Science.gov

Sample records for spectroscopic analysis study

  1. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  2. A study of colloids in deep groundwater using spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Aosai, D.; Mizuno, T.; Watanabe, K.; Kogure, T.; Suzuki, Y.

    2010-12-01

    In groundwater, colloids play an important role as carriers of various elements. The effect of colloids on behavior of radioactive nuclides must be evaluated with respect to safety assessment for geological disposal of high-level radioactive waste. However, study of the role of colloids in groundwater at depths greater than several hundred meters is still difficult due to lack of a suitable method which can collect and analyze colloids with a guarantee of quality of sample. The most serious problems on the method are the artificial impact of drilling and the chemical alteration during collection and analysis. The aim of this study is to develop a method that meets the requirements for understanding the chemical properties of colloids in groundwater. The Mizunami Underground Research Laboratory (MIU) is a facility used for geoscientific researches by the Japan Atomic Energy Agency (JAEA). Two boreholes at the MIU were used to evaluate groundwater quality for colloid studies. One is a horizontal borehole in artesian condition (07MI07: length 55 m) drilled from the horizontal gallery excavated at a depth of 200 m. The other one is a deep inclined borehole (MIZ-1: length 1300 m) drilled from the surface. The 07MI07 was drilled with fresh water and without mud fluid, whereas the MIZ-1 was drilled with mud fluid to prevent collapse. Colloids of the 07MI07 were collected using ultrafiltration and maintaining both pressurized and anaerobic conditions. On the other hand, sample collection in the MIZ-1 used ultrafiltration, but only anaerobic condition was maintained. Membrane filters (pore size 10 kDa) with colloids were dried under Ar gas atmosphere. Observation of colloids was conducted using scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDX), attenuated total reflectance infrared spectroscopy (ATR-IR), X-ray absorption fine structure (XAFS) of Fe K-edge, and transmission electron microscopy-energy dispersive X-ray analyzer (TEM-EDX). For SEM-EDX analysis, results of fluorescence mapping of the MIZ-1 show existence of inorganic particles (>1 µm) mainly consist of Al, Si, and Fe, in the matrix consist of organic C. For the 07MI07, these inorganic particles are depleted with Fe. Colloids consist of organic C are also observed in the 07MI07. For both boreholes, the ATR-IR spectra of colloids are similar to that of humic substance. It is suggested by XAFS analysis that Fe(III) is the dominant chemical state of Fe in all samples. For the MIZ-1, a large amount of amorphous Fe hydroxides particles with a size of 50 nm are observed by TEM-EDX, but not for the 07MI07. It is expected that Fe(III) are supplied from drill pit and mud fluid. The artificial Fe colloids in the MIZ-1 remain in groundwater after drilling, whereas the artificial Fe of the 07MI07 has been mostly flushed by inflow of water. Our results suggest that using the borehole drilled from the underground facility can suppress the degree of artificial impact of drilling. It is concluded that the combination of ultrafiltration and the spectroscopic analyses employed here can provide information of chemical properties of colloids and suppress chemical alteration during collection and analysis.

  3. Spectroscopic studies and normal coordinate analysis of bilirubin.

    PubMed

    Rai, Amareshwar Kumar; Rai, S B; Rai, D K; Singh, V B

    2002-08-01

    The infrared spectrum of bilirubin has been recorded in the spectral region 200-4000 cm(-1). The Raman spectrum has also been recorded using the second harmonic (530 nm) radiation of a 200 mW Nd-YAG laser. In order to confirm the vibrational assignment of the bands obtained from experimental observation, a normal coordinate analysis has been carried out using the semi-empirical AM1 method through MOPAC 5.1 computer program. Electronic absorption spectrum of bilirubin dissolved in CHCl3 has been recorded in the spectral region 300-600 nm. A broad spectrum is observed with peak maxima at 454.2 nm. The photoacoustic spectrum of this molecule (in the powder form) has also been recorded for the first time which shows certain discrete features. PMID:12212739

  4. The study of interaction between PFOA/PFOS and uracil by topology quality and spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Ying; Zhu, Jian-Qing; Wang, Wei; Xu, Xiao-Lu; Lu, Yin

    2014-02-01

    It has been established that perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) can be considered as emerging persistent organic pollutants. In recent years, there was increasing distribution of PFOA/PFOS in environmental systems, and accumulation and toxic effects of PFOA/PFOS in human body. In this paper, quantum chemistry methods were employed to study the interaction between perfluorinated organic pollutants and base (uracil). The results showed that there were four stable binding modes between the two perfluorinated compounds with uracil, especially the second mode which caused the most detrimental physiological functional response. NBO analysis showed that reactive hydrogen in the two perfluorinated compounds had the greatest effect on the hydrogen bond. The nature of the hydrogen bond formed between the two perfluorinated compounds and base was investigated using the AIM theory. The changes of spectroscopic properties in complexes were analyzed by IR and NMR spectra.

  5. Analysis of spectroscopic ellipsometric measurements

    NASA Astrophysics Data System (ADS)

    Verbruggen, M. H. W.; de Nijs, J. M. M.

    1992-02-01

    In recent years spectroscopic ellipsometry has been succesfully to non-destructive characterize multi-layer materials and to monitor surface processes as a function of time. The extraction of the relevant parameters of these samples from the spectroscopic data requires extensive computer analysis. For this purpose the sample is described by means of a stratified-layer theory in combination with an effective medium approximation. The computer program presently discussed performs this analysis of spectroscopic-ellipsometric data for any arbitrary model and any arbitrary number of data points. It applies a least-squares fitting procedure based on a modified Levenberg-Marquardt routine. A special feature of the program is the implementation of linked list to obtain a very efficient data structure that allows a high flexibility of the program.

  6. Vibrational spectroscopic analysis of an amber necklace--a forensic historical study.

    PubMed

    Edwards, Howell G M

    2010-08-01

    The vibrational infrared spectroscopic analysis of an important historical necklace of 102 beads that are purported to be made of amber indicated strong signal characteristics of cellulose nitrate with dark green-coloured areas of a naphthylamine dye. Confocal Raman depth-profiling spectroscopy using a 785-nm laser excitation, a novel application first applied here for the analysis of inclusions in amber resin, confirmed that the beads were amber resin and that residues of cellulose nitrate, camphor plasticiser and a naphthylamine dyestuff were present in surface cracks and inclusions in the bead matrix. The bead stringing material was confirmed as cellulose, which was stained green in part with the dyestuff. Comparison of the Raman spectra of the amber beads with a resin database suggested that the amber was sourced from Northern England. The scientific evidence supports the stylistic opinion that the necklace is an important example that could date from the 19th Century and that efforts had been made to coat it with a synthetic dyed polymer; this provides a rather unusual example of the chemical masking of a genuine article--a procedure that renders the article of particular interest. PMID:20376434

  7. Spectroscopic study of sprites

    NASA Astrophysics Data System (ADS)

    Kanmae, Takeshi

    Optical emissions from sprites--large electric discharges in the mesosphere caused by intense lightning strokes--have been studied for decades. Studies have identified that sprite emissions are primarily composed of molecular band emissions of nitrogen and notably identified the near ultraviolet and blue emission from the N2+ First Negative system, which provided direct evidence of ionization in sprites. This implies that further evidence of the ionization may be provided by the visible and near infrared emission from the N2+ Meinel system, which is more accessible from ground-based platforms, though anticipated strong quenching in the mesosphere and below have made the presence of the emission somewhat controversial. To investigate the presence of the Meinel emission along the vertical extent of sprites, we made ground-based spectral observations in 2005. The observed spectra were mainly composed of the N2 First Positive system, and no or little indication of the Meinel bands were found. This study suggests that the quenching is indeed severe at sprite altitude, and it is difficult to study the ionization process in sprites via the Meinel emission. In addition, the data allowed us to investigate details of the First Positive emission from sprites. The observed First Positive spectra showed that the vibrational distribution of the upper state varies along the vertical extent of sprites, which is in agreement with previous reports, and furthermore this study indicates that the variation is associated with altitude, implying that collisional energy transfer processes play roles in exciting the First Positive emission, particularly at lower altitudes. Recent high-speed imaging observations have revealed the very dynamic nature of sprites: they develop within a few to 10 ms in forms of streamers and columnar glows. The underlying electron energies in these features have been inferred from their emissions in previous measurements, but they lacked either sufficient temporal or spatial resolution. To investigate the underlying electron energies, we made airborne spectral observations in 2009 with a slitless spectrograph, which provided temporal and spatial resolution improved over the previous measurements. The observed spectra clearly showed that the streamers consistently had a higher fraction of blue emission compared to the glows, indicating that the more energetic nature of the streamers. From the fractional blue emissions, the local electric fields were inferred to be 0.7 to 1.5Ek in the streamers and 0.3 to 0.6Ek in the glows, where Ek is the conventional breakdown electric field. The results support the interpretation of sprites as scaled analogs of streamer discharges observed in laboratory experiments.

  8. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  9. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil. PMID:26971405

  10. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  11. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  12. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Beaula, T. Joselin; Packiavathi, A.; Manimaran, D.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors.

  13. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid.

    PubMed

    Beaula, T Joselin; Packiavathi, A; Manimaran, D; Joe, I Hubert; Rastogi, V K; Jothy, V Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The (13)C and (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors. PMID:25544188

  14. ESCA studies of the surface chemistry of lunar fines. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1976-01-01

    The paper presents an ESCA analysis based on the use of a synthetic lunar-glass standard that allows determination of the surface composition of lunar samples with an accuracy that appears to be better than 10% of the amount present for all major elements except Ti. It is found that, on the average, grain surfaces in the lunar fines samples 10084 and 15301 are strongly enriched in Si, moderately enriched in Fe, moderately depleted in Al and Ca, and strongly depleted in Mg. This pattern could not be produced by the deposition of any expected meteoritic vapor. Neither could it be produced by simple inverse-mass-dependent element loss during sputtering. It is suggested that at least part of the pattern may be a simple consequence of agglutinate glass formation in the fines since there is some evidence that Si can become enriched on the surface of silicate melts. These results do not support the strong enrichments in Fe on grain surfaces reported from Auger studies.

  15. Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies.

    PubMed

    Ikuta, Naoko; Endo, Takatsugu; Hosomi, Shota; Setou, Keita; Tanaka, Shiori; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Takahashi, Kenji; Terao, Keiji; Matsugo, Seiichi

    2015-01-01

    R(+)-α-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-αCD complex and evaluated its properties in the solid state. The results of ¹H NMR and PXRD analyses indicated that the crystalline RALA-αCD complex is a channel type complex with a molar ratio of 2:3 (RALA:α-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-αCD complex. Raman spectroscopic analysis revealed the significant weakness of the S-S and C-S stretching vibrations of RALA in the RALA-αCD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of α-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the α-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the α-CD ring. PMID:26501268

  16. Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies

    PubMed Central

    Ikuta, Naoko; Endo, Takatsugu; Hosomi, Shota; Setou, Keita; Tanaka, Shiori; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Takahashi, Kenji; Terao, Keiji; Matsugo, Seiichi

    2015-01-01

    R(+)-α-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-αCD complex and evaluated its properties in the solid state. The results of 1H NMR and PXRD analyses indicated that the crystalline RALA-αCD complex is a channel type complex with a molar ratio of 2:3 (RALA:α-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-αCD complex. Raman spectroscopic analysis revealed the significant weakness of the S–S and C–S stretching vibrations of RALA in the RALA-αCD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of α-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the α-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the α-CD ring. PMID:26501268

  17. Vibrational spectroscopic analysis of 2-bromobenzoic and anthranilic acids: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Ganasan, K.; Periandy, S.; Mohan, S.; Tedlamelekot, F.

    2011-09-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm -1 and 50-4000 cm -1 respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee-Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitutions of amino group and halogen bond were investigated. The results of the calculations were applied to simulate spectra of the title compounds, which show excellent agreement with observed spectra.

  18. Vibrational spectroscopic analysis of 2-bromobenzoic and anthranilic acids: a combined experimental and theoretical study.

    PubMed

    Govindarajan, M; Ganasan, K; Periandy, S; Mohan, S; Tedlamelekot, F

    2011-09-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1) respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee-Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitutions of amino group and halogen bond were investigated. The results of the calculations were applied to simulate spectra of the title compounds, which show excellent agreement with observed spectra. PMID:21703917

  19. Vibrational spectroscopic analysis of 2-chlorotoluene and 2-bromotoluene: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Ganasan, K.; Periandy, S.; Karabacak, M.; Mohan, S.

    2010-12-01

    In this work, the vibrational spectral analysis was carried out using Raman and infrared spectroscopy in the range 100-4000 cm -1 and 50-4000 cm -1, respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitutions of methyl group and halogen bond were investigated. The results of the calculations were applied to simulated spectra of the title compounds, which show excellent agreement with observed spectra.

  20. Vibrational spectroscopic analysis of 2-chlorotoluene and 2-bromotoluene: a combined experimental and theoretical study.

    PubMed

    Govindarajan, M; Ganasan, K; Periandy, S; Karabacak, M; Mohan, S

    2010-12-01

    In this work, the vibrational spectral analysis was carried out using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1), respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitutions of methyl group and halogen bond were investigated. The results of the calculations were applied to simulated spectra of the title compounds, which show excellent agreement with observed spectra. PMID:20869295

  1. Study on molecular structure, spectroscopic behavior, NBO, and NLO analysis of 3-methylbezothiazole-2-thione.

    PubMed

    Chand, Satish; Al-Omary, Fatmah A M; El-Emam, Ali A; Shukla, Vikas K; Prasad, Onkar; Sinha, Leena

    2015-07-01

    Experimentally observed spectral data (FT-TR and FT-Raman) of 3-methylbezothiazole-2-thione (3MBT2T) were compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. UV-Vis spectrum of the title compound was recorded and the electronic properties, such as frontier molecular orbitals and band gap energies were calculated by TD-DFT approach. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better comprehension of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to investigate the stability of the molecule arising from charge delocalization. Global and local reactivity descriptors were also computed to predict reactivity and reactive sites on the molecule. PMID:25813170

  2. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  3. Vibrational Spectroscopic Investigation and Conformational Analysis of 1-HEPTYLAMINE: a Comparative Density Functional Study

    NASA Astrophysics Data System (ADS)

    Tursun, Mahir; Kesan, Gurkan; Parlak, Cemal; Senyel, Mustafa

    2013-06-01

    FT-IR and Raman spectra of 1-heptylamine (1-ha) were experimentally reported in the region of 4000-10 cm-1 and 4000-100 cm-1, respectively. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 1-ha (C7H17N) were theoretically examined by means of Becke-3-Lee-Yang-Parr (B3-LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable vibrational assignments were made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 1-ha were predicted. Calculations were carried out with the possible ten conformational isomers (TT, TG, GT, GT1, GG1, GG2, GG3, GG4, GG5, GG6; T and G denote trans and gauge) of 1-ha, both in gas phase and in solution. Solvent effects were investigated using benzene and methanol. All results indicates that B3-LYP method provides satisfactory results for the prediction vibrational wavenumbers, TT isomer is the most stable form of 1-ha and the conformational energy barrier is independent of the solvent whereas the vibrational frequencies and assignments, IR and Raman intensities of 1-ha are solvent dependent.

  4. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    PubMed Central

    Zhang, Weiqing; Jiang, Shuguang; Hardacre, Christopher; Goodrich, Peter; Wang, Kai; Shao, Hao; Wu, Zhengyan

    2015-01-01

    Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA) measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite) and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and I(G + GR)/IAll but lower values of ID/I(G+GR), IDL/I(G+GR), I(S + SL)/I(G+GR), and I(GL+GL')/I(G+GR). The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, I(G + GR)/IAll, and I(S + SL)/I(G+GR). Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements. PMID:26682084

  5. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    NASA Astrophysics Data System (ADS)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  6. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  7. ESCA studies on solar-wind reduction mechanisms. [Electron Spectroscopic Chemical Analysis of lunar fines

    NASA Technical Reports Server (NTRS)

    Yin, L.; Tsang, T.; Adler, I.

    1975-01-01

    In a continuing study of solar-wind darkening on the lunar surface, ESCA techniques have been used to examine surface reduction and optical darkening by ion bombardment. Experimental results on transition metal fluorides have shown that ion-bombardment reduction is (a) accompanied by the loss of anion species, (b) relatively independent of the incident ion mass, and (c) not simply related to physical sputtering itself. The reduction mechanism may be more chemical in nature and the rate may be determined primarily by the transition metal ion

  8. Experimental study of nitrogen-doped graphene by spectroscopic and probe methods of surface analysis

    NASA Astrophysics Data System (ADS)

    Pereyaslavtsev, Alexander; Rybin, Maxim; Vasilieva, Tatiana; Miasnikov, Vladimir; Sokolov, Igor

    2016-01-01

    This work demonstrates an integrated approach for studying graphene films with various doping levels of nitrogen. The graphene films grown by a chemical vapor deposition technique were doped by treatment in ammonia radio-frequency plasma discharge. The graphene samples were investigated by x-ray photoelectron spectroscopy with a parallel registration of photoemission angular dependence. The depth-dependent changes in the valence band structure and the nitrogen peak position were recorded. The shift of valence band maximum relative to the initial value (0.13±0.04 eV) was observed using ultraviolet photoelectron spectroscopy. The dispersion and the shift of π-plasmon maximum were registered while the percentage of nitrogen atoms in two-dimensional graphene network increased.

  9. FT-IR spectroscopic analysis to study the firing processes of prehistoric ceramics

    NASA Astrophysics Data System (ADS)

    Barone, G.; Crupi, V.; Longo, F.; Majolino, D.; Mazzoleni, P.; Tanasi, D.; Venuti, V.

    2011-05-01

    In this work, we present a FT-IR absorbance investigation on prehistoric ceramics with the aim of characterizing the phase transformations that occur during the cooking processes. The measurements were performed on several potteries belonging to the Middle Bronze Age excavated in the Catania hinterland (Sicily, Southern Italy). Based on the macroscopic observation, the samples may be distinguished on coarse and fine ceramics, and the petrographic study showed a strongly heterogeneous structure and composition. The results were compared with the data obtained by means of X-ray diffraction (XRD) and with the microscopic qualitative observations of the birefringence of the groundmass. The whole set of the data showed a firing temperature in the 800-900 C range. The simultaneous presence in several samples of calcite and clay minerals and of new-formed Ca-silicates should be indicative of a quite primitive technological firing process with strong temperature variation inside the kiln.

  10. Studies on the binding of fulvic acid with transferrin by spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Yang, Guang; Dong, Yu; Zhao, Yan-qin; Sun, Xiao-ran; Chen, Lei; Chen, Hong-bo

    2015-02-01

    Transferrin has shown potential in the delivery of anticancer drugs into primarily proliferating cancer cells that over-express transferrin receptors. Fulvic acid has a wide range of biological and pharmacological activities which caused widespread concerns, the interaction of fulvic acid with human serum transferrin (Tf) has great significance for gaining a deeper insight about anticancer activities of fulvic acid. In this study, the mechanism of interaction between fulvic acid and Tf, has been investigated by using fluorescence quenching, thermodynamics, synchronous fluorescence and circular dichroism (CD) under physiological condition. Our results have shown that fulvic acid binds to Tf and form a new complex, and the calculated apparent association constants are 5.04 × 108 M-1, 5.48 × 107 M-1, 7.38 × 106 M-1 from the fluorescence quenching at 288 K, 298 K, and 310 K. The thermodynamic parameters indicate that hydrogen bonding and weak van der Waals are involved in the interaction between fulvic acid and Tf. The binding of fulvic acid to Tf causes the α-helix structure content of the protein to reduce, and resulting that peptide chains of Tf become more stretched. Our results have indicated a mechanism of the interaction between fulvic acid and Tf, which may provide information for possible design of methods to deliver drug molecules via transferrin to target tissues and cells effectively.

  11. The Spectroscopic study of {sup 33}Ar

    SciTech Connect

    Adimi, N.; Dominguez-Reyes, R.; Alcorta, M.; Borge, M. J. G.; Perea, A.; Tengblad, O.; Bey, A.; Blank, B.; Dossat, C.; Giovinazzo, J.; Matea, I.; Fynbo, H. O. U.; Knudsen, H. H.; Suemmerer, K.

    2011-10-28

    The proton-rich nucleus {sup 33}Ar has been produced at the low-energy facility SPIRAL at GANIL. Spectroscopic studies of gamma and p emission of this nucleus were performed with the 'Silicon Cube' detection system. The analysis of proton and gamma singles and coincidence spectra allowed us to establish a complete decay scheme of this nucleus. The comparison of the Gamow-Teller strength distribution deduced from our experiment and the theoretical one obtained with the Shell Model permitted the determination of a quenching factor for the Gamow-Teller strength.

  12. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  13. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  14. Terahertz Spectroscopic Analysis of Peptides and Proteins

    NASA Astrophysics Data System (ADS)

    Falconer, Robert J.; Markelz, Andrea G.

    2012-10-01

    Spectroscopic analysis using the Terahertz frequencies between 0.1-15 THz (3-500 cm-1) has been underutilised by the biochemistry community but is starting to yield some scientifically interesting information. Analysis of structures from simple molecules like N-methylacetamide, to polyamides, peptides and relatively complex proteins provides different types of information dependant on the molecular size. The absorbance spectrum of small molecules is dominated by individual modes and specific hydrogen bonds, peptide spectra have peaks associated with secondary structure, while protein spectra are dominated by ensembles of hydrogen bonds and/or collective modes. Protein dynamics has been studied using Terahertz spectroscopy using proteins like bacteriorhodopsin, illustrating a potential application where this approach can provide complementary global dynamics information to the current nuclear magnetic resonance and fluorescence-based techniques. Analysis of higher-order protein structures like polyomavirus virus-like particles generate quite different spectra compared to their constituent parts. The presence of an extended hydration layer around proteins, first postulated to explain data generated using p-germanium spectroscopy may present a particularly interesting opportunity to better understand protein's complex interaction with water and small solutes in an aqueous environment. The practical aspects of Terahertz spectroscopy including sample handling, the use of molecular dynamics simulation and orthogonal experiment design are also discussed.

  15. Spectroscopic Techniques for Atmospheric Analysis

    SciTech Connect

    Bililign, Solomon

    2009-07-06

    Several analytical and optical techniques for atmospheric analysis are discussed. Environmental constraints for real world applications are mentioned. Special emphasis is given to the cavity ring Down Spectroscopy as a very sensitive method for atmospheric trace gas detection is described.

  16. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-01

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd4Cl10(C6H14NO)2·2H2O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl6 and CdCl5O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O-H⋯Cl and O-H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C-H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the HC⋯Cl and HC⋯HC intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  17. Qualitative spectroscopic study of magnetic nozzle flow

    NASA Astrophysics Data System (ADS)

    Umeki, T.; Turchi, P. J.

    1992-07-01

    The physics of the magnetic nozzle flow for a 100-kW-level quasi-steady MPD thruster was studied by photographic spectroscopy focusing on the plasma model in the flow and the acceleration mechanism. Spectroscopic visualization for the flow-species analysis indicates that the plasma-exhaust flow dominated by NII species were confined by the magnetic nozzle effect to collimate the flow for the better thruster performance. Inside the nozzle, the plasma flow was found to be in nonhomogeneous collisional-radiative condition. There appears to be a substantial flow acceleration from the magnetic nozzle inlet to the outlet with slight expansion. This suggests that the flow resembles that of constant area supersonic duct flow with cooling.

  18. Qualitative spectroscopic study of magnetic nozzle flow

    NASA Technical Reports Server (NTRS)

    Umeki, T.; Turchi, P. J.

    1992-01-01

    The physics of the magnetic nozzle flow for a 100-kW-level quasi-steady MPD thruster was studied by photographic spectroscopy focusing on the plasma model in the flow and the acceleration mechanism. Spectroscopic visualization for the flow-species analysis indicates that the plasma-exhaust flow dominated by NII species were confined by the magnetic nozzle effect to collimate the flow for the better thruster performance. Inside the nozzle, the plasma flow was found to be in nonhomogeneous collisional-radiative condition. There appears to be a substantial flow acceleration from the magnetic nozzle inlet to the outlet with slight expansion. This suggests that the flow resembles that of constant area supersonic duct flow with cooling.

  19. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  20. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  1. Complex of manganese (II) with curcumin: Spectroscopic characterization, DFT study, model-based analysis and antiradical activity

    NASA Astrophysics Data System (ADS)

    Gorgannezhad, Lena; Dehghan, Gholamreza; Ebrahimipour, S. Yousef; Naseri, Abdolhossein; Nazhad Dolatabadi, Jafar Ezzati

    2016-04-01

    The complex formation between curcumin (Cur) and Manganese (II) chloride tetrahydrate (MnCl2.4H2O) was studied by UV-Vis and IR spectroscopy. Spectroscopic data suggest that Cur can chelate Manganese cations. A simple multi-wavelength model-based method was used to define stability constant for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components were extracted using this method. Density functional theory (DFT) was also used to view insight into complexation mechanism. Antioxidant activity of Cur and Cur-Mn(II) complex was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging method. Bond dissociation energy (BDE), the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and Molecular electrostatic potential (MEP) of Cur and the complex also were calculated at PW91/TZ2P level of theory using ADF 2009.01 package. The experimental results show that Cur has a higher DPPH radical scavenging activity than Cur-Mn(II). This observation is theoretically justified by means of lower BDE and higher HOMO and LUMO energy values of Cur ligand as compared with those of Cur-Mn(II) complex.

  2. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  3. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  4. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  5. Spectroscopic Analysis of Planetary Host Stars

    NASA Astrophysics Data System (ADS)

    Rittipruk, P.; Yushchenko, A.; Kang, Y. W.

    2014-08-01

    We observed the high resolution spectra of extra-solar planet host stars. The spectroscopic data of host stars were observed using the CHIRON echelle spectrometer and R-C Spectrograph for magnetic activity on the SMART-1.5 meter telescope at CTIO, Chile. The analysis of spectroscopic data was performed using URAN and SYNTHE programs. These spectra allow us to determine the effective temperatures, surface gravities, microturbulent velocities and, finally, the chemical composition of the hosts was obtained by spectrum synthesis. One of the targets, namely HD 47536, the host of two planets, appeared to be a halo star with overabundances of neutron capture elements. The effective temperature and the surface gravity of this star are 4400 K and log=1.5 respectively, the iron is underabundant by 0.6 dex. The heavy elements (up to thorium, Z=90) show the overabundances with respect to iron. The signs of accretion of interstellar gas are found in the atmosphere of this star.

  6. Spectroscopic analysis of chromium bioremediation products

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct enzymatic or organic based reduction in this system.

  7. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.

  8. NGC 6067: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Dorda, R.

    2015-05-01

    NGC 6067 is a young open cluster in the Norma Cloud. Its age is around 100 Ma. It hosts a large population of evolved stars: 14 luminous red stars (most of which K Ib supergiants and late-G/early-K giants), 6--8 B giants, two A/F supergiants and two Cepheids (F/G supergiants). All this would imply that NGC 6067 represent one of the best laboratories in the Galaxy to study the evolution of intermediate-mass stars. Thackeray et al. (1962, MNRAS 124, 445T) performed the first complete study of this cluster but it has been poorly studied since then. We obtained high resolution echelle spectra (R=48000) using FEROS (Fiber Extended Range Optical Spectrograph) mounted on the ESO 2.2 m telescope at La Silla Observatory (Chile) in May 2011. Here we present preliminary results based on this spectroscopy and the UBV photometry listed in Terndrup & Pinsonneault (2007, ApJ 671, 1640).

  9. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, B.

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  10. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  11. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  12. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  13. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  14. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  15. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype.

    PubMed

    Galichet, A; Sockalingum, G D; Belarbi, A; Manfait, M

    2001-04-13

    A new strain, exhibiting an intriguing pink-colored cell phenotype, was obtained after an encoding alpha-glucosidase gene from an archaebacteria Thermococcus hydrothermalis was cloned by functional complementation of a mal11 Saccharomyces cerevisiae mutant TCY70. The possible implications of the alpha-glucosidase on the cell wall were evaluated by infrared spectroscopy and data indicate a 30% decrease in mannoproteins and an increase in beta-glucans. The loss of mannoproteins was confirmed by experiments on cells deprived of peptidomannans. Modifications in the major components of the cell wall did not jeopardize cell viability. Such rapid optical spectroscopic method can be used to screen a wide range of yeast mutants. PMID:11313132

  16. Vibrational spectroscopic study of fluticasone propionate.

    PubMed

    Ali, H R H; Edwards, H G M; Kendrick, J; Scowen, I J

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate. PMID:19095495

  17. Benford analysis: A useful paradigm for spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Bhole, Gaurav; Shukla, Abhishek; Mahesh, T. S.

    2015-10-01

    Benford's law is a statistical inference to predict the frequency of significant digits in naturally occurring numerical databases. In such databases this law predicts a higher occurrence of the digit 1 in the most significant place and decreasing occurrences to other larger digits. Although counter-intuitive at first sight, Benford's law has seen applications in a wide variety of fields like physics, earth-science, biology, finance, etc. In this work, we have explored the use of Benford's law for various spectroscopic applications. Although, we use NMR signals as our databases, the methods described here may also be extended to other spectroscopic techniques. In particular, with the help of Benford analysis, we demonstrate emphasizing weak NMR signals and spectral corrections. We also explore a potential application of Benford analysis in the image-processing of MRI data.

  18. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  19. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: a density functional theoretical approach.

    PubMed

    Arul Dhas, D; Hubert Joe, I; Roy, S D D; Balachandran, S

    2015-01-25

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp(2) to sp(3) hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of (13)C, (1)H, (15)N and (18)O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking. PMID:25216343

  20. α-Bromo-p-tolunitrile: Conformational stability, vibrational spectroscopic studies, NBO analysis and thermodynamic functions based on density functional theory

    NASA Astrophysics Data System (ADS)

    Janaki, A.; Balachandran, V.; Lakshmi, A.

    2013-06-01

    In this work, the experimental and theoretical study on molecular structure and vibrational spectra of α-bromo-p-tolunitrile (αBpTN) are studied. The energies of possible conformers obtained from DFT theory with 6-31+G(d) and 6-311++G(d) basis sets identified the most stable conformer of αBpTN as C2 conformer. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small in B3LYP/6-311++G(d) than B3LYP/6-31+G(d). The first hyperpolarizability (β0) of this novel molecular system and related properties (β and μ) of αBpTN are calculated using B3LYP/6-31+G(d) and B3LYP/6-311++G(d) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbital and second order delocalization energies conforms the occurrence of intramolecular charge transfer within the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Finally the vibrations of Ctbnd N and CH2sbnd Br groups coupled with skeletal vibrations are also investigated.

  1. Spectroscopic Analysis of Algol during Eclipse Cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Jonathan; Darling, Kodiak; Sparks, Elise; West, Lajeana; Walker, Douglas

    2012-05-01

    Algol, within the Perseus constellation, is referred to as the Winking Demon Star due to its varying apparent magnitude and its representation of the Gorgon Medusa. Every 68.75 hours its light dims suddenly, and brightens again over a ten-hour period. Further observation shows a small dip in light output halfway in between the large dips, indicating that Algol is an eclipsing binary star system. Detailed inspection of the spectrum indicates that Algol is also a spectroscopic binary. Algol consists of a 3 solar diameter B8V star and a 3.5 solar diameter K0IV in very close orbit around each other. This project investigated the spectral characteristics of Algol A and B during the primary eclipse cycle. Low-resolution spectroscopy of the eclipse cycle was imaged over several nights in order to investigate any changes in the emission line profile of the star system. This work lays the foundation for future studies in low-resolution spectroscopy of the Algol and Algol-type systems.

  2. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  3. A sum-frequency generation spectroscopic study of the Gibbs analysis paradox: monolayer or sub-monolayer adsorption?

    PubMed

    Shahir, Afshin Asadzadeh; Nguyen, Khoi Tan; Nguyen, Anh V

    2016-03-23

    The Gibbs adsorption isotherm (GAI) has been considered as the foundation of surfactant adsorption studies for over a century; however, its application in determining the limiting surface excess has recently been intensively discussed, with contradictory experimental evidence either supporting or refuting the theory. The available arguments are based on monolayer adsorption models. In this paper, we experimentally and intellectually propose and validate the contribution of sub-monolayer adsorption to the GAI paradox. We utilize a powerful intrinsically surface-sensitive technique, vibrational sum-frequency generation spectroscopy (SFG), complementing with conventional tensiometric measurements to address these controversies both quantitatively and qualitatively. Our SFG results revealed that the precipitous decrease in surface tension directly corresponds to surface occupancy by adsorbates. In addition, the Gibbs analysis was successfully applied to the soluble monolayer of a surface-active alcohol to full saturation. However, the full saturation of the topmost monolayer does not necessarily mean that the surface adsorption was completed because the adsorption was observed to continuously occur in the sub-monolayer region soon after the topmost monolayer became saturated. Nonetheless, the Gibbs isotherm failed to account for the excess of alcohol adsorbed in this sub-monolayer region. This new concept of surface excess must therefore be treated thermodynamically. PMID:26661072

  4. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace.

    PubMed

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-15

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785 nm) or a red laser (632.8 nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations. PMID:26301542

  5. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace

    NASA Astrophysics Data System (ADS)

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-01

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785 nm) or a red laser (632.8 nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations.

  6. DFT computations and spectroscopic analysis of p-bromoacetanilide

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2014-03-01

    This work presents the characterization of p-bromoacetanilide (PBA) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and UV-Vis techniques. The structural and spectroscopic data of the molecule were obtained from B3LYP/6-311++ G(d,p) and MPW1PW91/6-311++G(d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the normal co-ordinate analysis (NCA), experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. The stability of molecule has been analyzed by NBO/NLMO analysis. The molecular orbital contributions were studied by using the density of states. The electronic properties like UV-Vis spectral analysis and HOMO-LUMO energies were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions taking place within the molecule. Mulliken population analysis on atomic charges, Statistical thermodynamic properties at various temperatures of the PBA is also calculated.

  7. Maya blue: a computational and spectroscopic study.

    PubMed

    Giustetto, Roberto; Llabrés I Xamena, Francesc X; Ricchiardi, Gabriele; Bordiga, Silvia; Damin, Alessandro; Gobetto, Roberto; Chierotti, Michele R

    2005-10-20

    Maya Blue pigment, used in pre-Colombian America by the ancient Mayas, is a complex between the clay palygorskite and the indigo dye. The pigment can be manufactured by mixing palygorskite and indigo and heating to T > 120 degrees C. The most quoted hypothesis states that the dye molecules enter the microchannels which permeate the clay structure, thus creating a stable complex. Maya Blue shows a remarkable chemical stability, presumably caused by interactions formed between indigo and clay surfaces. This work aims at studying the nature of these interactions by means of computational and spectroscopic techniques. The encapsulation of indigo inside the clay framework was tested by means of molecular modeling techniques. The calculation of the reaction energies confirmed that the formation of the clay-organic complex can occur only if palygorskite is heated at temperatures well above the water desorption step, when the release of water is entropically favored. H-bonds between the clay framework and the indigo were detected by means of spectroscopic methods. FTIR spectroscopy on outgassed palygorskite and freshly synthesized Maya Blue samples showed that the presence of indigo modifies the spectroscopic features of both structural and zeolitic water, although no clear bands of the dye groups could be observed, presumably due to its very low concentration. The positions and intensities of delta(H2O) and nu(H2O) modes showed that part of the structural water molecules interact via a hydrogen bond with the C=O or N-H groups of indigo. Micro-Raman spectra clearly evidenced the presence of indigo both in original and in freshly synthesized Maya Blue. The nu(C=O) symmetric mode of Maya Blue red-shifts with respect to pure indigo, as the result of the formation of H-bonds with the nearest clay structural water. Ab initio quantum methods were applied on the indigo molecule, both isolated and linked through H-bonds with water, to calculate the magnitude of the expected vibrational shifts. Calculated and experimental vibrational shifts appeared to be in good agreement. The presence of a peak at 17.8 ppm and the shift of the N-H signal in the 1H MAS NMR spectrum of Maya Blue provide evidence of hydrogen bond interactions between indigo and palygorskite in agreement with IR and ab initio methods. PMID:16853500

  8. Spectroscopic analysis of insulating crystal fibers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Albin, S.

    1988-01-01

    A new technique is described for investigating the optical properties of solid-state laser materials using single-crystal fibers grown by a laser-heated pedestal-growth technique. Single-crystal fiber samples can be prepared more rapidly and less expensively than crystals grown by more conventional methods; however, they are smaller and less uniform, making spectroscopic measurements difficult. A simple procedure for extracting the optical absorption and emission spectra of insulating crystal fibers is demonstrated with a titanium-doped sapphire fiber sample; results are comparable to those from Czochralski-grown material.

  9. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  10. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  11. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging.

    PubMed

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101

  12. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging †

    PubMed Central

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101

  13. Application of Wavelet Unfolding Technique in Neutron Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    Nonproliferation of nuclear materials is important in nuclear power industry and fuel cycle facilities. It requires technologies capable of measuring and assessing the radiation signatures of fission events. Neutrons produced in spontaneous or induced fission reactions are mainly fast. The neutron energy information allows characterization of nuclear materials and neutron sources. It can also be applied in remote sensing and source search tasks. The plastic scintillator EJ-299-33A was studied as a fast neutron detector. The detector response to a polyenergetic flux was unfolded usingthe multiple linear regression method. It yields the intensities of neutron flux of particular energy, hence, enabling the spectroscopic analysis. The wavelet technique was evaluated for the unfolding of neutron spectrum using the scintillator's response functions between 1 MeV and 14 MeV computed with the MCNPX code. This paperpresents the computational results of the wavelet-based spectrum unfolding applied to a scintillator detector with neutron / photon pulse shape discrimination properties.

  14. Spectroscopic studies of tantalum doped borate glasses

    NASA Astrophysics Data System (ADS)

    Sharada, M.; Suresh Babu, D.

    2012-10-01

    Glasses with formula 30Li2O 60B2O3xTa2O5 (10-x) Bi2O3 for x=0, 2, 4, 6 and 8 were prepared via normal melt quenching technique and characterized by refractive index and MDSC. Refractive index (μ) and glass transition temperature (Tg) are found to increase with increase in dopant concentration. Impedance spectra of the samples were recorded in the frequency range 100 Hz-5 MHz in the temperature range 175-275 °C. The plots are typical of those recorded for disordered systems. Conductivities and relaxation times are found to follow Arrhenius type of relation and activation energies are calculated. Optical absorption spectra were recorded in the wavelength range 200-900 nm range from which cutoff wavelength (λc) and optical band gap energy (Eg) are evaluated. λc is found to decrease while Eg to increase with increase in composition. FTIR spectra of the samples were recorded in the frequency range 400-1500 cm-1 which exhibit characteristic bands corresponding to BO3, BO4 stretching vibrations and BO bending vibration. Tightening of the structure is indicated by increase in the vibration of BO3 at the cost of BO4 for 8 mol% of Ta2O5. This is in support of the highest value of Tg for this sample among the series. Raman spectra of the samples were recorded in the frequency range 200-1200 cm-1. With successive addition of Ta2O5, increase in the vibration of Ta-O groups TaO6 groups to be responsible for observed increase in μ and Tg. An attempt is made to prepare tantalum doped borate glasses and study them by spectroscopic techniques.

  15. Land degradation studies using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Chabrillat, S.; Kaufmann, H.; Merz, B.; Hill, J.; Mueller, A.

    2003-04-01

    Desertification is a land degradation problem of major importance in the arid regions of the world. Deterioration in soil and plant cover have adversely affected nearly 70 percent of the drylands as mainly the result of human mismanagement of cultivated and range lands. Overgrazing, woodcutting, cultivation practices inducing accelerated water and wind erosion, improper water management leading to salinisation, are all causes of land degradation. In addition to vegetation deterioration, erosion, and salinisation, desertification effects can be seen in loss of soil fertility, soil compaction, and soil crusting. Combating desertification involves having an accurate knowledge on a current land degradation status and the magnitude of the potential hazard. Quantitative, high-spectral resolution remote sensing (imaging spectroscopy) can dramatically increase the accuracy of dryland monitoring. In this context, a new research project has been implemented, aiming at using the capabilities of imaging spectroscopy in order to (a) monitor land degradation processes, (b) assess land degradation status, and (c) gain indicators for characterising specific surface properties related to water cycles, erosion processes and plant productivity in drylands. In particular, hyperspectral data, coupled with field/laboratory spectroscopy and laboratory analyses, can be used to derive more quantitative and specific soil properties directly linked to soil degradation status, such as soil chemical properties, organic matter, mineralogical content, infiltration capacity, aggregation capacity, and runoff coefficient. However, further studies are needed, toward a better understanding of the desertification processes, and more detailed analyses of the spectroscopic features associated with land degradation processes. Several test sites representing different environmental conditions are being established. This presentation will focus on a test site in the Brandenburg region, a dry area in north-Eastern Germany, where open pit mine overburden dumps left from the coal-mining era in the former East Germany, not recultivated, have become "dunes" where nothing grows. Our project in this small catchment area is to explore the relationships between spectral reflectance and rainfall runoff modelling.

  16. SAS PARTIAL LEAST SQUARES REGRESSION FOR ANALYSIS OF SPECTROSCOPIC DATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate the potential of SAS PLS to perform chemometric analysis of spectroscopic data. As implemented, SAS can perform type II PLS only, PCR and RRR. While possessing several algorithms for PLS, various cross validation options, the ability to mean center and variance sca...

  17. Quantitative multi-image analysis for biomedical Raman spectroscopic imaging.

    PubMed

    Hedegaard, Martin A B; Bergholt, Mads S; Stevens, Molly M

    2016-05-01

    Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging. PMID:26833935

  18. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  19. Spectroscopic analysis of cinnamic acid using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2015-02-01

    In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  20. ALS 2883: Analysis of spectroscopic features

    NASA Astrophysics Data System (ADS)

    Silva, A. R.; Levenhagen, R. S.; Künzel, R.; Leister, N. V.

    2014-10-01

    ALS 2883 (RA 13^{h} 02^{m} 47^{s}, DEC -63^{o} 50' 08'', M_{v} 10.1) is the first known radio pulsar with an emission B-type companion system, discovered in 1992. The Be companion of ALS 2883 has all line profiles in the visible range in emission. This emission is a common hallmark among many Be stars, and this effect is thought to be due to the presence of a circumstellar environment. Also, the star is orbiting a X-ray source as has been detected by the XMM-Newton Science Operation Center. In this study, we present the observations of ALS 2883 made at the OPD/LNA 1.60 m telescope with the Coudé spectrograph in the range 4000 to 5000 Å and S/N simeq 200, performed in April 2011. First-order estimations of T_{eff} and log g parameters have been performed through Johnson's UBV and JHK photometric calibrations. Projected rotation velocity V sin i has been estimated through the mean of the first zeroes of the Fourier transforms of neutral helium rotation profiles adopting linear, quadratic and square-root limb-darkening laws. The physical conditions of the circumstellar envelope were estimated through the solution of the radiative transport equation assuming local thermodynamic equilibrium within a disk-shaped circumstellar environment with a Keplerian velocity field. The radiative transport equation is solved assuming the Roche model as a boundary condition in the circumstellar environment. Iterating the computations with a downhill-simplex algorithm, this analysis leads to a best solution for an envelope with T simeq 9500 K, gas density ρ simeq 2 × 10^{-15} g.cm^{-3}, internal radius r_{i} simeq 8 R_{odot} and external radius r_e simeq 30 R_{odot}, rotating with V_{rot} simeq 140 km.s^{-1} and expanding with V_{exp} simeq 90 km.s^{-1}.

  1. Analysis of Urinary Calculi Using Infrared Spectroscopic Imaging

    NASA Astrophysics Data System (ADS)

    Sablinskas, Valdas; Lesciute, Daiva; Hendrixson, Vaiva

    2009-06-01

    Kidney stone disease is a cosmopolitan disease, occurring in both industrialized and developing countries and mainly affecting adults aged 2060 years. The formation of kidney stones is a process that includes many factors. Its primary and contributing pathogenic factors are genetic, nutritional and environmental, but also include personal habits. Information about the chemical structure of kidney stones is of great importance to the treatment of the kidney diseases. The usefulness of such information was first recognized in early 1950s. Analysis of urinary stones by various chemical methods, polarization microscopy, x-ray diffraction, porosity determination, solid phase NMR, and thermo analytical procedures have been widely used. Unfortunately, no one method is sufficient to provide all the clinically useful information about the structure and composition of the stones. Infrared spectroscopy can be considered a relatively new method of kidney stone analysis. It allows to identify any organic or inorganic molecules the constituents of kidney stones. So far this method had never been used to collect information about kidney stone component patterns in Lithuania. Since no epidemiological studies have been performed in this field, the medical treatment of kidney stone disease is empirical and often ineffective in hospitals around the country. The aim of this paper is to present some results of analysis of kidney stones extracted from local patients using FTIR spectroscopical microscopy.

  2. Optical trapping and binding in air: Imaging and spectroscopic analysis

    SciTech Connect

    Guillon, Marc; Stout, Brian

    2008-02-15

    We report on an experimental study of direct and spectroscopic imaging of optically trapped Mie droplets in air. The scattering of the trapping beams gives glare points at the droplets' azimuths. Spectroscopic measurements involving polarized light are performed to precisely determine both the droplet sizes and refraction index using Mie scattering theory. Experimental pictures are compared to rigorous numerical simulations. We also include some results on imaging of whispering gallery resonances and conclude with a brief discussion on the possibility of efficiently exciting whispering gallery resonances via radiative coupling.

  3. The first spectroscopic study of southern binary:HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2016-03-01

    In this study, I present the first analysis of spectroscopic observations of southern detached eclipsing binary star HD 53570. The spectroscopic observations of HD 53570 was made at the Sutherland Station of the South African Astronomical Observatory (SAAO) in 2013 and 2014. Radial velocities (RVs) of the components of HD 53570 were determined by cross-correlation technique (CCT). The Hβ (4861.36 Å) lines of the components of HD 53570 were chosen as the most suitable lines for reliable RV measurements. The resulting orbital elements of HD 53570 is calculated as, a1 sin i = 0.0258±0.0005 AU, a2 sin i = 0.0228±0.0005 AU, M1 sin3i = 1.035±0.046 M⊙ and M2 sin3i = 1.167±0.050 M⊙. The radial velocity models of HD 53570 give the close binaries mass ratio as 1.13±0.07.

  4. Spectroscopic studies of coumarin in micelles.

    PubMed

    Marques, A D; Marques, G S

    1994-02-01

    Steady-state and time-resolved emission spectroscopic techniques have been employed to characterize the coumarin species and identify which species is solubilized in the hydrocarbon core micelles of triton X-100 (neutral), hexadecyltrimethyl ammonium bromide (cationic) and dodecyl lithium sulfate (anionic) solutions under physiological conditions at 77 K. The emission and absorption spectra for the following species of coumarin-monomer, hydrogenbonded complex, molecular aggregation and strong hydrophobic aggregates-were recorded in methylcyclohexane (MCH), ethanol, buffers and aqueous solutions. The fluorescence and phosphorescence emissions of monomer in MCH at 77 K are assigned as resulting from 1(pi, pi*)1 and 3(pi, pi*)1 states, respectively, originated from the ethylenic bond and carbonyl of the pyrone ring. Molecular orbital calculations using the Hydrogenic Atoms in Molecule, version 3, method were carried out to help interpretation of the spectroscopic results. The photophysical properties from each species are used to probe which species penetrates in the hydrophobic region of micelles. It was found that a fifth species of coumarin assigned as the "action species" is solubilized into the interior of micelles. These observations could lend some insight into the mechanism of transporting coumarins across the membrane. PMID:8165234

  5. Spectroscopic and Electrochemical Analysis of Psychotropic Drugs

    PubMed Central

    Puzanowska-Tarasiewicz, H.; Misiuk, W.; Mielech-Łukasiewicz, K.; Kuźmicka, L.

    2009-01-01

    Psychotropic drugs are an important family of compounds from a medical point of view. Their application in therapy requires methods for the determination in pharmaceutical dosage forms and body fluids. Several methods for their analysis have been reported in the literature. Among the methods, spectrophotometric and electrochemical are very useful for the determination of the drugs. Some of the spectrophotometric methods are based on the formation of the binary and ternary compounds with complexes of metals. The formed compounds are sparingly soluble in water, but quantitatively extracted from aqueous phase into organic solvents and the extracts are intensely colored and stable for a few days. These complexes have been employed in pharmaceutical analysis. The electrochemical procedures are very useful in determination of the psychotropic substances in pharmaceutical preparations. PMID:20177449

  6. Chemical and spectroscopic analysis of lignin in isolated flax fibers.

    PubMed

    Morrison, W H; Himmelsbach, D S; Akin, D E; Evans, J D

    2003-04-23

    The chemistry of pure flax fibers, free of contaminating nonfiber components, has not been determined. Fibers from the center sections of the stem of seed and fiber flax (Linum usitatissium L.), which had been retted after soaking in water and removal of the epidermis by hand, underwent chemical and spectroscopic analysis. Wet chemical analysis showed only trace indications of aromatics and no long chain fatty acids or alcohols in fibers. Pyrolysis mass spectroscopy (PyMS) and pyrolysis gas chromatography mass spectrometry (PyGCMS) showed only trace amounts of aromatic constituents that could be attributed to the presence of lignin. Mid-infrared (Mid-IR) and Raman spectroscopy of these fibers showed no aromatic compounds present. This study suggests that earlier work reporting the presence of lignin ranging from 1 to 4% may be the result of residual shive or epidermis/cuticle material remaining after the retting process which may be responsible for the favorable properties desired by the composites industry. PMID:12696938

  7. A detailed spectroscopic study of an Italian fresco

    NASA Astrophysics Data System (ADS)

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-01

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  8. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  9. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. PMID:25194320

  10. SMART: Spectroscopic Modeling Analysis and Reduction Tool

    NASA Astrophysics Data System (ADS)

    IRS Team at Cornell University

    2012-10-01

    SMART is an IDL-based software tool, developed by the IRS Instrument Team at Cornell University, that allows users to reduce and analyze Spitzer data from all four modules of the Infrared Spectrograph, including the peak-up arrays. The software is designed to make full use of the ancillary files generated in the Spitzer Science Center pipeline so that it can either remove or flag artifacts and corrupted data and maximize the signal-to-noise ratio in the extraction routines. It can be run in both interactive and batch modes. SMART includes visualization tools for assessing data quality, basic arithmetic operations for either two-dimensional images or one-dimensional spectra, extraction of both point and extended sources, and a suite of spectral analysis tools.

  11. Spectroscopic Study of Multiple IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Hovhannisyan, L. R.; Sargsyan, L. A.

    2003-04-01

    Spectroscopic observations by the 2.6 m BAO telescope of IRAS galaxies identified on the basis of the First Byurakan Survey (BIG objects) are reported. Slit spectra were obtained for 16 objects, including components of 7 multiple systems and 2 individual galaxies. The red shifts were measured, and the radial velocities, distances, absolute stellar magnitudes, and infrared and far infrared luminosities were calculated. A diagnostic diagram has been constructed based on the intensity ratios of emission lines and the activity types of the objects have been determined. Two LINERs, five galaxies with composite spectra (Comp, one of which has Sy2 features) and seven HII regions were found. Two objects are ultraluminous IR galaxies (ULIG). It is shown that all the multiple systems are physical pairs or groups. The observed high IR luminosity confirms the view that ULIG/HLIGs may be associated with interactions of galaxies.

  12. Comparative Analysis of Atmospheric Parameters Obtained from the Photometric and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Genest-Beaulieu, C.; Bergeron, P.; Darveau-Bernier, A.

    2015-06-01

    We present a comparative analysis of atmospheric parameters obtained with the so-called photometric and spectroscopic techniques using the DA white dwarfs identified in the Data Release 7 of the Sloan Digital Sky Survey. We also exploit the sensitivity of the Balmer jump to surface gravity, using the (u-g) color index, to study the well known high-log g problem.

  13. jSIPRO - analysis tool for magnetic resonance spectroscopic imaging.

    PubMed

    Jiru, Filip; Skoch, Antonin; Wagnerova, Dita; Dezortova, Monika; Hajek, Milan

    2013-10-01

    Magnetic resonance spectroscopic imaging (MRSI) involves a huge number of spectra to be processed and analyzed. Several tools enabling MRSI data processing have been developed and widely used. However, the processing programs primarily focus on sophisticated spectra processing and offer limited support for the analysis of the calculated spectroscopic maps. In this paper the jSIPRO (java Spectroscopic Imaging PROcessing) program is presented, which is a java-based graphical interface enabling post-processing, viewing, analysis and result reporting of MRSI data. Interactive graphical processing as well as protocol controlled batch processing are available in jSIPRO. jSIPRO does not contain a built-in fitting program. Instead, it makes use of fitting programs from third parties and manages the data flows. Currently, automatic spectra processing using LCModel, TARQUIN and jMRUI programs are supported. Concentration and error values, fitted spectra, metabolite images and various parametric maps can be viewed for each calculated dataset. Metabolite images can be exported in the DICOM format either for archiving purposes or for the use in neurosurgery navigation systems. PMID:23870172

  14. Spectroscopic Analysis of Wall Conditioning Methods in NSTX

    NASA Astrophysics Data System (ADS)

    Forbes, Eleanor; Soukhanovskii, Vlad

    2015-11-01

    Plasma confinement and performance in NSTX are reliant upon well-conditioned plasma facing components (PFCs). Past conditioning techniques used in NSTX include hot and cold boronization, lithium pellet injection (LPI), and lithium evaporation. The influx of hydrogen-containing molecules and radicals can be studied through spectroscopic observation of the hydrogen to deuterium (H/D) intensity ratio in the edge plasma. A code to determine H/D ratios has been developed and tested on known light sources before being applied to data from prior NSTX experiments. In general, boronization was found to reduce the H/D ratio, with further H reduction seen from cold boronization when compared to hot boronization. No correlation between LPI and H/D ratio was observed. Lithium evaporation produced a significant H decrease. In the future this analysis will be applied immediately following NSTX-U pulses to provide data on plasma-surface interactions. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-AC52-07NA27344.

  15. Spectroscopic analysis of biologically synthesized silver nanoparticles under clinorotation

    NASA Astrophysics Data System (ADS)

    Jagtap, Sagar; Vidyasagar, Pandit; Ghemud, Vipul; Dixit, Jyotsana

    Nanoparticles are one of the hot topics of research due to their size dependent optical, electrical and magnetic properties & their anti-bacterial and anti-fungal nature. Synthesis of nano particles can be done by various physical and chemical methods. However, Biosynthesis of nanoparticles is environment friendly, can take place around room temperature, and require little intervention or input of energy. In the present study, the synthesis of silver nanoparticles (AgNPs) using bacteria and the effect of clinorotation on rate of synthesis is discussed. The freshly grown bacterial isolate was inoculated in to 250-ml Erlenmeyer flask containing 50 ml sterile nutrient broth (LB). The cultured flasks were incubated in a shaker at 120 rpm for 24 h at 370C. Culture was centrifuged at 10,000 rpm for 10 min. The supernatant was used for carrying extracellular production of silver nanoparticles by mixing it with 5mM AgNO3 solution. The above solution was clinorotated at 2 rpm for 24 h. The synthesis was carried out at 60oC. Visual observation was conducted periodically to check for the nanoparticles formation in normal gravity as well as under clinorotation. UV-visible spectroscopic analysis showed that rate of synthesis was faster in case of clinorotated sample than control. Further, the results of FTIR and XRD characterization will be discussed.

  16. [Chemiluminescence spectroscopic analysis of homogeneous charge compression ignition combustion processes].

    PubMed

    Liu, Hai-feng; Yao, Ming-fa; Jin, Chao; Zhang, Peng; Li, Zhe-ming; Zheng, Zun-qing

    2010-10-01

    To study the combustion reaction kinetics of homogeneous charge compression ignition (HCCI) under different port injection strategies and intake temperature conditions, the tests were carried out on a modified single-cylinder optical engine using chemiluminescence spectroscopic analysis. The experimental conditions are keeping the fuel mass constant; fueling the n-heptane; controlling speed at 600 r x min(-1) and inlet pressure at 0.1 MPa; controlling inlet temperature at 95 degrees C and 125 degrees C, respectively. The results of chemiluminescence spectrum show that the chemiluminescence is quite faint during low temperature heat release (LTHR), and these bands spectrum originates from formaldehyde (CH2O) chemiluminescence. During the phase of later LTHR-negative temperature coefficient (NTC)-early high temperature heat release (HTHR), these bands spectrum also originates from formaldehyde (CH2O) chemiluminescence. The CO--O* continuum is strong during HTHR, and radicals such as OH, HCO, CH and CH2O appear superimposed on this CO--O* continuum. After the HTHR, the chemiluminescence intensity is quite faint. In comparison to the start of injection (SOI) of -30 degrees ATDC, the chemiluminescence intensity is higher under the SOI = -300 degrees ATDC condition due to the more intense emissions of CO--O* continuum. And more radicals of HCO and OH are formed, which also indicates a more intense combustion reaction. Similarly, more intense CO--O* continuum and more radicals of HCO and OH are emitted under higher intake temperature case. PMID:21137383

  17. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  18. EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis.

    PubMed

    Yedra, Lluís; Eljarrat, Alberto; Arenal, Raúl; Pellicer, Eva; Cabo, Moisés; López-Ortega, Alberto; Estrader, Marta; Sort, Jordi; Baró, Maria Dolors; Estradé, Sònia; Peiró, Francesca

    2012-11-01

    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D. PMID:22974761

  19. The host galaxy of GRB 031203: a new spectroscopic study

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Chincarini, G.; Covino, S.; Tagliaferri, G.; Campana, S.; Della Valle, M.; Filippenko, A. V.; Fiore, F.; Foley, R.; Fugazza, D.; Giommi, P.; Malesani, D.; Moretti, A.; Stella, L.

    2007-11-01

    Aims:The host galaxy of the long-duration gamma-ray burst (GRB) 031203 (HG 031203) offers a precious opportunity to study in detail the environment of a nearby GRB. The aim is to better characterize this galaxy and analyse the possible evolution with time of the spectroscopic quantities we derive. Methods: We analyse HG 031203 using a set of optical spectra acquired with the ESO-VLT and Keck telescope. We compare the metallicity, luminosity and star formation properties of this galaxy and of the other supernova-long gamma-ray burst hosts in the local universe (z < 0.2) against the KPNO International Spectroscopic Survey. Results: HG 031203 is a metal poor, actively star forming galaxy (star formation rate of 12.9±2.2 M⊙ yr-1) at z = 0.1054. From the emission-line analysis we derive an intrinsic reddening EHG(B-V) ≈ 0.4. This parameter doesn't show a compelling evidence of evolution at a month time-scale. We find an interstellar medium temperature of ≈ 12 500 K and an electronic density of Ne = 160 cm-3. After investigating for possible Wolf-Rayet emission features in our spectra, we consider dubious the classification of HG 031203 as a Wolf-Rayet galaxy. Long gamma-ray burst (LGRB) and supernova hosts in the local universe (z < 0.2) show, on average, specific star formation rates higher than ordinary star forming galaxy at the same redshift. On the other hand, we find that half of the hosts follows the metallicity-luminosity relation found for star-burst galaxies; HG 031203 is a clear outlier, with its really low metallicity (12+log(O/H) = 8.12±0.04).

  20. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  1. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have acquired more than 3000 256x256 images totaling nearly two gigabytes of data detailing the near-IR development of the impact sites of the S-L9 fragments on Jupiter. These data were obtained using the University of Rochester Imaging IR Camera at the cassegrain focus of the 92" at WIRO. The WIRO data set covers 8 days and is, to our knowledge, one of the most extensive observational records of the S-L/Jupiter encounter obtained by any ground-based telescope. This program benefitted from the compilation during these last few months of an upgrade to the data acquisition program at WIRO with support of this NASA contract.

  2. Raman spectroscopic studies on screening of myopathies.

    PubMed

    Gautam, Rekha; Vanga, Sandeep; Madan, Aditi; Gayathri, Narayanappa; Nongthomba, Upendra; Umapathy, Siva

    2015-02-17

    Myopathies are among the major causes of mortality in the world. There is no complete cure for this heterogeneous group of diseases, but a sensitive, specific, and fast diagnostic tool may improve therapy effectiveness. In this study, Raman spectroscopy is applied to discriminate between muscle mutants in Drosophila on the basis of associated changes at the molecular level. Raman spectra were collected from indirect flight muscles of mutants, upheld(1) (up(1)), heldup(2) (hdp(2)), myosin heavy chain(7) (Mhc(7)), actin88F(KM88) (Act88F(KM88)), upheld(101) (up(101)), and Canton-S (CS) control group, for both 2 and 12 days old flies. Difference spectra (mutant minus control) of all the mutants showed an increase in nucleic acid and β-sheet and/or random coil protein content along with a decrease in α-helix protein. Interestingly, the 12th day samples of up(1) and Act88F(KM88) showed significantly higher levels of glycogen and carotenoids than CS. A principal components based linear discriminant analysis classification model was developed based on multidimensional Raman spectra, which classified the mutants according to their pathophysiology and yielded an overall accuracy of 97% and 93% for 2 and 12 days old flies, respectively. The up(1) and Act88F(KM88) (nemaline-myopathy) mutants form a group that is clearly separated in a linear discriminant plane from up(101) and hdp(2) (cardiomyopathy) mutants. Notably, Raman spectra from a human sample with nemaline-myopathy formed a cluster with the corresponding Drosophila mutant (up(1)). In conclusion, this is the first demonstration in which myopathies, despite their heterogeneity, were screened on the basis of biochemical differences using Raman spectroscopy. PMID:25583313

  3. Spectroscopic analysis technique for arc-welding process control

    NASA Astrophysics Data System (ADS)

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  4. Spectroscopic analysis of vermicompost for determination of nutritional quality

    NASA Astrophysics Data System (ADS)

    Subhash Kumar, M.; Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2015-01-01

    Spectroscopic analysis has been carried out to examine the compost quality, maturity and nutritional levels of vermicompost and compost of Eichhornia. 50% Eichhorniacrassipes and 50% cow dung mixtures were vermicomposted using earthworms (Eudrilus eugeniae) and collected on different days' time intervals. Fourier transform infrared spectroscopy (FT-IR) spectra reveal the presence of humic substance from compost and vermicompost, which improves the soil fertility. Gas chromatography-mass spectroscopy (GC-MS) analysis shows maximum level of Benzene propanoic acid (95.98%) and by 2-Propanone, 1-Phenyl-, OXIM (10.10%) from vermicompost through earthworms activity. Atomic absorption spectroscopy (AAS) results reported high level of micronutrient from Eichhornia mediated compost and vermicompost.

  5. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  6. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  7. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  8. MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc

    SciTech Connect

    Gökay, G.; Gürol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ☉}, 0.52 M {sub ☉}, 1.87 R {sub ☉}, and 0.48 R {sub ☉}, respectively. All results are compared with previously published literature values and discussed.

  9. Multiband Photometric and Spectroscopic Analysis of HV Cnc

    NASA Astrophysics Data System (ADS)

    Gkay, G.; Grol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHKS - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHKS filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M ?, 0.52 M ?, 1.87 R ?, and 0.48 R ?, respectively. All results are compared with previously published literature values and discussed.

  10. Raman spectroscopic studies of the cure of dicyclopentadiene (DCPD)

    NASA Astrophysics Data System (ADS)

    Barnes, S. E.; Brown, E. C.; Corrigan, N.; Coates, P. D.; Harkin-Jones, E.; Edwards, H. G. M.

    2005-10-01

    The cure of polydicyclopentadiene conducted by ring-opening metathesis polymerisation in the presence of a Grubbs catalyst was studied using non-invasive Raman spectroscopy. The spectra of the monomer precursor and polymerised product were fully characterised and all stages of polymerisation monitored. Because of the monomer's high reactivity, the cure process is adaptable to reaction injection moulding and reactive rotational moulding. The viscosity of the dicyclopentadiene undergoes a rapid change at the beginning of the polymerisation process and it is critical that the induction time of the viscosity increase is determined and controlled for successful manufacturing. The results from this work show non-invasive Raman spectroscopic monitoring to be an effective method for monitoring the degree of cure, paving the way for possible implementation of the technique as a method of real-time analysis for control and optimisation during reactive processing. Agreement is shown between Raman measurements and ultrasonic time of flight data acquired during the initial induction period of the curing process.

  11. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  12. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  13. Spectroscopic Studies of Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Wamsley, R.; Leather, K.; Horn, A. B.; Percival, C.

    2008-12-01

    Particles are ubiquitous in the troposphere and are involved in chemical and physical processes affecting the composition of the atmosphere, climate, cloud albedo and human health (Finlayson-Pitts and Pitts, 2000). Organic species, such as alcohols, carboxylic acids, ketones, aldehydes, aromatics, alkenes and alkanes, originate both from anthropogenic and natural sources and comprise a large component of atmospheric particles. Gas-phase species, such as ozone, can oxidize these organics, changing the particle's oxygen-to carbon ratio and potentially altering its hygroscopicity, viscosity, morphology and reactivity. One reaction in particular, that between ozone and oleic acid, has been the focus of several recent studies and extensively researched by Ziemann (2005). Oleic acid reacts readily with ozone and has a low vapor pressure making this reaction convenient to study in the laboratory and has become the benchmark for studying heterogeneous reactions representing the oxidative processing of atmospheric organic aerosols. A critical source of uncertainty in reactivity estimates is a lack of understanding of the mechanism through which some VOCs are oxidized. This knowledge gap is especially critical for aromatic compounds. Because the intermediate reaction steps and products of aromatics oxidation are unknown, chemical mechanisms incorporate parameters estimated from environmental chamber experiments to represent their overall contribution to ozone formation, e.g. Volkamer et al. ( 2006). Previous studies of uncertainties in incremental reactivity estimates for VOCs found that the representation of aromatics chemistry contributed significantly to the estimated 40 - 50% uncertainties in the incremental reactivities of common aromatic compounds Carter et al. (2002). This study shows development of an effective IR method that can monitor the reaction and hence obtain the kinetics of the ozonolysis of an aromatic compound in the aerosol phase. The development of such a method allowed for qualitative determination of products during ozonolysis reaction of a symmetric aromatic organic compound. The major and some of the minor products from the ozonolysis stilbene have been determined from solution- phase ozonolysis experiments. The ozonolysis of aromatic compounds has become an area of significant interest within the atmospheric community. Development of knowledge into the mechanisms and reactions that aromatic compounds undergo during ozonolysis is crucial to better understand the complexity of aromatic compounds in the atmosphere. References P. J. Zeimann, Faraday Discuss., 2005, 130, 469. Finlayson-Pitts and Pitts, Chemistry of the Upper and Lower Atmosphere.Academic Press, New York, 2000 Carter et al., 2002; The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, New York, 2002, 556. Rainer Volkamer et al., Geophysical research letters., 2006, Vol 33.

  14. Vibrational spectroscopic study of terbutaline hemisulphate.

    PubMed

    Ali, H R H; Edwards, H G M; Kendrick, J; Scowen, I J

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important beta(2) agonist drug in various dosage forms and its interaction with excipients and other components. PMID:19124270

  15. Vibrational spectroscopic study of terbutaline hemisulphate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  16. Nonlinear spectroscopic studies of interfacial molecular ordering

    SciTech Connect

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  17. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  18. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  19. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  20. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  1. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  2. Electrochemical impedance spectroscopic study of passive zirconium

    NASA Astrophysics Data System (ADS)

    Ai, Jiahe; Chen, Yingzi; Urquidi-Macdonald, Mirna; Macdonald, Digby D.

    2008-09-01

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH) 3 + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 °C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  3. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  4. Microscopic and spectroscopic analysis of chitosan-DNA conjugates.

    PubMed

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-02-10

    Conjugations of DNA with chitosans 15 kD (ch-15), 100 kD (ch-100) and 200 kD (ch-200) were investigated in aqueous solution at pH 5.5-6.5. Multiple spectroscopic methods and atomic force microscopy (AFM) were used to locate the chitosan binding sites and the effect of polymer conjugation on DNA compaction and particle formation. Structural analysis showed that chitosan-DNA conjugation is mainly via electrostatic interactions through polymer cationic charged NH2 and negatively charged backbone phosphate groups. As polymer size increases major DNA compaction and particle formation occurs. At high chitosan concentration major DNA structural changes observed indicating a partial B to A-DNA conformational transition. PMID:26686122

  5. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  6. Spectroscopic studies of protein folding: Linear and nonlinear methods

    PubMed Central

    Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng

    2012-01-01

    Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics. PMID:22109973

  7. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.; Karabacak, M.; Asiri, A. M.; Swathi, Sushmita S.

    2015-02-01

    The thiosemicarbazone compound, salicylaldehyde p-chlorophenylthiosemicarbazone (abbreviated as SCPTSC) was synthesized by refluxing equimolar amounts of 4-(4-methyl phenyl)-3-thiosemicarbazide and salicylaldehyde in presence of one drop of conc. H2SO4 in ethanolic medium for one hour and recrystallised from alcohol. The SCPTSC was characterized by FT-IR, FT-Raman, UV spectroscopy and thermal analysis. By using density functional theory (DFT) using B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis sets, molecular geometry and vibrational frequencies were calculated and compared with the experimental data. The detailed interpretation of the vibrational spectra was carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed by using DFT/B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The stability and charge delocalization of the title molecule were studied by natural bond orbital (NBO) analysis. Mulliken population analysis on atomic charges is also calculated. The molecule orbital contributions were investigated by using the total density of states (TDOS), sum of α and β electron density of states (αβDOS). Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  8. Spectroscopic Analysis of the Supergiant Star HD 54605

    NASA Astrophysics Data System (ADS)

    Peña, L.; Rosenzweig, P.; Guzmán, E.; Hearnshaw, J.

    2009-05-01

    The main purpose of the present study is to analyze a high resolution spectrum of the supergiant star HD 54605, obtained in the year 2003, with a CCD coupled with the spectrograph HERCULES, attached to the 1m reflector telescope of Mt. John Observatory of the University of Canterbury (New Zealand). This spectrum covers the region λλ ≈ 4505-7080Å, with R = 41000 and a dispersion of ≈ 2Å/mm. According to previous spectroscopic observations, of low dispersion, the radial velocity of this star showed that it does not vary in periods of time relatively short. Until the present, we have identified five hundred photospheric lines, from which, with no doubt, we will obtain a satisfactory result that will give an important contribution to the database of the values of the radial velocity of HD 54605. We observe that Hβ, shows a relatively wide and deep profile and is in complete absorption.

  9. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  10. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  11. Continuous spectroscopic analysis of vanadous and vanadic ions

    SciTech Connect

    Bishop, J.V.; Dutcher, R.A.; Fisher, M.S.; Kottle, S.; Stowe, R.A.

    1993-10-01

    Spectroscopic methods were investigated for the determination of vanadium ions in aqueous solutions arising in the production of vanadium (11) formate and its use in the LOMI (Low Oxidation-state Metal Ion) process for the chemical decontamination of systems in nuclear power plants. In the LOMI process, a dilute solution of vanadous formate and picolinic acid is used. The vanadous formate n reduces metal oxides in the scale on the equipment, causing the scale to break up and become suspended. The picolinic acid chelates these materials and makes them soluble. During the decontamination the progress is followed by analyses of the metal ions and of the radioactivity. When the values stop increasing, the decontamination is terminated. At present, it cannot be determined if the values are no longer changing due to all the scale being removed or due to the vanadous ion being spent. Infrared and ultraviolet-visible analysis were investigated as the means of analyzing for vanadium species. It was found that the complex formed by V(II) with picolinic acid could be used for colorimetric analysis for V(II) in the range of 0 {minus} 0.011 moles/liter, which encompasses the concentration range used in the LOMI process. The findings will be used to develop an on-line instrument for continuously monitoring V(II) during decontamination.

  12. Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-01

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (α-helix, β-sheet and β-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm-1, confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots.

  13. Effects of essential oil treatments on the secondary protein structure of Vicia faba: a mid-infrared spectroscopic study supported by two-dimensional correlation analysis.

    PubMed

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-25

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (α-helix, β-sheet and β-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm(-1), confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots. PMID:25203214

  14. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  15. Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO-LUMO analysis and molecular docking study of Opipramol.

    PubMed

    Mary, Y Sheena; Panicker, C Yohannan; Kavitha, C N; Yathirajan, H S; Siddegowda, M S; Cruz, Sandra M A; Nogueira, Helena I S; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-02-25

    FT-IR and FT-Raman spectra of Opipramol were recorded and analyzed. SERS spectrum was recorded in silver colloid. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy distribution was done using GAR2PED program. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The presence of CH2 stretching modes in the SERS spectrum indicates the close of piperazine ring with the metal surface and the interaction of the silver surface with this moiety. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The inhibitor Opipramol forms a stable complex with P4502C9 as is evident from the ligand-receptor interactions and a -9.0 kcal/mol docking score and may be an effective P4502C9 inhibitor if further biological explorations are carried out. PMID:25240828

  16. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  17. Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium

    NASA Astrophysics Data System (ADS)

    Sharonov, M. Yu.; Bykov, A. B.; Owen, S.; Petricevic, V.; Alfano, R. R.; Beall, G. H.; Borrelli, N.

    2004-11-01

    We present a spectroscopic study of transparent forsterite nanocrystalline glass-ceramic doped with chromium, a promising active medium for near-infrared fiber-optic applications. Absorption, emission, excited-state absorption spectra, and continuous function decay analysis of luminescence decay reveal the presence of Cr3+ and Cr4+ centers in both glass and crystal phases. The optical behavior of Cr3+ and Cr4+ centers is discussed and compared with that in bulk forsterite crystals.

  18. Quantitative spectroscopic analysis of and distance to SN1999em

    NASA Astrophysics Data System (ADS)

    Dessart, L.; Hillier, D. J.

    2006-02-01

    Multi-epoch multi-wavelength spectroscopic observations of photospheric-phase type II supernovae (SN) provide information on massive-star progenitor properties, the core-collapse mechanism, and distances in the Universe. Following successes of recent endeavors (Dessart & Hillier 2005a, A&A, 437, 667; 2005b, A&A, 439, 671) with the non-LTE model atmosphere code CMFGEN (Hillier & Miller 1998, ApJ, 496, 407), we present a detailed quantitative spectroscopic analysis of the type II SN1999em and, using the Expanding Photosphere Method (EPM) or synthetic fits to observed spectra, à la Baron et al. (2004, ApJ, 616, 91), we estimate its distance. Selecting eight epochs, which cover the first 38 days after discovery, we obtain satisfactory fits to optical spectroscopic observations of SN1999em (including the UV and near-IR ranges when available). We use the same iron-group metal content for the ejecta, the same power-law density distribution (with exponent n = 10{-}12), and a Hubble-velocity law at all times. We adopt a H/He/C/N/O abundance pattern compatible with CNO-cycle equilibrium values for a RSG/BSG progenitor, with C/O enhanced and N depleted at later times. The overall evolution of the spectral energy distribution, whose peak shifts to longer wavelengths as time progresses, reflects the steady temperature/ionization-level decrease of the ejecta, associated non-linearly with a dramatic shift to ions with stronger line-blocking powers in the UV and optical (Fe ii, Tiii). In the parameter space investigated, CMFGEN is very sensitive and provides photospheric temperatures and velocities, reddenings, and the H/He abundance ratio with an accuracy of ±500 K, ±10%, 0.05 and 50%, respectively. Following Leonard et al. (2002, PASP, 114, 35), and their use of correction factors from Hamuy et al. (2001, ApJ, 558, 615), we estimate an EPM distance to SN1999em that also falls 30% short of the Cepheid distance of 11.7 Mpc to its host galaxy NGC 1637 (Leonard et al. 2003, ApJ, 594, 247). However, using the systematically higher correction factors of Dessart & Hillier (2005b) removes the discrepancy. A significant scatter, arising primarily from errors in the correction factors and derived temperatures, is seen in distances derived using different band passes. However, adopting both correction factors and corresponding color-temperatures from tailored models to each observation leads to a good agreement between distance estimates obtained from different band passes. The need for detailed model computations thus defeats the appeal and simplicity of the original EPM method, which uses tabulated correction factors and broadband fluxes, for distance determinations. However, detailed fits to SN optical spectra, based on tailored models for individual SN observations, offers a promising approach to obtaining accurate distances, either through the EPM or via the technique of Baron et al. (2004). Our best distance-estimate to SN1999em is 11.5 ± 1.0 Mpc. We note that to achieve 10-20% accuracy in such distance estimates requires multiple observations, covering preferentially a range of early epochs preceding the hydrogen-recombination phase.

  19. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  20. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Keplers 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  1. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  2. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  3. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  4. DFT electronic structure calculations, spectroscopic studies, and normal coordinate analysis of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate.

    PubMed

    Muthu, S; Elamuruguporchelvi, E; Varghese, Anitha

    2015-03-01

    The solid phase FTIR and FT-Raman spectra of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate (25N2LCPA) have been recorded 450-4000cm(-1) and 100-4000cm(-1) respectively. The normal coordinate analysis was carried out to confirm the precision of the assignments. DFT calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies and IR intensities. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31+G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The Vibrational frequencies are calculated in the above method and are compared with experimental frequencies which yield good agreement between observed and calculated frequencies. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, Frontiers molecular orbital and molecular electrostatic potential were computed by using Density Functional Theory (DFT) B3LYP/6-31+G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. PMID:25544190

  5. In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography

    PubMed Central

    Maher, Jason R.; Jaedicke, Volker; Medina, Manuel; Levinson, Howard; Selim, Maria Angelica; Brown, William J.; Wax, Adam

    2015-01-01

    Spectroscopic analysis of biological tissues can provide insight into changes in structure and function due to disease or injury. Depth resolved spectroscopic measurements can be implemented for tissue imaging using optical coherence tomography (OCT). Here spectroscopic OCT is applied to in vivo measurement of burn injury in a mouse model. Data processing and analysis methods are compared for their accuracy. Overall accuracy in classifying burned tissue was found to be as high as 91%, producing an area under the curve of a receiver operator characteristic curve of 0.97. The origins of the spectral changes are identified by correlation with histopathology. PMID:25360936

  6. Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation

    NASA Astrophysics Data System (ADS)

    Adler, Desmond C.; Ko, Tony H.; Herz, Paul R.; Fujimoto, James G.

    2004-11-01

    Enhanced tissue contrast in developmental biology specimens is demonstrated in vivo using a new type of spectroscopic optical coherence tomography analysis that is insensitive to spectroscopic noise sources. The technique is based on a statistical analysis of spectral modulation at each image pixel, and provides contrast based on both the intensity of the backscattered light and the distribution of scattering particle sizes. Since the technique does not analyze optical power at absolute wavelengths, it is insensitive to all spectroscopic noise that appears as local Doppler shifts. No exogenous contrast agents or dyes are required, and no additional components are needed to correct for reference arm motion.

  7. Spectroscopic studies of carbon impurities in PISCES-A

    SciTech Connect

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W. . Inst. of Plasma and Fusion Research); Pospieszczyk, A. . Inst. fuer Plasmaphysik)

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and CO{sub 2} were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab.

  8. A spectroscopic study of the close eclipsing binary HS Herculis

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoǧlu, C.; Frasca, A.

    2007-11-01

    Aims:New high-resolution spectroscopic observations of the eclipsing binary HS Herculis are presented. The main aims were to determine the stellar parameters of the two components, their evolutionary stage, and to search for spectroscopic evidence for a possible third body. Methods: Using the cross-correlation technique, we detect spectroscopically the faint secondary component of HS Herculis, and for the firts time measure its radial velocity. The primary and secondary radial velocity curves are analyzed simultaneously and the results of the orbital solution are combined with those derived from multiband light curve analysis to derive orbital and stellar parameters. Results: We find the masses to be M_1= 4.49± 0.16 and M_2=1.75±0.09~M⊙, the radii to be R_1=2.83±0.04 and R_2=1.61± 0.02~R⊙, and the effective temperatures to be T_1=15 200 ± 750 K and T_2=7600±400 K for the primary and secondary stars, respectively. We also derive projected rotational velocities of the components as v1 sin i=81± 3 and v2 sin i=24± 6. Conclusions: While a synchronous rotation for the primary star is indicated by the broadening of the spectral lines, the secondary component appears to rotate more slowly, nearly one half the synchronous rotation velocity. This discrepancy indicates that the less massive secondary component could have not yet attained tidal synchronization. Although the presence of a third body physically bound to the eclipsing pair has been suggested by many investigators, we find no sign of its presence in our CCD spectra. The evolutionary stage of the system's components is briefly discussed by comparing their physical parameters with those of theoretical models. We find that the two components are located near the zero-age main sequence, with an age of about 32 Myr. Based on observations collected at Catania Astrophysical Observatory, Italy.

  9. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of 3-hydroxy-6-methyl-2-nitropyridine

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.

    2012-10-01

    The optimized molecular structure and corresponding vibrational assignments of 3-hydroxy-6-methyl-2-nitropyridine have been investigated using density functional theory (DFT) B3LYP method with 6-311++G(d,p), 6-311++G(2d,2p) and 6-311++G(3d,3p) basis sets. Investigation of the relative orientation of the hydroxyl group with respect to the nitro group has shown that two conformers (O-cis) and (O-trans) exist. The vibrational analysis of the stable conformer of the title compound is performed by means of infrared absorption and Raman spectroscopy in combination with theoretical simulations. The molecular stability and bond strength were investigated by applying the natural bond orbital (NBO) analysis. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential (ESP). The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the HMNP calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  10. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  11. Spectroscopic study of the open cluster NGC 6811

    NASA Astrophysics Data System (ADS)

    Molenda-Żakowicz, J.; Brogaard, K.; Niemczura, E.; Bergemann, M.; Frasca, A.; Arentoft, T.; Grundahl, F.

    2014-12-01

    The NASA space telescope Kepler has provided unprecedented time series observations which have revolutionized the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of this paper. However, apart from high-precision time series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R ˜ 25 000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial velocity of NGC 6811 is found to be +6.68 ± 0.08 km s-1 and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.

  12. DFT studies on antioxidant mechanisms, electronic properties, spectroscopic (FT-IR and UV) and NBO analysis of C-glycosyl flavone, an isoorientin

    NASA Astrophysics Data System (ADS)

    Deepha, V.; Praveena, R.; Sadasivam, K.

    2015-02-01

    The relationship between structure and electronic properties of isoorientin, a C-glycoside flavone is investigated to relate its radical scavenging activity using molecular descriptors. To elucidate the antioxidant activity of polyphenolics, three mechanisms namely hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton-loss electron-transfer (SPLET) are employed. In gas-phase, Osbnd H bond dissociation enthalpies (BDE), ionization potential (IP), proton dissociation enthalpies (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) are computed and correlated relevant to antioxidant potency of the title compound employing DFT/6-311G(d,p) protocol. The theoretically simulated FT-IR and the UV-visible absorption spectra have been compared with the experimental data. Based on the absorbed UV spectra and TD-DFT calculations, assignment of the absorption bands are carried out. In addition, formation of intramolecular hydrogen bond and most possible interaction sites are explained by using natural bond orbital (NBO) analysis.

  13. Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone.

    PubMed

    Balachandran, V; Karpagam, V; Revathi, B; Kavimani, M; Ilango, G

    2015-11-01

    Natural product drugs play a dominant role in pharmaceutical care. Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organism and micro-organism. A antifungal activity against important opportunist micro-organism and against those involved in superficial mycosis, all from nosocomial origin. The acute in vitro cytotoxicity evaluation of each anthraquinone (AQ) isolated from these bioactive extracts, on a mammalian eukaryotic cell line (Vero cells), allowed us to establish the non-cytotoxic concentration range, which was used to evaluate the anti-microbial effect. A comprehensive ab initio calculation using the DFT/6-31+G(d) level theory showed that 2-(hydroxymethyl)anthraquinone can exist in four possible conformations, which can interchange through the OH group on the five-membered ring. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode, assignments. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor accepter interaction. The Fourier transform infrared spectra (4000-400 cm(-1)) and the Fourier transform Raman spectra (3500-100 cm(-1)) of the HMA in the solid space have been recorded. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The calculated ESP contour map shows the electrophilic and nucleophilic region of the molecule. PMID:26093112

  14. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  15. On the Mechanism of Ion Transport through Polyphosphazene Solid Polymer Electrolytes 1: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N Labeled Polyphosphazenes

    SciTech Connect

    Luther, Thomas Alan; Stewart, Frederick Forrest; Budzien, Joanne Louise; Laviolette, Randall Alexander; Bauer, William Francis; Harrup, Mason Kurt; Allen, Charles Anthony; Elayan, A.

    2003-03-01

    Comprehensive investigation of lithium ion complexation with 15N-labeled polyphosphazenes- 15N-poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] (15N-MEEP) and 15N-poly-[((2-allylphenoxy)0.12(4-methoxyphenoxy)1.02(2-(2-methoxyethoxy)ethoxy)0.86)phosphazene] (15N-HPP)-was performed by NMR, IR, and Raman spectroscopies. Previous studies characterized the ionic transport through the polymer matrix in terms of "jumps" between neighboring polymer strands utilizing the electron lone pairs of the etherial oxygen nuclei with the nitrogen nuclei on the polyphosphazene backbone not involved. However, noteworthy changes were observed in the NMR, IR, and Raman spectra with the addition of lithium trifluoromethanesulfonate (LiOTf) to the polyphosphazenes. The data indicate that the preferred association for the lithium ion with the polymer is with the nitrogen nuclei, resulting in the formation of a "pocket" with the pendant groups folding around the backbone. NMR temperature-dependent spin-lattice relaxation (T1) studies (13C, 31P, and 15N) indicate significant lithium ion interaction with the backbone nitrogen nuclei. These studies are in agreement with molecular dynamics simulations investigating lithium ion movement within the polyphosphazene matrix.

  16. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  17. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin.

    PubMed

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2013-10-01

    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0), related properties (β, α0 and Δα) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. PMID:23751224

  18. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  19. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  20. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  1. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  2. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGESBeta

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; et al

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  3. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  4. Analysis of a new class of grazing incidence spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Green, J. C.; Bowyer, S.

    1986-01-01

    The throughput and imaging properties of one of a new class of grazing incidence spectroscopic telescope are examined with a Monte Carlo ray tracing technique. The results are compared with Wolter Schwarzschild type II telescopes of similar size. The image quality of this telescope is comparable, and the control of the off-axis light is superior to the Wolter Schwarzschild design.

  5. Spectroscopic Studies of Quantum Well Structures in Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perry, Clive H.

    1998-03-01

    Magneto-photoluminescence spectroscopy (MPS) at low temperatures is a powerful technique for investigating the ground and excited states of high quality quantum well-type semiconductor heterostructures. The spectra are strongly influenced by electron-electron interactions and the method offers a complimentary tool to electrical transport studies. We have established a MPS facility at NHMFL-LANL and have undertaken a comprehensive investigation of magneto-excitonic and Landau transitions in a large variety of undoped and doped (two-dimensional electron gas, 2DEG) GaAs/AlGaAs and InGaAs/GaAs quantum-well structures. Excitation energies are provided by UV, visible, and NIR lasers. Fiber optic probes are used to switch between steady state (to 18 tesla) and short-pulsed (to 65 tesla) magnetic fields applied perpendicular (Faraday geometry) and parallel (Voigt geometry) to the growth axis of the 2D layers. The experimental techniques, optical layout, and data acquisition are reviewed i n some detail. Short-pulse magnets require that the spectroscopic data acquisition to be obtained in a 2 ms time-frame in the 'flat-top' region at the peak of the field. A broad range of samples have been investigated as a function of temperature, sample geometry, and high pressure. Examples of MPL spectra of single and coupled double quantum wells, modulation-doped quantum wells, single interface structures, and other related semiconductor heterojunction structures are given. The recently commissioned long-pulse magnet at NHMFL-LANL offers several new exciting possibilities: (i) The long exponential decay associated with the crow-bar mode has the potential for spectroscopic studies from 60 -10 T in 0.5 T intervals from a single pulse. (ii) Field steps programmed to last from 100-500 ms or longer offer the opportunity for time-resolved MPL spectroscopy in the 60 - 10 T range.

  6. Spectroscopic study of some diatomic molecules via the proper quantization rule

    NASA Astrophysics Data System (ADS)

    Falaye, B.

    Spectroscopic techniques are very essential tools in studying electronic structures, spectroscopic constants and energetic properties of diatomic molecules. These techniques are also required for parametrization of new method based on theoretical analysis and computational calculations. In this research, we apply the proper quantization rule in spectroscopic study of some diatomic molecules by solving the Schrödinger equation with two solvable quantum molecular systems-Tietz-Wei and shifted Deng-Fan potential models for their approximate nonrelativistic energy states via an appropriate approximation to the centrifugal term. We show that the energy levels can be determined from its ground state energy. The beauty and simplicity of the method applied in this study is that, it can be applied to any exactly as well as approximately solvable models. The validity and accuracy of the method is tested with previous techniques via numerical computation for H2 and CO diatomic molecules. The result also include energy spectrum of 5 different electronic states of NO and 2 different electronic state of ICl.

  7. Spectroscopic properties with a combined approach of ab initio molecular dynamics and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Muniz-Miranda, Francesco; Cardini, Gianni; Righini, Roberto; Schettino, Vincenzo

    2011-05-01

    In order to extract spectroscopic information from trajectories obtained by classical or ab initio molecular dynamics simulations, usually Fourier transforms are employed. In recent years wavelet transforms have been shown to be a valid alternative tool to analyze time-series, due to their capability of localizing a signal both in time and frequency. In this article wavelet transforms are applied for the analysis of Car-Parrinello molecular dynamics simulations to the purpose of time-correlating structural and spectroscopic properties of methyl acetate dissolved in water and methanol. The results demonstrate the possibility of obtaining information that may be of valuable help in the interpretation of time-resolved spectroscopic data.

  8. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  9. A sensitivity study on spectroscopic parameter accuracies for a mm/sub-mm limb sounder instrument

    NASA Astrophysics Data System (ADS)

    Verdes, C. L.; Buehler, S. A.; Perrin, A.; Flaud, J.-M.; Demaison, J.; Wlodarczak, G.; Colmont, J.-M.; Cazzoli, G.; Puzzarini, C.

    2005-02-01

    The purpose of this paper is to perform a detailed error analysis for a mm/sub-mm limb sounding instrument with respect to spectroscopic parameters. This is done in order to give some insight into the most crucial spectroscopic parameters and to work out a list of recommendations for measurements that would yield the largest possible benefit for an accurate retrieval. The investigations cover a variety of spectroscopic line parameters, such as line intensity, line position, air and self broadening parameters and their temperature exponents, and pressure shift. The retrieval process is performed with the optimal estimation method (OEM). The OEM allows one to perform an assessment of the total statistical error, as well as of the model parameter error, such as the error coming from spectroscopic parameters. The instrument parameters assumed are those of the MASTER instrument studied by the European Space Agency, one of the candidate instruments for a future atmospheric chemistry mission. However, the same principle and method of analysis can be applied to any other millimeter/sub-millimeter limb sounding instrument, for instance the Japanese instrument JEM/SMILES, the Swedish instrument Odin, and the Earth Observing System Microwave Limb Sounder. We find that an uncertainty in the intensity of the strong lines give an error of similar magnitude on the retrieved species to which the lines belong. Uncertainties in the line position have overall a small impact on the retrieval, indicating that the line positions are known with sufficient accuracy. The air broadening parameters and their temperature exponents of a few strong lines dominate the error budget. On the other hand, the self broadening parameters and the pressure shifts are found to have a rather small impact on the retrieval.

  10. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis.

    PubMed

    Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen

    2015-11-01

    Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models. PMID:26041453

  11. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  12. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  13. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-01

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. PMID:26471709

  14. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational

  15. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  16. Thermal Physical, and Infrared Spectroscopic Studies on Glasses Prepared by Microwave Route

    SciTech Connect

    Jagadeesha, N.; Gowda, V. C. Veeranna; Chakradhar, R. P. S.; Reddy, C. Narayana

    2011-07-15

    This paper describes thermal, physical and spectroscopic properties of glasses prepared by a novel micro wave method. These studies exhibited a strong compositional dependent trend and existence of characteristic boro-vanadate groups in these glasses. The scheme of modification of borate and vanadate groups is controlled by Sanderson's electronegativity principle. Analysis of density and glass transition temperatures suggests the presence of characteristic four coordinated borate and diboro - vanadate groups in these glasses. The presence of [BO{sub 4/2}]{sup -} and [B{sub 2}V{sub 2}O{sub 9}]{sup 2-}) groups are confirmed by Infrared Spectroscopy of investigated glasses.

  17. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.

    2014-03-01

    The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.

  18. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods

    NASA Astrophysics Data System (ADS)

    Bhavani, K.; Renuga, S.; Muthu, S.; Sankara narayanan, K.

    2015-02-01

    In this work, colorless crystals of 2-acetoxybenzoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-500 cm-1 and 4000-100 cm-1 respectively. Molecular structure is optimized with the help of density functional theory method (B3LYP) with 6-31+G(d,p), 6-311++G(d,p) basis sets. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ∗ antibonding orbitals and E(2) energies confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule.

  19. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, (13)C, (1)H) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods.

    PubMed

    Bhavani, K; Renuga, S; Muthu, S; Sankara Narayanan, K

    2014-10-15

    In this work, colorless crystals of 2-acetoxybenzoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-500cm(-1) and 4000-100cm(-1) respectively. Molecular structure is optimized with the help of density functional theory method (B3LYP) with 6-31+G(d,p), 6-311++G(d,p) basis sets. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ(∗) antibonding orbitals and E(2) energies confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. PMID:25456668

  20. Spectroscopic and molecular docking studies on chlorambucil interaction with DNA.

    PubMed

    Charak, Sonika; Shandilya, Manish; Tyagi, Gunjan; Mehrotra, Ranjana

    2012-11-01

    Chlorambucil (CMB) is an anticancer drug used for the treatment of variety of cancers. Structural and conformational changes associated with DNA after binding with CMB were explored using spectroscopic techniques to get insight into the mechanism of action of CMB at molecular level. Different molar ratios of CMB-DNA complex were prepared with constant DNA concentration under physiological conditions. FTIR spectroscopy, UV-visible spectroscopy, CD spectroscopy and molecular docking studies were employed to determine the binding site and binding constant of CMB with DNA. The results show CMB binds DNA through nitrogenous bases (thymine, guanine and cytosine). The binding constant was calculated to be 1.3 10 M?, which suggests weak binding of CMB with DNA double helix. FTIR and CD results show that CMB do not disturb native B-conformation of DNA and it continues to remain in its B conformation even at higher concentrations of CMB. The molecular docking results are in corroboration with our experimental results and provides structural insight into the interaction site. PMID:22710244

  1. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-01

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. PMID:26117194

  2. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5 %) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation. PMID:26493066

  3. Spectroscopic Study on the Interaction of 4-dimethylaminochalcones with Phospholipids

    NASA Astrophysics Data System (ADS)

    Tomečková, V.; Revická, M.; Sassen, A.; Veliká, B.; Stupák, M.; Perjési, P.

    2014-11-01

    The ultraviolet-visible and fluorescence spectroscopic properties of 4'-dimethylaminochalcone ( 1a) and its cyclic analogs 2a-4a have been studied in the presence of phospholipid vesicles (i.e., egg yolk lecithin and dipalmitoylpho sphatidylcholine), bovine serum albumin (BSA), and lipoprotein particles (i.e., bovine serum albumin plus egg yolk lecithin). The spectral results showed that compounds 1a-4a formed hydrophobic interactions with the phospholipids, lipoproteins, and BSA at the polar/nonpolar interface. Compounds 3a and 4a exhibited the strongest hydrophobic interactions of all of the compounds tested towards the phospholipids. Compound 2a gave the best fluorescent fluorophore indicating interactions with the lipids, lipoproteins, and proteins. Fluorescent microscopic imaging of breast cancer cells treated with compounds 1a-4a revealed that they could be used to stain all of the cellular components and destroy the nuclear structure. Compounds 1a-4a were found to be concentrated predominantly on the surfaces of the liposomes and lipoproteins.

  4. Spectroscopic study on a thermoelectron-enhanced microplasma jet

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Nishiyama, Hiroyuki; Terashima, Kazuo; Sugimoto, Kyozo; Yoshikawa, Hirohisa; Takahashi, Hideaki; Sakurai, Takeki

    2004-02-01

    An Ar thermoelectron-enhanced microplasma (TEMP) jet was characterized by spectroscopic study. The 1s5 lowest metastable densities at the core of the plasma and very close to the substrate, about 4 mm apart from the torch, were obtained successfully using laser absorption spectroscopy (LAS) and laser induced evanescent-mode fluorescence spectroscopy (LIEF). For TEMP generated with 450 MHz, 5 W and 60 Torr, these densities were estimated to be about 3 × 1012 cm-3 and about 1010 cm-3, by the LAS and LIEF methods, respectively. Moreover, gaseous temperature was also estimated as about 700 K by the LAS method. Depopulation of the 1s5 metastable atoms might be caused primarily by gaseous diffusion between the torch and the substrate. Finally, we report a device with a TEMP generator at the top of a flexible fibre called the 'plasma fibre', which allows plasma processing in any location, as with laser processing using an optical fibre. This article was due to be published in issue 23 of 2003. To access this special issue, please follow this link: http://www.iop.org/EJ/toc/0022-3727/36/23

  5. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Sharma, A.; Kuş, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  6. Comparative spectroscopic analysis of urinary calculi inhibition by Larrea Tridentata infusion and NDGA chemical extract

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia

    2012-10-01

    In the present comparative spectroscopic study we try to understand calcium oxalate kidney stone formation as well as its inhibition by using a traditional medicine approach with Larrea Tridentata (LT) herbal extracts and nordihydroguaiaretic acid (NDGA), which is a chemical extract of the LT bush. The samples were synthesized without and with LT or NDGA using a simplified single diffusion gel growth technique. While the use of infusion from LT decreases the sizes of calcium oxalate crystals and also changes their structure from monohydrate for pure crystals to dihydrate for crystals grown with different amounts of inhibitor, both Raman and infrared absorption spectroscopic techniques, which are the methods of analysis employed in this work, reveal that NDGA is not responsible for the change in the morphology of calcium oxalate crystals and does not contribute significantly to the inhibition process. The presence of NDGA slightly affects the structure of the crystals by modifying the strength of the C-C bonds as seen in the Raman data. Also, the current infrared absorption results demonstrate the presence of NDGA in the samples through a vibrational line that corresponds to the double bond between carbon atoms of the ester group of NDGA.

  7. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  8. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  9. Chemical, spectroscopic characterization, DFT studies and antibacterial activities in vitro of a new gold(I) complex with rimantadine

    NASA Astrophysics Data System (ADS)

    Sucena, Suelen F.; Paiva, Raphael E. F.; Abbehausen, Camilla; Mattos, Ives B.; Lancellotti, Marcelo; Formiga, André L. B.; Corbi, Pedro P.

    2012-04-01

    A novel gold(I) complex with rimantadine (RTD) was obtained and structurally characterized by a set of chemical and spectroscopic analysis. 1H, 13C and 15N nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic measurements suggest coordination of the ligand to Au(I) through the N atom of the ethanamine group. Theoretical (DFT) calculations confirmed the IR assignments and permit proposing an optimized geometry for the complex. The gold(I)-rimantadine complex (Au-RTD) is soluble in methanol, ethanol, dimethylsulfoxide, acetone and acetonitrile. The preliminary kinetic studies based on UV-vis spectroscopic measurements indicate the stability of the compound in solution. Antibacterial activities of the complex were evaluated by an antibiogram assay. The Au-RTD complex showed an effective in vitro antibacterial activity against the Pseudomonas aeruginosa, Escherichia coli (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains.

  10. Vibrational spectroscopic studies, NMR, HOMO-LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations

    NASA Astrophysics Data System (ADS)

    Demir, Sibel; Tinmaz, Feyza; Dege, Necmi; Ilhan, Ilhan Ozer

    2016-03-01

    The crystal and molecular structure of the title compound, 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole, was reported and confirmed by single crystal X-ray diffraction and spectroscopic data. The structure, geometry optimization, vibrational frequencies and nuclear magnetic resonance were also investigated. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. Satisfactory theoretical aspects were made for the stable conformer of the molecule using density functional theory DFT-B3LYP methods with the 6-311G++(d,p) basis set.

  11. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  12. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  13. Spectroscopic analysis of impurity precipitates in CdS films

    SciTech Connect

    Webb, J.D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D.S.; Noufi, R.

    1999-03-01

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR). Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates. {copyright} {ital 1999 American Institute of Physics.}

  14. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  15. Spectroscopic Analysis of Impurity Precipitates in CdS Films

    SciTech Connect

    Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.

    1999-10-31

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

  16. Investigation on interaction of prulifloxacin with pepsin: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of Δ G0 reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  17. REDUCEME: Long-slit spectroscopic data reduction and analysis

    NASA Astrophysics Data System (ADS)

    Cardiel, N.; Gorgas, J.; Pedraz, S.; Cenarro, J.; Alonso, O.; Gil de Paz, A.; García-Dabó, E.; Sánchez-Blázquez, P.; Mármol-Queraltó, E.; Toloba, E.

    2015-08-01

    The astronomical data reduction package REDUCEME reduces and analyzes long-slit spectroscopic data. The package uses the unformatted FORTRAN raw data format, so requires FITS files be transformed to REDUCEME format; the reverse operation (from REDUCEME to FITS format) is also available. The package is a set of programs written in FORTRAN 77 and includes shell scripts (using the C shell syntax) to perform routine tasks; it can be extended by the inclusion of external programs. REDUCEME uses PGPLOT (ascl:1103.002) for line plots and images, and a subset of subroutines, called BUTTON, enables the user to communicate interactively with the image display employing graphic buttons. One advantage of using REDUCEME is that for each image an associated error image can also be processed throughout the reduction process, allowing for a careful control of the error propagation.

  18. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  19. Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3,4,5-triol by DFT methods

    NASA Astrophysics Data System (ADS)

    Isac Paulraj, E.; Muthu, S.

    2013-05-01

    This work presents the characterization of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol (abbreviated as HEHMPT) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and UV-Vis techniques. The FT-IR spectrum (4000-400 cm-1) and FT-Raman spectrum (4000-100 cm-1) in solid phase was recorded for HEHMPT. The UV-Vis absorption spectrum of the HEHMPT that dissolved in water was recorded in the range of 100-400 nm. The structural and spectroscopic data of the molecule were obtained from B3LYP and M06-2X with 6-31G(d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the normal co-ordinate analysis (NCA), experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. The stable geometry of the compound has been determined from the potential energy surface scan. The stability of molecule has been analyzed by NBO analysis. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The electronic properties like UV spectral analysis and HOMO-LUMO energies were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions taking place within the molecule. Mulliken population analysis on atomic charges is also calculated.

  20. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.

  1. Spectroscopic studies of neodymium and erbium fluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Oczko, G.

    2000-02-01

    The spectroscopic (UV/VIS, IR) results of Ln(H xF 3- xCCOO) 3·3H 2O (Ln=Nd, Er; x=0,1) compounds are presented in this paper. Electronic absorption spectra of these single crystals were measured at room and low temperatures. Intensities of f-f transitions were analysed on the basis of Judd-Ofelt theory. The effects of different structures on the spectroscopic properties of the systems under investigation were considered. The results for the single crystals of the title compounds were compared to those for the lanthanide trichloroacetate monocrystals. Vibronic mechanism of the 4f-4f transitions was discussed, and covalent effect in the spectra was considered.

  2. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  3. Ab initio and Rotational Spectroscopic Study of Propylene Oxide -- (Water)N=2/3 Complexes

    NASA Astrophysics Data System (ADS)

    Su, Zheng; Xu, Yunjie

    2007-06-01

    Water is the principal constituent of the environment for all living organisms. Nearly all biological molecules required for life are chiral. Therefore the studies of the solvation of chiral molecules in water are of fundamental importance to life science. In this work, we report ab initio and rotational spectroscopic studies of the hydrogen bonded propylene oxide (PO) -- (H2O)N =2/3 clusters, which is a continuing study from our success on PO with one water molecule in the gas phase. The sequential complexation of PO with a few water molecules is a significant step towards understanding the solvation process for this simplest cyclic ether chiral molecule. Complete geometry optimizations for the PO-water complexes are carried out at the MP2 level of theory with the 6-311++G(d,p) basis set using the GAUSSIAN03 software package. The calculated rotational constants and dipole moment components are used to aid the initial spectroscopic investigations. By systematically increasing the pressure, attachment of more water molecules to PO can be formed and distinguished from only one. Both experimental and theoretical results are used to extract structural and dynamic information about the complexes. The experimental analysis will in turn be used to judge the quality of the theoretical predictions and then determine the appropriate model for further calculations.

  4. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. PMID:26529636

  5. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V. K.; Singh, Bachcha; Singh, Ranjan K.

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  6. Spectroscopic and ab initio studies of difluoromethyl radicals and cations

    SciTech Connect

    Dearden, D.V.; Hudgens, J.W.; Johnson, R.D. III

    1992-01-23

    The authors report molecular orbital calculations and experimental observations of the vibrational properties of CHF{sub 2} and CDF{sub 2} radicals and cations. This molecule is a reaction product of the atmospheric reaction of OH with CH{sub 2}F{sub 2}. REMPI measurements provide vibrational frequencies for the molecules, along with spectroscopic constants. Calculations give information on the structure, bond lengths and bond angles.

  7. Photometric and spectroscopic study of cD galaxies

    NASA Astrophysics Data System (ADS)

    Kemp, S. N.; Pérez-Hernández, Ernesto; Ramírez-Siordia, Víctor Hugo

    2016-02-01

    We have carried out photometry and spectroscopy on a sample of 10 cD galaxies. The photometry shows, in general, fairly flat and red profile colours, implying an envelope with the same stellar population as the central galaxy. This may indicate a possible primordial origin for both structures, consistent with ideas of downsizing. Preliminary spectroscopic results are generally in agreement with the photometry, with for example younger populations at large radii for A2199, but A2589 has only younger populations.

  8. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  9. A Detailed Spectroscopic Analysis of The EQ Pegasi System

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Murphy, Simon; Riedel, Adric R.

    2015-01-01

    EQ Pegasi (GJ 896, HIP 116132 ) is a resolved binary system comprised of mid-M dwarfs at a distance of only 6.2 pc. The system has been studied extensively over a broad range of wavelengths from the X-ray to the radio. These observations reveal both components are variable, flare, and exhibit high levels of magnetic activity. The pair were recently proposed as members of a nearby young kinematic association on the basis of consistent Galactic kinematics, strong X-ray emission, and color-magnitude diagram position. Thus, they may be the closest pre-main-sequence system to the Sun. Here we present a detailed analysis of EQ Peg A and B using medium resolution spectra covering ~0.5-2.5 microns. We investigate spectral types, chromospheric activity indicators, lithium depletion, and gravity sensitive alkali lines and molecular bands to characterize the system and place constraints on its age.

  10. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.

  11. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  12. Raman spectroscopic analysis of atypical proliferative lesions of the breast

    NASA Astrophysics Data System (ADS)

    Subramanian, K.; Kendall, C.; Stone, N.; Brown, J. C.; McCarthy, K.; Bristol, J.; Chan, Y. H.

    2006-02-01

    Atypical lesions of the breast have potential to turn malignant. The diagnosis of these lesions has increased considerably with screening mammography. A good understanding of their progression to invasive cancer is yet to be proved. Using Raman spectroscopy to study their chemical finger printing at different stages of proliferation a clear picture of whether a progression exists between lesions could be made. At present there is no clear recognition of the biochemical changes that distinguish between the different proliferative lesions of the breast. Our aim is to understand these changes through Raman mapping studies. Raman spectroscopy is a highly sensitive and specific technique for demonstration of biochemical changes in different atypical proliferative lesions of the breast. The technique could be used to classify the different grades and analyse progression of pathology in the proliferative lesions of the breast. Breast pathologists carefully marked 50 ducts and classified the different pathology on H and E sections from biopsy samples. Raman spectra were measured, using a Renishaw Raman Spectrometer, on a 20-micron thick consecutive frozen section. Principal component analysis was undertaken using Matlab. Pseudocolor maps of the principal components scores have been generated. The peaks of the corresponding loads were identified enabling visualisation of the biochemical changes associated with proliferative lesions. Proliferative lesions of the duct were grouped according to the existing standard pathological classification and formed four major groups-HUT, ADH, DCIS and IDC. Spectra of biochemical constituents were fitted to mean spectra from selected regions, taken from maps of each pathology, to identify the relative concentration of the constituents. The study gave an insight into chemical make up of the ducts in each pathology group and showed similar results to earlier studies in progression but no clear-cut demarcation or continuum of the proliferative disease.

  13. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopic studies

    SciTech Connect

    Chowdhury, Anirban; Bould, Jonathan; Londesborough, Michael G.S.; Milne, Steven J.

    2011-02-15

    A study on the effects of prolonged heating under reflux conditions of up to 70 h on alkoxides of sodium, potassium and niobium dissolved in 2-methoxyethanol for the synthesis of sols of composition Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) has been carried out using combined thermogravimetric-Fourier transform infrared spectroscopic analyses. Extended refluxing increases the homogeneity of the Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) system. Spectroscopic analyses on the non-refluxed and 70 h refluxed NKN gels reveal the existence of inorganic hydrated carbonates and bicarbonates, which we propose arise from the hydration and carbonation of the samples on standing in air. The X-ray diffraction patterns of these two types of gels show orthorhombic NKN phase evolutions at higher temperatures. -- Graphical abstract: Total organic evolution plots over time for NKN dried gels obtained under different refluxing times show different thermochemical behaviours and these were investigated by thermal and spectroscopic analysis tools to find a correlation between the extent of -M-O-M- chain link formation and the amount of solvent vapour (methoxyethanol) evolution. Display Omitted Research highlights: > Prolonged refluxing of sol-gel NKN precursor solutions improves final properties of an NKN system. > An NKN process thermo-chemistry with thermal and spectroscopic analysis tools was explored. > An FTIR of NKN gels reveals tendency of NKN systems for rehydration and recarbonation on standing.

  14. Fourier transform infrared spectroscopic analysis of sperm chromatin structure and DNA stability.

    PubMed

    Oldenhof, H; Schütze, S; Wolkers, W F; Sieme, H

    2016-05-01

    Sperm chromatin structure and condensation determine accessibility for damage, and hence success of fertilization and development. The aim of this study was to reveal characteristic spectral features coinciding with abnormal sperm chromatin packing (i.e., DNA-protein interactions) and decreased fertility, using Fourier transform infrared spectroscopy. Chromatin structure in spermatozoa obtained from different stallions was investigated. Furthermore, spermatozoa were exposed to oxidative stress, or treated with thiol-oxidizing and disulfide-reducing agents, to alter chromatin structure and packing. Spectroscopic studies were corroborated with flow cytometric analyses using the DNA-intercalating fluorescent dye acridine orange. Decreased fertility of individuals correlated with increased abnormal sperm morphology and decreased stability toward induced DNA damage. Treatment with the disulfide reducing agent dithiothreitol resulted in increased sperm chromatin decondensation and DNA accessibility, similar as found for less mature epididymal spermatozoa. In situ infrared spectroscopic analysis revealed that characteristic bands arising from the DNA backbone (ν1230, ν1086, ν1051 cm(-1) ) changed in response to induced oxidative damage, water removal, and decondensation. This coincided with changes in the amide-I region (intensity at ν1620 vs. ν1640 cm(-1) ) denoting concomitant changes in protein secondary structure. Reduction in protein disulfide bonds resulted in a decreased value of the asymmetric to symmetric phosphate band intensity (ν1230/ν1086 cm(-1) ), suggesting that this band ratio is sensitive for the degree of chromatin condensation. Moreover, when analyzing spermatozoa from different individuals, it was found that the asymmetric/symmetric phosphate band ratio negatively correlated with the percentage of morphologically abnormal spermatozoa. PMID:26916383

  15. Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants

    PubMed Central

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4 000 cm−1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.

  16. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  17. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  18. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  19. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  20. Spectroscopic Data of W I, Mo I and Cr I Spectral Lines: Selection and Analysis

    NASA Astrophysics Data System (ADS)

    Veklich, A. N.; Lebid, A. V.; Tmenova, T. A.

    2015-12-01

    Plasma of electric arc discharges between composite Cu-W, Cu-Mo and Cu-Cr electrodes in argon flow and their spectra were studied by optical emission spectroscopy. Since values of oscillator strengths for W I, Mo I and Cr I presented in various sources are significantly different, selection of spectroscopic data for these elements (particularly oscillator strength) was expected to be useful for plasma diagnostics. The Boltzmann plot method was used as a tool for the selection of appropriate spectral lines and their spectroscopic data. The main result of the paper is W I, Mo I and Cr I spectral lines and spectroscopic data recommended for diagnostics of plasma with such metal impurities.

  1. A General Chemistry Laboratory Theme: Spectroscopic Analysis of Aspirin

    NASA Astrophysics Data System (ADS)

    Byrd, Houston; O'Donnell, Stephen E.

    2003-02-01

    In this paper, we describe the introduction of spectroscopy into the general chemistry laboratory using a series of experiments based on a common substance, aspirin. In the first lab the students synthesize and recrystallize aspirin and take melting points of their product, an aspirin standard, and salicylic acid. The students perform the remaining experiments on a rotating basis where the following four labs run simultaneously: structural characterization of the synthesized aspirin by IR and NMR; analysis of synthesized aspirin and commercial products by UV vis spectroscopy; analysis of synthesized aspirin and commercial products by HPLC; and analysis of calcium in commercial buffered aspirin tablets by AAS. In each of the analysis experiments, students collect, graph, and analyze their data using a spreadsheet. We have found that this series of labs has been very beneficial to our students. From the course evaluations, students indicate that they are beginning to understand how chemistry is applied outside of the classroom.

  2. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  3. Spectroscopic and photometric analysis of the early-type spectroscopic binary HD 161853 in the centre of an H II

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Putkuri, C.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Maíz Apellániz, J.; Walborn, N. R.; Sota, A.; Alfaro, E. J.

    2015-12-01

    Aims. We study the O-type star HD 161853, which has been noted as a probable double-lined spectroscopic binary system. Methods. We secured high-resolution spectra of HD 161853 during the past nine years. We separated the two components in the system and measured their respective radial velocities for the first time. Results. We confirm that HD 161853 is an ˜1 Ma old binary system consisting of an O8 V star (MA,RV ≥ 22 M⊙) and a B1-3 V star (MB,RV ≥ 7.2 M⊙) at about 1.3 kpc. From the radial velocity curve, we measure an orbital period P = 2.66765 ± 0.00001 d and an eccentricity e = 0.121 ± 0.007. Its V-band light curve is constant within 0.014 mag and does not display eclipses, from which we impose a maximum orbital inclination i = 54 deg. HD 161853 is probably associated with an H II region and a poorly investigated very young open cluster. In addition, we detect a compact emission region at 50 arcsec to HD 161853 in 22 μm-WISE and 24 μm-Spitzer images, which may be identified as a dust wave piled up by the radiation pressure of the massive binary system.

  4. Micro-Ft Spectroscopic Studies of Breast Tissues

    NASA Astrophysics Data System (ADS)

    Anastassopoulou, J.; Arapantoni, P.; Boukaki, E.; Konstadoudakis, S.; Theophanides, T.; Valavanis, C.; Conti, C.; Ferraris, P.; Giorgini, G.; Sabbatini, S.; Tosi, G.

    Micro-FT-IR spectroscopy was used to study breast cancer tissues and, in particular osteosarcoma tissue. By analysing the spectra, we have found characteristic bands in the infrared regions, where the main components of these signature bands are located. In the region between 1680-1660 cm-1 are found the characteristic bands of Amide I and II of proteins. The bands, which correspond to the vibrations of the phosphate groups, are found in the region near 1140-900 cm-1. These characteristic bands have been monitored as a function of the degree of cancer progression. The results have been obtained with chemometric methods, such as cluster analysis, principal component analysis and custom analysis in order to distinguish the neoplastic zones from the normal zones.

  5. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    PubMed

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-12-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (?) and the first-order hyperpolarizability (?) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. PMID:26163787

  6. RAMAN SPECTROSCOPIC ANALYSIS OF FERTILIZERS AND PLANT TISSUE FOR PERCHLORATE

    EPA Science Inventory

    Raman spectroscopy, without the need for prior chromatographic separation, was used for qualitative and quantitative analysis of 59 samples of fertilizers for perchlorate (ClO4-). These primarily lawn and garden products had no known link to Chile saltpeter, which is known to con...

  7. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  8. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga).

    PubMed

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations. PMID:25928386

  9. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  10. Pulsed-laser evaporation of refractory materials for matrix infrared spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Andrews, Lester

    1993-10-01

    A technique for evaporating refractory materials with pulsed 1064 nm radiation for the purpose of infrared spectroscopic study of new molecular species in solid argon has been developed. Three types of substrates have been employed: (a) metals such as B, Al, Ga, and U, which give hot atoms for reaction with small molecules such as O2, (b) oxides like Al2O3 which evaporate and decompose to give the small stable metal oxide intermediates, and (c) mixed substrates such as B/C and Al/C, which evaporate and react to give new transient binary species. The product species are identified through isotopic substitution, vibrational analysis, photolysis and annealing behavior, and comparison to isotopic spectra from high level ab initio calculations.

  11. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix.

    PubMed

    Rerek, Mark E; Van Wyck, Dina; Mendelsohn, Richard; Moore, David J

    2005-03-01

    IR spectroscopic studies are reported for N-stearyl-D-erythro-phytosphingosine (Cer NP) and N-stearyl-2-hydroxy-D-erythro-phytosphingosine (Cer AP) in a hydrated model of the skin lipid barrier comprised of equimolar mixtures of each ceramide with cholesterol and d(35)-stearic acid. Examination of the methylene stretching, rocking and bending modes reveal some rotational freedom and hexagonal packing in both the ceramide and stearic acid chains. Analysis of the acid carbonyl stretch and the ceramide Amide I modes show both shift to higher frequencies, indicating weaker hydrogen bonding, in the mixed systems compared to the pure materials. For both systems, the fatty acid chain disordering temperatures are significantly increased from those of the pure acids. The observed behaviors of these phytosphingosine ceramide systems are fundamentally different from the previously reported analogous sphingosine ceramide systems. The implications of these observations for lipid organization in the stratum corneum are briefly discussed. PMID:15752463

  12. Spectroscopic ellipsometric studies of randomly distributed plasmonic Gallium nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Kim, Tong-Ho; Akozbek, Neset; Brown, April; Everitt, Henry

    2013-03-01

    Ultraviolet surfaced-enhanced Raman scattering (UV-SERS) was recently observed using randomly distributed Gallium nanoparticles (Ga NPs) deposited on sapphire by molecular beam expitaxy at room temperature. Atomic force and scanning electron microscopies revealed that the radii of the hemispheroid NPs follow unimodal or bimodal pseudo Gaussian distributions whose mean diameters increase with increasing Ga dosage (i.e. growth time). Variable angle spectroscopic ellipsometric measurements were then performed on Ga NP ensembles to explore the correlation between the polarimetric optical response and the local morphology. An effective medium composed of single or double Lorentzian oscillators was found to reproduce the optical response of Ga NP ensembles with resonance frequencies that decrease monotonically with increasing NP size. In addition, a strong depolarization response was observed for near-normal incidence. Interestingly, the sample for which the depolarization peak was closest to the 325nm laser excitation wavelength was the sample with the highest SERS enhancement factor.

  13. A Spectroscopic Study of Anomalous Stellar Populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney; King, Jeremy R.; Deliyannis, Constantine P.

    2015-01-01

    A population of so-called "yellow straggler" stars occupy precarious color magnitude diagram positions in the old open cluster M67 that cannot be explained by standard single star evolution theory. These stars may have been formed by Roche lobe overflow mass transfer in close binary systems. We present new radial velocities and spectroscopic abundances of M67 yellow stragglers to test this hypothesis, and find that these objects possess a high binary frequency, but no enhancements of s-process elements that might be a smoking gun signature of mass transfer. Observations were conducted using the WIYN 3.5 m telescope in conjunction with the HYDRA spectrograph at Kitt Peak National Observatory. Support for this project was provided by NSF grants AST 09-08342, AST 0607567, and AST 1211699.

  14. Spectroscopic study of carbonaceous dust particles grown in benzene plasma

    SciTech Connect

    Lee, Szetsen; Chen, H.-F.; Chin, C.-J.

    2007-06-01

    Carbonaceous dust particles have been synthesized from benzene using an rf glow discharge. Scanning electron microscope inspection revealed that the plasma-synthesized dust particles can be classified into two types. Shell-structured dust particles showed a wide size distribution from 3 to40 {mu}m. The other type, with different degrees of aggregation, appeared to be dense and spherical with a very distinctive yellow color and size distribution from 100 nm to 2 {mu}m. Analyses using micro-Raman and Fourier transform infrared microscopy indicated that the main components of the dust particles are polyphenyls and hydrogenated amorphous carbon (HAC). The luminescence background in Raman spectra and the infrared C-H stretching vibrational features observed around 3.4 {mu}m for the dust particles are attributed to HAC. The formation mechanisms and spectroscopic characterization of carbonaceous dust particles are discussed.

  15. Novel cycloketo tetraphenylporphyrins: spectroscopic study of structure-properties relationships

    NASA Astrophysics Data System (ADS)

    Ermilov, Eugeny A.; Jasinski, Stefan; Jux, Norbert; Röder, Beate

    2008-08-01

    The developments in porphyrin chemistry over the last decades give great advantages for the practical use of porphyrin-based compounds. The properties of these compounds can be systematically tuned by rational utilization of substituents on meso- and/or β-positions as well as by using different metal atoms in the center of the tetrapyrrole macrocycle. Recently we prepared novel mono- and bis-functionalized cycloketo-porphyrins (CKPors). In this work the results of detailed spectroscopic investigations of these compounds are presented. It was found that a seven-membered ketone exocycle remarkably influences the photophysical properties of the CKPor systems. For mono-functionalized CKPors it results in strongly enhanced probability of intersystem crossing S1 --> T1 with an ISC quantum yield up to 90%. Moreover, the absorption of all CKPors undergoes a bathochromic shift and the Q-bands extinction is above two times higher compared to that of H2TPP, what makes these compounds promising candidates for use as photosensitizers in photodynamic therapy of tumors. For the first time two NH-tautomers of nonsymmetrical CKPors were experimentally resolved at room temperature using optical spectroscopic methods. It was found that the concentration of tautomer A with a lower frequency of the S0,0 --> S1,0 transition is higher than that one of tautomer B at room temperature, and becomes dominant with cooling down. In contrast - and as it is expected - only one optical active species was observed for non-symmetrical CKPor with a central Zn(II) atom as well as for symmetrical bis-CKPor.

  16. Swiss bare mice: a suitable model for transcutaneous in vivo Raman spectroscopic studies of breast cancer.

    PubMed

    Bhattacharjee, T; Kumar, Piyush; Maru, G; Ingle, A; Krishna, C Murali

    2014-01-01

    Breast cancer is the most common cancer affecting females worldwide. As early detection results in better prognosis, screening tools for breast cancer are being explored. Raman spectroscopy, a rapid, objective, and noninvasive tool, has shown promising results in the diagnosis of several cancers including breast cancer. For development as a screening tool, a study of spectral signatures associated with breast cancer progression is imperative. However, such studies are not possible in human subjects. Hence, there is a need for a suitable animal model, which is conducive to transcutaneous in vivo Raman spectroscopic measurements of breast with minimal interference from skin and hair and has contribution from functional mammary epithelium of breast. In this study, rodent models like C57, Swiss albino, Swiss bare, agouti mice, and Sprague-Dawley rats were evaluated. Among these models, transcutaneous breast spectra of hairless Swiss bare mice have the best signal-to-noise ratio and were closest to reported ex vivo as well as intraoperative in vivo human breast spectra. Principal component-linear discriminant analysis of several anatomical sites confirms minimal skin interference and suggests contribution from functional mammary epithelium of breast. Moreover, transcutaneous spectra from normal breast and breast tumors of Swiss bare mice could be classified with 99% efficiency, which is better than the previous reports. Thus, Swiss bare mice model may be better suited for transcutaneous in vivo Raman spectroscopic studies of breast physiology and pathology, especially breast cancer. Prospectively, in addition to cancer progression, breast-to-bone metastasis can also be studied, since these anatomical sites can be uniquely classified. PMID:23708992

  17. NMR spectroscopic, mass spectroscopic, X-ray crystallographic, and theoretical studies of molecular mechanics of natural products: farformolide B and sesamin.

    PubMed

    Hsieh, Tiane-Jye; Lu, Li-Hwa; Su, Chia-Ching

    2005-04-01

    Two natural products, farformolide B and sesamin were isolated from Farfugium japonicum and Cinnamomum kanehirae, respectively. The structures of the two natural products, including their relative stereochemistry, were elucidated using spectroscopic data and theoretical calculations. The molecule 1 (farformolide B) is newly recognized by X-ray crystallography. The two compounds were also investigated by a theoretical analysis using the B3LYP/6-31G* method of the Gaussian 03 package program. The theoretical results were supplemented by experimental data to determine the optimal geometric structures of the two compounds. The calculated molecular mechanics were found to compare well with the experimental data. Several important thermodynamic properties of the two products, including ionization potentials, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, energy gaps, heat of formation, atomization energies, and vibration frequencies, were also calculated. The study also provided a good understanding of the stereochemical structure and thermodynamic properties of the two molecules. PMID:15792856

  18. The HERMES solar atlas and the spectroscopic analysis of the seismic solar analogue KIC 3241581⋆

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Allende Prieto, C.; Van Reeth, T.; Tkachenko, A.; Raskin, G.; van Winckel, H.; do Nascimento, J.-D., Jr.; Salabert, D.; Corsaro, E.; García, R. A.

    2016-04-01

    Context. Solar-analogue stars provide an excellent resource to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. Aims: We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar- and late-type stars observed with this instrument and thus perform differential spectroscopic comparisons. Methods: We acquire high-resolution and high signal-to-noise (S/N) spectroscopy to construct three solar reference spectra by observing the reflected light of the asteroids Vesta and Victoria and the jovian moon Europa (100 ≲ S/N ≲ 450) with the HERMES spectrograph. We then observe the Kepler solar analogue KIC 3241581 (S/N ~ 170). For this star, the fundamental spectral parameters are extracted using a differential analysis. Sufficient S/N in the near ultraviolet allows us to investigate the chromospheric magnetic activity in both objects. Results: We constructed three solar spectrum atlases from 385 to 900 nm, obtained with the HERMES spectrograph from observations of two bright asteroids and a jovian moon. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC 3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff = 5689 ± 11 K, log g = 4.385 ± 0.005, [Fe/H] = + 0.22 ± 0.01, being in agreement with the published global seismic values, which confirms its status as solar analogue. The chromospheric activity level is compatible with the solar magnetic activity observed during 2014 and 2015. Conclusions: Our solar atlas is an essential tool for the analysis of solar-like stars and to characterise solar analogues and twins with HERMES. The differential analysis, using the presented solar atlas from HERMES observations allows us to obtain the fundamental parameters with very high accuracy. KIC 3241581 is a metal-rich solar analogue with a solar-like activity level in a binary system of unknown period. Based on observations made with the HERMES spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The solar atlases and the spectrum (FITS file) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A27

  19. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  20. First Spectroscopic Study of the Southern Eclipsing Binary V454 Carina

    NASA Astrophysics Data System (ADS)

    Özkardeş, B.; Erdem, A.; Sürgit, D.; Butland, R.; Budding, E.

    2015-07-01

    We present preliminary results from the analysis of spectroscopic observations of the southern eclipsing binary star V454 Car (HIP 36682). High-resolution spectra of the system were taken at the Mt. John University Observatory in 2009, 2010, 2011, and 2014. Detailed examination of the spectra indicates that V454 Car is a triple system. Radial velocities of the components of the eclipsing pair were obtained. The orbital solution gave quite a large spectroscopic mass ratio of qspec =0.93 ±0.05.

  1. Synthesis, Spectroscopic, Structural and Quantum Chemical Studies of a New Imine Oxime and Its Palladium(II) Complex: Hydrolysis Mechanism.

    PubMed

    Kaya, Yunus; Yilmaz, Veysel T; Buyukgungor, Orhan

    2016-01-01

    In this work, we report synthesis, crystallographic, spectroscopic and quantum chemical studies of a new imine oxime, namely (4-nitro-phenyl)-(1-phenyl-ethylimino)-acetaldehyde oxime (nppeieoH). Spectroscopic and X-ray diffraction studies showed that nppeieoH is hydrolyzed in aqueous solution, forming nitroisonitrosoacetophenone (ninap) and the hydrolysis product binds to Pd(II) to yield [Pd(nppeieo)(ninap)]. The mechanism of the hydrolysis reaction has been theoretically investigated in detail, using density functional theory (DFT) with the B3LYP method. The vibrational and the electronic spectra of nppeieoH and its Pd(II) complex, the HOMO and LUMO analysis, Mulliken atomic charges and molecular electrostatic potential were also performed. The predicted nonlinear optical properties of both compounds are higher than those of urea. PMID:26805795

  2. Spectroscopic reduction and analysis programs at the DAO

    NASA Astrophysics Data System (ADS)

    Hill, G.

    In this paper I outline the \\fortran programs available at the DAO to process and synthesize spectra, loosely described under the generic name REDUCE. The viewpoint is that of a research scientist who develops and uses his own software, and who writes collaboratively for colleagues. Much of the software has been available on the DAO's VAX machines since the early 80s and is slowly being converted to SUNs, although recent developments involve the use of DEC Alphas. The rationale behind the various reduction and analytic software is outlined, as well as the way the programs are controlled, e.g., menu, questions and answers, keywords and values, or the cursor. Some particularly useful tools are mentioned, such as, interpolation, optimization, and error analysis.

  3. Spectroscopic analysis and DFT calculations of a food additive carmoisine.

    PubMed

    Snehalatha, M; Ravikumar, C; Hubert Joe, I; Sekar, N; Jayakumar, V S

    2009-04-01

    FT-IR and Raman techniques were employed for the vibrational characterization of the food additive Carmoisine (E122). The equilibrium geometry, various bonding features, and harmonic vibrational wavenumbers have been investigated with the help of density functional theory (DFT) calculations. A good correlation was found between the computed and experimental wavenumbers. Azo stretching wavenumbers have been lowered due to conjugation and pi-electron delocalization. Predicted electronic absorption spectra from TD-DFT calculation have been analysed comparing with the UV-vis spectrum. The first hyperpolarizability of the molecule is calculated. Intramolecular charge transfer (ICT) responsible for the optical nonlinearity of the dye molecule has been discussed theoretically and experimentally. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H ...O, improper, blue shifted hydrogen bonds have been analysed using natural bond orbital (NBO) analysis. PMID:19124271

  4. WTF- and A- Stars: Spectroscopic Analysis of Kepler Light Curves

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Soderblom, David R.

    2016-01-01

    Analysis of Kepler data in 2012 found that in a sample of about 2000 A- and F- stars, 1% of them seemed to exhibit white light flares. However, such stars are not thought to have the convective envelopes needed to produce the magnetic dynamos that yield flares. We use the same Kepler data but examine the flaring stars more comprehensively by analyzing the pixel data in order to predict whether this flare-like behavior may be caused by smaller, less luminous M dwarfs exhibiting genuine flares in the line of sight of the A- and F-stars. The implications of finding verifiable flare activity in a subset of these stars would be enough to incite further investigation of the physical processes that allow this to take place. Yet, if that were not the case, this project would further be able to demonstrate the steps necessary to correct for false-positives in finding flares in A- and F- stars.

  5. Spectroscopic analysis and DFT calculations of a food additive Carmoisine

    NASA Astrophysics Data System (ADS)

    Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. S.

    2009-04-01

    FT-IR and Raman techniques were employed for the vibrational characterization of the food additive Carmoisine (E122). The equilibrium geometry, various bonding features, and harmonic vibrational wavenumbers have been investigated with the help of density functional theory (DFT) calculations. A good correlation was found between the computed and experimental wavenumbers. Azo stretching wavenumbers have been lowered due to conjugation and π-electron delocalization. Predicted electronic absorption spectra from TD-DFT calculation have been analysed comparing with the UV-vis spectrum. The first hyperpolarizability of the molecule is calculated. Intramolecular charge transfer (ICT) responsible for the optical nonlinearity of the dye molecule has been discussed theoretically and experimentally. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H⋯O, improper, blue shifted hydrogen bonds have been analysed using natural bond orbital (NBO) analysis.

  6. An expert system for spectroscopic analysis of rocket engine plumes

    NASA Technical Reports Server (NTRS)

    Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy

    1991-01-01

    The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.

  7. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  8. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Biswas, D. C.; Danu, L. S.; Mukhopadhyay, S.; Kinage, L. A.; Prashanth, P. N.; Goswami, A.; Sahu, A. K.; Shaikh, A. M.; Chatterjee, A.; Choudhury, R. K.; Kailas, S.

    2013-03-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ-γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235U(nth, f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113Cd(nth, γ) reaction.

  9. Molecular and mass spectroscopic analysis of isotopically labeled organic residues

    NASA Technical Reports Server (NTRS)

    Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.

    1989-01-01

    Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.

  10. Spectroscopic analysis of the interaction of lomustine with calf thymus DNA.

    PubMed

    Agarwal, Shweta; Jangir, Deepak Kumar; Singh, Parul; Mehrotra, Ranjana

    2014-01-01

    Investigation of drug-DNA interaction is important for understanding the drug action at molecular level and for designing specific DNA targeted drug. Lomustine (CCNU=1-[2-chloroethyl]-3-cyclohexyl-1-nitroso-urea) is an alkylating antineoplastic nitrosourea derivative, used to treat different types of cancer. In the present study, conformational and structural effects of lomustine on DNA are investigated using different spectroscopic approaches. Different drug/DNA molar ratios are analyzed to determine the binding sites and binding mode of lomustine with DNA. Fourier transform infrared spectroscopic (FTIR) results suggest binding of lomustine with nitrogenous bases guanine and cytosine along with weak interaction to the sugar-phosphate backbone of DNA. Circular dichroism (CD) spectroscopic results show perturbation in the local conformation of DNA upon binding of lomustine with DNA helix. These local conformational changes may act as recognition site for alkylating enzymes that further causes alkylation of DNA. Spectroscopic results confirm the formation of an intermediate stage of DNA that occurs during the transition of B-conformation into A-conformation. PMID:24368412

  11. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  12. Millimeter-Wave Spectroscopic and Collisional Studies of Molecules and Molecular Ions

    NASA Astrophysics Data System (ADS)

    Pearson, John Christoffersen

    1995-01-01

    Molecular spectroscopy in the millimeter- and submillimeter-wave regions is an important tool in molecular physics. Information on molecular motions and interactions is obtained from spectroscopic studies of energy levels and collisions. This information and the data from which it is derived are essential in remote sensing of the atmosphere and the interstellar medium. Remote sensing at submillimeter wavelengths is now possible, making higher frequency and quantum number measurements of known interstellar species like water, propionitrile and ethyl alcohol necessary. Remote sensing improvements have also facilitated the need for spectral data on suspected interstellar molecules like propylene. The desire to extract quantitative information from atmospheric remote sensing has resulted in the need for a better understanding of the molecular interactions that cause pressure broadening. The use of a cold molecular ion to magnify the effects of intermolecular interactions has serious implications for pressure broadening theory. The measurement and analysis of rotational spectra of the asymmetric rotors water and propionitrile and the internal rotors propylene and ethyl alcohol are presented. These investigations provide the data and analysis necessary for astronomical observation. The ethyl alcohol investigation is the first experimental millimeter-wave study of a molecule with an asymmetric internal rotor. This study provides the data necessary for detailed theoretical modeling of this type of problem. A novel new experimental technique for generating and studying molecular ions is presented. The first temperature dependent microwave pressure broadening study of a molecular ion colliding with a neutral molecule, HCO^{+} on H_2 , is presented.

  13. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    PubMed Central

    Manciu, Felicia S.; Lee, Kendall H.; Durrer, William G.; Bennet, Kevin E.

    2012-01-01

    Objectives We demonstrate that confocal Raman mapping spectroscopy provides rapid, detailed and accurate neurotransmitter analysis, enabling millisecond time resolution monitoring of biochemical dynamics. As a prototypical demonstration of the power of the method, we present real-time in vitro serotonin, adenosine, and dopamine detection, and dopamine diffusion in an inhomogeneous organic gel, which was used as a substitute for neurologic tissue. Materials and Methods Dopamine, adenosine and serotonin were used to prepare neurotransmitter solutions in DI water. The solutions were applied to the surfaces of glass slides, where they inter-diffused. Raman mapping was achieved by detecting non-overlapping spectral signatures characteristic of the neurotransmitters with an alpha 300 WITec confocal Raman system, using 532 nm Nd:YAG laser excitation. Every local Raman spectrum was recorded in milliseconds and complete Raman mapping in a few seconds. Results Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where changes in composition can influence neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method. Conclusions Accurate nondestructive characterization for real-time detection of neurotransmitters in inhomogeneous environments without the requirement of sample labeling is a key issue in neuroscience. Our work demonstrates the capabilities of Raman spectroscopy in biological applications, possibly providing a new tool for elucidating the mechanism and kinetics of deep brain stimulation. PMID:22989218

  14. A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS

    SciTech Connect

    Bergeron, P.; Wesemael, F.; Dufour, Pierre; Beauchamp, A.; Hunter, C.; Gianninas, A.; Limoges, M.-M.; Dufour, Patrick; Fontaine, G.; Saffer, Rex A.; Ruiz, M. T.; Liebert, James E-mail: wesemael@astro.umontreal.ca E-mail: limoges@astro.umontreal.ca E-mail: fontaine@astro.umontreal.ca E-mail: chris.hunter@yale.edu E-mail: mtruiz@das.uchile.cl

    2011-08-10

    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 M{sub sun} for our sample, with a dispersion of only 0.09 M{sub sun}. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 M{sub sun}) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green Survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above T{sub eff} {approx} 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer and a second channel where DB stars retain a helium atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no non-variables, if the hydrogen content of these stars is properly accounted for.

  15. A mass spectroscopic analysis of {gamma}-GPS films

    SciTech Connect

    Dillingham, R.G.; Boerio, F.J.; Bertelsen, C.; Savina, M.R.; Lykke, K.; Calaway, W.

    1996-12-31

    Preparation of substrates for painting or adhesive bonding frequently includes roughening through sanding, chemical etching, or gritblasting. Increased roughness can improve interfacial strength and durability due to increased mechanical interlocking, increased surface area, and improved wettability of the substrate. The chemical reactivity of the surface with the organic phase may be affected as well, perhaps related to the strain energy stored in the surface regions through the intense plastic deformation that occurs. Unfortunately, the chemistry of interactions taking place near a surface that has been roughened is difficult to access analytically by some of the more useful techniques such as infrared spectroscopy. This paper discusses analysis of nonreflective grit-blasted surfaces using mass spectroscopy of species which were either sputtered off using an ion beam (Static Secondary Ion Mass Spectroscopy, or SSIMS) or thermally desorbed as neutrals using a pulsed laser and then post-ionized using a secondary laser (Laser Desorption-Laser Ionization Mass Spectroscopy, or LDLIMS). Both of these techniques exhibit sub-nanometer sensitivity and provide significant information as to the chemistry and structure of the surface regions. In a current application of {gamma}-glycidoxypropyltrimethoxysilane ({gamma}-GPS) for the pre-treatment of grit-blasted aluminum before adhesive bonding, certain factors related to the handling of the primer solution and to the application technique were found to significantly affect the performance of the adhesive bond under long-term aging conditions including stress and humidity. To understand why these parameters are important and to potentially improve the pretreatment process even further, the authors have been investigating how the structure and reactivity of these silane films are related to the application techniques.

  16. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  17. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  18. Spectroscopic studies of triethoxysilane sol-gel and coating process

    NASA Astrophysics Data System (ADS)

    Li, Ying-Sing; Ba, Abdul

    2008-10-01

    Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si sbnd H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si sbnd H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 °C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.

  19. Acid doping of polyaniline: Spectroscopic and electrochemical studies

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-16

    A detailed investigation of the acid doping behavior of polyaniline has led to a robust and reproducible procedure for controlled adjustment of the redox state of dry polyaniline films. The initial step in this procedure is the casting of PANI films from formic acid. The subsequent exchange of the trapped formic acid for other primary dopants obtained from mono- and polyprotic acids (e.g., CH{sub 3}COO{sup {minus}}, BF{sub 4}{sup {minus}}, HSO{sub 4}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and HPO{sub 4}{sup 2{minus}}) is demonstrated. The voltammetric and the spectroscopic behavior of the PANI doped with different anions indicate that both the protons and the anions of dopant acids influence the structure and redox properties of the polymer. The redox state of PANI doped with homologous series of chloroacetic and carboxylic acids correlates with the pK{sub a} of the dopant acid. These results show that it is possible to prepare the polymer with a desired oxidation state according to the pK{sub a} of the dopant acid of a given homologous series. The exchange of the formic acid for both stronger and weaker doping acid can be repeatedly accomplished by electrochemical cycling.

  20. Spectroscopic studies of homogeneous precursors to atmospheric acids and aerosols

    SciTech Connect

    Leopold, K.R.; Canagaratna, M.; Phillips, J.A.; Goodfriend, H.

    1996-10-01

    A detailed understanding of the nucleation and growth of atmospheric particulates is benefitted by precise knowledge of the structure and energetics of small molecular aggregates. We present the results of microwave spectroscopic characterization of three binary clusters which are potential precursors in such processes: H{sub 2}O-SO{sub 3}, H{sub 3}N-SO{sub 3}, and H{sub 2}O-HNO{sub 3}. In addition to providing detailed structural information, we describe the nature of the bonding in these systems. For the SO{sub 3} complexes, the intermolecular interaction is weaker than a chemical bond, but stronger than a van der Waals bond. We discuss how this feature of these systems renders their structure and energetics unusually sensitive to the presence of additional binding partners, and infer that an accurate molecular-level description of cluster growth will need to account for this effect. The results are compared with published high level ab initio calculations for all three systems.

  1. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    SciTech Connect

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  2. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  3. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study.

    PubMed

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ((1)Σ) and hydrideisocyanidezinc HZnNC ((1)Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn](+) composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn(+) ((2)Σ) and HCNZn(+) ((2)Σ). PMID:25978885

  4. Spectroscopic Analysis of Flooded Craters from Oceanus Procellarum

    NASA Astrophysics Data System (ADS)

    Besse, Sebastien; Staid, Matthew; Hiesinger, Harald

    2013-04-01

    The last major phases of lunar volcanism produced compositionally unique, high-titanium basalts that are not observed elsewhere on the Moon's surface or earlier in its history. These volcanic deposits include some of the Moon's most extensive flows and age estimates suggest that these basalts are among the youngest. These flows are concentrated in Oceanus Procellarum, a very large volcanic province on the lunar near side. Investigations using the Moon Mineralogy Mapper (M3) data have shown that these basalts exhibit strong mineralogical variations, with compositions strongly dominated by either high -Ca pyroxene, or low-Ca pyroxene, or olivine, and even a combination of these minerals. Following the surprising high olivine content of the crater Marius, we examine other flooded craters of the large Oceanus Procellarum (O.P.) province to characterize the uniquess, or not, of Marius. If a large number of flooded craters within O.P. exhibits similar high-olivine content, this will help us to constrain the magmatic history of the last major phases of lunar volcanism. The Moon Mineralogy Mapper (M3) onboard the Indian Space Research Organization's (ISRO) Chandrayaan-1 Spacecraft is an imaging spectrometer that imaged the Moon in 85 spectral channels with a combination of high spectral and spatial mapping, enabling spectra to be placed in a geological context. M3 data have a spectral range from 460 to 3000 nm, and a spectral resolution of 20 to 40 nm. This range allows detailed investigations of the 1 and 2 μm absorption bands characteristic of mafic minerals on the lunar surface. A selection of flooded craters has been performed to investigate their spectral properties. Craters with unbreached walls have been selected as much as possible in order to better constrain the origin of the volcanic flows. Preliminary results show that few craters share the high-olivine content properties of Marius. Compositionally, crater Billy seems to be the closest one, and to a certain extent the craters Plato, Hansteen and Flamsteed G (although the later one is clearly connected to the surroundings lava flows through its breached walls). More detailed analysis will be performed to highlights the similarities and differences of these flooded craters from a spectral point of view.

  5. Spectroscopic analysis of urinary calculi and inhibition of their growth

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  6. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  7. Supramolecular spectroscopic and thermal studies of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Morgan, Sh. M.

    2014-06-01

    A series of heterocyclic ligand of copper(II) complexes have been synthesized by the reaction of copper(II) acetate with 5-(4‧-derivatives phenylazo)-2-thioxothiazolidin-4-one (HLn) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, spectral (IR and ESR), conductance, magnetic measurements, and thermogravimetric analysis (TGA) are used to characterize the isolated complexes. It is found that the change of substituent affects the thermal properties of azodye rhodanine derivatives and their Cu(II) complexes. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The data revealed that the coordination geometry around Cu(II) in all complexes (1-4) exhibit a trans square planar by NO monobasic bidentate and the two monobasic bidentate in octahedral complexes (5-7). Electronic, magnetic data and ESR spectra proposed the square planar structure for all complexes (1-4) under investigation. The value of covalency factor ( and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters, such as activation energy (Ea), enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy change of the decomposition (ΔG*) are calculated using Coats-Redfern and Horowitz-Metzger methods.

  8. Supramolecular spectroscopic and thermal studies of azodye complexes.

    PubMed

    El-Sonbati, A Z; Diab, M A; El-Bindary, A A; Morgan, Sh M

    2014-06-01

    A series of heterocyclic ligand of copper(II) complexes have been synthesized by the reaction of copper(II) acetate with 5-(4'-derivatives phenylazo)-2-thioxothiazolidin-4-one (HLn) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, spectral (IR and ESR), conductance, magnetic measurements, and thermogravimetric analysis (TGA) are used to characterize the isolated complexes. It is found that the change of substituent affects the thermal properties of azodye rhodanine derivatives and their Cu(II) complexes. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The data revealed that the coordination geometry around Cu(II) in all complexes (1-4) exhibit a trans square planar by NO monobasic bidentate and the two monobasic bidentate in octahedral complexes (5-7). Electronic, magnetic data and ESR spectra proposed the square planar structure for all complexes (1-4) under investigation. The value of covalency factor [Formula: see text] and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters, such as activation energy (Ea), enthalpy (ΔH(*)), entropy (ΔS(*)), and Gibbs free energy change of the decomposition (ΔG(*)) are calculated using Coats-Redfern and Horowitz-Metzger methods. PMID:24632240

  9. Statistical analysis of the impact of spectral correlation on observed formation constants from UV-visible spectroscopic measurements.

    PubMed

    Meinrath, Günther; Lis, Stefan; Piskula, Zbigniew

    2004-01-01

    Information retrieved from UV-visible spectroscopic data by application of a self-modelling factor analysis algorithm showed apparently systematically shifted thermodynamic properties for the same chemical system as a function of spectral slit widths. This empirical observation triggered a systematic investigation into the likely effects of residual and spectral correlation on the numerical results from quantitative spectroscopic investigations. If slit width was a nuisance factor it would reduce the comparability of information evaluated from spectroscopic data. The influence of spectral slit width was investigated by simulation, i.e. by generating and evaluating synthetic spectra with known properties. The simulations showed that increasing spectral correlation may introduce bias into factor analysis evaluations. By evaluation of the complete measurement uncertainty budget using threshold bootstrap target factor (TB CAT) analysis, the apparent shifts are insignificant relative to the total width of the quantity's measurement uncertainty. Increasing the slit widths causes some systematic effects, for example broadening of the registered spectral bands and reduction of spectral noise, because of higher light intensity passing to the detector. Hence, the observed systematic shifts in mean values might be caused by some latent correlation. As a general conclusion, slit width does not affect bias. However, the simulations show that spectral correlation and residual correlation may cause bias. Residual correlation can be taken into account by computer-intensive statistical methods, for example moving block or threshold bootstrap analysis. Spectral correlation is a property of the chemical system under study and cannot be manipulated. As a major result, evidence is given showing that stronger spectral correlation ( r<-0.7) causes non-negligible bias in the evaluated thermodynamic information from such a system. PMID:14615865

  10. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-12-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. PMID:26151435

  11. Spectroscopic analysis of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly global tide-gage sea-level data are fitted to numerically generated tidal data in order to search for the 18.6-yr lunar nodal tide and 14-month pole tide. Both of these tides are clearly evident, with amplitudes and phases that are consistent with a global equilibrium response. The ocean's response to atmospheric pressure is studied with the least-squares fit technique. Consideration is given to the global rise in sea level, the effects of postglacial rebound, and the possible causes of the enhanced pole tides in the North Sea, the Baltic Sea, and the Gulf of Bothnia. The results support O'Connor's (1986) suggestion that the enhanced pole tide in these regions is due to meteorological forcing rather than a basin-scale resonance. Also, the global average of the tide-gage data show an increase in sea level over tha last 80 yr of between 1.1 and 1.9 mm/yr.

  12. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  13. Raman and infrared spectroscopic study of kamphaugite-(Y).

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo

    2015-05-15

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088cm(-1) provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed. PMID:25710116

  14. Spectroscopic study of interfaces in Al/Ni periodic multilayers

    NASA Astrophysics Data System (ADS)

    Le Guen, K.; Gamblin, G.; Jonnard, P.; Salou, M.; Ben Youssef, J.; Rioual, S.; Rouvellou, B.

    2009-02-01

    Using electron-induced X-ray emission spectroscopy (XES), we have studied two Al/Ni periodic multilayers that differ only by their annealing temperature: as-deposited and annealed at 115 °C. Our aim is to show that XES can provide further details about the chemistry at the metal-metal interface, in addition to what is obtained by X-ray diffraction. The distribution of valence states exhibiting Al 3p and Ni 3d character is determined from the analysis of the AlKβ and NiLα emission bands respectively. The multilayer emission bands are compared to those of reference materials: pure Al and Ni metals as well as Al{3}Ni, Al{3}Ni{2} and AlNi intermetallics. We provide evidence that, for temperatures up to 115 °C, Al{3}Ni is the major component of the multilayer.

  15. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  16. A SPECTROSCOPIC SURVEY AND ANALYSIS OF BRIGHT, HYDROGEN-RICH WHITE DWARFS

    SciTech Connect

    Gianninas, A.; Bergeron, P.; Ruiz, M. T. E-mail: bergeron@astro.umontreal.ca

    2011-12-20

    We have conducted a spectroscopic survey of over 1300 bright (V {<=} 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook and Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations.

  17. A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Bergeron, P.; Ruiz, M. T.

    2011-12-01

    We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).

  18. Analysis and Statistics of the Spectroscopic Sample of Byurakan-IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    A summary and general analysis of optical spectroscopic data for 255 Byurakan-IRAS Galaxies (BIG) obtained with BAO 2.6m, SAO 6m, OHP 1.93m telescopes, as well as SDSS DR7, DR8, and DR9 is given. The BIG sample is the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra. Among the 1178 objects most are spiral galaxies and there is a number of ULIRGs. All but one have emission lines; we have discovered 68 AGN and composite spectrum objects among them and the others are mostly Starburst Galaxies (SB). All possible physical characteristics have been measured and/or calculated, including physical sizes and optical and IR/FIR luminosities. The masses have been estimated based on mass-luminosity relations for spiral galaxies. As it appears, most of these objects are giant massive galaxies. Various multiwavelength (MW) data have been retrieved from recent catalogues from X-ray to radio and MW SEDs have been built, which have been matched to their optical classifications. Luminosity evolution of these objects has been studies.

  19. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  20. Spectroscopic analysis of PMMA/PVC blends containing CoCl2

    NASA Astrophysics Data System (ADS)

    Alghunaim, N. S.

    Composites of polymethyl methacrylate (PMMA) and polyvinyl chloride (PVC) polymer blend containing different concentrations (?10 wt.) of cobalt chloride (CoCl2) were prepared by casting techniques. The changes of the structural, spectroscopic, optical and thermal parameters of the samples are studied using different tools. FT-IR spectroscopy confirmed the complexation between the blends and Co+2-ions. The decrease or increase of IR band intensity with some shifts of other bands suggests an interaction and compatibility between PMMA/PVC blends with CoCl2 take place. The Ultra violet and visible (UV/Vis) spectra indicated that the presence of band gap energy depends on increasing of CoCl2 contents. The absorption intensity of the samples doped with CoCl2 becomes faint lower than the pure blend. The values of energy gap for direct and indirect transition decreases with the increase of CoCl2 due to the presence of charge transfer between PMMA/PVC and CoCl2. The thermogravimetric analysis (TGA) curves for all the samples have the same behavior and more steps of decomposition were observed. The reduction of mass loss for samples containing CoCl2 compared to the pure blend was observed and it was attributed to crosslink formation between the blend and CoCl2.

  1. Spectroscopic Analysis of a Biomimetic Model of Tyr(Z) Function in PSII.

    PubMed

    Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; Kodis, Gerdenis; Megiatto, Jackson D; Mndez-Hernndez, Dalvin D; Frese, Raoul N; van Grondelle, Rienk; Moore, Thomas A; Moore, Ana L; Gust, Devens; Kennis, John T M

    2015-09-17

    Using natural photosynthesis as a model, bio-inspired constructs for fuel generation from sunlight are being developed. Here we report the synthesis and time-resolved spectroscopic analysis of a molecular triad in which a porphyrin electron donor is covalently linked to both a cyanoporphyrin electron acceptor and a benzimidazole-phenol model for the TyrZ-D1His190 pair of PSII. A dual-laser setup enabled us to record the ultrafast kinetics and long-living species in a single experiment. From this data, the photophysical relaxation pathways were elucidated for the triad and reference compounds. For the triad, quenching of the cyanoporphyrin singlet excited state lifetime was interpreted as photoinduced electron transfer from the porphyrin to the excited cyanoporphyrin. In contrast to a previous study of a related molecule, we were unable to observe subsequent formation of a long-lived charge separated state involving the benzimidazole-phenol moiety. The lack of detection of a long-lived charge separated state is attributed to a change in energetic landscape for charge separation/recombination due to small differences in structure and solvation of the new triad. PMID:26327512

  2. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    PubMed

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding. PMID:25858879

  3. Rotational Spectroscopic Studies and Observational Searches for HO3

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna

    Interstellar chemistry is largely driven by reactions of unstable molecules that serve as reaction intermediates in terrestrial chemistry. One such class of compounds are weakly-bound clusters. These clusters could form in interstellar environments through radiative association reactions, but their identification and characterization in interstellar environments is limited by a lack of rotational spectral information. One such species is HO3, which could be formed in the interstellar medium from O2 and OH. HO3 has been studied extensively in the infrared, and there are a few microwave spectral studies that have also been reported. However, no millimeter or submillimeter spectral information is available to guide astronomical observations. In this talk, we will present the laboratory characterization of trans -HO3 and trans -DO3 from 70 to 450 GHz using our newly developed fast sweeping technique. The molecular constants have been significantly refined, and additional higher order centrifugal distortion constants have been determined. We will also present an initial observational search for HO3 in 32 star forming regions. Although no HO3 lines have been detected thus far, strict upper limits can be placed on the HO3 column density in these sources based on this analysis. Additional Authors: Luyao Zou, Brian M. Hays.

  4. A study of non-Keplerian velocities in observations of spectroscopic binary stars

    NASA Astrophysics Data System (ADS)

    Hearnshaw, J. B.; Komonjinda, Siramas; Skuljan, J.; Kilmartin, P. M.

    2012-11-01

    This paper presents an orbital analysis of six southern single-lined spectroscopic binary systems. The systems selected were shown to have circular or nearly circular orbits (e < 0.1) from earlier published solutions of only moderate precision. The purpose was to obtain high-precision orbital solutions in order to investigate the presence of small non-Keplerian velocity effects in the data and hence the reality of the small eccentricities found for most of the stars. The Hercules spectrograph and 1-m McLellan telescope at Mt John Observatory, New Zealand, were used to obtain over 450 CCD spectra between 2004 October and 2007 August. Radial velocities were obtained by cross-correlation. These data were used to achieve high-precision orbital solutions for all the systems studied, sometimes with solutions up to about 50 times more precise than those from the earlier literature. However, the precision of the solutions is limited in some cases by the rotational velocity or chromospheric activity of the stars. The data for the six binaries analysed here are combined with those for six stars analysed earlier by Komonjinda, Hearnshaw and Ramm. We have performed tests using the prescription of Lucy on all 12 binaries, and conclude that, with one exception, none of the small eccentricities found by fitting Keplerian orbits to the radial-velocity data can be supported. Instead we conclude that small non-Keplerian effects, which are clearly detectable for six of our stars, make impossible the precise determination of spectroscopic binary orbital eccentricities for many late-type stars to better than about 0.03 in eccentricity, unless the systematic perturbations are also carefully modelled. The magnitudes of the non-Keplerian velocity variations are given quantitatively.

  5. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  6. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  7. Chemical analysis of exhaled human breath using a terahertz spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Medvedev, Ivan R.

    2013-09-01

    As many as 3500 chemicals are reported in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. This experiment demonstrated a method of breath analysis utilizing a high resolution spectroscopic technique for the detection of ethanol, methanol, and acetone in the exhaled breath of a person who consumed alcohol. This technique is applicable to a wide range of polar molecules. For select species, unambiguous detection in a part per trillion dilution range with a total sample size in a femtomol range is feasible. It compares favorably with other methods of breath analysis.

  8. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  9. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  10. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  11. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  12. Spectroscopic studies of particulate formation in fuel blends

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Subramanya, Mahesh; Govani, Jayesh; Choudhuri, Ahsan

    2007-10-01

    The Raman and infrared absorption spectroscopy were used to investigate the properties of carbon nanotubes (CNTs) flame-synthesized using CH4-H2 low calorific value gases. The development of large amounts of CNTs benefits from flame synthesis processes, where the fuel serves as both the heating and the reactant source. As a result of flame condition studies it was determined that the CNT growth region is at 20-30% of the visible flame height and at a flow rate between 7.18E-07 m^3/s and 9.57E-07 m^3/s. Preliminary characterizations of the samples by Scanning Electron Microscopy demonstrate that the formation of nanostructure occurs only for <10% H2 concentration. The Raman analysis of the pristine samples shows the existence of distinctive multi-walled carbon nanotube (MWNT) D and G bands at 1321 cm-1 and 1595 cm-1, respectively. Besides the vibrational lines characteristic to MWNTs, infrared absorption measurements also reveal the presence of C-H bonds.

  13. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Astrophysics Data System (ADS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-04-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.

  14. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Technical Reports Server (NTRS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-01-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.

  15. Fourier-transform Raman spectroscopy of ivory: II. Spectroscopic analysis and assignments

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Holder, J. M.; Lawson, E. E.

    1997-11-01

    The FT-Raman spectra of African and Asian elephant and woolly mammoth ivory are reported and comprehensive molecular vibrational assignments are proposed. Since ivory is composed of proteinaceous collagen embedded in an inorganic matrix of carbonated hydroxyapatite, the Raman spectrum of pure natural collagen recorded under similar conditions aids the identification of the vibrational modes. Several bands are identified which could be used for the Raman spectroscopic characterisation of the mammalian ivories studied.

  16. Study of the photodegradation of 2-bromophenol under UV and sunlight by spectroscopic, chromatographic and chemometric techniques.

    PubMed

    Jayaraman, Anusha; Mas, Sílvia; Tauler, Romà; de Juan, Anna

    2012-12-01

    This work is focused on the study of the photodegradation of 2-bromophenol under the action of UV light and sunlight. The photodegradation process has been monitored using UV-Vis spectroscopy and High Performance Liquid Chromatography coupled to diode array and mass spectrometry detectors in tandem (HPLC-DAD-MS). Multivariate resolution methods, such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and hybrid soft- and hard-modeling-Multivariate Curve Resolution (HS-MCR), have been applied to the experimental data to obtain the information about the kinetic evolution and identification of the compounds involved in the photodegradation process. From the analysis of HPLC-DAD results, the complexity of the photodegradation process has been confirmed. Ten components were found to be involved in parallel, second- or higher-order reactions, which could not be ascertained from the spectroscopic results. The HPLC-MS results allowed postulating the identity of some of the compounds (such as hydroxyderivatives and bromophenol homologs) which resulted from the reactions of photohydrolysis, debromination and bromine transfer to different position of the phenol ring. The effect of the UV light and sunlight on the photodegradation process was found to affect mainly the rate of the reaction, but not the identity of the photoproducts formed. The advantages and limitations of the spectroscopic and chromatographic analysis were also discussed. The potential of combining spectroscopic and chromatographic data in a single multiset structure was also shown. This strategy, uses the advantage of the good definition of the process time axis from the spectroscopic experiment and the capability to distinguish among compounds, linked to the use of chromatographic information. PMID:22522088

  17. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    SciTech Connect

    Walker, T.P.

    1981-05-01

    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo/sub 2/O/sub 4/ (cysteine)/sub 2//sup 2 -/ and trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ (dppe = 1,2-bis(diphenylphosphino)ethane). The H/sup 1/ and C/sup 13/ NMR of solutions of Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ is described and compared to the EXAFS of MoH/sub 4/(dppe)/sub 2/. The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction.

  18. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  19. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  20. Spectroscopic study of the exotic nucleus 25P

    NASA Astrophysics Data System (ADS)

    Fernández-Domínguez, B.; Pereira-López, X.; Timofeyuk, N. K.; Descouvemont, P.; Catford, W. N.; Delaunay, F.

    2015-02-01

    Motivated by the importance of 25P for the two-proton decay of 26S and for searches of the mirror analog of the island of inversion near N =16 , we present the first predictions for the spectroscopy of the exotic isotope 25P obtained in the shell model, a potential model, and a microscopic-cluster model. All models predict 25P to be unbound, with an energy in the range 0.78 -1.03 MeV, which favors previous mass systematics over more recent revisions. We show that 25P possesses a rich low-lying spectrum that should be accessible by experimental studies. All of the predicted states below 7 MeV, except one, are narrow. Many of them are built on the excited-core states of 24Si for which the Coulomb barrier is raised. For decays into the 24Si (g.s.) +p channel we determined the proton widths based on their link to the asymptotic normalization coefficients (ANCs) of their mirror analogs in 25Ne . We determine these ANCs from the analysis of the transfer reaction 24Ne (d,p ) 25Ne . The proton widths for decay into excited-state channels are obtained in model calculations. The only broad state is the intruder 3 /2 -, the mirror analog of which has been recently observed in 25Ne . The 25P (3 /2-) energy is lower than that in 25Ne , suggesting that the island of inversion may persist on the proton-rich side. All excited states of 25P have at least two decay modes and are expected to populate variously the 21,2 + and 4+ states in 24Si , which then decay electromagnetically.

  1. Raman spectroscopic mapping for the analysis of solar radiation induced skin damage.

    PubMed

    Ali, S M; Bonnier, F; Ptasinski, K; Lambkin, H; Flynn, K; Lyng, F M; Byrne, H J

    2013-07-21

    The effects of simulated solar irradiation of an artificial skin model have been examined using Raman spectroscopy and the results are compared with cytotoxicological and histological profiling. Samples exposed for times varying between 30 minutes and 240 minutes were incubated post exposure for a period of 96 hours. The cytotoxicological response as measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay demonstrated a ~50% loss of viability of the artificial tissue after 120 minutes exposure. Histological staining of tissue sections showed considerable loss of cellular content in the epidermal layer at this endpoint. Raman spectroscopic mapping of tissue sections, coupled with K-means cluster analysis (KMCA) clearly identified the dermal and stratum corneum layers and differentiated further substructures of the epidermis. Post irradiation, a significant loss of DNA features in the basal layer was apparent in the results of the KMCA. Principal Components Analysis (PCA) of layers identified by the KMCA post exposure compared with controls indicated a significant increase in the lipidic signatures of the stratum corneum. In the dermal layer, little photodamage was observed, but a similar increase in lipidic signatures in the basal layer was accompanied by a decrease in DNA and protein contributions. The spectral profiles of the photodamage to the basal layer as identified by PCA are consistent over the exposure periods of 30-240 minutes, but an examination of the evolution of features associated with specific biochemical components indicated DNA damage and loss of lipidic signatures at the early exposure times, whereas changes in protein signatures appeared to evolve over longer periods. In comparison to the cytotoxicological responses, the study demonstrates that Raman spectroscopy can identify biochemical changes as a result of solar exposure at time points significantly earlier than changes in tissue viability are observed. PMID:23471356

  2. Study of Characterization of Pure and Malachite Green Doped Samples Using Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti; Mishra, Pankaj K.; Khare, P. K.

    2011-07-01

    This paper describes the results of SEM, EDX, UV-vis and TSDC study of malachite green doped PVK thermelectrets. TSDC study has been carried out in the temperature range 300 °C to 1500 °C with four different polarizing fields. One peak was observed at 110±10 °C which shifts toward high temperature with the increase in polarizing field. The activation energy found by initial rise method are 0.27±0.02 eV for pure and 0.40±0.03 eV for malachite green doped PVK thermoelectrets. Spectroscopic study concluded that impregnation of malachite green in polymer matrix forms charge transfer complexes.

  3. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  4. Pb(II) binding to humic substances: an equilibrium and spectroscopic study.

    PubMed

    Orsetti, Silvia; Marco-Brown, Jose L; Andrade, Estela M; Molina, Fernando V

    2013-08-01

    The binding of Pb(II) to humic acids is studied through an approach combining equilibrium and spectroscopic measurements. The methods employed are potentiometric and fluorometric titrations, fluorescence excitation-emission matrices (EEM) and IR spectroscopy. Potentiometric titration curves are analyzed using the NICA equations and an electrostatic model treating the humic particles as an elastic polyelectrolyte network. EEMs are analyzed using parallel factor analysis, decomposing the signal in its independent components and finding their dependence on Pb(II) activity. Potentiometric results are consistent with bimodal affinity distributions for Pb(II) binding, whereas fluorometric titrations are explained by monomodal distributions. EEM analysis is consistent with three independent components in the humic fluorescence response, which are assigned to moieties with different degree of aromaticity. All three components show a similar quenching behavior upon Pb(II) binding, saturating at relatively low Pb(II) concentrations. This is attributed to metal ion induced aggregation of humic molecules, resulting in the interaction between the aromatic groups responsible for fluorescence; this is also consistent with IR spectroscopy results. The observed behavior is interpreted considering that initial metal binding (observed as strongly binding sites), correspond to bi- or multidentate complexation to carboxylate groups, including binding between groups of different humic molecules, promoting aggregation; further metal ions (observed as weakly binding sites) bind to single ligand groups. PMID:23805795

  5. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    NASA Astrophysics Data System (ADS)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  6. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation. PMID:26277184

  7. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  8. Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge

    NASA Astrophysics Data System (ADS)

    Polak, J.; Sułkowski, W. W.; Bartoszek, M.; Papież, W.

    2005-06-01

    The humic acids extracted from sludge collected from the digestion chamber and the sludge drying beds were studied. The sludge samples were collected, dried and humic acids were extracted. The progress of the humification processes was studied with EPR, IR and NMR spectroscopic methods. For extracted humic acids, concentration of free radicals and g factor was determined with EPR. The presence of characteristic functional groups was confirmed with IR and NMR spectroscopy. To study the changes in content of the elements, the elemental analysis was performed to determine the percentage of carbon, hydrogen, nitrogen, sulfur and oxygen. Taking all the obtained results into account it was found that on the sewage drying beds, humification processes take place in the sludge. In the first two weeks when the sludge on the drying beds an intensive enrichment of humic acids in free radicals takes place. This is the result of the intensive humification process course after the stage in the fermentation chamber where the mesophilic fermentation takes place. Moreover, the humidity of sludge influences the intensive development of free radical concentration at the beginning of the storing period, whereas the humification processes still continue.

  9. Spectroscopic Studies of Diatomic Transition Metal Oxides and Fluorides.

    NASA Astrophysics Data System (ADS)

    McCord, John Edward

    Wavelength selected fluorescence excitation spectroscopy (WSFES) techniques and ligand field theory (LFT) calculations have been applied to the following transition metal diatomics: CeO, UO, LaF, YF, ScF, HfO, TiO, and ZrO. All of the rotational spectra recorded for these molecules were at a resolution of 0.03 cm^{-1}, and, with few exceptions, Omega assignments for electronic states were unambiguously determined from observations of the first lines in at least two rotational branches. Accurate term energies and rotational constants are reported. Thirty one electronic transitions of CeO were recorded, and all of the sixteen states that correlate with rm Ce^{2+}(4f6s)O^ {2-} were characterized. The results are in good accord with a ligand field theory model of the low-lying states. New assignments were established for four previously observed transitions, and spectra for three new excited states were analyzed. LFT calculations have been used in an attempt to provide configurational assignments for the excited states (including those from previous studies). Twenty two states are tentatively assigned to the rm Ce^{2+}(4f6p)O ^{2-} configuration. Twelve others are tentatively assigned to rm Ce^ {2+}(4f5d)O^{2-}.. Rotation-electronic interactions between states of the 4f6s configuration of CeO, mediated by the operator {-}B(R)( J^+ cdot J_sp{a}{-}+ J^-cdot J_sp{a} {+}), have been calculated. Second-order perturbation theory was used to account for the effect of heterogeneous interactions on the rotation constants within a single configuration. Thirty-three electronic transitions of UO were analyzed, and nine low-lying electronic states that correlated with either rm U^{2+}(5f ^37s)O^{2-} or rm U^{2+}(5f^27s^2)O ^{2-} were characterized. Ligand field theory calculations were also used in an attempt to provide configurational assignments for the excited states of UO and ThO. Experimentally derived values for Delta B_sp{0} {0}(nl/n^' l^') parameters were used to predict the electronic structures of UO and UO^+.. Eight electronic transitions of LaF and nine transitions of YF were studied. LFT calculations (and in the case of LaF, hyperfine constants) were used to suggest electronic configurational assignments for the excited states of these molecules. WSFE spectra of the 0-0 and 1-1 bands of the ScF F^1Phi-A^1 Delta transition were observed, and perturbations in the F^1Phi state, caused by interactions with the h^3Pi_2 state, were analyzed. Using a method based on Franck-Condon factors, the vibrational numbering in the perturbing h^3Pi_2 state was estimated. The 5698 A band of HfO has been re examined. The wavelength-resolved fluorescence excitation technique was used to record the (2,0) band of the C ^3Delta_3-a^1 Delta transition, and the (2,3) and (2,4) bands of the C^3Delta_3 -X^3Delta_3 electronic transition of TiO. The (0,0) bands of the satellite e^3 Pi_1-a^3Delta _1 and e^3Pi_2 -a^3Delta_2 transitions of ZrO were investigated, and these data were combined with previous high resolution analyses of the ZrO beta-system and with the analysis of the intercombination e^3Pi_1 -X^1Sigma ^+ transition to obtain accurate term energies for the triplet states of ^{90 }Zr^{16}O. (Abstract shortened by UMI.).

  10. Analysis of heavy metals during composting of the tannery sludge using physicochemical and spectroscopic techniques.

    PubMed

    Haroun, Mahdi; Idris, Azni; Omar, Syed

    2009-06-15

    The major limitation of direct application of tannery sludge compost in agriculture is the total heavy metal contents and their bioavailability to the soil-plant system. This study focused on the heavy metal characterization and the influence of changing the physicochemical properties of the medium throughout the composting on the concentrations, bioavailability or chemical forms of Cr, Cu, Zn, Pb and Cd in tannery sludge. The study shows that throughout the 60 days of composting, physicochemical analysis and Fourier-transformed infrared (FTIR) spectroscopic characterization show that all parameters elaborated and reached relatively stable levels reflecting the stability and maturity of the final product, and revealed the biodegradation of components that can be easily assimilated by microorganism. The C/N ratio reaches the optimal range of stable compost; inorganic nitrogen is transformed into stable organic forms. The total concentration of Cr, Zn, Cu, Pb and Cd is very low rendering final compost acceptable for agricultural use. The germination index for both Chinese cabbage and lettuce was 97% after 60 days of composting, showing that the final compost was not phytotoxic. Furthermore, in using a sequential extraction method in sludge compost at different phases of treatment, a less than 2% of metals bound to bioavailable fractions X-(KNO(3)+H(2)O). A large proportion of the heavy metals were associated to the residual fraction (75-85%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO(3) (15-25%). Mobile fractions of metals are poorly predictable from the total content. Bioavailability of all fractions of elements tends to decrease. PMID:18990495

  11. Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip.

    PubMed

    Ashok, Praveen C; Praveen, Bavishna B; Dholakia, K

    2011-11-01

    Standardization and quality monitoring of alcoholic beverages is an important issue in the liquor production industry. Various spectroscopic techniques have proved useful for tackling this problem. An ideal sensing device for alcoholic beverages should be able to detect the quality of alcohol with a small amount of sample at a low acquisition time using a portable and easy to use device. We propose the use of near infra-red spectroscopy on an optofluidic chip for quality monitoring of single malt Scotch whisky. This is chip upon which we have previously realized waveguide confined Raman spectroscopy. Analysis on this alignment-free, portable chip may be performed in only 2 seconds with a sample volume of only 20 µl. Using a partial least square (PLS) calibration, we demonstrate that the alcohol content in the beverage may be predicted to within a 1% prediction error. Principal component analysis (PCA) was employed for successful classification of whiskies based upon their age, type and cask. The prospect of implementing an optofluidic analogue of a conventional fiber based spectroscopic probe allows a rapid analysis of alcoholic beverages with dramatically reduced sample volumes. PMID:22109177

  12. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  13. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2010-12-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  14. Interaction of an anthracycline disaccharide with ctDNA: Investigation by spectroscopic technique and modeling studies

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Lv, Juan; Zhang, Guisheng; Wang, Gongke; Liu, Qingfeng

    2010-05-01

    This study was designed to examine the interaction of an anthracycline disaccharide, 4'- O-(β-L-oleandrosyl) daunorubicin (DNR-D2), with calf thymus deoxyribonucleic acid (ctDNA) by UV-vis in combination with fluorescence spectroscopy and molecular modeling techniques under physiological conditions (Britton-Robinson buffer solutions, pH 7.4). By the analysis of UV-vis and fluorescence spectrum, it was observed that the binding mode between DNR-D2 and ctDNA might be intercalation, and fluorescence quenching mechanism of DNR-D2 by ctDNA was a static quenching type. Upon binding to ctDNA, the anthraquinone chromophore of DNR-D2 could slide into the C-G rich region of ctDNA. Hydrogen bonding forces may play an essential role in the binding of DNR-D2 to ctDNA. Furthermore, the results obtained from computational modeling corroborated the experimental results obtained from spectroscopic investigations. These studies are valuable for a better understanding the datailed mode of DNR-D2-DNA interaction, which should be important in deeper insight into the therapeutic efficiency of DNR-D2.

  15. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  16. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  17. Some polyhydroxy azo azomethine derivatives of salicylaldehyde: Synthesis, characterization, spectroscopic, molecular structure and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Odabaşoğlu, Mustafa; Albayrak, Çiğdem; Özkanca, Reşit; Aykan, Fatma Zehra; Lonecke, Peter

    2007-09-01

    Some new substituted polyhydroxy azo-azomethine compounds were prepared by reaction of tris(hydroxymethyl)aminomethane with ( E)-2-hydroxy-5-(phenyldiazenyl) benzaldehyde and its substituted derivatives. The structures of azo and azo-azomethine compounds were determined by IR, UV-vis, 1H NMR and 13C NMR spectroscopic techniques, and/or X-ray diffraction studies. According to IR spectra, all azo-azomethine compounds adopt keto form in solid state. UV-vis analysis has shown the presence of keto-enol tautomerism in solution for all azo-azomethine compounds, except that for nitro substituted derivative, enol form is dominantly favored in solution. At the same time, above mentioned derivative compounds were studied in vitro for their antimicrobial properties. Among the phenylazosalicylaldehyde series compound tested, 4-phenylazosalicylaldehyde, 4-(3-chlorophenylazo)salicylaldehyde, 4-(2-chlorophenylazo)salicylaldehyde, 4-(4-fluorophenylazo)salicylaldehyde, 4-(3-chlorophenylazo)salicylaldehyde and 4-(4-ethylphenylazo)salicylaldehyde showed a weak antimicrobial activity only against gram positive bacteria. On the contrary, phenylazosalicylaldehyde series compounds were reacted tris(hydroxmethyl)aminomethane, that exhibited a strong antimicrobial activity against gram positive bacteria, yeast and mould. Moreover, while the 2-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylimino]methyl}phenol did not show an inhibition on tested microorganism, the addition of phenyldiazine groups to 2-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylimino]methyl}phenol resulted in a strong increases in antimicrobial activity.

  18. A spectroscopic and photometric study of post main sequence stars in M68

    NASA Astrophysics Data System (ADS)

    Schaeuble, Marc; Preston, George W.; Sneden, Chris; Thompson, Ian; Shectman, Stephen A.; Burley, Gregory S.

    2015-01-01

    We present the results of the spectral analysis for 24 post main sequence stars in the metal poor globular cluster M68 ([Fe/H] = -2.23). Our sample includes lower red giant stars, red giant tip stars, red horizontal branch stars and blue horizontal branch stars, therefore spanning 4000 K in Teff, and 3.0 log(g) space. This is the first high-resolution spectroscopic study sampling essentially all post-subgiant evolutionary stages of a very metal poor globular cluster. In the current effort, abundances and atmospheric parameters for all stars in our sample were derived using an internally consistent approach. Special consideration is given to blue horizontal branch stars, as they present a specific set of analytical challenges. Like earlier studies, we also find a small trend of metallicity and evolutionary state, but much less pronounced than before. Abundances of light elements are consistent among the evolutionary stages, while the n-capture elements exhibit traces of r-process enrichment in this cluster. The combination of these results is considered in the discussion of the evolutionary history of M68 and also the difficulties of deriving self-consistent atmospheric parameters over multiple evolutionary stages. Support for this research from the National Science Foundation (grat AST-1211585) is acknowledged with thanks.

  19. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: Spectroscopic and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Manivannan, C.; Vijay Solomon, R.; Venuvanalingam, P.; Renganathan, R.

    2013-02-01

    9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, 1H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.

  20. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.; Branen, Joshua; Aston, D. Eric; Noren, Kenneth; Corti, Giancarlo; Schumacher, Randi; McIlroy, David N.

    2011-07-01

    In this study, alternating current impedance spectroscopic analysis of the biofunctionalization process of a vertically-aligned (silica) nanosprings (VANS) surface is presented. The VANS surface is functionalized with a biotinylated immunoglobulin G (B-IgG) layer formed by physisorption of B-IgG from the solution phase. Bovine serum albumin passivation of the B-IgG layer reduces additional surface adsorption by blocking the potential sites of weak bond formation via electrostatic and hydrophobic interactions. As avidin acts as a receptor of biotinylated compounds, avidin conjugated glucose oxidase (Av-GOx) binds to the B-IgG layer via biotin. This avidin-biotin bond is a stable bond with high association affinity (Ka = 1015 M-1) that withstands wide variations in chemistry and pH. An IgG layer without biotin shows no binding to the Av-GOx, indicating that bonding is through the avidin-biotin interaction. Finally, fluoroscein iso-thiocyanate (FITC) labeled biotinylated bovine serum albumin (B-BSA) added to the Av-GOx surface is used to fluorescently label Av-GOx for fluorescent measurements that allow for the correlation of surface binding with impedance measurements. Modeling of impedance spectra measured after the addition of each biological solution indicates that the bimolecular layers behave as insulating layers. The impedance spectra for the VANS-based sensor are compared to simple parallel capacitor sensors, sans VANS, and serve as controls. VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls below 10 kHz. Changes in the magnitudes of the components of the VANS equivalent circuit indicate that the addition of biological layers changes the effective dielectric response of the VANS via the impediment of ionic motion and biomolecule polarization.

  1. New spectroscopic studies of the ?-band system ? of the ? molecule

    NASA Astrophysics Data System (ADS)

    Danielak, J.; Kepa, R.; Zachwieja, M.

    1997-11-01

    In the emission spectrum of the nitric oxide isotopomer 0953-4075/30/21/023/img4 eight bands: 0 - 3, 0 - 4, 1 - 4, 1 - 5, 1 - 6, 2 - 6, 2 - 7 and 3 - 4 comprising about 1160 lines belonging to the 0953-4075/30/21/023/img5-band system 0953-4075/30/21/023/img6 have been remeasured and reanalysed. The rotational analysis of these bands and the calculation of the rovibronic structure constants have been performed via a nonlinear least-squares fits with the effective Hamiltonians of Brown et al. The merged analysis of the currently analysed 0953-4075/30/21/023/img5 bands and earlier observed vibrational - rotational 1 - 0, 2 - 1 and 3 - 0 bands made it possible to considerably enlarge, unify and specify with greater precision the information about the 0953-4075/30/21/023/img8 and 0953-4075/30/21/023/img9 states in 0953-4075/30/21/023/img4. In particular, new constants of the rovibronic structure have been calculated for the 0953-4075/30/21/023/img11 and 0953-4075/30/21/023/img12 levels and equilibrium molecular constants as well as the Franck - Condon factors and r centroids for the 0953-4075/30/21/023/img5 bands in the 0953-4075/30/21/023/img4 molecule.

  2. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  3. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1990-01-01

    The formyl radical and the acetylene molecule were chosen for these studies. The visible and fluorescence spectra of the formyl radical were recorded, and the spectral results are used as a basis to explain the electronic structure. Optical-optical double resonance studies of acetylene were recorded, and the spectral results are interpreted. The results of Zeeman and Stark anticrossing and quantum beat studies of acetylene are reported, and they provide an unusually detailed view of both Intersystem Crossing and Internal Conversion in small polyatomic molecules. 22 references are cited as resulting from Department of Energy sponsorship of this project.

  4. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  5. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  6. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography

    PubMed Central

    Jaedicke, Volker; Agcaer, Semih; Robles, Francisco E.; Steinert, Marian; Jones, David; Goebel, Sebastian; Gerhardt, Nils C.; Welp, Hubert; Hofmann, Martin R.

    2013-01-01

    Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system’s resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage. PMID:24409393

  7. Barbituric and thiobarbituric acids: a conformational and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Zuccarello, Felice; Buemi, Giuseppe; Gandolfo, Concetta; Contino, Annalinda

    2003-01-01

    A conformational study on Barbituric (BA) and Thiobarbituric (TBA) acids was performed at ab initio MP2/6-31G** level on the neutral, protonated, mono- and di-anionic forms. Acid-base equilibria were studied by comparing the electronic transitions evaluated for the most stable conformations and the experimental spectra at different pH values. The electronic transitions were obtained through the ZINDO approach.

  8. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches.

    PubMed

    Anbarasan, R; Dhandapani, A; Manivarman, S; Subashchandrabose, S; Saleem, H

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis. PMID:25819314

  9. Spectroscopic study of phase transitions in natural calcite mineral

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Anbalagan, G.

    2008-04-01

    The process and the formation of new minerals upon heating the carbonate rocks containing clay minerals, together with calcite are determined with thermal analysis, X-ray diffraction, infrared and Raman spectroscopy. The calcite-calcium oxide phase transition sequence was followed up to 947 °C in naturally occurring limestone samples. The spectral variations of the internal modes of the carbonate trigonal ( ν1, ν2, ν3 and ν4) were used to probe the structural phase transitions. The calcium oxide phase (which on reaction with atmospheric water forms portlandite) with an onset temperature of around 950 °C was also characterized by the appearance of the infrared mode around 450 cm -1. The minerals, which were formed upon heating the calcite, were calcium oxide and wollastonite.

  10. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  11. Spectroscopic studies on pure and histidine functionalized MWCNTs

    NASA Astrophysics Data System (ADS)

    Mathavan, T.; Kanimozhi, C. V.; Jothi Rajan, M. A.; Umapathy, S.; Dhas, M. Kumara; Franklin Benial, A. Milton

    2013-06-01

    Electron spin resonance (ESR), Fourier transform infrared (FTIR) and Ultraviolet-visible (UV-Vis) studies were carried out for pure and histidine functionalized MWCNTs (0.2, 0.4 and 0.6 M concentration of histidine). EPR absorption spectral data found to be best fit for the Gaussian lineshape. The g-values indicate the presence of magnetic impurities in the samples and the interaction between the localized electrons and delocalized electrons in the nanotubes trapped at defects or magnetic ions site. The electron spin concentration decreases with increasing concentration of histidine, which implies that the unpaired electron in the MWCNTs undergo a reduction process in the histidine functionalized MWCNTs. FTIR study confirms the presence of functional groups in pure and histidine functionalized MWCNTs. UV-Vis study reveals that the formation of histidine-MWCNTs charge transfer complex.

  12. Archival Ultraviolet Spectroscopic Analysis of Disk-Dominated Cataclysmic Variables: The Importance of the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Godon, Patrick

    We propose to carry out a systematic ultraviolet (UV) spectral analysis of 43 disk- dominated systems in cataclysmic variable (CV) binaries with the inclusion of the contribution from the boundary layer, from NASA UV Space Missions such as HST, FUSE, HUT, IUE and ORFEUS. The mass accretion in CVs is a badly needed parameter to verify the theory of the evolution of CVs, to understand the accretion process itself and the disk instability. However, many disk-dominated systems unexpectedly prove impossible to model using only standard accretion disks and white dwarfs in combination. Our objective is to overcome this difficulty by modeling the UV spectrum of the boundary layer between the star and disk, including its effect on the spectrum of the disk and star for the first time. This will provide the first step needed for the improvement of the disk model in UV spectroscopic analysis of disk-dominated systems in CVs. At the same time the results of this spectral analysis will provide information on the boundary layer and accretion disk of these systems. As a by-product, we will create a web-based catalog of all the archival UV spectra of disk-dominated CVs, which will be added and fused to our existing and growing web-based catalog of FUSE spectra of CVs. Since the WD is the most common end-product of stellar evolution (approx 90% of all the stars in the Galaxy have or will evolve into white dwarfs), and the accretion disk is the most common universal structure resulting from mass transfer with angular momentum, and since both can be directly viewed in CVs in the ultraviolet (UV), an understanding of the consequences of accretion in these systems is the first step in a global understanding of accretion in other systems throughout the universe. These include Young Stellar Objects, galactic binaries (accretion onto neutron stars and black holes) and the most difficult to study, Active Galactic Nuclei. In addition, the formation history of WDs is closely linked to the history of the Galaxy. As a consequence, this proposal will support the NASA Strategic Goals and Science Outcomes 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets; Science Objective 3: understanding the development of structure and cycles of matter and energy in the evolving universe: RFA (b) Explore the behavior of matter in extreme astrophysical environments, including disks, cosmic jets, and the source of gamma-ray bursts and cosmic rays.

  13. A combined spectroscopic and theoretical study of propofol.(H2O)3

    NASA Astrophysics Data System (ADS)

    León, Iker; Cocinero, Emilio J.; Millán, Judith; Rijs, Anouk M.; Usabiaga, Imanol; Lesarri, Alberto; Castaño, Fernando; Fernández, José A.

    2012-08-01

    Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol.(H2O)3 contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.

  14. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-01

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π1*; S1 state) and the shorter (1π-π1*; S2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm-1) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C2ν symmetry constraint on the S2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  15. Solvatochromism of 9,10-phenanthrenequinone: an electronic and resonance Raman spectroscopic study.

    PubMed

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π(1)*; S1 state) and the shorter (1π-π(1)*; S2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C2ν symmetry constraint on the S2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. PMID:25591351

  16. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands

    NASA Astrophysics Data System (ADS)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2015-02-01

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular Osbnd H⋯N interactions in salicylaldehyde derivatives between the Osbnd H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  17. Toward High Performance Graphene-based Solar Cells: Spectroscopic Study on Doped Graphene

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Kai; Hsu, Chen-Chih; Lin, Wei-Hsiang; Wu, Chih-I.; Yeh, Nai-Chang

    2015-03-01

    A polymer-free transfer method with in situ doping process for graphene, aiming at simple and efficient doping of residue-free graphene, has been developed to achieve stacked graphene/dopant intercalation films. The proposed facile strategy led to a tunable work function from 3.25 eV to 5.10 eV, enabling graphene anode and cathode for solar cell devices. Both hybrid and organic photovoltaics using graphene electrodes have been carried out with a series of optimization based on spectroscopic characterizations. Since aging of doped graphene is crucial to the lifetime of graphene-based solar cells, the doping-induced electronic state variation with time has been investigated via X-ray and ultra-violet photoemission spectroscopy analysis to gain insight in its electronic properties and stability. The doping effect developed in graphene has also been studied via Raman spectroscopy, including time evolution of the Raman D, G and 2D bands under normal and humid conditions for up to 30 days. This systematic investigation of aging effect provides better understanding and helps optimize the stacking of doped graphene films for achieving high performance graphene-based devices. This work is supported by NSC of R.O.C. (Dragon Gate Program) and NSF for the work at Caltech.

  18. Spectroscopic studies on the interaction of fluorine containing triazole with bovine serum albumin.

    PubMed

    Liu, Yang; Mei, Ping; Zhang, Ye-Zhong; Sun, Xiao-Hong; Liu, Yi

    2010-12-01

    The binding of one fluorine including triazole (C(10)H(9)FN(4)S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV-Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA-FTZ, and the binding constants (K (a)) at three different temperatures (298, 304, and 310 K) were 1.516 × 10(4), 1.627 × 10(4), and 1.711 × 10(4) mol L(-1), respectively, according to the modified Stern-Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol(-1) and 125.217 J mol(-1) K(-1), respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA-FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ. PMID:20195922

  19. Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    NASA Astrophysics Data System (ADS)

    Donati, P.; Bragaglia, A.; Carretta, E.; D'Orazi, V.; Tosi, M.; Cusano, F.; Carini, R.

    2015-11-01

    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long-term programme Bologna Open Clusters Chemical Evolution. NGC 2355 was observed with the Large Binocular Camera at the Large Binocular Telescope using the Bessel B, V, and Ic filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram method, as done in other papers of this series. Additional spectroscopic observations with the Fibre-fed Echelle Spectrograph at the Nordic Optical Telescope of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]= -0.06 dex, age between 0.8 and 1 Gyr, reddening E(B - V) in the range 0.14-0.19 mag, and distance modulus (m - M)0 of about 11 mag. We also investigate the abundances of O, Na, Al, ?, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC 2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.

  20. IR Spectroscopic Study of the Mixed Crystal System (LixAg1-x)NO3

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Tosson, M.

    A spectroscopic analysis of the various IR internal modes for the mixed crystal system of lithium nitrate and silver nitrate were carried out. The study aims mainly to find out the effect of partial replacement of Ag+ ion by Li+ ion on the internal fundamental modes of vibrations of the NO3- group in both of the ordering and disordering states of these two metallic nitrate compounds.The characteristic variations observed are attributed to differences in polarizability from cationic sphere around the nitrate group. An interesting increase of the maximum frequency observed on passing from pure components to mixtures is attributed to a change in force constant.Translated AbstractIR-spektroskopische Untersuchung des Mischkristallsystems (LixAg1-x)NO3Verschiedene innere IR-Moden eines Mischkristallsystems aus Lithiumnitrat und Silbernitrat wurden spektroskopisch untersucht. Ziel der Untersuchungen ist die Klärung des Einflusses der partiellen Substitution von Ag+ durch Li+ auf die Grundschwingungen der NO3--Gruppe sowohl im geordneten als auch ungeordneten Zustand dieser beiden Metallnitratverbindungen. Die beobachteten charakteristischen Verschiebungen werden dem Unterschied in der Polarisierbarkeit der kationischen Schale um die Nitratgruppe zugeschrieben. Ein interessanter Anstieg der beobachteten maximalen Frequenz beim Übergang von den reinen Komponenten zur Mischung wird mit einer Änderung in den Kraftkonstanten erklärt.

  1. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  2. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid".

    PubMed

    Karthick, T; Balachandran, V; Perumal, S

    2015-04-15

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm(-1) has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation. PMID:25677530

  3. Synthesis and spectroscopic studies of some chromium and molybdenum derivatives of bis-(acetylacetone)ethylenediimine ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abdel-Rahman, Laila H.; Ismael, Mohamed; Youssef, Teraze A.; Ali, Saadia A.

    2013-10-01

    Interaction of [Cr(CO)6] with bis-(acetylacetone)ethylenediimine Schiff base, H2acacen, under reduced pressure resulted in the formation of [Cr(CO)3(H2acacen)] derivative. The Schiff base acted as a tridentate and coordinated the metal through the nitrogen of the azomethine groups and one hydroxyl group. Reaction of [Mo(CO)6] with H2acacen under sunlight irradiation in presence of air gave the oxo derivative [Mo2O6(H2acacen)2]. The ligand acted as a bidentate and coordinated the metal through the two imine groups. In presence of 2,2'-bipyridine (bpy), the reaction of [Mo(CO)6] with H2acacen gave [Mo2O6(bpy)(H2acacec)]. The structures of the reported complexes were proposed on the basis of spectroscopic studies. The proposed structures were also verified by theoretical calculations based on accurate DFT approximations. Moreover, the relative reactivity was estimated using chemical descriptors analysis.

  4. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  5. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Søren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1° field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% ± 3% and a tidal circularization period of 6.2{sub −1.1}{sup +1.1} days for NGC 6819.

  6. Spectroscopic and Kinetic Studies of Atmospheric Free Radicals

    NASA Astrophysics Data System (ADS)

    Foreman, Elizabeth; Jou, YiTien; Kapnas, Kara; Murray, Craig

    2014-06-01

    Photo-induced radical chemistry is crucial to atmospheric processes, namely: oxidation, particulate matter formation, and climate change. The combination of transient absorption and pulsed cavity ring-down spectroscopies is used to study weak electronic or overtone transitions of trace gas-phase species and investigate the kinetic and photochemical properties of important transient atmospheric radicals.

  7. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  8. Structural, Magnetic and Spectroscopic Studies of Thin Manganite Films

    NASA Astrophysics Data System (ADS)

    Tyson, T. A.

    2003-03-01

    Starting from early experiments [1], evidence has been found for a close coupling of strain and the magnetotransport properties of manganite films. The characteristic feature found is that the metal to insulator transition temperature (TMI) is suppressed in very thin films [2]. In addition, studies show that the magnetic transition temperature (Tc) and TMI decouple in ultrathin films [3]. Systematic magnetization studies reveal that strain induces strong magnetic anisotropy [4]. Theoretical work also points to the sensitivity of Tc to biaxial strain [5]. Most studies have focused on single bulk properties. In order to understand the correlations between strain and the transport and magnetic properties we have examined the structure of films on multiple length scales. The local structure of films have been studies by x-ray absorption spectroscopy. The long -range structure has been studied by high-resolution x-ray diffraction and the microstructure has been studied by AFM measurements. These measurements are correlated with bulk magnetization and transport studies. Insight is gained on the evolution of lattice strain and Jahn-Teller distortions with thickness. Direct evidence is found for the arrest of charge ordering with strain and the existence of strain induced insulating regions of films. The magnetic ordering and transport properties as a function of strain as compared with bandstructure calculations. This work is supported by NSF Career Grant DMR-9733862 and DMR-0209243. Collaborators: Q. Qian, M. Deleon (NJIT), C. Dubourdiu (CNRS), J. Bai (ORNL), W. Prellier, A. Biswas, R. L. Greene (U. Maryland) [1] S. Jin et al., Appl. Phys. Lett. 67, 557 (1995). [2] (a) J. Z. Sun et al. Appl. Phys. Lett. 74, 3017 (1999). (b) F. S. Razi et al., Appl. Phys. Lett 76, 155 (2000) [3] J. Aarts et al., Appl. Phys. Lett. 72, 2975 (1998). (b) R. A. Rao et al., J. Appl. Phys. 85, 4794 (1999). [4] (a) X. W. Wu et al., Phys. Rev. B 61, 501 (2000). (b) J. O'Donnell et al., Appl. Phys. Lett. 72, 1775 (1998). (c) H. S. Wang and Q. Li, Int. J. Mod. Phys. B 13, 3827 (1999). [5] A. J. Millis, T. Darling and A. Migliori, J. Appl. Phys 83, 1588 (1998).

  9. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  10. Femtosecond spectroscopic study of carminic acid DNA interactions

    NASA Astrophysics Data System (ADS)

    Comanici, Radu; Gabel, Bianca; Gustavsson, Thomas; Markovitsi, Dimitra; Cornaggia, Christian; Pommeret, Stanislas; Rusu, Catalin; Kryschi, Carola

    2006-06-01

    Photo-excited carminic acid and carminic acid-DNA complexes in a buffer solution at pH 7 have been examined using a variety of spectroscopy techniques, that are in particular, the femtosecond resolved fluorescence upconversion and transient absorption spectroscopy. The observation of dual fluorescence emission, one peaks at 470 nm and the other at 570 nm, indicates to an excited-state (S 1) intramolecular proton transfer (ESIPT). A detailed analysis of the transient absorption measurements of an aqueous carminic-acid solution at pH 7 yielded four lifetimes for the excited-state (S 1): 8, 15, 33 and 46 ps. On the other hand, only two lifetimes, 34 and 47 ps, were observed by fluorescence upconversion spectroscopy because of the detection limitation to the long wavelength edge of the carminic-acid spectrum. The four S 1 lifetimes were ascribed to the coexistence of respectively two tautomer (normal and tautomer) forms of carminic acid, in the non-dissociated state (CAH) and in the deprotonated state (CA -). The fluorescence upconversion measurements of carminic acid-DNA complexes exhibited a prolongation of the fluorescence lifetimes. This effect was accepted as evidence for the formation of intercalation complexes between the carminic acid and the DNA. The intercalative binding of the carminic acid to DNA was confirmed by the fluorescence titration experiments resulting to a binding constant of 2 × 10 5 M -1 that is typical for anthracycline-DNA complexes.

  11. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  12. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  13. Conceptual design study to determine optimal enclosure vent configuration for the Maunakea Spectroscopic Explorer (MSE)

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; Vogiatzis, Konstantinos; Hangan, Horia; Jubayer, Chowdhury M.; Breckenridge, Craig; Loewen, Nathan; Bauman, Steven; Salmon, Derrick

    2014-07-01

    The Maunakea Spectroscopic Explorer (MSE; formerly Next Generation Canada-France-Hawaii Telescope) is a dedicated, 10m aperture, wide-field, fiber-fed multi-object spectroscopic facility proposed as an upgrade to the existing Canada-France-Hawaii Telescope on the summit of Mauna Kea. The enclosure vent configuration design study is the last of three studies to examine the technical feasibility of the proposed MSE baseline concept. The enclosure vent configuration study compares the aero-thermal performance of three enclosure ventilation configurations based on the predicted dome thermal seeing and air flow attenuation over the enclosure aperture opening of a Calotte design derived from computational fluid dynamics simulations. In addition, functional and operation considerations such as access and servicing of the three ventilation configurations is discussed.

  14. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  15. Magnetic resonance and optical spectroscopic studies of carotenoids

    SciTech Connect

    Kispert, L.D.

    1991-05-01

    It is our goal to study the role of a host lattice in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. We are thus manipulating the host matrix so as to understand the carotenoid function (protection, quenching, energy transfer and antenna) and the structure of carotenoid cations. To characterize their properties, we have carried out EPR, ENDOR, optical, molecular orbital and electrochemical studies of carotenoids and carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 36 refs.

  16. Studies of tropical fruit ripening using three different spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Huang, Jing; Li, Tianqi; Wu, Xiuxiang; Svanberg, Sune; Svanberg, Katarina

    2014-06-01

    We present a noninvasive method to study fruit ripening. The method is based on the combination of reflectance and fluorescence spectroscopies, as well as gas in scattering media absorption spectroscopy (GASMAS). Chlorophyll and oxygen are two of the most important constituents in the fruit ripening process. Reflectance and fluorescence spectroscopies were used to quantify the changes of chlorophyll and other chromophores. GASMAS, based on tunable diode laser absorption spectroscopy, was used to measure free molecular oxygen in the fruit tissue at 760 nm, based on the fact that the free gases have much narrower spectral imprints than those of solid materials. The fruit maturation and ripening processes can be followed by studying the changes of chlorophyll and oxygen contents with these three techniques.

  17. Raman spectroscopic study of the synthesis of zeolite Y

    SciTech Connect

    Dutta, P.K.; Shieh, D.C.; Puri, M.

    1987-04-23

    The formation of zeolite Y from colloidal silica and soluble silicate species was investigated by Raman spectroscopy. The role of aging of the reactant mixture was studied. During the nucleation period, the solid amorphous phase consists of predominantly six-membered aluminosilicate rings, which act as building blocks for the formation of zeolite Y. It is essential to have polymeric, highly condensed silicate units as a reactant if zeolite Y crystallization is to take place.

  18. Synthesis and spectroscopic studies of polyorganophosphazenes containing binaphthalene groups

    NASA Astrophysics Data System (ADS)

    Sułkowski, W.; Sułkowska, A.; Kireev, V.

    1997-06-01

    Introduction of binaphthalene groups in a polymer structure (saturated and unsaturated polyesters, polyimides, polyoxazolydones and other types) increases its thermal stability in comparison with that of the respective polymers containing phenylene and biphenylene groups. A similar effect is observed in condensation polyphosphazenes obtained from monospirobinaphthalenodioxytetrachlorophosphazenes and diphenols which retain the cyclophosphazene structure. It seemed useful to study the possibility of introducing binaphthalene groups to a poly(dichloro)phosphazene structure.

  19. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  20. FT-IR spectroscopic studies of polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salisbury, D. W.; Allen, J. E., Jr.; Donn, B.; Moore, W. J.; Khanna, R. K.

    1990-01-01

    Proper assessment of the hypothesis which correlates polycyclic aromatic hydrocarbons (PAHs) with the unidentified infrared emission bands requires additional experimental laboratory data. In order to address this need, thermal infrared emission studies were performed on a subset of PAHs suggested to be of astrophysical importance. It was proposed that infrared emission from interstellar PAHs occurs following absorption of an ultraviolet photon. Since energy transfer to the ground electronic state can be rapid for a species in which intersystem crossing is negligible, the emission spectrum may be viewed as resulting from an equilibrium vibrational temperature (Leger and d'Hendecourt, 1987). This has been the basis for using infrared absorption spectra to calculate the corresponding emission spectra at various temperatures. These calculations were made using room temperature infrared absorption coefficients instead of those at the temperature of interest because of the latter's unavailability. The present studies are designed to address the differences between the calculated and experimental thermal emission spectra and to provide information which will be useful in future ultraviolet induced infrared fluorescence studies. The emission spectra have been obtained for temperatures up to 825K using an emission cell designed to mount against an external port of an FT-IR spectrometer. These spectra provide information concerning relative band intensities and peak positions which is unavailable from previous calculations.

  1. Virgin and recycled engine oil differentiation: a spectroscopic study.

    PubMed

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied. PMID:18083292

  2. X-ray spectroscopic studies of microbial transformations of uranium

    SciTech Connect

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-10-01

    Several uranium compounds U-metal ({alpha}-phase), UO{sub 2}, U{sub 3}O{sub 8}, {gamma}-UO{sub 3}, uranyl acetate, uranyl nitrate, uranyl sulfate, aqueous and solid forms of 1:1 U:citric acid and 1:1:2 U:Fe:citric acid mixed-metal complexes, and a precipitate obtained by photodegradation of the U-citrate complex were characterized by X-ray spectroscopy using XPS, XANES, and EXAFS. XPS and XANES were used to determine U oxidation states. Spectral shifts were obtained at the U 4f{sub 7/2} and U 4f{sub 5/2} binding energies using XPS, and at the uranium M{sub V} absorption edge using XANES. The magnitude of the energy shift with oxidation state, and the ability to detect mixed-valent forms make these ideal techniques for determining uranium speciation in wastes subjected to bacterial action. The structure of 1:1 U:citric acid complex in both the aqueous and solid state was determined by EXAFS analysis of hexavalent uranium at the L{sub M} absorption edge and suggests the presence of a binuclear complex with a (UO{sub 2}){sub 2}({mu},{eta}{sup 2} {minus}citrato){sub 2} core with a U-U distance of 5.2 {angstrom}. The influence of Fe on the structure of U-citrate complex was determined by EXAFS and the presence of a binuclear mixed-metal citrate complex with a U-Fe distance of 4.8 {angstrom} was confirmed. The precipitate resulting from photodegradation of U-citrate complex was identified as an amorphous form of uranium trioxide by XPS and EXAS.

  3. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) [1] are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. IL solvation and rotational dynamics are measured by TCSPC in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy.

  4. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  5. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  6. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed. PMID:25956330

  7. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations were carried out to address the possible mechanisms for the observed enhancement. The volcano-type dependence of the ORR activity on the d-band center of the noble metal overlayer was established. These results indicate a way for designing new catalysts with greatly improved properties.

  8. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  9. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Tang, Xin; Bowen, Kit

    2013-09-01

    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  10. Theoretical spectroscopic study of protonated and deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  11. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  12. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  13. Interaction studies of Epirubicin with DNA using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Charak, Sonika; Jangir, Deepak K.; Tyagi, Gunjan; Mehrotra, Ranjana

    2011-08-01

    Epirubicin (EPR) is an anticancer chemotherapeutic drug which exerts its cytotoxic effect by inhibiting DNA synthesis and DNA replication. We report the structural and conformational effect of EPR binding on DNA duplex under physiological conditions. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-visible) spectroscopy and circular dichroism (CD) spectroscopy were used to determine the binding mode and binding constant of EPR with DNA. The effect of EPR-DNA complexation on stability and secondary structure of DNA was studied. FTIR measurements showed that EPR-DNA interaction occurs through guanine and cytosine bases. External binding of EPR with DNA was observed through phosphate backbone. UV-visible measurements revealed the intercalative mode of binding of EPR with DNA. The binding constant was estimated to be K = 3.4 10 4 which is indicative of moderate binding between EPR and DNA helix. FTIR and CD studies suggested partial transition from B-conformation of DNA to A-conformation of DNA after EPR binding to DNA duplex.

  14. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  15. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  16. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  17. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of accretion and the formation of giant planets.

  18. Hemodynamic analysis of patients in intensive care unit based on diffuse optical spectroscopic imaging system

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei

    2010-02-01

    Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.

  19. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  20. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  1. Theoretical spectroscopic studies on chemical and electronic structures of arginylglycine.

    PubMed

    Li, Hongbao; Li, Leilei; Jiang, Jun; Lin, Zijing; Luo, Yi

    2015-10-14

    The energy differences between canonical and zwitterionic isomers of arginylglycine (ArgGly) at the CCSD/aug-cc-pVDZ level are too small (less than 1 kcal mol(-1)) to determine the dominant form in the gas phase from the energetic point of view. First-principles simulations have been performed for near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at C, N and O K-edges, as well as for infrared (IR) spectra of neutral ArgGly. Noticeable spectral differences were found which enable the unambiguous identification of different neutral groups. We thus demonstrate X-ray spectroscopy as a powerful technique to study the conformation dependent chemical and electronic properties of neutral ArgGly. PMID:26266331

  2. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  3. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  4. Spectroscopic and HPLC studies of photodegradation of nilvadipine.

    PubMed

    Augustyniak, W; Mielcarek, J; Milewski, M; Szamburska, O

    2001-11-01

    Photochemical decomposition of nilvadipine (NV), a derivative of 1,4-dihydropyridine (DHP), was studied. Photodegradation was carried out in the conditions recommended in the first version of the document issued by the International Conference on Harmonization (ICH), currently in force in the studies of photochemical stability of drugs and therapeutic substances. Methanol solutions of NV were irradiated with a high-pressure mercury arc lamp, type HBO 200 (300-400 nm). The maximum absorption of radiation at 365 nm was achieved by applying the interference filter and Wood's filter. The assessment of NV photodegradation was made on the basis of the UV spectrophotometric and high-performance liquid chromatographic (HPLC) methods. Quantitatively, the process was described with the calculated rate constants of decomposition k, time of decomposition of 50% of the compound to 5, and time of decomposition of 10% of the compound t(0.1). The two methods applied allowed a determination of the kinetic parameters of NV photodegradation from the relationship ln c = f(t). Using the Reinecke salt as a chemical actinometer, apparent quantum yields of photodegradation were obtained; after extrapolation to the time of irradiation zero, these gave the actual quantum yield (phi = 7.3 10(-5)). The quantum yield of fluorescence at lambda(exc) = 375 nm was about 9.3 x 10(-4) The methods used for evaluation of NV photodegradation were subjected to validation, and results of the analytical methods were statistically assessed by Snedecor F and Student t tests. The former test revealed no statistically significant difference between the variances obtained by the HPLC and UV spectrophotometric methods. Also, verification of the zero hypothesis of the Student t test on equality of means of the results obtained gave no significant diferences between the two methods. PMID:11794805

  5. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  6. Phosphonic drugs: Experimental and theoretical spectroscopic studies of fosfomycin

    NASA Astrophysics Data System (ADS)

    Chruszcz-Lipska, Katarzyna; Zborowski, Krzysztof K.; Podstawka-Proniewicz, Edyta; Liu, Shaoxuan; Xu, Yizhuang; Proniewicz, Leonard M.

    2011-02-01

    pH and time-dependant changes of fosfomycin molecular structure in an aqueous solution are studied by Raman, NMR, and generalized 2D correlation spectroscopies. Interpretation of the experimental spectra is based on the assumption of formation of different species running on applied physicochemical conditions. Geometries of all possible structures were entirely optimized with the 6-311++G(2df,p) basis set at the B3LYP theoretical level using procedures implemented in the Gaussian '03 set of programs. Harmonic frequency calculations verified the nature of the studied structures and allowed to simulate obtained Raman spectra. The theoretical NMR shielding was calculated using the GIAO method at the same computational level. In addition, in some cases PCM model was used to monitor the influence of water molecules on the NMR spectra. It is shown that in the pH range of 1-2 of fosfomycin aqueous solution oxirane ring is open sequent to nucleophilic attack and forms 1,2-dihydroxyphosphonic acid with small content of its monodeprotonated species. On the other hand, in pH 7 and higher it appears either as 1,2-epoxypropylphosphonic or 1,2-dihydroxyphosphonic dianion depending upon whether hydrolysis took place or not. It is also discussed that Raman marker bands originating from the individual species of fosfomycin can be used to detect and/or to monitor this antibiotic in an aqueous medium (for example urine samples). Hence, depending upon the structure found in urine one can tell about metabolic processes of this antibiotic in the body.

  7. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis.

    PubMed

    Huck, Christian W

    2016-01-01

    A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE) prior and for in situ near and attenuated total reflection (ATR) infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided. PMID:27187347

  8. Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.

    2015-04-01

    The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.

  9. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106C), decomposition temperature (202C) as that with zinc acetylacetonate (136C, 220C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  10. Spectroscopic study of dinitrophenol herbicide sorption on smectite.

    PubMed

    Johnston, C T; Sheng, G; Teppen, B J; Boyd, S A; de Oliveira, M F

    2002-12-01

    Sorption of two dinitrophenolic herbicides, 4,6-dinitro-o-cresol (DNOC) and 4,6-dinitro-2-sec-butylphenol (DINOSEB) to smectite was studied using FTIR, HPLC, and quantum chemical methods. The high affinity of DNOC and DINOSEB for smectite surfaces was attributed to site-specific interactions with exchangeable cations and nonspecific van der Waals interactions with the siloxane surface. The positions of the nu(asym)(NO) and nu(sym)(NO) vibrational modes were perturbed by the exchangeable cations with similar changes occurring for both alkali and alkaline earth cations as a function of ionic potential. The cation-induced changes to the vibrational bands of the NO2 groups indicate that exchangeable metal cations are coordinated to -NO2 groups. Quantum chemical methods predicted a red-shift of the nu(asym)(NO) band and a corresponding blue-shift of the nu(sym)(NO) modes, as was observed experimentally. The nature of the smectite surface itself did not strongly influence the vibrational modes of sorbed DNOC or DINOSEB on the basis of a comparison of DNOC sorbed to three different smectites (K-SWy-2, K-SAz-1, and K-SHCa-1). FTIR spectra of DNOC and DINOSEB sorbed to a K-SWy-2 smectite were studied quantitatively using a modified form of Beers law. The FTIR-derived sorption isotherm of DNOC sorbed to K-SWy-2 was in good agreement with the isotherm derived from HPLC measurements. The molar absorptivity value of DNOC sorbed to K-SWy-2 smectite was 1.43 x 10(7) cm2/mol in good agreement with literature values for nitroaromatics (average value of 1.72 x 10(7) +/- 0.3 cm2/mol). On the basis of this value, the limit of detection using the FTIR method of approximately 5 microgDNOC g(clay) was determined. These two observations (sorption isotherms and molar absorptivity) provide a direct link between the macroscopic sorption results and the FTIR spectra. PMID:12523422

  11. Vibrationally resolved negative ion photoelectron spectroscopic studies of niobium clusters

    SciTech Connect

    Green, S.M.E.; Alex, S.; Leopold, D.G.

    1996-12-31

    Negative ion photoelectron spectroscopy provides a means of obtaining vibrational data for atoms and small molecules {open_quotes}chemisorbed{close_quotes} on size-selected metal clusters. In the present study, Nb{sub 3}O{sup -}, Nb{sub 4}O{sup -} and Nb{sub 4}CO{sup -} were prepared in a flowing afterglow ion-molecule reactor equipped with a metal cathode cluster source. The 488 nm photoelectron spectrum of the mass-selected Nb{sub 3}O{sup -} anions shows a vertical transition to the ground state of neutral Nb{sub 3}O, with weak progressions in the Nb{sub 3}-O stretching (710{+-}20 cm{sup -1} in Nb{sub 3}O) and Nb, bending (320{+-}15 cm{sup -1}-in both Nb{sub 3}O and Nb{sub 3}O{sup -}) vibrational modes. These results indicate that the Nb{sub 3}O{sup -} anion, like Nb{sub 3}O and Nb{sub 3}O{sup +}, has a planar Ca{sub 2v} structure with the O atom bridging two Nb atoms. The Nb{sub 4}O{sup -} spectrum shows resolved transitions to the ground state of Nb{sub 3}O and to an excited electronic state lying 3050{+-}20 cm{sup -1} higher in energy. In analogy with the Nb{sub 4}O results, the 670{+-}20 cm{sup -1} frequency observed for the Nb{sub 4}O ground state is assigned to a metal-oxygen stretching mode, and the 215{+-}15 cm{sup -1} and 195{+-}15 cm{sup -1} frequencies observed in the ground and excited states, respectively, to a bending mode of the metal cluster. The electron affinities of Nb{sub 3}O and Nb{sub 4}O are 1.402 and 1.178 ({+-}0.006) eV, respectively. Preliminary, ongoing studies of mass selected Nb{sub 4}CO{sup -} anions prepared under a variety of source conditions thus far suggest the presence of two isomers, one with a greatly weakened but intact CO bond as indicated by a very low CO stretching frequency of about 1300 cm{sup -1} and the other with the dissociated C and O atoms bound separately to the niobium cluster.

  12. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    PubMed Central

    Sharma, Vinod K.; Srivastava, Shipra; Srivastava, Ankita

    2007-01-01

    The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III) and rhodium(III) chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed a 1 : 3 electrolytic nature of the complexes. The resulting colored products are monomeric in nature. On the basis of the above studies, three ligands were suggested to be coordinated to each metal atom by thione sulphur and azomethine nitrogen to form low-spin octahedral complexes with ruthenium(III) while forming diamagnetic complexes with rhodium(III). Both ligands and their complexes have been screened for their bactericidal activities and the results indicate that they exhibit a significant activity. PMID:17505530

  13. Spectroscopic studies of GTA welding plasmas. Temperature calculation and dilution measurement

    NASA Astrophysics Data System (ADS)

    Lacroix, D.; Boudot, C.; Jeandel, G.

    1999-10-01

    A spectroscopic study of the GTAW plasma-plume created during the welding of stainless steel and other materials (iron, nickel and chromium) has been carried out. The spectra of these plasmas have been studied for several welding parameters. Temperature calculations are based on the observation of relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method from twelve iron emission lines (in the range 368 385 nm): it varies between 9650 and 12 100 K. Dilution experiments have been carried out. We checked the mixing of metals: during welding of two different metallic plates and during welding with an Inconel wire. Dilution is monitored following the intensity of some characteristic emission lines (chromium and nickel). Comparison of spectroscopic results and metallographic ones is made.

  14. Cyclotetrapeptides with alternating ?-Ala residues: synthesis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Ngu-Schwemlein, Maria; Zhou, Zhe; Bowie, Toni; Eden, Rebecca

    2003-07-01

    Three cyclotetrapeptides, c[Leu- D-Ala-Xaa- D-Ala], where Xaa is Leu ( P1), Lys ( P2) and Glu ( P3) were synthesized and studied by 1H and 13C NMR and CD spectroscopy. These cyclotetrapeptides exhibit similar coupling constants, 3JHNHα, in the range of 8.56-9.93 Hz, commonly observed for β-turn structures. All amide proton chemical shifts for P1, P2 and P3 exhibited linear dependence on temperature with moderate temperature coefficients ranging from -3.1 to -9.8 ppb/K. Amide proton signal broadening was observed for all residues in P1, P2 and P3, indicating that they are solvent accessible. The number of resonance observed for P1 was half of the total counts, indicating a C2 symmetric conformation. P2 and P3 exhibit similar CD in solvents of varying dielectric constants and dilutions, with characteristic positive CD bands at ca. 210 and 222 nm, which correspond to a β-turn type structure. Small CD/temperature effect was also observed with isodichroic points, consistent with conformational stability and a well-populated cyclotetrapeptide energy state. These heterochiral cyclotetrapeptides consisting of alternating D-Ala residues adopt stabilized open β-turn conformations and may be useful as a ligand template for further functionalization.

  15. Raman spectroscopic study of the tellurite minerals: mackayite and quetzalcoatlite.

    PubMed

    Frost, Ray L; Dickfos, Marilla J

    2009-03-01

    Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae: (a) A(XO(3)), (b) A(XO(3)).xH(2)O, (c) A(2)(XO(3))(3).x(2)O, (d) A(2)(X(2)O(5)) and (e) A(X(3)O(8)). Raman spectroscopy has been used to study mackayite and quetzalcoatlite are examples of tellurites containing OH units Raman bands for mackayite observed at 732, 782 and 579, 635cm(-1) are assigned to the nu(1) (Te(2)O(5))(2-) symmetric stretching and nu(3) (Te(2)O(5))(2-) antisymmetric stretching modes. The Raman spectral profile of quetzalcoatlite is more complex with a considerable number of overlapping bands. Two bands may be resolved at 719 and 754cm(-1) which may be attributed to nu(1) (Te(2)O(5))(2-) symmetric stretching mode. The two Raman bands of quetzalcoatlite at 602 and 606cm(-1) are accounted for by the nu(3) (Te(2)O(5))(2-) antisymmetric stretching mode. Raman bands for mackayite, observed at 306, 349, 379 and 424, 436cm(-1) are assigned to the (Te(2)O(5))(2-) nu(2) (A(1)) bending mode and nu(4) (E) bending modes. This research shows that Raman spectroscopy may be applied to tellurite minerals successfully. PMID:19054709

  16. High resolution spectroscopic study of BeΛ10

    DOE PAGESBeta

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  17. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  18. A spectroscopic and computer simulation study of butanol vapors

    NASA Astrophysics Data System (ADS)

    Fanourgakis, G. S.; Shi, Y. J.; Consta, S.; Lipson, R. H.

    2003-10-01

    Clusters of butanol formed above neat liquid samples were entrained in a supersonic jet and probed using 10.5 eV vacuum ultraviolet laser single-photon ionization/time-of-flight mass spectrometry. The four different isomers of butanol (n-butanol, sec-butanol, iso-butanol, and tert-butanol) were studied separately to assess the influence of the structure of the alkyl chain on the formation and stability of the hydrogen bonded clusters. Most of the higher mass features observed in the mass spectra could be assigned to protonated alcohol clusters, H(ROH)n+, n?3; R=C4H9, that arise from facile proton-alkoxy radical/alkoxide anion dissociation. Signals due to protonated trimers were only evident in the spectra of tert- and sec-butanol. Empirical force fields, density functional theory and ab initio methods were used to identify the geometries of all clusters up to the pentamers for the different isomers. Monte Carlo simulations established vapor-phase cluster distributions, while molecular dynamics was used to assess the relative stability of the isomeric tetramers. Together, these experimental and theoretical results suggest that butanol tetramers are "magic-number" structures, and that the protonated ion signals of size n could be correlated with the neutral cluster of size n+1, provided the vapor pressures sampled in the supersonic jet exceeded equilibrium values.

  19. Spectroscopic studies of bacteriorhodopsin fragments dissolved in organic solution.

    PubMed Central

    Torres, J; Padrós, E

    1995-01-01

    Fourier transform infrared and UV fourth-derivative spectroscopies were used to study the secondary structure of bacteriorhodopsin and its chymotryptic and one of the sodium borohydride fragments dissolved in chloroform-methanol (1:1, v/v), 0.1 M LiClO4. The C1 fragment (helices C, D, E, F, and G) showed an alpha-helical content of about 53%, whereas C2 (helices A and B) had about 60%, and B2 (helices F and G) about 65% alpha-helix. The infrared main band indicated differences in alpha-helical properties between these fragments. These techniques were also used to obtain information on the interactions among helices. According to the results obtained from the hydrogen/deuterium exchange kinetics, about 40% of the amide protons of C2 are particularly protected against exchange, whereas for the C1 fragment this process is unexpectedly fast. UV fourth-derivative spectra of these samples were used to obtain information about the environment of Trp side chains. The results showed that the Trp residues of C2 are more shielded from the solvent than those of C1 or B2. The results of this work indicate that the specific interactions existing between the transmembrane segments induce different types of helical conformations in native bacteriorhodopsin. PMID:7612847

  20. Luminescence and spectroscopic studies of halosulfate phosphors: a review.

    PubMed

    Gedam, S C; Thakre, P S; Dhoble, S J

    2015-03-01

    This review discusses the photoluminescence (PL) characteristics of halosulfate phosphors developed by us. Halosulfate phosphors KCaSO4 Cl:X,Y (X = Eu or Ce; Y = Dy or Mn) and Na6 (SO4 )2 FCl (doped with Dy, Ce or Eu) were prepared using a solid-state diffusion method. The mechanism of energy transfer from Eu(2+) →Dy(3+) , Ce(3+) →Dy(3+) and Ce(3+) →Mn(2+) has also been studied. Dy(3+) emission in the host at 475 and 570 nm is observed due to (4) F9/2 →(6) H15/2 and (4) F9/2 →(6) H13/2 transition, whereas the PL emission spectra of Na6 (SO4 )2 FCl:Ce phosphor shows Ce(3+) emission at 322 nm due to 5d→4f transition of the Ce(3+) ion. The main property of KCaSO4 Cl is its very high sensitivity, particularly when doped by Dy, Mn or Pb activators. This review also discusses the PL characteristics of some new phosphors such as LiMgSO4 F, Na6 Pb4 (SO4 )6 Cl2 , Na21 Mg(SO4 )10 Cl3 and Na15 (SO4 )5 F4 Cl. PMID:25045016

  1. Hofmann type clathrates spectroscopic studies of the low frequency region

    NASA Astrophysics Data System (ADS)

    Minčeva-Šukarova, B.; Andreeva, L.; Akyüz, S.

    2007-05-01

    A series of Hofmann type clathrates with a general formula: M(NH 3) 2M'(CN) 4·2G, where M ∈ {Ni, Mn, Cd}, M' ∈ {Ni, Pd}, while G is benzene or thiophene, were prepared and their Raman and far-infrared spectra were recorded in the region 650-50 cm -1. The main bands of the vibrational spectra in the low frequency region were assigned to the stretching and deformational vibrations: ν(Ni-C)/ ν(Pd-C), δ(NiCN)/ δ(PdCN), π(NiCN)/ π(PdCN), δ(CNiC)/ δ(CPdC), ν(M-N) and δ(NMN) originating from the host lattices: M(NH 3) 2Ni(CN) 4 or M(NH 3) 2Pd(CN) 4. The Raman and far-infrared spectra of the studied Hofmann type clathrates were compared with the corresponding spectra of K 2Ni(CN) 4 and K 2Pd(CN) 4 as well as with Ni(NH 3) 6Cl 2, and in some cases, with the spectra of the "empty" clathrates.

  2. Spectroscopic studies of iron emissions from supernova remnants with Suzaku

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.

    We present X-ray spectroscopy of iron (Fe) emission from supernova remnants (SNRs) with Suzaku. Although young SNRs retain crucial information about their explosion and nucleosynthesis mechanisms, interactions with the surrounding material can conceal these data. Therefore, it is not unusual that even the basic progenitor type (i.e., Ia or core-collapse) of a remnant remains controversial. Our proposed method, solely using the Fe K-shell X-ray spectrum, successfully discriminates the progenitors of young ejecta-dominated SNRs. We find that the Fe ejecta in Type Ia SNRs are commonly less ionized than those in core-collapse SNRs. It is found, moreover, that luminosity and centroid of the Fe-K emission are well correlated among each group of Type Ia or core-collapse remnants, and that the more luminous remnants tend to be more highly ionized. These results may reflect the pre-explosion density of the remnants as well as the amount of the synthesized Fe. We also mention historical development of the X-ray studies of SNRs.

  3. IR spectroscopic studies of charge transfer in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Beck, Sebastian; Gerbert, David; Krekeler, Christian; Glaser, Tobias; Pucci, Annemarie

    2014-05-01

    Charge transfer (CT) mechanisms are crucial for device performance in organic electronics, but they are still not understood on a fundamental level. Here we want to show that in situ IR spectroscopy is very well suited to investigate CT effects in organic semiconductors in a qualitative and quantitative way. We study the ambipolar transport material 4,4´-bis(N-carbazolyl)-1,1´-biphenyl (CBP) as matrix and cesium carbonate (Cs2CO3) as n-dopant. To achieve doped layers, both materials were evaporated simultaneously. The system is one of the rare ones for n-doping of organic layers. In the spectra of the doped layers, additional absorption bands appear in the mid IR range. These can be assigned to the negatively charged matrix molecules that indicate electron transfer. The charged molecules exhibit these different absorption bands, as the charge transfer leads to a change in bond length and bond strength of the molecules. Our results very well agree with density functional theory calculations of the vibrational spectra of both, charged and non-charged molecules. By fitting the spectra of the doped layers as a superposition of the vibrational oscillators of neutral and charged species, we were able to quantify the amount of charged matrix molecules and to determine the doping efficiency of the investigated systems. For CBP n-doped with Cs2CO3 a hindrance of the CT due to air exposure could be observed.

  4. UV spectroscopic studies of SBSL bubbles in lithium halides

    NASA Astrophysics Data System (ADS)

    Khong, Anthony; Xu, Ning; Doschek, Elizabeth; Apfel, Robert

    2002-05-01

    As was reported previously, stably levitated bubbles were observed in LiCl and LiBr solutions under SBSL conditions. Stable bubbles were recorded for LiCl concentrations ranging from 0.47 to 1.4 M. Beyond 1.4 M, no SL was detected. In contrast, stable SBSL can be detected over a larger range of LiBr concentrations, from 0.56 to 2.5 M. At 3.0 M, unstable short-lived transient bubbles were noticed. A striking feature common to both salt solutions is the pronounced decrease in SL light intensity, measured with a PMT with peak detection sensitivity at 400 nm, as the salt concentration increases. Light intensities were close to one order of magnitude less than in pure water under similar conditions. The focus of the current study is geared toward resolving the observed reduction in light intensity with respect to chemical processes occurring in the bubble. UV spectroscopy will be key to procuring vital information relating to these processes based on the absorption patterns and the spectral ranges of peak absorptions. Similar salt solutions in D2O, aimed at revealing differences in the chemical processes in the case of heavy water, will also be investigated. [Work supported by a generous grant from University of Washington.

  5. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card. PMID:26767645

  6. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  7. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  8. Raman spectroscopic study of the tellurite minerals: rajite and denningite.

    PubMed

    Frost, Ray L; Dickfos, Marilla J; Keeffe, Eloise C

    2008-12-15

    Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes. PMID:18586552

  9. Classification of malignant gliomas by infrared spectroscopic imaging and linear discriminant analysis.

    PubMed

    Krafft, Christoph; Sobottka, Stephan B; Geiger, Kathrin D; Schackert, Gabriele; Salzer, Reiner

    2007-03-01

    Infrared (IR) spectroscopy provides a sensitive molecular fingerprint for tissue without external markers. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. Infrared imaging spectrometers equipped with multi-channel detectors combine the spectral and spatial information. Tissue areas of 4 x 4 mm(2) can be analyzed within a few minutes in the macroscopic imaging mode. An approach is described to apply this methodology to human astrocytic gliomas, which are graded according to their malignancy from one to four. Multiple IR images of three tissue sections from one patient with a malignant glioma are acquired and assigned to the six classes normal brain tissue, astrocytoma grade II, astrocytoma grade III, glioblastoma multiforme grade IV, hemorrhage, and other tissue by a linear discriminant analysis model which was trained by data from a single-channel detector. Before the model is applied here, the spectra are shown to be virtually identical. The first specimen contained approximately 95% malignant glioma regions, that means astrocytoma grade III or glioblastoma. The smaller percentage of 12-34% malignant glioma in the second specimen is consistent with its location at the tumor periphery. The detection of less than 0.2% malignant glioma in the third specimen points to a location outside the tumor. The results were correlated with the cellularity of the tissue which was obtained from the histopathologic gold standard. Potential applications of IR spectroscopic imaging as a rapid tool to complement established diagnostic methods are discussed. PMID:17103151

  10. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  11. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L{sub cm} (I), {beta}{sup 18} (II), and {alpha}{sup AP-B} (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A{sub max} = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  12. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies.

    PubMed

    Jebaraj, Adriel Jebin Jacob; Scherson, Daniel A

    2013-05-21

    Studies of the intrinsic electrochemical, structural, and electronic propertiesof microparticles of energy storage materials can provide much needed insight into the factors that control various aspects of the performance of technical electrodes for battery applications. This Account summarizes efforts made in our laboratories toward the development and implementation of methods for the in situ electrical, optical, and spectroscopic characterization of microparticles of a variety of such materials, including Ni hydroxide, Zn, carbon, and lithiated Mn and Co oxides. In the case of Ni hydroxide, the much darker appearance of NiOOH compared to the virtually translucent character of virgin Ni(OH)2 allowed for the spatial and temporal evolution of charge flow within spherical microparticles of Ni(OH)2 to be monitored in real time during the first scan toward positive potentials using computer-controlled video imaging. In situ Raman scattering measurements involving single microparticles of Zn harvested from a commercial Zn|MnO2 battery revealed that passive films formed in strongly alkaline solutions by stepping the potential from 1.55 V to either 0.7 or 0.8 V vs SCE displayed a largely enhanced feature at ca. 565 cm(-1) ascribed to a longitudinal optical phonon mode of ZnO, an effect associated with the presence of interstitial Zn and oxygen deficiencies in the lattice. In addition, significant amounts of crystalline ZnO could be detected only for passive films formed at the same two potentials after the electrodes had been roughened by a single passivation-reduction step. Quantitative correlations were found in the case of LiMn2O4 and KS-44 graphite between the Raman spectral properties and the state of charge. In the case of KS-44, a chemometrics analysis of the spectroscopic data in the potential region in which the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur made it possible to determine independently the fraction of each of the two phases present as a function of potential without relying on the coulometric information. Also featured in this Account are methods we developed for the assembly and electrochemical characterization of Zn|MnO2 and nickel|metal-hydride Ni|MH alkaline batteries incorporating single microparticles of the active materials. As evidenced from the data collected, the voltage-time profiles for constant current operation for both types of devices were found to be similar to those of commercially available batteries involving the same chemistries. The ability to monitor the state of charge of individual particles based strictly on spectroscopic data is expected to open exciting new prospects for visualizing the flow of charge within electrodes in Li-ion batteries, an area that is being vigorously pursued in our laboratories. PMID:23530836

  13. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  14. Comparative vibrational spectroscopic studies, HOMO-LUMO and NBO analysis of 5,7-dibromo-8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline based on Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Lakshmi, A.; Balachandran, V.; Janaki, A.

    2011-10-01

    Comparative studies of the Raman and infrared spectra, the geometry, frequency and intensity of the vibrational bands of 5,7-dibromo-8-hydroxyquinoline (DBHQ) and 5,7-dichloro-8-hydroxyquinoline (DCHQ) were obtained by using Density Functional Theory calculations (DFT) with B3LYP functional and 6-311++G ** basis set. The effects of bromine and chlorine substituents on the vibrational frequencies of 8-hydroxyquinoline have been investigated. The assignments have been proposed with aid of the results of normal coordinate analysis. Coupling of vibrations have been determined by calculating potential energy distributions (PEDs). The molecular stability and bond strength was investigated by applying the Natural Bond Orbital analysis (NBO). The other molecular properties like Mulliken population analysis, thermodynamic functions and polarizabilities of the title compounds have been reported. The calculated HOMO and LUMO energies show that charge transfer occur in the molecules. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP).

  15. Can spectroscopic analysis improve our understanding of biogeochemical processes in agricultural streams?

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Ann Louise

    2015-04-01

    In agricultural catchments diffuse fluxes of nutrients, mainly nitrogen (N) and phosphorus (P) from arable land and livestock are responsible for pollution of receiving waters and their eutrophication. Organic matter (OM) can play an important role in mediating a range of biogeochemical processes controlling diffuse pollution in streams and at their interface with surrounding land in the riparian and hyporheic zones. Thus, a holistic and simultaneous monitoring of N, P and OM fractions can help to improve our understanding of biogeochemical functioning of agricultural streams. In this study we build on intensive in situ monitoring of diffuse pollution in a small agricultural groundwater-fed stream in NW England carried out since 2009. The in situ monitoring unit captures high-frequency (15 minutes to hourly) responses of water quality parameters including total phosphorus, total reactive phosphorus and nitrate-nitrogen to changing flow conditions. For two consecutive hydrological years we have carried out additional spectroscopic water analyses to characterise organic matter components and their interactions with nutrient fractions. Automated and grab water samples have been analysed using ultraviolet-visible (UV-Vis) absorbance and excitation-emission (EEM) fluorescence spectroscopy. In addition, a tryptophan sensor was trialled to capture in situ fluorescence dynamics. Our paper evaluates patterns in nutrient and OM responses to baseflow and storm flow conditions and provides an assessment of storage-related changes of automated samples and temperature and turbidity effects on in situ tryptophan measurements. The paper shows the value of spectroscopic measurements to understand biogeochemical and hydrological nutrient dynamics and quantifies analytical uncertainty associated with both laboratory-based and in situ spectroscopic measurements.

  16. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    SciTech Connect

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G. E-mail: dgonzalez@astro.unam.mx E-mail: zhar@astro.unam.mx E-mail: borisov@sao.ru

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  17. Experimental and theoretical spectroscopic studies of dye modification in synthetic Maya Blue pigment

    NASA Astrophysics Data System (ADS)

    Reza, Layra; Manciu, Felicia; Ramirez, Alejandra; Chianelli, Russell

    2009-03-01

    Maya pigments are hybrid organic/inorganic materials with multiple technology applications that possess unprecedented stability with respect to harsh environment conditions. In this investigation, we address the question of how the organic indigo dye modifies as it binds to the inorganic palygorskite clay to form a pigment similar to Maya Blue after a heating treatment is applied. Both infrared and Raman spectroscopic data demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. This effect suggests a transformation of the dye from indigo to dehydroindigo. Furthermore, the Raman and infrared absorption results demonstrate partial elimination of the selection rules for the centrosymmetric indigo, which provides further evidence for this conversion. Theoretical spectroscopic studies are also addressed in this investigation to confirm the transformation of the dye into dehydroindigo.

  18. An in-depth spectroscopic analysis of RR Lyr Variations over the pulsation cycle★

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Kolenberg, K.; Shulyak, D. V.; Elmasli, A.; Tsymbal, V.; Barnes, T. G.; Guggenberger, E.; Kochukhov, O.

    2014-12-01

    The stellar parameters of RR Lyrae stars vary considerably over a pulsation cycle, and their determination is crucial for stellar modelling. We present a detailed spectroscopic analysis of the pulsating star RR Lyr, the prototype of its class, over a complete pulsation cycle, based on high-resolution spectra collected at the 2.7-m telescope of McDonald Observatory. We used simultaneous photometry to determine the accurate pulsation phase of each spectrum and determined the effective temperature, the shape of the depth-dependent microturbulent velocity, and the abundance of several elements, for each phase. The surface gravity was fixed to 2.4. Element abundances resulting from our analysis are stable over the pulsation cycle. However, a variation in ionization equilibrium is observed around minimum radius. We attribute this mostly to a dynamical acceleration contributing to the surface gravity. Variable turbulent convection on time-scales longer than the pulsation cycle has been proposed as a cause for the Blazhko effect. We test this hypothesis to some extent by using the derived variable depth-dependent microturbulent velocity profiles to estimate their effect on the stellar magnitude. These effects turn out to be wavelength dependent and much smaller than the observed light variations over the Blazhko cycle: if variations in the turbulent motions are entirely responsible for the Blazhko effect, they must surpass the scales covered by the microturbulent velocity. This work demonstrates the possibility of a self-consistent spectroscopic analysis over an entire pulsation cycle using static atmosphere models, provided one takes into account certain features of a rapidly pulsating atmosphere.

  19. Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging.

    PubMed

    Maudsley, A A; Darkazanli, A; Alger, J R; Hall, L O; Schuff, N; Studholme, C; Yu, Y; Ebel, A; Frew, A; Goldgof, D; Gu, Y; Pagare, R; Rousseau, F; Sivasankaran, K; Soher, B J; Weber, P; Young, K; Zhu, X

    2006-06-01

    Image reconstruction for magnetic resonance spectroscopic imaging (MRSI) requires specialized spatial and spectral data processing methods and benefits from the use of several sources of prior information that are not commonly available, including MRI-derived tissue segmentation, morphological analysis and spectral characteristics of the observed metabolites. In addition, incorporating information obtained from MRI data can enhance the display of low-resolution metabolite images and multiparametric and regional statistical analysis methods can improve detection of altered metabolite distributions. As a result, full MRSI processing and analysis can involve multiple processing steps and several different data types. In this paper, a processing environment is described that integrates and automates these data processing and analysis functions for imaging of proton metabolite distributions in the normal human brain. The capabilities include normalization of metabolite signal intensities and transformation into a common spatial reference frame, thereby allowing the formation of a database of MR-measured human metabolite values as a function of acquisition, spatial and subject parameters. This development is carried out under the MIDAS project (Metabolite Imaging and Data Analysis System), which provides an integrated set of MRI and MRSI processing functions. It is anticipated that further development and distribution of these capabilities will facilitate more widespread use of MRSI for diagnostic imaging, encourage the development of standardized MRSI acquisition, processing and analysis methods and enable improved mapping of metabolite distributions in the human brain. PMID:16763967

  20. Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging

    PubMed Central

    Maudsley, A. A.; Darkazanli, A.; Alger, J. R.; Hall, L. O.; Schuff, N.; Studholme, C.; Yu, Y.; Ebel, A.; Frew, A.; Goldgof, D.; Gu, Y.; Pagare, R.; Rousseau, F.; Sivasankaran, K.; Soher, B. J.; Weber, P.; Young, K.; Zhu, X.

    2009-01-01

    Image reconstruction for magnetic resonance spectroscopic imaging (MRSI) requires specialized spatial and spectral data processing methods and benefits from the use of several sources of prior information that are not commonly available, including MRI-derived tissue segmentation, morphological analysis and spectral characteristics of the observed metabolites. In addition, incorporating information obtained from MRI data can enhance the display of low-resolution metabolite images and multiparametric and regional statistical analysis methods can improve detection of altered metabolite distributions. As a result, full MRSI processing and analysis can involve multiple processing steps and several different data types. In this paper, a processing environment is described that integrates and automates these data processing and analysis functions for imaging of proton metabolite distributions in the normal human brain. The capabilities include normalization of metabolite signal intensities and transformation into a common spatial reference frame, thereby allowing the formation of a database of MR-measured human metabolite values as a function of acquisition, spatial and subject parameters. This development is carried out under the MIDAS project (Metabolite Imaging and Data Analysis System), which provides an integrated set of MRI and MRSI processing functions. It is anticipated that further development and distribution of these capabilities will facilitate more widespread use of MRSI for diagnostic imaging, encourage the development of standardized MRSI acquisition, processing and analysis methods and enable improved mapping of metabolite distributions in the human brain. PMID:16763967

  1. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via ion-induced dipole collisions with the bound electrons. The ions are thus important in randomising and equilibrating the velocity distribution of atomic products of molecular dissociation.

  2. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    SciTech Connect

    Long, E.R. Jr.; Long, S.A.T.

    1985-05-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  3. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Long, S. A. T.

    1985-01-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  4. Vibrational assignments, spectroscopic investigation (FT-IR and FT-Raman), NBO, MEP, HOMO‒LUMO analysis and intermolecular hydrogen bonding interactions of 7-fluoroisatin, 7-bromoisatin and 1-methylisatin ‒ A comparative study

    NASA Astrophysics Data System (ADS)

    Polat, Turgay; Bulut, Fatih; Arıcan, Ilknur; Kandemirli, Fatma; Yildirim, Gürcan

    2015-12-01

    In this comprehensive study, theoretical and experimental studies were carried out on 7-fluoroisatin, 7-bromoisatin and 1-methylisatin using FT-Raman and FT-IR spectra. The optimized geometrical parameters and theoretical vibrational frequencies were calculated by means of density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set based on scaled quantum mechanical (SQM) method for the first time. The relative abundances of the possible tautomers or conformers found were calculated with respect to the Boltzmann distribution. Moreover, the harmonic vibrational frequencies including IR and Raman intensities, thermodynamic and electronic parameters were computed in detail. The effects of substituents -F, ‒Br and -CH3 on the crucial characteristics pertaining to the title compound of isatin were investigated, and the obtained data were compared with each other. Natural bond orbital (NBO) analysis was applied to study the stability arising from charge delocalization along with the compound. The chemical reactivity parameters (chemical hardness and softness, electronegativity, chemical potential and electrophilicity index) were discussed clearly. The HOMO and LUMO energies determined showed that the serious charge transfer occurs in the title molecules studied. Furthermore, the size, shape, charge density distributions and chemical reactivity sites belonging to the molecules were obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Additionally, the hydrogen-bonded complexes were simulated to describe the roles of intermolecular hydrogen bonding on the molecular structures and vibrational frequencies.

  5. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Varghese, Hema Tresa; Panicker, C. Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Alsenoy, C. Van

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated 1H NMR results are in good agreement with experimental data. Molecular docking study is also reported.

  6. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide.

    PubMed

    Benzon, K B; Varghese, Hema Tresa; Panicker, C Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Van Alsenoy, C

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated (1)H NMR results are in good agreement with experimental data. Molecular docking study is also reported. PMID:25819320

  7. Synthesis, spectroscopic characterization and biological analysis of a new palladium(II) complex with methionine sulfoxide

    NASA Astrophysics Data System (ADS)

    Corbi, Pedro P.; Cagnin, Flávia; Sabeh, Lilian P. B.; Massabni, Antonio C.; Costa-Neto, Claudio M.

    2007-04-01

    A new palladium(II) complex with methionine sulfoxide was synthesized and characterized by a set of chemical and spectroscopic techniques. Elemental and mass spectrometry analyses of the solid complex fit to the composition [Pd(C 5H 10NO 3S) 2]·H 2O. 13C NMR, [ 1H- 15N] NMR and infrared spectra indicate coordination of the amino acid to Pd(II) through the carboxylate and amino groups in a square planar geometry. The complex is soluble in water. Biological activity was evaluated by cytotoxic analysis using HeLa cells. Determination of cell death was assessed using a tetrazolium salt colorimetric assay, which reflects the cells viability. After incubation for 48 h, 20% of cell death was achieved at a concentration of 200 μmol L -1 of the complex.

  8. [FT-IR spectroscopic analysis in monitoring of hydroxyl stretching vibrations in plant hydrogels].

    PubMed

    Pielesz, Anna; Biniaś, Dorota; Wieczorek, Joanna

    2011-01-01

    In recent years, some bioactive hydrogels isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. This article attempts to review the current structural and conformational characterization of some importantly bioactive hydrogels isolated from following plant: Symphytum officinale, Thymus pulegioides, Trigonella foenum-graecum L., Tussilago farfara L., Hyssopus officinalis, Althaea officinalis L., Equisetum arvense L. Linum usitatissimum L. and Fucus vesiculosus L. Hydrogels are cross-linked three-dimensional polysaccharide macromolecular networks that contain a large fraction of water within their structure. FT-IR spectroscopic analysis showed a strong band at 3500-3100 cm(-1) attributed to hydroxyl (the intermolecular and the intramolecular hydrogen bonds) stretching vibrations changes. PMID:22332324

  9. Concentration dependence of spectroscopic properties and energy transfer analysis in Nd3+ doped bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Tian, Cong; Chen, Xi; Shuibao, Yu

    2015-10-01

    A detailed investigation on 1.06?m spectroscopic properties as a function of Nd3+ ions concentration in bismuth silicate glasses is reported. Judd-Ofelt analysis indicated that Nd2O3 has no substantial influence on glass structure. Based on the Judd-Ofelt intensity parameters, several radiative properties such as radiative transition probability, radiative lifetime, branching ratio and emission cross-section of Nd3+ ions have been derived. The 1.06?m emission intensity increases firstly and then attains maximum at 0.5mol% Nd2O3 and decreases with further increase of dopant concentration. The luminescence quenching behavior at higher Nd3+ concentration has been ascribed to the hopping migration assisted cross relaxation mechanism. The high emission cross section (2.33נ10-20cm2) and large quantum efficiency (90.7%) suggests their potential for compact 1.06?m lasers applications.

  10. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  11. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  12. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples.

    PubMed

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Rani, Manviri; Lee, Jongmyoung; Shim, Won Joon

    2015-04-15

    The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (<1mm) were compared using the same samples from the sea surface microlayer (SML) and beach sand. Fragmented microplastics were significantly (p<0.05) underestimated and fiber was significantly overestimated using the stereomicroscope both in the SML and beach samples. The total abundance by FT-IR was higher than by microscope both in the SML and beach samples, but they were not significantly (p>0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution. PMID:25682567

  13. [Spectroscopic and dynamical studies of highly energized small polyatomic molecules]. [Stimulated emission pumping

    SciTech Connect

    Not Available

    1992-01-01

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0[sup 0][sub 0] band performed.

  14. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    NASA Astrophysics Data System (ADS)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  15. a Time-Resolved Spectroscopic Study of Photoinitiated Electron Transfer Reactions in Solution

    NASA Astrophysics Data System (ADS)

    Galli, Christopher James

    Photoinitiated electron transfer reactions may be considered within the context of two categories: (1) direct electron transfer, as observed in charge transfer molecular complexes. The photoexcitation couples the ground and charge transfer potential surfaces and (2) indirect electron transfer, as observed in covalently bonded donor (D) and acceptor (A) moieties. The optical preparation of an eigenstate of the donor or acceptor is followed by the evolution of the system to the charge transfer state. This thesis presents a study of pico- and subpicosecond polarization and vibrational relaxations accompanying these two classes of condensed phase electron transfer reactions. The thesis presents optical ultrafast pump-probe measurements on the electron donor-acceptor complex tetracyanoethylene -hexamethylbenzene in polar and non-polar solvents. The experimental electron transfer rates are compared with nonadiabatic and adiabatic electron-transfer theories using a previously published analysis of all the vibrational modes active of the reaction. As the experimental electron transfer rates are competitive with and in same cases faster than the polarization relaxation time of the solvent, it is necessary to simulate the Smoluchowski diffusion of the reacting system over an equilibrating reaction coordinate. Regarding the coupling of the reactant and product electronic surfaces, it is shown that the nuclear kinetic operator can give rise to the coupling responsible for the electron transfer reaction. This non-Born-Oppenheimer matrix element is estimated using information obtained from the absorption and Raman spectra. Using this coupling, good agreement is found between the experimentally observed and theoretically predicted rates. This thesis also presents an optical time resolved spectroscopic study of the indirect electron transfer reaction in the model system magnesium triphenylporphyrinquinone in a range of solvent environments. These molecules have long served as model compounds for the ultrafast dynamics in photosynthetic complexes. In view of the recently observed coherent relaxation dynamics of Mg-tetraphenylporphyrin, these multicomponent electron transfer kinetic data are analyzed, focussing on the role of low frequency coherences in electron transfer processes.

  16. a Negative Ion Photoelectron Spectroscopic and Computational Study of Mo_{2} and Mo_{2}^{-}

    NASA Astrophysics Data System (ADS)

    Barker, Beau J.; Baidar, Sunil; Casey, Sean M.; Leopold, Doreen G.

    2009-06-01

    We report the 488 and 514 nm anion photoelectron spectra of Mo_{2}^{-}. Neutral Mo_{2} has been described in recent ab initio studies as having a bond order of six, predicted to be the highest of any homonuclear diatomic, exceeding even that of Cr_{2}(five). The photoelectron spectrum of Mo_{2}^{-}confirms the previously measured vibrational frequency of gas phase Mo_{2} and displays transitions to vibrational levels up to v=7 in its ^{1}Σ_{g}^{+} ground state. The electron affinity of Mo_{2} is measured to be 0.732 ± 0.010 eV. The Mo_{2}^{-} ground state is assigned as a ^{2}Σ_{u}^{+} state, in which the extra electron occupies a formally antibonding σ_{u} orbital of primarily 5s atomic parentage. A Franck-Condon analysis of the vibrational band intensities indicates a change in the equilibrium bond length of only 0.03 ± 0.02 Å upon electron detachment. These results, and the similar vibrational frequencies measured for Mo_{2} and Mo_{2}^{-}, suggest that the anion HOMO is essentially nonbonding. Weak photodetachment transitions to excited states of Mo_{2} lying within 1.2 eV of its ground state are also observed. DFT calculations using the BPW91/SDD method show good agreement with experiment for the electron affinity of Mo_{2} and the bond lengths in the anion and neutral molecule ground states. It is hoped that these spectroscopic results will motivate and assist high level theoretical studies of the Mo_{2}^{-} anion.

  17. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes. PMID:23867645

  18. Ultraviolet and optical spectroscopic studies of Lambda Andromedae - The chromosphere and interstellar medium

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Dupree, A. K.

    1979-01-01

    Chromospheric lines of, and interstellar lines toward, the spectroscopic binary Lambda And (primary component G7-G8 III-IV) have been observed in the ultraviolet with the spectrometer and telescope on board the Copernicus satellite. An extensive, high-resolution spectroscopic study of the Ca II H and K profiles has also been undertaken. Some of these optical spectra were obtained simultaneously with the ultraviolet data. The ultraviolet emission lines of Lamba And are compared to the sun and to stars of similar spectral type. The star Lamba And resembles the active sun in surface brightness of chromospheric emissions and in appearance of the Mg II and Ca II profiles. The largest variations in the integrated calcium emission cores amount to an 80% increase in the K core and a corresponding 40% increase in the H core between observations two years apart. Variations in the cores may show a dependence on spectroscopic phase, and may be contributed to by circumstellar matter in the binary system. Previously unreported, transient emission features have also been observed, at a velocity of -70 km/s with respect to the Ca II emission cores.

  19. Detailed spectroscopic analysis of SN 1987A: The distance to the LMC using the SEAM method

    SciTech Connect

    Mitchell, Robert C.; Baron, E.; Branch, David; Hauschildt, Peter H.; Nugent, Peter E.; Lundqvist, Peter; Blinnikov, Sergei; Pun, Chun S.J.

    2002-05-21

    Supernova 1987A remains the most well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. We model the observed spectra from Day 1 to Day 81 using a hydrodynamical model. We show that good agreement can be obtained at times up to about 60 days, if we allow for extended nickel mixing. Later than about 60 days the observed Balmer lines become stronger than our models can reproduce. We show that this is likely due to a more complicated distribution of gamma-rays than we allow for in our spherically symmetric calculations. We present synthetic light curves in UBVRIJHK and a synthetic bolometric light curve. Using this broad baseline of detailed spectroscopic models we find a distance modulus mu = 18.5 +/- 0.2 using the SEAM method of determining distances to supernovae. We find that the explosion time agrees with that of the neutrino burst and is constrained at 68 percent confidence to within +/- 0.9 days. We argue that the weak Balmer lines of our detailed model calculations casts doubt on the accuracy of the purely photometric EPM method. We also suggest that Type IIP supernovae will be most useful as distance indicators at early times due to a variety of effects.

  20. High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules.

    PubMed

    Becucci, Maurizio; Melandri, Sonia

    2016-05-11

    A wealth of structural and dynamical information has been obtained in the last 30 years from the study of high-resolution spectra of molecular clusters generated in a cold supersonic expansion by means of highly resolved spectroscopic methods. The data obtained, generally lead to determination of the structures of stable conformations. In addition, in the case of weakly bound molecular complexes, it is usual to observe the effects of internal motions due to the shallowness of the potential energy surfaces involved and the flexibility of the systems. In the case of electronic excitation experiments, also the effect of electronic distribution changes on both equilibrium structures and internal motions becomes accessible. The structural and dynamical information that can be obtained by applying suitable theoretical models to the analysis of these unusually complex spectra allows the determination and understanding of the driving forces involved in formation of the molecular complex. In this way, many types of non-covalent interactions have been characterized, from pure van der Waals interactions in complexes of rare gases to moderate-strength and weak hydrogen bonds and to the most recent halogen bonds and n-π interactions. The aim of this review is to underline how the different experimental and theoretical methods converge in giving a detailed picture of weak interactions in small molecular adducts involving medium-size molecules. The conclusions regarding geometries and energies can contribute to understanding of the different driving forces involved in the dynamics of the processes and can be exploited in all fields of chemistry and biochemistry, from design of new materials with novel properties to rational design of drugs. PMID:26986455

  1. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    SciTech Connect

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  2. Solvation and protonation of coumarin 102 in aqueous media: a fluorescence spectroscopic and theoretical study.

    PubMed

    Hessz, Dóra; Hégely, Bence; Kállay, Mihály; Vidóczy, Tamás; Kubinyi, Miklós

    2014-07-17

    The ground- and excited-state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, pKa = 1.61 was obtained from the absorption spectra; for the excited-state dissociation constant, pKa* = 2.19 was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle (the value of pKa* also by calculations via the Förster cycle) using an implicit–explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state, C102 occurs primarily as a hydrogen-bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation, and (iii) in the ground state, the amino nitrogen atom is the protonation site, and in the excited state, the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.27 × 10(10) M(–1) s(–1) for the rate constant of the excited-state protonation and kdpr = 2.78 × 10(8) s(–1) for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited-state proton transfer is reached in strongly acidic solutions. PMID:24945906

  3. A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols.

    PubMed

    Beć, Krzysztof B; Futami, Yoshisuke; Wójcik, Marek J; Ozaki, Yukihiro

    2016-05-11

    The near-infrared (NIR) spectra of low-concentration (5 × 10(-3) M) solutions in CCl4 of basic aliphatic alcohols, methanol, ethanol, and 1-propanol were, for the first time, calculated by second-order vibrational perturbation theory computations and were compared with the corresponding experimental data. Density functional theory (DFT) using single hybrid (B3LYP) and double hybrid (B2PLYP) density functionals and their derivatives with additional empirical dispersion correction (B3LYP-D3 and B2PLYP-D, respectively) and second order Møller-Plesset perturbation theory were used in combination with selected basis sets including fairly new basis sets from the "spectroscopic" SNS family, double-ζ SNSD and triple-ζ SNST basis sets. Each time, anharmonic vibrational modes and intensities were calculated by using second-order vibrational perturbation theory. The effect of solvent cavity on the calculated results was included by the application of a self-consistent reaction field with a polarized continuum model. Ethanol and 1-propanol have conformational isomerism; following a conformational analysis, theoretical spectra of all isomers were calculated and their final predicted NIR spectra were obtained as Boltzmann-averaged spectra of resolved conformers. For ethanol and 1-propanol, the observed broadening of the overtone band of the OH stretching mode was well reflected by the differences in the position of the relevant band among conformational isomers of these alcohols; the effect of solvent on broadening was also discussed. Detailed band assignments in the experimental NIR spectra of the studied alcohols were proposed based on the calculation of potential energy distributions. The final accuracy of the predicted NIR spectra for each of the theoretical methods was estimated based on the errors in calculated frequencies of overtones and combination bands. PMID:27137865

  4. Spectroscopic and Structural Study of Proton and Halide Ion Cooperative Binding to GFP

    PubMed Central

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-01-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E2GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E2GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5–10, of a single fully protonated E2GFP·halogen complex. To resolve the structural determinants of E2GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I−, Br−, and Cl− bound E2GFP. Remarkably the first high-resolution (1.4 Å) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 Å) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E2GFP·halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed. PMID:17434942

  5. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Haress, Nadia G.; Al-Omary, Fatmah; El-Emam, Ali A.; Mary, Y. Sheena; Panicker, C. Yohannan; Al-Saadi, Abdulaziz A.; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-01

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the Csbnd C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  6. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  7. Gold nanoparticles-globulin protein bio-conjugates: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Ghosh, Kalyan S.; Singh, Bhanu P.; Gathania, Arvind K.

    2015-06-01

    Interaction between gold nanoparticles (AuNPs) of different sizes with Bovine gamma globulin (BGG) protein, in the form of bio-conjugates, was studied spectroscopically. Optical properties studied using UV-Visible spectra revealed a change in the environment of protein as well as AuNPs. Quenching of fluorescence of tryptophan residues was observed in case of bio-conjugates which confirmed a strong interaction between protein and AuNPs. Obtained values of binding constant inferred the effect of size and surface of nanoparticles on protein's structure.

  8. Spectroscopic study of sub-barrier quasi-elastic nuclear reactions

    SciTech Connect

    Pass, C.N.; Evans, P.M.; Smith, A.E.; Stuttge, L.; Betts, R.R.; Lilley, J.S.; Connell, K.A.; Simpson, J.; Smith, J.R.; James, A.N.

    1988-01-01

    The technique developed in this paper is particularly well suited to the detailed spectroscopic study of low energy quasi-elastic nuclear reactions and by overcoming the limitations of conventional procedure, the prospect of detailed studies of inclusive reaction mechanism may be realised. With only limited statistics we find evidence for strong multistep character in the transfer of a single nucleon from spherical vibrational target to spherical projectile nuclei. The suggestive measurements reported here may be made definitive through extended runs based on this technique and experiments planned for the future offer the real prospect of developing a quantified interpretation of the reaction process. 9 refs. 5 figs.

  9. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    SciTech Connect

    Dasan, Y. K. Bhat, A. H.; Faiz, A.

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  10. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  11. Spectroscopic analysis of x-ray bursts from nichrome and conichrome X-pinch plasmas

    SciTech Connect

    Chandler, K.M.; Shlyaptseva, A.S.; Ouart, N.D.; Hansen, S.B.; Mitchell, M.D.; Pikuz, S.A.; Shelkovenko, T.A.; Hammer, D.A.; Kantsyrev, V.L.; Fedin, D.A.

    2004-10-01

    Radiative properties of plasmas from X pinches with nichrome and conichrome wires have been studied using the presented diagnostic arrangement. The experimental results have been produced at the Cornell XP facility with a peak current of 450 kA and a full width at half maximum pulse duration of 100 ns. The spatially resolved, time-integrated x-ray line spectra from the region of the X-pinch cross point have been recorded using different crystal spectrometers. In particular, K-shell and L-shell x-ray spectra of Ni and Cr have been recorded through different filters in the same pulses for X pinches from two different wire alloys. A nonlocal thermodynamic equilibrium collisional-radiative atomic kinetic model of Ni has been developed to identify the useful diagnostic spectroscopic features and to model experimental spectra. The results of the modeling and radiative properties of different materials from nichrome and conichrome alloys are compared and discussed.

  12. Raman spectroscopic analysis of the Maya wall paintings in Ek'Balam, Mexico

    NASA Astrophysics Data System (ADS)

    Vandenabeele, P.; Bodé, S.; Alonso, A.; Moens, L.

    2005-08-01

    Raman spectroscopy has been applied to the examination of wall painting fragments from the archaeological site of Ek'Balam (Yucatán, Mexico). Thirty-three samples have been studied, all originating from room 23 of the Acropolis, and being representative of the painting technique at Ek'Balam during the late Classic Maya period. Several pigments such as haematite, calcite, carbon, cinnabar and indigo were identified in these samples. The latter pigment was presumed to be present as 'Maya blue', which is an intercalation product of indigo and palygorskite clay. The observed Raman spectra are reported and some band assignments have been made. This survey is the first Raman spectroscopic examination of a whole set of pigments in archaeological Maya wall painting fragments.

  13. Raman spectroscopic analysis of the Maya wall paintings in Ek'Balam, Mexico.

    PubMed

    Vandenabeele, P; Bodé, S; Alonso, A; Moens, L

    2005-08-01

    Raman spectroscopy has been applied to the examination of wall painting fragments from the archaeological site of Ek'Balam (Yucatán, Mexico). Thirty-three samples have been studied, all originating from room 23 of the Acropolis, and being representative of the painting technique at Ek'Balam during the late Classic Maya period. Several pigments such as haematite, calcite, carbon, cinnabar and indigo were identified in these samples. The latter pigment was presumed to be present as 'Maya blue', which is an intercalation product of indigo and palygorskite clay. The observed Raman spectra are reported and some band assignments have been made. This survey is the first Raman spectroscopic examination of a whole set of pigments in archaeological Maya wall painting fragments. PMID:16029856

  14. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  15. The June 6 2012 transit of Venus: Imaging and spectroscopic analysis of the upper atmosphere emission

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Zhi, X.; Valls-Gabaud, D.; Koutchmy, S.; Rocher, P.; Zin, Z. Y.; Fu, Y.; Yang, L.; Liu, G. Q.; Liu, Z.; Ji, K.; Goodarzi, H.

    2014-12-01

    In the context of transiting exoplanets, the last June 6, 2012 Venus transit was a unique opportunity to address important questions regarding its atmosphere. The transit of Venus is indeed a particular case of an Earth-like planet transit, and the inference one can make about the upper layers of its atmosphere can be applied to other exoplanets. To this aim, we designed a small spectrograph that we placed at the focus of the New Vacuum Solar Telescope of Yunnan Observatory in China (45 m focus and 1 m of aperture), coupled to a 4K×2K 14 bit CCD detector, to measure low-resolution optical spectra of the refracted, scattered and transmitted solar radiation in the upper layers of the planet. It covered the 385-780 nm range when Venus was over the disc, and 540-680 nm (including the O_2 terrestrial bands) during the 18 minutes-long egress. The Hα and He I D3 lines were recorded repeatedly. The atmospheric Lomonossov arc of Venus was simultaneously imaged using Hα and TiO filters, allowing us to check the slit position on the images of Venus and to locate the spectroscopic features on its disc. The spectra show the signature of the Northern Pole horn part; a second part was evidenced on the spectra taken near but outside the limb. We studied the O_2, H_2O and Hα line profiles searching for signatures arising from Venus and we compared the observed spectra with synthetic models. The spectroscopic dataset can now be used by a large community for discussing the properties of the upper atmosphere of Venus and the future detection of Venus-like exoplanets. Finally, the study is completed using a unique very high resolution deconvolved image of the arc and Venus silhouetted at the limb of the Sun, from the SOT of the Hinode space mission.

  16. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    NASA Astrophysics Data System (ADS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-10-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl3˙2H2O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H2O)2] and [Fe(FAHP)Cl2(H2O)2].

  17. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    SciTech Connect

    Mini, S. Sadasivan, V.; Meena, S. S. Bhatt, Pramod

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  18. On-line separator for {gamma}-spectroscopic studies at FLNR JINR

    SciTech Connect

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Kabachenko, A. P.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.; Dorvaux, O.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.

    2007-05-22

    A JINR - IN2P3 collaboration project named 'GABRIELA' aimed at the nuclear spectroscopy of transfermium elements using the recoil separator VASSILISSA was launched in 2004 at JINR in Dubna. In the close future the FLNR cyclotron U400M will go through a major upgrade with the goal to deliver heavy ion beams at the energy close to the Coulomb barrier in a new experimental area. Here we report about R and D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized accelerator and which will allow to realize new possibilities of the GABRIELA project.

  19. FTIR spectroscopic study of hydrogen bonding and solvent induced frequency shifts of N-tert-butylacetamide

    NASA Astrophysics Data System (ADS)

    Jović, Branislav; Nikolić, Aleksandar; Petrović, S.

    2013-07-01

    This paper reports the results of FTIR study of N-tert-butylacetamide in carbon tetrachloride solution and in presence of seven different molecules as H acceptors. The spectroscopic characteristics for NH⋯O hydrogen bonded complexes are given. Also, the equilibrium constants for 1:1 complex formation, at 25 °C were determined by using IR measurements. Frequency shifts of carbonyl stretching vibration ν(CO) of N-tert-butylacetamide in the same organic H acceptors was also investigated. The wavenumbers of carbonyl stretching vibration ν(CO) were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSERs).

  20. HF- and NH4OH-treated (111)Si surfaces studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Utani, Katsuyuki; Suzuki, Takahiro; Adachi, Sadao

    1993-04-01

    Spectroscopic ellipsometry has been used to study HF- and NH4OH-treated (111)Si surfaces. The ellipsometric data indicate that aqueous HF etching results in the removal of the surface oxide and leaves behind Si surfaces terminated by atomic hydrogen. Chemical treatment by aqueous NH4OH solution provides a bare Si surface, but further etching of Si leads to roughening of the sample surfaces. Both the HF- and NH4OH-treated surfaces become hydrophobic as the surface is hydrogen-terminated (HF) or the surface oxide layer is etched completely away (NH4OH).

  1. Tetraamminecopper(II) complex in zeolite Y. A Raman spectroscopic study

    SciTech Connect

    Dutta, P.K.; Zaykoski, R.E.

    1985-10-09

    This preliminary report indicates that, by careful manipulation of metal-zeolite complexes, it is possible to obtain bonding information by spontaneous Raman spectroscopy. The copper-amine was chosen for study because of the extensive EPR and electronic spectroscopic information on these complexes in zeolites. Also, these complexes are active intermediates in the catalytic oxidation of ammonia. It is important to point out that IR spectroscopy of these systems is not very valuable in the low-frequency region, where metal-ligand virations are expected. 17 references, 2 figures.

  2. The molecular structure of chloritoid: A mid-infrared and near-infrared spectroscopic study

    NASA Astrophysics Data System (ADS)

    Li, Kuo; Liu, Qinfu; Cheng, Hongfei; Deng, Yutao; Frost, Ray L.

    2015-06-01

    The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (ν + δ)OH bands with the fundamental stretching (ν) and bending (δ) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis.

  3. The molecular structure of chloritoid: a mid-infrared and near-infrared spectroscopic study.

    PubMed

    Li, Kuo; Liu, Qinfu; Cheng, Hongfei; Deng, Yutao; Frost, Ray L

    2015-06-15

    The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (ν+δ)OH bands with the fundamental stretching (ν) and bending (δ) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis. PMID:25828887

  4. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats.

    PubMed

    Nicholls, Andrew W; Mortishire-Smith, Russell J; Nicholson, Jeremy K

    2003-11-01

    Understanding metabolic variation in "normal" animals is critical to the evaluation of drug-induced metabolic perturbation related to toxicity or pharmacology. NMR spectroscopic-based metabonomic methods were used to evaluate the acclimatization pathways of germ-free (axenic) rats to standard laboratory conditions concomitant with the associated development of gut microfloral communities. Urine samples from male Fischer 344 germ-free rats were collected over 21 days following introduction to a standard laboratory environment and analyzed using NMR spectroscopy. NMR spectra were data-reduced and analyzed using principal component analysis to visualize the changes in the host metabolic trajectory over the course of the study. At days 2 and 6 of the acclimatization process, there were marked episodes of glycosuria. In comparison to the concentrations in the 0-6 h samples, there was a reduction in the level of the tricarboxylic acid cycle intermediates (citrate, 2-oxoglutarate, and succinate) from 6 h to day 6, after which there was a sustained increase until the end of the study. The concentrations of hippurate and trimethylamine N-oxide increased over the course of the study in comparison to the levels at 0-6 h, with the most pronounced increase in the former between days 17 and 21. Phenylacetylglycine levels increased after 6 h whereas 3-hydroxypropionic acid was observed at day 12 and increased up to day 17. By day 21, the urinary metabolic profile was within the control range when compared to historical data, implying the establishment of a stable gut microflora. Although the metabolic alterations caused by the microbial alterations were not as substantial as those from metabolic dysfunction, their presence does have an effect on the interpretation of the profiles, the state of the animal, and the mechanism for the cause of such alterations. Furthermore, the use of oral drug delivery will have an effect on the microbial state, not only as a direct influence of the drug but also from it's associated vehicle. Such effects are likely to be observed particularly in the area of preclinical investigation where the data from these studies are of particular relevance. PMID:14615964

  5. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    SciTech Connect

    Pizarro, Shelly A.

    2000-05-12

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because LR32.3 and LRC28.5 modulate the PC trimer spectral properties in distinct manners, it suggests different chromophore-interaction mechanisms for each linker. The low temperature absorbance spectrum of the PC trimer is consistent with an excitonic coupling interaction between neighboring a84 and b84 chromophores. Association with LR32.3 does not greatly alter this band shape but the absorbance of the PC/LRC28.5 complex is dramatically different. This indicates that LRC28.5 is disrupting the a84 - b84 relation established in the PC trimer. From these, and other polarized spectroscopy measurements, we conclude that both LR32.3 and LRC28.5 affect the spectral properties of the terminally emitting PC trimer chromophore (b84), and that LRC28.5 is additionally perturbing the relationship between the a84 and b84 chromophores to either disrupt or enhance their coupling interaction. The linker can perturb the PC chromophores through either specific aromatic residues or a concentration of electrostatically charged residues. Structurally, the linker disrupts the C3 symmetry of the associated biliprotein and this asymmetric interaction can serve to guide the transfer of excitation energy in one direction.

  6. Cerebellar neurometabolite abnormalities in pediatric attention/deficit hyperactivity disorder: a proton MR spectroscopic study.

    PubMed

    Soliva, Juan Carlos; Moreno, Ana; Fauquet, Jordi; Bielsa, Anna; Carmona, Susanna; Gispert, Juan Domingo; Rovira, Mariana; Bulbena, Antoni; Vilarroya, Oscar

    2010-02-01

    We designed a case-control proton magnetic resonance spectroscopic study comparing the cerebellar and prefrontal regions of a group of 17 ADHD (attention deficit/hyperactivity disorder) medicated children and a group of 17 control children matched for laterality, gender and age. As we had found decreased gray matter volume in the right prefrontal region and the left cerebellar hemisphere in a previous voxel-based morphometry study conducted on an independent ADHD sample, we tested the hypothesis that these regions should show neurometabolite abnormalities. MRI (magnetic resonance imaging) was performed with a 1.5 T system; spectral acquisition was performed with a single-voxel technique and a PRESS sequence. Two volumes of interest were selected in the right prefrontal region and the left cerebellar hemisphere. NAA (N-acetylaspartate), Cre (creatine), Cho (choline), MI (myo-inositol) and Glx (glutamate-glutamine) resonance intensities were absolutely quantified. In the left cerebellar hemisphere, ADHD children showed significant decreased MI and NAA absolute concentrations with high effect sizes (p=0.004, ES=1.184; p=0.001, ES=1.083). The diminished absolute concentration of the NAA could be related to a gray matter volume decrease in the same cerebellar region found in the previous voxel-based morphometry MRI study, while the reduced MI absolute concentration could express a decreased glial density. This is the first proton MR spectroscopic study examining the cerebellum and it provides additional support for the role of cerebellum in the ADHD neurobiology. PMID:20036717

  7. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. PMID:27089183

  8. Analysis and Control of III-V-MOVPE by Real Time Reflectance Anisotropy and Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    1998-03-01

    Among the optical in-situ techniques for epitaxial growth analysis Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellispsometry (SE) offer large advantages as far as sensitivity, reproducibility and speed of measurement are concerned. While RAS due to its high surface sensitivity directly gives information on structural symmetry and chemical bonding within the surface, SE turns out to be outstanding for analysis of layer thickness and bulk composition. They both together give a rather complete picture of the growth process and can be moreover utilized to compare the different growth techniques (MBE, CBE, MOVPE). Examples presented from III-V-semiconductor epitaxy include fingerprint spectra of stabilized surfaces, monolayer oscillations of growing surfaces, signatures during interface formation and feed-back controlled growth of lattice matched ternary III-V's (InGaAs/InP, InGaP/GaAs). The optical response to surface morphology is discussed within the Stranski-Krastanov growth mode of quantum dots. Finally, specific challenges occuring in commercial growth environments such as rotating and wobbling samples will be discussed. with respect to system design.

  9. Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2015-08-01

    Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  10. Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme

    NASA Astrophysics Data System (ADS)

    Ali, Mohd. Sajid; Al-Lohedan, Hamad A.; Rafiquee, M. Z. A.; Atta, Ayman M.; Ezzat, Abdurrahman O.

    2015-01-01

    Silver nanoparticles were functionalized with polyvinylthiol (Ag-PVT) and their effect on the conformation of hen-egg white lysozyme was seen by means of spectroscopic techniques, viz., UV visible, fluorescence (intrinsic and synchronous), resonance Rayleigh scattering and circular dichroism. UV absorption spectra of lysozyme show a hyperchromic shift on the addition of Ag-PVT nanoparticles indicating the complex formation between the two. The interaction between lysozyme and Ag-PVT nanoparticles was takes place via static quenching with 1:1 binding ratio as revealed by the analysis of fluorescence measurements. Circular dichroism spectroscopic data show a decrease in α-helical content of lysozyme on interaction with Ag-PVT nanoparticles which was due to the partial unfolding of the protein. Synchronous fluorescence spectroscopy disclosed that the microenvironments of both tryptophan and tyrosine residues were perturbed in the presence of Ag-PVT nanoparticles and perturbation in the tryptophan environment was more prominent. Rayleigh scattering (RRS) intensity increases on increasing the Ag-PVT nanoparticles concentration till it reaches to the saturation. The RRS intensity increases four times as compared to the native protein indicating the possibility of protein aggregation at higher concentrations of nanoparticles.

  11. Ultraviolet spectroscopic study of EU UMa and ST LMi from HST and IUE observations

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Bobrowsky, M.

    2015-04-01

    We present the first orbit-resolved ultraviolet spectroscopic observations of the two polar systems EU UMa and ST LMi obtained with the Hubble Space Telescope Faint Object Spectrograph (HST FOS) and International Ultraviolet Explorer (IUE) during their intermediate- and low-luminosity states in the period between 1982 and 2003. Different line profiles of the two systems showing variations of line fluxes at different orbital phases are presented. This paper focuses on the C IV emission line at 1550 Å produced in the accretion stream, presenting calculations of spectral line fluxes, ultraviolet luminosities, and accretion rates for the two systems. Our analysis of the spectroscopic data reveals changes with orbital phase of the emission line profiles that correspond to the light curve variations of both EU UMa and ST LMi in the optical and infrared bands. The variations of line fluxes are attributed to variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. The ultraviolet luminosity and accretion rate of EU UMa are smaller than the ultraviolet luminosity and accretion rate of ST LMi.

  12. Spectroscopic studies on chemical- and photo-responsive molecular machines and their bio-applications

    NASA Astrophysics Data System (ADS)

    Lau, Yuen Agnes

    2011-07-01

    The four chapters presented in this dissertation describe how various spectroscopic techniques are used: 1) to study the operation of molecular machines in solution, 2) to track the operation of molecular machines inside a single cell, and 3) to investigate the photo-decomposition pathway of a biological chromophore. Recent advances in nanotechnology have enriched the development of nano-scale molecular assemblies to be used as delivery platforms for biologically relevant molecules. Among all the molecular assemblies, molecular machines that are incorporated onto various domains of mesoporous silica nanoparticles (MSN) hold considerable potential as a reliable delivery system. Because the ease of functionalization enables chemical or photo-responsive molecular moieties to be covalently attached to the silica framework, these molecular assemblies, with defined mechanized properties, can perform specific functions under external stimuli (pH, redox, or light). While the primary function of these molecular machines is to deliver stored cargo molecules, the means of activation and the motif in which they operate are different. In the first and second chapters of this dissertation, two types of molecular machines, nanovalves and nanoimpellers, and their operations are studied. The ability to continuously monitor and image progression of molecular-based biological events in real-time can enhance our understanding of intracellular processes upon drug, protein and nucleic acid delivery. Using the photo-activated nanoimpeller described in the second chapter, the third chapter explores how it can be used to transport a nuclear staining agent, PI, inside a single cell. Nanoimpellers are made by functionalizing azobenzene molecules to the internal pore surface of MSN. The continuous cis/trans isomerizations are set in motion upon laser illumination at optimal wavelength(s), which facilitate cargo molecules to be expelled from the pores to the surrounding medium. By refining a conventional epi-fluorescence technique and complementing it with spectral acquisition, the course of the intracellular delivery event, from photo-isomeriza tion of azobenzene to PI's eventual intercalation with nuclear DNA is mapped in real-time spectroscopically. Finally, continuous spectroscopic monitoring of PI in vitro also led us to an unexpected, yet interesting observation. Upon prolonged laser exposure, both the absorption and emission maxima of PI exhibit remarkable spectral shifts. The photo-product has successfully been separated from PI using column chromatography. Spectroscopic investigations suggest that the observed large magnitude shift is the result of the N-dealkylation of the butylammonium side chain from PI. Through electron paramagnetic resonance measurement, the formation of a long-lived radical (with increasing intensity over time) is detected during this photo-decomposition process.

  13. IR and UV spectroscopic studies at low temperature: C2N2

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Arzoumanian, E.; Es-Sebbar, Et.; Ferradaz, T.; Fray, N.; Jolly, A.; Gazeau, M.-C.; Schwell, M.

    2008-09-01

    Titan's atmosphere is mainly made of nitrogen and methane and is furthermore very rich in organic molecules. Hydrocarbons are formed by the photodissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter needs constraints for the determination of vertical profiles of organic compounds, from the higher thermosphere down to the lower stratosphere. They also need wavelength dependant photodissociation rates as input parameters. Vertical profiles can be retrieved from Cassini observations along the entire atmosphere, in particular by limb sounding using Cassini's UVIS and CIRS spectrometers. However, in order to interpret data obtained by these instruments, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species. These parameters are especially needed for radiative transfer calculations at low temperatures. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan's atmosphere in the FIR domain, around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule which cover the entire spectrum from the mid- infrared to the vacuum ultraviolet spectral region. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude for the absorption coefficient. We will also show how temperature can influence VUV absorption coefficients. The corresponding implications of temperature dependant absorption data on the interpretation of UVIS observations will be discussed.

  14. Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study

    SciTech Connect

    Wang, Han; Fu, Kan

    2013-11-15

    The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 °C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

  15. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  16. Spectroscopic studies on the interaction of cimetidine drug with biologically significant sigma- and pi-acceptors.

    PubMed

    Pandeeswaran, M; Elango, K P

    2010-05-01

    Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, (1)H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I(3)(-), is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I(3)(-) ion with C(s) symmetry at 156 and 131cm(-1) assigned to nu(as)(I-I) and nu(s)(I-I) of the I-I bond and at 73cm(-1) due to bending delta(I(3)(-)). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established. PMID:20226727

  17. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  18. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    NASA Astrophysics Data System (ADS)

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  19. Spectral analysis of tissues from patients with cancer using a portable spectroscopic diagnostic ratiometer unit

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Spectral profiles of tissues from patients with breast carcinoma, malignant carcinoid and non-small cell lung carcinoma were acquired using native fluorescence spectroscopy. A novel spectroscopic ratiometer device (S3-LED) with selective excitation wavelengths at 280 nm and 335 nm was used to produce the emission spectra of the key biomolecules, tryptophan and NADH, in the tissue samples. In each of the samples, analysis of emission intensity peaks from biomolecules showed increased 340 nm/440 nm and 340 nm/460 nm ratios in the malignant samples compared to their paired normal samples. This most likely represented increased tryptophan to NADH ratios in the malignant tissue samples compared to their paired normal samples. Among the non-small cell lung carcinoma and breast carcinomas, it appeared that tumors of very large size or poor differentiation had an even greater increase in the 340 nm/440 nm and 340 nm/460 nm ratios. In the samples of malignant carcinoid, which is known to be a highly metabolically active tumor, a marked increase in these ratios was also seen.

  20. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  1. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  2. Optical and spectroscopic studies of potassium p-nitrophenolate dihydrate crystal for frequency doubling applications.

    PubMed

    Jose, M; Uthrakumar, R; Rajendran, A Jeya; Das, S Jerome

    2012-02-01

    Non centrosymmetric potassium p-nitrophenolate dihydrate single crystals have been grown by employing the technique of slow solvent evaporation from aqueous solution by slightly adjusting the pH and growth temperature. The grown crystals have been identified from single crystal XRD analysis, FTIR and FT Raman spectroscopic techniques. The high resolution X-ray diffraction experiments substantiate good quality of the title material. Between 510 and 2000 nm, the material is observed to be nearly transparent allowing it to be explored for potential use in device fabrication. In addition, the photoluminescence spectrum of the grown crystal at room temperature shows a stable broad violet-blue emission around the 383-550 nm wavelengths with the maximum centered at 436 nm. Owing to its excellent non linear figure of merit and strong PL emission, the title crystal can have technological applications in opto-electronic devices. PMID:22137014

  3. Spectroscopic studies and crystal structure of (E)-N Prime -(2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

    SciTech Connect

    Ozay, H. Yildiz, M.; Unver, H.; Kiraz, A.

    2013-01-15

    The structure of compound has also been examined cyrstallographically. It crystallizes in the monoclinic space group P2{sub 1}/c with a = 7.673(1), b = 16.251(2), c = 10.874(1) A, {beta} = 110.42(1) Degree-Sign , V = 1270.7(3) A{sup 3}, D{sub x} = 1.418 g cm{sup -3}, R{sub 1} = 0.0349 and wR{sub 2} = 0.0935 [I > 2{sigma}(I)], respectively. The title compound has been synthesized from the reaction of isonicotinohydrazide with 2-hydroxy-3-methoxybenzaldehyde. It has been characterized by using elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR and UV-Visible spectroscopic techniques.

  4. Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods.

    PubMed

    Pan, Jiongwei; Ye, Zaiting; Cai, Xiaoping; Wang, Liangxing; Cao, Zhuo

    2012-12-01

    The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV-vis spectroscopy. Values of binding parameters for BSA-CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 10(3), 3.24 × 10(3), and 2.30 × 10(3) M(-1) at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. PMID:23169700

  5. Spectroscopic study and structure of ( E)-2-[(2-chlorobenzylimino)methyl]methoxyphenol

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Yıldız, Mustafa; Özay, Hava; Durlu, Tahsin Nuri

    2009-12-01

    ( E)-2-[(2-Chlorobenzylimino)methyl]methoxyphenol has been synthesized from the reaction of 2-hydroxy-3-methoxy-1-benzaldehyde( o-vanillin) with 2-chlorobenzylamine. The title compound has been characterized by using elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-vis spectroscopic techniques. The crystal structure of the title compound has also been examined cyrstallographically. It crystallizes in the orthorhombic space group Pbca with unit cell parameters: a = 7.208(1) Å, b = 13.726(2) Å, c = 27.858(4) Å, V = 2756.0(1) Å 3, Dc = 1.18 g cm -3 and Z = 8. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R = 0.046 for 2773 observed reflections.

  6. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    NASA Astrophysics Data System (ADS)

    Vera, L. P.; Prez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3?g?a3?u), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  7. Ab initio study of the O4H(+) novel species: spectroscopic fingerprints to aid its observation.

    PubMed

    Xavier, F George D; Hernández-Lamoneda, Rámon

    2015-06-28

    A detailed ab initio characterization of the structural, energetic and spectroscopic properties of the novel O4H(+) species is presented. The equilibrium structures and relative energies of all multiplet states have been determined systematically by analyzing static and dynamical correlation effects. The two and three body dissociation processes have been studied and indicate the presence of conical intersections in various states including the ground state. Comparison with available thermochemical data is very good, supporting the applied methodology. The reaction, H3(+) + O4→ O4H(+) + H2, was found to be exothermic ΔH = -19.4 kcal mol(-1) and therefore, it is proposed that the product in the singlet state could be formed in the interstellar medium (ISM) via collision processes. To aid in its laboratory or radioastronomy detection in the interstellar medium we determined spectroscopic fingerprints. It is estimated for the most stable geometry of O4H(+) dipole allowed electronic transitions in the visible region at 429 nm and 666 nm, an intense band at 1745 cm(-1) in the infrared and signals at 40.6, 81.2 and 139.2 GHz in the microwave region at 10, 50 and 150 K respectively, relevant for detection in the ISM. PMID:26028209

  8. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    SciTech Connect

    Allers, K. N.; Liu, Michael C.

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  9. Two-dimensional infrared study of 3-azidopyridine as a potential spectroscopic reporter of protonation state

    NASA Astrophysics Data System (ADS)

    Nydegger, Michael W.; Dutta, Samrat; Cheatum, Christopher M.

    2010-10-01

    The lack of general spectroscopic probes that can be used in a range of systems to probe kinetics and dynamics is a major obstacle to the widespread application of two-dimensional infrared (2D IR) spectroscopy. We have studied 3-azidopyridine to characterize its potential as a probe of the protonation state of the pyridine ring. We find that the azido-stretching vibration is split by accidental Fermi resonance interactions with one or more overtones and combination states. Using 2D IR spectroscopy, we determine the state structure of the resulting eigenstates for complexes of 3-azidopyridine with formic acid and trifluoroacetic acid in which the pyridine ring is unprotonated and protonated, respectively. Based on the measurements, we develop a two-oscillator depurturbation model to determine the energies and couplings of the zeroth-order azido-stretching state and the perturbing dark state that couples to it. Based on these results, we conclude that the azido-stretching vibration is, in fact, sensitive to the protonation state of the pyridine shifting up in frequency by 8 cm-1 in the complex with trifluoroacetic acid relative to the formic acid complex. These results suggest that, although 3-azidopyridine is not suitable as a spectroscopic probe, the approach of employing an organic azide as a remote probe of protonation state holds significant promise.

  10. Quantitative Near Infrared Spectroscopic Analysis of Q-switched Nd:YAG Treatment of Generalized Argyria

    PubMed Central

    Saager, Rolf B; Hassan, Khaled M; Kondru, Clement; Durkin, Anthony J; Kelly, Kristen M

    2012-01-01

    Background and Objective Generalized argyria is a blue-gray hyperpigmentation of the skin resulting from ingestion or application of silver compounds, such as silver colloid. Case reports have noted improvement after Q-Switched Neodymium--Yttrium Aluminum Garnet laser (1064nm QS Nd:YAG) laser treatment to small surface areas. No reports have objectively monitored laser treatment of generalized argyria over large areas of skin, nor have long-term outcomes been evaluated. Study Design/Materials and Methods An incremental treatment plan was developed for a subject suffering from argyria. A quantitative near infrared spectroscopic measurement technique was employed to non-invasively analyze tissue-pigment characteristics pre- and post-laser treatment. Post-treatment measurements were collected at weeks 1, 2, 3, and 4, and again at 1 year. Results Immediate apparent removal of pigment was observed with 1 Q-switched 1064 nm Nd:YAG laser treatment (3-6 mm spot; 0.8-2 J/cm2) per area. Entire face, neck, upper chest and arms were treated over multiple sessions. Treatments were very painful and general anesthesia was utilized in order to treat large areas. Near-infrared spectroscopy was used to characterize and quantify the concentration of silver particles in the dermis based on the absorption features of the silver particles as well as the optical scattering effects they impart. We were able to estimate that there was, on average, 0.042 mg/mL concentration of silver prior to treatment and that these levels went below the minimum detectable limit of the instrument post-treatment. There was no recurrence of discoloration over the 1-year study period. Conclusion QS 1064 nm laser treatment of argyria is a viable method to restore normal skin pigmentation with no evidence of recurrence over study period. Quantitative spectroscopic measurements, 1) confirmed dyspigmentation was due to silver, 2) validated our clinical assessment of no recurrence up to one year post-treatment and 3) indicated no collateral tissue damage with treatments. PMID:23322674

  11. Theoretical studies of spectroscopic problems of importance for atmospheric radiation measurements

    NASA Technical Reports Server (NTRS)

    Tipping, Richard H.

    1994-01-01

    Many of the instruments used to deduce the physical parameters of the Earth's atmosphere necessary for climate studies or for pollution monitoring (for instance, temperature versus pressure or number densities of trace molecules) rely on the existence of accurate spectroscopic data and an understanding of the physical processes responsible for the absorption or emission of radiation. During the summer, research was either continued or begun on three distinct problems: (1) an improved theoretical framework for the calculation of the far-wing absorption of allowed spectral lines; (2) a refinement of the calculation of the collision-induced fundamental spectrum of N2; and (3) an investigation of possible line-mixing effects in the fundamental spectrum of CH4. Progress in these three areas is summarized below. During the past few years, we have developed a theoretical framework for the calculation of the absorption of radiation by the far wings of spectral lines. Such absorption due to water vapor plays a crucial role in the greenhouse effect as well as limiting the retrieval of temperature profiles from satellite data. Several improvements in the theory have been made and the results are being prepared for publication. Last year we published results for the theoretical calculation of the absorption of radiation due to the dipoles induced during binary collisions of N2 molecules using independently measured molecular parameters; the results were in reasonable agreement with experimental data. However, recent measurements have revealed new fine structure that has been attributed to line-mixing effects. We do not think that this is correct, rather that the structure results from short-range anisotropic dipoles. We are in the process of including this refinement in our theoretical calculation in order to compare with the new experimental data. Subtle changes in the spectra of CH4 measured by researchers at Langley have also been attributed to line-mixing effects. By analyzing the same spectral lines we have attempted to verify or rule out possible line-mixing mechanisms. Due to the complexity and richness of the spectrum of this highly symmetric molecule, as well as the small magnitude of the effects, a detailed first-principle calculation of the mixing is a difficult problem. Before such a program is undertaken it is important to glean as much information as possible concerning the possible mechanisms by a systematic analysis of the existing data.

  12. OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope. [Optical Surface Analysis Code

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Thomas, David A.; Osantowski, John F.

    1986-01-01

    An investigation is made of the sensitivity of the image quality for the proposed FUSE telescope to mirror misalignments and a wide spatial frequency range of figure errors. Representative figure error data was obtained for the analysis from measurements made on the SEUTS (Solar Extreme Ultraviolet Telescope Spectrograph) telescope mirrors. The tolerancing analysis was carried out with the aid of the Optical Surface Analysis Code (OSAC) program.

  13. Spectroscopic Studies on Eu{sup 3+} Doped Boro-Tellurite Glasses

    SciTech Connect

    Selvaraju, K.; Marimuthu, K.

    2011-07-15

    Eu{sup 3+} doped boro-tellurite glasses have been synthesized and its optical behavior have been studied and reported. The presence of varying tellurium dioxide content results changes in spectroscopic behavoir were explored through UV-VIS, and Luminescence spectra. The bonding parameters have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) have been determined through the luminescence spectra without applying any constraints and the results are presented. The Judd-Ofelt parameters have been used to determine various optical properties corresponding to {sup 5}D{sub 0}{yields}{sup 7}F{sub J}(J = 1,2,3 and 4) transitions of Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar studies.

  14. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  15. Spectroscopic, crystallographic and theoretical studies of lasalocid complex with ammonia and benzylamine

    NASA Astrophysics Data System (ADS)

    Huczy?ski, Adam; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumil

    A natural antibiotic - Lasalocid is able to form stable complexes with ammonia and organic amines. New complexes of lasalocid with benzylamine and ammonia were obtained in the crystal forms and studied using X-ray, FT-IR, 1H NMR, 13C NMR and DFT methods. These studies have shown that in both complexes the proton is transferred from the carboxylic group to the amine group with the formation of a pseudo-cyclic structure of lasalocid anion complexing the protonated amine or NH4+ cation. The spectroscopic and DFT studies demonstrated that the structure of the complex formed between Lasalocid and benzylamine in the solid is also conserved in the solution and gas phase. In contrast, the structure of the complex formed between lasalocid and ammonium cation found in the solid state undergoes dissociation in chloroform solution accompanied with a change in the coordination form of the NH4+ cation.

  16. Studies on molecular weaker interactions, spectroscopic analysis and chemical reactivity of synthesized ethyl 3,5-dimethyl-4-[3-(2-nitro-phenyl)-acryloyl]-1H-pyrrole-2-carboxylate through experimental and quantum chemical approaches

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Baboo, Vikas; Rawat, Poonam; Gupta, V. P.

    2013-04-01

    Ethyl 3,5-dimethyl-4-[3-(2-nitro-phenyl)-acryloyl]-1H-pyrrole-2-carboxylate (EDNPAPC) has been synthesized and characterized by 1H NMR, UV-Vis, FT-IR and Mass spectroscopy. Geometrical, spectral, thermodynamic properties have been calculated and evaluated using DFT level of theory, B3LYP functional and 6-31G(d,p) basis set. The observed absorption peaks at 364, 308 and 256 nm are corresponds to the calculated electronic transitions at 352, 286 nm and 252 nm respectively. The experimental data shows red shift in comparison to the calculated. The detailed vibrational analysis has been carried out with the aid of potential energy distribution (PED) and the experimental FTIR peaks confirm red shifts in Nsbnd H and Cdbnd O stretching bond as result of dimer formation. The multiple interactions present in the molecule have been evaluated with the help of QTAIM theory. The ellipticity values confirm the presence of resonance assisted hydrogen bonding in dimer formation. The binding energy of dimer formation through DFT and AIM calculations has been found to be 13.94 and 15.22 kcal/mol respectively. The binding energy of dimer after basis set superposition error (BSSE) found to be as 10.54 kcal/mol. Theoretical result from reactivity descriptors show that C6, C13 and C15 are more reactive sites for nucleophilic attack within molecule favoring the formation of heterocyclic compounds such as pyrazoline and oxazoline. The calculated β0 values for monomer and dimer are found to be as 1.8 × 10-30, 7.8 × 10-30 esu, respectively, indicating that this pyrrole chalcone is an attractive material for nonlinear optical (NLO) applications.

  17. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment. PMID:26465313

  18. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    NASA Astrophysics Data System (ADS)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  19. Vibrational (FT-IR, FT-Raman) and UV-Visible spectroscopic studies, HOMO-LUMO, NBO, NLO and MEP analysis of Benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculaions

    NASA Astrophysics Data System (ADS)

    Shankar Rao, Y. B.; Prasad, M. V. S.; Udaya Sri, N.; Veeraiah, V.

    2016-03-01

    This paper contains a combined experimental and theoretical study of vibrational and electronic properties of Benzyl(imino(1H-pyrazol-1-yl)methyl)carbamate (BPMC) molecule. The FT-IR and FT-Raman spectra of the title molecule in solid phase were recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The UV absorption spectrum of the studied compound dissolved in ethanol was recorded in the range of 180-400 nm. The molecular geometries calculated using density functional theory (DFT) was compared with available experimental data. The vibrational spectra calculated at the B3LYP/6-31G(d,p) level were compared with the experimental spectra and assignment to each vibrational frequency was assigned on the basis of potential energy distribution (PED). The calculated electronic and nonlinear optical properties of the title molecule were reported. Furthermore, the thermodynamic properties of the molecule were discussed.

  20. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Cai, Changqun; Chen, Xiaoming; Ge, Fei

    2010-07-01

    Multi-spectroscopic methods including resonance light scattering (RLS), ultraviolet spectra (UV), fluorescence spectra, 1H NMR spectroscopy, coupled with thermo-denaturation experiments were firstly used to study the interaction of antitumor drug tamoxifen (TMX) with calf thymus (ctDNA) in acetate buffer solutions (pH 4.55). The interaction of TMX with ctDNA could cause a significant enhancement of RLS intensity, the hyperchromic effect, red shift of absorption spectra and the fluorescence quenching of TMX, indicating that there is an inserting interaction between TMX and ctDNA. This inference was confirmed by 1H NMR spectroscopy. The chemical shift of the benzene proton changes significantly which indicates that TMX could insert into the base pairs of ctDNA. These studies are valuable for a better understanding the mode of TMX-ctDNA interaction further, which are important and useful for designing of new ctDNA targeted drug. And the antitumor drug TMX inserted directly into ctDNA in vitro, which can provide a lot of useful information to explore the development of new and highly effective anti-cancer drugs.