differences among other patterns (peripheral and central) were found. Concerning vascular resistivity and pulsatility indexes, there were no significant differences between the two groups. The echotexture and type of vascular flow pattern of canine mammary gland tumours may help, in a first examination of the tumour, to differentiate between benign and malignant tumours; however to reach a definitive diagnosis histological study is required. PMID:27473987

  15. Unifying Concepts of Statistical and Spectral Quantitative Ultrasound Techniques.

    PubMed

    Destrempes, François; Franceschini, Emilie; Yu, François T H; Cloutier, Guy

    2016-02-01

    Quantitative ultrasound (QUS) techniques using radiofrequency (RF) backscattered signals have been used for tissue characterization of numerous organ systems. One approach is to use the magnitude and frequency dependence of backscatter echoes to quantify tissue structures. Another approach is to use first-order statistical properties of the echo envelope as a signature of the tissue microstructure. We propose a unification of these QUS concepts. For this purpose, a mixture of homodyned K-distributions is introduced to model the echo envelope, together with an estimation method and a physical interpretation of its parameters based on the echo signal spectrum. In particular, the total, coherent and diffuse signal powers related to the proposed mixture model are expressed explicitly in terms of the structure factor previously studied to describe the backscatter coefficient (BSC). Then, this approach is illustrated in the context of red blood cell (RBC) aggregation. It is experimentally shown that the total, coherent and diffuse signal powers are determined by a structural parameter of the spectral Structure Factor Size and Attenuation Estimator. A two-way repeated measures ANOVA test showed that attenuation (p-value of 0.077) and attenuation compensation (p-value of 0.527) had no significant effect on the diffuse to total power ratio. These results constitute a further step in understanding the physical meaning of first-order statistics of ultrasound images and their relations to QUS techniques. The proposed unifying concepts should be applicable to other biological tissues than blood considering that the structure factor can theoretically model any spatial distribution of scatterers. PMID:26415165

  16. Reference range for uterine artery Doppler pulsatility index using transvaginal ultrasound at 20–24w6d of gestation in a low-risk Brazilian population

    PubMed Central

    Peixoto, Alberto Borges; Da Cunha Caldas, Taciana Mara Rodrigues; Tonni, Gabriele; De Almeida Morelli, Priscilla; Santos, Larissa D’amico; Martins, Wellington P.; Júnior, Edward Araujo

    2016-01-01

    Objective To establish reference range for uterine artery (UtA) Doppler pulsatility index (PI) using transvaginal ultrasound at 20–24w6d of gestation in a Brazilian population. Material and Methods A retrospective cross-sectional study in 847 low-risk pregnant women undergoing routine second trimester ultrasound examination was conducted from February 2012 through March 2015. The mean UtA PI was calculated using color Doppler ultrasound with UtA gated at the level of the internal os. Mean±standard deviation and ranges for UtA Doppler PI in relation to gestational age (GA) are reported. Polynomial regression was used to obtain the best fit using mean UtA Doppler PI and GA (weeks) with adjustments performed using determination coefficient (R2). The 5th, 50th, and 95th percentiles for the mean UtA Doppler PI in relation to GA were determined. Results The mean UtA Doppler PI ranged from 1.14 at 20 weeks to 0.95 at 24 weeks of gestation. The best-fit curve of mean UtA Doppler PI as a function of GA was a first-degree polynomial regression: mean UtA Doppler PI=1.900−0.038×GA (R2=0.01). Conclusion In summary, when the mean UtA PI Doppler values were measured by transvaginal ultrasound at 20–24w6d of gestation, decrease in UtA Doppler PI values with advancing GA was observed. Reference range for the mean UtA Doppler PI at 20–24w6d of gestation using the transvaginal ultrasound in a low-risk Brazilian population was established. We believe that this reference range may be of clinical value in daily obstetric practice. PMID:27026774

  17. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography

    PubMed Central

    Owen, Joshua M; Gaba, Ron Charles

    2016-01-01

    Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance. PMID:27563495

  18. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  19. Hemodynamic Changes in Left Anterior Descending Coronary Artery and Anterior Interventricular Vein during Right Ventricular Apical Pacing: A Doppler Ultrasound Study in Open Chest Beagles

    PubMed Central

    Fu, Ying; Long, Bin; Shen, Jie; Su, Li; Yin, Lixue

    2013-01-01

    Objective The aim of this study was to quantify the effects of right ventricular apical pacing (RVAP) on hemodynamics in left anterior descending coronary artery (LAD) and anterior interventricular vein (AIV) contrast to baseline condition in open chest beagles using Doppler ultrasound imaging. Methods In 6 anesthetized open chest beagles, the spectral Doppler waveforms of the middle segmental LAD and the AIV were acquired with a 5 MHz linear array transducer at baseline condition and during RVAP. The aortic pressure-time curves were recorded synchronously. The Doppler hemodynamic parameters of the LAD and AIV at both states were derived and compared. Results The spectral Doppler waveforms of the LAD had a principal diastolic positive wave (Dp), which heelled by a momentary negative wave and a positive wave during early systole at baseline condition. During RVAP, an additional negative wave appeared in the LAD at late systole. The duration of the Dp shortened (227.83±12.16 ms vs 188.50±8.97 ms, P<0.001), and the acceleration of the Dp decreased (11.85±2.22 m/s2 vs 3.54±0.42 m/s2, P<0.001). The spectral Doppler waveforms of the AIV only had a principal positive wave (Sp) at baseline condition, but an additional diastolic negative wave appeared during RVAP. The duration of the Sp shortened (242.99±7.98 ms vs 215.38±15.44 ms, P<0.001), and the acceleration of the Sp decreased (9.61±1.93 m/s2 vs 1.01±0.11 m/s2, P<0.001). Conclusions Obvious hemodynamic changes in the LAD and AIV during RVAP were observed, and these abnormal flow patterns in epicardial coronary arteries and vena coronaria may be sensitive and important hints of the disturbed cardiac electrical and mechanical activity sequences. PMID:23825640

  20. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  1. A Method for Characteristic Extraction of Ultrasound Doppler Signal with Peak-valley Relationship under Heavy Noise.

    PubMed

    Lin, Zhang; Liu Dong, C; Jiliu, Zhou

    2005-01-01

    This paper proposes a real-time algorithm estimating clinical useful parameters from the maximum frequency curve of ultrasound Doppler spectrum. Traditional methods always apply some pre-calculations to the frequency waveform, for instance, filtering or scaling transformation, which have limitations on real-time features detection and waveform display. In this paper, we propose and maintain a process unit as a section of the waveform with the help of its phase information and the idea of the changeable scaling in the wavelet, to determine the Doppler waveform parameters in real time. From a set of in vivo Doppler waveforms, our proposed algorithm can pick up right parameters even in very noisy environment. PMID:17282933

  2. Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.

    PubMed

    Greer, Joseph D; Adebar, Troy K; Hwang, Gloria L; Okamura, Allison M

    2014-01-01

    This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71 ± 0.55 mm in needle tip location and 0.38 ± 0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity. PMID:25485402

  3. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation?

    PubMed Central

    Zeisbrich, Markus; Kihm, Lars P.; Drüschler, Felix; Zeier, Martin; Schwenger, Vedat

    2015-01-01

    Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function. PMID:26413289

  4. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.

    PubMed

    Ekroll, Ingvild K; Torp, Hans; Løvstakken, Lasse

    2012-06-01

    The trade-off between temporal and spectral resolution in conventional pulsed wave (PW) Doppler may limit duplex/triplex quality and the depiction of rapid flow events. It is therefore desirable to reduce the required observation window (OW) of the Doppler signal while preserving the frequency resolution. This work investigates how the required observation time can be reduced by adaptive spectral estimation utilizing 2-D spatial information obtained by parallel receive beamforming. Four adaptive estimation techniques were investigated, the power spectral Capon (PSC) method, the amplitude and phase estimation (APES) technique, multiple signal classification (MUSIC), and a projection-based version of the Capon technique. By averaging radially and laterally, the required covariance matrix could successfully be estimated without temporal averaging. Useful PW spectra of high resolution and contrast could be generated from ensembles corresponding to those used in color flow imaging (CFI; OW = 10). For a given OW, the frequency resolution could be increased compared with the Welch approach, in cases in which the transit time was higher or comparable to the observation time. In such cases, using short or long pulses with unfocused or focused transmit, an increase in temporal resolution of up to 4 to 6 times could be obtained in in vivo examples. It was further shown that by using adaptive signal processing, velocity spectra may be generated without high-pass filtering the Doppler signal. With the proposed approach, spectra retrospectively calculated from CFI may become useful for unfocused as well as focused imaging. This application may provide new clinical information by inspection of velocity spectra simultaneously from several spatial locations. PMID:22711413

  5. An online three-class Transcranial Doppler ultrasound brain computer interface.

    PubMed

    Goyal, Anuja; Samadani, Ali-Akbar; Guerguerian, Anne-Marie; Chau, Tom

    2016-06-01

    Brain computer interfaces (BCI) can provide communication opportunities for individuals with severe motor disabilities. Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocities and can be used to develop a BCI. A previously implemented TCD BCI system used verbal and spatial tasks as control signals; however, the spatial task involved a visual cue that awkwardly diverted the user's attention away from the communication interface. Therefore, vision-independent right-lateralized tasks were investigated. Using a bilateral TCD BCI, ten participants controlled online, an on-screen keyboard using a left-lateralized task (verbal fluency), a right-lateralized task (fist motor imagery or 3D-shape tracing), and unconstrained rest. 3D-shape tracing was generally more discernible from other tasks than was fist motor imagery. Verbal fluency, 3D-shape tracing and unconstrained rest were distinguished from each other using a linear discriminant classifier, achieving a mean agreement of κ=0.43±0.17. These rates are comparable to the best offline three-class TCD BCI accuracies reported thus far. The online communication system achieved a mean information transfer rate (ITR) of 1.08±0.69bits/min with values reaching up to 2.46bits/min, thereby exceeding the ITR of previous online TCD BCIs. These findings demonstrate the potential of a three-class online TCD BCI that does not require visual task cues. PMID:26795195

  6. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  7. Comparison of vortical structures induced by arteriovenous grafts using vector Doppler ultrasound.

    PubMed

    Kokkalis, Efstratios; Cookson, Andrew N; Stonebridge, Peter A; Corner, George A; Houston, J Graeme; Hoskins, Peter R

    2015-03-01

    Arteriovenous prosthetic grafts are used in hemodialysis. Stenosis in the venous anastomosis is the main cause of occlusion and the role of local hemodynamics in this is considered significant. A new spiral graft design has been proposed to stabilize the flow phenomena in the host vein. Cross-flow vortical structures in the outflow of this graft were compared with those from a control device. Both grafts were integrated in identical in-house ultrasound-compatible flow phantoms with realistic surgical configurations. Constant flow rates were applied. In-plane 2-D velocity and vorticity mapping was developed using a vector Doppler technique. One or two vortices were detected for the spiral graft and two to four for the control, along with reduced stagnation points for the former. The in-plane peak velocity and circulation were calculated and found to be greater for the spiral device, implying increased in-plane mixing, which is believed to inhibit thrombosis and neo-intimal hyperplasia. PMID:25683221

  8. The key role of color Doppler ultrasound in the work-up of hemodialysis vascular access.

    PubMed

    Lomonte, Carlo; Meola, Mario; Petrucci, Ilaria; Casucci, Francesco; Basile, Carlo

    2015-01-01

    Vascular access (VA) is the lifeline for the hemodialysis patient and the native arterio-venous fistula (AVF) is the first-choice access. Among the different tests used in the VA domain, color Doppler ultrasound (CD-US) plays a key role in the clinical work-up. At the present time, three are the main fields of CD-US application: (i) evaluation of forearm arteries and veins in surgical planning; (ii) testing of AVF maturation; (iii) VA complications. Specifically, during the AVF maturation, CD-US allows to measure the diameter and flow volume in the brachial artery and calculate the peak systolic velocity (PSV) of the arterial axis, anastomosis and efferent vein, to detect critical stenosis. The borderline stenosis, revealed by the discrepancies between access flow rate and PSV, should be followed up with subsequent tests to detect progression of stenosis; the cases with significant changes in brachial flow should be referred to angiography. In conclusion, clinical monitoring remains the backbone of any VA program. CD-US is of utmost importance in a patient-centered VA evaluation, because it allows the appropriate management of all aspects of VA care. These are the main reasons why we strongly advocate the adoption of a VA surveillance program based on CD-US. PMID:25264303

  9. Effect of low level laser therapy on revascularization of free gingival graft using ultrasound Doppler flowmetry

    PubMed Central

    Arunachalam, Lalitha T.; Sudhakar, Uma; Janarthanam, Akila Sivaranjani; Das, Nimisha Mithra

    2014-01-01

    Low level laser therapy (LLLT) is widely used during the post-operative period to accelerate the healing process. It promotes beneficial biological action on neovascularization with anti-inflammatory and analgesic effects. Two systemically healthy patients with Miller's grade II recession on 33 and 41, respectively, were treated with free gingival graft. After surgery, second patient received LLLT using a 830 nm diode laser, with output power of 0.1 W on the first day half hour following surgery, on the third day, seventh day, and lastly on the ninth day. Both the patients were asked to assess the pain on second, fourth and tenth day using a Numerical Rating Scale and revascularization of the grafted area was assessed using a color Doppler ultrasound imaging on the fourth and the ninth day. Neovascularization was noted in both the patients but the second patient elicited marked increase in vascularity on the fourth as well as the tenth day and drastic reduction in pain on day four, with no change on the tenth day. The results showed that LLLT was an effective adjunctive treatment in promoting reevascularization and pain control during early healing of free gingival graft. PMID:25024560

  10. Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit.

    PubMed

    Jeong, Hyosang; Cho, Nam Hyun; Jung, Unsang; Lee, Changho; Kim, Jeong-Yeon; Kim, Jeehyun

    2012-01-01

    We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels × 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well. PMID:22969328

  11. Role of ultrasound and color doppler in diagnosis of periapical lesions of endodontic origin at varying bone thickness

    PubMed Central

    Tikku, Aseem P; Bharti, Ramesh; Sharma, Neha; Chandra, Anil; Kumar, Ashutosh; Kumar, Sunil

    2016-01-01

    Aims: To access the role of ultrasound and color doppler in diagnosing periapical lesions of maxilla and mandible. Settings and Design: This study was conducted in the Department of Conservative Dentistry and Endodontics (Faculty of Dental Sciences), Department of Radiotherapy, and Department of Pathology. Materials and Methods: The study group comprised 30 patients with periapical lesions of endodontic origin in maxilla and mandible requiring endodontic surgery. After thorough clinical and radiographic examination patients were subjected to ultrasound and color doppler examination, where the lesions were assessed for their contents as to cystic or solid. Following which periapical surgery was done and the pathological tissue obtained was subjected to histopathological examination. The results of the ultrasound examination were correlated with histopathological features. The diagnostic validity of ultrasound was assessed by calculating the sensitivity, specificity, positive predictive value, and negative predictive value. Statistical Analysis Used: The statistical analysis was done using statistical package for social sciences (SPSS) version 15.0 statistical analysis software. The values were represented in number (%). Results: Within the limitations of the current study it can be stated that although ultrasound may not establish the definitive diagnosis, it can facilitate the differential diagnosis between cystic and solid granulomatous lesions. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. Conclusion: Ultrasound can routinely be recommended as a complimentary method for the diagnosis of periapical lesions of endodontic origin. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. PMID:27099421

  12. Validation of a hybrid Doppler ultrasound vessel-based registration algorithm for neurosurgery

    PubMed Central

    Chen, Sean Jy-Shyang; Reinertsen, Ingerid; Coupé, Pierrick; Yan, Charles X B; Mercier, Laurence; Del Maestro, D Rolando; Collins, D Louis

    2012-01-01

    Purpose We describe and validate a novel hybrid non-linear vessel registration algorithm for intraoperative updating of preoperative magnetic resonance (MR) images using Doppler ultrasound (US) images acquired on the dura for the correction of brain-shift and registration inaccuracies. We also introduce an US vessel appearance simulator that generates vessel images similar in appearance to that acquired with US from MR angiography data. Methods Our registration uses the minimum amount of preprocessing to extract vessels from the raw volumetric images. This prevents the removal of important registration information and minimizes the introduction of artifacts that may affect robustness, while reducing the amount of extraneous information in the image to be processed, thus improving the convergence speed of the algorithm. We then completed 3 rounds of validation for our vessel registration method for robustness and accuracy using (i)a large number of synthetic trials generated with our US vessel simulator, (ii)US images acquired from a real physical phantom made from polyvinyl alcohol cryogel (PVAc), and (iii)real clinical data gathered intraoperatively from 3 patients. Results Resulting target registration errors (TRE) of less than 2.5mm are achieved in more than 90% of the synthetic trials when the initial TREs are less than 20mm. TREs of less than 2mm were achieved when the technique was applied to the physical phantom, and TREs of less than 3mm were achieved on clinical data. Conclusions These test trials show that the proposed algorithm is not only accurate but also highly robust to noise and missing vessel segments when working with US images acquired in a wide range of real-world conditions. PMID:22447435

  13. Fibroid-associated heavy menstrual bleeding: correlation between clinical features, Doppler ultrasound assessment of vasculature, and tissue gene expression profiles.

    PubMed

    Tsiligiannis, Sophia E; Zaitseva, Marina; Coombs, Peter R; Shekleton, Paul; Olshansky, Moshe; Hickey, Martha; Vollenhoven, Beverley; Rogers, Peter A W

    2013-04-01

    Despite the prevalence of uterine fibroids (Fs), few studies have investigated the links between clinical features and the cellular or molecular mechanisms that drive F growth and development. Such knowledge will ultimately help to differentiate symptomatic from asymptomatic Fs and could result in the development of more effective and individualized treatments. The aim of this study was to investigate the relationship between ultrasound appearance, blood flow, and angiogenic gene expression in F, perifibroid (PM), and distant myometrial (DM) tissues. We hypothesized that angiogenic gene expression would be increased in tissues and participants that showed increased blood flow by Doppler ultrasound. The study was performed using Doppler ultrasound to measure blood flow prior to hysterectomy, with subsequent tissue samples from the F, PM, and DM being investigated for angiogenic gene expression. Overall, PM blood flow (measured as peak systolic velocity [PSV]) was higher than F blood flow, although significant heterogeneity was seen in vascularity and blood flow between different Fs and their surrounding myometrium. We did not find any correlation between PSV and any other clinical or molecular parameter in this study. We identified 19 angiogenesis pathway-related genes with significant differences in expression between F and DM, and 2 genes, matrix metalloproteinase 9 (MMP9) and Neuropilin 2 (NRP2), that were significantly different between F and PM. These results are consistent with subtle differences between PM and DM. Understanding the differences between symptomatic versus asymptomatic Fs may eventually lead to more effective treatments that directly target the source of heavy menstrual bleeding. PMID:22995988

  14. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  15. Measurement of coronary flow using high-frequency intravascular ultrasound imaging and pulsed Doppler velocimetry: in vitro feasibility studies.

    PubMed

    Grayburn, P A; Willard, J E; Haagen, D R; Brickner, M E; Alvarez, L G; Eichhorn, E J

    1992-01-01

    The recent development of intravascular ultrasound imaging offers the potential to measure blood flow as the product of vessel cross-sectional area and mean velocity derived from pulsed Doppler velocimetry. To determine the feasibility of this approach for measuring coronary artery flow, we constructed a flow model of the coronary circulation that allowed flow to be varied by adjusting downstream resistance and aortic driving pressure. Assessment of intracoronary flow velocity was accomplished using a commercially available end-mounted pulsed Doppler catheter. Cross-sectional area of the coronary artery was measured using a 20 MHz mechanical imaging transducer mounted on a 4.8 F catheter. The product of mean velocity and cross-sectional area was compared with coronary flow measured by timed collection in a graduated cylinder by linear regression analysis. Excellent correlations were obtained between coronary flow calculated by the ultrasound method and measured coronary flow at both ostial (r = 0.99, standard error of the estimate [SEE] = 13.9 ml/min) and distal (r = 0.98, SEE = 23.0 ml/min) vessel locations under steady flow conditions. During pulsatile flow, calculated and measured coronary flow also correlated well for ostial (r = 0.98, SEE = 12.7 ml/min) and downstream (r = 0.99, SEE = 9.3 ml/min) locations. That the SEE was lower for pulsatile as compared with steady flow may be explained by the blunting of the flow profile across the vessel lumen by the acceleration phase of pulsatile flow. These data establish the feasibility of measuring coronary artery blood flow using intravascular ultrasound imaging and pulsed Doppler techniques. PMID:1531416

  16. Power spectral density of velocity fluctuations estimated from phase Doppler data

    NASA Astrophysics Data System (ADS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  17. Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables

    NASA Astrophysics Data System (ADS)

    Tridon, F.; Battaglia, A.

    2015-06-01

    A novel technique based on Ka-W band dual-wavelength Doppler spectra has been developed for the simultaneous retrieval of binned rain drop size distributions (DSD) and air state parameters like vertical wind and air broadening caused by turbulence and wind shear. The rationale underpinning the method consists in exploiting the peculiar features observed in Doppler spectra caused by the wavelength dependence of scattering and absorption properties. A notional study based on a large data set of DSDs measured by a two-dimensional video disdrometer demonstrates that the retrieval performs best for small/moderate air broadening spectral width and when mean volume diameters exceed at least 1 mm. The retrieval is also limited to ranges below cloud base and where the signal-to-noise ratio of both radars exceed 10 dB, which rules out regions affected by strong attenuation. Broadly speaking, it is applicable to rain rates comprised between roughly 1 and 30 mm h-1. Preliminary retrieval for observations at the Atmospheric Radiation Measurement Southern Great Plains site shows very good agreement with independent reflectivity measurements from a 0.915 GHz wind profiler. The proposed methodology shows great potential in linking microphysics to dynamics in rainfall studies.

  18. Doppler Ultrasound and Magnetic Resonance Imaging Findings of Penile Mondor’s Disease: Case Report and Literature Review

    PubMed Central

    Kantarcı, Umut Hasan; Dirik, Alper; Öztürk, Yasemin Erdem; Kiriş, İlker; Duymuş, Mahmut

    2016-01-01

    Summary Background Penile involvement is a rare, self-limiting, benign genital condition. In Mondor’s disease the underlying pathology is thrombophlebitis of a superficial vein. Case Report In this case report, we want to present a rare Penile Mondor’s disease with literature review. Conclusions While the diagnosis can be based on history, physical examination and Doppler ultrasound, the necessity of both MRI, MR angiography and intracavernosal vasoactive agent administration can be questioned. Both MRI and intravenous vasoactive agent administration may be helpful in suspicious cases for differential diagnosis and to eliminate other etiologies like pelvic mass or thrombosis. PMID:26893793

  19. Duplex Doppler and spectral flow analysis of racial differences in cerebrovascular atherosclerosis.

    PubMed

    Gil-Peralta, A; Alter, M; Lai, S M; Friday, G; Otero, A; Katz, M; Comerota, A J

    1990-05-01

    We compared carotid artery disease in 99 black and 106 white patients using duplex ultrasonography (B-mode imaging and Doppler spectral analysis). Blacks had significantly less stenosis of the extracranial internal carotid artery than whites. Among the risk factors investigated, hypertension alone, ischemic heart disease, diabetes mellitus, and smoking failed to explain the racial difference. Although carotid stenosis of greater than or equal to 40% correlated significantly with age in both races (p = 0.001 in whites and p = 0.005 in blacks), blacks had significantly less carotid stenosis of any degree even when age was taken into account. Multivariate analysis showed that race is a significant and independent risk factor for carotid stenosis (p less than 0.0001). Hypertension interacting with race was also significant. Our results require verification in population-based studies. Carotid duplex ultrasonography offers a noninvasive method for carrying out such studies. PMID:2187289

  20. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices. PMID:22913101

  1. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features.

    PubMed

    Papini, Enrico; Guglielmi, Rinaldo; Bianchini, Antonio; Crescenzi, Anna; Taccogna, Silvia; Nardi, Francesco; Panunzi, Claudio; Rinaldi, Roberta; Toscano, Vincenzo; Pacella, Claudio M

    2002-05-01

    The aim of the study was to correlate the sonographic [ultrasound (US)] and color-Doppler (CFD) findings with the results of US-guided fine needle aspiration biopsy (FNA) and of pathologic staging of resected carcinomas to establish: 1) the relative importance of US features as risk factors of malignancy; and 2) a cost-effective management of nonpalpable thyroid nodules. Four hundred ninety-four consecutive patients with nonpalpable thyroid nodules (8-15 mm) were evaluated by US, CFD, and US-FNA. Ninety-two patients with inadequate cytology were excluded from the study. All patients with suspicious or malignant cytology underwent surgery, whereas subjects with benign cytology had clinical and US control 6 months later. Thyroid malignancies were observed in 18 of 195 (9.2%) solitary thyroid nodules and in 13 of 207 (6.3%) multinodular goiters. Cancer prevalence was similar in nodules greater or smaller than 10 mm (9.1 vs. 7.0%). Extracapsular growth (pT(4)) was present in 35.5%, and nodal involvement in 19.4% of neoplastic lesions, with no significant differences between tumors greater or smaller than 10 mm. At US cancers presented a solid hypoechoic appearance in 87% of cases, irregular or blurred margins in 77.4%, an intranodular vascular pattern in 74.2%, and microcalcifications in 29.0%. Irregular margins (RR 16.83), intranodular vascular spots (RR 14.29), and microcalcifications (RR 4.97) were independent risk factors of malignancy. FNA performed on hypoechoic nodules with at least one risk factor was able to identify 87% of the cancers at the expence of cytological evaluation of 38.4% of nonpalpable lesions. The majority of nonpalpable thyroid tumors can be identified by cytological evaluation of lesions presenting hypoechoic appearance in conjunction with one independent risk factor. Due to the nonnegligible prevalence of extracapsular growth and nodal metastasis, US-FNA should be performed on all 8-15 mm hypoechoic nodules with irregular margins

  2. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work. PMID:19175196

  3. Focal bowel wall changes detected with colour Doppler ultrasound: diagnostic value in acute non-diverticular diseases of the colon.

    PubMed

    Danse, E M; Jamart, J; Hoang, P; Laterre, P F; Kartheuser, A; Van Beers, B E

    2004-11-01

    We performed a study to determine if colour Doppler findings may help to identify the cause of wall thickening in acute non-diverticular diseases of the colon. The study group included 66 patients admitted to the emergency department with a final diagnosis of infectious colitis (n=23), inflammatory colitis (n=10), ischaemic colitis (n=23) and malignant tumours (n=10). The following ultrasound features were assessed: maximal wall thickness, wall stratification, arterial flow in the colonic wall and arteriolar resistive index. Higher values of wall thickness were observed in malignant tumour (18.2+/-6.2 mm, p<0.001). Moderately thickened wall (6.6+/-1.3 mm, p< or =0.06), preserved stratification (90% versus 46% in the remainder of the study population) and lower resistive index (0.51+/-0.10, p< or =0.05) were significantly related to inflammatory colitis. Absence of arterial flow was more frequently observed in ischaemia (43% versus 12% in the remainder of the study population). In conclusion, despite some overlap, both ultrasound and colour Doppler features are helpful in the differential diagnosis of colonic thickening related to non-diverticular colonic lesions. PMID:15507414

  4. Applications of spectral estimation techniques to radar Doppler processing: Simulation and analysis of HF (High-frquency) skywave radar data

    NASA Astrophysics Data System (ADS)

    Trizna, D. B.; McNeal, G. D.

    1985-12-01

    This work is the second paper in a series of studies of the application of spectral estimations techniques to Doppler processing of coherent radar signals. In this work, simulated high-frequency (HF) radar sea scatter time series are generated and processed by use of three different spectral estimation algorithms and the fast Fourier transform (FFT). The sea clutter is simulated by narrowband filtering a wideband Gaussian noise spectrum in the frequency domain, with filter widths appropriate to describe first-order Bragg lines and second-order continuum. Targets are introduced as sinusoids, stepped by 5 dB for eight different echo power values, and stepped in Doppler frequency for four different values relative to the clutter. These simulations identify problems that appear unique to Doppler processing of coherent radar data in the presence of broadband clutter, and are in distinction to the application of spectral estimation to processing in the spatial domain. In the latter case, the spectral contributions are generally narrowly confined in the angular power spectral estimate, and the aim is to separate these contributions in the presence of noise. The HF radar application is concerned with separation of weak targets in the presence of stronger clutter returns, which are relati vely broad compared to the target return. It appears that the Burg maximum entropy method allows the detection of targets in clutter under conditions which the FFT is incapable of detection with any degree of accuracy.

  5. Successful stent implantation guided by intravascular ultrasound and a Doppler guidewire without contrast injection in a patient with allergy to iodinated contrast media.

    PubMed

    Okura, Hiroyuki; Nezuo, Shintaro; Yoshida, Kiyoshi

    2011-07-01

    Presence of allergy to iodinated contrast may prevent percutaneous coronary intervention (PCI) to be performed. We present a 76-year-old male with a history of allergic reaction to iodinated contrast who successfully underwent intravascular ultrasound (IVUS) and a Doppler guidewire-guided PCI. Stent size was determined based on IVUS. After PCI, stent expansion and a lack of edge dissection or incomplete apposition were confirmed by IVUS and a good antegrade coronary flow was confirmed by a Doppler guidewire. Thus, PCI without contrast injection under IVUS and a Doppler guidewire-guidance may be feasible in selected patients with allergy to iodinated contrast. PMID:21725127

  6. Measurements of hindlimb blood flow recorded using Doppler ultrasound during administration of vasoactive agents in halothane-anesthetized horses.

    PubMed

    Raisis, A L; Young, L E; Meire, H B; Taylor, P M; Blissitt, K J; Marlin, D; Lekeux, P

    2000-01-01

    The purpose of the study was to determine the ability of Doppler ultrasound to detect changes in femoral blood flow during pharmacologic manipulation of arterial blood pressure. Doppler ultrasonography was performed in the femoral vessels of six halothane-anesthetized horses before and during administration of phenylephrine HCI and sodium nitroprusside. The time-averaged mean velocity and volumetric flow were calculated. The contour of the velocity waveform was assessed, and the early diastolic deceleration slope (EDDS) and pulsatility index (PI) were calculated. Administration of phenylephrine HCI resulted in increased mean aortic blood pressure (MABP) by 40% (29.3-53.0%). This caused significant decrease in cardiac output (26.8 to 13.5 l/min), femoral arterial velocity (left artery 7.20 to 4.00 cm/s; right artery 5.01 to 3.39 cm/s) and volumetric flow (left artery 556 to 221 ml/min; right artery 397 to 193 ml/min) in the femoral vessels and significant increase in systemic vascular resistance (163 to 433 dyn-s/cm5), EDDS (1a: 285 to 468: ra: 250 to 481) and PI (1a: 9.38 to 20.4; ra 17.1 to 29.1). Administration of sodium nitroprusside resulted in a decreased MABP of 27.2% (22.5-33%). This increased cardiac output (20.8 to 32.4 L/min), however, no significant changes were observed in femoral blood flow. Despite obvious changes in the waveform contour, no significant change occurred in EDDS or PI. These results suggest that Doppler ultrasound may be useful for measuring femoral blood flow in anesthetized horses. However, waveform analysis appears to be limited when multiple changes occur in central and peripheral haemodynamics. PMID:10695883

  7. Modulation-free laser frequency stabilization to a saturated sub-Doppler spectral line in a transversal magnetic field

    NASA Astrophysics Data System (ADS)

    Okubo, Sho; Iwakuni, Kana; Hasegawa, Taro

    2012-09-01

    We demonstrate frequency stabilization of a modulation-free laser to a saturated absorption spectral line of atoms in a transversal magnetic field. This stabilization scheme has been proposed for wide capture range in comparison with the dichroic atomic vapor laser lock (DAVLL) scheme and demonstrated for a Doppler-broadened spectral line in J. Opt. Soc. Am. B, 26, 1216 (2009). In this paper, a 1083-nm external-cavity laser diode is frequency-stabilized to the sub-Doppler spectral line of helium transition (23S1,mJ=0↔23P0). Even though the error signal shape strongly depends on the pump beam polarization, the stabilized frequency is expected to be insensitive to the pump beam polarization.

  8. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  9. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  10. Simultaneous recovery of chromophore concentrations and ultrasound velocity by spectrally resolved photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Qizhi; Grobmyer, Stephen; Jiang, Huabei

    2009-02-01

    We describe a new spectral approach for inversion of photoacoustic data with multi-wavelength pulsed laser illumination. Multi-spectral PAT provides a means of recovery of different chromophore concentrations and ultrasound velocity simultaneously and directly by incorporating prior spectral information into the image reconstruction process. It is demonstrated from simulation tests and small animal experiments that the multi-parameter recovery based on multispectral PAT is reliable and accurate. The reconstructed multiple parameter images may provide us a key tool to quantify physiological function, disease progression, or response to intervention.

  11. Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidars

    NASA Astrophysics Data System (ADS)

    Smith, John A.; Chu, Xinzhao; Huang, Wentao; Tan, Bo

    2009-10-01

    A dye ring laser is stabilized to a D2a Doppler-free feature of sodium vapor using a LabVIEW®-based, phase-sensitive servo. Locking precision and stability, at better than +/-1 MHz, are suitable for Na lidar applications. This performance was achieved with improved digital filtering and new approaches to the problem. The inverse (type II) Chebyshev discrete filter employed demonstrates superior filtering and computational efficiency plus improved flexibility. New approaches include the determination of optimum modulation frequency, laser-tuning sensitivity, and bandwidth requirements via spectral analyses of the noise spectrum, derivative scan, and modulated spectrum. This practice guides a user in selecting the system operation parameters and negotiating the trade-offs involved when expanding the filter's passband. Allan deviation plots provide a quantitative description of the short- and long-term frequency excursions. A comparison of Allan deviation plots before and after locking shows a substantial improvement in stability throughout time scales from 0.10 to 10 s.

  12. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    PubMed

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  13. Time-domain calculation of spectral centroid from backscattered ultrasound signals.

    PubMed

    Kim, Hyungsuk; Heo, Seo Weon

    2012-06-01

    Spectral centroid estimation from backscattered ultrasound RF signals is the preliminary step for quantitative ultrasound analysis in many medical applications. The traditional approach of estimating the spectral centroid in the frequency domain takes a long time because discrete Fourier transform (DFT) processing for each RF segment is required. To avoid this, we propose time-domain methods to estimate the spectral centroid in this paper. First, we derive the continuous-time-domain equations for the spectral centroid estimation using Parseval's theorem and Hilbert transform theory. Then, we extend the method to the discrete-time domain to ease the implementation while maintaining the same accuracy as the calculation in the frequency domain. From the result, we observe that it is not practical to apply the discrete-time equations directly, because a high sampling rate is needed to approximate the time derivative in the discrete-time domain. Therefore, we also derive the feasible version of the discrete-time equations using a circular autocorrelation function, which has no constraints on the sampling rate for real RF signals acquired from pulse-echo ultrasound systems. Simulation results using numerical phantoms show that the time-domain calculation is approximately 4.4 times faster on average than the frequency-domain method when the software's built-in functions were used. The average estimation error compared with that of the frequency-domain method using DFT is less than 0.2% for the entire propagation depths. The proposed time-domain approach to estimate the spectral centroid can be easily implemented in real-time ultrasound systems. PMID:22711414

  14. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  15. Proof-of-Concept Studies for Marker-Based Ultrasound Doppler Analysis of Microvascular Anastomoses in a Modified Large Animal Model.

    PubMed

    Coon, Devin; Chen, Lei; Boctor, Emad M; Prince, Jerry L; Bojovic, Branko

    2016-05-01

    Background Despite attempts to solve the problem of flap monitoring, assessing the patency of vascular anastomoses postoperatively remains challenging. In addition, experimental data suggest that near-total vessel occlusion is necessary to produce significant changes in clinical appearance or monitoring devices. We sought to develop an ultrasound-based system that would provide definitive data on anastomotic function. Methods A system was developed consisting of a resorbable marker made from poly-lactic-co-glycolic acid (PLGA) implanted during the time of surgery coupled with ultrasound software to detect the anastomotic site and perform Doppler flow analysis. Surgical procedures consisting of microvascular free tissue transfer or femoral vessel cutdown were performed followed by marker placement, closure, and ultrasound monitoring. Transient vascular occlusion was produced via vessel-loop constriction. Permanent thrombosis was induced via an Arduino-controlled system applying current to the vessel intima. Results Four surgeries (one femoral vessel cutdown and three microvascular tissue transfer) were successfully performed in Yorkshire swine. The markers were readily visualized under ultrasound and provided a bounding area for Doppler analysis as well as orientation guidance. Transient spasm and partial occlusion were detected based on changes in Doppler data, while complete occlusion was evident as the total loss of color Doppler. Conclusion In this preliminary report, we have conceptualized and developed a novel system that enables the real-time visualization of vascular pedicle flow at the bedside using Doppler ultrasound and a surgically implanted marker. In a large animal model, use of the system allowed identification of the anastomosis, flow analysis, and real-time detection of flow loss. PMID:26645155

  16. Multiple-Site Hemodynamic Analysis of Doppler Ultrasound with an Adaptive Color Relation Classifier for Arteriovenous Access Occlusion Evaluation

    PubMed Central

    Wu, Jian-Xing; Du, Yi-Chun; Wu, Ming-Jui; Li, Chien-Ming; Lin, Chia-Hung; Chen, Tainsong

    2014-01-01

    This study proposes multiple-site hemodynamic analysis of Doppler ultrasound with an adaptive color relation classifier for arteriovenous access occlusion evaluation in routine examinations. The hemodynamic analysis is used to express the properties of blood flow through a vital access or a tube, using dimensionless numbers. An acoustic measurement is carried out to detect the peak-systolic and peak-diastolic velocities of blood flow from the arterial anastomosis sites (A) to the venous anastomosis sites (V). The ratio of the supracritical Reynolds (Resupra) number and the resistive (Res) index quantitates the degrees of stenosis (DOS) at multiple measurement sites. Then, an adaptive color relation classifier is designed as a nonlinear estimate model to survey the occlusion level in monthly examinations. For 30 long-term follow-up patients, the experimental results show the proposed screening model efficiently evaluates access occlusion. PMID:24892039

  17. Preoperative CT angiography versus Doppler ultrasound mapping of abdominal perforator in DIEP breast reconstructions: A randomized prospective study.

    PubMed

    Klasson, S; Svensson, H; Malm, K; Wassélius, J; Velander, P

    2015-06-01

    Is there a difference in surgery time and complication rate when Doppler ultrasound (US) is used for the preoperative mapping of perforators in comparison with computer tomography angiography (CTA)? Women who were candidates for breast reconstruction using the deep inferior epigastric perforator (DIEP) free flap were enrolled in a prospective randomized study. The operating time was 249 ± 62 min (mean ± SD) in the CTA group (n = 32) and 255 min ± 75 in the US group (n = 31)--hence a difference of 6 min on average. No flaps were lost. Sixteen complications occurred in 15 patients: seven in the CTA group and nine in the US group. Complications were remedied without delay and all patients came through with a favorable reconstruction. Preoperative mapping of perforators with US is satisfactory enough provided the microsurgery team has proper experience in breast reconstruction with the DIEP flap. PMID:25824193

  18. Clutter-Doppler spectral analysis for a space-based radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.

    1991-05-01

    The impact of worst-case, ionospheric scintillation on the clutter-Doppler spectrum is analyzed for a space-based radar that operates between 100 and 1300 MHz. Analytical expressions for the spectrum are derived for a narrow, Gaussian antenna beam. For normal system parameters, the analytical expressions, combined with data from the Defense Nuclear Agency's Wideband satellite experiment, are used to compare the relative significance of the components of the clutter-Doppler spread for a range cell and to obtain the clutter-Doppler spread over the antenna's mainlobe. In addition, lower bounds are determined on the achievable reduction in the clutter-Doppler spread of a system.

  19. Very different performance of the power Doppler modalities of several ultrasound machines ascertained by a microvessel flow phantom

    PubMed Central

    2013-01-01

    Introduction In many patients with rheumatoid arthritis (RA) subclinical disease activity can be detected with ultrasound (US), especially using power Doppler US (PDUS). However, PDUS may be highly dependent on the type of machine. This could create problems both in clinical trials and in daily clinical practice. To clarify how the PDUS signal differs between machines we created a microvessel flow phantom. Methods The flow phantom contained three microvessels (150, 1000, 2000 microns). A syringe pump was used to generate flows. Five US machines were used. Settings were optimised to assess the lowest detectable flow for each US machine. Results The minimal detectable flow velocities showed very large differences between the machines. Only two of the machines may be able to detect the very low flows in the capillaries of inflamed joints. There was no clear relation with price. One of the lower-end machines actually performed best in all three vessel sizes. Conclusions We created a flow phantom to test the sensitivity of US machines to very low flows in small vessels. The sensitivity of the power Doppler modalities of 5 different machines was very different. The differences found between the machines are probably caused by fundamental differences in processing of the PD signal or internal settings inaccessible to users. Machines considered for PDUS assessment of RA patients should be tested using a flow phantom similar to ours. Within studies, only a single machine type should be used. PMID:24286540

  20. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  1. Wavelet and model-based spectral analysis of color doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-07-01

    Color doppler optical coherence tomography (CD-OCT) uses time-frequency analysis (TFA) to extract motion-induced Doppler shifted in the interferometric OCT signal. In this paper, the performance of three TFAs are compared in a scattering flow phantom and in in vivo human retina: the short-time Fourier transform, the Morlet-wavelet transform, and the short-time MUSIC transform (STMT). The STMT is a new TFA that incorporates the MUSIC eigenfrequency estimator in a generalized short-time framework. The Morlet transform excels at identifying blood vessels, while the STMT is the most accurate predictor of Doppler shift frequency.

  2. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture.

    PubMed

    Sadeghi-Naini, Ali; Sannachi, Lakshmanan; Pritchard, Kathleen; Trudeau, Maureen; Gandhi, Sonal; Wright, Frances C; Zubovits, Judit; Yaffe, Martin J; Kolios, Michael C; Czarnota, Gregory J

    2014-06-15

    Early alterations in textural characteristics of quantitative ultrasound spectral parametric maps, in conjunction with changes in their mean values, are demonstrated here, for the first time, to be capable of predicting ultimate clinical/pathologic responses of breast cancer patients to chemotherapy. Mechanisms of cell death, induced by chemotherapy within tumor, introduce morphological alterations in cancerous cells, resulting in measurable changes in tissue echogenicity. We have demonstrated that the development of such changes is reflected in early alterations in textural characteristics of quantitative ultrasound spectral parametric maps, followed by consequent changes in their mean values. The spectral/textural biomarkers derived on this basis have been demonstrated as non-invasive surrogates of breast cancer chemotherapy response. Particularly, spectral biomarkers sensitive to the size and concentration of acoustic scatterers could predict treatment response of patients with up to 80% of sensitivity and specificity (p=0.050), after one week within 3-4 months of chemotherapy. However, textural biomarkers characterizing heterogeneities in distribution of acoustic scatterers, could differentiate between treatment responding and non-responding patients with up to 100% sensitivity and 93% specificity (p=0.002). Such early prediction permits offering effective alternatives to standard treatment, or switching to a salvage therapy, for refractory patients. PMID:24939867

  3. Doppler wavelength shifts of ultraviolet spectral lines in solar active regions

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cohen, L.

    1982-01-01

    Doppler shifts are measured for solar UV emission lines formed in the lower transition region of active regions. Doppler shifts in different regions at the same solar location, variations of Doppler shift with position of an active region on the disk, and variations of Doppler shift with time at the same solar location in the same active region were studied. Observations were made with the NRL slit spectrograph on Skylab. Excluding flare and flare-related phenomena, only redshifts are found whose magnitudes correspond to downflow velocities between about 4 and 17 km/s. Shifts are largest for lines formed between about 50,000 and 100,000 K, and are distinctly less for lines formed above 100,000 K. The shifts persist out to the limb, but not above it. There is no obvious change in redshift for lines measured at the same solar location over time intervals of about 20 minutes.

  4. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  5. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to ... no known risks for ultrasound at present, it is highly recommended that pregnant women consult their physician ...

  6. A Minicomputer Based Scheme for Turbulence Measurements with Pulsed Doppler Ultrasound

    PubMed Central

    Craig, J. I.; Saxena, Vijay; Giddens, D. P.

    1979-01-01

    The present paper describes the design and performance of a digital-based Doppler signal processing system that is currently being used in hemodynamics research on arteriosclerosis. The major emphasis is on the development of the digital signal processing technique and its implementation in a small but powerful minicomputer. The work reported on here is part of a larger ongoing effort that the authors are undertaking to study the structure of turbulence in blood flow and its relation to arteriosclerosis. Some of the techniques and instruments developed are felt to have a broad applicability to fluid mechanics and especially to pipe flow fluid mechanics.

  7. [Doppler ultrasound studies before and following short-term maternal stress in late pregnancy].

    PubMed

    Drack, G; Kirkinen, P; Baumann, H; Müller, R; Huch, R

    1988-01-01

    Ten gravidae with normal course of pregnancy in the third trimester underwent a bicycle stress test (semi-supine, 75 W, 3 min). By means of pulsed Doppler sonography, a lowering of the resistance index (RI) in the maternal femoral artery from 93% to 69% was ascertained, though also a rise in maximum systolic velocity (VMAX (syst)) from 73 cm/sec to 194 cm/sec, in maximum diastolic velocity (VMAX diast)) from 5 cm/sec to 61 cm/sec, and in the time-averaged maximum velocity (TAVMAX) from 20 cm/sec to 101 cm/sec. These changes are statistically significant. In the maternal common carotid artery these parameters remained stable or changed little, for example VMAX (diast), which dropped from 24 cm/sec before to 19 cm/sec after exercise, and the RI, which rose from 77% to 84%. Neither in the uteroplacental vessels nor in the umbilical artery were any changes in the RI found (40% to 42% and 58% to 57%, respectively). The fetal cardiotachograms were normal in all cases, while not all cases manifested a rise in fetal heart rate following maternal stress. These results indicate that uteroplacental perfusion and the umbilical circulation remain constant. Doppler sonography thus demonstrates directly and noninvasively that provided placental function is normal the uteroplacental and fetoplacental circulation are not influenced by moderate physical exertion. PMID:3055722

  8. Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals.

    PubMed

    Serbes, G; Aydin, N

    2011-01-01

    Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity. PMID:22255416

  9. Differential atrial filling after Mustard and Senning repairs. Detection by transcutaneous Doppler ultrasound.

    PubMed Central

    Wyse, R K; Macartney, F J; Rohmer, J; Ottenkamp, J; Brom, A G

    1980-01-01

    The dominance of Mustard's operation for transposition of the great arteries has been challenged by the recent revival of Senning's repair because it promises better long-term results in terms of venous obstruction and atrial haemodynamics. These hypotheses were tested by recording jugular venous flow waveforms transcutaneously in 24 postoperative patients with simple complete transposition using a bidirectional Doppler blood velocimeter. Eight patients had undergone Mustard's operation and 16 the Senning alternative; all had previously had a postoperative cardiac catheterisation. Both groups of patients had similar left ventricular, pulmonary arterial, and systemic venous atrial pressures. No child showed any evidence at catheterisation of either mitral regurgitation or of superior vena caval pathway obstruction. These two findings were endorsed by the transcutaneous Doppler recordings. Jugular venous flow in normal children exhibits two maxima, one of atrial filling during ventricular systole, the other of ventricular filling occurs once the tricuspid valve has opened. Both operative procedures diminished the size of the former phase, but the Mustard did so more. After Mustard's operation forward flow during the atrial filling phase was absent in approximately half the cardiac cycles recorded, and severely diminished in the rest. By contrast, there was approximately a 90 per cent appearance of atrial filling waves after Senning's operation which also provided significantly better atrial function than Mustard's procedure in terms of peak velocity of blood entering the atrium and total atrial filling. It is therefore concluded that both procedures compromise atrial volume and compliance but Senning's repair to a much lesser extent. PMID:7459153

  10. Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?

    PubMed

    Minhas, Jatinder S; Syed, Nazia F; Haunton, Victoria J; Panerai, Ronney B; Robinson, Thompson G; Mistri, Amit K

    2016-05-01

    Reliability of cerebral blood flow velocity (CBFV) and dynamic cerebral autoregulation estimates (expressed as autoregulation index: ARI) using spontaneous fluctuations in blood pressure (BP) has been demonstrated. However, reliability during co-administration of O2 and CO2 is unknown. Bilateral CBFV (using transcranial Doppler), BP and RR interval recordings were performed in healthy volunteers (seven males, four females, age: 54  ±  10 years) on two occasions over 9  ±  4 d. Four 5 min recordings were made whilst breathing air (A), then 5%CO2 (C), 80%O2 (O) and mixed O2  +  CO2 (M), in random order. CBFV was recorded; ARI was calculated using transfer function analysis. Precision was quantified as within-visit standard error of measurement (SEM) and the coefficient of variation (CV). CBFV and ARI estimates with A (SEM: 3.85 & 0.87; CV: 7.5% & 17.8%, respectively) were comparable to a previous reproducibility study. The SEM and CV with C and O were similar, though higher values were noted with M; Bland-Altman plots indicated no significant bias across all gases for CBFV and ARI (bias  <0.06 cm s(-1) and  <0.05, respectively). Thus, transcranial-Doppler-ultrasound-estimated CBFV and ARI during inhalation of O2 and CO2 have acceptable levels of reproducibility and can be used to study the effect of these gases on cerebral haemodynamics. PMID:27093290

  11. TURBULENCE SPECTRA FROM DOPPLER-BROADENED SPECTRAL LINES: TESTS OF THE VELOCITY CHANNEL ANALYSIS AND VELOCITY COORDINATE SPECTRUM TECHNIQUES

    SciTech Connect

    Chepurnov, A.; Lazarian, A.

    2009-03-10

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques, velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  12. Automatic retinal vessel segmentation based on active contours method in Doppler spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Wenzhong; Liu, Tan; Song, Wei; Yi, Ji; Zhang, Hao F.

    2013-01-01

    We achieved fast and automatic retinal vessel segmentation by employing the active contours method in Doppler spectral-domain optical coherence tomography (SD-OCT). In a typical OCT B-scan image, we first extracted the phase variations between adjacent A-lines and removed bulk motion. Then we set the initial contour as the boundary of the whole image and iterated until all of the segmented vessel contours became stabilized. Using a typical office computer, the whole segmentation took no more than 50 s, making real-time retinal vessel segmentation possible. We tested the active contours method segmentation in both controlled phantom and in vivo rodent eye images.

  13. Reduced cerebral embolic signals in beating heart coronary surgery detected by transcranial Doppler ultrasound.

    PubMed

    Watters, M P; Cohen, A M; Monk, C R; Angelini, G D; Ryder, I G

    2000-05-01

    Cerebral emboli detected by transcranial Doppler imaging were recorded in 20 patients undergoing multiple-vessel coronary artery bypass surgery, either with or without cardiopulmonary bypass, in a prospective unblinded comparative study. Emboli were recorded continuously from the time of pericardial incision until 10 min after the last aortic instrumentation. The numbers of coronary grafts and of aortic clampings were also documented. Patients undergoing revascularization with cardiopulmonary bypass had more emboli (median 79, range 38-876) per case compared with patients having off-pump surgery (median 3, range 0-18). No clinically detectable neurological deficits were seen in either group. Beating heart surgery is associated with fewer emboli than coronary surgery with cardiopulmonary bypass. Further research is necessary to determine whether a smaller number of emboli alters the incidence of neurological deficit after cardiac surgery. PMID:10844840

  14. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study

    PubMed Central

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-01-01

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561

  15. Monitoring cancer treatment response using photoacoustic and ultrasound spectral analysis in combination with oxygenation measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; May, Jonathan P.; Wirtzfeld, Lauren; Undzys, Elijus; Li, Shyh-Dar; Kolios, Michael C.

    2016-03-01

    At clinically-relevant depths, the frequency content of photoacoustic signals encodes information about the size, concentration and spatial distribution of non-resolvable blood vessels. This study evaluates whether photoacoustics can detect cancer therapy-induced vascular perturbations. Photoacoustic/ultrasound (PA/US) spectral analysis was combined with functional, PA-based oxygenation and power Doppler (PD) perfusion estimates to assess treatment response. Co-registered, in-vivo US/PA/PD imaging of mice bearing breast cancer tumors was performed pre-treatment and 30m/2h/5h/24h/7d post-treatment (VevoLAZR, Fujifilm VisualSonics). Hyperthermia treatment (1h, 43C) was performed after systemic injections of doxorubicin-loaded thermosensitive liposomes (TSL, n=13) or free doxorubicin (DOX, n=11). Response was classified according to 2h, PA-based oxygenation drop and endpoint (>9d), caliper-based volume reduction. At all time-points/wavelengths (750/850nm), the spectral-slope (SS) was computed from the normalized US/PA power spectra using depth-matched reference phantoms. The percent-vascularity (PV) was estimated for the animal with the largest oxygenation-drop at 2h. TLS-treated responders decreased their PA-SS by 1.9x @750nm and 5.8x @850nm 30m post-treatment and remained constant for 24h; tumor oxygenation followed the same trend. Non-responding SS remained unchanged for 24h. The 750nm SS was 18.7x lower than 850nm suggesting the TSL is sensitive vessel oxygenation. Responder PV decreased 100% when the 30m oxygenation dropped 15% and increased 7x when the 7d oxygenation increased 20%. DOX-responders exhibited similar trends to TSL-responders although the 750nm PA-SS was 1.6x smaller and post-treatment PV was 50% higher. The US-SS remained unchanged until 7d post-treatment suggesting its sensitivity to tumor cell-death. These findings suggest that PA spectral analysis has potential in monitoring cancer treatment response.

  16. Transrectal Ultrasound-Integrated Spectral Optical Tomography of Hypoxic Progression of a Regressing Tumor in a Canine Prostate

    PubMed Central

    Jiang, Z.; Piao, D.; Bartels, K. E.; Holyoak, G. R.; Ritchey, J. W.; Ownby, C. L.; Rock, K.; Slobodov, G.

    2011-01-01

    The objective of this study was to evaluate if transrectal optical tomography implemented at three wavelength bands for spectral detection could monitor changes of the hemoglobin oxygen saturation (StO2) in addition to those of the total hemoglobin concentration ([HbT]) in lesions of a canine prostate, including an induced tumor modeling canine prostate cancer. Near-infrared (NIR) optical tomography was integrated with ultrasound (US) for transrectal imaging. Multi-spectral detection at 705 nm, 785 nm and 808 nm rendered measurements of [HbT] and StO2. Canine transmissible venereal tumor (TVT) cells were injected into the right lobe of a dog's prostate gland, which had a pre-existing cyst in the left lobe. Longitudinal assessments of the prostate were performed weekly over a 63-day duration by NIR imaging concurrent with grey-scale and Doppler US. Ultrasonography revealed a bi-lobular tumor-mass regressing from day-49 to day-63. At day-49 this tumor-mass developed a hypoxic core that became larger and more intense by day-56 and expanded further by day-63. The tumor-mass presented a strong hyper-[HbT] feature on day-56 that was inconsistent with US-visualized blood flow. Histology confirmed two necrotic TVT foci within this tumor-mass. The cyst appeared to have a large anoxic-like interior that was greater in size than its ultrasonographically delineated lesion, and a weak lesional elevation of [HbT]. On day-56, the cyst presented a strong hyper-[HbT] feature consistent with US-resolved blood flow. Histology revealed acute and chronic hemorrhage in the periphery of the cyst. The NIR imaging features of two other TVT nodules and a metastatic lymph node were evaluated retrospectively. Transrectal US-integrated spectral optical tomography seems to enable longitudinal monitoring of intra-lesional oxygenation dynamics in addition to the hemoglobin content of lesions in the canine prostate. PMID:22066593

  17. Evaluation of the effects of acupuncture on blood flow in humans with ultrasound color Doppler imaging.

    PubMed

    Takayama, Shin; Watanabe, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA) during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture. PMID:22778772

  18. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    PubMed Central

    Jang, Jaeseong

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  19. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  20. Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models.

    PubMed

    Ubeyli, Elif Derya; Güler, Inan

    2005-07-01

    There are a number of different quantitative models that can be used in a medical diagnostic decision support system including parametric methods (linear discriminant analysis or logistic regression), nonparametric models (k nearest neighbor or kernel density) and several neural network models. The complexity of the diagnostic task is thought to be one of the prime determinants of model selection. Unfortunately, there is no theory available to guide model selection. This paper illustrates the use of combined neural network models to guide model selection for diagnosis of ophthalmic and internal carotid arterial disorders. The ophthalmic and internal carotid arterial Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the diagnosis of ophthalmic and internal carotid arterial disorders using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. The combined neural network models achieved accuracy rates which were higher than that of the stand-alone neural network models. PMID:15780863

  1. Use of Transcranial Doppler Ultrasound for Diagnosis of Brain Death in Patients with Severe Cerebral Injury

    PubMed Central

    Li, Yuequn; Liu, Shangwei; Xun, Fangfang; Liu, Zhan; Huang, Xiuying

    2016-01-01

    Background The aim of this study was to investigate the use of transcranial Doppler (TCD) for diagnosis of brain death in patients with severe cerebral injury. Material/Methods This retrospective study enrolled 42 patients based on inclusion and exclusion criteria. All patients were divided into either the brain death group or the survival group according to prognosis. Blood flow of the brain was examined by TCD and analyzed for spectrum changes. The average blood flow velocity (Vm), pulse index (PI), and diastolic blood flow in reverse (RDF) were recorded and compared. Results The data demonstrated that the average speed of bilateral middle cerebral artery blood flow in the brain death group was significantly reduced (P<0.05). However, the PI of the brain death group increased significantly. Moreover, RDF spectrum and nail-like sharp peak spectrum of the brain death group was higher than in the survival group. Conclusions Due to its simplicity, high repeatability, and specificity, TCD combined with other methods is highly valuable for diagnosis of brain death in patients with severe brain injury. PMID:27264088

  2. Use of Transcranial Doppler Ultrasound for Diagnosis of Brain Death in Patients with Severe Cerebral Injury.

    PubMed

    Li, Yuequn; Liu, Shangwei; Xun, Fangfang; Liu, Zhan; Huang, Xiuying

    2016-01-01

    BACKGROUND The aim of this study was to investigate the use of transcranial Doppler (TCD) for diagnosis of brain death in patients with severe cerebral injury. MATERIAL AND METHODS This retrospective study enrolled 42 patients based on inclusion and exclusion criteria. All patients were divided into either the brain death group or the survival group according to prognosis. Blood flow of the brain was examined by TCD and analyzed for spectrum changes. The average blood flow velocity (Vm), pulse index (PI), and diastolic blood flow in reverse (RDF) were recorded and compared. RESULTS The data demonstrated that the average speed of bilateral middle cerebral artery blood flow in the brain death group was significantly reduced (P<0.05). However, the PI of the brain death group increased significantly. Moreover, RDF spectrum and nail-like sharp peak spectrum of the brain death group was higher than in the survival group. CONCLUSIONS Due to its simplicity, high repeatability, and specificity, TCD combined with other methods is highly valuable for diagnosis of brain death in patients with severe brain injury. PMID:27264088

  3. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  4. Ultrasound

    MedlinePlus

    Ultrasound uses high-frequency sound waves to make images of organs and structures inside the body. ... An ultrasound machine makes images so that organs inside the body can be examined. The machine sends out high- ...

  5. The Foetal 'Mind' as a Reflection of its Inner Self: Evidence from Colour Doppler Ultrasound of Foetal MCA.

    PubMed

    Kachewar, Sushil Ghanshyam; Gandage, Siddappa Gurubalappa

    2012-01-01

    The unborn healthy foetus is looked upon as a blessing by one and all. A plethora of thoughts arise in the brains of expectant parents. But what goes on in the brain of the yet unborn still remains a mystery. 'Foetal mind' is a reflection of functions of its organs of sense, an instrument of knowledge that may even be reduced to machine to demonstrate the effect of sense organs and brain contact. Testimony to this fact are the various waveform patterns obtained non-invasively from the foetal Middle Cerebral Artery (MCA) by using Colour Doppler Ultrasound. Our study, conducted for evaluating the foetal MCA in a rural obstetric population in Maharashtra, India, explains how the MCA - a major artery supplying foetal brain, can give abundant information about foetal heart and foetal stress. When only the foetal heart is stressed by the presence of arrhythmias or ectopic beats, these changes are manifest in the foetal MCA velocity waveform pattern as seen on Colour Doppler study. When the entire foetus is under stress, as in cases of intra uterine growth retardation (IUGR), changes again manifest in the foetal MCA velocity waveform pattern and are designated as the foetal Brain Sparing Effect. Thus scientific evaluation of foetal MCA waveform can objectively demonstrate that the overtly non-communicating foetal brain indeed remains an internal organ of sense and a vital instrument of knowledge to clarify the various effects of sense organs and brain contact. Although the brain parenchyma or cerebral metabolism has not been studied here, cerebral vessels serve as a window to cerebral metabolism, as auto regulatory function of brain leads to changes in haemodynamics of cerebral vessels. Also, like other vessels, MCA mirrors foetal distress and IUGR; but unlike other vessels, e.g. the umbilical or uterine artery, which show these changes in the form of reduction or even reversal of diastolic flow, MCA shows an increase in diastolic component due to brain sparing effect

  6. The Foetal ‘Mind’ as a Reflection of its Inner Self: Evidence from Colour Doppler Ultrasound of Foetal MCA

    PubMed Central

    Kachewar, Sushil Ghanshyam; Gandage, Siddappa Gurubalappa

    2012-01-01

    The unborn healthy foetus is looked upon as a blessing by one and all. A plethora of thoughts arise in the brains of expectant parents. But what goes on in the brain of the yet unborn still remains a mystery. ‘Foetal mind’ is a reflection of functions of its organs of sense, an instrument of knowledge that may even be reduced to machine to demonstrate the effect of sense organs and brain contact. Testimony to this fact are the various waveform patterns obtained non-invasively from the foetal Middle Cerebral Artery (MCA) by using Colour Doppler Ultrasound. Our study, conducted for evaluating the foetal MCA in a rural obstetric population in Maharashtra, India, explains how the MCA - a major artery supplying foetal brain, can give abundant information about foetal heart and foetal stress. When only the foetal heart is stressed by the presence of arrhythmias or ectopic beats, these changes are manifest in the foetal MCA velocity waveform pattern as seen on Colour Doppler study. When the entire foetus is under stress, as in cases of intra uterine growth retardation (IUGR), changes again manifest in the foetal MCA velocity waveform pattern and are designated as the foetal Brain Sparing Effect. Thus scientific evaluation of foetal MCA waveform can objectively demonstrate that the overtly non-communicating foetal brain indeed remains an internal organ of sense and a vital instrument of knowledge to clarify the various effects of sense organs and brain contact. Although the brain parenchyma or cerebral metabolism has not been studied here, cerebral vessels serve as a window to cerebral metabolism, as auto regulatory function of brain leads to changes in haemodynamics of cerebral vessels. Also, like other vessels, MCA mirrors foetal distress and IUGR; but unlike other vessels, e.g. the umbilical or uterine artery, which show these changes in the form of reduction or even reversal of diastolic flow, MCA shows an increase in diastolic component due to brain sparing effect

  7. Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study

    PubMed Central

    Yang, Runze; Brugniaux, Julien; Dhaliwal, Harinder; Beaudin, Andrew E; Eliasziw, Misha; Poulin, Marc J; Dunn, Jeff F

    2015-01-01

    Caffeine is one of the most widely consumed psycho-stimulants in the world, yet little is known about its effects on brain oxygenation and metabolism. Using a double-blind, placebo-controlled, randomized cross-over study design, we combined transcranial Doppler ultrasound (TCD) and near-infrared spectroscopy (NIRS) to study caffeine's effect on middle cerebral artery peak blood flow velocity (Vp), brain tissue oxygenation (StO2), total hemoglobin (tHb), and cerebral oxygen metabolism (CMRO2) in five subjects. Hyperventilation-induced hypocapnia served as a control to verify the sensitivity of our measurements. During hypocapnia (∼16 mmHg below resting values), Vp decreased by 40.0 ± 2.4% (95% CI, P < 0.001), while StO2 and tHb decreased by 2.9 ± 0.3% and 2.6 ± 0.4%, respectively (P = 0.003 and P = 0.002, respectively). CMRO2, calculated using the Fick equation, was reduced by 29.3 ± 9% compared to the isocapnic-euoxia baseline (P < 0.001). In the pharmacological experiments, there was a significant decrease in Vp, StO2, and tHb after ingestion of 200 mg of caffeine compared with placebo. There was no significant difference in CMRO2 between caffeine and placebo. Both showed a CMRO2 decline compared to baseline showing the importance of a placebo control. In conclusion, this study showed that profound hypocapnia impairs cerebral oxidative metabolism. We provide new insight into the effects of caffeine on cerebral hemodynamics. Moreover, this study showed that multimodal NIRS/TCD is an excellent tool for studying brain hemodynamic responses to pharmacological interventions and physiological challenges. PMID:25907789

  8. Peak Systolic Velocity Measurements with Transcranial Doppler Ultrasound Is a Predictor of Incident Stroke among the General Population in China

    PubMed Central

    Wang, Hai-Bo; Laskowitz, Daniel T.; Dodds, Jodi A.; Xie, Gao-Qiang; Zhang, Pu-Hong; Huang, Yi-Ning; Wang, Bo; Wu, Yang-Feng

    2016-01-01

    Background and Objective It is necessary to develop an effective and low-cost screening tool for identifying Chinese people at high risk of stroke. Transcranial Doppler ultrasound (TCD) is a powerful predictor of stroke in the pediatric sickle cell disease population, as demonstrated in the STOP trial. Our study was conducted to determine the prediction value of peak systolic velocities as measured by TCD on subsequent stroke risk in a prospective cohort of the general population from Beijing, China. Methods In 2002, a prospective cohort study was conducted among 1392 residents from 11 villages of the Shijingshan district of Beijing, China. The cohort was scheduled for follow up with regard to incident stroke in 2005, 2007, and 2012 by a study team comprised of epidemiologists, nurses, and physicians. Univariate and multivariate Cox proportional hazard regression models were used to determine the factors associated with incident stroke. Results Participants identified by TCD criteria as having intracranial stenosis had a 3.6-fold greater risk of incident stroke (hazard ratio (HR) 3.57, 95% confidence interval (CI) 1.86–6.83, P<0.01) than those without TCD evidence of intracranial stenosis. The association remained significant in multivariate analysis (HR 2.53, 95% CI 1.31–4.87) after adjusting for other risk factors or confounders. Older age, cigarette smoking, hypertension, and diabetes mellitus remained statistically significant as risk factors after controlling for other factors. Conclusions The study confirmed the screening value of TCD among the general population in urban China. Increasing the availability of TCD screening may help identify subjects as higher risk for stroke. PMID:27513983

  9. Is There Subclinical Synovitis in Early Psoriatic Arthritis? A Clinical Comparison With Gray-Scale and Power Doppler Ultrasound

    PubMed Central

    Freeston, Jane E; Coates, Laura C; Nam, Jackie L; Moverley, Anna R; Hensor, Elizabeth M A; Wakefield, Richard J; Emery, Paul; Helliwell, Philip S; Conaghan, Philip G

    2014-01-01

    Objective Arthritis activity assessments in psoriatic arthritis (PsA) have traditionally relied on tender and swollen joint counts, but in rheumatoid arthritis, multiple studies have demonstrated subclinical inflammation using modern imaging. The aim of this study was to compare clinical examination and ultrasound (US) findings in an early PsA cohort. Methods Forty-nine disease-modifying antirheumatic drug–naive patients with recent-onset PsA (median disease duration 10 months) underwent gray-scale (GS) and power Doppler (PD) US of 40 joints plus tender and swollen joint counts of 68/66 joints. GS and PD were scored on a 0–3 semiquantitative scale for each joint. Clinically active joints were defined as tender and/or swollen and US active joints were defined as a GS score ≥2 and/or a PD score ≥1. Results The most common sites for subclinical synovitis were the wrist (30.6%), knee (21.4%), metatarsophalangeal (MTP) joints (26.5–33.7%), and metacarpophalangeal joints (10.2–19.4%). Excluding MTP joints and ankles, 37 (75.5%) of 49 patients had subclinical synovitis with a median of 3 (interquartile range [IQR] 1–4) joints involved. In contrast, clinical overestimation of synovitis occurred most commonly at the shoulder (38%) and ankle (28.6%). Twelve of 49 patients were classified clinically as having oligoarthritis; of these, subclinical synovitis identified 8 (75%) as having polyarthritis with an increase in their median joint count from 3 (IQR 1–4) to 6 (IQR 5–7). Conclusion This study has demonstrated that subclinical synovitis, as identified by US, is very common in early PsA and led to the majority of oligoarthritis patients being reclassified as having polyarthritis. Further research is required into the relationship of such subclinical synovitis to structural progression. PMID:24022986

  10. En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S.; Pechauer, Alex D.; Jia, Yali; Huang, David

    2015-06-01

    An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2×2 mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4±6.7 μl/min for healthy control and 34.7±7.6 μl/min for glaucomatous participants (p-value=0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement.

  11. En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography

    PubMed Central

    Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S.; Pechauer, Alex D.; Jia, Yali; Huang, David

    2015-01-01

    Abstract. An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2×2  mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4±6.7  μl/min for healthy control and 34.7±7.6  μl/min for glaucomatous participants (p-value=0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement. PMID:26062663

  12. En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography.

    PubMed

    Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S; Pechauer, Alex D; Jia, Yali; Huang, David

    2015-06-01

    An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2 x 2 mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4 ± 6.7 μl/min for healthy control and 34.7 ± 7.6 μl/min for glaucomatous participants (p-value = 0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement. PMID:26062663

  13. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  14. Gastroepiploic artery as an in situ coronary artery bypass graft: evaluation of MRI and colour Doppler ultrasound in follow-up.

    PubMed

    Vanninen, R L; Vainio, P A; Manninen, H I; Suhonen, M; Jaakola, P

    1995-01-01

    The right gastroepiploic artery, increasingly used as an in situ coronary artery bypass graft, has good long-term patency. This study aimed to assess the accuracy and limitations of magnetic resonance imaging (MRI) and colour Doppler ultrasound (US) in postoperative follow-up of such cases. In eight consecutive patients (6 men, 2 women, mean age 57 years), conventional angiography, MRI and US were performed to evaluate graft patency. Colour Doppler US, performed within a week of the operation, correctly detected flow in three patent grafts. MRI (1.5 tesla) was performed c. 17 months after surgery, using a spine coil and a coronal two-dimensional Flash-type imaging sequence. At angiography six of the eight gastroepiploic artery grafts were patent, and two were occluded. The sensitivity and specificity of MRI were 100%. This accuracy makes MRI a promising method for noninvasive post-operative evaluation of right gastroepiploic artery graft patency. PMID:7644909

  15. Microcrack Quantification in Composite Materials by a Neural Network Analysis of Ultrasound Spectral Data

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Russell, Samuel S.; Suits, Michael W.

    2003-01-01

    Intra-ply microcracking in unlined composite pressure vessels can be very troublesome to detect and when linked through the thickness can provide leak paths that may hinder mission success. The leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping into air pockets within the laminate. Ultrasonic techniques have been shown capable of detecting the presence of microcracking and in this work they are used to quantify the level of microcracking. Resonance ultrasound methods are utilized with artificial neural networks to build a microcrack prediction/measurement tool. Two networks are presented, one unsupervised to provide a qualitative measure of microcracking and one supervised which provides a quantitative assessment of the level of microcracking. The resonant ultrasound spectroscopic method is made sensitive to microcracking by tuning the input spectrum to the higher frequency (shorter wavelength) components allowing more significant interaction with the defects. This interaction causes the spectral characteristics to shift toward lower amplitudes at the higher frequencies. As the density of the defects increases more interactions occur and more drastic amplitude changes are observed. Preliminary experiments to quantify the level of microcracking induced in graphite/epoxy composite samples through a combination of tensile loading and cryogenic temperatures are presented. Both unsupervised (Kohonen) and supervised (radial basis function) artificial neural networks are presented to determine the measurable effect on the resonance spectrum of the ultrasonic data taken from the samples.

  16. Ultrasound Annual, 1984

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1984-01-01

    The 1984 edition of Ultrasound Annual explores new applications of ultrasound in speech and swallowing and offers guidelines on the use of ultrasound and nuclear medicine in thyroid and biliary tract disease. Other areas covered include Doppler sonography of the abdomen, intraoperative abdominal ultrasound, sonography of the placenta, ultrasound of the neonatal head and abdomen, and sonographic echo patterns created by fat.

  17. An example of scaling MST Doppler spectra using median spectra, spectral smoothing, and velocity tracing

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1986-01-01

    Although automatic, computer scaling methods appeared at the start of the MST (mesosphere stratosphere troposphere) radar technique, there is a continuing need for scaling algorithms that perform editing functions and increase the sensitivity of radar by post processing. The scaling method presented is an adaptation of the method of scaling MST Doppler spectra presented by Rastogi (1984). A brief overview of this method is as follows: a median spectrum is calculated from several sequential spectra; the median noise value is subtracted from this derived spectrum; the median spectrum is smoothed; the detection/nondetection decision is made by comparing the smoothed spectrum to the variance of the smoothed noise; and if a signal is detected, then the half-power points of the smoothed echo spectrum are used to place limits on the evaluation of the first two moments of the unsmoothed median spectrum. In all of the above steps, the algorithm is guided by tracing the expected velocity range upward from the lowest range as far as possible. The method is discussed in more detail.

  18. Non-Invasive Assessment of Fibrosis Using Color Doppler Ultrasound in Patients with Hepatitis C Virus in the Amazon Rainforest, Brazil

    PubMed Central

    Leão, Jorge; Brock, Marianna; Castilho, Márcia; Scariot, André; Scariot, Ana; Braga, Wornei

    2012-01-01

    The purpose of this study was to correlate morphologic and hemodynamic Doppler ultrasound findings as indicators of the degree of inflammation and fibrosis and to diagnose chronic vital hepatitis complications and progression. A prospective, descriptive study of a case series was conducted that analyzed Doppler ultrasound images of the liver and portal system and used the portal vein congestion index, hepatic and splenic artery impedance indices, and the liver vascular index. Of 50 patients positive for antibodies against hepatitis C virus, morphologic changes highlighted increased hepatic parenchyma echogenicity in 24%, and increased gall blander echogenicity and wall thickness in 4%. The most common hemodynamic changes observed were reduced flow velocity in the portal vein trunk in 26%, congestion index changes in 12%, liver vascular index changes in 16%, and splenic and hepatic artery impedance index changes in 14%. These indices were shown to be associated with alanine aminotransferase levels, which suggested that they are important liver damage indicators in the early phase of infection with hepatitis C virus. PMID:22302863

  19. Non-invasive assessment of fibrosis using color Doppler ultrasound in patients with hepatitis C virus in the Amazon rainforest, Brazil.

    PubMed

    Leão, Jorge; Brock, Marianna; Castilho, Márcia; Scariot, André; Scariot, Ana; Braga, Wornei

    2012-02-01

    The purpose of this study was to correlate morphologic and hemodynamic Doppler ultrasound findings as indicators of the degree of inflammation and fibrosis and to diagnose chronic vital hepatitis complications and progression. A prospective, descriptive study of a case series was conducted that analyzed Doppler ultrasound images of the liver and portal system and used the portal vein congestion index, hepatic and splenic artery impedance indices, and the liver vascular index. Of 50 patients positive for antibodies against hepatitis C virus, morphologic changes highlighted increased hepatic parenchyma echogenicity in 24%, and increased gall blander echogenicity and wall thickness in 4%. The most common hemodynamic changes observed were reduced flow velocity in the portal vein trunk in 26%, congestion index changes in 12%, liver vascular index changes in 16%, and splenic and hepatic artery impedance index changes in 14%. These indices were shown to be associated with alanine aminotransferase levels, which suggested that they are important liver damage indicators in the early phase of infection with hepatitis C virus. PMID:22302863

  20. Impact of nodular size on the predictive values of gray-scale, color-Doppler ultrasound, and sonoelastography for assessment of thyroid nodules

    PubMed Central

    Hong, Yu-rong; Wu, Yu-lian; Luo, Zhi-yan; Wu, Ning-bo; Liu, Xue-ming

    2012-01-01

    Objective: To define the roles of gray-scale, color-Doppler ultrasound, and sonoelastography for the assessment of thyroid nodule to determine whether nodule size affects the differential diagnosis of benign and malignant. Methods: A total of 243 consecutive subjects (214 women, 29 men) with 329 thyroid nodules were examined by gray-scale, color-Doppler ultrasound, and sonoelastography in this prospective study. All patients underwent surgery and the final diagnosis was obtained from histopathological examination. Results: Three hundred and twenty-nine nodules (208 benign, 121 malignant) were divided into small (SNs, 5–10 mm, n=137) and large (LNs, >10 mm, n=192) nodules. Microcalcifications were more frequent in malignant LNs than in malignant SNs, but showed no significant difference between benign LNs and SNs. Poorly-circumscribed margins were not significantly different between malignant SNs and LNs, but were less frequent in benign LNs than in benign SNs. Among all nodules, marked intranodular vascularity was more frequent in LNs than in SNs. By comparison, shape ratio of anteroposterior to transverse dimensions (A/T) ≥1 was less frequent in LNs than in SNs. Otherwise, among all nodules, marked hypoechogenicity and elasticity score of 4–6 showed no significant difference between LNs and SNs. Conclusions: The predictive values of microcalcifications, nodular margins, A/T ratio, and marked intranodular vascularity depend on nodule size, but the predictive values of echogenicity and elastography do not. PMID:22949361

  1. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    PubMed Central

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. Results: A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Conclusions: Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta. PMID:25709996

  2. Optical biopsy of the prostate: can we TRUST (trans-rectal ultrasound-coupled spectral tomography)?

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Jiang, Zhen; Bartels, Kenneth E.; Holyoak, G. Reed; Ritchey, Jerry W.; Rock, Kendra; Ownby, Charlotte L.; Bunting, Charles F.; Slobodov, Gennady

    2011-03-01

    Needle-based core-biopsy to locate prostate cancer relies heavily upon trans-rectal ultrasound (TRUS) imaging guidance. Ultrasonographic findings of classic hypoechoic peripheral zone lesions have a low specificity of ~28%, a low positive predictive value of ~29%, and an overall accuracy of ~43%, in prostate cancer diagnosis. The prevalence of isoechoic or nearly invisible prostate cancers on ultrasonography ranges from 25 to 42%. As a result, TRUS is useful and convenient to direct the needle trajectory following a systematic biopsy sampling template rather than to target only the potentially malignant lesion for focal-biopsy. To address this deficiency in the first-line of prostate cancer imaging, a trans-rectal ultrasound-coupled spectral tomography (TRUST) approach is being developed to non-invasively resolve the likely optical signatures of prostate malignancy. The approach has evolved from using one NIR wavelength to two NIR bands, and recently to three bands of NIR spectrum information. The concept has been evaluated on one normal canine prostate and three dogs with implanted prostate tumor developed as a model. The initial results implementing TRUST on the canine prostate tumor model includes: (1) quantifying substantially increased total hemoglobin concentration over the time-course of imaging in a rapidly growing prostate tumor; (2) confirming hypoxia in a prostatic cystic lesion; and (3) imaging hypoxic changes of a necrotic prostate tumor. Despite these interesting results, intensive technologic development is necessary for translating the approach to benefiting clinical practice, wherein the ultimate utility is not possibly to eliminate needle-biopsy but to perform focal-biopsy that is only necessary to confirm the cancer, as well as to monitor and predict treatment responses.

  3. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  4. Are Results of 4-D Ultrasound Angiography Examinations Dependent on the Doppler Technology Applied? Comparison of Results Obtained from an In Vivo Model.

    PubMed

    Kudla, Marek J; Los, Andrzej; Alcazar, Juan Luis

    2016-02-01

    We aimed to evaluate the agreement of results obtained by 4-D spatio-temporal image correlation (STIC) angiography with two options of Doppler technology (power Doppler [PD] and high-definition flow [HDF]) from an ovary as an in vivo model. Thirty-eight ovaries were recorded by trans-vaginal ultrasound examination in the first part of the menstrual cycle. Two STIC sequences (4-D HDF and 4-D PD) were stored. Volumetric pulsatility index, volumetric resistance index and volumetric systolic/diastolic index for each of these sequences were calculated, and their mean values were compared and correlated. Agreement between 4-D HDF and 4-D PD was assessed using the intra-class correlation coefficient. Intra-class correlation coefficients for all three indices were high, but 95% confidence intervals and limits of agreement were wide. We conclude that both 4-D power Doppler and 4-D high-definition flow may be used for calculating volumetric pulsatility index, volumetric resistance index and volumetric systolic/diastolic index from a STIC sequence, at least in ovaries used as an in vivo model. However, values obtained by both methods cannot be used interchangeably. PMID:26610712

  5. Ultrasound

    MedlinePlus

    ... please enable JavaScript. Ultrasound uses high-frequency sound waves to make images of organs and structures inside ... examined. The machine sends out high-frequency sound waves, which reflect off body structures. A computer receives ...

  6. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties. PMID:25438847

  7. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  8. Left Ventricular Diastolic Dysfunction Assessed by Conventional Echocardiography and Spectral Tissue Doppler Imaging in Adolescents With Arterial Hypertension.

    PubMed

    Morka, Aleksandra; Szydlowski, Leslaw; Moric-Janiszewska, Ewa; Mazurek, Boguslaw; Markiewicz-Loskot, Grazyna; Stec, Sebastian

    2016-02-01

    Compared to conventional echocardiography, spectral tissue Doppler imaging (s-TDI) allows more precise evaluation of diastolic cardiac function. The purpose of this study was to conduct s-TDI to analyze the slow movement of the left ventricular (LV) myocardium in adolescents with systemic arterial hypertension (HT) and to determine whether patients with HT suffer from LV diastolic dysfunction. The study group comprised 69 consecutive patients (48 boys and 21 girls aged 14-17 years [mean, 15.5 ± 1.1 years]) with primary HT, and the control group comprised 48 healthy participants (24 boys and 24 girls aged 14-17 years [mean, 15.8 ± 1.3 years]). Physical examinations, 24-hour arterial blood pressure monitoring, conventional 2-dimensional and Doppler echocardiography, and s-TDIs were performed. Analysis revealed that study group participants were significantly heavier and had greater LV mass indices than controls (P < 0.001). There were no differences between the velocities of E waves (peak early filling of mitral inflow), but the deceleration times of the mitral E waves were significantly shorter whereas the A waves survived longer in the study group than in the control group. The velocities of A waves (peak late filling of mitral inflow) were elevated (P = 0.041), and the E/A wave pattern (E/A = 1.8 ± 0.4) was normal. These results suggest pseudonormalization, a type of LV diastolic dysfunction in adolescents with HT.In the study group, when the sample volume was positioned at the septal or lateral insertion site of the mitral leaflet, the e' wave velocity was significantly depressed whereas the a' wave velocity was elevated, compared to those of the control group (P < 0.001).The e'/a' ratios from the septal and lateral insertion sites were lower, whereas the E/e' ratio from the septal insertion site was significantly higher in the study group, similar to that seen in atrial reversal velocity (P < 0.001).These findings indicate that

  9. Left Ventricular Diastolic Dysfunction Assessed by Conventional Echocardiography and Spectral Tissue Doppler Imaging in Adolescents With Arterial Hypertension

    PubMed Central

    Morka, Aleksandra; Szydlowski, Leslaw; Moric-Janiszewska, Ewa; Mazurek, Boguslaw; Markiewicz-Loskot, Grazyna; Stec, Sebastian

    2016-01-01

    Abstract Compared to conventional echocardiography, spectral tissue Doppler imaging (s-TDI) allows more precise evaluation of diastolic cardiac function. The purpose of this study was to conduct s-TDI to analyze the slow movement of the left ventricular (LV) myocardium in adolescents with systemic arterial hypertension (HT) and to determine whether patients with HT suffer from LV diastolic dysfunction. The study group comprised 69 consecutive patients (48 boys and 21 girls aged 14–17 years [mean, 15.5 ± 1.1 years]) with primary HT, and the control group comprised 48 healthy participants (24 boys and 24 girls aged 14–17 years [mean, 15.8 ± 1.3 years]). Physical examinations, 24-hour arterial blood pressure monitoring, conventional 2-dimensional and Doppler echocardiography, and s-TDIs were performed. Analysis revealed that study group participants were significantly heavier and had greater LV mass indices than controls (P < 0.001). There were no differences between the velocities of E waves (peak early filling of mitral inflow), but the deceleration times of the mitral E waves were significantly shorter whereas the A waves survived longer in the study group than in the control group. The velocities of A waves (peak late filling of mitral inflow) were elevated (P = 0.041), and the E/A wave pattern (E/A = 1.8 ± 0.4) was normal. These results suggest pseudonormalization, a type of LV diastolic dysfunction in adolescents with HT. In the study group, when the sample volume was positioned at the septal or lateral insertion site of the mitral leaflet, the e′ wave velocity was significantly depressed whereas the a′ wave velocity was elevated, compared to those of the control group (P < 0.001). The e′/a′ ratios from the septal and lateral insertion sites were lower, whereas the E/e′ ratio from the septal insertion site was significantly higher in the study group, similar to that seen in atrial reversal velocity (P < 0

  10. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  11. Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and Doppler winds lidar

    NASA Astrophysics Data System (ADS)

    Wang, Jinxue; Leyva, Victor; Hovis, Floyd E.

    2007-09-01

    Spaceborne 3-dimensional winds lidar and spaceborne High Spectral Resolution Lidar (HSRL) for aerosol and clouds are among the high priority future space missions recommended by the recent National Research Council (NRC) Decadal Review. They are expected to provide the important three dimensional winds data and aerosol data critically needed to improve climate models and numerical weather forecasting. HSRL and winds lidar have a common requirement for high energy solid-state lasers with output wavelengths at 1064nm, 532nm and 355nm, which can be achieved with Nd:YAG lasers and 2nd and 3rd harmonic generations. For direct detection winds lidar, only the 355nm output is needed. One of the key development needs is the demonstration of laser transmitter subsystem. Top issues include power and thermal management, lifetime, high energy UV operations, damage and contamination. Raytheon and its partner, Fibertek, have designed and built a space-qualifiable high energy Nd:YAG laser transmitter with funding from Raytheon Internal Research and Development (IR&D). It is intended to serve as a risk-reduction engineering unit and a test bed for the spaceborne HRSL and direct-detection Doppler winds Lidar missions. Close to 900 mJ/pulse at1064nm and a wall-plug efficiency of 6.5% have been achieved with our risk reduction laser. It is currently being characterized and tested at Raytheon Space and Airborne Systems. In this paper, we will discuss the design, build and testing results of this risk reduction high energy laser transmitter.

  12. [Quality standards for ultrasound assessment (CW-Doppler, Duplex US) of the lower limb arteries in vascular medicine. Report of the French Society for Vascular Medicine].

    PubMed

    Becker, F; Luizy, F; Baud, J-M; Pichot, O

    2011-12-01

    The quality standards of the French Society of Vascular Medicine for the ultrasound assessment of lower limb arteries in vascular medicine practice are based on the principle that these examinations have to meet two requirements: technical know-how (knowledge of devices and methodologies); medical know-how (level of examination matching the indication and purpose of the examination, interpretation and critical analysis of results). OBJECTIVES OF THE QUALITY STANDARDS: To describe an optimal level of examination adjusted to the indication or clinical hypothesis; to homogenize practices, methodologies, terminologies, results description and report; to provide good practice reference points and to promote a high quality process. THEMES OF THE QUALITY STANDARDS: The three levels of examination, indications and objectives for each level; the reference standard examination (level 2) and its variants according to indications; the minimal content of the exam report, the medical conclusion letter to the corresponding physician (synthesis, conclusion and management suggestions); commented glossary (anatomy, hemodynamics, signs and symptoms); technical basis. Device settings. Here, we discuss CW-Doppler and Duplex ultrasound in various indications for lower limbs arteries assessment. PMID:22099909

  13. Deep vein thrombosis in elderly Hong Kong Chinese with hip fractures detected with compression ultrasound and Doppler imaging: incidence and effect of low molecular weight heparin.

    PubMed

    Kew, J; Lee, Y L; Davey, I C; Ho, S Y; Fung, K C; Metreweli, C

    1999-01-01

    Seventy-eight patients of average age 78 years suffering from an unilateral non-pathological hip fracture underwent compression ultrasound and pulsed and colour Doppler examination of both legs. Twenty-three patients were randomly placed on low molecular weight heparin (LMWH). Twenty-nine (37%) suffered deep venous thrombosis (DVT). There was no statistically significant difference in the incidence of DVT between the control and LMWH groups, and the incidence of DVT in elderly Chinese patients after hip replacement for a hip fracture is similar to that in other studies in Caucasians. There were, however, some differences, namely the contiguous nature of the thrombi rather than focal segmental clots, and the absence of propagation or tail formation. Although the numbers are small, this could possibly represent a population difference. There was a significantly increased occurrence of DVTs on the operated side in both groups. Serial ultrasound examination supports evidence that DVTs occur in the 1st week postoperatively, but there were also a number of patients who developed DVTs in the 2nd week. There was no statistically significant difference in overall incidence of DVT between patients on prophylactic heparin and the control group. Patients on prophylactic heparin had no thigh DVTs in comparison to the control group. LMWH may thus be effective in preventing thigh DVTs and pulmonary emboli. PMID:10392509

  14. A wall-less poly(vinyl alcohol) cryogel flow phantom with accurate scattering properties for transcranial Doppler ultrasound propagation channels analysis.

    PubMed

    Weir, Alexander J; Sayer, Robin; Cheng-Xiang Wang; Parks, Stuart

    2015-08-01

    Medical phantoms are frequently required to verify image and signal processing systems, and are often used to support algorithm development for a wide range of imaging and blood flow assessments. A phantom with accurate scattering properties is a crucial requirement when assessing the effects of multi-path propagation channels during the development of complex signal processing techniques for Transcranial Doppler (TCD) ultrasound. The simulation of physiological blood flow in a phantom with tissue and blood equivalence can be achieved using a variety of techniques. In this paper, poly (vinyl alcohol) cryogel (PVA-C) tissue mimicking material (TMM) is evaluated in conjunction with a number of potential scattering agents. The acoustic properties of the TMMs are assessed and an acoustic velocity of 1524ms(-1), an attenuation coefficient of (0:49) × 10(-4)fdBm(1)Hz(-1), a characteristic impedance of (1.72) × 10(6)Kgm(-2)s(-1) and a backscatter coefficient of (1.12) × 10(-28)f(4)m(-1)Hz(-4)sr(-1) were achieved using 4 freeze-thaw cycles and an aluminium oxide (Al(2)O(3)) scattering agent. This TMM was used to make an anatomically realistic wall-less flow phantom for studying the effects of multipath propagation in TCD ultrasound. PMID:26736851

  15. Usefulness of resistive index on spectral Doppler ultrasonography in the detection of renal cell carcinoma in patients with end-stage renal disease

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to explore the usefulness of the resistive index (RI) on spectral Doppler ultrasonography (US) in the detection of renal cell carcinoma (RCC) in patients with end-stage renal disease (ESRD). Methods: Seventeen ESRD patients with kidneys in which renal masses were suspected in routine US were subjected. They underwent computed tomography scans and additional Doppler US for the characterization of the detected lesions. All underwent radical nephrectomy with the suspicion of RCC. Fourteen patients finally were included. RI measurements were conducted in the region of the suspected renal mass and the background renal parenchyma. The intraclass correlation coefficient was used to assess the reproducibility of the RI measurement. A paired t-test was used to compare the RI values between the renal mass and the background renal parenchyma (P<0.05). Results: The RI values measured at the RCCs were significantly lower than those measured at the background renal parenchyma (0.41-0.65 vs. 0.75-0.89; P<0.001). The intrareader reproducibility proved to be excellent and good for the renal masses and the parenchyma, respectively (P<0.001). Conclusion: RI on spectral Doppler US is useful in detecting RCC in patients with ESRD. The RI values measured at the RCCs were significantly lower than those measured at the background renal parenchyma. PMID:24936507

  16. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    NASA Astrophysics Data System (ADS)

    Villain, J.-P.; André, R.; Pinnock, M.; Greenwald, R. A.; Hanuise, C.

    2002-11-01

    The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

  17. Advanced Spectral Analysis Methods for Quantification of Coherent Ultrasound Scattering: Applications in the Breast

    NASA Astrophysics Data System (ADS)

    Rosado-Mendez, Ivan M.

    The goal of this dissertation was to improve the diagnostic value of parametric images generated from Quantitative Ultrasound (QUS) methods based on the power spectral density (PSD) of radiofrequency echo signals. This was achieved by testing for local adherence to conventional QUS assumptions that echo signals originate from incoherent scattering, and that signals are stationary over PSD estimation windows. For this purpose, we designed a novel algorithm that empirically evaluates the statistical significance of coherent-scattering signatures in the echo signals. Signatures are quantified through a set of optimized metrics describing the stationary or non-stationary features of the echo signals. We compared Nakagami-model based metrics and model-free metrics of the statistics of the echo signal amplitude for analyzing stationary features. For non-stationary features, we advanced the use of the echo-signal generalized spectrum by comparing single- and multi-taper estimators of this spectrum to the time-domain singular spectrum analysis method. Tests of statistical significance were done through empirical comparisons with values of the same metrics estimated from a uniform reference material exhibiting incoherent scattering. The metrics that quantify these features were selected after simulation- and phantom-based optimizations centered on the task of creating parametric images, where tradeoffs must be made between spatial resolution and detection performance. The connection of the analyses of the stationary and the non-stationary features provided a way to estimate descriptors of the tissue organization scales below and above the resolution limit imposed by the size of the acoustic pulse. A preliminary application of the developed algorithm was done on echo data from human breast lesions scanned in vivo. Results supported the idea of a more homogeneously random distribution of subresolution scatterers within invasive ductal carcinomas than within fibroadenomas

  18. Evaluation of ovarian blood flow by colour Doppler ultrasound: practical use for reproductive management in the cow.

    PubMed

    Matsui, Motozumi; Miyamoto, Akio

    2009-09-01

    Transrectal real-time ultrasonography (US) has been developed as a research and practical tool in bovine reproduction. Non-invasive US observations have made it possible to provide real-time and serial analyses of ovarian morphological changes and fetal development and have generated new information on reproductive physiology during the bovine oestrous cycle and pregnancy. This has greatly contributed to an understanding of the real-time dynamics of follicular development. US has also allowed for more accurate diagnosis compared with rectal palpation in reproductive management in cattle. Practical applications of US include early diagnosis of pregnancy, identification of twin fetuses, detection of ovarian and uterine pathologies and determination of fetal sex. In recent years, local blood flow has been analysed in individual ovarian follicles and the corpus luteum (CL) in the cow using colour Doppler US. From these observations, it has been found that (1) the blood supply to follicles is closely related to follicular growth, atresia and ovulation, (2) the blood supply to the CL increases in parallel with its growth, and (3) there is an acute increase in blood flow in the mature CL prior to luteal regression. Colour Doppler US may provide an estimate of the physiological status of follicles and corpora lutea. For example, images of blood flow can be used to assess the thickness of the follicular wall and provide a differential diagnosis of follicular and luteal cysts. Assessment of the area of blood flow in the CL using colour Doppler imaging may offer a useful adjunct in estimating CL function, which could be applied to the diagnosis of non-pregnancy and fetal loss. The number of small follicles which have blood flow at the start of gonadotrophin treatment may be a useful index to predict the superovulatory response. With improvements in portability and cost-effectiveness, the evaluation of ovarian blood flow by colour Doppler US is likely to become widely used as

  19. The use of non-contrast computed tomography and color Doppler ultrasound in the characterization of urinary stones - preliminary results

    PubMed Central

    Bulakçı, Mesut; Tefik, Tzevat; Akbulut, Fatih; Örmeci, Mehmet Tolgahan; Beşe, Caner; Şanlı, Öner; Oktar, Tayfun; Salmaslıoğlu, Artür

    2015-01-01

    Objective To investigate the role of density value in computed tomography (CT) and twinkling artifact observed in color Doppler analysis for the prediction of the mineral composition of urinary stones. Material and methods A total of 42 patients who were operated via percutaneous or endoscopic means and had undergone abdominal non-contrast CT and color Doppler ultrasonography examinations were included in the study. X-ray diffraction method was utilized to analyze a total of 86 stones, and the correlations between calculated density values and twinkling intensities with stone types were investigated for each stone. Results Analyses of extracted stones revealed the presence of 40 calcium oxalate monohydrate, 12 calcium oxalate dihydrate, 9 uric acid, 11 calcium phosphate, and 14 cystine stones. The density values were calculated as 1499±269 Hounsfield Units (HU) for calcium oxalate monohydrate, 1505±221 HU for calcium oxalate dihydrate, 348±67 HU for uric acid, 1106±219 HU for calcium phosphate, and 563±115 HU for cystine stones. The artifact intensities were determined as grade 0 in 15, grade 1 in 32, grade 2 in 24, and grade 3 in 15 stones. Conclusion In case the density value of the stone is measured below 780 HU and grade 3 artifact intensity is determined, it can be inferred that the mineral composition of the stone tends to be cystine. PMID:26623143

  20. Contrast M-mode power Doppler ultrasound in the detection of right-to-left shunts: utility of submandibular internal carotid artery recording.

    PubMed

    Topçuoglu, M A; Palacios, I F; Buonanno, F S

    2003-10-01

    Cardiac right-to-left shunts (RLSs) can be detected by echocardiography and transcranial Doppler ultrasound (TCD). In patients without adequate transtemporal bone windows, results may be obtained by insonating extracranial arteries; however, the sensitivity and practicality of this approach is unknown. In 34 patients evaluated with echocardiography for RLSs, 73 studies were performed with unilateral, simultaneous contrast TCD (cTCD) of the middle cerebral artery (MCA) and anterior cerebral artery (ACA) and submandibular power M-mode Doppler (PMD) ultrasound of the extracranial internal carotid artery (ecICA). The number of microbubble (MB) signals and their times of first appearance were determined. RLS volume was graded on 6 levels (I = trace, II = small, III = medium, IVa = large, IVb = shower, IVc = curtain) and compared between MCA and ecICA recordings. In 2 of 24 cTCD studies in 15 patients without evidence of RLSs on single-gated MCA monitoring, low-volume RLSs (grades I and II) were detected via ecICA insonation; in both, MB signatures were tracked in the ecICA, passing into the ipsilateral ACA. In 40 of 49 studies (26 patients) in which RLSs were demonstrated with single-gated MCA monitoring, more MBs were detected in the ecICA than the MCA, with either single-gated or M-mode images, with increases of 76.9% and 66.1%, respectively (P = .027). Compared to single-gated studies, M-mode technology detected nonsignificant increases in MB number in both the MCA and the ecICA (by 20.2% and 14.0%, respectively). Contrast PMD with cervical ICA recording is at least as sensitive and specific as the traditional MCA method in detecting RLSs; furthermore, this method seems to be more sensitive for low-volume RLSs (grades I-III) because of air MB decay (9.2%) and entry into the ipsilateral ACA (34.2%). This is in concordance with the increase of detected RLS grades observed in 32.7% of patients with echocardiography-documented RLSs. The authors therefore suggest the

  1. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    PubMed

    Mancini, Marcello; Greco, Adelaide; Tedeschi, Enrico; Palma, Giuseppe; Ragucci, Monica; Bruzzone, Maria Grazia; Coda, Anna Rita Daniela; Torino, Enza; Scotti, Alessandro; Zucca, Ileana; Salvatore, Marco

    2015-01-01

    To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins. PMID:26067061

  2. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study

    PubMed Central

    Mancini, Marcello; Greco, Adelaide; Tedeschi, Enrico; Palma, Giuseppe; Ragucci, Monica; Bruzzone, Maria Grazia; Coda, Anna Rita Daniela; Torino, Enza; Scotti, Alessandro; Zucca, Ileana; Salvatore, Marco

    2015-01-01

    To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins. PMID:26067061

  3. Different optical spectral characteristics in a necrotic transmissible venereal tumor and a cystic lesion in the same canine prostate observed by triple-band trans-rectal optical tomography under trans-rectal ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Holyoak, G. Reed; Ritchey, Jerry W.; Bartels, Kenneth E.; Rock, Kendra; Ownby, Charlotte L.; Slobodov, Gennady; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    Different optical spectral characteristics were observed in a necrotic transmissible venereal tumor (TVT) and a cystic lesion in the same canine prostate by triple-wavelength trans-rectal optical tomography under trans-rectal ultrasound (TRUS) guidance. The NIR imager acquiring at 705nm, 785nm and 808nm was used to quantify both the total hemoglobin concentration (HbT) and oxygen saturation (StO2) in the prostate. The TVT tumor in the canine prostate as a model of prostate cancer was induced in a 7-year old, 27 kg dog. A 2 mL suspension of 2.5x106 cells/mL of homogenized TVT cells recovered from an in vivo subcutaneously propagated TVT tumor in an NOD/SCID mouse were injected in the cranial aspect of the right lobe of the canine prostate. The left lobe of the prostate had a cystic lesion present before TVT inoculation. After the TVT homogenate injection, the prostate was monitored weekly over a 9-week period, using trans-rectal NIR and TRUS in grey-scale and Doppler. A TVT mass within the right lobe developed a necrotic center during the later stages of this study, as the mass presented with substantially increased [HbT] in the periphery, with an area of reduced StO2 less than the area of the mass itself shown on ultrasonography. Conversely, the cystic lesion presented with slightly increased [HbT] in the periphery of the lesion shown on ultrasound with oxygen-reduction inside and in the periphery of the lesion. There was no detectable change of blood flow on Doppler US in the periphery of the cystic lesion. The slightly increased [HbT] in the periphery of the cystic lesion was correlated with intra-lesional hemorrhage upon histopathologic examination.

  4. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.

    PubMed

    Herment, A; Giovannelli, J F

    1995-01-01

    Modern ultrasound Doppler systems are facing the problem of processing increasingly shorter data sets. Spectral analysis of the strongly nonstationary Doppler signal needs to shorten the analysis window while maintaining a low variance and high resolution spectrum. Color flow imaging requires estimation of the Doppler mean frequency from even shorter Doppler data sets to obtain both a high frame rate and high spatial resolution. We reconsider these two estimation problems in light of adaptive methods. A regularized parametric method for spectral analysis as well as an adapted mean frequency estimator are developed. The choice of the adaptive criterion is then addressed and adaptive spectral and mean frequency estimators are developed to minimize the mean square error on estimation in the presence of noise. Two suboptimal spectral and mean-frequency estimators are then derived for real-time applications. Finally, their performance is compared to that of both the FFT based periodogram and the AR parametric spectral analysis for the spectral estimator, and, to both the correlation angle and the Kristoffersen's [8] estimators for the mean frequency estimator using Doppler data recorded in vitro. PMID:7638930

  5. Shared Brain Lateralization Patterns in Language and Acheulean Stone Tool Production: A Functional Transcranial Doppler Ultrasound Study

    PubMed Central

    Uomini, Natalie Thaïs; Meyer, Georg Friedrich

    2013-01-01

    Background The popular theory that complex tool-making and language co-evolved in the human lineage rests on the hypothesis that both skills share underlying brain processes and systems. However, language and stone tool-making have so far only been studied separately using a range of neuroimaging techniques and diverse paradigms. Methodology/Principal Findings We present the first-ever study of brain activation that directly compares active Acheulean tool-making and language. Using functional transcranial Doppler ultrasonography (fTCD), we measured brain blood flow lateralization patterns (hemodynamics) in subjects who performed two tasks designed to isolate the planning component of Acheulean stone tool-making and cued word generation as a language task. We show highly correlated hemodynamics in the initial 10 seconds of task execution. Conclusions/Significance Stone tool-making and cued word generation cause common cerebral blood flow lateralization signatures in our participants. This is consistent with a shared neural substrate for prehistoric stone tool-making and language, and is compatible with language evolution theories that posit a co-evolution of language and manual praxis. In turn, our results support the hypothesis that aspects of language might have emerged as early as 1.75 million years ago, with the start of Acheulean technology. PMID:24023634

  6. Genesis of the systolic murmur of idiopathic hypertrophic subaortic stenosis. Phonocardiographic, echocardiographic, and pulsed Doppler ultrasound correlations.

    PubMed

    Chandraratna, P A; Aronow, W S

    1983-04-01

    To study the genesis of the systolic murmur of idiopathic hypertrophic subaortic stenosis (IHSS), phonocardiograms, echocardiograms, and pulsed Doppler echocardiography were done in 11 patients with IHSS. Seven had marked systolic anterior motion of the mitral valve (SAM) at rest (group 1); four had small SAM at rest but marked SAM was noted after amyl nitrite inhalation, (group 2). In all group 1 patients, marked turbulence was present during systole in the left ventricular outflow tract (LVOT). A lesser degree of turbulence was present in systole in the left atrium in six of seven patients. The turbulence in the LVOT and left atrium was increased by amyl nitrite, and decreased by handgrip. In group 2 patients, mild turbulence was present in the LVOT at rest, but none was noted in the left atrium. Amyl nitrite increased turbulence in the LVOT, and turbulence in the left atrium was noted in two patients. We conclude that the murmur of IHSS in patients with marked SAM is due to a composite of turbulence in the LVOT and mitral regurgitation, whereas when only mild SAM is present, the murmur originates in the left ventricular outflow tract. PMID:6131797

  7. B-Mode Ultrasound Imaging, Doppler Imaging, and Real-Time Elastography in Cutaneous Malignant Melanoma and Lymph Node Metastases

    PubMed Central

    Uematsu, Takayoshi; Kasami, Masako; Kiyohara, Yoshio

    2013-01-01

    Examination by ultrasonography (US) is a rapid, sensitive, cost-effective, and even portable technique for confirming the presence of tumors. However, US is not routinely used worldwide for the diagnostic work-up of cutaneous malignant melanoma. High-resolution US using a 6–14 MHz or 5–13 MHz linear transducer enables the preoperative assessment of tumor size and thickness. Compared with physical examination, US is also very effective in the early detection of lymph node metastases. It can be easily repeated for the follow-up of cutaneous malignant melanoma and lymph node metastases. Ultrasonographic appearance of some lymph nodes may overlap, thus producing diagnostic pitfalls. In such cases with overlapping findings, Doppler imaging and elastography may additionally facilitate the evaluation of cutaneous malignant melanoma and lymph node metastases. US-guided fine needle aspiration cytology (FNAC) finally helps to confirm ultrasonographic results, thus improving the specificity and sensitivity in difficult situations in which US alone gives unclear results in lymph node assessment.

  8. Noninvasive Quantification of In Vitro Osteoblastic Differentiation in 3D Engineered Tissue Constructs Using Spectral Ultrasound Imaging

    PubMed Central

    Peterson, Alexis W.; Caldwell, David J.; Stegemann, Jan P.; Deng, Cheri X.

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5–15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×104 at day 1 to 0.9±0.2×104 at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development. PMID:24465680

  9. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging.

    PubMed

    Gudur, Madhu Sudhan Reddy; Rao, Rameshwar R; Peterson, Alexis W; Caldwell, David J; Stegemann, Jan P; Deng, Cheri X

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5-15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×10(4) at day 1 to 0.9±0.2×10(4) at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development. PMID:24465680

  10. Gray-scale and color duplex Doppler ultrasound of hand joints in the evaluation of disease activity and treatment in rheumatoid arthritis

    PubMed Central

    Ivanac, Gordana; Morović-Vergles, Jadranka; Brkljačić, Boris

    2015-01-01

    Aim To evaluate the role of gray-scale and color duplex-Doppler ultrasound (CDUS) in diagnosis of changes of hand joints and assessment of treatment efficacy in patients with rheumatoid arthritis (RA) by comparing qualitative and quantitative US parameters with clinical and laboratory indicators of disease activity. Methods Ulnocarpal (UC), metacarpophalangeal (MCP), and proximal interphalangeal (PIP) joints in 30 patients with RA were examined by gray-scale and CDUS before and after six months of treatment. Morphologic and quantitative Doppler findings (synovial thickness, effusion quantity, vascularization degree, resistance index, velocities) were compared with clinical indicators of disease progression: disease activity score (DAS 28), Health Assessment Questionnaire (HAQ), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and C reactive protein (CRP). Results Clinical indicators changed significantly after treatment: ESR from 38.1 ± 22.4 mm/h to 27.8 ± 20.9 mm/h (P = 0.013), DAS 28 from 5.47 ± 1.56 to 3.87 ± 1.65 (P < 0.001), and HAQ from 1.26 ± 0.66 to 0.92 ± 0.74 (P = 0.030), indicating therapeutic effectiveness. In all MCP and UC joints we observed a significant change in at least one US parameter, in 6 out of 12 joints we observed a significant change in ≥2 parameters, and in 2 UC joints we observed significant changes in ≥3 parameters. The new finding was that the cut-off values of resistance index of 0.40 at baseline and of 0.55 after the treatment indicated the presence of active disease and the efficacy of treatment, respectively; also it was noticed that PIP joints can be omitted from examination protocol. Conclusion Gray scale and CDUS are useful in diagnosis of changes in UC and MCP joints of patients with RA and in monitoring the treatment efficacy. PMID:26088853

  11. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities.

    PubMed

    Hamper, U M; DeJong, M R; Caskey, C I; Sheth, S

    1997-01-01

    Power Doppler imaging has recently gained attention as an additional color flow imaging technique that overcomes some of the limitations of conventional color Doppler ultrasound (US). Limitations of conventional color Doppler US include angle dependence, aliasing, and difficulty in separating background noise from true flow in slow-flow states. Owing to its increased sensitivity to flow, power Doppler sonography is valuable in low-flow states and when optimal Doppler angles cannot be obtained. Longer segments of vessels and more individual vessels can be visualized with power Doppler US than with conventional color Doppler sonography. Power Doppler sonography increases diagnostic confidence when verifying or excluding testicular or ovarian torsion and confirming thrombosis or occlusion of vessels. Power Doppler sonography also improves evaluation of parenchymal flow and decreases examination times in technically challenging cases. Power Doppler US is a useful adjunct to mean-frequency color Doppler sonography, especially when color Doppler US cannot adequately obtain or display diagnostic information. PMID:9084086

  12. Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.

  13. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  14. Assessment of portal contribution to liver perfusion by quantitative sequential scintigraphy and Doppler ultrasound in alcoholic cirrhosis. Diagnostic value in the detection of portal hypertension.

    PubMed

    Dao, T; Elfadel, S; Bouvard, G; Bouvard, N; Lecointe, I; Jardin-Grimaux, I; Verwaerde, J C; Valla, A

    1993-03-01

    To assess the portal contribution to liver perfusion, we carried out quantitative sequential scintigraphy in 110 patients with alcoholic cirrhosis (22 Child-Pugh class A, 39 class B, 49 class C) and 15 normal subjects. Duplex Doppler ultrasound found a type of intrahepatic circulation that made the standard scintigraphic procedure inaccurate in four cases of cirrhosis, which were reevaluated. Portal contribution to liver perfusion was lower in cirrhotics than in normal subjects (48.7 +/- 29% versus 78.4 +/- 6%; p < 0.001). The sensitivity of scintigraphy in detecting portal hypertension, based on portal contribution < or = 66%, was 61.8% (with a 100% specificity) compared with 66.7% for endoscopy (diagnosis based on existence of varices). The overall sensitivity of the two tests together was 86.1%. Portal contribution to liver perfusion was inversely correlated to Child-Pugh score (r = 0.53; p < 0.001), to prothrombin time (r = 0.52; p < 0.001), and to hepatic venous pressure gradient (r = 0.43; p < 0.001) and positively correlated to albuminemia (r = 0.42; p < 0.001). Concurrent alcoholic hepatitis and the existence of large portosystemic collaterals were related to a decrease in portal contribution to liver perfusion. We conclude that quantitative sequential scintigraphy, which shows a direct relationship between portal contribution to liver perfusion, on the one hand, and the amount of portosystemic shunting, the progression of liver disease, and/or acute liver injury, on the other, could serve as a diagnostic test for portal hypertension. The addition of scintigraphy improves the overall sensitivity of endoscopy. PMID:8463621

  15. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography.

    PubMed

    Trasischker, Wolfgang; Werkmeister, René M; Zotter, Stefan; Baumann, Bernhard; Torzicky, Teresa; Pircher, Michael; Hitzenberger, Christoph K

    2013-11-01

    We developed a three-beam Doppler optical coherence tomography (OCT) system that enables measurement of the velocity vector of moving particles in three-dimensions (3-D). The spatial orientation as well as the magnitude of motion can be determined without prior knowledge of the geometry of motion. The system combines three spectral-domain OCT interferometers whose sample beams are focused at the sample by a common focusing lens at three different angles. This provides three spatially independent velocity components simultaneously from which the velocity vector can be reconstructed. We demonstrate the system in a simple test object (rotating disc), a flow phantom, and for blood flow measurements in the retina of a healthy human subject. Measurements of blood flow at a venous bifurcation achieve a good agreement between in- and outflow and demonstrate the reliability of the method. PMID:24247747

  16. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations.

    PubMed

    Ansmann, Albert; Wandinger, Ulla; Le Rille, Olivier; Lajas, Dulce; Straume, Anne Grete

    2007-09-10

    The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic+statistical) error of 10%-15%, 15%-30%, and 20%-35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50 to 200 Mm(-1); 700-shot averaging (50 km horizontal resolution) is required. Vertical signal resolution is 500 m in the lower troposphere and 1000 m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm(-1) and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%-35% relative uncertainty and a horizontal resolution of 10 km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%-30%. Vertical resolution is 2000 m. PMID:17846655

  17. AutoGate: fast and automatic Doppler gate localization in B-mode echocardiogram.

    PubMed

    Park, JinHyeong; Zhou, S Kevin; Simopoulos, Costas; Comaniciu, Dorin

    2008-01-01

    In this paper, we propose an algorithm for fast and automatic Doppler gate localization in spectral Doppler echocardiography using the B-mode image information. The algorithm has two components: 1) cardiac standard view classification and 2) gate location inference. For cardiac view classification, we incorporate the probabilistic boosting network (PBN) principle to local-structure-dependent object classification, which speeds up the processing time as it breaks down the computational dependency on the number of classes. The gate location is computed using a data-driven shape inference approach. Clinical evaluation was performed by implementing the algorithm on an ultrasound system. Experiment results show that the performance of the proposed algorithm is comparable to the Doppler gate placement by an expert user. To the best of our knowledge, this is the first algorithm that provides a real time solution to the automated Doppler gate placement in the clinical environment. PMID:18982610

  18. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  19. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  20. [Color Doppler sonography of focal abdominal lesions].

    PubMed

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  1. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    NASA Astrophysics Data System (ADS)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  2. The use of spectral skin reflectivity and laser doppler vibrometry data to determine the optimal site and wavelength to collect human vital sign signatures

    NASA Astrophysics Data System (ADS)

    Byrd, Kenneth A.; Kaur, Balvinder; Hodgkin, Van A.

    2012-06-01

    The carotid artery has been used extensively by researchers to demonstrate that Laser Doppler Vibrometry (LDV) is capable of exploiting vital sign signatures from cooperative human subjects at stando. Research indicates that, the carotid, although good for cooperative and non-traumatic scenarios, is one of the first vital signs to become absent or irregular when a casualty is hemorrhaging and in progress to circulatory (hypovolemic) shock. In an effort to determine the optimal site and wavelength to measure vital signs off human skin, a human subject data collection was executed whereby 14 subjects had their spectral skin reflectivity and vital signs measured at five collection sites (carotid artery, chest, back, right wrist and left wrist). In this paper, we present our findings on using LDV and re ectivity data to determine the optimal collection site and wavelength that should be used to sense pulse signals from quiet and relatively motionless human subjects at stando. In particular, we correlate maximum levels of re ectivity across the ensemble of 14 subjects with vital sign measurements made with an LDV at two ranges, for two scenarios.

  3. Evaluation of a pulsed ultrasonic Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Wells, M. K.

    1973-01-01

    The in vivo application of the pulsed ultrasound Doppler velocity meter (PUDVM) for measuring arterial velocity waveforms is reported. In particular, the performance of the PUDVM is compared with a hot film anemometer of proven accuracy.

  4. The Detection and Exclusion of the Prostate Neuro-Vascular Bundle (NVB) in Automated HIFU Treatment Planning Using a Pulsed-Wave Doppler Ultrasound System

    NASA Astrophysics Data System (ADS)

    Chen, Wohsing; Carlson, Roy F.; Fedewa, Russell; Seip, Ralf; Sanghvi, Narendra T.; Dines, Kris A.; Pfile, Richard; Penna, Michael A.; Gardner, Thomas A.

    2005-03-01

    Men with prostate cancer are likely to develop impotence after prostate cancer therapy if the treatment damages the neuro-vascular bundles (NVB). The NVB are generally located at the periphery of the prostate gland. To preserve the NVB, a Doppler system is used to detect and localize the associated blood vessels. This information is used during the therapy planning procedure to avoid treatment surrounding the blood vessel areas. The Sonablate®500 (Focus Surgery, Inc.) image-guided HIFU device is enhanced with a pulse-wave multi-gate Doppler system that uses the current imaging transducer and mechanical scanner to acquire Doppler data. Doppler detection is executed after the regular B-mode images are acquired from the base to the apex of the prostate using parallel sector scans. The results are stored and rendered in 3-D display, registered with additional models generated for the capsule, urethra, and rectal wall, and the B-mode data and treatment plan itself. The display of the blood flow can be in 2-D color overlaid on the B-mode image or in 3-D color structure. Based on this 3-D model, the HIFU treatment planning can be executed in automated or manual mode by the physician to remove originally defined treatment zones that overlap with the NVB (for preservation of NVB). The results of the NVB detection in animal experiments, and the 3-D modeling and data registration of the prostate will be presented.

  5. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    NASA Astrophysics Data System (ADS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  6. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report.

    PubMed

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer.Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes.The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%.Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making. PMID:26393306

  7. Clinical efficacy of the GnRH agonist (deslorelin) in dogs affected by benign prostatic hyperplasia and evaluation of prostatic blood flow by Doppler ultrasound.

    PubMed

    Polisca, A; Orlandi, R; Troisi, A; Brecchia, G; Zerani, M; Boiti, C; Zelli, R

    2013-08-01

    In six German Shepherds dogs, GnRH agonist implants (Deslorelin) were inserted subcutaneously one month after histological confirmation of benign prostatic hyperplasia (BPH). Prostatic volume (PV), characteristics of ejaculate, serum testosterone concentrations and Doppler parameters of prostatic and subcapsular arteries were detected at different time intervals, for 6 month. The prostatic volume showed a significantly reduction starting at day 37. The decrease in sperm concentration, motility and increase in morphological abnormal sperm were observed from day 22 to day 37, when it was no longer possible to obtain the ejaculate. The values of peak systolic velocity and end-diastolic velocity in prostatic and subcapsular arteries showed from day 11 a gradual decrease, significant at day 22 until day 37 and reaching the lowest values at day 52 until the end of observation. The power Doppler pixel intensity of both arteries showed a gradual decrease from day 5 until day 52. In particular, a significant decrease was observed for both arteries from day 11. Testosterone serum concentration decreased to undetectable levels by day 11 until the end of the observations. All these Doppler parameters and testosterone values were positively correlated with the prostatic volume. Furthermore, testosterone values were positively correlated with peak systolic velocity, end diastolic velocity and pixel numbers. The use of implants containing GnRH analogues, even in asymptomatic subjects, is effective for the control of BPH and the application of Doppler exam of prostatic blood flow represent an non-invasive tool for monitoring the response of medical treatment. PMID:23320475

  8. Photoacoustic Doppler Effect from Flowing Small Light-Absorbing Particles

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  9. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  10. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  11. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    PubMed

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds. PMID:15787312

  12. Comparison between doppler ultrasound resistive index, serum creatinine, and histopathologic changes in patients with kidney transplant dysfunction in early posttransplantation period: A single center study with review of literature.

    PubMed

    Patel, Kajal N; Patel, Nitin A; Gandhi, Shruti P

    2016-05-01

    To determine the relationship between resistive index (RI) measured by Doppler ultrasound, serum creatinine (SCr), and histopathological changes on biopsy during kidney trans- plant dysfunction in early postoperative period, we studied 47 kidney transplant patients; 61% of the patients had acute transplant rejection, 19% had acute tubular necrosis, 4% had calcineurin inhibitor toxicity, 11% had normal morphology in biopsy, and 5% had changes compatible with pyelonephritis. None of the study patients had interstitial fibrosis or tubular atrophy on biopsy. We found that the sensitivity and specificity of RI in diagnosing transplant dysfunction was highly variable depending on the selected cutoff value. Sensitivity of RI decreased and its specificity increased with increasing the RI thresholds. Using an RI threshold of 0.7 resulted in a high sensitivity of 78% at a cost of very low specificity 40%, whereas using an RI threshold of 0.9 resulted in 100% specificity at a cost of very low sensitivity 16%. Acceptable specificity was only achieved at the expense of very low sensitivity, resulting in poor utility of RI as a screening tool for dysfunction. We found that there were no significant differences in the mean RI value between patients with and without biopsy-proven transplant dysfunction. However, we found a significant correlation between SCr value and RI of 0.383, P = 0.007. PMID:27215246

  13. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  14. Optimizing Spectral Power Compression with respect to Inference Performance for Recognition of Tumor Patterns in Ultrasound Images

    PubMed Central

    Grunwald, Sorin; Neagoe, Victor-Emil

    2003-01-01

    Imaging modalities are widely used to explore and diagnose diseases. Feature extraction methods are used to quantitatively describe and identify objects of interest in acquired images, typically involving data compression. The extracted features are subject to clinical inference, whereby the compression ratio used for feature extraction can affect the inference performance. In this paper, a new method is introduced which allows for optimal data compression with respect to performance maximization of uncertain inference. The model introduced herein identifies objects of interest using selective data compression in the frequency domain. It quantifies the amount of information provided by the inference involving these objects, calculates the inference efficiency, and estimates its cost. By analyzing the effect of data compression on inference efficiency and cost, the method allows for the optimal selection of the compression ratio. The method is applied to prostate cancer diagnosis in ultrasound images. PMID:14728175

  15. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  16. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements. PMID:26780789

  17. [Physical principles, methodology, consistency, and safety in Doppler assessment of the fetal-placental circulation].

    PubMed

    Medina Castro, Néstor; Moreno Alvarez, Oscar; Guzmán Huerta, Mario; Hernández Andrade, Edgar

    2007-10-01

    Introduction of Doppler ultrasound in obstetrical practice has changed both management and understanding of several diseases that put at risk women and them fetuses. To establish necessary basics and correctly apply this technique, this review will focus in physical principles, acquisition methods, consistency, and safety issues of Doppler ultrasound, in order to improve precision, accuracy and interpretation of this methodology. PMID:18800581

  18. Influence of Doppler-tipped guidewire position in coronary artery on blood flow velocity

    NASA Astrophysics Data System (ADS)

    Melnik, Ivan S.; Dupouy, Patrick J.; Kvasnicka, Jan; Geschwind, Herbert J.

    1995-05-01

    A pulsatile blood flow model was used to estimate the influence of position of Doppler guide wires with 12 MHz forward looking ultrasound transducers on the average spectral peak velocity. Three 0.014-inch and three 0.018-inch Doppler guide wires were positioned in plastic tubes ranging from 1.7 mm to 8.0 mm internal diameter. Blood flow of 50, 100 and 200 ml/min was adjusted using a roller-pump. The flow velocity was lower by 54% near the wall than in the center of large tubes (diameter 8.0 mm). In tubes of 2.9 mm and 4.2 mm in diameter the maximum variations were 11% and 22.5% for the 0.014-inch guide wire and 7.5% and 20% for the 0.018-inch guide wire, respectively. No variance in velocity related to wire position was observed in small (1.7 mm) tubes. The system was not sensitive to angular displacement of the guide wire in the range of +/- 30 degree(s). These results demonstrate that intravascular Doppler ultrasound flowmeter may be accurately utilized for measurements of blood flow velocity in small coronary arteries without any need to reposition the guidewire.

  19. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Ultrasound, color - normal umbilical cord (image)

    MedlinePlus

    ... is a normal color Doppler ultrasound of the umbilical cord performed at 30 weeks gestation. The cord ... the cord, two arteries and one vein. The umbilical cord is connected to the placenta, located in ...

  1. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  2. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  3. Intravascular ultrasound

    MedlinePlus

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube called a catheter. This ultrasound catheter is inserted ...

  4. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Koïtka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-09-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application in healthy subjects. This reflex may be impaired in diabetic patients. The work presents a signal processing providing the clarification of this phenomenon. Scalogram analyses of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied. The results show that, at rest, the scalogram energy of each frequency band is significantly lower for diabetic patients than for healthy subjects, but the scalogram relative energies do not show any statistical difference between the two groups. Moreover, the neurogenic and endothelial related metabolic activities are significantly higher during the progressive pressure than at rest, in healthy and diabetic subjects. However, the relative contribution of the endothelial related metabolic activity is significantly higher during the progressive pressure than at rest, in the interval 200-400 s following the beginning of the pressure application, but only for healthy subjects. These results may improve knowledge on cutaneous microvascular responses to injuries or local pressures initiating diabetic complications.

  5. Comparison of ultrasound biomicroscopy and spectral-domain anterior segment optical coherence tomography in evaluation of anterior segment after laser peripheral iridotomy

    PubMed Central

    Ma, Xiao-Yun; Zhu, Dan; Zou, Jun; Zhang, Wen-Jie; Cao, Yi-Lin

    2016-01-01

    AIM To quantitatively assess narrow anterior chamber angle using spectral-domain anterior segment optical coherence tomography (SD-AS-OCT) and ultrasound biomicroscopy (UBM), and to evaluate the correlations and consistency between SD-AS-OCT and UBM. METHODS Fifty-five eyes from 40 patients were examined. Patients were diagnosed with primary angle-closure glaucoma (PACG) remission (11 eyes from 8 patients), primary angle closure (PAC, 20 eyes from 20 patients) and PAC suspect (24 eyes from 12 patients). Each eye was examined by SD-AS-OCT and UBM after laser peripheral iridotomy (LPI). The measurements of SD-AS-OCT were angle open distance (AOD), anterior chamber angle (ACA), trabecular iris angle (TIA), and trabecular iris space area (TISA). UBM measurements were AOD and TIA. Correlations of AOD500 and TIA500 between UBM and AS-OCT were assessed. All parameters were analysed by SPSS 16.0 and MedCalc. RESULTS ACA, TIA and AOD measured by SD-AS-OCT reached a maximum at the temporal quadrant and minimum at the nasal quadrant. TISA reached the maximum at the inferior and minimum at the superior quadrant. Group parameters of AOD500 and AOD750 showed a linear positive correlation, and AOD750 had less variability. UBM outcomes of AOD500 and TIA500 were significantly smaller than those of SD-AS-OCT. The results of the two techniques were correlated at the superior, nasal and inferior quadrants. CONCLUSION Both UBM and SD-AS-OCT are efficient tools for follow-up during the course of PACG. We recommended using parameters at 750 µm anterior to the sclera spur for the screening and follow-up of PACG and PAC. The two methods might be alternatives to each other. PMID:27158613

  6. Doppler tracking

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  7. The portable Doppler: practical applications in EMS care.

    PubMed

    O'Keefe, K M; Bookman, L

    1976-12-01

    The practical application of a new, commercially available, portable Doppler ultrasound device to the operation of a busy city-county emergency department and ambulance service was investigated. An initial evaluation using healthy volunteers confirmed accuracy and reproducibility of the Doppler blood pressure readings comparable to that of auscultatory and palpatory measurement. In selected patients, the Doppler readings correlated well with readings from patients who had intra-arterial lines. When used in several low flow states, such as testing adequacy of cardiopulmonary resuscitation (CPR) and verification of electromechanical dissociation, the Doppler aided the clinical evaluation and treatment in many cases where traditional methods were useless. The Doppler was also helpful in the evaluation of local arterial injury but this unit was not found sensitive enough for venous disease. Finally, the Doppler enhanced the obtaining of vital signs in the noisy environment of our ambulances. PMID:1018378

  8. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  9. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  10. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  11. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  12. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  13. In-suit Doppler technology assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  14. An introduction and guide to effective Doppler assessment.

    PubMed

    Benbow, Maureen

    2014-12-01

    Accurate and timely diagnosis of leg ulceration is an essential factor in making evidence-based, effective decisions regarding patient management with the aim of swift wound healing and/or referral to the appropriate specialty. Nurses are professionally responsible for ensuring that patients receive the appropriate assessment and evidence-based management. This article examines the most up-to-date guidance on Doppler ultrasound as a key element of this assessment. Approaches to assessment will be explored, with emphasis on the need to include a Doppler ultrasound as one key element of a larger, holistic assessment. An introduction to the ankle-brachial pressure index (ABPI) will be given, followed by a step-by-step guide to standard procedures for carrying out a full Doppler ultrasound. Alternative options for measuring ABPI are also provided. PMID:25478852

  15. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  16. Doppler and speckle methods for diagnostics in dentistry

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander

    2002-02-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.

  17. Medical ultrasound systems

    PubMed Central

    Powers, Jeff; Kremkau, Frederick

    2011-01-01

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue. PMID:22866226

  18. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  19. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  20. DOPPLER WEATHER SYSTEM

    Energy Science and Technology Software Center (ESTSC)

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  1. Cerebral ultrasound images in prenatal cytomegalovirus infection.

    PubMed

    Tomà, P; Magnano, G M; Mezzano, P; Lazzini, F; Bonacci, W; Serra, G

    1989-01-01

    A male newborn with prenatal cytomegalovirus infection was referred for cranial ultrasound. The cranial ultrasound demonstrated areas of increased echogenicity in the thalamic and gray nuclei resembling "a branched candlestick". Doppler technique located the "branched candlestick" along the thalamostriate arteries. This image is particularly interesting because to our knowledge it has never before been described in congenital cytomegalovirus infection, but only in congenital rubella. PMID:2550848

  2. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced. PMID:14694774

  3. TEMPERATURE INFLUENCES ON VASCULAR DYNAMICS IN CATTLE AS MEASURED BY DOPPLER ULTRASONOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two preliminary studies were performed to determine if Doppler-image ultrasound can be used to document the vascular changes of cattle under hot and cold conditions. Three calves per study (320 ± 38 kg) were acclimated to thermoneutrality (17.5oC). Three ultrasound measurements per animal were tak...

  4. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  5. TEMPERATURE INFLUENCES UPON VASCULAR DYNAMICS AS MEASURED BY DOPPLER ULTRASONOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two preliminary studies were performed using doppler-image ultrasound to document the vascular changes of cattle under hot and cold conditions. Three calves per study (320 ± 38 kg) were acclimated to thermoneutrality in the Brody Environmental Center at the University of Missouri. A minimum of thr...

  6. Endoscopic ultrasound

    MedlinePlus

    Endoscopic ultrasound is a type of imaging test. It is used to see organs in and near the digestive ... Ultrasound is a way to see the inside of the body using high-frequency sound waves. Endoscopic ...

  7. Scrotal ultrasound

    MedlinePlus

    ... the scrotal sac to help transmit the sound waves. A handheld probe (the ultrasound transducer) is then ... The ultrasound machine sends out high-frequency sound waves. These waves reflect off areas in the scrotum ...

  8. Pregnancy ultrasound

    MedlinePlus

    ... 3D ultrasound References Richards DS. Obstetrical ultrasound: Imaging, dating, and growth. In: Gabbe SG, Niebyl JR, Simpson ... the first to achieve this important distinction for online health information and services. Learn more about A. ...

  9. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  10. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  11. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  12. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  13. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed. PMID:25523277

  14. Three-dimensional power Doppler angiography

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyu; Durand, Louis-Gilles; Holdsworth, David W.; Fenster, Aaron

    1997-05-01

    The purpose of the present study is to improve the quantification of peripheral arterial stenosis using 3D power Doppler angiography and investigate the potential of this technique for generating the arterial tree of the lower limb for surgery planning. Stenotic wall-less agar arteries were created to simulate the femoral and carotid arteries. 3D power Doppler angiograms of those arteries were generated under different hemodynamic conditions using a 3D ultrasound imaging system developed by the Life Imaging System Inc. The effect of multiple stenoses on the 3D power Doppler angiograms was investigated using the femoral arterial phantoms. Using the carotid arterial phantoms, 3D power Doppler angiograms of the carotid arteries were generated and compared with the known geometry. To image a whole lower limb arterial tree for lower limb salvage surgery planning, multiple scans are required to cover the entire field-of- view interested by using a water-coupled scanner. Preliminary in vivo test was performed using water-coupled scanning.

  15. Doppler tomography of accretion in binaries

    NASA Astrophysics Data System (ADS)

    Steeghs, D.

    2004-03-01

    Since its conception, Doppler tomography has matured into a versatile and widely used tool. It exploits the information contained in the highly-structured spectral line-profiles typically observed in mass-transferring binaries. Using inversion techniques akin to medical imaging, it permits the reconstruction of Doppler maps that image the accretion flow on micro-arcsecond scales. I summarise the basic concepts behind the technique and highlight two recent results; the use of donor star emission as a means to system parameter determination, and the real-time movies of the evolving accretion flow in the cataclysmic variable WZ Sge during its 2001 outburst. I conclude with future opportunities in Doppler tomography by exploiting the combination of superior data sets, second generation reconstruction codes and simulated theoretical tomograms to delve deeper into the physics of accretion flows.

  16. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  17. Interventional ultrasound

    SciTech Connect

    Holm, H.H.; Kristensen, J.K.

    1985-01-01

    This book discusses: Introduction to interventional ultrasound/handling of aspirated material/general principles of fine needle aspiration cytology/procedure and principles in ultrasonically guided puncture/puncture of focal liver lesions/intraoperative puncture of the liver guided by ultrasound/Interventional ultrasound in cancer therapy/Interventional echocardiography/Fine-needle aspiration biopsy: Are there any risks./Puncture of renal mass lesions/Intrauterine needle diagnosis/Percutaneous nephrolithotomy.

  18. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  19. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  20. A rotating torus phantom for assessing color Doppler accuracy.

    PubMed

    Stewart, S F

    1999-10-01

    A rotating torus phantom was designed to assess the accuracy of color Doppler ultrasound. A thin rubber tube was filled with blood analog fluid and joined at the ends to form a torus, then mounted on a disk submerged in water and rotated at constant speeds by a motor. Flow visualization experiments and finite element analyses demonstrated that the fluid accelerates quickly to the speed of the torus and spins as a solid body. The actual fluid velocity was found to be dependent only on the motor speed and location of the sample volume. The phantom was used to assess the accuracy of Doppler-derived velocities during two-dimensional (2-D) color imaging using a commercial ultrasound system. The Doppler-derived velocities averaged 0.81 +/- 0.11 of the imposed velocity, with the variations significantly dependent on velocity, pulse-repetition frequency and wall filter frequency (p < 0.001). The torus phantom was found to have certain advantages over currently available Doppler accuracy phantoms: 1. It has a high maximum velocity; 2. it has low velocity gradients, simplifying the calibration of 2-D color Doppler; and 3. it uses a real moving fluid that gives a realistic backscatter signal. PMID:10576268

  1. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  2. Directional acoustic measurements by laser Doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) are used as velocity microphones to measure sound pressure level in the range from 90 to 130 dB, spectral components, and two-point correlation functions for acoustic-noise source identification. Close agreement between LDV and microphone data is observed. Directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet noise.

  3. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  4. Advances in Direct Detection Doppler Lidar Technology and Techniques

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper we will describe the ground based Doppler lidar system which is mounted in a modified delivery van to allow field deployment and operations. The system includes an aerosol double edge receiver optimized for aerosol backscatter Doppler measurements at 1064 nm and a molecular double edge receiver which operates at 355 nm. The lidar system will be described including details of the injection seeded diode pumped laser transmitter and the piezoelectrically tunable high spectral resolution Fabry Perot etalon which is used to measure the Doppler shift. Examples of tropospheric wind profiles obtained with the system will also be presented to demonstrate its capabilities.

  5. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  6. Color Doppler flow imaging.

    PubMed

    Foley, W D; Erickson, S J

    1991-01-01

    The performance requirements and operational parameters of a color Doppler system are outlined. The ability of an operator to recognize normal and abnormal variations in physiologic flow and artifacts caused by noise and aliasing is emphasized. The use of color Doppler flow imaging is described for the vessels of the neck and extremities, upper abdomen and abdominal transplants, obstetrics and gynecology, dialysis fistulas, and testicular and penile flow imaging. PMID:1898567

  7. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of endometrial pathology

    PubMed Central

    POP, CIPRIAN MIHAITA; MIHU, DAN; BADEA, RADU

    2015-01-01

    Ultrasound is the reference imaging procedure used for the exploration of endometrial pathology. As medical procedures improve and the requirements of modern medicine become more demanding, gray-scale ultrasound is insufficient in establishing gynecological diagnosis. Thus, more complex examination techniques are required: Doppler ultrasound, contrast-enhanced ultrasound (CEUS), 3D ultrasound, etc. Contrast-enhanced ultrasound is a special examination technique that gains more and more ground. This allows a detailed real-time evaluation of microcirculation in a certain territory, which is impossible to perform by Doppler ultrasound. The aim of this review is to synthesize current knowledge regarding CEUS applications in endometrial pathology, to detail the technical aspects of endometrial CEUS and the physical properties of the equipment and contrast agents used, as well as to identify the limitations of the method. PMID:26733740

  8. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  9. Differences in Central Corneal Thickness between Spectral Domain-Optical Coherence Tomography and Ultrasound Pachymetry in Patients with Dry Eye Disease

    PubMed Central

    Celebi, Ali Riza Cenk; Mirza, G. Ertugrul

    2016-01-01

    Purpose. To compare central corneal thickness (CCT) values via Spectral Domain-Optical Coherence Tomography (SD-OCT) and ultrasonic pachymetry in patients with severe dry eye disease (DED) to determine the level of agreement between these 2 methods. Methods. The paired samples t-test was used to compare CCT values in severe DED patients. Matching analysis between methods was performed using intraclass correlation coefficient (ICC). Intrasession reliability of the measurement methods was calculated via the concordance correlation coefficient (CCC), variation equivalent, and Pearson's correlation coefficient. The Bland-Altman procedure was used to graphically represent the differences between CCT values. Results. The study included 56 eyes of 24 female and 4 male patients. Mean age of the patients was 50.9 ± 11.3 years. Mean CCT via Cirrus SD-OCT was 523.82 ± 30.98 μm versus 530.050 ± 31.85 μm via ultrasonic pachymetry (paired samples t-test, P < 0.001). The Bland-Altman plot showed good agreement between the examiners. The ICC for repeatability was 0.974. The CCC between the 2 methods' CCT values was 0.973. The variation equivalent was 0.976 and Pearson's correlation coefficient was 99.3%, which also indicated high correlation between the 2 methods' measurements. Conclusions. The present findings show that in patients with severe DED Cirrus SD-OCT provides reliable intraobserver CCT values. PMID:27375899

  10. Ultrasound - Breast

    MedlinePlus

    ... discharge) and to characterize potential abnormalities seen on mammography or breast magnetic resonance imaging (MRI). Ultrasound imaging ... supply in breast lesions . Supplemental Breast Cancer Screening Mammography is the only screening tool for breast cancer ...

  11. Transvaginal ultrasound

    MedlinePlus

    ... germ cell neoplasms, sex-cord stromal tumors. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. ... oviduct, ovary, ultrasound imaging of pelvic structures. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. ...

  12. Abdominal Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  13. Obstetrical Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  14. Thyroid ultrasound

    MedlinePlus

    ... Performed Ultrasound is a painless method that uses sound waves to create images of the inside of the ... neck to help with the transmission of the sound waves. Next, the technician moves a wand, called a ...

  15. Breast ultrasound

    MedlinePlus

    ... JavaScript. Breast ultrasound is a test that uses sound waves to examine the breasts. How the Test is ... to the left or right. The device sends sound waves to the breast tissue. The sound waves help ...

  16. Pregnancy ultrasound

    MedlinePlus

    ... findings that might indicate an increased risk for Down syndrome A pregnancy ultrasound may also be done in ... weeks of pregnancy to look for signs of Down syndrome or other problems in the developing baby. This ...

  17. [Interventional ultrasound].

    PubMed

    Blázquez Sánchez, N; Fernández Canedo, I; Valdés Vilches, L; de Troya Martín, M

    2015-11-01

    High-frequency ultrasound has become increasingly used in dermatology. This technique is accessible, non-invasive, and rapid and provides information in real time. Consequently, it has become of great diagnostic value in dermatology. However, high-frequency ultrasound also has a promising future as a complementary technique in interventional diagnostic procedures, even though its application in this field has been little studied by dermatologists. PMID:26895944

  18. Laser Doppler method for investigation of blood microcirculation in mucous membrane and tooth pulp

    NASA Astrophysics Data System (ADS)

    Sedykh, Alexey V.; Kharish, Natalia A.; Karpovich, Alexander; Lepilin, Alexander V.; Ulyanov, Sergey S.

    2001-05-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some physiological tests in combination with LDF technique are suggested as a new diagnostic tool. In addition, the results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented.

  19. Cross-frequency Doppler sensitive signal processing

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2005-04-01

    When there is relative motion between an acoustic source and a receiver, a signal can be Doppler shifted in frequency and enter or leave the processing bins of the conventional signal processor. The amount of the shift is determined by the frequency and the rate of change in the distance between the source and the receiver. This frequency Doppler shifting can cause severe reductions in the processors performance. Special cross-frequency signal processing algorithms have recently been developed to mitigate the effects of Doppler. They do this by using calculation paths that cut across frequency bins in order to follow signals during frequency shifting. Cross-frequency spectral grams of a fast-flying sound source were compared to conventional grams, to evaluate the performance of this new signal processing method. The Doppler shifts in the data ranged up to 70 contiguous frequency bins. The resulting cross-frequency grams showed that three paths provided small to no improvement. Four paths showed improvements for either up-frequency or down-frequency shifting, but not for both. Two paths showed substantial improvement for both up-frequency and down-frequency shifting. The cross-frequency paths will be defined, and comparisons between conventional and cross-frequency grams will be presented. [Work supported by Miltec Corporation.

  20. Ultrasound diagnosis of uterine myomas.

    PubMed

    Fascilla, Fabiana D; Cramarossa, Paola; Cannone, Rossella; Olivieri, Claudiana; Vimercati, Antonella; Exacoustos, Caterina

    2016-06-01

    Myomas represent a large part of benign gynecological pathology, widely spread in fertile female population. First step to diagnose fibroids is ultrasound (US) that can be 2-dimensional (2D), 3-dimensional (3D), Color Doppler (CD) and sonohysterography (SHG). This review develops according to MUSA's sonographic features (Morphological Uterus Sonographic Assessment). One of the main topic of interest for ultrasonographer today is endo/myometrial junctional zone (JZ), because it may be useful to discern a diagnosis of myoma and adenomyosis. Another important aspect of ultrasound is the analysis of vascularization in front of a uterine lesion. Indeed, vascular pattern can be used to make differential diagnosis between myoma-adenomyosis and leiomyosarcomas. Myomas should be described accurately according to sonographic guidelines. Sonographic features correlated with symptoms should guide an appropriate surgical or medical treatment. PMID:27014801

  1. [Ultrasound imaging of Dupuytren's contracture].

    PubMed

    Créteur, V; Madani, A; Gosset, N

    2010-06-01

    Dupuytren's contracture is characterized by two underlying lesions, nodules and cords. These involve the palmar fascia at the distal palmar crease, especially at the level of the third and fourth rays with progressive disabling finger contracture. The superficial palmar aponeurosis appears as a thin echogenic lamellar structure overlying the flexor tendons. The demonstration of hypoechoic bands adhering to the marging of the flexor tendons and deep surface of the dermis appears to be pathognomonic of the disease. Compared to tendons, early nodules are hypoechoic and typically hypervascular whereas older nodules are iso- to hyperechoic, without hypervascular Doppler signal. Ultrasound can sometimes demonstrate arterial encasement by fibrous or scarring tissue. Ultrasound therefore is very useful for the differential diagnosis of pathologies involving the palmar surface of the hand, for the early detection of Dupuytren's contracture, and for the detection of complication, especially vascular. These data may have an impact on management. PMID:20808269

  2. Evaluation of color Doppler ultrasonography in diagnosing hepatic alveolar echinococcosis.

    PubMed

    Tao, Song; Qin, Zhao; Haitao, Li; Lei, Yang; Lanhui, Yao; Qin, Xu; Yongquan, Lu; Hao, Wen

    2012-02-01

    To assess the accuracy of color Doppler ultrasonography in diagnosing hepatic alveolar echinococcosis, 129 patients were examined at the First Affiliated Hospital of Xinjiang Medical University between July 2004 and June 2010. Those patients suspected of having hepatic alveolar echinococcosis were examined and diagnosed by color Doppler ultrasound. All the cases were compared with the gold standard. The findings of their sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio and 95% confidence interval were recorded. Sensitivity: 95% (95% confidence interval: 90.7%-99.3%); specificity: 20.7% (95% confidence interval: 6.0%-35.4%); positive predictive value: 80.5%; negative predictive value: 54.5%; positive likelihood ratio: 1.2: negative likelihood ratio: 0.2. Our study indicates that color Doppler ultrasonography, when used in diagnosing hepatic alveolar echinococcosis, has high sensitivity although specificity is low. Color Doppler ultrasound is, thus, considered to be an efficient means for diagnosing hepatic alveolar echinococcosis. PMID:22230130

  3. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  4. Additional first-trimester ultrasound markers.

    PubMed

    Sonek, J; Nicolaides, K

    2010-09-01

    The first trimester (11-13 +6 weeks) ultrasound examination is useful for several reasons: determination of an accurate date of confinement, diagnostic purposes, and screening for fetal defects. Nuchal translucency measurement combined with maternal serum markers (free b-human chorionic gonadotropin and pregnancy-associated plasma protein A) is the mainstay of first-trimester screening for chromosomal defects. However, over the past decade additional ultrasound markers have been developed that improve the performance of this type of screening. The novel markers include evaluation of the nasal bone, fronto-maxillary angle measurement, and Doppler evaluations of the blood flow across the tricuspid valve and in the ductus venosus. PMID:20638573

  5. Pocket ultrasound devices for focused echocardiography

    PubMed Central

    2012-01-01

    Pocket ultrasound devices have recently been developed and may be particularly useful for emergency assessment. These devices can be stored in a pocket but share only some technical features with conventional echocardiographic machines. Two-dimensional imaging and color flow mode are available, with possible adjustments of global gain and depth, but Doppler features are lacking. These devices are particularly fitted for focused echocardiography. In this issue, a trial compares a pocket ultrasound device with a conventional echocardiographic machine for focused echocardiography in patients admitted to the emergency department. This commentary will put these findings into perspective. PMID:22748159

  6. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  7. Review on Acoustic Transducers for Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Ogi, H.; Hirao, M.

    2015-08-01

    Determination of elastic constants using resonant ultrasound spectroscopy requires transducers that can measure resonance frequencies accurately and identify the vibrational mode of each resonance frequency. We developed three transducers, namely an electromagnetic acoustic transducer, a tripod piezoelectric transducer coupled with a laser Doppler interferometer, and an antenna transmission transducer, for use with various materials and in different measurement circumstances. Their capability in resonant ultrasound spectroscopy and their applications are described.

  8. The Doppler spread theory and parameterization revisited

    NASA Astrophysics Data System (ADS)

    Hines, Colin O.

    2004-07-01

    The author's earlier Doppler Spread Theory (DST) and Doppler Spread Parameterization (DSP) are revisited with a new understanding of the dichotomous roles played by nonlinearity in Eulerian and Lagrangian coordinates, respectively. An embryo Lagrangian DST is introduced and employed to assess the original DST. Earlier results near the Eulerian spectral peak are found to be reasonably valid, whereas those at greater vertical wavenumber are confirmed to have produced too much spreading. The earlier DSP is found to need little if any change, though specific values are suggested for its two most important ``fudge factors''. In a more general context, the continuing identity of a wave undergoing certain nonlinear interactions with other waves is discussed.

  9. Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta

    PubMed Central

    Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.

    2015-01-01

    Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104

  10. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  11. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  12. Laser-diode based 10MHz photoacoustic Doppler flowmetry at 830 nm

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2012-02-01

    Photoacoustic Doppler Flowmetry has several potential advantages over its purely acoustical counterpart. The key ones are better inherent contrast and potential molecular information. It is therefore highly desired to continue to develop this modality into a viable complementary tool alongside with Doppler Ultrasound flowmetry. Working towards this goal we have constructed a Photoacoustic Doppler setup based on a combined pair of laser diodes at 830nm and a 10MHz focused acoustical transducer. Using tone-burst intensity modulation, depth-resolved Doppler spectrograms of a phantom vessel containing flowing suspension of carbon particles, were obtained. In order to investigate the conditions required for successful photoacoustic Doppler measurement in blood a k-space photoacoustic simulation was performed. It tested the photoacoustic response which is obtained for moving random spatial distributions of red blood cells and the effect of several parameters, such as particles density, ultrasonic frequency and optical spot size.

  13. Primary hypertrophic osteoarthropathy: ultrasound and MRI findings.

    PubMed

    Adams, Brook; Amin, Tania; Leone, Valentina; Wood, Mark; Kraft, Jeannette K

    2016-05-01

    Primary hypertrophic osteoarthropathy is a rare genetic disorder related to failures in prostaglandin metabolism. Patients present with joint pain, limb enlargement, skin thickening and finger clubbing. Radiographs show characteristic periosteal reaction and thickening along the long bones. We present MRI and US findings in a child with the condition. Ultrasound showed echogenic tissue surrounding the long bones, presumably reflecting oedema and inflammatory tissue. Doppler sonograms demonstrated increased vascularity on the surface of some superficial bony structures. PMID:26939972

  14. [Quantitative ultrasound].

    PubMed

    Barkmann, R; Glüer, C-C

    2006-10-01

    Methods of quantitative ultrasound (QUS) can be used to obtain knowledge about bone fragility. Comprehensive study results exist showing the power of QUS for the estimation of osteoporotic fracture risk. Nevertheless, the variety of technologies, devices, and variables as well as different degrees of validation of the single devices have to be taken into account. Using methods to simulate ultrasound propagation, the complex interaction between ultrasound and bone could be understood and the propagation could be visualized. Preceding widespread clinical use, it has to be clarified if patients with low QUS values will profit from therapy, as it has been shown for DXA. Moreover, the introduction of quality assurance measures is essential. The user should know the limitations of the methods and be able to interpret the results correctly. Applied in an adequate manner QUS methods could then, due to lower costs and absence of ionizing radiation, become important players in osteoporosis management. PMID:16896637

  15. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting. PMID:20385332

  16. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  17. Cerebral Lateralization and General Intelligence: Gender Differences in a Transcranial Doppler Study

    ERIC Educational Resources Information Center

    Njemanze, P.C.

    2005-01-01

    The present study evaluated cerebral lateralization during Raven's progressive matrices (RPM) paradigm in female and male subjects. Bilateral simultaneous transcranial Doppler (TCD) ultrasound was used to measure mean blood flow velocities (MBFV) in the right and left middle cerebral arteries (MCAs) in 24 (15 females and 9 males) right-handed…

  18. Temperature influences upon vascular dynamics in cattle measured by doppler ultrasonography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two preliminary studies were performed to determine if Doppler-image ultrasonography can be used to document vascular changes of cattle under hot and cold conditions. Three calves per study (320 ± 38 kg) were acclimated to thermoneutrality (17.5oC). Ultrasound measurements were taken of the median...

  19. Mild fetal renal pelviectasis. Differentiation from hilar vascularity using color Doppler sonography.

    PubMed

    Betz, B W; Hertzberg, B S; Carroll, B A; Bowie, J D

    1991-05-01

    Ultrasound often detects a sonolucent region in the hilum of the fetal kidney. Although this sonolucency is usually assumed to represent mild dilatation of the fetal renal collecting system, in pediatric and adult kidneys blood vessel lumina can simulate pelviectasis. We used color Doppler ultrasound to differentiate the fetal renal collecting system from hilar blood vessels and to evaluate how often blood vessels account for the sonolucent region often demonstrated in the renal hilum during antenatal sonography. Twenty-nine kidneys in fetuses with sonolucent hilar regions greater than 2 mm in anteroposterior (AP) dimension were studied with color Doppler ultrasound. Doppler signal was demonstrated in blood vessels adjacent to, but not within, the sonolucent area in the hilum of all 29 kidneys. Based on the absence of color signal in the sonolucent hilar regions studied, with color signal seen in adjacent blood vessels, these regions were felt to represent mildly dilated collecting systems rather than renal vasculature. We conclude that color Doppler ultrasound can differentiate mild pelviectasis from hilar blood vessels in the fetal kidney. Sonolucent areas measuring 2 mm or greater in AP dimension are unlikely to be attributable to renal vasculature. PMID:2051542

  20. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  1. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  2. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  3. Color-Doppler US features of a pyogenic granuloma of the upper dorsum tongue.

    PubMed

    Cantisani, Vito; Del Vecchio, Alessandro; Fioravanti, Eloisa; Romeo, Umberto; D'Ambrosio, Ferdinando

    2016-03-01

    The diagnosis of oral lesions is based on clinical history, clinical examination and imaging exams. Different imaging modalities are available for the diagnosis and follow-up of these lesions such as computed tomography, magnetic resonance imaging, color-Doppler ultrasound, angiography and positron emission tomography. To date, color-Doppler ultrasound is considered the first-line imaging approach since it provides a non-invasive, cost-effective, real-time evaluation of oral anomalies. It provides both morphological and vascular information which are useful to determine the best therapeutic options. Differential diagnosis of a bleeding lobular mass of the tongue is, however, not always easy and includes several vascular and non-vascular lesions. We present herein a case of pyogenic granuloma of the tongue that at Color-Doppler US appeared as hypervascular lesion. PMID:26941877

  4. Browsing a wealth of millimeter-wavelength doppler spectra data

    SciTech Connect

    Johnson,K.; Luke,E.; Kollias, P.; Remillard, J.; Widener, K.; Jensen, M.

    2010-03-15

    The ARM Climate Research Facility has collected an extensive archive of vertically pointing millimeter wavelength Doppler radar spectra at both 35 and 95 GHz. These data are a rich potential source of detailed microphysical and dynamical cloud and precipitation information. The recording of spectra, which is ongoing, began at the Southern Great Plains site in September of 2003, at the North Slope of Alaska site in April 2004, and at Tropical Western Pacific sites in 2006. Spectra are also being collected during ARM Mobile Facility deployments. The data’s temporal resolution is as high as two seconds, at height intervals of 45 to 90 m. However, the sheer volume of available data can be somewhat daunting to access and search for specific features of interest. Here we present a user interface for spectra browsing, which allows the user to view time-height images of radar moments, select a time or height of interest, and then “drill down” through images of spectrograms to individual Doppler spectra or time- and height-sequences of spectra. Also available are images summarizing spectral characteristics, such as number of spectral peaks, spectral shape information (skewness and kurtosis), moment uncertainty estimates, and hydrometeor vs. clutter identification as produced by the ARM MicroARSCL (Microphysical Active Remote Sensing of Clouds) value-added product. In addition to the access and visualization tools, we are developing a Doppler spectra simulator capable of generating Doppler spectra from liquid, mixed-phase, and solid cloud constituents and precipitation. The Doppler spectra simulator can be used as an interface between explicit microphysics models and Doppler spectra observations from the ARM radars. The plan is to ultimately make the spectra simulator available from within the spectra browser, allowing a user to associate observed spectra with the microphysical conditions capable of producing them.

  5. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  6. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  7. Ultrasound findings in cutaneous sarcoidosis

    PubMed Central

    Dybiec, Ewa; Pietrzak, Aldona; Kieszko, Robert; Kanitakis, Jean

    2015-01-01

    The diagnosis of cutaneous sarcoidosis relies mainly on the patient's history, presence of characteristic skin lesions and histological examination that shows a granulomatous, non-necrotizing dermal infiltration. The aim of the study was to assess the ultrasonographic features of cutaneous lesions of sarcoidosis before and after treatment. A 38-year-old woman with systemic sarcoidosis and specific cutaneous lesions was treated with systemic steroids followed by hydroxychloroquine. Ultrasonographic examination of the cutaneous sarcoidosis lesions was performed with a Philips iU 22 and Siemens Acuson S 2000 device, with the use of linear 15 MHz and 17 MHz transducers. Histological examination of skin lesions showed characteristic, naked, non-necrotizing granulomas in the upper dermis. Ultrasound examination revealed well-demarcated, hypoechogenic changes. Power-Doppler scan revealed increased vascularity within the lesions and the surrounding tissue. Clinical improvement of the skin lesions was confirmed by ultrasound examination, which showed a decrease in their size and normalization of dermal echogenicity and vascularity. Ultrasound examination can show cutaneous sarcoidosis lesions and their regression after appropriate treatment. PMID:25821428

  8. Parallax effects in laser Doppler spectroscopy

    SciTech Connect

    Smirnov, V I

    1999-12-31

    Parallax effects in laser Doppler spectroscopy, associated with the variation of the scattering angle during motion of a particle through the probed volume, were investigated by a numerical simulation method based on the Mie scattering theory. It was found that, in general, the shifts of the spectral profile parameters (the average frequency, broadening, asymmetry, and kurtosis) become significant as the parallax number N{sub {psi}{alpha}=}(2/{pi}){psi}{alpha} ({psi} is the angular size of the probed volume, {alpha} = {pi}d/{lambda} is the relative particle diameter) increases. The anomalous ranges of the parameters of the particle and of the optical system, in which marked distortions (such as the polymodal nature and the splitting of the spectral profile) are observed even for a low parallax number (N{sub {psi}{alpha}} || 1), were discovered. (laser applications and other topics in quantum electronics)

  9. Vector Doppler Method Based on an Automatic Transverse Angle Tracking Procedure

    NASA Astrophysics Data System (ADS)

    Dallai, A.; Boni, E.; Francalanci, L.; Tortoli, P.

    Traditional Doppler methods only measure the axial component of the velocity vector. The lack of information on the beam-to-flow (Doppler) angle creates an ambiguity which can lead to large errors in velocity magnitude estimates. An original approach was recently introduced, in which two ultrasound beams with known relative orientation are directed towards the same vessel, one being committed to perform a Doppler measurement, while the second beam has the specific task of detecting the beam-to-flow angle. In this paper, an angle-tracking procedure allowing the Doppler angle to be automatically determined with high accuracy is presented. The procedure is based on the real-time estimation of suitable Doppler spectrum parameters obtained from an M-line associated to a sub-aperture of a linear array probe. Such parameters are used to steer the M-line towards a direction corresponding to a desired beam-flow angle. Knowledge of this angle is finally exploited to obtain the velocity magnitude through the classic Doppler equation related to the second beam. The implementation of the method on a new ultrasound machine and its validation through in vitro and in vivo tests are reported.

  10. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  11. Venous Ultrasound (Extremities)

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  12. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  13. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  14. Are Prenatal Ultrasound Scans Associated with the Autism Phenotype? Follow-Up of a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Stoch, Yonit K.; Williams, Cori J.; Granich, Joanna; Hunt, Anna M.; Landau, Lou I.; Newnham, John P.; Whitehouse, Andrew J. O.

    2012-01-01

    An existing randomised controlled trial was used to investigate whether multiple ultrasound scans may be associated with the autism phenotype. From 2,834 single pregnancies, 1,415 were selected at random to receive ultrasound imaging and continuous wave Doppler flow studies at five points throughout pregnancy (Intensive) and 1,419 to receive a…

  15. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  16. Doppler ultrasound exam of an arm or leg

    MedlinePlus

    ... contractions brought on by cold or emotion) Venous occlusion (closing of a vein) Venous reflux (blood flow going the wrong direction in veins) Arterial occlusion from atherosclerosis This test may also be done ...

  17. Doppler ultrasound exam of an arm or leg

    MedlinePlus

    ... Arteriosclerosis of the arms or legs Blood clot (deep vein thrombosis) Venous insufficiency The test may also be used ... a blood clot Blood clot in a vein (DVT) Narrowing or widening of an artery Spastic arterial ...

  18. Ultrasound Doppler Velocimetry Measurements in Turbulent Liquid Metal Channel Flow

    NASA Astrophysics Data System (ADS)

    Rivero, Michel; Jian, Dandan; Karcher, Christian; Cuevas, Sergio

    2010-11-01

    Control of molten metal flow using magnetic fields is important in industrial applications. The Electromagnetic Flow Control Channel (EFCO) is an experimental test facility, located at Ilmenau University of Technology, for the development of such kind of control systems. The working fluid is the low-melting liquid metal alloy GaInSn in eutectic composition. In this channel, flow control is realized by combining and coupling the non-contact flow driving technology of electromagnetic pumps based on rotating permanent magnets and the non-contact flow rate measurement technology termed Lorentz Force Velocimetry (LFV). The flow rate is adjusted by controlling the rotation rate of the permanent magnet system. Physically, LFV is based on measuring the force acting on a magnet system. This force is induced by the melt flow passing through the static magnetic field generated by the system and is proportional to the flow. To calibrate such flow meters, we apply UDV technique to measure and analyse both turbulent hydrodynamic and MHD flow profiles in EFCO at various Reynolds numbers.

  19. Robust estimation of fetal heart rate from US Doppler signals

    NASA Astrophysics Data System (ADS)

    Voicu, Iulian; Girault, Jean-Marc; Roussel, Catherine; Decock, Aliette; Kouame, Denis

    2010-01-01

    Introduction: In utero, Monitoring of fetal wellbeing or suffering is today an open challenge, due to the high number of clinical parameters to be considered. An automatic monitoring of fetal activity, dedicated for quantifying fetal wellbeing, becomes necessary. For this purpose and in a view to supply an alternative for the Manning test, we used an ultrasound multitransducer multigate Doppler system. One important issue (and first step in our investigation) is the accurate estimation of fetal heart rate (FHR). An estimation of the FHR is obtained by evaluating the autocorrelation function of the Doppler signals for ills and healthiness foetus. However, this estimator is not enough robust since about 20% of FHR are not detected in comparison to a reference system. These non detections are principally due to the fact that the Doppler signal generated by the fetal moving is strongly disturbed by the presence of others several Doppler sources (mother' s moving, pseudo breathing, etc.). By modifying the existing method (autocorrelation method) and by proposing new time and frequency estimators used in the audio' s domain, we reduce to 5% the probability of non-detection of the fetal heart rate. These results are really encouraging and they enable us to plan the use of automatic classification techniques in order to discriminate between healthy and in suffering foetus.

  20. Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy.

    PubMed

    Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin

    2015-05-01

    The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon. PMID:26263315

  1. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  2. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  3. Transcranial Doppler: Techniques and advanced applications: Part 2.

    PubMed

    Sharma, Arvind K; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  4. Doppler Wind Measurements of Mars Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Sandor, B. J.; Moriarty-Schieven, G. H.

    2003-05-01

    The late August 2003 opposition of Mars, which occurs very near Mars perihelion, presents its largest angular diameter (25 arcsec) over the previous and subsequent 20 years. Sub-millimeter observations from the James Clerk Maxwell Telescope (JCMT) on August 27 (also scheduled for September 3) will provide 345 Ghz CO line integrations at five beam positions on the Mars disk. Differencing spectral line absorptions observed at east, west, south, and north offset positions from a disk center spectrum yields highly accurate measurements of projected doppler velocities relative to the disk center. As demonstrated in similar Venus mesospheric (90-110 km altitude) wind measurements obtained from JCMT in March 2001 and November 2002 (Clancy et al., 2002), this method provides excellent sensitivity (5 m/sec at 40-80 km altitudes) for short integration periods (10-15 minutes). Systematic uncertainties associated with the absorption lineshape and spectrometer baseline and channel characteristics are minimized, and the steep sub-millimeter line core shapes provide improved doppler shift sensitivity relative to millimeter measurements. Direct wind measurements for the Mars atmosphere are extremely important for validation of Mars general circulation models (GCM, e.g. Forget et al., 1999), yet remain beyond current spacecraft mission capabilities. Lellouch et al. (1993) obtained equinoctial (Ls=200) wind determinations in significant disagreement with Mars GCM predictions, employing 230 Ghz CO doppler line shifts from IRAM. JCMT sub-millimeter CO doppler shifts observed during the August 2003 Mars opposition should be much more accurate, with critical zonal and meridional resolution during the key southern summer season. Atmospheric pressure-temperature profiles (0-75km) will also be retrieved from each disk position 12CO spectrum, complementing the Ls dependence of disk average measurements obtained from previous whole disk JCMT Mars 12CO observations. In addition to doppler

  5. Ultrasound and Therapy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  6. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    SciTech Connect

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  7. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  8. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.

    PubMed

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller; Pihl, Michael Johannes; Enevoldsen, Marie Sand; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-07-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse

  9. Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.

    2014-03-01

    Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.

  10. Ultrasound-Mediated Release of Hydrophilic and Lipophilic Agents From Echogenic Liposomes

    PubMed Central

    Kopechek, Jonathan A.; Abruzzo, Todd M.; Wang, Boyu; Chrzanowski, Stephen M.; Smith, Denise A. B.; Kee, Patrick H.; Huang, Shaoling; Collier, Joel H.; McPherson, David D.; Holland, Christy K.

    2010-01-01

    Objective To achieve ultrasound-controlled drug delivery using echogenic liposomes (ELIPs), we assessed ultrasound-triggered release of hydrophilic and lipophilic agents in vitro using color Doppler ultrasound delivered with a clinical 6-MHz compact linear array transducer. Methods Calcein, a hydrophilic agent, and papaverine, a lipophilic agent, were each separately loaded into ELIPs. Calcein-loaded ELIP (C-ELIP) and papaverine-loaded ELIP (P-ELIP) solutions were circulated in a flow model and treated with 6-MHz color Doppler ultrasound or Triton X-100. Treatment with Triton X-100 was used to release the encapsulated calcein or papaverine content completely. The free calcein concentration in the solution was measured directly by spectrofluorimetry. The free papaverine in the solution was separated from liposome-bound papaverine by spin column filtration, and the resulting papaverine concentration was measured directly by absorbance spectrophotometry. Dynamic changes in echogenicity were assessed with low-output B-mode ultrasound (mechanical index, 0.04) as mean digital intensity. Results Color Doppler ultrasound caused calcein release from C-ELIPs compared with flow alone (P < .05) but did not induce papaverine release from P-ELIPs compared with flow alone (P > .05). Triton X-100 completely released liposome-associated calcein and papaverine. Initial echogenicity was higher for C-ELIPs than P-ELIPs. Color Doppler ultrasound and Triton X-100 treatments reduced echogenicity for both C-ELIPs and P-ELIPs (P < .05). Conclusions The differential efficiency of ultrasound-mediated pharmaceutical release from ELIPs for water- and lipid-soluble compounds suggests that water-soluble drugs are better candidates for the design and development of ELIP-based ultrasound-controlled drug delivery systems. PMID:18946099

  11. Ship motion estimation from polarized Doppler spectra from ship wakes on two-dimensional sea surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Sun, Rong-Qing

    2016-07-01

    The main purpose of this paper is to investigate the Doppler spectra from ship wakes on two-dimensional sea surfaces and further estimate the ship motion characteristics. The analysis of the ship wakes is helpful to detect the existence of ships on sea surface. And it will be an alternative method when the radar cross-section values are not competent to identify the ship target. In the study, Doppler spectra for different polarizations are compared with and without ship's wakes based on the second-order small slope approximation method. As expected, there appears the second spectral peak when ship's wake is considered. Moreover, the ship velocities, wind speed, and direction are also analyzed. As the results shown, there is a good linearity relation between the position of the second Doppler spectral peak and the ship velocity. Therefore, it is feasible to detect ship according the Doppler spectra.

  12. Approaches for Improved Doppler Estimation in Lidar Remote Sensing of Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Sreevatsan; Calhoun, Ronald

    2016-06-01

    Laser radar (Lidar) has been used extensively for remote sensing of wind patterns, turbulence in the atmospheric boundary layer and other important atmospheric transport phenomenon. As in most narrowband radar application, radial velocity of remote objects is encoded in the Doppler shift of the backscattered signal relative to the transmitted signal. In contrast to many applications, however, the backscattered signal in atmospheric Lidar sensing arises from a multitude of moving particles in a spatial cell under examination rather than from a few prominent "target" scattering features. This complicates the process of extracting a single Doppler value and corresponding radial velocity figure to associate with the cell. This paper summarizes the prevalent methods for Doppler estimation in atmospheric Lidar applications and proposes a computationally efficient scheme for improving Doppler estimation by exploiting the local structure of spectral density estimates near spectral peaks.

  13. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  14. Ultrasound Diagnosis and Staging in Pediatric Hidradenitis Suppurativa.

    PubMed

    Wortsman, Ximena; Rodriguez, Carolyn; Lobos, Carolina; Eguiguren, Gonzalo; Molina, Maria Teresa

    2016-07-01

    Hidradenitis suppurativa (HS) can affect children, and ultrasound has been proven to be useful in diagnosis and staging. The sonographic characteristics of HS in children have not been reported. We studied color Doppler ultrasound images of children (≤15 years old; n = 12) with clinically and sonographically positive criteria for HS. Sonographic scoring of hidradenitis suppurativa (SOS-HS) was used to stage the cases sonographically. Subclinical pseudocysts were found in 92% of the cases, fluid collections in 83%, and fistulous tracts in 58%. Retained hair tracts in the fluid collections and fistulous tracts were present in 100% of patients; 67% of cases were SOS-HS stage II. In 92% of cases, management was modified after the ultrasound examination. In conclusion, ultrasound can be a reliable and safe imaging tool to support diagnosis and staging and may help in the noninvasive monitoring of treatment in children. PMID:27292973

  15. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  16. Doppler methods of search and monitoring of exoplanets

    NASA Astrophysics Data System (ADS)

    Panchuk, V. E.; Klochkova, V. G.; Sachkov, M. E.; Yushkin, M. V.

    2015-12-01

    The main stages of the development of Doppler methods of search and study of extrasolar planetary systems (exoplanets) are described. The main instrumental and methodological effects that influence the measurement accuracy of spectral line positions in the study of exoplanets are considered. The development of the domestic spectrograph for spectroscopic monitoring with high-precision determination of radial velocities is reported. Directions for further development of high-resolution spectroscopy are discussed.

  17. Doppler selection of HF radiosignals on long paths

    NASA Astrophysics Data System (ADS)

    Zalizovskii, A. V.; Galushko, V. G.; Kashcheev, A. S.; Koloskov, A. V.; Yampolski, Yu. M.; Egorov, I. B.; Popov, A. V.

    2007-10-01

    The long-term registration of the Doppler spectra of HF radiosignals has been performed on the Moscow-Akademik Vernadsky Ukrainian Antarctic station path. It has been revealed that the spectra are split when the solar terminator crosses direct and return radio lines. The spectral and energy characteristics of direct and return signals have been calculated within the scope of the asymptotic theory of long-range propagation of decametric radiowaves.

  18. Spread-Spectrum Carrier Estimation With Unknown Doppler Shift

    NASA Technical Reports Server (NTRS)

    DeLeon, Phillip L.; Scaife, Bradley J.

    1998-01-01

    We present a method for the frequency estimation of a BPSK modulated, spread-spectrum carrier with unknown Doppler shift. The approach relies on a classic periodogram in conjunction with a spectral matched filter. Simulation results indicate accurate carrier estimation with processing gains near 40. A DSP-based prototype has been implemented for real-time carrier estimation for use in New Mexico State University's proposal for NASA's Demand Assignment Multiple Access service.

  19. Theoretical analysis of the ultrasonic Doppler flowmeter for measurements of high flow velocities

    NASA Astrophysics Data System (ADS)

    Tabin, Jozef

    1987-07-01

    A geometric approach is used to analyze the ultrasonic Doppler flowmeter for measurements of flow velocities that are high but yet much smaller than the ultrasound velocity. The approach is based on the calculation of the transit time difference between the ultrasonic waves that are reflected from a moving particle at its various positions. Beam divergence is taken into account, and each path of the ultrasonic wave propagation is approximated by two rectilinear components. It is shown that the Doppler frequency shift is influenced not only by the suspended particle velocity, but also by the mean flow velocity of the fluid. This influence is of second order in the flow velocity.

  20. Applications of Doppler-Free Saturation Spectroscopy for Edge Physics Studies

    SciTech Connect

    Martin, Elijah H; Caughman, John B; Isler, Ralph C; Bell, Gary L

    2016-01-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtained detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we will present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H spectra will be presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  1. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  2. Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.

    2008-01-01

    A combined frequency-time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second. The present CFT spectral moment estimation technique includes coherent processing of a series of Doppler spectra generated in a standard manner from data over measurement volumes that are partially overlapping in the along-track direction. Performance simulation of this technique using high-resolution data from an airborne rain-mapping radar shows that a spaceborne Ku-band Doppler radar operating at signal-to-noise ratios greater than 10 dB can achieve root-mean-square accuracy between 0.5 and 0.6 m/s in vertical-velocity estimates.

  3. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  4. Ultrasound enhanced thrombolysis: Clinical evidence

    NASA Astrophysics Data System (ADS)

    Alexandrov, Andrei V.

    2005-04-01

    Phase II CLOTBUST randomized clinical trial (Houston, Barcelona, Edmonton, Calgary) evaluated patients with acute ischemic stroke due to intracranial occlusion and treated with intravenous tissue plasminogen activator (TPA) within 3 h of symptom onset. Randomization: monitoring with pulsed wave 2 MHz transcranial Doppler (TCD) (Target) or placebo monitoring (Control). Safety: symptomatic bleeding to the brain (sICH). Primary end-point: complete recanalization on TCD or dramatic clinical recovery by the total NIHSS score <3, or improvement by >10 NIHSS points within 2 hours after TPA bolus. All projected 126 patients were randomized 1:1 to target (median NIHSS 16) or control (NIHSS 17). sICH: 4.8% Target, 4.8% Controls. Primary end-point was achieved by 31 (49%, Target) versus 19 (30%, Control), p<0.03. At 3 months, 22 (42% Target) and 14 (29% Control) patients achieved favorable outcomes. Continuous TCD monitoring of intracranial occlusion safely augments TPA-induced arterial recanalization, and 2 MHz diagnostic ultrasound has a positive biological activity that aids systemic thrombolytic therapy. For the first time in clinical medicine, the CLOTBUST trial provides the evidence that ultrasound enhances thrombolytic activity of a drug in humans thereby confirming intense multi-disciplinary experimental research conducted worldwide for the past 30 years.

  5. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  6. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  7. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  8. Ultrasound Findings in Hand Joints Involvement in Patients with Psoriatic Arthritis and Its Correlation with Clinical DAS28 Score

    PubMed Central

    Naranje, Priyanka; Prakash, Mahesh; Sharma, Aman; Dogra, Sunil; Khandelwal, Niranjan

    2015-01-01

    Objective. To determine the frequency of the various ultrasound findings in hand joints in patients with psoriatic arthritis and correlate grayscale and Power Doppler ultrasonography findings with Disease Activity Score 28. Methods. This prospective study was performed in 30 patients. Ultrasound evaluation of 28 joints of both hands was undertaken and various findings were recorded including synovial hypertrophy, Power Doppler abnormality, soft tissue thickening, tendonitis, joint effusion, periosteal reaction, and erosions. Composite ultrasound scores and Disease Activity Score 28 were calculated and compared. Spearman correlation was used to see relationship between the ultrasound and DAS28 scores. Results. Ultrasound detected more abnormalities in the hand joints than did clinical examination. The frequency of various ultrasound abnormalities was as follows: Synovial hypertrophy was seen in 100%, Power Doppler abnormality suggesting hypervascularity was seen in 36.7%, soft tissue thickening was seen in 66.7%, periosteal reaction was seen in 33.3%, erosions were seen in 30% (mostly in DIP and PIP joints), and flexor tendonitis was seen in 6.7% of patients. Significant correlation was found between Disease Activity Score 28 and grayscale joint score (GSJS) (Spearman's ρ: 0.499; P: 0.005), grayscale joint count (GSJC) (ρ: 0.398; P: 0.029), and Power Doppler joint score (PDJS) (ρ: 0.367; P: 0.046). There was a statistically significant difference between remission and low disease activity group and moderate disease activity group in terms of GSJC, GSJS, PDJC, and PDJS (P < 0.05). These ultrasound measures were higher in moderate disease activity zone patients. Conclusion. Ultrasound is a useful modality for the objective assessment of psoriatic arthritis. Ultrasound including Power Doppler can be used as a modality for assessment of severity of psoriatic arthritis as it correlates with the clinical scoring. PMID:26858846

  9. Prenatal ultrasound diagnosis of massive subchorionic thrombohematoma.

    PubMed

    Richards, D S; Bennett, B B

    1998-05-01

    Massive subchorionic thrombohematoma is a rare condition in which a large maternal blood clot separates the chorionic plate from the villous chorion. This condition is usually complicated by intrauterine growth restriction, and is often associated with fetal distress and perinatal death. We present a case in which the diagnosis of massive subchorionic thrombohematoma was made at 24 weeks' gestation. Doppler ultrasound helped to confirm the diagnosis and demonstrated severely abnormal umbilical blood flow. Two days after the diagnosis, fetal distress prompted emergency Cesarean delivery of a growth-restricted infant. PMID:9644779

  10. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  11. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  12. Correlation between Doppler, Manual Morphometry, and Histopathology Based Morphometry of Radial Artery as a Conduit in Coronary Artery Bypass Grafting.

    PubMed

    Yadava, Om Prakash; Sharma, Vinod; Prakash, Arvind; Ahlawat, Vikas; Kundu, Anirban; Mohanty, Bikram K; Mishra, Rekha; Dinda, Amit K

    2016-01-01

    Background. Long-term graft patency is the major factor impacting survival after coronary artery bypass grafting. Arteries are superior in this regard. Radial artery is considered the second best conduit after internal mammary artery. Several studies have shown excellent radial artery patency. We evaluated the morphologic characteristics of radial artery by three modalities, (i) preoperative Doppler ultrasound, (ii) intraoperative manual morphometry, and (iii) postoperative histology-based morphometry, and compared these with the aim of validating Doppler as a noninvasive test of choice for preoperative assessment of radial artery. Methods. This was a prospective study involving 100 patients undergoing coronary artery bypass grafting in which radial artery was used. The radial artery was assessed using preoperative Doppler ultrasound studies, intraoperative morphometry, and postoperative histopathology and morphometry. The morphometric measurements included (i) luminal diameter, (ii) intimal and medial thickness, and (iii) intima-media thickness ratio. Results. Using Bland-Altman plots, there was a 95% limit of agreement between the preoperative Doppler measurements and the postoperative histopathology and morphometry. Conclusion. Doppler ultrasound is an accurate screening test for evaluation of radial artery, in terms of intimal/medial thickness and luminal diameter as a conduit in coronary artery bypass grafting and has been validated by both morphometric and histopathology based studies. PMID:27047699

  13. Correlation between Doppler, Manual Morphometry, and Histopathology Based Morphometry of Radial Artery as a Conduit in Coronary Artery Bypass Grafting

    PubMed Central

    Yadava, Om Prakash; Sharma, Vinod; Prakash, Arvind; Ahlawat, Vikas; Mohanty, Bikram K.; Mishra, Rekha; Dinda, Amit K.

    2016-01-01

    Background. Long-term graft patency is the major factor impacting survival after coronary artery bypass grafting. Arteries are superior in this regard. Radial artery is considered the second best conduit after internal mammary artery. Several studies have shown excellent radial artery patency. We evaluated the morphologic characteristics of radial artery by three modalities, (i) preoperative Doppler ultrasound, (ii) intraoperative manual morphometry, and (iii) postoperative histology-based morphometry, and compared these with the aim of validating Doppler as a noninvasive test of choice for preoperative assessment of radial artery. Methods. This was a prospective study involving 100 patients undergoing coronary artery bypass grafting in which radial artery was used. The radial artery was assessed using preoperative Doppler ultrasound studies, intraoperative morphometry, and postoperative histopathology and morphometry. The morphometric measurements included (i) luminal diameter, (ii) intimal and medial thickness, and (iii) intima-media thickness ratio. Results. Using Bland-Altman plots, there was a 95% limit of agreement between the preoperative Doppler measurements and the postoperative histopathology and morphometry. Conclusion. Doppler ultrasound is an accurate screening test for evaluation of radial artery, in terms of intimal/medial thickness and luminal diameter as a conduit in coronary artery bypass grafting and has been validated by both morphometric and histopathology based studies. PMID:27047699

  14. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  15. Compact Doppler magnetograph

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, Alexander; Moynihan, Philip I.; Vaughan, Arthur H.; Cacciani, Alessandro

    1998-11-01

    We designed a low-cost flight instrument that images the full solar disk through two narrow band filters at the red nd blue 'wings' of the solar potassium absorption line. The images are produced on a 1024 X 1024 charge-coupled device with a resolution of 2 arcsec per pixel. Four filtergrams taken in a very short time at both wings in the left and right states of circular polarization are used to yield a Dopplergram and a magnetogram simultaneously. The noise-equivalent velocity associated with each pixel is less than 3 m/s. The measured signal is linearly proportional to the velocity in the range +/- 4000 m/s. The range of magnetic fields is from 3 to 3000 Gauss. The optical system of the instrument is simple and easily aligned. With a pixel size of 12 micrometers , the effective focal length is 126 cm. A Raleigh resolution limit of 4 arcsec is achieved with a 5-cm entrance apertures, providing an f/25 focal ratio. The foreoptic is a two-component telephoto lens serving to limit the overall optical length to 89 cm or less. The mass of the instrument is 14 kg. the power required is less than 30 Watts. The Compact Doppler Magnetograph can be used in space mission with severe mass and power requirements. It can also be effectively used for ground-based observations: large telescope, dome or other observatory facilities are not required.

  16. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  17. 4D microvascular imaging based on ultrafast Doppler tomography.

    PubMed

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. PMID:26555279

  18. Ultrasound Annual, 1983

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1983-01-01

    The 1983 edition of Ultrasound Annual features a state-of-the-art assessment of real-time ultrasound technology and a look at improvements in real-time equipment. Chapters discuss important new obstetric applications of ultrasound in measuring fetal umbilical vein blood flow and monitoring ovarian follicular development in vivo and in vitro fertilization. Other topics covered include transrectal prostate ultrasound using a linear array system; ultrasound of the common bile duct; ultrasound in tropical diseases; prenatal diagnosis of craniospinal anomalies; scrotal ultrasonography; opthalmic ultrasonography; and sonography of the upper abdominal venous system.

  19. Heating of fetal bone by diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Doody, Claire

    Most pregnant women in the Western world undergo an ultrasound examination and so it is important to ensure that exposure of the embryo or fetus does not produce unwanted effects. It is known that ultrasound can heat tissue, especially bone, and so this thesis explores the degree to which fetal bone might be heated during a pulsed Doppler examination. This is done both by carrying out measurements and by developing computer models. Thermal measurements on human fetal thoracic vertebrae of gestational age ranging from 14 to 39 weeks are reported. The bone samples were insonated in vitro with an ultrasound beam which had power and intensity values typical of those from a clinical scanner operating in pulsed Doppler mode. Temperature rises ranging from 0.6°C to 1.8°C were observed after five minutes, with approximately 75% of the temperature rise occurring in the first minute. Two approaches to computer modelling are described. These are the heated disc technique, which is commonly used to model the temperature rise generated by an ultrasound beam, and finite element modelling, a more general approach used to obtain solutions to differential equations. The degree to which our limited knowledge of the properties of fetal tissue affect our ability to make accurate predictions of in vivo heating is explored. It is shown that the present uncertainty in the value of the thermal conductivity and attenuation coefficient of fetal bone can lead to significant uncertainty in predictions of heating. The degree to which the simplifications inherent in the heated disc model affect the results will also be discussed. The results from the models are compared with the experimental measurements in order to estimate the attenuation coefficient of the bone.

  20. Breast Ultrasound: Indications and Findings.

    PubMed

    Gundry, Kathleen R

    2016-06-01

    Breast ultrasound is a widely used adjuvant to mammography for the detection of breast cancer. This chapter will review some of the basic ultrasound technical factors and techniques, describe findings on ultrasound with an emphasis on the Breast Imaging Reporting and Data System terminology, and present the indications for breast ultrasound. New innovations in breast ultrasound, such as elastography, ultrasound contrast, 3-dimensional, and automated whole-breast ultrasound, will be reviewed. Ultrasound-guided breast procedures are also presented. PMID:26974219

  1. Imaging and quantifying Brownian motion of micro- and nanoparticles using phase-resolved Doppler variance optical coherence tomography.

    PubMed

    Kim, Chang Soo; Qi, Wenjuan; Zhang, Jun; Kwon, Young Jik; Chen, Zhongping

    2013-03-01

    Different types and sizes of micro- and nanoparticles have been synthesized and developed for numerous applications. It is crucial to characterize the particle sizes. Traditional dynamic light scattering, a predominant method used to characterize particle size, is unable to provide depth resolved information or imaging functions. Doppler variance optical coherence tomography (OCT) measures the spectral bandwidth of the Doppler frequency shift due to the Brownian motion of the particles utilizing the phase-resolved approach and can provide quantitative information about particle size. Spectral bandwidths of Doppler frequency shifts for various sized particles were quantified and were demonstrated to be inversely proportional to the diameter of the particles. The study demonstrates the phase-resolved Doppler variance spectral domain OCT technique has the potential to be used to investigate the properties of particles in highly scattering media. PMID:23515863

  2. Quantitative Doppler flowmetry. I. Construction and testing of a duplex scanning system.

    PubMed

    Smith, H J

    1984-01-01

    With the aim of designing a duplex scanner especially suited for flow estimation in abdominal vessels, a mechanical coupling device was constructed, combining a real time sector scanner and a pulsed Doppler velocity meter. The possible error in estimation of vessel cross-sectional area by means of ultrasound measured diameters, was studied through diameter measurements of blood-filled plastic tubes. In conclusion, the ultrasound measured outer-inner diameter seemed to be the most accurate estimation of true inner diameter. The accuracy and reproducibility of flow estimation was tested under optimum in vitro conditions, with special reference to the ability of the mechanical coupling device in giving the correct angle between Doppler beam and blood-filled tube. Ninety blood flow estimates with varying angle of insonation were all within +/- 10 per cent of true flow. PMID:6237551

  3. The Methodology of Doppler-Derived Central Blood Flow Measurements in Newborn Infants

    PubMed Central

    de Waal, Koert A.

    2012-01-01

    Central blood flow (CBF) measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO) and/or as cardiac input measured at the superior vena cava (SVC flow). Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use. PMID:22291718

  4. 30 MHz backscatter and Doppler signals from individual microbubbles undergoing inertial cavitation

    NASA Astrophysics Data System (ADS)

    Yoon, Johanna M.; Everbach, E. Carr

    2002-05-01

    Short pulses (1-2 microseconds duration) of 30 MHz ultrasound were used to interrogate individual OptisonTM and PESDA microbubbles convected in a coaxial jet flow or adhering to a thin MylarTM window. Backscattered signals were recorded as the bubbles were forced into symmetrical or asymmetrical collapse by application of 1 MHz ultrasound pulses from a focused source in water. Peak-to-peak amplitudes of the backscattered signal were converted to radius-time curves via comparison with similar signals from a monodisperse population of polystyrene spheres of known diameter. Additionally, backscattered signals were mixed with reference sinusoids at 30 MHz and low-pass filtered to yield Doppler signals. Results are consistent with theoretical models and provide a possible method to quantify asymmetrical bubble collapse via Doppler signature.

  5. Prenatal ultrasound - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series To use the sharing features on this ... Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is accredited by ...

  6. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  7. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  8. [Characterization and comparison of the doppler compensation acoustic wave in Hipposideros armiger].

    PubMed

    Wang, Xu-Zhong; Hu, Kai-Liang; Wei, Li; Xu, Dong; Zhang, Li-Biao

    2010-12-01

    We used the pendulum device to study Doppler-shifted compensation of great leaf-nosed bat (Hipposideros armiger). The bats' echolocation calls were recorded by the Ultrasound Detector both under the rest condition and Doppler shift condition. Then we analyzed the calls with Avisoft software. Our results suggested that when H. armiger was approaching the target, it showed positive Doppler shift compensation: call frequency and the velocity (v) were positive correlated. Call frequency fell to minimum when the bats' relative velocity reached to maximum; likewise call frequency raised to the resting condition frequency when the relative velocity became zero. Negative Doppler shift compensation occurred when bats were far away from the target. Under negative Doppler shift compensation condition, we found call frequency and velocity were positive correlated as well, and moreover, call frequency raised to maximum again while the bats had their minus direction's maximal relative velocity. However, under this status, the elevated value was much lower than the depressed value under positive compensation at the same velocity. The frequency of occurrence of negative compensation was obviously less frequent than that under positive compensation condition. Therefore, we inferred that the two characteristics of the negative Doppler shift compensation mentioned above may be the coactions consequence of the bio-structural restriction and natural selection. PMID:21174358

  9. Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates

    PubMed Central

    Demené, Charlie; Pernot, Mathieu; Biran, Valérie; Alison, Marianne; Fink, Mathias; Baud, Olivier; Tanter, Mickaël

    2014-01-01

    In vivo mapping of the full vasculature dynamics based on Ultrafast Doppler is showed noninvasively in the challenging case of the neonatal brain. Contrary to conventional pulsed-wave (PW) Doppler Ultrasound limited for >40 years to the estimation of vascular indices at a single location, the ultrafast frame rate (5,000 Hz) obtained using plane-wave transmissions leads to simultaneous estimation of full Doppler spectra in all pixels of wide field-of-view images within a single cardiac cycle and high sensitivity Doppler imaging. Consequently, 2D quantitative maps of the cerebro-vascular resistivity index (RI) are processed and found in agreement with local measurements obtained on large arteries of healthy neonates using conventional PW Doppler. Changes in 2D resistivity maps are monitored during recovery after therapeutic whole-body cooling of full-term neonates treated for hypoxic ischemic encephalopathy. Arterial and venous vessels are unambiguously differentiated on the basis of their distinct hemodynamics. The high spatial (250 × 250 μm2) and temporal resolution (<1 ms) of Ultrafast Doppler imaging combined with deep tissue penetration enable precise quantitative mapping of deep brain vascular dynamics and RI, which is far beyond the capabilities of any other imaging modality. PMID:24667916

  10. Localization of needle tip with color doppler during pericardiocentesis: In vitro validation and initial clinical application

    NASA Technical Reports Server (NTRS)

    Armstrong, G.; Cardon, L.; Vilkomerson, D.; Lipson, D.; Wong, J.; Rodriguez, L. L.; Thomas, J. D.; Griffin, B. P.

    2001-01-01

    This study evaluates a new device that uses color Doppler ultrasonography to enable real-time image guidance of the aspirating needle, which has not been possible until now. The ColorMark device (EchoCath Inc, Princeton, NJ) induces high-frequency, low-amplitude vibrations in the needle to enable localization with color Doppler. We studied this technique in 25 consecutive patients undergoing pericardiocentesis, and in vitro, in a urethane phantom with which the accuracy of color Doppler localization of the needle tip was compared with that obtained by direct measurement. Tip localization was excellent in vitro; errors axial to the ultrasound beam (velocity Doppler -0.13 +/- 0.90 mm, power Doppler -0.05 +/- 1.7 mm) were less than lateral errors (velocity -0.36 +/- 1.8 mm, power -0.02 +/- 2.8 mm). In 18 of 25 patients, the needle was identified and guided into the pericardial space with the ColorMark technique, and it allowed successful, uncomplicated drainage of fluid. Initial failures were the result of incorrect settings on the echocardiographic machine and inappropriate combinations of the needle puncture site and imaging window. This study demonstrates a novel color Doppler technique that is highly accurate at localizing a needle tip. The technique is feasible for guiding pericardiocentesis. Further clinical validation of this technique is required.

  11. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  12. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  13. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    SciTech Connect

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-05-15

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  14. Spectral estimators in elastography.

    PubMed

    Konofagou, E E; Varghese, T; Ophir, J

    2000-03-01

    Like velocity, strain induces a time delay and a time scaling to the received signal. Elastography typically uses time delay techniques to indirectly (i.e. via the displacement estimate) measure tissue strain induced by an applied compression, and considers time scaling as a source of distortion. More recently, we have shown that the time scaling factor can also be spectrally estimated and used as a direct measure of strain. Strain causes a Doppler-like frequency shift and a change in bandwidth of the bandpass power spectrum of the echo signal. Two frequency shift strain estimators are described that have been proven to be more robust but less precise when compared to time delay estimators, both in simulations and experiments. The increased robustness is due to the insensitivity of the spectral techniques to phase decorrelation noise. In this paper we discuss and compare the theoretical and experimental findings obtained with traditional time delay estimators and with the newly proposed spectral methods. PMID:10829698

  15. The lineshape problem in Doppler-width thermometry

    NASA Astrophysics Data System (ADS)

    Domenica De Vizia, Maria; Moretti, Luigi; Castrillo, Antonio; Fasci, Eugenio; Gianfrani, Livio

    2011-09-01

    Typically eliminated in any experiment of time and frequency metrology, the Doppler broadening effect can be regarded as a gift of nature for the purpose of measuring the thermodynamic temperature of a gaseous sample. Nevertheless, Doppler-width retrieval from highly-accurate absorption spectra is surely not an easy task as it requires an adequate knowledge of the lineshape function, accounting for the different mechanisms that contribute to the overall linewidth. Semiclassical theories provide several possibilities, more or less accurate in reproducing the observed profiles. Here, the influence of the choice of the lineshape model in Doppler-width thermometry is investigated in the physical situation of self-colliding ? O molecules. A large number of absorption profiles were simulated, using the uncorrelated version of the speed-dependent Galatry profile and setting different values for the gas pressure, the signal-to-noise ratio and the Dicke-narrowing parameter. Spectral analysis was performed by means of different models, in order to retrieve the zero-pressure value of the Doppler width. It turned out that precision and accuracy can be pushed to extreme levels provided that the signal-to-noise ratio is sufficiently high (namely, larger than 50,000) and that a speed-dependent lineshape model is used.

  16. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    SciTech Connect

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-05-04

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio.

  17. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  18. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  19. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  20. Changes in Doppler parameters of portal pressure after interventional management of hepatocellular carcinoma.

    PubMed

    El Sherbiny, Walid; AbdelRahman, Ashraf; Diasty, Muhammad; Shaltout, Shaker Wagih

    2016-08-01

    Hepatocellular carcinoma (HCC) has many options for management; some of them are complicated by development of portal hypertension (PHT). Doppler ultrasound is an effective method to diagnose and monitor PHT changes after HCC ablation procedures. The aim of this study is to investigate changes in portal pressure hemodynamics of HCC patients following treatment with different interventional strategies: radiofrequency ablation (RFA), microwave ablation (MWA), and transarterial chemoembolization (TACE). A total of 60 patients with HCC were divided into three main groups, and each group received a different type of therapy (RFA, MWA, and TACE). Full medical record and basic investigations were performed including Doppler ultrasound and upper GIT endoscopy for evaluation of PHT parameters, and then repeated after three months of ablation. RFA is associated with the increased splenic artery resistive index, while MWA has no significant impact on PHT indices. TACE has led to a marked increase in liver vascular index with significant decrease in hepatic artery resistive index and PHI after treatment. No significant changes in esophageal varices were observed by upper GIT endoscopy following all ablation methods. RFA is quite safe but associated with degree of PHT. On the contrary, TACE is associated with improved PHT parameters. MWA has no significant association to development of PHT following the technique. Doppler ultrasound could be used as a reliable and effective method of evaluation of PHT post ablation for HCC. PMID:26971951

  1. Potential use of Doppler perfusion index in detection of occult liver metastases from colorectal cancer

    PubMed Central

    Patrlj, Leonardo; Bušić, Željko; Kolovrat, Marijan; Rakić, Mislav; Kliček, Robert; Židak, Marcel; Stipančić, Igor

    2014-01-01

    Many clinical and preclinical studies demonstrated that measurements of liver hemodynamic [Doppler perfusion index (DPI)] may be used to accurately diagnose and predict liver metastases from primary colorectal cancer in a research setting. However, Doppler measurements have some serious limitations when applied to general population. Ultrasound is very operator-dependent, and requires skilled examiners. Also, many conditions may limit the use of Doppler ultrasound and ultrasound in general, such as the presence of air in digestive tract, cardiac arrhythmias, vascular anomalies, obesity and other conditions. Therefore, in spite of the results from clinical studies, its value may be limited in everyday practice. On the contrary, scientific research of the DPI in detection of liver metastases is of great importance, since current research speaks strongly for the presence of systemic vasoactive substance responsible for observed hemodynamic changes. Identification of such a systemic vasoactive substance may lead to the development of a simple and reproducible laboratory test that may reliably identify the presence of occult liver metastases and therefore increase the success of adjuvant chemotherapy through better selection of patients. Further research in this subject is therefore of great importance. PMID:25392837

  2. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  3. Contactless ultrasound detection using an optical ring resonator

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Hyun; Luo, Wei; Zhang, Cheng; Guo, L. Jay; Fan, Xudong

    2016-03-01

    We develop an air-couple ultrasound detector based on an optical fluidic ring resonator (OFRR) suspended on a Ushaped holder. The OFRR is a glass capillary with an outer diameter of approximately 130 μm and a wall thickness in the order of 1~10 μm. The circular cross section of the OFRR supports the high-Q whispering gallery mode (WGM) that circulates along the circumference. Incoming ultrasound pressure results in a small refractive index change in the glass wall and geometrical change in the OFRR shape, both of which in turn lead to a spectral shift in the WGM that can be sensitively detected owing to WGM with high optical Q-factors (>107). Due to the suspension nature of the OFRR, the ultrasound detection can be carried out in air, which is advantageous in comparison with other ultrasound detections that require acoustic coupling media such water, gel or solid. The sensitivity can be tuned and optimized by changing the diameter and wall thickness. Besides the optical detection, we also demonstrate optomechanical ultrasound mixing, in which optomechanical vibration is first excited within the OFRR that subsequently modulates the ultrasound wave. Our work will lead to the development of a new type of air-coupled ultrasound detector that can be used for photo-acoustic imaging, non-invasive ultrasound detection of external objects, and ultrasound detection/characterization of internal objects (such as particles and liquids) flowing inside the capillary.

  4. Postnatal Anthropometric and Body Composition Profiles in Infants with Intrauterine Growth Restriction Identified by Prenatal Doppler

    PubMed Central

    Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.

    2016-01-01

    Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993

  5. Obstetric ultrasound simulation.

    PubMed

    Nitsche, Joshua F; Brost, Brian C

    2013-06-01

    Obstetric ultrasound is becoming an increasingly important part of the practice of maternal-fetal medicine. Thus, it is important to develop rigorous and effective training curricula for obstetrics and gynecology residents and maternal-fetal medicine fellows. Traditionally, this training has come almost entirely from exposure to ultrasound in the clinical setting. However, with the increased complexity of modern ultrasound and advent of duty-hour restrictions, a purely clinical training model is no longer viable. With the advent of high-fidelity obstetric ultrasound simulators, a significant amount of training can occur in a non-clinical setting which allows learners to obtain significant skill prior to their first patient ultrasound encounter and obtain proficiency in a shorter period of time. In this manuscript we discuss the available obstetric ultrasound simulators and ways to construct a comprehensive ultrasound training curricula to meet the increasing demands of modern maternal-fetal medicine. PMID:23721777

  6. Impact of volumetric ultrasound on PACS

    NASA Astrophysics Data System (ADS)

    Horii, Steven; Goldszal, Alberto; Redfern, Regina; Coleman, Beverly; Langer, Jill; Morton, Dan; Rowling, Susan; Boonn, William; Iyoob, Christopher

    2006-03-01

    The purpose of this study was to determine if the size of ultrasound examinations was increasing over time. The primary reasons for this are believed to be an increased number of images per study, the incorporation of "cine loops", and increased use of color flow Doppler. The result of this study, if it supports the hypothesis that ultrasound study size is increasing, would be directly applicable to planning for future expansion of storage in the Ultrasound PACS. Data were obtained from the ultrasound PACS server for number of studies, number of images, and total stored volume for sampled months (January and July of 2003 - 2006). The investigators believed that these months would provide a reasonable sample of study size as examination types did not vary significantly from month to month (based on Departmental statistics). The Radiology Department's information system (RIS) was used to determine total yearly ultrasound examination volume to determine the trend over time. Because no protected health information (PHI) was to be used in this study, the investigators believed that no IRB approval was necessary. The number of studies done per month was more variable than the investigators had believed. One month in particular (July, 2003) had an anomalously large number of studies. However, despite this, computations of the number of images per study, the total data volume per study, and the average amount of data per image did show an increasing trend as expected. Also, the total volume of data stored showed an increasing trend over the study time period. The investigators' hypothesis that examination size is increasing has been demonstrated to be true for the months sampled. From Departmental data, the investigators know that the most recent ultrasound yearly volume increased approximately ten percent over the previous year, and that trend was also seen for the study period (from 7-10 percent per year increase in volume). With the information that the examination size

  7. Ultrasound enhanced thrombolysis in acute arterial ischemia.

    PubMed

    Tsivgoulis, Georgios; Culp, William C; Alexandrov, Andrei V

    2008-08-01

    In vitro and animal studies have shown that thrombolysis with intravenous tissue plasminogen activator (tPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. Moreover, intravenous gaseous microspheres with ultrasound have been shown to be a potential alternative to fibrinolytic agents to recanalize discrete peripheral thrombotic arterial occlusions or acute arteriovenous graft thromboses. Small phase I-II randomized and non-randomized clinical trials have shown promising results concerning the potential applications of ultrasound-enhanced thrombolysis in the setting of acute cerebral ischemia. CLOTBUST was an international four-center phase II trial, which demonstrated that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments tPA-induced arterial recanalization (sustained complete recanalization rates: 38% vs. 13%) with a non-significant trend toward an increased rate of clinical recovery from stroke, as compared with placebo. The rates of symptomatic intracerebral hemorrhage (sICH) were similar in the active and placebo group (4.8% vs. 4.8%). Smaller single-center clinical trials using transcranial color-coded sonography (TCCD) reported recanalization rates ranging from 27% to 64% and sICH rates of 0-18%. A separate clinical trial evaluating the safety and efficacy of therapeutic low-frequency ultrasound was discontinued because of a concerning sICH rate of 36% in the active group. To further enhance the ability of tPA to break up thrombi, current ongoing clinical trials include phase II studies of a single beam 2 MHz TCD with perflutren-lipid microspheres. Moreover, potential enhancement of intra-arterial tPA delivery is being clinically tested with 1.7-2.1 MHz pulsed wave ultrasound (EKOS catheter) in ongoing phase II-III clinical trials. Intravenous platelet-targeted microbubbles with low-frequency ultrasound are currently

  8. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. PMID:24182112

  9. Theoretical model for Sub-Doppler Cooling with EIT System

    NASA Astrophysics Data System (ADS)

    He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray

    2016-05-01

    We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.

  10. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  11. Ultrasound in differential diagnosis of periapical radiolucencies: A radiohistopathological study

    PubMed Central

    Khambete, Neha; Kumar, Rahul

    2015-01-01

    Objectives: To evaluate the efficacy of ultrasound in differential diagnosis of periapical radiolucencies. Materials and Methods: Ten patients aged between 19 years and 40 years with periapical lesions associated with anterior maxillary or mandibular teeth were selected and consented for the study. Pre-operative periapical radiographs were obtained. Measurements and provisional diagnoses of the apical areas were made by two specialist observers on two separate occasions. Preoperative ultrasound examinations with Doppler flowmetry were then performed and the images assessed by two specialist observers for the size, contents, vascular supply and a provisional diagnosis made as to whether the lesion was a cyst or granuloma. Endodontic surgery was performed including curettage of the apical tissues to enable histopathological investigation, which provided the gold standard diagnosis. All measurements and findings were compared and statistically analyzed. Results: Total 10 lesions were identified in 10 patients. On periapical radiographs, lesions were readily identified but observers were unable to differentiate granuloma from cyst using either modality. Where sufficient buccal cortical bone had been resorbed, ultrasound imaging was simple but underestimated the size of the lesions compared with periapical radiographs. In all cases, the ultrasound diagnosis agreed with the histopathological gold standard. Conclusion: Ultrasonography (USG) can provide accurate information about the nature of intraosseous lesions of the jaws before any surgical procedure. It is proposed that USG with Doppler flowmetry can provide an additional diagnostic tool without invasive surgery, where treatment option is nonsurgical. PMID:25657525

  12. [Ductus venosus blood flow prior to intrauterine foetal death in severe placental insufficiency can be unaffected as shown by doppler sonography].

    PubMed

    Frauenschuh, I; Frambach, T; Karl, S; Dietl, J; Müller, T

    2014-10-01

    Significant placental insufficiency with Doppler ultrasound findings of absent or reverse end-diastolic flow velocities (AREDV) is associated with increased morbidity and mortality. An analysis of blood flow in the ductus venosus assists in the early recognition of threatened foetuses. However, the prognostic value of multivessel Doppler assessment for the timing of delivery is being questioned. Four high-risk pregnancies with umbilical AREDV were repeatedly examined prior to intrauterine foetal demise. Our results demonstrate that ductus venosus Doppler flow velocimetry can be normal prior to intrauterine foetal death. PMID:25353216

  13. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  14. Blood flow velocity in the popliteal vein using transverse oscillation ultrasound

    NASA Astrophysics Data System (ADS)

    Bechsgaard, Thor; Hansen, Kristoffer Lindskov; Brandt, Andreas Hjelm; Holbek, Simon; Lönn, Lars; Strandberg, Charlotte; Bækgaard, Niels; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    Chronic venous disease is a common condition leading to varicose veins, leg edema, post-thrombotic syndrome and venous ulcerations. Ultrasound (US) is the main modality for examination of venous disease. Color Doppler and occasionally spectral Doppler US (SDUS) are used for evaluation of the venous flow. Peak velocities measured by SDUS are rarely used in a clinical setting for evaluating chronic venous disease due to inadequate reproducibility mainly caused by the angle dependency of the estimate. However, estimations of blood velocities are of importance in characterizing venous disease. Transverse Oscillation US (TOUS), a non-invasive angle independent method, has been implemented on a commercial scanner. TOUS's advantage compared to SDUS is a more elaborate visualization of complex flow. The aim of this study was to evaluate, whether TOUS perform equal to SDUS for recording velocities in the veins of the lower limbs. Four volunteers were recruited for the study. A standardized flow was provoked with a cuff compression-decompression system placed around the lower leg. The average peak velocity in the popliteal vein of the four volunteers was 151.5 cm/s for SDUS and 105.9 cm/s for TOUS (p <0.001). The average of the peak velocity standard deviations (SD) were 17.0 cm/s for SDUS and 13.1 cm/s for TOUS (p <0.005). The study indicates that TOUS estimates lower peak velocity with improved SD when compared to SDUS. TOUS may be a tool for evaluation of venous disease providing quantitative measures for the evaluation of venous blood flow.

  15. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  16. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  17. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  18. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  19. Study of the ureterovesical jet flow by means of dupplex Doppler ultrasonography in patients with residual ureteral stone after extracorporeal shock wave lithotripsy.

    PubMed

    Ciftci, Halil; Cece, Hasan; Dusak, Abdurrahim; Savas, Murat; Verit, Ayhan; Yeni, Ercan

    2010-02-01

    The aims of our study are to evaluate ureterovesical jet flow Doppler ultrasound (US) in patients with residual ureteral stone after extracorporeal shock wave lithotripsy (ESWL) and to compare with unobstructed contralateral ureter. Patients who have residual ureteral stone in intravenous pyelography (IVP) and/or computed tomography (CT) after ESWL and unobstructed contralateral ureter in 20 patients were prospectively evaluated with Doppler US. The mean peak velocity of the Doppler waveforms was obtained on the residual ureteral stone and contralateral non-obstructed ureter (17.10 +/- 20), (56.0 +/- 32), respectively (P < 0.05). In conclusion, due to the absence of contraindications and side-effects, Doppler US is sensitive and highly specific that can contribute significantly to the diagnosis of residual ureteral stone after ESWL. It can replace IVP and/or CT, in condition where IVP is undesirable and in addition Doppler US can supply a functional investigation of the obstructed ureter. PMID:19940988

  20. Assessment of right ventricular systolic function by tissue Doppler echocardiography.

    PubMed

    Kjærgaard, Jesper

    2012-03-01

    This thesis summarizes a series of studies performed in order to assess the clinical usefulness of a novel echocardiographic technology that allows non-invasive assessment of regional right ventricular myocardial velocities and deformation: tissue Doppler echocardiography. While the technology is a promising tool for improving our understanding of right ventricular hemodynamics, several aspects of the technology must be evaluated. The accuracy and reproducibility of the technology is evaluated in vitro, and normal values, impact of changes in loading of the right ventricle, response to exercise and pharmacological pulmonary vasodilatation is established in normal subjects. The diagnostic and prognostic importance of adding tissue Doppler echocardiography to conventional echocardiographic and clinical parameters was evaluated in studies on patients with diseases associated with different modes of impact on right ventricular hemodynamics: pulmonary embolism, Arrhythmogenic right ventricular cardiomyopathy and pulmonary regurgitation, the latter in an animal model. The conclusions of the thesis are: Color tissue Doppler echocardiography accurately measures velocities, SR and strain in vitro. No systematic bias between ultrasound systems can be found, and accuracy of the measurements is good. However, the reproducibility of measurements in a test-retest design can limit the usefulness of the technology in daily clinical use, as 25% to 80% of change would be needed for the technology to identify a change in individual patients [I]. Normal values of tissue Doppler based measurements of RV regional velocities, SR and strain exist, and apply to both sexes and in all age groups with the exception of slightly decreasing values in strain with increasing age. Increasing preload and afterload changes regional myocardial velocities, but no changes in SR, strain or isovolumic acceleration could be observed [II and III]. Tissue Doppler echocardiography of the RV free wall in non

  1. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

    SciTech Connect

    Vlad, Roxana M.; Alajez, Nehad M.; Giles, Anoja B.Sc.; Kolios, Michael C.; Czarnota, Gregory J.

    2008-11-15

    Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. Methods and Materials: Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. Results: A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo.

  2. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  3. Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Forbrich, Alex; Harrison, Tyler; Zemp, Roger J.

    2012-03-01

    The metabolic rate of oxygen consumption, an important indicator of tissue metabolism, can be expressed as the change of net blood oxygen flux into and out of a tissue region per 100 g of tissue. In this work, we propose a photoacoustic and Doppler ultrasound method for imaging local blood oxygen flux of a single vessel. An imaging system for combined photoacoustic and high-frequency ultrasound microscopy is presented. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow speed can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or structural photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate oxygen saturation (sO2) and total concentration of haemoglobin (CHb), all of the parameters necessary for oxygen flux estimation can be provided. The accuracy of the flow speed and sO2 estimation has been investigated. In vitro sheep blood phantom experiments have been performed at different sO2 levels and mean flow speeds. Blood oxygen flux has been estimated, and the uncertainty of the measurement has been quantified.

  4. Coherent Flow Power Doppler (CFPD): Flow Detection using Spatial Coherence Beamforming

    PubMed Central

    Li, You Leo; Dahl, Jeremy J.

    2015-01-01

    Power Doppler imaging is a widely used method of flow detection for tissue perfusion monitoring, inflammatory hyperemia detection, deep vein thrombosis diagnosis, and other clinical applications. However, thermal noise and clutter limit its sensitivity and ability to detect slow flow. In addition, large ensembles are required to obtain sufficient sensitivity, which limits frame rate and yields flash artifacts during moderate tissue motion. We propose an alternative method of flow detection using the spatial coherence of backscattered ultrasound echoes. The method enhances slow flow detection and frame rate, while maintaining or improving the signal quality of conventional power Doppler techniques. The feasibility of this method is demonstrated with simulations, flow-phantom experiments, and an in-vivo human thyroid study. In comparison to conventional power Doppler imaging, the proposed method can produce Doppler images with 15-30 dB SNR improvement. Therefore, it is able to detect flow with velocities approximately 50% lower than conventional power Doppler, or improve the frame rate by a factor of 3 with comparable image quality. The results show promise for clinical applications of the method. PMID:26067037

  5. Coherent flow power Doppler (CFPD): flow detection using spatial coherence beamforming.

    PubMed

    Li, You Leo; Dahl, Jeremy J

    2015-06-01

    Power Doppler imaging is a widely used method of flow detection for tissue perfusion monitoring, inflammatory hyperemia detection, deep vein thrombosis diagnosis, and other clinical applications. However, thermal noise and clutter limit its sensitivity and ability to detect slow flow. In addition, large ensembles are required to obtain sufficient sensitivity, which limits frame rate and yields flash artifacts during moderate tissue motion. We propose an alternative method of flow detection using the spatial coherence of backscattered ultrasound echoes. The method enhances slow flow detection and frame rate, while maintaining or improving the signal quality of conventional power Doppler techniques. The feasibility of this method is demonstrated with simulations, flow-phantom experiments, and an in vivo human thyroid study. In comparison with conventional power Doppler imaging, the proposed method can produce Doppler images with 15- to 30-dB SNR improvement. Therefore, the method is able to detect flow with velocities approximately 50% lower than conventional power Doppler, or improve the frame rate by a factor of 3 with comparable image quality. The results show promise for clinical applications of the method. PMID:26067037

  6. Classification of Internal Carotid Artery Doppler Signals Using Hidden Markov Model and Wavelet Transform with Entropy

    NASA Astrophysics Data System (ADS)

    Uğuz, Harun; Kodaz, Halife

    Doppler ultrasound has been usually preferred for investigation of the artery conditions in the last two decade, since it is a non-invasive method which is not risky. In this study, a biomedical system based on Discrete Hidden Markov Model (DHMM) has been developed in order to classify the internal carotid artery Doppler signals recorded from 191 subjects (136 of them had suffered from internal carotid artery stenosis and rest of them had been healthy subjects). Developed system comprises of three stages. In the first stage, for feature extraction, obtained Doppler signals were separated to its sub-bands using Discrete Wavelet Transform (DWT). In the second stage, entropy of each sub-band was calculated using Shannon entropy algorithm to reduce the dimensionality of the feature vectors via DWT. In the third stage, the reduced features of carotid artery Doppler signals were used as input patterns of the DHMM classifier. Our proposed method reached 97.38% classification accuracy with 5 fold cross validation (CV) technique. The classification results showed that purposed method is effective for classification of internal carotid artery Doppler signals.

  7. [Comparative study of pathological Doppler and non-stress test in IUGR].

    PubMed

    Ivanov, B; Malinova, M

    2011-01-01

    The aim of the study was to evaluate the timing of delivery and the relationship between pathological Doppler ultrasonography and NST in IUGR fetuses. The prospective study included 84 fetuses with ultrasound diagnosis of IUGR and 100 fetuses of normal pregnancy The study group underwent Doppler velocimetry study of UA, MCA, DV and UV twice weekly, AFI twice weekly and NST daily. Apgar score, need of intubation, RDS, IVH, days of NICU hospitalization were available and related to neonatal outcome. Patients were stratified into groups: Preeclampsia with IUGR (Group 1) and IUGR only (group 2). In the group 1 the stillbirth was 3/44 (6,8%), in the group 2 the stillbirth was 8/40 (20%). Sensitivity for NST was 60%, and for Doppler velocimetry of DV was 71%. Specificity for NST was 87%, and for Doppler velocimetry of DV was 90%, respectively. Doppler changes occur first in chronic hypoxia while abnormal NST represent late stage of fetal compromise. PMID:22452172

  8. Carotid arterial blood pressure waveform monitoring using a portable ultrasound system.

    PubMed

    Joohyun Seo; Pietrangelo, Sabino J; Hae-Seung Lee; Sodini, Charles G

    2015-08-01

    This work presents a non-invasive arterial blood pressure (ABP) waveform monitoring technique using ultrasound. A portable ultrasound system to excite ultrasound transducers and acquire data is designed with off-the-shelf components. The insonation angles are identified using a vector Doppler technique based on the cosine dependency of the Doppler signals. The pulse pressure of an estimated waveform at the left common carotid artery is compared to the standard sphygmomanometer measurement in a clinical test. The estimated carotid ABP waveform shows excellent agreement to the finger ABP waveform with expected discrepancy of the systolic peak shape due to different measurement sites. The proposed method also tracks slow blood pressure fluctuations. This validation on human subjects shows potential for a noninvasive blood pressure waveform monitoring device at central arterial sites. PMID:26737584

  9. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Ebert, Douglas; Garcia, Kathleen M.; Martin, David S.; Dulchavsky, Scott A.; Duncan, J. Michael

    2009-01-01

    Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is < 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood.

  10. Ultrasound of the Thyroid Gland

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  11. Laser Doppler technique for investigation of blood microcirculation in tooth pulp and mucous membranes of an oral cavity

    NASA Astrophysics Data System (ADS)

    Sedykh, Alexey V.; Kharish, Natalia A.; Karpovitch, Anatoliy; Lepilin, Alexander V.; Osipova, Yulia; Ulyanov, Sergey S.

    2001-08-01

    The results of statistical analysis of intensity fluctuations of scattered light, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some physiological tests in combination with LDF technique are suggested as a new diagnostic tool. In addition, the results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients are presented.

  12. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  13. Cerebral lateralization and color perception: a transcranial Doppler study.

    PubMed

    Njemanze, P C; Gomez, C R; Horenstein, S

    1992-03-01

    Eight normal subjects were examined in dark, light and color conditions. Mean cerebral blood flow velocity (MBFV) were recorded almost simultaneously from their posterior cerebral arteries (PCA) using transcranial Doppler (TCD) ultrasound. The side-to-side difference was significant during the dark (p = 0.0159) and color stimulation (p = 0.0001) but not in light condition. This side-to-side difference in MBFV was used to characterize lateralization of color perception. This showed that the right PCA was always greater than the left during the presentation of color stimuli. Primary psychological colors (blue, yellow, red and green) induced greater lateralization as compared with color resulting from a mixed blue-green wavelength. This suggests that the right visual cortex is selectively sensitive to wavelengths. PMID:1572174

  14. Embedded Doppler system for industrial in-line rheometry.

    PubMed

    Ricci, Stefano; Liard, Maxime; Birkhofer, Beat; Lootens, Didier; Bruhwiler, Armin; Tortoli, Piero

    2012-07-01

    Rheological fluid behavior characterization is crucial for the industrial production of cosmetics, food, pharmaceutics, adhesive, sealants, etc. For example, the measurement of specific rheological features at every step of the production chain is critical for product quality control. Such measurements are often limited to laboratory tests on product specimens because of technical difficulties. In this work, we present an embedded system suitable for in-line rheometric evaluation of highly filled polyurethane-based adhesives. This system includes an ultrasound front-end and a digital signal processing section integrated in a low-cost field-programmable gate array. The system measures the real-time velocity profile developed in the pipe by the fluid, employing a Doppler multigate technique. The high-resolution velocity profile, combined with a pressure drop measurement, allows an accurate evaluation of the flow consistency index, K, and the flow behavior index, n, of the interrogated fluid. PMID:22828835

  15. Applications of Fresnel-Kirchhoff diffraction theory in the analysis of human-motion Doppler sonar grams.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2010-11-01

    Observed human-gait features in Doppler sonar grams are explained by using the Boulic-Thalmann (BT) model to predict joint angle time histories and the temporal displacements of the body center of mass. Body segments are represented as ellipsoids. Temporally dependent velocities at the proximal and distal end of key body segments are determined from BT. Doppler sonar grams are computed by mapping velocity-time dependent spectral acoustic-cross sections for the body segments onto time-velocity space, mimicking the Short Time Fourier Transform used in the Doppler sonar processing. Comparisons to measured data indicate that dominant returns come from trunk, thigh and lower leg. PMID:21110534

  16. Doppler-shifted self-reflected wave from a semiconductor

    NASA Astrophysics Data System (ADS)

    Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser

    1997-06-01

    We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.

  17. Spectral stratigraphy

    NASA Technical Reports Server (NTRS)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  18. Ultrasonic detection of photothermal interaction of lasers with tissue using a pulsed Doppler system

    NASA Astrophysics Data System (ADS)

    Ying, Hao; Azeemi, Aamer; Hartley, Craig J.; Motamedi, Massoud; Bell, Brent A.; Rastegar, Sohi; Sheppard, L. C.

    1995-05-01

    Thermal therapy using various heating sources such as lasers or microwaves to destroy benign and malignant lesions has recently gained widespread acceptance. However, the accurate prediction of thermal damage in tissue according to theoretical or computer modeling is difficult and unreliable due to target variability with respect to physical properties, geometry, and blood perfusion. Thus, one of the major obstacles to application of thermal therapies has been the lack of a noninvasive, real-time method that could determine the extent and geometry of treated tissue. To evaluate the effects of laser heating on tissue, we have developed an analog-digital hybrid Doppler ultrasound system to measure the phase and amplitude of ultrasonic echoes returned from the heated tissue. The system consists of an eight-gate pulsed Doppler detector, a 16-channel 12-bit A/D converter, and a signal analysis and visualization software package. In vitro studies using canine liver showed two distinct types of modulation of the echoes along the ultrasound beam path during laser irradiation using an 810 nm diode laser. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 2 signals showed large and rapid variations in amplitude and phase which usually appeared after tissue surface explosion and were indicative of tissue ablation. We hypothesize that the observed phase changes in type 1 signals are due to thermal effects within the tissue consistent with tissue expansion and contraction while the phase changes in type 2 signals are likely due to formation and motion of gas bubbles in the tissue. A further development of the Doppler ultrasound technique could lead to the generation of feedback information needed for monitoring and automatic control of thermal treatment using various heating modalities such as

  19. Coherent optical ultrasound detection with rare-earth ion dopants.

    PubMed

    Tay, Jian Wei; Ledingham, Patrick M; Longdell, Jevon J

    2010-08-10

    We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion-doped solids. Our method utilizes the dispersion effects due to the spectral hole to perform phase-to-amplitude modulation conversion. Like previous approaches using spectral holes, it has the advantage of detection with large étendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes. PMID:20697433

  20. Pulsed photoacoustic Doppler flowmetry using a cross correlation method

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2010-02-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. This approach was found to be effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.15 to 1.50 ms-1. The effect of the acoustic spot diameter and the time separation between the laser pulses on measurement resolution and the maximum measurable velocity is discussed. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus providing insights into the perfusion of tumours and other pathologies characterised by abnormalities in flow status.

  1. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  2. Musculoskeletal Ultrasound in Pediatrics.

    PubMed

    Harcke, H. Theodore

    1998-01-01

    Ultrasound is ideally suited to the evaluation of the pediatric musculoskeletal system because of the increased ratio of cartilage to bone in the immature skeleton. The purpose of this article is to review the current uses of musculoskeletal ultrasound in pediatric patients. Hip sonography is widely accepted; other applications are increasing in popularity. PMID:11387111

  3. Ultrasound skin imaging.

    PubMed

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology. PMID:24838227

  4. Developments in cardiovascular ultrasound: Part 1: Signal processing and instrumentation.

    PubMed

    Fish, P J; Hoskins, P R; Moran, C; McDicken, W N

    1997-11-01

    One of the major contributions to the improvement of spectral Doppler and colour flow imaging instruments has been the development of advanced signal-processing techniques made possible by increasing computing power. Model-based or parametric spectral estimators, time-frequency transforms, station-arising algorithms and spectral width correction techniques have been investigated as possible improvements on the FFT-based estimators currently used for real-time spectral estimation of Doppler signals. In colour flow imaging some improvement on velocity estimation accuracy has been achieved by the use of new algorithms but at the expense of increased computational complexity compared with the conventional autocorrelation method. Polynomial filters have been demonstrated to have some advantages over IIR filters for stationary echo cancellation. Several methods of velocity vector estimation to overcome the problem of angle dependence have been studied, including 2D feature tracking, two and three beam approaches and the use of spectral width in addition to mean frequency. 3D data acquisition and display and Doppler power imaging have also been investigated. The use of harmonic imaging, using the second harmonic generated by encapsulated bubble contrast media, seems promising particularly for imaging slow flow. Parallel image data acquisition using non-sequential scanning or broad beam transmission, followed by simultaneous reception along a number of beams, has been studied to speed up 'real-time' imaging. PMID:9538529

  5. Spectral stratigraphy

    NASA Astrophysics Data System (ADS)

    Lang, Harold R.

    1991-09-01

    Stratigraphic and structural studies of the Wind River and Bighorn basins, Wyoming, and the Guerrero-Morelos basin, Mexico, have resulted in development of ''spectral stratigraphy.'' This approach to stratigraphic analysis uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. This paper reviews selected published examples that illustrate this new stratigraphic procedure. Visible to thermal infrared laboratory, spectral measurements of sedimentary rocks are the physical basis for spectral stratigraphy. Results show that laboratory, field, and remote spectroscopy can augment conventional laboratory and field methods for petrologic analysis, stratigraphic correlation, interpretation of depositional environments, and construction of facies models. Landsat thematic mapper data are used to map strata and construct stratigraphic columns and structural cross sections at 1:24,000 scale or less. Experimental multispectral thermal infrared aircraft data facilitate lithofacies/biofacies analyses. Visible short-wavelength infrared imaging spectrometer data allow remote determination of the stratigraphic distribution of iron oxides, quartz, calcite, dolomite, gypsum, specific clay species, and other minerals diagnostic of environments of deposition. Development of a desk-top, computer-based, geologic analysis system that provides for automated application of these approaches to coregistered digital image and topographic data portends major expansion in the use of spectral stratigraphy for purely scientific (lithospheric research) or practical (resource exploration) objectives.

  6. Usefulness of Doppler waveform analysis in differential diagnosis of cervical lymphadenopathy.

    PubMed

    Brnić, Zoran; Hebrang, Andrija

    2003-01-01

    We compared Doppler spectral parameters in acute inflammatory, reactive, lymphomatous, and metastatic lymph nodes, and evaluated pulsed Doppler sonography as a method for distinguishing between different causes of cervical lymphadenopathy. Spectral Doppler analysis with measurements of resistance index (RI), pulsatility index (PI), peak systolic velocity (PSV), and end-diastolic velocity (EDV) was performed in 197 patients with cervical lymphadenopathy. Results of Doppler analysis were compared with findings of cytology and histology or with clinical presentation and follow-up. Student's t-test was used to assess statistical significance of differences in Doppler parameters between groups of patients. Significant differences for RI and PI were shown between all groups of patients except between lymphomatous and reactive nodes. Specificity of 100% for metastatic nodal involvement was shown for cutoff values RI>0.80 and PI>1.80. A positive predictive value (PPV) of 100% for acute lymphadenitis was shown for cutoff values RI<0.50 and PI<0.60. An EDV>9 cm/s has 100% negative predictive value for nodal metastasis, and EDV<1 cm/s has 100% specificity and PPV for metastasis. Although there exist differences in RI, PI, PSV, and EDV between different nodal diseases, none of these parameters offer both good sensitivity and good specificity, and only extreme cutoff values may occasionally be helpful in differential diagnosis. Doppler spectral analysis is a valuable noninvasive adjunct which can help in differentiation between metastatic, lymphomatous, acute inflammatory, and reactive lymphadenopathy, but cannot obviate biopsy in the majority of cases. PMID:12541127

  7. The influence of laser spot size on the micro-Doppler spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Dehua; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi; Zhao, Changming; Yang, Suhui

    2015-08-01

    Micro-Doppler effect, which is induced by micro motion of target or any structure on the target, is a frequency modulation that generates sidebands about the target's Doppler frequency shift, such as mechanical vibration or rotation. When a target's motions incorporate micro motions, the radar echo signal will contain micro-Doppler characteristics related to these motions. Therefore, the micro-Doppler effect provides a new approach to obtain the dynamic properties of targets, which can be used to accomplish the detection and identification of targets, such as the identification of different types of helicopters. Scattering of the laser spot from a target surface modulates the Doppler signal, causes broadening of the signal spectrum, and, adds uncertainty to the signature analysis. A mathematic model of cone spin, which is a typical micro motion, is built first in this paper. Furthermore, an analyzed equation is deduced to predict the micro-Doppler spectral broadening of acquired medium current signals in situations of different laser spot size. It is found that the beam spot size on the target affects the resulting spectral broadening. Finally, an experiment based on the scaled model is performed to verify the simulation. A narrow-linewidth single frequency fiber laser is employed to detect the cone target at different laser spot size by coherent detection with constant detect distance and laser power. The experimental result shows that the beam spot size on the target affects the resulting spectral broadening caused by speckle, which corresponds to the simulation result. The experimental broadening was consistently greater than the theoretical broadening due to other effects that also contribute to the total broadening.

  8. Generic Doppler processor speeds radar analysis

    NASA Astrophysics Data System (ADS)

    Engler, Harold F., Jr.; West, Philip D.; Austin, Mark D.; Gardos, Thomas R.

    1991-03-01

    The design and operation of a generic Doppler processor (GDP) are described in detail and illustrated with diagrams. The GDP was developed to facilitate the selection of a Doppler processing method for a radar system; it operates on an industrial desktop computer and makes it possible to switch rapidly among different Doppler processing bandwidths and center frequencies, filtering methods (FFT, analog, etc.), windowing methods, numbers of bits for quantization, and output display formats. The principal components are a programmable baseband clutter filter module, a Doppler processor chassis, a synthetic range-Doppler display, and a spectrum-analyzer-type real-Doppler display. The GDP provides + or - 5O kHz coverage with filter bandwidth 200 Hz, a maximum of 512 channels, 10 range gates, and an instantaneous dynamic range of 60 dB. Also discussed is the efficient finite-impulse-response filter design used to simulate analog filter banks.

  9. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  10. Lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2014-01-01

    ), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  11. Dynamic LVOT Obstruction and Aortic Stenosis in the Same Patient: A Case of Challenging Doppler Hemodynamics.

    PubMed

    Parker, Matthew W; Kiernan, Francis J

    2015-06-01

    We present a patient with both dynamic left ventricular outflow tract obstruction and valvular aortic stenosis. The aortic valve was calcified, and velocities and gradients measured by continuous-wave Doppler met standard criteria for severe aortic stenosis. The increased subvalvular velocities invalidated assumptions of the simplified Bernoulli equation; correction using the longer form of the Bernoulli equation suggested a lower but still significant gradient. The complex shape of the subvalvular spectral Doppler envelope indicated supranormal systolic function and dynamic left ventricular outflow obstruction. Left heart catheterization with an end-hole catheter was required to determine the subvalvular and valvular components of the obstruction. PMID:25809389

  12. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  13. Doppler images of DI Piscium during 2004-2006

    NASA Astrophysics Data System (ADS)

    Lindborg, M.; Hackman, T.; Mantere, M. J.; Korhonen, H.; Ilyin, I.; Kochukhov, O.; Piskunov, N.

    2014-02-01

    Aims: DI Psc (HD 217352) is a Li-rich, rapidly rotating single K giant. We set out to study the spot configuration and activity level by calculating surface temperature maps of the star. Methods: We apply the Doppler imaging method on high-resolution optical spectroscopy obtained during 2004-2006. Results: In July-August 2004, no clear spot structures were visible, but the spot coverage increased in July 2005, and cool spots emerged, especially at intermediate latitudes. Later on in September 2006, the spot coverage increased and cool spots were visible on both sides of the equator. However, the map of 2006 suffers from bad phase coverage, meaning it is not possible to draw definite conclusions on the spot locations during that season. Conclusions: Compared with earlier Doppler maps of DI Psc and temperature maps obtained for other late-type stars with similar rotation rates, DI Psc seems to be in a low activity state especially during the observing season of July-August 2004. During the 2005 and 2006 observing seasons, the spot activity seen in the spectral line profiles and inferred from Doppler images increases, and the temperature contrast in our last map is more comparable to what was reported in an earlier study. Therefore, it can be concluded that the spot activity level of the star is variable over time. However, the present and previous Doppler images form too short a time series to draw conclusions about a possible activity cycle in DI Psc. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  14. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    PubMed Central

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  15. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  16. Virtual histology and color flow intravascular ultrasound in peripheral interventions.

    PubMed

    Diethrich, Edward B; Irshad, Khalid; Reid, Donald B

    2006-09-01

    The quality and interpretation of intravascular ultrasound (IVUS) imaging has been revolutionized in recent years by two new and major advances: virtual histology and color flow IVUS. Virtual histology intravascular ultrasound (VHIVUS) is a catheter-based technology where IVUS is generated from the transducer on the catheter tip and the reflected signals from the artery wall produce a color-coded map of the arterial disease. Different histological constituents of the plaque produce different reflected signals and these are assigned different colors (dark green, fibrous; yellow/green, fibrofatty; white, calcified; red, necrotic lipid core plaque). This color-coded map assists the interventionalist in understanding more fully how the lesion will behave at the moment of treatment, whether it will resist complete stent deployment or be liable to embolization. Originally introduced for coronary interventions, VHIVUS is now being applied to peripheral situations. Because it provides a detailed and close-proximity view of plaque, its potential to improve the safety and efficacy of carotid endoluminal repair is stimulating substantial interest. Similarly, color flow IVUS provides greater understanding for the operator of blood flow, and the interface between the vessel wall and the blood stream, lumen size, and success of treatment. Color flow IVUS does not use the Doppler effect, but creates real-time images that resemble color flow Doppler ultrasound. These two technological advances in IVUS have greatly improved the ability of the endovascular specialist to understand the arterial disease they are treating and to assess the completion of treatment. PMID:16996418

  17. Covert contrast in velar fronting: An acoustic and ultrasound study.

    PubMed

    McAllister Byun, Tara; Buchwald, Adam; Mizoguchi, Ai

    2016-01-01

    There is growing evidence that speech sound acquisition is a gradual process, with instrumental measures frequently revealing covert contrast in errors perceived to involve phonemic substitution. Ultrasound imaging has the potential to expand our understanding of covert contrast by showing whether a child uses different tongue shapes while producing sounds that are perceived as neutralised. This study used an ultrasound measure (Dorsum Excursion Index) and acoustic measures (VOT and spectral moments of the burst) to investigate overt and covert contrast between velar and alveolar stops in child speech. Participants were two children who produced a perceptually overt velar-alveolar contrast and two children who neutralised the contrast via velar fronting. Both acoustic and ultrasound measures revealed significant differences between perceptually distinct velar and alveolar targets. One child with velar fronting demonstrated covert contrast in one acoustic and one ultrasound measure; the other showed no evidence of contrast. Clinical implications are discussed in this article. PMID:26325303

  18. Covert contrast in velar fronting: An acoustic and ultrasound study

    PubMed Central

    Byun, Tara McAllister; Buchwald, Adam; Mizoguchi, Ai

    2016-01-01

    There is growing evidence that speech sound acquisition is a gradual process, with instrumental measures frequently revealing covert contrast in errors perceived to involve phonemic substitution. Ultrasound imaging has the potential to expand our understanding of covert contrast by showing whether a child uses different tongue shapes while producing sounds that are perceived as neutralized. This study used an ultrasound measure (Dorsum Excursion Index) and acoustic measures (VOT and spectral moments of the burst) to investigate overt and covert contrast between velar and alveolar stops in child speech. Participants were two children who produced a perceptually overt velar-alveolar contrast and two children who neutralized the contrast via velar fronting. Both acoustic and ultrasound measures revealed significant differences between perceptually distinct velar and alveolar targets. One child with velar fronting demonstrated covert contrast in one acoustic and one ultrasound measure; the other showed no evidence of contrast. Clinical implications are discussed. PMID:26325303

  19. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  20. Doppler effects on periodicities in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  1. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  2. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. PMID:26079610

  3. Ultrasound simulation in bone.

    PubMed

    Kaufman, Jonathan J; Luo, Gangming; Siffert, Robert S

    2008-01-01

    The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnostic imaging of soft tissue with interest in assessing exposure levels to nearby bone. Because of the lack of analytic solutions to virtually every "practical problem" encountered clinically, ultrasound simulation has become a widely used technique for evaluating ultrasound interactions in bone. This paper provides an overview of the use of ultrasound simulation in bone. A brief description of the mathematical model used to characterize ultrasound propagation in bone is first provided. A number of simulation examples are then presented that explain how simulation may be utilized in a variety of practical configurations. The focus of this paper in terms of examples presented is on diagnostic applications in bone, and, in particular, for assessment of osteoporosis. However, the use of simulation in other areas of interest can easily be extrapolated from the examples presented. In conclusion, this paper describes the use of ultrasound simulation in bone and demonstrates the power of computational methods for ultrasound research in general and tissue and bone applications in particular. PMID:18599409

  4. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  5. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  6. Ultrasound assessment of schistosomiasis.

    PubMed

    Richter, J; Botelho, M C; Holtfreter, M C; Akpata, R; El Scheich, T; Neumayr, A; Brunetti, E; Hatz, C; Dong, Y; Dietrich, C F

    2016-07-01

    In 2000, the World Health Organization (WHO) issued an ultrasound field protocol for assessing the morbidity due to Schistosoma (S.) haematobium and S. mansoni. The experience with this classification has recently been reviewed systematically. The WHO protocol was well accepted worldwide. Here we review the use of ultrasound to assess the morbidity due to schistosomiasis with emphasis on easy, quick, and reproducible ways that can be used in the field. Findings obtained with high-end ultrasound scanners in the hospital setting that might eventually have applications in the field are also described. PMID:27429103

  7. Clinical Applicability of Assessment of Jugular Flow over the Individual Cardiac Cycle Compared with Current Ultrasound Methodology.

    PubMed

    Sisini, Francesco; Tessari, Mirko; Menegatti, Erica; Vannini, Maria Elena; Gianesini, Sergio; Tavoni, Valentina; Gadda, Giacomo; Gambaccini, Mauro; Taibi, Angelo; Zamboni, Paolo

    2016-08-01

    There is growing interest in measuring cerebral venous outflow with ultrasound (US). However, results obtained with the current US Doppler methodology, which uses just a single value of cross-sectional area (CSA) of the vessel, are highly variable and inconclusive. The product of CSA and time-averaged velocity in the case of pulsatile vessels may be a possible source of error, particularly for a pulsatile vein like the internal jugular vein (IJV), where the cardiac pump transmits a sequence of well-established waves along the conduit. We herein propose a novel technique for US IJV flow assessment that accurately accounts for IJV CSA variations during the cardiac cycle. Five subjects were investigated with a high-resolution real-time B-mode video, synchronized with an electrocardiography trace. In this approach, CSA variations representing the pulsatility of the IJV are overlapped with the velocity curve obtained by the usual spectral Doppler trace. The overlap is then phased point by point using the electrocardiography pacemaker. This allows us to experimentally measure the velocity variation in relation to the change in CSA precisely, ultimately enabling calculation of IJV flow. (i) The sequence of CSA variation with respect to the electrocardiography waves corresponds exactly to the jugular venous pulse as measured in physiology. (ii) The methodology permits us to phase the velocity and CSA, which is ultimately what is currently lacking to precisely calculate the flow in the IJV with US. (iii) The time-averaged flow, calculated with the described technique, is very close to that calculated assuming a constant IJV CSA, whereas the time-dependent flow shows differs as much as 40%. (iv) Finally, we tested the accuracy of the technique with a methodology that may allow for universal assessment of the accuracy of each personal US-based evaluation of flow rate. PMID:27108038

  8. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  9. Vascularity Visualized by Doppler Sonography as a Predictor of Healing Potential of the OCD of the Humeral Capitellum

    PubMed Central

    Kida, Yoshikazu; Morihara, Toru; Kotoura, Yoshihiro; Sukenari, Tsuyoshi; Furukawa, Ryuhei; Kabuto, Yukichi; Onishi, Okihiro; MInami, Masataka; Tsujihara, Takashi; Hojo, Tatsuya; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-01-01

    Objectives: The significance of vascularity visualized by Doppler sonography in osteochondritis dissecance (OCD) lesion of the humeral capitellum is unclear. The objectives of this study were twofold: 1) to evaluate the relationship between Doppler ultrasound (US) signals observed in OCD lesion of the humeral capitellum and X-ray stage; 2) to determine if the presence of Doppler US signals in OCD lesion of the humeral capitellum could be the predictor of healing potential. Methods: Fifty patients with OCD of the humeral capitellum treated conservatively were enrolled in this study. During the conservative treatment period, Doppler sonography was performed on affected elbow to assess the presence of vascularity in the OCD lesion (Figure 1), and radiographic examination were evaluated on the same day to determine the X-ray stage (stage I: radiolucent stage, stage II: fragmentation stage, and stage III: loose body stage) of the OCD lesion (Figure 2). Radiographic examination of the elbow was examined after 6 weeks to evaluate the healing of the lesion. If the size of the lesion decreased or new bone formations were observed around the fragments, the healing of the lesion was considered to be improve. The χ2 test was used to determine if the presence of Doppler US signals were related to X-ray stage and the improvement of the healing. P < 0.05 was considered significant for all statistical analyses. Results: The Doppler US signals in OCD lesions were positive in 23 patients and negative in 27 patients. Of these patients, 19 were X-ray stage I, 17 were stage II, and 9 were stage III. The healing of OCD lesions improved in 78.2% for the positive Doppler US signal group, but only 18.5% for the negative Doppler US signal group (Figure 3). The presence of the Doppler US signal was significantly related to the improvement of healing (P = 0.00002). The Doppler US signal were positive in 78.9% for stage I, 36.4% for stage II, and 0.0% for stage III (Figure 4). The presence of

  10. Baseband velocity estimation for second-harmonic signals exploiting the invariance of the Doppler equation.

    PubMed

    Verbeek, X A; Ledoux, L A; Brands, P J; Hoeks, A P

    1998-10-01

    All Doppler systems, whether conventional Doppler domain or radio frequency (RF) processing is employed, relate the temporal frequency characteristics of the signal at a certain point in depth as function of time to the spatial frequency characteristics of the received signal as function of depth. The mean frequency of the latter may change as a result of depth-dependent attenuation, nonlinear scattering mechanisms, as in harmonic imaging of ultrasound contrast agents, or RF signal demodulation. For all these cases, the relationship between spatial and temporal mean frequency and target velocity is still governed by the familiar Doppler expression if the signal modifications have been properly accounted for. A major drawback of RF signal processing to extract the target velocity is the large number of data points to consider. The computational complexity increases further for harmonic imaging. It is shown conceptually, and demonstrated by signal simulations, that prior to velocity estimation RF demodulation followed by decimation 1) does not affect the Doppler equation, 2) enhances the information content of the samples, 3) reduces the computational load by a factor of four and for harmonic signals by a higher factor, and 4) while demodulation does not have to be actually performed, but can be accounted for by a scaling factor in the cross-correlation function. It is concluded that decimation hardly affects the precision of the velocity estimate if possible frequency aliasing is maintained within bounds, suggesting that the decimation factor is not critical. PMID:9775535

  11. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  12. [Usefulness of power Doppler ultrasonography for the diagnosis of autoinfarction of parathyroid gland in secondary hyperparathyroidism].

    PubMed

    Tanaka, Motoko; Ito, Kazuko; Matsushita, Kazunori; Matsushita, Kazutaka; Tominaga, Yoshihiro; Matsuoka, Susumu; Ueki, Tsuneo; Goto, Norihiko; Sato, Tetsuhiko; Katayama, Akio; Haba, Toshihito; Uchida, Kazuharu

    2005-09-01

    Spontaneous remission due to parathyroid infarction of secondary hyperparathyroidism is rare compared with that of primary hyperparathyroidism, probably because several glands are enlarged in secondary hyperparathyroidism. Lately, neck ultrasound examination has become a more beneficial and specific method for the diagnosis of enlarged parathyroid glands in contrast to classic diagnostic techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and scintigraphy. However, the diagnosis of parathyroid infarction reported in previous studies was often based on CT, MRI and scintigraphy findings and there are few studies that reported such diagnosis by urgent power Doppler ultrasonography of the neck. Here we present a hemodialysis patient with autoinfarction of the left parathyroid gland diagnosed by urgent power Doppler ultrasonography of the neck. PMID:16272629

  13. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  14. Spectral Dictionaries

    PubMed Central

    Kim, Sangtae; Gupta, Nitin; Bandeira, Nuno; Pevzner, Pavel A.

    2009-01-01

    Database search tools identify peptides by matching tandem mass spectra against a protein database. We study an alternative approach when all plausible de novo interpretations of a spectrum (spectral dictionary) are generated and then quickly matched against the database. We present a new MS-Dictionary algorithm for efficiently generating spectral dictionaries and demonstrate that MS-Dictionary can identify spectra that are missed in the database search. We argue that MS-Dictionary enables proteogenomics searches in six-frame translation of genomic sequences that may be prohibitively time-consuming for existing database search approaches. We show that such searches allow one to correct sequencing errors and find programmed frameshifts. PMID:18703573

  15. Doppler-width thermodynamic thermometry by means of line-absorbance analysis

    SciTech Connect

    Castrillo, A.; De Vizia, M. D.; Gianfrani, L.; Moretti, L.; Galzerano, G.; Laporta, P.; Merlone, A.

    2011-09-15

    A clean and effective implementation of Doppler-width thermometry is described. Exploiting the relationship between line-center absorbance and integrated absorbance, the Doppler width of a molecular spectral line can be retrieved from a set of profiles resulting from different gas pressures. The method is validated by its application to numerically simulated spectra. Preliminary experiments, in water vapor samples, turn out to be successful, demonstrating Doppler-widths' retrieval in the near-infrared with a precision of 8x10{sup -5}, at the water triple point temperature. The direct link to the Boltzmann constant makes the proposed method very attractive for temperature metrology as a tool for the realization of a new thermodynamic temperature scale.

  16. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  17. Measurements in ultrasound

    SciTech Connect

    Goldberg, B.B.; Kurtz, A.B.; Goldberg, P.

    1988-01-01

    This book gathers all published and original data pertaining to anatomical measurements as projected on ultrasound scans. It covers all major anatomic regions and organ systems, including abdomen, pelvic, obstetrical, head and neck, and heart.

  18. Ultrasound in pregnancy (image)

    MedlinePlus

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  19. Eye and orbit ultrasound

    MedlinePlus

    ... the eye (vitreous hemorrhage) Cancer of the retina ( retinoblastoma ), under the retina, or in other parts of ... Cataract removal Melanoma of the eye Retinal detachment Retinoblastoma Ultrasound Update Date 2/23/2015 Updated by: ...

  20. Ultrasound: Pelvis (For Parents)

    MedlinePlus

    ... pelvic area and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...