Science.gov

Sample records for spectroscopic analysis study

  1. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  2. Spectroscopic studies of glass structure

    SciTech Connect

    Brow, R.K.

    1994-08-01

    Today`s understanding of the molecular-level structure of inorganic glasses has been transformed by the availability of a wide range of sensitive spectroscopic probes. Today we can relate glass composition to quantitative distributions of glass-forming cations and to changes in oxygen bonding and modifying cation geometries. Future spectroscopic studies will result in improved descriptions of anion and cation geometries and should provide glass scientists with the capability to optimize atomic arrangements for specific optical, electrical, and thermal properties.

  3. Spectroscopic analysis of coal liquids

    SciTech Connect

    Kershaw, J.R. )

    1989-01-01

    This book reviews the analysis of coal-derived liquids by modern spectroscopic techniques. All the major techniques used in the analysis of coal liquids are included with detailed chapters on mass, infrared, ultraviolet and luminescence, nuclear magnetic resonance, and electron spin resonance spectroscopy. Each method is critically evaluated and the limitations and problems that the complexity of typical coal liquids impose on each technique are discussed. The book also includes a discussion of solvent fractionation, chromatographic separations, and the pyrolysis and hydropyrolysis of coal liquids. A detailed review of the composition of coal liquids from various coal liquefaction processes and a brief introduction to coal science are also included.

  4. An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid.

    PubMed

    Cinar, Mehmet; Karabacak, Mehmet; Asiri, Abdullah M

    2015-02-25

    In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations. PMID:25255480

  5. An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Cinar, Mehmet; Karabacak, Mehmet; Asiri, Abdullah M.

    2015-02-01

    In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations.

  6. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  7. Structural Analysis of Crystalline R(+)-?-Lipoic Acid-?-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies

    PubMed Central

    Ikuta, Naoko; Endo, Takatsugu; Hosomi, Shota; Setou, Keita; Tanaka, Shiori; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Takahashi, Kenji; Terao, Keiji; Matsugo, Seiichi

    2015-01-01

    R(+)-?-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-?CD complex and evaluated its properties in the solid state. The results of 1H NMR and PXRD analyses indicated that the crystalline RALA-?CD complex is a channel type complex with a molar ratio of 2:3 (RALA:?-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-?CD complex. Raman spectroscopic analysis revealed the significant weakness of the S–S and C–S stretching vibrations of RALA in the RALA-?CD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of ?-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the ?-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the ?-CD ring. PMID:26501268

  8. Structural Analysis of Crystalline R(+)-?-Lipoic Acid-?-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies.

    PubMed

    Ikuta, Naoko; Endo, Takatsugu; Hosomi, Shota; Setou, Keita; Tanaka, Shiori; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Takahashi, Kenji; Terao, Keiji; Matsugo, Seiichi

    2015-01-01

    R(+)-?-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-?CD complex and evaluated its properties in the solid state. The results of ¹H NMR and PXRD analyses indicated that the crystalline RALA-?CD complex is a channel type complex with a molar ratio of 2:3 (RALA:?-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-?CD complex. Raman spectroscopic analysis revealed the significant weakness of the S-S and C-S stretching vibrations of RALA in the RALA-?CD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of ?-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the ?-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the ?-CD ring. PMID:26501268

  9. Spectroscopic Study and Motion Analysis of Arc Spot Initiated on Nanostructured Tungsten

    NASA Astrophysics Data System (ADS)

    Hwangbo, Dogyun; Kajita, Shin; Osaka, Masashi; Ohno, Noriyasu

    2013-11-01

    Arcing on the nanostructured tungsten surface has been examined recently because it gives rise to the erosion of materials and impurity transport toward the core plasma in a nuclear fusion reactor. Arcing was initiated on a helium-exposed tungsten surface, on which nanostructured tungsten was formed, by irradiation with ruby laser pulses of 0.08 MJ.m-2. The motion of an arc spot was observed with a fast-framing camera. The magnetic field strength and arc current dependences of velocity were discussed on the basis of experimental observation. Arc trails were observed using a digital fine scope to determine the relationship between the grouping width of an arc trail and arc velocity; the changes in grouping width and condition of the specimen surface are discussed. Spectroscopic measurements were performed to determine the electron temperature by the Boltzmann plot method.

  10. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  11. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    ?ahin, Zarife Sibel; Kantar, Günay Kaya; ?a?maz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  12. Study on molecular structure, spectroscopic behavior, NBO, and NLO analysis of 3-methylbezothiazole-2-thione

    NASA Astrophysics Data System (ADS)

    Chand, Satish; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Shukla, Vikas K.; Prasad, Onkar; Sinha, Leena

    2015-07-01

    Experimentally observed spectral data (FT-TR and FT-Raman) of 3-methylbezothiazole-2-thione (3MBT2T) were compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. UV-Vis spectrum of the title compound was recorded and the electronic properties, such as frontier molecular orbitals and band gap energies were calculated by TD-DFT approach. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better comprehension of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to investigate the stability of the molecule arising from charge delocalization. Global and local reactivity descriptors were also computed to predict reactivity and reactive sites on the molecule.

  13. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    PubMed Central

    Zhang, Weiqing; Jiang, Shuguang; Hardacre, Christopher; Goodrich, Peter; Wang, Kai; Shao, Hao; Wu, Zhengyan

    2015-01-01

    Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA) measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite) and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and I(G + GR)/IAll but lower values of ID/I(G+GR), IDL/I(G+GR), I(S + SL)/I(G+GR), and I(GL+GL')/I(G+GR). The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, I(G + GR)/IAll, and I(S + SL)/I(G+GR). Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements. PMID:26682084

  14. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    NASA Astrophysics Data System (ADS)

    Dimitri? Markovi?, Jasmina M.; Markovi?, Zoran S.; Milenkovi?, Dejan; Jeremi?, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  15. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  16. FT-IR spectroscopic analysis to study the firing processes of prehistoric ceramics

    NASA Astrophysics Data System (ADS)

    Barone, G.; Crupi, V.; Longo, F.; Majolino, D.; Mazzoleni, P.; Tanasi, D.; Venuti, V.

    2011-05-01

    In this work, we present a FT-IR absorbance investigation on prehistoric ceramics with the aim of characterizing the phase transformations that occur during the cooking processes. The measurements were performed on several potteries belonging to the Middle Bronze Age excavated in the Catania hinterland (Sicily, Southern Italy). Based on the macroscopic observation, the samples may be distinguished on coarse and fine ceramics, and the petrographic study showed a strongly heterogeneous structure and composition. The results were compared with the data obtained by means of X-ray diffraction (XRD) and with the microscopic qualitative observations of the birefringence of the groundmass. The whole set of the data showed a firing temperature in the 800-900 °C range. The simultaneous presence in several samples of calcite and clay minerals and of new-formed Ca-silicates should be indicative of a quite primitive technological firing process with strong temperature variation inside the kiln.

  17. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  18. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  19. Terahertz Spectroscopic Analysis of Peptides and Proteins

    NASA Astrophysics Data System (ADS)

    Falconer, Robert J.; Markelz, Andrea G.

    2012-10-01

    Spectroscopic analysis using the Terahertz frequencies between 0.1-15 THz (3-500 cm-1) has been underutilised by the biochemistry community but is starting to yield some scientifically interesting information. Analysis of structures from simple molecules like N-methylacetamide, to polyamides, peptides and relatively complex proteins provides different types of information dependant on the molecular size. The absorbance spectrum of small molecules is dominated by individual modes and specific hydrogen bonds, peptide spectra have peaks associated with secondary structure, while protein spectra are dominated by ensembles of hydrogen bonds and/or collective modes. Protein dynamics has been studied using Terahertz spectroscopy using proteins like bacteriorhodopsin, illustrating a potential application where this approach can provide complementary global dynamics information to the current nuclear magnetic resonance and fluorescence-based techniques. Analysis of higher-order protein structures like polyomavirus virus-like particles generate quite different spectra compared to their constituent parts. The presence of an extended hydration layer around proteins, first postulated to explain data generated using p-germanium spectroscopy may present a particularly interesting opportunity to better understand protein's complex interaction with water and small solutes in an aqueous environment. The practical aspects of Terahertz spectroscopy including sample handling, the use of molecular dynamics simulation and orthogonal experiment design are also discussed.

  20. Spectroscopic analysis of irradiated erythrocytes

    NASA Astrophysics Data System (ADS)

    Selim, Nabila S.; Desouky, Omar S.; Ismail, Nagla M.; Dakrory, Amira Z.

    2011-12-01

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm -1 band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm -1 only is useful in monitoring the radiation effect of the lipids cell membrane intact cells.

  1. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  2. SPECTROSCOPIC STUDIES (EPR, NMR) APPLICATIONS OF MAGNETICALLY COUPLED

    E-print Network

    Asher, Sanford A.

    SPECTROSCOPIC STUDIES (EPR, NMR) M-P4l APPLICATIONS OF MAGNETICALLY COUPLED RELAXATION SPECTROSCOPY of the proton spectrum of the solid components while observing the narrow liquid components. The analysis field dependence of proton relaxation in hetero- geneous systems. The consequences have a profound

  3. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  4. FT-IR, FT-Raman, dispersive Raman, NMR spectroscopic studies and NBO analysis of 2-Bromo-1H-Benzimidazol by density functional method

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kurt, M.; Karabacak, M.; Poiyamozhi, A.; Sundaraganesan, N.

    2015-02-01

    In this study, geometrical optimization, FT-IR (4000-400 cm-1), FT-Raman (4000-40 cm-1), dispersive Raman (4000-40 cm-1) spectroscopic analysis, electronic structure and 1H and 13C nuclear magnetic resonance (NMR) studies of 2-Bromo-1H-Benzimidazol (abbreviated as 2Br1HB) were undertaken by utilizing DFT/B3LYP with 6-311+G(d,p) basis set. The results of the calculations were applied to simulate spectra of the title compound, which show good agreement with observed spectra. Complete vibrational assignments, analysis and correlations of the fundamental modes for 2Br1HB compound were carried out. Stability of the molecule arising from hyperconjugative interactions, charge delocalization was analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions were studied by using the total density of states (TDOS), partial density of states (PDOS), and overlap population density of states (OPDOS). The electronic properties like HOMO-LUMO energies and molecular electrostatic potential (MEP) analysis were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions take place within the molecule. Mulliken population analysis on atomic charges was also calculated. Good correlation between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated gauge-including atomic orbital (GIAO) shielding tensors were found.

  5. NGC 6067: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Dorda, R.

    2015-05-01

    NGC 6067 is a young open cluster in the Norma Cloud. Its age is around 100 Ma. It hosts a large population of evolved stars: 14 luminous red stars (most of which K Ib supergiants and late-G/early-K giants), 6--8 B giants, two A/F supergiants and two Cepheids (F/G supergiants). All this would imply that NGC 6067 represent one of the best laboratories in the Galaxy to study the evolution of intermediate-mass stars. Thackeray et al. (1962, MNRAS 124, 445T) performed the first complete study of this cluster but it has been poorly studied since then. We obtained high resolution echelle spectra (R=48000) using FEROS (Fiber Extended Range Optical Spectrograph) mounted on the ESO 2.2 m telescope at La Silla Observatory (Chile) in May 2011. Here we present preliminary results based on this spectroscopy and the UBV photometry listed in Terndrup & Pinsonneault (2007, ApJ 671, 1640).

  6. Spectroscopic analysis of chromium bioremediation products

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct enzymatic or organic based reduction in this system.

  7. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  8. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  9. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  10. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.

  11. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, B.

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  12. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  13. Benford Analysis: A useful paradigm for spectroscopic analysis

    E-print Network

    Bhole, Gaurav; Mahesh, T S

    2014-01-01

    Benford's law is a statistical inference to predict the frequency of significant digits in naturally occurring numerical databases. In such databases this law predicts a higher occurrence of the digit 1 in the most significant place and decreasing occurrences to other larger digits. Although counter-intuitive at first sight, Benford's law has seen applications in a wide variety of fields like physics, earth-science, biology, finance etc. In this work, we have explored the use of Benford's law for various spectroscopic applications. Although, we use NMR signals as our databases, the methods described here may also be extended to other spectroscopic techniques. In particular, with the help of Benford analysis, we demonstrate the detection of weak NMR signals and spectral corrections. We also explore a potential application of Benford analysis in the image-processing of MRI data.

  14. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace.

    PubMed

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-15

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785nm) or a red laser (632.8nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations. PMID:26301542

  15. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace

    NASA Astrophysics Data System (ADS)

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-01

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785 nm) or a red laser (632.8 nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations.

  16. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz (Los Angeles, CA); Bigio, Irving J. (Los Alamos, NM); Loree, Thomas R. (Santa Fe, NM)

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  17. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D-0525 and 090.D-0133.Table 1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A124Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A124

  18. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  19. Spectroscopic study of natural quartz samples

    NASA Astrophysics Data System (ADS)

    Nunes, Eduardo H. M.; Lameiras, Fernando S.; Houmard, Manuel; Vasconcelos, Wander L.

    2013-09-01

    In this work we performed a spectroscopic characterization of natural amethyst, citrine, and prasiolite samples from different localities. These materials were examined by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-vis), electron paramagnetic resonance (EPR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Samples were used in this study in as-received, gamma-irradiated, UV-irradiated, and heat-treated conditions. We observed the changes in the FTIR, UV-vis, and EPR spectra of these samples as a function of the condition they were analyzed. We noticed that gamma radiation had a great effect on the color of amethyst and citrine samples used in this work. It was observed that light colored samples showed a deepening of their colors upon gamma-irradiation and a bleaching upon heat treatment at 450 °C. However, we observed that gamma radiation had a slight effect on the color of citrine. UV-irradiations revealed that the coloration of both amethyst and prasiolite can be bleached by UV radiation. On the other hand, the color of citrine was not affected by UV radiation.

  20. Spectroscopic analysis of insulating crystal fibers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Albin, S.

    1988-01-01

    A new technique is described for investigating the optical properties of solid-state laser materials using single-crystal fibers grown by a laser-heated pedestal-growth technique. Single-crystal fiber samples can be prepared more rapidly and less expensively than crystals grown by more conventional methods; however, they are smaller and less uniform, making spectroscopic measurements difficult. A simple procedure for extracting the optical absorption and emission spectra of insulating crystal fibers is demonstrated with a titanium-doped sapphire fiber sample; results are comparable to those from Czochralski-grown material.

  1. Application of Wavelet Unfolding Technique in Neutron Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    Nonproliferation of nuclear materials is important in nuclear power industry and fuel cycle facilities. It requires technologies capable of measuring and assessing the radiation signatures of fission events. Neutrons produced in spontaneous or induced fission reactions are mainly fast. The neutron energy information allows characterization of nuclear materials and neutron sources. It can also be applied in remote sensing and source search tasks. The plastic scintillator EJ-299-33A was studied as a fast neutron detector. The detector response to a polyenergetic flux was unfolded usingthe multiple linear regression method. It yields the intensities of neutron flux of particular energy, hence, enabling the spectroscopic analysis. The wavelet technique was evaluated for the unfolding of neutron spectrum using the scintillator's response functions between 1 MeV and 14 MeV computed with the MCNPX code. This paperpresents the computational results of the wavelet-based spectrum unfolding applied to a scintillator detector with neutron / photon pulse shape discrimination properties.

  2. Spectroscopic studies of tantalum doped borate glasses

    NASA Astrophysics Data System (ADS)

    Sharada, M.; Suresh Babu, D.

    2012-10-01

    Glasses with formula 30Li2O 60B2O3xTa2O5 (10-x) Bi2O3 for x=0, 2, 4, 6 and 8 were prepared via normal melt quenching technique and characterized by refractive index and MDSC. Refractive index (?) and glass transition temperature (Tg) are found to increase with increase in dopant concentration. Impedance spectra of the samples were recorded in the frequency range 100 Hz-5 MHz in the temperature range 175-275 °C. The plots are typical of those recorded for disordered systems. Conductivities and relaxation times are found to follow Arrhenius type of relation and activation energies are calculated. Optical absorption spectra were recorded in the wavelength range 200-900 nm range from which cutoff wavelength (?c) and optical band gap energy (Eg) are evaluated. ?c is found to decrease while Eg to increase with increase in composition. FTIR spectra of the samples were recorded in the frequency range 400-1500 cm-1 which exhibit characteristic bands corresponding to BO3, BO4 stretching vibrations and BO bending vibration. Tightening of the structure is indicated by increase in the vibration of BO3 at the cost of BO4 for 8 mol% of Ta2O5. This is in support of the highest value of Tg for this sample among the series. Raman spectra of the samples were recorded in the frequency range 200-1200 cm-1. With successive addition of Ta2O5, increase in the vibration of Ta-O groups TaO6 groups to be responsible for observed increase in ? and Tg. An attempt is made to prepare tantalum doped borate glasses and study them by spectroscopic techniques.

  3. Indentation device for in situ Raman spectroscopic and optical studies.

    PubMed

    Gerbig, Y B; Michaels, C A; Forster, A M; Hettenhouser, J W; Byrd, W E; Morris, D J; Cook, R F

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films. PMID:23278025

  4. SAS PARTIAL LEAST SQUARES REGRESSION FOR ANALYSIS OF SPECTROSCOPIC DATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate the potential of SAS PLS to perform chemometric analysis of spectroscopic data. As implemented, SAS can perform type II PLS only, PCR and RRR. While possessing several algorithms for PLS, various cross validation options, the ability to mean center and variance sca...

  5. ORIGINAL PAPER Raman spectroscopic analysis of arctic nodules: relevance

    E-print Network

    Benning, Liane G.

    ORIGINAL PAPER Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological 2011 # Springer-Verlag 2011 Abstract The discovery of small, spherical nodules termed `blueberries of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size

  6. Analysis of Urinary Calculi Using Infrared Spectroscopic Imaging

    NASA Astrophysics Data System (ADS)

    Sablinskas, Valdas; Lesciute, Daiva; Hendrixson, Vaiva

    2009-06-01

    Kidney stone disease is a cosmopolitan disease, occurring in both industrialized and developing countries and mainly affecting adults aged 2060 years. The formation of kidney stones is a process that includes many factors. Its primary and contributing pathogenic factors are genetic, nutritional and environmental, but also include personal habits. Information about the chemical structure of kidney stones is of great importance to the treatment of the kidney diseases. The usefulness of such information was first recognized in early 1950s. Analysis of urinary stones by various chemical methods, polarization microscopy, x-ray diffraction, porosity determination, solid phase NMR, and thermo analytical procedures have been widely used. Unfortunately, no one method is sufficient to provide all the clinically useful information about the structure and composition of the stones. Infrared spectroscopy can be considered a relatively new method of kidney stone analysis. It allows to identify any organic or inorganic molecules the constituents of kidney stones. So far this method had never been used to collect information about kidney stone component patterns in Lithuania. Since no epidemiological studies have been performed in this field, the medical treatment of kidney stone disease is empirical and often ineffective in hospitals around the country. The aim of this paper is to present some results of analysis of kidney stones extracted from local patients using FTIR spectroscopical microscopy.

  7. ALS 2883: Analysis of spectroscopic features

    NASA Astrophysics Data System (ADS)

    Silva, A. R.; Levenhagen, R. S.; Künzel, R.; Leister, N. V.

    2014-10-01

    ALS 2883 (RA 13^{h} 02^{m} 47^{s}, DEC -63^{o} 50' 08'', M_{v} 10.1) is the first known radio pulsar with an emission B-type companion system, discovered in 1992. The Be companion of ALS 2883 has all line profiles in the visible range in emission. This emission is a common hallmark among many Be stars, and this effect is thought to be due to the presence of a circumstellar environment. Also, the star is orbiting a X-ray source as has been detected by the XMM-Newton Science Operation Center. In this study, we present the observations of ALS 2883 made at the OPD/LNA 1.60 m telescope with the Coudé spectrograph in the range 4000 to 5000 Å and S/N simeq 200, performed in April 2011. First-order estimations of T_{eff} and log g parameters have been performed through Johnson's UBV and JHK photometric calibrations. Projected rotation velocity V sin i has been estimated through the mean of the first zeroes of the Fourier transforms of neutral helium rotation profiles adopting linear, quadratic and square-root limb-darkening laws. The physical conditions of the circumstellar envelope were estimated through the solution of the radiative transport equation assuming local thermodynamic equilibrium within a disk-shaped circumstellar environment with a Keplerian velocity field. The radiative transport equation is solved assuming the Roche model as a boundary condition in the circumstellar environment. Iterating the computations with a downhill-simplex algorithm, this analysis leads to a best solution for an envelope with T simeq 9500 K, gas density ? simeq 2 × 10^{-15} g.cm^{-3}, internal radius r_{i} simeq 8 R_{odot} and external radius r_e simeq 30 R_{odot}, rotating with V_{rot} simeq 140 km.s^{-1} and expanding with V_{exp} simeq 90 km.s^{-1}.

  8. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  9. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  10. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. PMID:25194320

  11. Optical trapping and binding in air: Imaging and spectroscopic analysis

    SciTech Connect

    Guillon, Marc; Stout, Brian

    2008-02-15

    We report on an experimental study of direct and spectroscopic imaging of optically trapped Mie droplets in air. The scattering of the trapping beams gives glare points at the droplets' azimuths. Spectroscopic measurements involving polarized light are performed to precisely determine both the droplet sizes and refraction index using Mie scattering theory. Experimental pictures are compared to rigorous numerical simulations. We also include some results on imaging of whispering gallery resonances and conclude with a brief discussion on the possibility of efficiently exciting whispering gallery resonances via radiative coupling.

  12. Spectroscopic Studies of Lithium in TFTR

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Mansfield, D. K.; Medley, S. S.; Ramsey, A. T.; Skinner, C. H.

    2000-10-01

    Lithium wall conditioning in TFTR enabled significantly improved plasma performance, including better confinement, higher Lawson triple product, and an extended plasma current range for supershot operation (2.7 MA vs 1.9 MA). Both injection of Li pellets and laser ablation from a pool of liquid Li were used. Spectroscopic measurements were used to estimate the lithium content of the plasma and correlate this content with plasma performance. Techniques used include measurement of VUV edge Li lines and modeling with MIST, core VUV charge-exchange lines, and imaging of visible Li light from the limiter using a TV and interference filters. Typical plasma concentrations of Li were 0.5 - 2 % of the electron density. Supershots with Li-conditioned walls had lower Z_eff values than those without Li by about 0.2.

  13. Spectroscopic and Electrochemical Analysis of Psychotropic Drugs

    PubMed Central

    Puzanowska-Tarasiewicz, H.; Misiuk, W.; Mielech-?ukasiewicz, K.; Ku?micka, L.

    2009-01-01

    Psychotropic drugs are an important family of compounds from a medical point of view. Their application in therapy requires methods for the determination in pharmaceutical dosage forms and body fluids. Several methods for their analysis have been reported in the literature. Among the methods, spectrophotometric and electrochemical are very useful for the determination of the drugs. Some of the spectrophotometric methods are based on the formation of the binary and ternary compounds with complexes of metals. The formed compounds are sparingly soluble in water, but quantitatively extracted from aqueous phase into organic solvents and the extracts are intensely colored and stable for a few days. These complexes have been employed in pharmaceutical analysis. The electrochemical procedures are very useful in determination of the psychotropic substances in pharmaceutical preparations. PMID:20177449

  14. Optical Multiplexing for High-Throughput Spectroscopic Analysis

    E-print Network

    Ahmed, Saadiah

    2012-05-03

    of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by SAADIAH GUL AHMED OPTICAL MULTIPLEXING FOR HIGH-THROUGHPUT SPECTROSCOPIC ANALYSIS Approved by: Research Advisor: Michael J. McShane Associaate... Advisor: Dr. Michael J. McShane Department of Biomedical Engineering Implantable optical biosensors are being developed as aids for medical monitoring. Such optical biosensors are analyzed for performance in dynamic sensor testing environment...

  15. A SPECTROSCOPIC ANALYSIS OF WHITE DWARFS IN THE KISO SURVEY

    SciTech Connect

    Limoges, M.-M.; Bergeron, P. E-mail: bergeron@astro.umontreal.c

    2010-05-10

    We present a spectroscopic analysis of white dwarfs found in the Kiso survey. Spectroscopic observations at high signal-to-noise ratio have been obtained for all DA and DB stars in the Kiso Schmidt ultraviolet excess survey (KUV stars). These observations led to the reclassification of several KUV objects, including the discovery of three unresolved DA+DB double-degenerate binaries. The atmospheric parameters (T{sub eff} and log g) are obtained from detailed model atmosphere fits to optical spectroscopic data. The mass distribution of our sample is characterized by a mean value of 0.606 M{sub sun} and a dispersion of 0.135 M{sub sun} for DA stars, and 0.758 M{sub sun} and a dispersion of 0.192 M{sub sun} for DB stars. Absolute visual magnitudes obtained from our spectroscopic fits allow us to derive an improved luminosity function for the DA and DB stars identified in the Kiso survey. Our luminosity function is found to be significantly different from earlier estimates based on empirical photometric calibrations of M{sub V} for the same sample. The results for the DA stars now appear entirely consistent with those obtained for the PG survey using the same spectroscopic approach. The space density for DA stars with M{sub V} {<=} 12.75 is 2.80 x 10{sup -4} pc{sup -3} in the Kiso survey, which is 9.6% smaller than the value found in the PG survey. The completeness of both surveys is briefly discussed.

  16. In situ spectroscopic studies in hydroformylation of olefins

    SciTech Connect

    Horvath, I.T.

    1995-12-01

    Since most hydroformylation (or oxo) processes are performed above atmospheric pressure, high pressure IR and NMR have been extensively for mechanistic studies. The initial goal of these studies is to develop a molecular snapshot of reactions which are part of or connected to the catalytic cycle. A generalized catalytic cycle and relevant spectroscopic opportunities will be described. The in situ spectroscopic data combined with other mechanistic information could lead to the design of novel catalyst system(s) targeting strict process requirements. The application of in situ IR and/or NMR will be demonstrated for cobalt and rhodium based catalyst systems modified by various phosphines.

  17. jSIPRO - analysis tool for magnetic resonance spectroscopic imaging.

    PubMed

    Jiru, Filip; Skoch, Antonin; Wagnerova, Dita; Dezortova, Monika; Hajek, Milan

    2013-10-01

    Magnetic resonance spectroscopic imaging (MRSI) involves a huge number of spectra to be processed and analyzed. Several tools enabling MRSI data processing have been developed and widely used. However, the processing programs primarily focus on sophisticated spectra processing and offer limited support for the analysis of the calculated spectroscopic maps. In this paper the jSIPRO (java Spectroscopic Imaging PROcessing) program is presented, which is a java-based graphical interface enabling post-processing, viewing, analysis and result reporting of MRSI data. Interactive graphical processing as well as protocol controlled batch processing are available in jSIPRO. jSIPRO does not contain a built-in fitting program. Instead, it makes use of fitting programs from third parties and manages the data flows. Currently, automatic spectra processing using LCModel, TARQUIN and jMRUI programs are supported. Concentration and error values, fitted spectra, metabolite images and various parametric maps can be viewed for each calculated dataset. Metabolite images can be exported in the DICOM format either for archiving purposes or for the use in neurosurgery navigation systems. PMID:23870172

  18. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have acquired more than 3000 256x256 images totaling nearly two gigabytes of data detailing the near-IR development of the impact sites of the S-L9 fragments on Jupiter. These data were obtained using the University of Rochester Imaging IR Camera at the cassegrain focus of the 92" at WIRO. The WIRO data set covers 8 days and is, to our knowledge, one of the most extensive observational records of the S-L/Jupiter encounter obtained by any ground-based telescope. This program benefitted from the compilation during these last few months of an upgrade to the data acquisition program at WIRO with support of this NASA contract.

  19. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  20. Hydrogen bonds in α-oxalic acid dihydrate-A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Murli, Chitra; Bhatt, H.; Sharma, Surinder M.

    2014-04-01

    We have carried out Raman spectroscopic studies on ?-oxalic acid dihydrate up to ˜15 GPa. Our data analysis indicates the occurrence of a phase transition across 2.2 GPa. The softening of O-H stretching mode, associated with water molecule, implies the strengthening of the O-H---O hydrogen bond and possible formation of hydronium ion.

  1. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  2. Spectroscopic and thermal study of Er-doped oxysulfide crystal powders

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín.; Balda, Rolindes; Barredo-Zuriarrain, Macarena; Merdrignac-Conanec, Odile; Hakmeh, Noha; García-Revilla, Sara; Arriandiaga, M. A.

    2015-03-01

    The present investigation explores the upconversion properties of Er3+- doped La2O2S crystal powder as well as its potentiality for anti-Stokes cooling. A detailed study of the wavelength and pumping power dependence of the spectroscopic properties and of the temperature field of samples with various erbium concentrations is presented. The analysis of both spectroscopic and thermal measurements shows that after a transient heating induced by the background absorption, cooling can be attained by means of anti-Stokes processes.

  3. Spectroscopic Study of the Polar BS Tri

    NASA Astrophysics Data System (ADS)

    Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Shugarov, S. Yu.

    2015-11-01

    We have analyzed the spectra of the cataclysmic variable BS Tri taken in September 2011 and August 2012 with the 6-m BTA SAO RAS telescope. The object's spectra exhibit a flat continuum with superimposed strong hydrogen Balmer, neutral and ionized helium emission lines. Our analysis of the line profiles has shown that they consist of several components that are formed in the accretion structure and on the irradiated red dwarf surface. The measured radial velocities of one of the components of the line forming in a spot on the red dwarf surface have allowed the parameters of the system to be estimated: M 1 = 0.75 ± 0.02 M ?, M 2 = 0.16 ± 0.01 M ?, q = 0.21 ± 0.02, and R L2 = 0.18 ± 0.02 R ?. The Doppler maps constructed from the emission lines show no disk accretion, defining the system as a polar.

  4. Spectroscopic Study of the Polar BS Tri

    NASA Astrophysics Data System (ADS)

    Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Shugarov, S. Yu.

    2015-11-01

    We have analyzed the spectra of the cataclysmic variable BS Tri taken in September 2011 and August 2012 with the 6-m BTA SAO RAS telescope. The object's spectra exhibit a flat continuum with superimposed strong hydrogen Balmer, neutral and ionized helium emission lines. Our analysis of the line profiles has shown that they consist of several components that are formed in the accretion structure and on the irradiated red dwarf surface. The measured radial velocities of one of the components of the line forming in a spot on the red dwarf surface have allowed the parameters of the system to be estimated: M1 = 0.75 ± 0.02 Msun, M2 = 0.16 ± 0.01 Msun, q = 0.21 ± 0.02, and RL2 = 0.18 ± 0.02 Rsun. The Doppler maps constructed from the emission lines show no disk accretion, defining the system as a polar.

  5. IR spectroscopic analysis of the new organic silver complex C13H13N4OAg

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2013-07-01

    IR analysis in the frequency range 400-4000 cm-1 is used here to investigate the changes in different modes of thermally treated new metal complex (diphenyl carbazide silver complex DPCAg, C13H13N4OAg) during the glass transition at 91 °C and the high temperature phase transition at 167 °C. These two phase transitions in this new metal compound are studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour, peak height and peak intensity) during the elevation of temperature. All of the vibrations of DPCAg were found to be due to ionic fundamentals 3311 cm-1, 3097 cm-1, 3052 cm-1, 1677 cm-1, 1602 cm-1, 1492 cm-1, 1306 cm-1, 1252 cm-1, 887 cm-1 and 755 cm-1. The results obtained can be considered as the first spectroscopic analysis of this new metal complex. These results strongly confirmed that the thermally treated DPCAg transverse a glass transition at 91 °C and a high temperature phase transition at 167 °C. Anomalous spectroscopic changes near the glass transition temperature Tg could be recorded. A temperature dependence of peak intensity of the two modes 810 cm-1 and 3440 cm-1 could be observed beyond Tg. Also, the high temperature phase modification at 167 °C showed anomalous change in the spectroscopic parameters before and after the phase transition process. A proposed silver position in the new silver complex DPCAg has been presented.

  6. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  7. Photoluminescence and vibrational spectroscopic studies on weathered uranium oxides

    NASA Astrophysics Data System (ADS)

    Eastwood, DeLyle; Martin, Jeffrey B.; Burggraf, Larry W.; Rand, Dennis S.; Zickafoose, Matthew S.; Perry, Dale L.

    1999-02-01

    Spectroscopic studies were performed both on uranium oxides as baseline and on uranium oxides artificially weathered under known laboratory conditions in air, varying humidity, carbon dioxide concentration, temperature and exposure to UV light. Spectroscopic techniques included photoluminescence and diffuse reflectance FTIR. Photoluminescence measurements were made using a Spex Fluorolog-3TM spectrofluorometer with phosphorimeter. FTIR measurements were made using a Bomem MB157 FTIR spectrophotometer with DTGS detector and approximately 450 cm-1 cut-off and a Graseby SelectorTM diffuse reflectance accessory with special cells and diamond dust as diluent and internal standard. Weathered-related reactions involving the uranium oxides that have been studied include oxidation and the formation of hydroxides and carbonates. Data are discussed with respect to both the reactions of the uranium oxides in the study and in context of reaction chemistry and mechanisms that have been previously documented. The results will be discussed in the context of environmental monitoring.

  8. Spectroscopic study of gamma irradiated bovine hemoglobin

    NASA Astrophysics Data System (ADS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-10-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in ?-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation.

  9. Benzamidoximes: structural, conformational and spectroscopic studies. I

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajendra M.; Brinn, Ira M.; Machuca-Herrera, Juan O.; Faria, Herbert B.; Carpenter, Gene B.; Andrade, Djalma; Venkatesh, Chittur G.; F. de Morais, Lécia P.

    1997-04-01

    The synthesis and properties of seven arylamidoximes are reported. 1H- and 13C-NMR studies and MO calculations were performed on all seven and an X-ray crystallographic determination was done on one, to determine their structure. The theoretical calculations were done using the AM1 and PM3 methods. From these results it is concluded that, for all of the arylamidoximes studied here, the NH 2 group of the amidoxime ( N-hydroxyamidine) has very little sp 2 character and the aryl ring is not coplanar with the amidoxime group. X-ray crystallographic data for p-chlorobenzamidoxime were compared with the theoretically calculated coordinates. It is interesting to note that, in crystals, the -NH 2 group is coplanar with the C?N bond and the aryl ring is out of the plane of the amidoxime group. Molecular mechanics (Biosym) calculations on benzamidoxime yielded better coordinates than either the AM1 or PM3 methods.

  10. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  11. Spectroscopic Study of Microwave Induced Plasma

    SciTech Connect

    Jovicevic, S.

    2004-12-01

    The results of the spatial distribution studies of electron densities, excitation and rotational temperatures and atomic line intensities of various elements in an atmospheric pressure mini-MIP torch with tangential argon flow. The electron number density, ne, is determined from the width of the hydrogen H{beta} 486.13 nm line while excitation temperature, Texc, is evaluated from the Boltzmann plot of relative line intensities either of carrier gas-argon or neutral iron that is introduced in the form of aerosols in MIP, The rotational temperatures, Trot, are determined from the relative intensities of OH (R2 and Q1 branch) electronic band A2{sigma} - X2{pi} (0,0) and to N{sub 2}{sup +} first negative system B{sup 2} {sigma}{sub u}{sup +} - X{sup 2} {sigma}{sub g}{sup +} (P branch). For the selected input power of 100 W, the influence of hydrogen in the wet and desolvated aerosols and support gas and the corresponding changes of the electron density, excitation and rotational temperature distributions are studied. The influence of potassium, low ionization potential element, to the spatial distribution of ne, Texc and Trot is studied also. Spatial intensity distributions and maximum intensities for investigate atomic line are determinate for the same conditions.

  12. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients ?2, ?2 and ?12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  13. Nonlinear spectroscopic studies of interfacial molecular ordering

    SciTech Connect

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  14. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  15. Spectroscopic analysis of vermicompost for determination of nutritional quality

    NASA Astrophysics Data System (ADS)

    Subhash Kumar, M.; Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2015-01-01

    Spectroscopic analysis has been carried out to examine the compost quality, maturity and nutritional levels of vermicompost and compost of Eichhornia. 50% Eichhorniacrassipes and 50% cow dung mixtures were vermicomposted using earthworms (Eudrilus eugeniae) and collected on different days' time intervals. Fourier transform infrared spectroscopy (FT-IR) spectra reveal the presence of humic substance from compost and vermicompost, which improves the soil fertility. Gas chromatography-mass spectroscopy (GC-MS) analysis shows maximum level of Benzene propanoic acid (95.98%) and by 2-Propanone, 1-Phenyl-, OXIM (10.10%) from vermicompost through earthworms activity. Atomic absorption spectroscopy (AAS) results reported high level of micronutrient from Eichhornia mediated compost and vermicompost.

  16. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  17. First spectroscopic study of {sup 22}Si

    SciTech Connect

    Blank, B.; Andriamonje, S.; Boue, F.; Czajkowski, S.; Del Moral, R.; Dufour, J.P.; Fleury, A.; Pourre, P.; Pravikoff, M.S.; Schmidt, K.; Hanelt, E.; Orr, N.A.

    1996-08-01

    In an experiment at the LISE3 facility of GANIL, we produced the proton-rich isotope {sup 22}Si by the fragmentation of a {sup 36}Ar primary beam at 95 MeV/nucleon. After implantation in a detector telescope, we studied the decay of {sup 22}Si via a measurement of charged particles emitted during the decay. The most important {beta}-delayed proton activity is observed at an energy of {ital E}{sub {ital p}} = (1.99{plus_minus}0.05) MeV with a branching ratio of (20{plus_minus}2){percent}. The spectra allow us also to determine the half-life of {sup 22}Si to be {ital T}{sub 1/2} = (29{plus_minus}2) ms. These results are compared with theoretical estimates and model predictions. {copyright} {ital 1996 The American Physical Society.}

  18. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI?Ag{sub 2}O?[(1?x)B{sub 2}O{sub 3}?xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup ?1} increase.

  19. Spectroscopic and quantum chemical studies on bromopyrazone

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Bahçeli, Semiha

    2014-12-01

    In this study, the FT-IR, micro-Raman and UV-vis. spectra of bromopyrazone molecule, C10H8BrN3O, (with synonym,1-phenyl-4-amino-5-bromopyridazon-(6) or 5-amino-4-bromo-2-phenyl-3(2H)-pyridazinone) were recorded experimentally. The molecular structure, vibrational wavenumbers, electronic transition absorption wavelengths in ethanol solvent, HOMOs and LUMOs analyses, molecular electrostatic potential (MEP), natural bond orbitals (NBO), nonlinear optical (NLO) properties and atomic charges of bromopyrazone molecule have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The obtained results show that the calculated vibrational frequencies and UV-vis. values are in a good agreement with experimental data.

  20. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.; Karabacak, M.; Asiri, A. M.; Swathi, Sushmita S.

    2015-02-01

    The thiosemicarbazone compound, salicylaldehyde p-chlorophenylthiosemicarbazone (abbreviated as SCPTSC) was synthesized by refluxing equimolar amounts of 4-(4-methyl phenyl)-3-thiosemicarbazide and salicylaldehyde in presence of one drop of conc. H2SO4 in ethanolic medium for one hour and recrystallised from alcohol. The SCPTSC was characterized by FT-IR, FT-Raman, UV spectroscopy and thermal analysis. By using density functional theory (DFT) using B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis sets, molecular geometry and vibrational frequencies were calculated and compared with the experimental data. The detailed interpretation of the vibrational spectra was carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The electronic dipole moment (?D) and the first hyperpolarizability (?tot) values of the investigated molecule were computed by using DFT/B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The stability and charge delocalization of the title molecule were studied by natural bond orbital (NBO) analysis. Mulliken population analysis on atomic charges is also calculated. The molecule orbital contributions were investigated by using the total density of states (TDOS), sum of ? and ? electron density of states (??DOS). Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  1. High Resolution Spectroscopic Study of $^{10}_?$Be

    E-print Network

    T. Gogami; C. Chen; D. Kawama; P. Achenbach; A. Ahmidouch; I. Albayrak; D. Androic; A. Asaturyan; R. Asaturyan; O. Ates; P. Baturin; R. Badui; W. Boeglin; J. Bono; E. Brash; P. Carter; A. Chiba; E. Christy; S. Danagoulian; R. De Leo; D. Doi; M. Elaasar; R. Ent; Y. Fujii; M. Fujita; M. Furic; M. Gabrielyan; L. Gan; F. Garibaldi; D. Gaskell; A. Gasparian; Y. Han; O. Hashimoto; T. Horn; B. Hu; Ed. V. Hungerford; M. Jones; H. Kanda; M. Kaneta; S. Kato; M. Kawai; H. Khanal; M. Kohl; A. Liyanage; W. Luo; K. Maeda; A. Margaryan; P. Markowitz; T. Maruta; A. Matsumura; V. Maxwell; A. Mkrtchyan; H. Mkrtchyan; S. Nagao; S. N. Nakamura; A. Narayan; C. Neville; G. Niculescu; M. I. Niculescu; A. Nunez; Nuruzzaman; Y. Okayasu; T. Petkovic; J. Pochodzalla; X. Qiu; J. Reinhold; V. M. Rodriguez; C. Samanta; B. Sawatzky; T. Seva; A. Shichijo; V. Tadevosyan; L. Tang; N. Taniya; K. Tsukada; M. Veilleux; W. Vulcan; F. R. Wesselmann; S. A. Wood; T. Yamamoto; L. Ya; Z. Ye; K. Yokota; L. Yuan; S. Zhamkochyan; L. Zhu

    2015-11-16

    A spectroscopy of a $^{10}_{\\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$^{-}$ and 2$^{-}$ states) was obtained to be B$_{\\Lambda}$=8.55$\\pm$0.07(stat.)$\\pm$0.11(sys.) MeV. The result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on Charge Symmetry Breaking (CSB) effect in the $\\Lambda N$ interaction.

  2. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wac?awska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  3. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  4. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  5. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  6. MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc

    SciTech Connect

    Gökay, G.; Gürol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ?}, 0.52 M {sub ?}, 1.87 R {sub ?}, and 0.48 R {sub ?}, respectively. All results are compared with previously published literature values and discussed.

  7. Evaluation of Salt Influence on Sugar Consumption by Suspension Cells Based on Spectroscopic Analysis

    PubMed Central

    Kameoka, Takaharu; Hashimoto, Atsushi

    2013-01-01

    The influence of metal salt on sugar consumption by suspension cells in food models constructed by a sugar and salt aqueous solution was investigated based on mid-infrared spectroscopic analysis. The contaminated suspension cells in the food model could be detected using the spectral feature change that measured the present spectrum subtracted in the initial spectrum. The cells were prepared for growth and although the cell did not grow under the induction period, the cell activation (start of sugar metabolism) was detected on the subtracted spectral behavior before the cell growth. The rough grasp of the spectral change behavior is useful for the high-throughput spectroscopic method to detect the contaminated cell activation. Furthermore, the detailed sugar consumption kinetics of the cells was also investigated based on the spectroscopic method. The kind of added salt in the food model influenced the cell activation and the potassium ions play an important role in the plant cells. The living cells activity in fresh food may act to prevent microbial contamination and to suppress the growth of the contaminated microorganism. Both the simple and detailed analyses based on the spectroscopic method presented in this study might be useful for risk management of food. PMID:24490105

  8. Microscopic and spectroscopic analysis of chitosan-DNA conjugates.

    PubMed

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-02-10

    Conjugations of DNA with chitosans 15kD (ch-15), 100kD (ch-100) and 200kD (ch-200) were investigated in aqueous solution at pH 5.5-6.5. Multiple spectroscopic methods and atomic force microscopy (AFM) were used to locate the chitosan binding sites and the effect of polymer conjugation on DNA compaction and particle formation. Structural analysis showed that chitosan-DNA conjugation is mainly via electrostatic interactions through polymer cationic charged NH2 and negatively charged backbone phosphate groups. As polymer size increases major DNA compaction and particle formation occurs. At high chitosan concentration major DNA structural changes observed indicating a partial B to A-DNA conformational transition. PMID:26686122

  9. Spectroscopic Study of Massive and Evolved Systems at z>3

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang; Mobasher, Bahram; Candels

    2015-01-01

    We present the results of our deep Keck/DEIMOS spectroscopic observation of massive and evolved galaxies at z>3 selected from deep HST/WFC3 observations by CANDELS and identified based on the strength of the Balmer break (Balmer Break Galaxies or BBGs). We spectroscopically confirm the existence of such systems at high redshifts. The very presence of these galaxies provides a significant challenge for scenarios of galaxy formation (e.g. CDM). We stack the spectra of the BBGs and compare it to the stacked spectrum of star forming Lyman Break Galaxies and Lyman Alpha Emitters at similar redshifts. The stacked spectrum of BBGs shows much stronger metal absorption features with equivalent widths that are several times larger than the LBG selected star forming systems. This seems to indicate that the passive systems are less dominated by outflows that are characteristics of star forming systems at high redshifts. Studying the photometrically derived properties of these systems we see that the spectroscopic trends agree well with the SED inferred age and SSFRs for this population.

  10. Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-01

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (?-helix, ?-sheet and ?-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm-1, confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots.

  11. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  12. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  13. Effects of essential oil treatments on the secondary protein structure of Vicia faba: a mid-infrared spectroscopic study supported by two-dimensional correlation analysis.

    PubMed

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-25

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (?-helix, ?-sheet and ?-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm(-1), confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots. PMID:25203214

  14. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  15. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  16. Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO-LUMO analysis and molecular docking study of Opipramol

    NASA Astrophysics Data System (ADS)

    Mary, Y. Sheena; Panicker, C. Yohannan; Kavitha, C. N.; Yathirajan, H. S.; Siddegowda, M. S.; Cruz, Sandra M. A.; Nogueira, Helena I. S.; Al-Saadi, Abdulaziz A.; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-02-01

    FT-IR and FT-Raman spectra of Opipramol were recorded and analyzed. SERS spectrum was recorded in silver colloid. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy distribution was done using GAR2PED program. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The presence of CH2 stretching modes in the SERS spectrum indicates the close of piperazine ring with the metal surface and the interaction of the silver surface with this moiety. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The inhibitor Opipramol forms a stable complex with P4502C9 as is evident from the ligand-receptor interactions and a -9.0 kcal/mol docking score and may be an effective P4502C9 inhibitor if further biological explorations are carried out.

  17. Spectroscopic Analysis of the Supergiant Star HD 54605

    NASA Astrophysics Data System (ADS)

    Peña, L.; Rosenzweig, P.; Guzmán, E.; Hearnshaw, J.

    2009-05-01

    The main purpose of the present study is to analyze a high resolution spectrum of the supergiant star HD 54605, obtained in the year 2003, with a CCD coupled with the spectrograph HERCULES, attached to the 1m reflector telescope of Mt. John Observatory of the University of Canterbury (New Zealand). This spectrum covers the region ?? ? 4505-7080Å, with R = 41000 and a dispersion of ? 2Å/mm. According to previous spectroscopic observations, of low dispersion, the radial velocity of this star showed that it does not vary in periods of time relatively short. Until the present, we have identified five hundred photospheric lines, from which, with no doubt, we will obtain a satisfactory result that will give an important contribution to the database of the values of the radial velocity of HD 54605. We observe that H?, shows a relatively wide and deep profile and is in complete absorption.

  18. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  19. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results. PMID:25448933

  20. Continuous spectroscopic analysis of vanadous and vanadic ions

    SciTech Connect

    Bishop, J.V.; Dutcher, R.A.; Fisher, M.S.; Kottle, S.; Stowe, R.A.

    1993-10-01

    Spectroscopic methods were investigated for the determination of vanadium ions in aqueous solutions arising in the production of vanadium (11) formate and its use in the LOMI (Low Oxidation-state Metal Ion) process for the chemical decontamination of systems in nuclear power plants. In the LOMI process, a dilute solution of vanadous formate and picolinic acid is used. The vanadous formate n reduces metal oxides in the scale on the equipment, causing the scale to break up and become suspended. The picolinic acid chelates these materials and makes them soluble. During the decontamination the progress is followed by analyses of the metal ions and of the radioactivity. When the values stop increasing, the decontamination is terminated. At present, it cannot be determined if the values are no longer changing due to all the scale being removed or due to the vanadous ion being spent. Infrared and ultraviolet-visible analysis were investigated as the means of analyzing for vanadium species. It was found that the complex formed by V(II) with picolinic acid could be used for colorimetric analysis for V(II) in the range of 0 {minus} 0.011 moles/liter, which encompasses the concentration range used in the LOMI process. The findings will be used to develop an on-line instrument for continuously monitoring V(II) during decontamination.

  1. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    PubMed

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (?0) and related properties (?, ?0 and ??) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. PMID:24813291

  2. Study of ^152Sm by Multiple Spectroscopic Methods

    NASA Astrophysics Data System (ADS)

    Garrett, Paul; Kulp, W. D.; Wood, J. L.

    2004-10-01

    The nucleus ^152Sm is characterized by a variety of low-energy collective modes, conventionally described as rotations, ? vibrations, and ? vibrations. Recently, it has been suggested that ^152Sm is at a critical point between collective phases (see [1] for a summary of the conflicting views). It is evident that published spectroscopic data for ^152Sm are inadequate to choose between the various theoretical descriptions. Consequently, ^152Sm is being studied by radioactive decay [2], multi-step Coulomb excitation [3], in-beam (?, 2n ?) ?-ray spectroscopy, and (n, n' ?) spectroscopy. The status of these coordinated studies will be reviewed. Emerging spectroscopic details do not appear to support vibrational degrees of freedom. [1] R. M. Clark et al., Phys. Rev. C 67, 041302(R) (2003).l [2] J. L. Wood et al., BAPS 47, no. 6, p. 81, GE 5 (2002).l [3] W. D. Kulp et al., BAPS 47, no. 6, p. 93, HD 2 (2002); ibid. 48 no. 8, p. 70, DF 12 (2003).l

  3. A Spectroscopic Analysis of the K0 III Binary ? Cygin

    NASA Astrophysics Data System (ADS)

    Gray, David F.

    2015-09-01

    Spectroscopic observations of ? Cyg (K0 III) taken over 12 seasons from 1999 to 2010 with a resolving power ˜100,000 are analyzed for radial velocities, granulation properties, and projected rotation rate. The new radial velocities, which are on an absolute velocity scale with convective blueshifts removed, contribute to the determination of the 55-year orbit parameters, but are insufficient to be definitive. Line-depth ratios show photospheric temperature variations amounting to ˜4 K, likely arising from a magnetic cycle. A small velocity variation, ˜100 m s-1, may mimic the temperature variations. Fourier analysis of the line broadening yields the projected rotation rate v sin i = 1.0 ± 0.2 and macroturbulence dispersion {\\zeta }{RT} = 4.45 ± 0.05 km s-1. A possible rotation modulation in velocity with a period of ˜1.5 years is noted. The third signature of granulation, i.e., greater blueshifts for weaker lines, is measured and indicates a photospheric velocity gradient in ? Cyg that is 1.1 ± 0.1 times the Sun's, which is consistent with previously measured K giants. Mapping the line bisector of the Fe i ?6253 line on to the third-signature plot results in a flux deficit with a maximum 4.9 km s-1 redward of the line core and an amplitude of 16.5% ± 0.5% of the core depth, values typical of K giants. A 145 K disk-averaged temperature difference between granules and lanes is implied.

  4. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  5. Spectroscopic studies of carbon impurities in PISCES-A

    SciTech Connect

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W. . Inst. of Plasma and Fusion Research); Pospieszczyk, A. . Inst. fuer Plasmaphysik)

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and CO{sub 2} were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab.

  6. Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO-LUMO of midodrine by using density functional methods.

    PubMed

    Shahidha, R; Al-Saadi, Abdulaziz A; Muthu, S

    2015-01-01

    The FTIR (4000-400 cm(-1)), FT-Raman (4000-100 cm(-1)) and UV-Visible (400-200 nm) spectra of midodrine were recorded in the condensed state. The complete vibrational frequencies, optimized geometry, intensity of vibrational bands and atomic charges were obtained by using Density Functional Theory (DFT) with the help of 6-311++G(d,p) basis set. The first order hyperpolarizability (?) and related properties (?, ? and ??) of this molecular system were calculated by using DFT/6-311++G(d,p) method based on the finite-field approach. The assignments of the vibrational spectra have been carried out with the help of Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force methodology. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, oscillator strength and wavelength are calculated by DFT in water and gas methods using 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies confirm that charge transfer occurs within the molecule. Besides MEP, NLO and thermodynamic properties were also calculated and interpreted. The electron density-based local reactivity descriptor such as Fukui functions was calculated to explain the chemical selectivity or reactivity site in midodrine. PMID:25011041

  7. Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO-LUMO of midodrine by using density functional methods

    NASA Astrophysics Data System (ADS)

    Shahidha, R.; Al-Saadi, Abdulaziz A.; Muthu, S.

    2015-01-01

    The FTIR (4000-400 cm-1), FT-Raman (4000-100 cm-1) and UV-Visible (400-200 nm) spectra of midodrine were recorded in the condensed state. The complete vibrational frequencies, optimized geometry, intensity of vibrational bands and atomic charges were obtained by using Density Functional Theory (DFT) with the help of 6-311++G(d,p) basis set. The first order hyperpolarizability (?) and related properties (?, ? and ??) of this molecular system were calculated by using DFT/6-311++G(d,p) method based on the finite-field approach. The assignments of the vibrational spectra have been carried out with the help of Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force methodology. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, oscillator strength and wavelength are calculated by DFT in water and gas methods using 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies confirm that charge transfer occurs within the molecule. Besides MEP, NLO and thermodynamic properties were also calculated and interpreted. The electron density-based local reactivity descriptor such as Fukui functions was calculated to explain the chemical selectivity or reactivity site in midodrine.

  8. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  9. MULTI-OBJECTIVE SPECTROSCOPIC DATA ANALYSIS OF INERTIAL CONFINEMENT FUSION IMPLOSION CORES

    E-print Network

    Louis, Sushil J.

    MULTI-OBJECTIVE SPECTROSCOPIC DATA ANALYSIS OF INERTIAL CONFINEMENT FUSION IMPLOSION CORES: PLASMA Sciences, Madison, Wisconsin d Institute of Laser Engineering, Osaka University, Osaka, Japan e Lawrence of Laser Engineering, Japan) and OMEGA (Laboratory for Laser Energetics, USA) laser systems

  10. Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to

    E-print Network

    Boxer, Steven G.

    Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain. PLoS ONE 7(4): e29828. doi:10.1371/journal

  11. Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone.

    PubMed

    Balachandran, V; Karpagam, V; Revathi, B; Kavimani, M; Ilango, G

    2015-11-01

    Natural product drugs play a dominant role in pharmaceutical care. Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organism and micro-organism. A antifungal activity against important opportunist micro-organism and against those involved in superficial mycosis, all from nosocomial origin. The acute in vitro cytotoxicity evaluation of each anthraquinone (AQ) isolated from these bioactive extracts, on a mammalian eukaryotic cell line (Vero cells), allowed us to establish the non-cytotoxic concentration range, which was used to evaluate the anti-microbial effect. A comprehensive ab initio calculation using the DFT/6-31+G(d) level theory showed that 2-(hydroxymethyl)anthraquinone can exist in four possible conformations, which can interchange through the OH group on the five-membered ring. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode, assignments. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor accepter interaction. The Fourier transform infrared spectra (4000-400 cm(-1)) and the Fourier transform Raman spectra (3500-100 cm(-1)) of the HMA in the solid space have been recorded. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The calculated ESP contour map shows the electrophilic and nucleophilic region of the molecule. PMID:26093112

  12. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  13. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  14. Spectroscopic analysis of the intrinsic chromophores within small multidrug resistance protein SugE.

    PubMed

    Bay, Denice C; Turner, Raymond J

    2011-09-01

    Small multidrug resistance (SMR) protein family member, SugE, is an integral inner membrane protein that confers host resistance to antiseptic quaternary cation compounds (QCC). SugE studies generally focus on its resistance to limited substrates in comparison to SMR protein EmrE. This study examines the conformational characteristics of SugE protein in two detergents, sodium dodecyl sulphate (SDS) and dodecyl maltoside (DDM), commonly used to study SMR proteins. The influence of cetylpyridinium (CTP) and cetrimide (CET) using SugE aromatic residues (4W, 2Y, 1F) as intrinsic spectroscopic probes was also determined. Organically extracted detergent solubilized Escherichia coli SugE protein was examined by SDS-Tricine PAGE and various spectroscopic techniques. SDS-Tricine PAGE analysis of SugE in either detergent demonstrates the protein predominates as a monomer but also dimerizes in SDS. Far-UV region circular dichroism (CD) analysis determined that the overall ?-helix content SugE in SDS and DDM was almost identical and unaltered by QCC. Near-UV region CD, fluorescence, and second-derivative ultraviolet absorption (SDUV) indicated that only DDM-SugE promoted hydrophobic environments for its Trp and Tyr residues that were perturbed by QCC addition. This study identified that only the tertiary structure of SugE protein in DDM is altered by QCC. PMID:21600871

  15. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  16. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGESBeta

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; et al

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore »corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  17. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  18. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    PubMed Central

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-01-01

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. This demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects. PMID:26160318

  19. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  20. Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

    E-print Network

    Schmitt, K. T.; Jones, K. L.; Bey, A.; Ahn, S.; Bardayan, D. W.; Bardayan, D. W.; Blackmon, J. C.; Brown, S. M.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Hahn, K. I.; Kolata, J. J.; Kozub, R. L.; Liang, J. F.; Matei, C.; Matoš, M.; Matyas, D.; Moazen, B.; Nesaraja, C.; Wilson, Graham Wallace

    2012-05-08

    Halo Nucleus 11Be: A Spectroscopic Study via Neutron Transfer K. T. Schmitt,1,2 K. L. Jones,1 A. Bey,1 S. H. Ahn,1 D.W. Bardayan,2 J. C. Blackmon,3 S.M. Brown,4 K.Y. Chae,5,2,1 K. A. Chipps,6 J. A. Cizewski,7 K. I. Hahn,8 J. J. Kolata,9 R. L. Kozub,10 J..., 014611 (2010). [25] J. R. Beene, D.W. Bardayan, A. Galindo Uribarri, C. J. Gross, K. L. Jones, J. F. Liang, W. Nazarewicz, D.W. Stracener, B. A. Tatum, and R. L. Varner, J. Phys. G 38, 024002 (2011). [26] D.W. Bardayan et al., Phys. Rev. C 63, 065802...

  1. Planetary atmospheres: Microwave spectroscopic studies of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd

    1991-01-01

    Ground-based spectroscopic observations of isotopes of CO in the atmospheres of Mars, Venus, and Titan have been collected over the 1982-1990 period. These observations have been analyzed to obtain information on the photochemistry, dynamics, and thermal profiles of these planetary atmospheres. In the cases of the mesosphere (80-100 km altitude) of Venus and the lower atmosphere (0-70 km altitude) of Mars, the primary conclusion of this research is that significant interannual variations in the global thermal and compositional structures of these atmospheres occur over 10 year periods. The Titan studies have focussed on pinning down the true atmospheric CO abundance. A more detailed summary of the results for each of these planetary atmospheres is provided.

  2. Mössbauer spectroscopic analysis and temperature dependent electrical study of Mg0.9Mn0.1GdyFe2-yO4 nanoferrites

    NASA Astrophysics Data System (ADS)

    Kumar, Gagan; Shah, Jyoti; Kotnala, R. K.; Singh, Virender Pratap; Dhiman, Meenakshi; Shirsath, Sagar E.; Shahbuddin, M.; Batoo, Khalid M.; Singh, M.

    2015-09-01

    Mg-Gd-Mn nanoferrites with formulae Mg0.9Mn0.1GdyFe2-yO4, where y=0.05, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The dc resistivity was observed to decrease with the increase in temperature. Dielectric constant (??) and loss tangent (tan ?) have been found to be increasing with an increase in temperature while with an increase in frequency both have been found to be decreasing. The ac electrical conductivity (?ac) has been studied as a function of temperature at different frequencies and has been observed to be increasing with the increase in temperature. The Mössbauer spectroscopy has been carried out so as to authenticate our previously reported results on the super-exchange interactions.

  3. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  4. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  5. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  6. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization.

    PubMed

    Selvaraju, R; Raja, A; Thiruppathi, G

    2015-02-25

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques. PMID:25306135

  7. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis.

    PubMed

    Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen

    2015-11-01

    Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models. PMID:26041453

  8. Theoretical DFT study on spectroscopic signature and molecular dynamics of neurotransmitter and effect of hydrogen removal

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Singh, N. P.; Yadav, R. A.

    2013-04-01

    Vibrational spectroscopic study has been made for the serotonin molecule and its deprotonated form. The Infrared and Raman spectra in optimum geometry of these two molecules are calculated using density functional theorem and the normal modes are assigned using potential energy distributions (PEDs) which are calculated using normal coordinate analysis method. The vibrational frequencies of these two molecules are reported and a comparison has been made. The effect of removal of the hydrogen atom from the serotonin molecule upon its geometry and vibrational frequencies are studied. Electronic structures of these two molecules are also studied using natural bond orbital (NBO) analysis. Theoretical Raman spectrum of serotonin at different exciting laser frequencies and at different temperatures are obtained and the results are discussed. Present study reveals that some wrong assignments had been made for serotonin molecule in earlier study.

  9. Structural and spectroscopic studies of a model for catechol oxidase.

    PubMed

    Smith, Sarah J; Noble, Christopher J; Palmer, Randahl C; Hanson, Graeme R; Schenk, Gerhard; Gahan, Lawrence R; Riley, Mark J

    2008-05-01

    A binuclear copper complex, [Cu2(BPMP) (OAc)2][ClO4] x H2O, has been prepared using the binucleating ligand 2,6-bis[bis(pyridin-2-ylmethylamino)methyl]-4-methylphenol (H-BPMP). The X-ray crystal structure reveals the copper centers to have a five-coordinate square pyramidal geometry, with the acetate ligands bound terminally. The bridging phenolate occupies the apical position of the square-based pyramids and magnetic susceptibility, electron paramagnetic resonance (EPR) and variable-temperature variable-field magnetic circular dichroism (MCD) measurements indicate that the two centers are very weakly antiferromagnetically coupled (J = -0.6 cm(-1)). Simulation of the dipole-dipole-coupled EPR spectrum showed that in solution the Cu-O-Cu angle was increased from 126 degrees to 160 degrees and that the internuclear distance was larger than that observed crystallographically. The high-resolution spectroscopic information obtained has been correlated with a detailed ligand-field analysis to gain insight into the electronic structure of the complex. Symmetry arguments have been used to demonstrate that the sign of the MCD is characteristic of the tetragonally elongated environment. The complex also displays catecholase activity (k(cat) = 15 +/- 1.5 min(-1), K(M) = 6.4 +/- 1.8 mM), which is compared with other dicopper catechol oxidase models. PMID:18188615

  10. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Sharma, A.; Ku?, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  11. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  12. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    E-print Network

    of several processes. Due to its high productivity, gas metal arc welding (GMAW) is one of the most commonlyStudy of the spray to globular transition in gas metal arc welding: a spectroscopic investigation of the spray to globular transition in gas metal arc welding: a spectroscopic investigation F Valensi1

  13. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.

    2014-03-01

    The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.

  14. Spectroscopic Studies of R(+)-?-Lipoic Acid—Cyclodextrin Complexes

    PubMed Central

    Ikuta, Naoko; Tanaka, Akira; Otsubo, Ayako; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Terao, Keiji; Matsugo, Seiichi

    2014-01-01

    ?-Lipoic acid (ALA) has a chiral center at the C6 position, and exists as two enantiomers, R(+)-ALA (RALA) and S(?)-ALA (SALA). RALA is naturally occurring, and is a cofactor for mitochondrial enzymes, therefore playing a major role in energy metabolism. However, RALA cannot be used for pharmaceuticals or nutraceuticals because it readily polymerizes via a 1,2-dithiolane ring-opening when exposed to light or heat. So, it is highly desired to find out the method to stabilize RALA. The purpose of this study is to provide the spectroscopic information of stabilized RALA and SALA through complexation with cyclodextrins (CDs), ?-CD, ?-CD and ?-CD and to examine the physical characteristics of the resultant complexes in the solid state. The RALA-CD structures were elucidated based on the micro fourier transform infrared (FT-IR) and Raman analyses. The FT-IR results showed that the C=O stretching vibration of RALA appeared at 1717 cm?1 and then shifted on formation of the RALA-CD complexes. The Raman spectra showed that the S–S and C–S stretching vibrations for RALA at 511 cm?1 (S–S), 631 cm?1 (C–S) and 675 cm?1 (C–S) drastically weakened and almost disappeared upon complexation with CDs. Several peaks indicative of O–H vibrations also shifted or changed in intensity. These results indicate that RALA and CDs form host-guest complexes by interacting with one another. PMID:25387076

  15. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-01

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 ?m feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 ?m fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. PMID:26117194

  16. Spectroscopic Study on the Beryllium Abundances of Red Giant Stars

    E-print Network

    Takeda, Yoichi

    2014-01-01

    An extensive spectroscopic study was carried out for the beryllium abundances of 200 red giants (mostly of late G and early K type), which were determined from the near-UV Be II 3131.066 line based on high-dispersion spectra obtained by Subaru/HDS, with an aim of investigating the nature of surface Be contents in these evolved giants; e.g., dependence upon stellar parameters, degree of peculiarity along with its origin and build-up timing. We found that Be is considerably deficient (to widely different degree from star to star) in the photosphere of these evolved giants by ~1-3 dex (or more) compared to the initial abundance. While the resulting Be abundances (A(Be)) appear to weakly depend upon T_eff, log g, [Fe/H], M, age, and v_sin i, this may be attributed to the metallicity dependence of A(Be) coupled with the mutual correlation between these stellar parameters, since such tendencies almost disappear in the metallicity-scaled Be abundance ([Be/Fe]). By comparing the Be abundances (as well as their correl...

  17. Comparative spectroscopic analysis of urinary calculi inhibition by Larrea Tridentata infusion and NDGA chemical extract

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia

    2012-10-01

    In the present comparative spectroscopic study we try to understand calcium oxalate kidney stone formation as well as its inhibition by using a traditional medicine approach with Larrea Tridentata (LT) herbal extracts and nordihydroguaiaretic acid (NDGA), which is a chemical extract of the LT bush. The samples were synthesized without and with LT or NDGA using a simplified single diffusion gel growth technique. While the use of infusion from LT decreases the sizes of calcium oxalate crystals and also changes their structure from monohydrate for pure crystals to dihydrate for crystals grown with different amounts of inhibitor, both Raman and infrared absorption spectroscopic techniques, which are the methods of analysis employed in this work, reveal that NDGA is not responsible for the change in the morphology of calcium oxalate crystals and does not contribute significantly to the inhibition process. The presence of NDGA slightly affects the structure of the crystals by modifying the strength of the C-C bonds as seen in the Raman data. Also, the current infrared absorption results demonstrate the presence of NDGA in the samples through a vibrational line that corresponds to the double bond between carbon atoms of the ester group of NDGA.

  18. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Su?kowska, A.; Maci??ek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Su?kowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms ?-? complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  19. Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3,4,5-triol by DFT methods.

    PubMed

    Isac Paulraj, E; Muthu, S

    2013-05-01

    This work presents the characterization of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol (abbreviated as HEHMPT) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and UV-Vis techniques. The FT-IR spectrum (4000-400 cm(-1)) and FT-Raman spectrum (4000-100 cm(-1)) in solid phase was recorded for HEHMPT. The UV-Vis absorption spectrum of the HEHMPT that dissolved in water was recorded in the range of 100-400 nm. The structural and spectroscopic data of the molecule were obtained from B3LYP and M06-2X with 6-31G(d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the normal co-ordinate analysis (NCA), experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. The stable geometry of the compound has been determined from the potential energy surface scan. The stability of molecule has been analyzed by NBO analysis. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The electronic properties like UV spectral analysis and HOMO-LUMO energies were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions taking place within the molecule. Mulliken population analysis on atomic charges is also calculated. PMID:23454843

  20. Image tube spectroscopic studies of rapid variables. IV - Spectroscopic and photometric observations of AE Aquarii

    NASA Technical Reports Server (NTRS)

    Chincarini, G.; Walker, M. F.

    1981-01-01

    Photoelectric and time-resolved spectroscopic observations of the short-period eruptive binary AE Aqr are presented. The system has a period of 0.4116537 days, and emission and absorption-line components equal to 135 km/sec and 159 km/sec, respectively. The spectral type of the absorption-line component is found to be K5V, from which M1 = 0.82 solar mass, M2 = 0.69 solar mass, and i = 64 deg. A predominantly Ca II emission region occurs on the hemisphere of the K5V star facing the broad emission-line component, whose center of light is located 0.64 of the way from the inner Lagrangian point to the center of mass of the K star. This emission appears to be associated with the transfer of mass from the K5V star to the accretion disk surrounding the primary. In the absence of flare activity, the light of the system is variable in the orbital period with a range in V of about 0.16 mag; maxima occurs near the times of maximum recession velocity and during the approach of each of the two components of the system (0.25 P and 0.80 P).

  1. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  2. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. PMID:26529636

  3. Near IR Spectroscopic Analysis of Molecular Hydrogen in the Dumbbell Nebula (NGC 6853)

    NASA Astrophysics Data System (ADS)

    Baldridge, Sean; Speck, A.; Matsuura, M.

    2014-01-01

    We present Ks band (1.98-2.32 ?m) spectroscopic analysis of several distinct regions in the Dumbbell Nebula specifically focusing on molecular hydrogen (H2) ro-vibrational lines which dominate the near-IR spectrum. Four H2 lines are observed; corresponding to the H2 transitions v = 1 ? 0 S(0), S(1), S(2) and v = 2 ? 1 S(1). In order to determine the mechanisms behind the H2 emission; specifically between PDR and shock excitation, line ratios are used to estimate both rotational and vibrational excitation temperatures of the H2. Several morphologically and positionally distinct regions of H2 emission are observed and compared in order to determine any differences between excitation mechanisms within the nebula. In order to build a more complete model of planetary nebulae (PNe), all observations are compared to previous H2 studies of other PNe - specifically the Helix and Ring nebulae.

  4. Molecular spectroscopic analysis of nano-chitosan blend as biosensor

    NASA Astrophysics Data System (ADS)

    Ibrahim, Medhat; Mahmoud, Abdel Aziz; Osman, Osama; Refaat, Ahmed; El-Sayed, El-Sayed M.

    2010-11-01

    Chitosan/starch and chitosan/gelatin of different ratios were prepared following casting method. FTIR results indicate the formation of hydrogen bonding which dedicates the prepared blends for interaction with wide range of molecules specially those of NH 2 and COOH terminals. The results obtained with molecular modeling PM3 model are in agreement with spectroscopic data. As a result of increasing starch and gelatin in chitosan blends HOMO-LUMO energy slightly decreased while total dipole moment increased. UV-vis spectroscopy indicated the suitability of chitosan/starch blend as a glycine sensor. Further enhancement in the sensing performance of chitosan/starch blend was achieved by introducing 5 nm TiO 2 into the blend.

  5. Investigation on interaction of prulifloxacin with pepsin: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of ? G0 reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  6. Fluorescence excitation spectroscopic study of the jet-cooled acetyl cyanide

    E-print Network

    Kim, Sang Kyu

    Fluorescence excitation spectroscopic study of the jet-cooled acetyl cyanide Min-Chul Yoon, Young S. Choi, and Sang Kyu Kima) Department of Chemistry, Inha University, Inchon (402-751), Republic of Korea

  7. Infrared spectroscopic study of rovibrational states of methane trapped in parahydrogen crystal

    E-print Network

    Oka, Takeshi

    observed by using Fourier transform infrared and high resolution laser spectroscopy. The observed spectrum infrared ab- sorption and stimulated Raman gain spectroscopic studies on solid parahydrogen have been made

  8. The electronic structure of pyracene: a spectroscopic and computational study.

    PubMed

    Auerswald, Johannes; Engels, Bernd; Fischer, Ingo; Gerbich, Thiemo; Herterich, Jörg; Krueger, Anke; Lang, Melanie; Schmitt, Hans-Christian; Schon, Christof; Walter, Christof

    2013-06-01

    We report a synthetic, spectroscopic and computational study of the polycyclic aromatic molecule pyracene, which contains aliphatic five-membered rings annealed to a naphthalene chromophore. An improved route to synthesize the compound is described. Gas-phase IR and solid-state Raman spectra agree with a ground-state D2h structure. The electronically excited S1 A(1)B3u state has been studied by resonance-enhanced multiphoton ionisation. An adiabatic excitation energy T0 = 30,798 cm(-1) (3.818 eV) was determined. SCS-ADC(2) calculations found a D2h minimum energy structure of the S1 state and yielded an excitation energy of +3.98 eV, including correction for zero point vibrational energy. The spectrum shows a rich low-frequency vibrational structure that can be assigned to the overtones of out-of-plane deformation modes of the five-membered rings by comparison with computations. The appearance of these modes as well as the frequency reduction in the excited state indicate that the potential in the S1 state is very flat. At higher excess energies most bands can be assigned to fundamentals, overtones and combination bands of either totally symmetric ag modes or of b2g modes that appear due to vibronic coupling. Lifetimes between 43 ns and 76 ns were measured for a number of vibronic bands. For the S2 state an equilibrium geometry with a non-planar carbon framework was computed. In addition a signal from the pyracene dimer was present. The spectrum shows several broad and structureless transitions. The origin band has a maximum at around 329 nm (30,400 cm(-1)). Again lifetimes between 60 ns and 70 ns were found. The dimer ion signal rises within less than 10 ps. Computations show that a crossed geometry with the long axis of one unit aligned with the short axis of the second constitutes the most stable structure. The broadening of the bands is most likely caused by excimer formation. PMID:23598438

  9. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of ?-UO3, ?-UO3, ?-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  10. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopic studies

    SciTech Connect

    Chowdhury, Anirban; Bould, Jonathan; Londesborough, Michael G.S.; Milne, Steven J.

    2011-02-15

    A study on the effects of prolonged heating under reflux conditions of up to 70 h on alkoxides of sodium, potassium and niobium dissolved in 2-methoxyethanol for the synthesis of sols of composition Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) has been carried out using combined thermogravimetric-Fourier transform infrared spectroscopic analyses. Extended refluxing increases the homogeneity of the Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) system. Spectroscopic analyses on the non-refluxed and 70 h refluxed NKN gels reveal the existence of inorganic hydrated carbonates and bicarbonates, which we propose arise from the hydration and carbonation of the samples on standing in air. The X-ray diffraction patterns of these two types of gels show orthorhombic NKN phase evolutions at higher temperatures. -- Graphical abstract: Total organic evolution plots over time for NKN dried gels obtained under different refluxing times show different thermochemical behaviours and these were investigated by thermal and spectroscopic analysis tools to find a correlation between the extent of -M-O-M- chain link formation and the amount of solvent vapour (methoxyethanol) evolution. Display Omitted Research highlights: > Prolonged refluxing of sol-gel NKN precursor solutions improves final properties of an NKN system. > An NKN process thermo-chemistry with thermal and spectroscopic analysis tools was explored. > An FTIR of NKN gels reveals tendency of NKN systems for rehydration and recarbonation on standing.

  11. Spectroscopic ellipsometry study of novel nanostructured transparent conducting oxide structures

    NASA Astrophysics Data System (ADS)

    Khosroabadi, Akram A.; Norwood, R. A.

    2013-02-01

    Spectroscopic ellipsometry has been used to find the optical constants, including refractive index, extinction coefficient, thickness and volume fraction of nanostructured transparent conducting oxides including indium tin oxide (ITO) and indium zinc oxide (IZO). We observed sharp features in the ellipsometry data, with the spectral peaks and positions depending on the nanostructure dimensions and material. A superposition of Lorentzian oscillators and the effective medium approximation has been applied to determine the volume ratio of voids and nanopillars, thereby providing the effective optical constants.

  12. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  13. Spectroscopic Binary Studies with the Palomar Testbed Interferometer

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; PTI Collaboration

    1997-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline, K-band interferometer located at Palomar Observatory. During the 1997 observing season PTI has resolved the orbits of a number of small-separation, short-period spectroscopic binaries: alpha CrB, iota Pegasi, 64 Psc, and 47 And. alpha CrB is a well-known eclipsing system (Tomkin and Popper 1986) with significant delta-K magnitude between primary and secondary ( 3.2 mag). 1997 PTI data is able to resolve the orbit despite this relatively large magnitude difference and limited u-v coverage. iota Pegasi is a double-lined system suggested by Fekel and Tomkin (1983) as a possible eclipsing system based on spectral type information, yet repeated photometric observation have failed to show evidence for eclipses. In our orbit we see the system as only 0.75 deg (roughly two sigma) away from apparent limb-to-limb contact, and consistent with the Fekel and Tomkin radial velocity work. 64 Psc is a nearly-equal mass system with a possible third component suggested by Nadal et al (1979) based on long-term variation in the spectroscopic orbital parameters. Our orbit based on 1997 PTI data is in good agreement with the 1979 spectroscopic parameters. Finally, 47 And is a double-lined system with a magnetic primary. The physical parameters and distances for these systems are all in very good agreement with expectations based on Hipparcos parallaxes.

  14. Spectroscopic analysis of the extremely active binaries BK Psc and XX Tri

    E-print Network

    Complutense de Madrid, Universidad

    Spectroscopic analysis of the extremely active binaries BK Psc and XX Tri M.C. G#19; alvez, D Psc and XX Tri). Spectra have been taken in July 1999 using the FOCES echelle spectrograph with the 2; emission, in our spectra the emission from the secondary component is also detected. XX Tri (HD 12545

  15. NMR spectroscopic study of the self-aggregation of 3-hexen-1,5-diyne derivatives.

    PubMed

    Pérez, Ana; de Saá, Diana; Ballesteros, Alfredo; Serrano, José Luis; Sierra, Teresa; Romero, Pilar

    2013-07-29

    The self-assembly of polycatenar molecules derived from 1,6-diphenyl-3,4-dipropyl-3-hexen-1,5-diyne has been studied in detail by solution NMR spectroscopy. The analysis of the concentration- and temperature-dependent evolution of the chemical shifts and the diffusion coefficients in [D12]cyclohexane agrees well with an isodesmic model of association in this solvent. The association constants for the stacking and entropy and enthalpy of the process have been obtained. The driving force for the aggregation process is provided by a negative enthalpy (?H), which is partially compensated by a negative entropy (?S). A structural study of the self-assembly in solution has been carried out with the help of NOESY NMR spectroscopic experiments. PMID:23787768

  16. Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants

    PubMed Central

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4?000 cm?1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.

  17. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    PubMed

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-12-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (?) and the first-order hyperpolarizability (?) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. PMID:26163787

  18. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  19. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  20. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  1. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester.

    PubMed

    Shoba, D; Periandy, S; Govindarajan, M; Gayathri, P

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (?) and first hyper polarizability (?) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method. PMID:25459608

  2. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  3. Study of Characterization of Pure and Malachite Green Doped Samples Using Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti; Mishra, Pankaj K.; Khare, P. K.

    2011-07-01

    This paper describes the results of SEM, EDX, UV-vis and TSDC study of malachite green doped PVK thermelectrets. TSDC study has been carried out in the temperature range 300 °C to 1500 °C with four different polarizing fields. One peak was observed at 110±10 °C which shifts toward high temperature with the increase in polarizing field. The activation energy found by initial rise method are 0.27±0.02 eV for pure and 0.40±0.03 eV for malachite green doped PVK thermoelectrets. Spectroscopic study concluded that impregnation of malachite green in polymer matrix forms charge transfer complexes.

  4. Understanding the solid-state forms of fenofibrate--a spectroscopic and computational study.

    PubMed

    Heinz, Andrea; Gordon, Keith C; McGoverin, Cushla M; Rades, Thomas; Strachan, Clare J

    2009-01-01

    The aim of this study was to investigate the structure of different solid-state forms of fenofibrate, a drug that lacks strong intermolecular interactions such as hydrogen bonding. In addition to a structural analysis of crystalline and amorphous fenofibrate using infrared and Raman spectroscopy combined with density functional theory calculations [B3LYP 6-31G(d)], solid-state changes that occur upon recrystallization of amorphous fenofibrate were monitored and described using in situ Raman spectroscopy. A comparison of the calculated vibrational spectra of a fenofibrate monomer and two dimer structures with the experimental vibrational spectra of crystalline and amorphous fenofibrate revealed conformational differences in the orientation of the two benzyl rings in the fenofibrate molecule and structural differences between the different solid-state forms in aliphatic parts of the drug molecule. The spectroscopic analysis suggests that non-hydrogen-bonded drug molecules are likely to exhibit more random molecular orientations and conformations in the amorphous phase since the weak intermolecular interactions that occur between such molecules can easily be disrupted. In situ Raman spectroscopy and multivariate analysis revealed multiple solid-state forms of fenofibrate, including the metastable crystalline form II, which were structurally analyzed with reference to the quantum chemical calculations. Overall, the study showed that vibrational spectroscopy, multivariate analysis, and quantum chemical modeling are well suited to investigate and characterize the structure of drug substances that exhibit only small structural differences between different solid-state forms. PMID:18590814

  5. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  6. Millimeter-Wave Spectroscopic and Collisional Studies of Molecules and Molecular Ions

    NASA Astrophysics Data System (ADS)

    Pearson, John Christoffersen

    1995-01-01

    Molecular spectroscopy in the millimeter- and submillimeter-wave regions is an important tool in molecular physics. Information on molecular motions and interactions is obtained from spectroscopic studies of energy levels and collisions. This information and the data from which it is derived are essential in remote sensing of the atmosphere and the interstellar medium. Remote sensing at submillimeter wavelengths is now possible, making higher frequency and quantum number measurements of known interstellar species like water, propionitrile and ethyl alcohol necessary. Remote sensing improvements have also facilitated the need for spectral data on suspected interstellar molecules like propylene. The desire to extract quantitative information from atmospheric remote sensing has resulted in the need for a better understanding of the molecular interactions that cause pressure broadening. The use of a cold molecular ion to magnify the effects of intermolecular interactions has serious implications for pressure broadening theory. The measurement and analysis of rotational spectra of the asymmetric rotors water and propionitrile and the internal rotors propylene and ethyl alcohol are presented. These investigations provide the data and analysis necessary for astronomical observation. The ethyl alcohol investigation is the first experimental millimeter-wave study of a molecule with an asymmetric internal rotor. This study provides the data necessary for detailed theoretical modeling of this type of problem. A novel new experimental technique for generating and studying molecular ions is presented. The first temperature dependent microwave pressure broadening study of a molecular ion colliding with a neutral molecule, HCO^{+} on H_2 , is presented.

  7. Analysis of Spectroscopic Radiation Portal Monitor Data Using Principal Components Analysis

    SciTech Connect

    Runkle, Robert C.; Tardiff, Mark F.; Anderson, K K.; Carlson, Deborah K.; Smith, L E.

    2006-06-01

    Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the ''mean vehicle spectra'' with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.

  8. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  9. Structural and spectroscopic studies of a commercial glassy carbon

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.

    2013-12-01

    Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.

  10. A Spectroscopic Study of Anomalous Stellar Populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney; King, Jeremy R.; Deliyannis, Constantine P.

    2015-01-01

    A population of so-called "yellow straggler" stars occupy precarious color magnitude diagram positions in the old open cluster M67 that cannot be explained by standard single star evolution theory. These stars may have been formed by Roche lobe overflow mass transfer in close binary systems. We present new radial velocities and spectroscopic abundances of M67 yellow stragglers to test this hypothesis, and find that these objects possess a high binary frequency, but no enhancements of s-process elements that might be a smoking gun signature of mass transfer. Observations were conducted using the WIYN 3.5 m telescope in conjunction with the HYDRA spectrograph at Kitt Peak National Observatory. Support for this project was provided by NSF grants AST 09-08342, AST 0607567, and AST 1211699.

  11. Spectroscopic and photometric analysis of the early-type spectroscopic binary HD 161853 in the centre of an H II

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Putkuri, C.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Maíz Apellániz, J.; Walborn, N. R.; Sota, A.; Alfaro, E. J.

    2015-12-01

    Aims. We study the O-type star HD 161853, which has been noted as a probable double-lined spectroscopic binary system. Methods. We secured high-resolution spectra of HD 161853 during the past nine years. We separated the two components in the system and measured their respective radial velocities for the first time. Results. We confirm that HD 161853 is an ˜1 Ma old binary system consisting of an O8 V star (MA,RV ? 22 M?) and a B1-3 V star (MB,RV ? 7.2 M?) at about 1.3 kpc. From the radial velocity curve, we measure an orbital period P = 2.66765 ± 0.00001 d and an eccentricity e = 0.121 ± 0.007. Its V-band light curve is constant within 0.014 mag and does not display eclipses, from which we impose a maximum orbital inclination i = 54 deg. HD 161853 is probably associated with an H II region and a poorly investigated very young open cluster. In addition, we detect a compact emission region at 50 arcsec to HD 161853 in 22 ?m-WISE and 24 ?m-Spitzer images, which may be identified as a dust wave piled up by the radiation pressure of the massive binary system.

  12. A Scalable Parallel Genetic Algorithm for Xray Spectroscopic Analysis

    E-print Network

    Louis, Sushil J.

    Science and Engineering University of Nevada, Reno Reno, NV, 89557 xukai@cs.unr.edu Sushil J. Louis Dept. of Computer Science and Engineering University of Nevada, Reno Reno, NV, 89557 sushil@cs.unr.edu Roberto C analysis of plasma gradients in inertial confinement fusion (ICF) implosion cores. In previous work, we had

  13. RAMAN SPECTROSCOPIC ANALYSIS OF FERTILIZERS AND PLANT TISSUE FOR PERCHLORATE

    EPA Science Inventory

    Raman spectroscopy, without the need for prior chromatographic separation, was used for qualitative and quantitative analysis of 59 samples of fertilizers for perchlorate (ClO4-). These primarily lawn and garden products had no known link to Chile saltpeter, which is known to con...

  14. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  15. First Spectroscopic Study of the Southern Eclipsing Binary V454 Carina

    NASA Astrophysics Data System (ADS)

    Özkarde?, B.; Erdem, A.; Sürgit, D.; Butland, R.; Budding, E.

    2015-07-01

    We present preliminary results from the analysis of spectroscopic observations of the southern eclipsing binary star V454 Car (HIP 36682). High-resolution spectra of the system were taken at the Mt. John University Observatory in 2009, 2010, 2011, and 2014. Detailed examination of the spectra indicates that V454 Car is a triple system. Radial velocities of the components of the eclipsing pair were obtained. The orbital solution gave quite a large spectroscopic mass ratio of qspec =0.93 ±0.05.

  16. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    SciTech Connect

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}?) and hydrideisocyanidezinc HZnNC ({sup 1}?), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}?) and HCNZn{sup +} ({sup 2}?)

  17. Facility at CIRUS reactor for thermal neutron induced prompt ?-ray spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Biswas, D. C.; Danu, L. S.; Mukhopadhyay, S.; Kinage, L. A.; Prashanth, P. N.; Goswami, A.; Sahu, A. K.; Shaikh, A. M.; Chatterjee, A.; Choudhury, R. K.; Kailas, S.

    2013-03-01

    A facility for prompt ?-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt ? rays. For the first time, the prompt ?-? coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235U(nth, f). Using this facility, experiments have also been carried out for on-line ?-ray spectroscopic studies in 113Cd(nth, ?) reaction.

  18. Spectroscopic investigation and hydrogen-bonding analysis of triazinones.

    PubMed

    Dhas, Devadhas Arul; Joe, Isaac Hubert; Roy, Solomon Dawn Dharma; Balachandran, Sreedharan

    2012-08-01

    NIR FT-Raman, FTIR and UV-vis spectra of the herbicide metamitron were recorded and analyzed. The aromaticities, equilibrium geometries, bonding features, electrostatic potentials, and harmonic vibrational wavenumbers of the monomers and dimers of triazinone derivatives were also investigated with the aid of BLYP/6-311 G(df, p) density functional theory. Features in the vibrational spectra were assigned with the aid of the VEDA.4 program. The calculated results were a good match to the experimental data obtained from FTIR, Raman, and electronic absorption spectra. Mulliken population analysis was performed on the atomic charges and the HOMO-LUMO energies were also calculated. NBO analysis highlighted the intra- and intermolecular N-H…O and C-H…O hydrogen bonds in the crystal structures of the triazinones. The solvent effect was calculated using time-dependent density functional theory in combination with the polarizable continuum model. PMID:22350295

  19. Raman spectroscopic analysis of human tissue engineered oral mucosa constructs (EVPOME) perturbed by physical and biochemical methods

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Ganguly, Arindam; Raghavan, Mekhala; Kuo, Shiuhyang; Cole, Jacqueline H.; Marcelo, Cynthia L.; Feinberg, Stephen E.; Izumi, Kenji; Morris, Michael D.

    2012-01-01

    We show the application of near-infrared Raman Spectroscopy to in-vitro monitoring of the viability of tissue constructs (EVPOMEs). During their two week production period EVPOME may encounter thermal, chemical or biochemical stresses that could cause development to cease, rendering the affected constructs useless. We discuss the development of a Raman spectroscopic technique to study EVPOMEs noninvasively, with the ultimate goal of applying it in-vivo. We identify Raman spectroscopic failure indicators for EVPOMEs, which are stressed by temperature, and discuss the implications of varying calcium concentration and pre-treatment of the human keratinocytes with Rapamycin. In particular, Raman spectra show correlation of the peak height ratios of CH2 deformation to phenylalanine ring breathing, providing a Raman metric to distinguish between viable and nonviable constructs. We also show the results of singular value decomposition analysis, demonstrating the applicability of Raman spectroscopic technique to both distinguish between stressed and non-stressed EVPOME constructs, as well as between EVPOMEs and bare AlloDerm® substrates, on which the oral keratinocytes have been cultured. We also discuss complications arising from non-uniform thickness of the AlloDerm® substrate and the cultured constructs, as well as sampling protocols used to detect local stress and other problems that may be encountered in the constructs.

  20. Supramolecular spectroscopic and thermal studies of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Morgan, Sh. M.

    2014-06-01

    A series of heterocyclic ligand of copper(II) complexes have been synthesized by the reaction of copper(II) acetate with 5-(4?-derivatives phenylazo)-2-thioxothiazolidin-4-one (HLn) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, spectral (IR and ESR), conductance, magnetic measurements, and thermogravimetric analysis (TGA) are used to characterize the isolated complexes. It is found that the change of substituent affects the thermal properties of azodye rhodanine derivatives and their Cu(II) complexes. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The data revealed that the coordination geometry around Cu(II) in all complexes (1-4) exhibit a trans square planar by NO monobasic bidentate and the two monobasic bidentate in octahedral complexes (5-7). Electronic, magnetic data and ESR spectra proposed the square planar structure for all complexes (1-4) under investigation. The value of covalency factor ( and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters, such as activation energy (Ea), enthalpy (?H*), entropy (?S*), and Gibbs free energy change of the decomposition (?G*) are calculated using Coats-Redfern and Horowitz-Metzger methods.

  1. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  2. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ?4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  3. Spectroscopic studies of homogeneous precursors to atmospheric acids and aerosols

    SciTech Connect

    Leopold, K.R.; Canagaratna, M.; Phillips, J.A.; Goodfriend, H.

    1996-10-01

    A detailed understanding of the nucleation and growth of atmospheric particulates is benefitted by precise knowledge of the structure and energetics of small molecular aggregates. We present the results of microwave spectroscopic characterization of three binary clusters which are potential precursors in such processes: H{sub 2}O-SO{sub 3}, H{sub 3}N-SO{sub 3}, and H{sub 2}O-HNO{sub 3}. In addition to providing detailed structural information, we describe the nature of the bonding in these systems. For the SO{sub 3} complexes, the intermolecular interaction is weaker than a chemical bond, but stronger than a van der Waals bond. We discuss how this feature of these systems renders their structure and energetics unusually sensitive to the presence of additional binding partners, and infer that an accurate molecular-level description of cluster growth will need to account for this effect. The results are compared with published high level ab initio calculations for all three systems.

  4. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  5. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehli?ka, Jan; Edwards, Howell G M; N?mec, Ivan; Oren, Aharon

    2015-12-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. PMID:26151435

  6. Photometric and Spectroscopic Analysis of Warm DQ White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fortier, Alexandre; Dufour, Patrick

    2015-06-01

    The "Hot DQ" white dwarfs, a new class of stars showing a surface composition dominated by carbon (Dufour et al. 2007), represent a challenge to stellar evolution. Little is known on how exactly they form or evolve. The first few stars discovered in the SDSS survey were all found in a narrow range of effective temperature (18,000-24,000 K). It has been suggested at the last workshop that these stars may evolve into warm (Teff = 12,000-18,000 K) and highly polluted (log C/He > -3.0) DQ white dwarfs with atomic CI lines (Dufour et al. 2013). We present an analysis of a sample of such "warm DQ" white dwarfs, filling the gap between the Hot DQ and the cooler DQ with molecular bands.

  7. Spectroscopic analysis and DFT calculations of a food additive Carmoisine

    NASA Astrophysics Data System (ADS)

    Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. S.

    2009-04-01

    FT-IR and Raman techniques were employed for the vibrational characterization of the food additive Carmoisine (E122). The equilibrium geometry, various bonding features, and harmonic vibrational wavenumbers have been investigated with the help of density functional theory (DFT) calculations. A good correlation was found between the computed and experimental wavenumbers. Azo stretching wavenumbers have been lowered due to conjugation and ?-electron delocalization. Predicted electronic absorption spectra from TD-DFT calculation have been analysed comparing with the UV-vis spectrum. The first hyperpolarizability of the molecule is calculated. Intramolecular charge transfer (ICT) responsible for the optical nonlinearity of the dye molecule has been discussed theoretically and experimentally. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H⋯O, improper, blue shifted hydrogen bonds have been analysed using natural bond orbital (NBO) analysis.

  8. WTF- and A- Stars: Spectroscopic Analysis of Kepler Light Curves

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Soderblom, David R.

    2016-01-01

    Analysis of Kepler data in 2012 found that in a sample of about 2000 A- and F- stars, 1% of them seemed to exhibit white light flares. However, such stars are not thought to have the convective envelopes needed to produce the magnetic dynamos that yield flares. We use the same Kepler data but examine the flaring stars more comprehensively by analyzing the pixel data in order to predict whether this flare-like behavior may be caused by smaller, less luminous M dwarfs exhibiting genuine flares in the line of sight of the A- and F-stars. The implications of finding verifiable flare activity in a subset of these stars would be enough to incite further investigation of the physical processes that allow this to take place. Yet, if that were not the case, this project would further be able to demonstrate the steps necessary to correct for false-positives in finding flares in A- and F- stars.

  9. Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of AlZn

    E-print Network

    Morse, Michael D.

    Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of Al-block main group element, aluminum, and the 3d series of transi- tion metal atoms. Although the bonding in Al

  10. Novel Iminocoumarin Derivatives: Synthesis, Spectroscopic and Computational Studies.

    PubMed

    Chemate, Santosh B; Sekar, Nagaiyan

    2015-11-01

    Three novel iminocoumarin derivatives with high quantum yield are synthesized from 3-benzimidazole substituted coumarin and different aromatic aldehydes. The photophysical behavior of the synthesized compounds was studied using UV-visible and fluorescence spectroscopy in polar and non-polar solvents. The compounds show absorption maxima at around 450 nm and emission maxima at around 500 nm. The quantum yields of compounds in dichloromethane and chloroform are more than 0.90. The absorption, emission and quantum yield of compounds are dependent on the polarity of solvents. Along with an intense absorption, these compounds show shoulder absorption peak in the studied solvents. The solvent polarity plots revealed the charge transfer process in the synthesized molecules from donor to acceptor. Density Functional Theory and Time Dependent Density Functional Theory computations have been used to have more understanding of the structural, molecular, electronic and photophysical parameters of the dyes. The dyes were characterized by FT-IR, (1)H NMR, (13)C NMR and mass spectral analysis. PMID:26362565

  11. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  12. Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100)

    E-print Network

    Reisler, Hanna

    Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100 Abstract Thin water (D2O) films on MgO(100) surfaces have been studied. Water was deposited at 115 K solid to cubic ice is known to take place, and then re-cooling. Temperature programmed desorption traces

  13. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  14. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  15. Molecular and mass spectroscopic analysis of isotopically labeled organic residues

    NASA Technical Reports Server (NTRS)

    Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.

    1989-01-01

    Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.

  16. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M?. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  17. LED phototherapy on midpalatal suture after rapid maxilla expansion: a Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Rosa, Cristiane B.; Habib, Fernando Antonio L.; de Araújo, Telma M.; dos Santos, Jean N.; Cangussu, Maria Cristina T.; Barbosa, Artur Felipe S.; de Castro, Isabele Cardoso V.; Soares, Luiz Guilherme P.; Pinheiro, Antonio L. B.

    2015-03-01

    A quick bone formation after maxillary expansion would reduce treatment timeand the biomodulating effects of LED light could contribute for it. The aim of this study was to analyze the effect of LED phototherapy on the acceleration of bone formation at the midpalatal suture after maxilla expansion. Thirty rats divided into 6 groups were used on the study at 2 time points - 7 days: Control; Expansion; and Expansion + LED; and 14 days: Expansion; Expansion + LED in the first week; Expansion and LED in the first and second weeks. LED irradiation occurred at every 48 h during 2 weeks. Expansion was accomplished using a spatula and maintained with a triple helicoid of 0.020" stainless steel orthodontic wire. A LED light (?850 ± 10nm, 150mW ± 10mW, spot of 0.5cm2, t=120 sec, SAEF of 18J/cm2) was applied in one point in the midpalatal suture immediately behind the upper incisors. Near infrared Raman spectroscopic analysis of the suture region was carried and data submitted to statistical analyzes (p?0.05). Raman spectrum analysis demonstrated that irradiation increased hydroxyapatite in the midpalatal suture after expansion. The results of this indicate that LED irradiation; have a positive biomodulation contributing to the acceleration of bone formation in the midpalatal suture after expansion procedure.

  18. IR spectroscopic analysis of polymorphism in C 13H 14N 4O

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2011-03-01

    IR analysis is used here to investigate the changes in N-N, N-H, C dbnd O modes of thermally treated diphenyl carbazide (DPC) during the variation of temperature from room temperature up to ?160 °C. Polymorphism in DPC compound has been studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour) during the elevation of temperature. Also, DSC, X-ray, NMR and atomic mass spectra are used as confirming tools for what is obtained by IR. All of the vibrations of DPC were found to be due to ionic fundamentals 3311 cm -1, 3097 cm -1, 3052 cm -1, 1677 cm -1, 1602 cm -1, 1492 cm -1, 1306 cm -1, 1252 cm -1, 887 cm -1 and 755 cm -1. The results revealed for the first time that the thermally treated DPC traverse four different phase transformations at 50 °C, 90 °C, 125 °C and 140 °C. The crystal structure was found to be amorphous, monoclinic, tetragonal, orthorhombic and amorphous within a temperature range (30 °C-160 °C). X-ray diffraction patterns support the results obtained by IR and DSC.

  19. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  20. Analysis and Statistics of the Spectroscopic Sample of Byurakan-IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    A summary and general analysis of optical spectroscopic data for 255 Byurakan-IRAS Galaxies (BIG) obtained with BAO 2.6m, SAO 6m, OHP 1.93m telescopes, as well as SDSS DR7, DR8, and DR9 is given. The BIG sample is the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra. Among the 1178 objects most are spiral galaxies and there is a number of ULIRGs. All but one have emission lines; we have discovered 68 AGN and composite spectrum objects among them and the others are mostly Starburst Galaxies (SB). All possible physical characteristics have been measured and/or calculated, including physical sizes and optical and IR/FIR luminosities. The masses have been estimated based on mass-luminosity relations for spiral galaxies. As it appears, most of these objects are giant massive galaxies. Various multiwavelength (MW) data have been retrieved from recent catalogues from X-ray to radio and MW SEDs have been built, which have been matched to their optical classifications. Luminosity evolution of these objects has been studies.

  1. Spectroscopic Analysis of a Biomimetic Model of Tyr(Z) Function in PSII.

    PubMed

    Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; Kodis, Gerdenis; Megiatto, Jackson D; Méndez-Hernández, Dalvin D; Frese, Raoul N; van Grondelle, Rienk; Moore, Thomas A; Moore, Ana L; Gust, Devens; Kennis, John T M

    2015-09-17

    Using natural photosynthesis as a model, bio-inspired constructs for fuel generation from sunlight are being developed. Here we report the synthesis and time-resolved spectroscopic analysis of a molecular triad in which a porphyrin electron donor is covalently linked to both a cyanoporphyrin electron acceptor and a benzimidazole-phenol model for the TyrZ-D1His190 pair of PSII. A dual-laser setup enabled us to record the ultrafast kinetics and long-living species in a single experiment. From this data, the photophysical relaxation pathways were elucidated for the triad and reference compounds. For the triad, quenching of the cyanoporphyrin singlet excited state lifetime was interpreted as photoinduced electron transfer from the porphyrin to the excited cyanoporphyrin. In contrast to a previous study of a related molecule, we were unable to observe subsequent formation of a long-lived charge separated state involving the benzimidazole-phenol moiety. The lack of detection of a long-lived charge separated state is attributed to a change in energetic landscape for charge separation/recombination due to small differences in structure and solvation of the new triad. PMID:26327512

  2. A mass spectroscopic analysis of {gamma}-GPS films

    SciTech Connect

    Dillingham, R.G.; Boerio, F.J.; Bertelsen, C.; Savina, M.R.; Lykke, K.; Calaway, W.

    1996-12-31

    Preparation of substrates for painting or adhesive bonding frequently includes roughening through sanding, chemical etching, or gritblasting. Increased roughness can improve interfacial strength and durability due to increased mechanical interlocking, increased surface area, and improved wettability of the substrate. The chemical reactivity of the surface with the organic phase may be affected as well, perhaps related to the strain energy stored in the surface regions through the intense plastic deformation that occurs. Unfortunately, the chemistry of interactions taking place near a surface that has been roughened is difficult to access analytically by some of the more useful techniques such as infrared spectroscopy. This paper discusses analysis of nonreflective grit-blasted surfaces using mass spectroscopy of species which were either sputtered off using an ion beam (Static Secondary Ion Mass Spectroscopy, or SSIMS) or thermally desorbed as neutrals using a pulsed laser and then post-ionized using a secondary laser (Laser Desorption-Laser Ionization Mass Spectroscopy, or LDLIMS). Both of these techniques exhibit sub-nanometer sensitivity and provide significant information as to the chemistry and structure of the surface regions. In a current application of {gamma}-glycidoxypropyltrimethoxysilane ({gamma}-GPS) for the pre-treatment of grit-blasted aluminum before adhesive bonding, certain factors related to the handling of the primer solution and to the application technique were found to significantly affect the performance of the adhesive bond under long-term aging conditions including stress and humidity. To understand why these parameters are important and to potentially improve the pretreatment process even further, the authors have been investigating how the structure and reactivity of these silane films are related to the application techniques.

  3. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Technical Reports Server (NTRS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-01-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.

  4. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  5. Spectroscopic Studies of Azul Maya: Novel Organic/Inorganic Complexes

    NASA Astrophysics Data System (ADS)

    Reza, Layra; Manciu, Felicia; Torres, Brenda; Polette, Lori; Chianelli, Russell

    2006-10-01

    Maya pigments are novel organic/inorganic hybrid materials with multiple technological applications. The materials are surface compounds formed by heating an organic molecule such as indigo with an inorganic compound such as palygorskite, which is a common clay. The organic molecule upon heating forms a strong interaction with the clay surface stabilizing both entities. This strong interaction is exhibited through a color change from deep blue to the well-known Maya Blue indicating an exchange of electron density at the surface. Analysis by infrared absorption and Raman spectroscopy demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. Infrared data confirm the loss of zeolitic water and a partial removal of structural water after the heating process. Carbon and oxygen studies at Stanford Synchrotron Radiation Laboratory by X-Ray photoemission spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS), respectively, suggest possible cationic (Al^+3) bonding of the organic molecule to palygorskite compound.

  6. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, ?-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  7. Spectroscopic Analysis of Flooded Craters from Oceanus Procellarum

    NASA Astrophysics Data System (ADS)

    Besse, Sebastien; Staid, Matthew; Hiesinger, Harald

    2013-04-01

    The last major phases of lunar volcanism produced compositionally unique, high-titanium basalts that are not observed elsewhere on the Moon's surface or earlier in its history. These volcanic deposits include some of the Moon's most extensive flows and age estimates suggest that these basalts are among the youngest. These flows are concentrated in Oceanus Procellarum, a very large volcanic province on the lunar near side. Investigations using the Moon Mineralogy Mapper (M3) data have shown that these basalts exhibit strong mineralogical variations, with compositions strongly dominated by either high -Ca pyroxene, or low-Ca pyroxene, or olivine, and even a combination of these minerals. Following the surprising high olivine content of the crater Marius, we examine other flooded craters of the large Oceanus Procellarum (O.P.) province to characterize the uniquess, or not, of Marius. If a large number of flooded craters within O.P. exhibits similar high-olivine content, this will help us to constrain the magmatic history of the last major phases of lunar volcanism. The Moon Mineralogy Mapper (M3) onboard the Indian Space Research Organization's (ISRO) Chandrayaan-1 Spacecraft is an imaging spectrometer that imaged the Moon in 85 spectral channels with a combination of high spectral and spatial mapping, enabling spectra to be placed in a geological context. M3 data have a spectral range from 460 to 3000 nm, and a spectral resolution of 20 to 40 nm. This range allows detailed investigations of the 1 and 2 ?m absorption bands characteristic of mafic minerals on the lunar surface. A selection of flooded craters has been performed to investigate their spectral properties. Craters with unbreached walls have been selected as much as possible in order to better constrain the origin of the volcanic flows. Preliminary results show that few craters share the high-olivine content properties of Marius. Compositionally, crater Billy seems to be the closest one, and to a certain extent the craters Plato, Hansteen and Flamsteed G (although the later one is clearly connected to the surroundings lava flows through its breached walls). More detailed analysis will be performed to highlights the similarities and differences of these flooded craters from a spectral point of view.

  8. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Ma?gorzata; Kaczy?ski, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  9. [Structural characterization and spectroscopic analysis of the aloin].

    PubMed

    Xie, Yun-Fei; Huan, Nan; Cao, Yuan-Yuan; Wang, He-Ya; Zhong, Ying; Yao, Wei-Rong; Qian, He

    2014-02-01

    Aloe is widely used in various fields for its rich polysaccharides, proteins, amino acids, vitamins, active enzymes and trace beneficial elements to human body. However, the main active ingredient aloin is also an allergenic ingredient, which even may cause a severe allergic reaction In this study, infrared spectroscopy, Raman spectroscopy applied to the structural characterization of the aloin Density functional theory (DFT) is applied to the theoretical calculations using the B3LYP/6-31G (d) basis set vibration, which was helpful to understand the aloin molecular vibrational frequency. By comparing we choose the optimal experimental condition for water as solvent under alkaline conditions, the detection limit of the Aloin can reach a level of 5 ppm, which can be considered the theoretical basis for rapid detection of aloin content. PMID:24822406

  10. Spectroscopic analysis of urinary calculi and inhibition of their growth

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  11. A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Bergeron, P.; Ruiz, M. T.

    2011-12-01

    We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).

  12. Spectroscopic analysis of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly global tide-gage sea-level data are fitted to numerically generated tidal data in order to search for the 18.6-yr lunar nodal tide and 14-month pole tide. Both of these tides are clearly evident, with amplitudes and phases that are consistent with a global equilibrium response. The ocean's response to atmospheric pressure is studied with the least-squares fit technique. Consideration is given to the global rise in sea level, the effects of postglacial rebound, and the possible causes of the enhanced pole tides in the North Sea, the Baltic Sea, and the Gulf of Bothnia. The results support O'Connor's (1986) suggestion that the enhanced pole tide in these regions is due to meteorological forcing rather than a basin-scale resonance. Also, the global average of the tide-gage data show an increase in sea level over tha last 80 yr of between 1.1 and 1.9 mm/yr.

  13. Spectroscopic And Electrochemical Studies Of Electrochromic Hydrated Nickel Oxide Films

    NASA Astrophysics Data System (ADS)

    Yu, P. C.; Nazri, G.; Lampert, C. M.

    1986-09-01

    The electrochrcrnic properties of hydrated nickel oxide thin films electrochemically deposited by anodization onto doped tin oxide-coated glass have been studied by transmittance measurements, cyclic voltammetry, Fourier-transform infrared spectroscopy, and ion-backscattering spectrometry. The spectral transmittance is reported for films switched in both the bleached and colored states. The photopic transmittance (Tp) can be switched from T (bleached) = 0.77 to T (colored) = 0.21, and the solar transmittance (Ts) can be switched from Ts(bleached) = 0.73 to TS (colored) = 0.35. Also reported is the near-infrared transmittance (TNIR)which was found to switch fran T N,IR (bleached) = 0.72 to TNIR (colored) = 0.55. The bleached condition is noted to have very low solar absorption in both the visible and solar regions. Ion-backscattering spectrometry was performed on the hydrated nickel oxide film, yielding a camposition of Ni01.0 (dehydrated) and a film thickness of 125 A. Cyclic voltammetry showed that, for films in the bleached or colored state, the reversible reaction is Ni(0H), = NiOOH + H+ + e . Voltammnetry also showed that the switching of the film is controlled by the diffusion or protons, where OH plays a role in the reaction mechanism. Analysis of the hydrated nickel-oxide thin films by Fourier-transform infrared spectroscopy revealed that both the bleached and colored states contain lattice water and hydroxyl groups. The surface hydroxyl groups play an important role in the coloration and bleaching of the anodically deposited nickel oxide thin films.

  14. Spectroscopic study of the exotic nucleus 25P

    NASA Astrophysics Data System (ADS)

    Fernández-Domínguez, B.; Pereira-López, X.; Timofeyuk, N. K.; Descouvemont, P.; Catford, W. N.; Delaunay, F.

    2015-02-01

    Motivated by the importance of 25P for the two-proton decay of 26S and for searches of the mirror analog of the island of inversion near N =16 , we present the first predictions for the spectroscopy of the exotic isotope 25P obtained in the shell model, a potential model, and a microscopic-cluster model. All models predict 25P to be unbound, with an energy in the range 0.78 -1.03 MeV, which favors previous mass systematics over more recent revisions. We show that 25P possesses a rich low-lying spectrum that should be accessible by experimental studies. All of the predicted states below 7 MeV, except one, are narrow. Many of them are built on the excited-core states of 24Si for which the Coulomb barrier is raised. For decays into the 24Si (g.s.) +p channel we determined the proton widths based on their link to the asymptotic normalization coefficients (ANCs) of their mirror analogs in 25Ne . We determine these ANCs from the analysis of the transfer reaction 24Ne (d,p ) 25Ne . The proton widths for decay into excited-state channels are obtained in model calculations. The only broad state is the intruder 3 /2 -, the mirror analog of which has been recently observed in 25Ne . The 25P (3 /2-) energy is lower than that in 25Ne , suggesting that the island of inversion may persist on the proton-rich side. All excited states of 25P have at least two decay modes and are expected to populate variously the 21,2 + and 4+ states in 24Si , which then decay electromagnetically.

  15. Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks.

    PubMed

    Rodrigues, Marcelo O; Paz, Filipe A Almeida; Freire, Ricardo O; de Sá, Gilberto F; Galembeck, André; Montenegro, Maria C B S M; Araújo, Alberto N; Alves, S

    2009-09-10

    In this paper, we report the hydrothermal synthesis of three lanthanide-organic framework materials using as primary building blocks the metallic centers Eu(3+), Tb(3+), and Gd(3+) and residues of mellitic acid: [Ln(2)(MELL)(H(2)O)(6)] (where Ln(3+) = Eu(3+), Tb(3+), and Gd(3); hereafter designated as (1), (2) and (3)). Structural characterization encompasses single-crystal X-ray diffraction studies, thermal analysis, and vibrational spectroscopy, plus detailed investigations on the experimental and predicted (using the Sparkle/AM1 model) photophysical luminescent properties. Crystallographic investigations showed that the compounds are all isostructural, crystallizing in the orthorhombic space group Pnnm and structurally identical to the lanthanum 3D material reported by the group of Williams. (2) is highly photoluminescent, as confirmed by the measured quantum yield and lifetime (37% and 0.74 ms, respectively). The intensity parameters (Omega(2), Omega(4), and Omega(6)) of (1) were first calculated using the Sparkle/AM1 structures and then employed in the calculation of the rates of energy transfer (W(ET)) and back-transfer (W(BT)). Intensity parameters were used to predict the radiative decay rate. The calculated quantum yield derived from the Sparkle/AM1 structures was approximately 16%, and the experimental value was 8%. We attribute the registered differences to the fact that the theoretical model does not consider the vibronic coupling with O-H oscillators from coordinated water molecules. These results clearly attest for the efficacy of the theoretical models employed in all calculations and open a new window of interesting possibilities for the design in silico of novel and highly efficient lanthanide-organic frameworks. PMID:19689107

  16. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-?-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  17. Spectroscopic and thermal analysis of a submandibular sialolith of Wharton's duct resected using Nd:YAG laser.

    PubMed

    Jayasree, R S; Gupta, A K; Vivek, V; Nayar, V U

    2008-04-01

    A sialolith observed in the Wharton's duct of a male patient was resected using an Nd:YAG laser. This is the first report on the resection of sialolith using laser. The resected sample was analyzed for structural details using Fourier transform infrared (FTIR), FT-Raman, and fluorescence spectroscopic techniques. Other techniques like energy dispersive X-ray analysis, scanning electron microscopy, and thermal analysis were also used for the analysis of structural details. The major peaks of the vibrational spectra are observed to be due to the vibrations of the phosphate and hydroxyl groups of the inorganic part of the sample and the proteinaceous component of the organic part. The major elements in the sample are identified as calcium and phosphorous in the ratio 7:3. The fluorescence spectra recorded at excitation wavelengths 280, 325, and 410 nm showed emission maxima corresponding to the endogenous fluorescence of structural proteins and amino acids. The inorganic part of the sialolith remained stable even at temperatures up to 1,673 K. The spectroscopic studies indicated that the structure of the sialolith is similar to that of the dentine part of the human teeth. In situ disintegration of the sialolith involves very high temperature. High calcium and phosphorous content in the food may be attributed to one of the reasons for the formation of sialoliths. PMID:17483982

  18. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    E-print Network

    Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates; accepted in revised form 31 May 2006 Abstract The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence

  19. Stark Spectroscopic Studies of Blue Copper Proteins: Azurin Arindam Chowdhury and Linda A. Peteanu*

    E-print Network

    Chowdhury, Arindam

    Stark Spectroscopic Studies of Blue Copper Proteins: Azurin Arindam Chowdhury and Linda A. Peteanu-transfer (LMCT) transitions in two species of azurin, a type I blue copper protein from Alcaligenes denitrificans are also reported. Introduction Blue copper proteins are involved in respiratory and photo- synthetic

  20. BRIEF COMMUNICATI-ON A LASER RAMAN SPECTROSCOPIC STUDY OF CA2+

    E-print Network

    Stanley, H. Eugene

    C) is the Ca2+-binding subunit of troponin which, together with tropomyosin, regulates the interaction betweenBRIEF COMMUNICATI-ON A LASER RAMAN SPECTROSCOPIC STUDY OF CA2+ BINDING TO TROPONIN C E. B. CAREW, P in troponin C induced by Ca2" binding. Addition of Ca2" to the high affinity Ca2" - Mg2+ sites produces

  1. THE APPLICATION OF SPECTROSCOPIC STUDIES OF THE AURORA TO THERMOSPHERIC NEUTRAL

    E-print Network

    Lummerzheim, Dirk

    THE APPLICATION OF SPECTROSCOPIC STUDIES OF THE AURORA TO THERMOSPHERIC NEUTRAL COMPOSITION D to be used with an assumed neutral density profile to dcterminc the excitation and quenching of the par neutral species with low threshold encr- gics were due, in part, to chemical ionic reactions

  2. Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study

    E-print Network

    Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study M. Vespa 2005 Available online 3 November 2006 Abstract Cement-based materials play an important role in multi-ray fluorescence (XRF)) were used to investigate Co and Ni uptake by Hardened Cement Paste (HCP) with the aim

  3. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.

    PubMed

    Liu, Yingying; Zhang, Guowen; Liao, Yijing; Wang, Yaping

    2015-12-01

    Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes. PMID:26162336

  4. The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    E-print Network

    Beck, P G; Van Reeth, T; Tkachenko, A; Raskin, G; van Winckel, H; Nascimento, J -D do; Salabert, D; Corsaro, E; Garcia, R A

    2015-01-01

    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100

  5. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2010-12-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  6. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  7. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L. (12508 Loyola, NE., Albuquerque, NM 87112); Gourley, Mark F. (7509 Spring Lake Dr., Apt. B1, Bethesda, MD 20817)

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  8. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  9. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions.

    PubMed

    Ewing, Andrew V; Biggart, Gordon D; Hale, Carwyn R; Clarke, Graham S; Kazarian, Sergei G

    2015-11-10

    Attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopic imaging has been used in combination with UV detection to study the release of a model poorly water-soluble drug, indomethacin, when formulated with selected drug carriers. Firstly, formulations of indomethacin and nicotinamide in varying weight ratios were studied since novel tablet dosage forms containing multi-drugs are of industrial interest. The in situ spectroscopic imaging measurements of the dissolving tablets showed that as the loading of indomethacin was increased, the rate of drug release changed from one that expressed first-order drug release to one which showed zero-order drug release. Two drug release mechanisms have been identified from the recorded spectroscopic images and UV dissolution profiles. To further validate these mechanisms, specific formulations containing the model drug and two other excipients, urea and mannitol, were studied. The formulations with urea showed similar first-order release, indicative of the drug-carrier interactions. Whereas, the indomethacin/mannitol formulations showed a zero-order release curve explained by disintegration of the tablet. ATR-FTIR spectroscopic imaging provided highly chemically specific information as well as the spatial distribution of the components during the dissolution process which has demonstrated the potential of this combined analytical setup to determine the mechanisms of drug release. PMID:26319636

  10. The biocompatibility of carbon hydroxyapatite/?-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/?-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation. PMID:26277184

  11. Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study

    SciTech Connect

    Wang, Han; Fu, Kan

    2013-11-15

    The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 °C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

  12. A spectroscopic and photometric study of post main sequence stars in M68

    NASA Astrophysics Data System (ADS)

    Schaeuble, Marc; Preston, George W.; Sneden, Chris; Thompson, Ian; Shectman, Stephen A.; Burley, Gregory S.

    2015-01-01

    We present the results of the spectral analysis for 24 post main sequence stars in the metal poor globular cluster M68 ([Fe/H] = -2.23). Our sample includes lower red giant stars, red giant tip stars, red horizontal branch stars and blue horizontal branch stars, therefore spanning 4000 K in Teff, and 3.0 log(g) space. This is the first high-resolution spectroscopic study sampling essentially all post-subgiant evolutionary stages of a very metal poor globular cluster. In the current effort, abundances and atmospheric parameters for all stars in our sample were derived using an internally consistent approach. Special consideration is given to blue horizontal branch stars, as they present a specific set of analytical challenges. Like earlier studies, we also find a small trend of metallicity and evolutionary state, but much less pronounced than before. Abundances of light elements are consistent among the evolutionary stages, while the n-capture elements exhibit traces of r-process enrichment in this cluster. The combination of these results is considered in the discussion of the evolutionary history of M68 and also the difficulties of deriving self-consistent atmospheric parameters over multiple evolutionary stages. Support for this research from the National Science Foundation (grat AST-1211585) is acknowledged with thanks.

  13. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  14. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  15. A Combined Remote LIBS and Raman Spectroscopic Study of Minerals

    NASA Technical Reports Server (NTRS)

    Hubble, H. W.; Ghosh, M.; Sharma, S. K.; Horton, K. A.; Lucey, P. G.; Angel, S. M.; Wiens, R. C.

    2002-01-01

    In this paper, we explore the use of remote LIBS combined with pulsed-laser Raman spectroscopy for mineral analysis at a distance of 10 meters. Samples analyzed include: carbonates (both biogenic and abiogenic), silicates, and sulfates. Additional information is contained in the original extended abstract.

  16. UHV surface-analysis endstation with x-ray scattering and spectroscopic capabilities

    SciTech Connect

    Lyman, Paul F.; Keane, Denis T.; Bedzyk, Michael J.

    1997-07-01

    The design of a versatile ultrahigh vacuum (UHV) endstation for use at the Advanced Photon Source is described. The capabilities of the endstation include x-ray scattering and x-ray spectroscopic techniques for the investigation of surfaces, interfaces, and thin films. The UHV analytical chamber also includes facilities for surface preparation, thin film growth, and standard (non-x-ray) surface analyses. The endstation, which is inspired by previous successful implementations for surface scattering, incorporates several novel design features to facilitate the use of both scattering and spectroscopic techniques, and also allows the examination of small samples. Its capabilities include x-ray reflectivity and crystal truncation rod studies, grazing-incidence x-ray diffraction, x-ray standing waves, surface extended x-ray absorption fine structure, x-ray holography, and x-ray photoelectron spectroscopy.

  17. UHV surface-analysis endstation with x-ray scattering and spectroscopic capabilities

    SciTech Connect

    Lyman, Paul F.; Bedzyk, Michael J.; Keane, Denis T. Bedzyk, Michael J.

    1997-07-01

    The design of a versatile ultrahigh vacuum (UHV) endstation for use at the Advanced Photon Source is described. The capabilities of the endstation include x-ray scattering {ital and} x-ray spectroscopic techniques for the investigation of surfaces, interfaces, and thin films. The UHV analytical chamber also includes facilities for surface preparation, thin film growth, and standard (non-x-ray) surface analyses. The endstation, which is inspired by previous successful implementations for surface scattering, incorporates several novel design features to facilitate the use of both scattering and spectroscopic techniques, and also allows the examination of small samples. Its capabilities include x-ray reflectivity and crystal truncation rod studies, grazing-incidence x-ray diffraction, x-ray standing waves, surface extended x-ray absorption fine structure, x-ray holography, and x-ray photoelectron spectroscopy. {copyright} {ital 1997 American Institute of Physics.}

  18. Spectroscopic studies of jet-cooled NiAu and PtCu Eileen M. Spain and Michael D. Morse

    E-print Network

    Morse, Michael D.

    Spectroscopic studies of jet-cooled NiAu and PtCu Eileen M. Spain and Michael D. Morse Department) Spectroscopic investigations of NiAu and PtCu have revealed that both molecules possess 2Asi2 ground electronic states, and are in this respect analogous to the isovalent molecule NiCu. The ground-state bond lengths

  19. A Spectroscopic and Photometric Study of the Interacting Binary and Double Period Variable HD 170582

    NASA Astrophysics Data System (ADS)

    Mennickent, R. E.; Djurasevic, G.; Cabezas, M.; Cséki, A.; Rosales, J.; Niemczura, E.; Araya, I.; Curé, M.

    2015-07-01

    We present a spectroscopic and photometric study of the interacting binary and double-period variable HD 170582. Based on the study of the ASAS V-band light curve we have determined an improved orbital period of 16.87177±0.021 days and a long period of 587 days. We disentangled the light curve into an orbital part, determining ephemerides and revealing orbital ellipsoidal variability with unequal maxima, and a long cycle, showing quasi-sinusoidal changes with V-band amplitude 0.1 mag. From the analysis of 136 CHIRON/CTIO high-resolution optical spectra, the model of the V-band ASAS light curve and the fit of the spectral energy distribution, we determined the physical parameters for the stars and the circumprimary disk, the distance to the system and general system dimensions, the reddening, and the metallicity. The disk contributes about 35% to the system luminosity in the V-band. Two extended regions located at opposite sides of the disk rim, and hotter than the disk by 67% and 46%, fit the light curve asymmetries. These structures can be attributed to shocks produced by disk gas dynamics and gas stream interaction. The system is seen under an inclination of 67°, and is at a distance of 238 pc. We discuss the double-line nature of He I 5875; two absorption components move in anti-phase during the orbital cycle. One of these components probably arises from a wind in the stream/disk interaction region, near the hot spot. We find that HD 170582 is one of the systems showing a discrepancy between the color excess obtained from diffuse interstellar bands and that obtained from the analysis of the spectral energy distribution. This might be attributed to the influence of circumstellar matter. This study of HD 170582 will help to understand the class of interacting binaries dubbed 'Double Periodic Variables'.

  20. Vibrational spectroscopic studies of L-Alaninium oxalate

    NASA Astrophysics Data System (ADS)

    Balamurugan, N.; Charanya, C.; Sampathkrishnan, S.

    2015-09-01

    An organic crystal of L-Alaninium oxalate single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystal had been subjected to single-crystal X-ray diffraction technique and cell parameters of the crystal were determined. The quantitative analysis on the crystal had been carried out using Fourier transform infrared (FTIR) and Fourier transform Raman (FTRaman) spectral measurements. The molecular structures, vibrational wave numbers were calculated using Density Functional Theory method. The calculated Thermodynamic properties were performed.

  1. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  2. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands.

    PubMed

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A; Piro, Oscar E; Pis-Diez, Reinaldo; González-Baró, Ana C

    2015-02-25

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular O-H?N interactions in salicylaldehyde derivatives between the O-H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory. PMID:25255482

  3. Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies.

    PubMed

    Chen, Xiaoyun; Wang, Jie; Boughton, Andrew P; Kristalyn, Cornelius B; Chen, Zhan

    2007-02-01

    Despite the availability of several mature structure determination techniques for bulk proteins, determination of structural and orientational information of interfacial proteins, e.g., in cell membranes or on biomaterial surfaces, remains a difficult problem. We combine sum frequency generation (SFG) vibrational spectroscopy with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to investigate the orientation of alpha-helical peptides reconstituted in substrate supported lipid bilayers. Melittin was chosen as a model for alpha-helical peptides, and its orientation when interacting with a supported 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) bilayer has been examined. Through polarization analysis using amide I signals obtained from both SFG and ATR-FTIR measurements, the orientation distribution of melittin inside a DPPG bilayer was deduced using several trial distribution functions. Melittin was modeled as either an ideal helix or a helix with a bent structure. It was found that a simple distribution function such as a delta-distribution or a Gaussian distribution was not adequate to describe the melittin orientation distribution inside a DPPG bilayer. Instead, two populations of melittin, corresponding to two melittin-bilayer association states, could be used to interpret the experimentally observed result. The method employed in this study demonstrates the feasibility of acquiring a more accurate orientation distribution of peptides/proteins in situ using a combination of vibrational spectroscopic techniques without exogenous labeling. PMID:17263427

  4. Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    NASA Astrophysics Data System (ADS)

    Donati, P.; Bragaglia, A.; Carretta, E.; D'Orazi, V.; Tosi, M.; Cusano, F.; Carini, R.

    2015-11-01

    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long-term programme Bologna Open Clusters Chemical Evolution. NGC 2355 was observed with the Large Binocular Camera at the Large Binocular Telescope using the Bessel B, V, and Ic filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram method, as done in other papers of this series. Additional spectroscopic observations with the Fibre-fed Echelle Spectrograph at the Nordic Optical Telescope of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]= -0.06 dex, age between 0.8 and 1 Gyr, reddening E(B - V) in the range 0.14-0.19 mag, and distance modulus (m - M)0 of about 11 mag. We also investigate the abundances of O, Na, Al, ?, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC 2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.

  5. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ?1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [?/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [?/Fe] abundance ratios in the Orphan stream are in tension with the high [?/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  6. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  7. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Søren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1° field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% ± 3% and a tidal circularization period of 6.2{sub ?1.1}{sup +1.1} days for NGC 6819.

  8. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  9. Mihaliccik Tremolite: An XRD, FTIR and Raman Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Izci, E.

    2014-06-01

    Tremolite sample used in this study was obtained from Tatarcik deposits of Mihaliccik region of Turkey and characterized by X-ray diffraction, energy dispersive spectroscopy, Raman, and Fourier transform infrared spectroscopy methods.

  10. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  11. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches

    NASA Astrophysics Data System (ADS)

    Anbarasan, R.; Dhandapani, A.; Manivarman, S.; Subashchandrabose, S.; Saleem, H.

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis.

  12. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  13. Spectroscopic and theoretical study on alkali metal phenylacetates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; ?wis?ocka, R.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of phenylacetic acid was studied. The FT-IR, FT-Raman and 1H and 13C NMR spectra were recorded for studied compounds. Characteristic shifts in IR and NMR spectra along alkali metal phenylacetates were observed. Good correlations between the wavenumbers of the vibrational bands in the IR spectra of phenylacetates and some alkali metal parameters such as ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy were found. The density functional hybrid method B3LYP with 6-311++G** basis set was used to calculate optimized geometrical structures of studied compounds. Aromaticity indices, atomic charges, dipole moments and energies were calculated as well as the wavenumbers and intensities of IR spectra and chemical shifts in NMR spectra. The theoretical parameters were compared to experimental characteristic of alkali metal phenylacetates.

  14. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  15. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  16. Structural, Magnetic and Spectroscopic Studies of Thin Manganite Films

    NASA Astrophysics Data System (ADS)

    Tyson, T. A.

    2003-03-01

    Starting from early experiments [1], evidence has been found for a close coupling of strain and the magnetotransport properties of manganite films. The characteristic feature found is that the metal to insulator transition temperature (TMI) is suppressed in very thin films [2]. In addition, studies show that the magnetic transition temperature (Tc) and TMI decouple in ultrathin films [3]. Systematic magnetization studies reveal that strain induces strong magnetic anisotropy [4]. Theoretical work also points to the sensitivity of Tc to biaxial strain [5]. Most studies have focused on single bulk properties. In order to understand the correlations between strain and the transport and magnetic properties we have examined the structure of films on multiple length scales. The local structure of films have been studies by x-ray absorption spectroscopy. The long -range structure has been studied by high-resolution x-ray diffraction and the microstructure has been studied by AFM measurements. These measurements are correlated with bulk magnetization and transport studies. Insight is gained on the evolution of lattice strain and Jahn-Teller distortions with thickness. Direct evidence is found for the arrest of charge ordering with strain and the existence of strain induced insulating regions of films. The magnetic ordering and transport properties as a function of strain as compared with bandstructure calculations. This work is supported by NSF Career Grant DMR-9733862 and DMR-0209243. Collaborators: Q. Qian, M. Deleon (NJIT), C. Dubourdiu (CNRS), J. Bai (ORNL), W. Prellier, A. Biswas, R. L. Greene (U. Maryland) [1] S. Jin et al., Appl. Phys. Lett. 67, 557 (1995). [2] (a) J. Z. Sun et al. Appl. Phys. Lett. 74, 3017 (1999). (b) F. S. Razi et al., Appl. Phys. Lett 76, 155 (2000) [3] J. Aarts et al., Appl. Phys. Lett. 72, 2975 (1998). (b) R. A. Rao et al., J. Appl. Phys. 85, 4794 (1999). [4] (a) X. W. Wu et al., Phys. Rev. B 61, 501 (2000). (b) J. O'Donnell et al., Appl. Phys. Lett. 72, 1775 (1998). (c) H. S. Wang and Q. Li, Int. J. Mod. Phys. B 13, 3827 (1999). [5] A. J. Millis, T. Darling and A. Migliori, J. Appl. Phys 83, 1588 (1998).

  17. Conceptual design study to determine optimal enclosure vent configuration for the Maunakea Spectroscopic Explorer (MSE)

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; Vogiatzis, Konstantinos; Hangan, Horia; Jubayer, Chowdhury M.; Breckenridge, Craig; Loewen, Nathan; Bauman, Steven; Salmon, Derrick

    2014-07-01

    The Maunakea Spectroscopic Explorer (MSE; formerly Next Generation Canada-France-Hawaii Telescope) is a dedicated, 10m aperture, wide-field, fiber-fed multi-object spectroscopic facility proposed as an upgrade to the existing Canada-France-Hawaii Telescope on the summit of Mauna Kea. The enclosure vent configuration design study is the last of three studies to examine the technical feasibility of the proposed MSE baseline concept. The enclosure vent configuration study compares the aero-thermal performance of three enclosure ventilation configurations based on the predicted dome thermal seeing and air flow attenuation over the enclosure aperture opening of a Calotte design derived from computational fluid dynamics simulations. In addition, functional and operation considerations such as access and servicing of the three ventilation configurations is discussed.

  18. Spectroscopic studies of the interfacial interactions between polymers and nanostructures

    NASA Astrophysics Data System (ADS)

    Sampson, William M.

    Optical and vibrational spectroscopies are used to study the interactions of various polymers with several nanoscopic materials. First, two new conjugated polymers manufactured by the Ferraris Group in the Department of Chemistry at The University of Texas at Dallas, poly [1,4-bis-2-ethylhexylmercapto]- p-phenylenevinylene (BEHM-PPV)and poly [1,4-bis-(2-ethylhexyl-sulfinyl)]- p-phenylenevinylene (BEHSO-PPV) are studied along with poly (2,5-bis (2'-ethylhexyloxy)-1,4-p-phenylenevinylene) (BEH-PPV). It is found that the two sulphur containing polymers BEHM-PPV and BEHSO-PPV have a greater tendency to aggregate than does BEH-PPV, and also have bluer photoluminescence. These three polymers are then studied in composite with single walled carbon nanotubes where charge transfer occurs across the interface from the polymer to the nanotubes. These three polymers are studied in mixture with aggregated quantum dots, where it is seen that the quantum dot aggregation prevents significant interactions to occur. The energy transfer interaction between conjugated polymers and transparent, conducting multiwalled carbon nanotubes films is investigated. It is found that a coating of PEDOT-PSS between the nanotubes and conjugated polymer suppresses the quenching of photoluminescence. This effect is important for enhancement of electroluminescence of organic LED devices, in which MWCNT hole injectors are used instead of the usual ITO. The University of Texas developed peptide nano-1 has been shown to engage in charge transfer interactions with SWNTs and, perhaps more importantly, can enable self assembly of complex nanotube structures. Finally, poly [2-methoxy-5-(2'-ethylhexyloxy)- p-phenylenevinylene] (MEH-PPV) and poly[3-hexyl thiophene] (P3HT) are studied in composite with titanium dioxide and an increase in the photoluminescence is seen, induced by interfacial interactions between the polymer and TiO 2. An explanation based on polaron mediated triplet to singlet exciton conversion is presented as an explanation for this effect.

  19. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3? u and d 3? g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  20. Archival Ultraviolet Spectroscopic Analysis of Disk-Dominated Cataclysmic Variables: The Importance of the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Godon, Patrick

    We propose to carry out a systematic ultraviolet (UV) spectral analysis of 43 disk- dominated systems in cataclysmic variable (CV) binaries with the inclusion of the contribution from the boundary layer, from NASA UV Space Missions such as HST, FUSE, HUT, IUE and ORFEUS. The mass accretion in CVs is a badly needed parameter to verify the theory of the evolution of CVs, to understand the accretion process itself and the disk instability. However, many disk-dominated systems unexpectedly prove impossible to model using only standard accretion disks and white dwarfs in combination. Our objective is to overcome this difficulty by modeling the UV spectrum of the boundary layer between the star and disk, including its effect on the spectrum of the disk and star for the first time. This will provide the first step needed for the improvement of the disk model in UV spectroscopic analysis of disk-dominated systems in CVs. At the same time the results of this spectral analysis will provide information on the boundary layer and accretion disk of these systems. As a by-product, we will create a web-based catalog of all the archival UV spectra of disk-dominated CVs, which will be added and fused to our existing and growing web-based catalog of FUSE spectra of CVs. Since the WD is the most common end-product of stellar evolution (approx 90% of all the stars in the Galaxy have or will evolve into white dwarfs), and the accretion disk is the most common universal structure resulting from mass transfer with angular momentum, and since both can be directly viewed in CVs in the ultraviolet (UV), an understanding of the consequences of accretion in these systems is the first step in a global understanding of accretion in other systems throughout the universe. These include Young Stellar Objects, galactic binaries (accretion onto neutron stars and black holes) and the most difficult to study, Active Galactic Nuclei. In addition, the formation history of WDs is closely linked to the history of the Galaxy. As a consequence, this proposal will support the NASA Strategic Goals and Science Outcomes 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets; Science Objective 3: understanding the development of structure and cycles of matter and energy in the evolving universe: RFA (b) Explore the behavior of matter in extreme astrophysical environments, including disks, cosmic jets, and the source of gamma-ray bursts and cosmic rays.

  1. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  2. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) [1] are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. IL solvation and rotational dynamics are measured by TCSPC in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy.

  3. Virgin and recycled engine oil differentiation: a spectroscopic study.

    PubMed

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied. PMID:18083292

  4. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    ?ejka, Ji?í; Sejkora, Ji?í; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H?O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed. PMID:25956330

  5. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    ?ejka, Ji?í; Sejkora, Ji?í; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  6. Vibrational spectroscopic studies in the hydrolysis and condensation of chlorotrimethylsilane.

    PubMed

    Li, Ying-Sing; Le, Kim

    2004-03-01

    Raman and infrared spectroscopy were used to study the hydrolysis and condensation of chlorotrimethylsilane (CTMC) in aqueous organic solvents. From the recorded spectra and their intensity variation with time, we were able to identify trimethylsilanol as the reaction intermediate or the hydrolysis product as well as hexamethyldisiloxane (HMDS) as the final condensation product. The measured Raman intensity of CTMS at different time revealed that hydrolysis of CTMS is first order in terms of the CTMS concentration. From the Raman spectra collected under different conditions, it was noted that condensation reaction rates is faster in neutral condition than in acidic condition. PMID:15036105

  7. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  8. Atomic force microscope anodic oxidation studied by spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Lazzarino, M.; Heun, S.; Ressel, B.; Prince, K. C.; Pingue, P.; Ascoli, C.

    2002-10-01

    Atomic force microscope (AFM) induced local oxidation is a versatile and promising nanofabrication process used successfully to produce quantum devices. Nevertheless, little information is available on the chemical and structural properties of the grown oxide. We address this open issue by a spectromicroscopic study of nanoscopic oxide patterns grown by AFM anodic oxidation on n-type silicon substrate. We show that AFM oxidation produces chemically uniform, stoichiometric SiO2, and that its chemical and structural properties do not depend on the applied voltage. The observed electrostatic shift of the oxide binding energies allows a simple estimation of the electrical properties of the AFM induced oxide.

  9. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography

    PubMed Central

    Jaedicke, Volker; Agcaer, Semih; Robles, Francisco E.; Steinert, Marian; Jones, David; Goebel, Sebastian; Gerhardt, Nils C.; Welp, Hubert; Hofmann, Martin R.

    2013-01-01

    Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system’s resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage. PMID:24409393

  10. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography.

    PubMed

    Jaedicke, Volker; Agcaer, Semih; Robles, Francisco E; Steinert, Marian; Jones, David; Goebel, Sebastian; Gerhardt, Nils C; Welp, Hubert; Hofmann, Martin R

    2013-01-01

    Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system's resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage. PMID:24409393

  11. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  12. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  13. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  14. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  15. Spectroscopic studies on proton-rich nucleus ^175Pt

    NASA Astrophysics Data System (ADS)

    Gürdal, G.; Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Ahmad, I.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Hartley, D. J.; Riedinger, L. L.

    2010-11-01

    Neutron-deficient nuclei around the Z=82 shell closure are known to exhibit shape coexsistence, due to the interplay between the occupation of specific intruder orbitals and core effects. It is challenging to study such nuclei experimentally, since fission dominates and, as a consequence, evaporation residue cross sections are small. The Recoil Decay Tagging (RDT) technique combined with the use of a large gamma-ray array is a powerful tool to study such nuclei. ^175Pt was investigated with this approach to clarify the structure of this nucleus and to extend the systematics in this region. Excited states were populated by the ^94Mo(^84Sr,2pn) reaction at beam energies of 380 and 385 MeV provided by ATLAS. Prompt gamma rays were detected by Gammasphere and the recoiling nuclei were identified according to their m/q ratio using the FMA. After m/q identification, the recoiling nuclei were implanted in a 40x40 DSSD, where subsequent charge particle decays were measured. An array of four large-volume Ge detectors and one LEPS detector surrounded the DSSD. The results of this measurement will be presented. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  16. A Spectroscopic and Mineralogical Study of Multiple Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Emery, J. P.; Marchis, F.; Enriquez, J.; Assafin, M.

    2013-10-01

    There are currently ~200 identified multiple asteroid systems (MASs). These systems display a large diversity in heliocentric distance, size/mass ratio, system angular momentum, mutual orbital parameters, and taxonomic class. These characteristics are simplified under the nomenclature of Descamps and Marchis (2008), which divides MASs into four types: Type-1 - large asteroids with small satellites; Type-2 - similar size double asteroids; Type-3 - small asynchronous systems; and Type-4 - contact-binary asteroids. The large MAS diversity suggests multiple formation mechanisms are required to understand their origins. There are currently three broad formation scenarios: 1) ejecta from impacts; 2) catastrophic disruption followed by rotational fission; and 3) tidal disruption. The taxonomic class and mineralogy of the MASs coupled with the average density and system angular momentum provide a potential means to discriminate between proposed formation mechanisms. We present visible and near-infrared (NIR) spectra spanning 0.45 - 2.45 ?m for 23 Main Belt MASs. The data were primarily obtained using the Southern Astrophysical Research Telescope (SOAR) Goodman High Throughput Spectrograph (August 2011 - July 2012) for the visible data and the InfraRed Telescope Facility (IRTF) SpeX Spectrograph (August 2008 - May 2013) for the IR data. Our data were supplemented using previously published data when necessary. The asteroids' Bus-DeMeo taxonomic classes are determined using the MIT SMASS online classification routines. Our sample includes 3 C-types, 1 X-type, 1 K-type, 1 L-type, 4 V-types, 10 S-types, 2 Sq- or Q-types, and 1 ambiguous classification. We calculate the 1- and 2-?m band centers, depths, and areas to determine the pyroxene mineralogy (molar Fs and Wo) of the surfaces using empirically derived equations. The NIR band analysis allows us to determine the S-type subclasses, S(I) - S(VII), which roughly tracks olivine-pyroxene chemistry. A comparison of the orbital parameters, physical parameters (size, density, and angular momentum), collisional family membership, and taxonomy is presented in an effort to find correlations, which may give insights to how these MASs formation mechanisms.

  17. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  18. Photodegradation of wood at elevated temperature: infrared spectroscopic study.

    PubMed

    Tolvaj, Laszlo; Molnar, Zsolt; Nemeth, Robert

    2013-04-01

    The purpose of this investigation was to evaluate the effect of elevated temperature on the photodegradation of solid wood. The work presented here, deals with the changes of infrared spectrum generated by the photodegradation process. Wood samples were irradiated with a mercury vapour lamp. The photodegradation behaviours of conifers and deciduous species were studied at elevated (80 °C) and at ambient (30 °C) temperatures. The infrared data were analysed using the difference spectrum method. The properly calculated difference spectrum gave much more information about the chemical changes than the visual comparison of the absorption spectra measured before and after the irradiation. The results showed considerably greater degradation at 80 °C than at 30 °C. The difference spectra revealed the absorption increase of tree different types of carbonyl groups. Remarkable differences were found between the photodegradation behaviours of softwoods and hardwoods. Poplar belongs anatomically to the hardwoods but its photodegradation properties were between that of hardwoods and softwoods. PMID:23501727

  19. FT-IR and Raman Spectroscopic Study of Cobalt Oxides

    NASA Astrophysics Data System (ADS)

    Li, Yang; Qin, Fan; Qiu, Wenlan; Fang, Hui; Hadjiev, Viktor G.; Litvinov, Dmitri; Bao, Jiming

    2015-03-01

    Fourier transform infrared (FTIR) and Raman spectroscopy are studied on cobalt monoxide (CoO) and cobalt dicobalt oxide (Co3O4) in the presented work. We can experimentally detect the transverse and longitudinal optical modes of Co3O4 using transmittance and diffuse reflectance (DRIFTS) measurements in FTIR, which showed good agreement with theoretical calculation. DRIFTS results also proved that Co3O4 with smaller particle size will lead to an increase in the LO-TO ratio. During the oxidation process from CoO to Co3O4, this ratio is gradually raised. CoO can be identified with a broad band near 500cm-1. For the first time, we clearly demonstrate that CoO exhibits only the second order Raman scattering near 1070cm-1 at room temperature and ambient pressure (excited by 473nm laser).

  20. Preparations and spectroscopic studies of organotin complexes of diclofenac*1

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Nikolaos; Demertzis, Mavroudis A.; Kovala-Demertzi, Dimitra; Koutsodimou, Aglaia; Moukarika, Alice

    2004-08-01

    The reactions of the potent and widely used anti-inflammatory drug diclofenac, HL, with diorganotin(IV) oxides were studied. The dimeric tetraorganodistannoxane complexes [Me 2LSnOSnLMe 2] 2, [Bu 2LSnOSnLBu 2] 2, [Ph 2LSnOSnLPh 2] 2 and the dibutyltin complex [Bu 2SnL 2], have been prepared and structurally characterized in the solid state by means of vibrational and 119Sn Mössbauer spectroscopy. Determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy. From the variable-temperature Mössbauer effect, the Debye temperature was determined. The complexes have been characterized in solution by NMR ( 1H and 13C) spectroscopy. Vibrational, Mössbauer, and NMR data are discussed in terms of the proposed structures.

  1. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  2. Raman spectroscopic study of ancient South African domestic clay pottery.

    PubMed

    Legodi, M A; de Waal, D

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively. PMID:16839805

  3. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (?-SiO 2), hematite (?-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  4. Synthesis, crystal structure, spectroscopic analysis and computational study of (Z)-1-(2,4-dinitrophenyl)-2-((E)-3-(4-methoxyphenyl)-1-(thiophen-2-yl) allylidene) hydrazine by DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Singh, Ravindra Kumar

    2015-06-01

    The title compound was synthesized and characterized by IR, 1H NMR, 13C NMR and single crystal X-ray diffraction studies. Quantum chemical calculations have been performed at DFT level of theory using B3LYP functional and 6-31G(d,p) as basis set. Potential energy distribution (PED) for the normal modes of vibrations was done using Gar2ped program. The time dependent density functional theory (TD-DFT) was used to find the various electronic transitions within molecule in two different solvent of varying polarity. Non linear optical (NLO) behavior of title compound was investigated in different solvents by the computed value of first hyperpolarizability (?0). A combined theoretical and experimental correlation of 1H and 13C NMR spectra are in good agreement. Stability of molecules as a result of hyper-conjugative interactions and electron delocalization were analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Intramolecular interactions were analyzed by AIM approach. The chemical reactivity descriptors were calculated to study the reactive sites within molecule.

  5. Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline

    NASA Astrophysics Data System (ADS)

    Pathak, S. K.; Srivastava, R.; Sachan, A. K.; Prasad, O.; Sinha, L.; Asiri, A. M.; Karabacak, M.

    2015-01-01

    Comprehensive investigation of geometrical and electronic structure in ground as well as the first excited state of 3,5-Difluoroaniline (C6H5NF2) was carried out. The experimentally observed spectral data (FT-TR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were measured by TD-DFT approach. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. 1H and 13C NMR spectra by using gauge including atomic orbital (GIAO) method of studied compound were compared with experimental data obtained. Moreover, the thermodynamic properties were evaluated.

  6. Vibrationally resolved negative ion photoelectron spectroscopic studies of niobium clusters

    SciTech Connect

    Green, S.M.E.; Alex, S.; Leopold, D.G.

    1996-12-31

    Negative ion photoelectron spectroscopy provides a means of obtaining vibrational data for atoms and small molecules {open_quotes}chemisorbed{close_quotes} on size-selected metal clusters. In the present study, Nb{sub 3}O{sup -}, Nb{sub 4}O{sup -} and Nb{sub 4}CO{sup -} were prepared in a flowing afterglow ion-molecule reactor equipped with a metal cathode cluster source. The 488 nm photoelectron spectrum of the mass-selected Nb{sub 3}O{sup -} anions shows a vertical transition to the ground state of neutral Nb{sub 3}O, with weak progressions in the Nb{sub 3}-O stretching (710{+-}20 cm{sup -1} in Nb{sub 3}O) and Nb, bending (320{+-}15 cm{sup -1}-in both Nb{sub 3}O and Nb{sub 3}O{sup -}) vibrational modes. These results indicate that the Nb{sub 3}O{sup -} anion, like Nb{sub 3}O and Nb{sub 3}O{sup +}, has a planar Ca{sub 2v} structure with the O atom bridging two Nb atoms. The Nb{sub 4}O{sup -} spectrum shows resolved transitions to the ground state of Nb{sub 3}O and to an excited electronic state lying 3050{+-}20 cm{sup -1} higher in energy. In analogy with the Nb{sub 4}O results, the 670{+-}20 cm{sup -1} frequency observed for the Nb{sub 4}O ground state is assigned to a metal-oxygen stretching mode, and the 215{+-}15 cm{sup -1} and 195{+-}15 cm{sup -1} frequencies observed in the ground and excited states, respectively, to a bending mode of the metal cluster. The electron affinities of Nb{sub 3}O and Nb{sub 4}O are 1.402 and 1.178 ({+-}0.006) eV, respectively. Preliminary, ongoing studies of mass selected Nb{sub 4}CO{sup -} anions prepared under a variety of source conditions thus far suggest the presence of two isomers, one with a greatly weakened but intact CO bond as indicated by a very low CO stretching frequency of about 1300 cm{sup -1} and the other with the dissociated C and O atoms bound separately to the niobium cluster.

  7. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  8. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.

    PubMed

    Walde, P; Han, D; Luisi, P L

    1993-04-20

    The conformation and activity of three different lipases have been studied in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. In the case of human pancreatic lipase, the conformation of the polypeptide chain--as judged from far-UV circular dichroism measurements--is only slightly altered after the enzyme is transferred from a bulk aqueous solution into the microenvironment of reverse micelles. Significant spectral changes in the near-UV circular dichroism and fluorescence spectrum indicate, however, that the solvation of aromatic amino acid side chains is considerably different in reverse micelles. Conversely, the circular dichroism spectra of the lipases from Candida rugosa and Pseudomonas sp. are considerably different in reverse micelles, compared with the spectra in aqueous solution, indicating that both enzymes loose the native structure at the water/AOT/oil interface. Bound substrate and/or product can prevent this denaturation. While Pseudomonas sp. and human pancreatic lipase are inhibited by tetrahydrolipstatin (THL), the lipase from Candida rugosa is not. These data, together with additional activity and inhibition data, indicate that the micellar microenvironment accentuates the difference between the different enzymes in terms of the relation structure/activity. PMID:7682440

  9. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Ye?ilo?lu, Ye?im; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2?-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 ?g/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), ?-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, ?-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  10. Spectroscopic studies of magnetic transitions in TbPO4

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Loong, C.-K.; Trouw, F.; Abraham, M. M.; Boatner, L. A.

    1994-05-01

    In TbPO4, an antiferromagnetic-phase transition is accompanied by a cooperative Jahn-Teller effect involving a Tb ion-lattice coupling that induces a tetragonal-to-monoclinic distortion of the crystal lattice and an associated readjustment of the Tb electronic states as required by the lowering of the rare-earth-site symmetry. The laser-excitation and emission spectra of TbPO4 and 0.1% Tb-doped YPO4 single crystals were studied at temperatures below and above the phase transitions. The line shapes of transitions in the stoichiometric compound are unusually broad and asymmetric while those observed for the dilute compound are relatively sharp. In addition, the TbPO4 spectra show an anomalous temperature dependence near the phase transition, indicating strong interactions of the rare-earth ions with their local environments. In the present work, a comparison of the optical results with the results of new neutron-scattering measurements is made.

  11. Spectroscopic studies of magnetic transitions in TbPO4

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Loong, C.-K.; Trouw, F.; Abraham, M. M.; Boatner, L. A.

    1993-09-01

    Rare earth orthophosphates, RPO4 (R = Tb to Lu), crystallize in the tetragonal zircon structure in which R occupies sites of D(sub 2d) symmetry. The R = Tb, Dy, Ho compounds order antiferromagnetically at low temperature with the rare earth moments parallel to the crystallographic c-axis. In TbPO4 the magnetic transition is accompanied by a cooperative Jahn-Teller effect involving Tb ion-lattice coupling which induces a tetragonal to monoclinic distortion of the crystal lattice and a readjustment of the Tb electronic states as required by the lowering of the rare earth site symmetry. The laser excitation and emission spectra of TbPO4 and 0.1% Tb doped YPO4 single crystals were studied below and above the phase transition temperature. Line shapes of transitions in the stoichiometric compound are unusually broad and asymmetric whereas those for the dilute compound are sharp. The TbPO4 spectra show an anomalous temperature dependence near the phase transitions, indicating strong interactions of rare earth ions with environment. Comparison of the optical results with neutron scattering is made.

  12. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at ? ? = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by ?SFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of ?SFSmax vs. ?* scale of solvent polarity was found compared to ?absmax or ?emmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  13. Thermal decomposition of Ferrian chamosite: an infrared emission spectroscopic study

    NASA Astrophysics Data System (ADS)

    Kloprogge, J. T.; Frost, R. L.

    The thermal behaviour of ripidolite, an iron-rich chlorite, has been studied in situ by infrared emission spectroscopy up to 800°C. The more di,trioctahedral nature due to significant amounts of Fe3+ is reflected, in addition to the two bands around 3420 and 3560cm-1, by an extra band around 3345cm-1. This extra band is absent in pure dioctahedral chlorites without Fe3+. These bands have been assigned to (AlAl)O-OH, (SiAl)O-OH and (SiSi)O-OH stretching modes with increasing frequencies. The bands disappear upon dehydroxylation around 650°C. A similar behaviour is observed for the corresponding libration modes around 716, 759 and 802cm-1. The stretching and bending modes of the inner-OH of the octahedral sheet in the 2:1 clay-like layer are observed around 3645, 943 and 904cm-1. Although the bands decrease in intensity, they remain present up to 800°C as dehydroxylation of the octahedral sheet is not yet complete at this temperature. The presence of two bending modes is explained as being due to a differentiation between Mg-OH and Fe-OH modes. At 650°C a new sharp band is observed around 502cm-1 assigned to a (Fe,Mg)-O-Al bending mode caused by the formation of a spinel-like interlayer phase after dehydroxylation.

  14. Speciation of Rhenium in Chloride Melts: Spectroscopic and Electrochemical Study

    NASA Astrophysics Data System (ADS)

    Danilov, Danil A.; Volkovich, Vladimir A.; Vasin, Boris D.; Aleksandrov, Denis E.; Polovov, Ilya B.; Griffiths, Trevor R.

    2008-06-01

    Speciation of rhenium in high-temperature alkali chloride-based melts was studied using electronic absorption and IR spectroscopy of molten salts and diffuse reflectance spectroscopy of quenched melts. Rhenium was added to the melts by anodic dissolution of the metal (at anodic current densities of 0.005 - 0.05 A/cm2), by reacting Re and ReO2 with Cl2 and HCl, and by dissolving K2[ReCl6]. The melts included 3LiCl-2KCl and NaCl-2CsCl eutectics, an NaCl-KCl equimolar mixture, and pure NaCl, KCl and CsCl between 450 and 850 ?C. Rhenium was present in the melts as Re(IV) hexachloro-ions, [ReCl6]2-; no evidence of species containing rhenium in oxidation states below four was obtained. The kinetics of [ReCl6]2- disproportionation in molten alkali chlorides were investigated, and the IR spectra of [ReO4]- ions in molten CsCl-CsI and CsI were measured for the first time.

  15. An infrared and Raman spectroscopic study of the uranyl micas

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.

    2004-06-01

    Vibrational spectroscopy using a combination of infrared and Raman spectroscopy has been used to study the uranyl micas also known as the autunite minerals, of general formula M(UO 2) 2(XO 4) 2·8-12H 2O where M may be Ba, Ca, Cu, Fe 2+, Mg, Mn 2+ or 1/2(HAl) and X is As or P. Included in these minerals are autunite, metautunite, torbernite, meta-torbernite, meta-zeunerite, saléeite and sabugalite. Compared with the results of infrared spectroscopy, Raman microscopy shows excellent band separation enabling the separation and identification of bands attributed to (UO 2) 2+ units, PO 4 and AsO 4 units. Common to all spectra were bands at around 900 and 818 cm -1, attributed to the antisymmetric and symmetric stretching vibrations of the (UO 2) 2+ units. Water in autunites is in a highly structured arrangement in the interlayer of the uranyl micas. Water molecules are differentiated according to the strength of the hydrogen bonds formed between the water and the adjacent uranyl-phosphate or uranyl-arsenate surfaces and the hydration sphere of the interlayer cation.

  16. An infrared and Raman spectroscopic study of the uranyl micas.

    PubMed

    Frost, Ray L

    2004-06-01

    Vibrational spectroscopy using a combination of infrared and Raman spectroscopy has been used to study the uranyl micas also known as the autunite minerals, of general formula M(UO2)2(XO4)2.8-12H2O where M may be Ba, Ca, Cu, Fe2+, Mg, Mn2+ or 1/2(HAl) and X is As or P. Included in these minerals are autunite, metautunite, torbernite, meta-torbernite, meta-zeunerite, saléeite and sabugalite. Compared with the results of infrared spectroscopy, Raman microscopy shows excellent band separation enabling the separation and identification of bands attributed to (UO2)2+ units, PO4 and AsO4 units. Common to all spectra were bands at around 900 and 818 cm(-1), attributed to the antisymmetric and symmetric stretching vibrations of the (UO2)2+ units. Water in autunites is in a highly structured arrangement in the interlayer of the uranyl micas. Water molecules are differentiated according to the strength of the hydrogen bonds formed between the water and the adjacent uranyl-phosphate or uranyl-arsenate surfaces and the hydration sphere of the interlayer cation. PMID:15147689

  17. High Resolution Spectroscopic Study of $^{10}_{\\Lambda}$Be

    E-print Network

    Gogami, T; Kawama, D; Achenbach, P; Ahmidouch, A; Albayrak, I; Androic, D; Asaturyan, A; Asaturyan, R; Ates, O; Baturin, P; Badui, R; Boeglin, W; Bono, J; Brash, E; Carter, P; Chiba, A; Christy, E; Danagoulian, S; De Leo, R; Doi, D; Elaasar, M; Ent, R; Fujii, Y; Fujita, M; Furic, M; Gabrielyan, M; Gan, L; Garibaldi, F; Gaskell, D; Gasparian, A; Han, Y; Hashimoto, O; Horn, T; Hu, B; Hungerford, Ed V; Jones, M; Kanda, H; Kaneta, M; Kato, S; Kawai, M; Khanal, H; Kohl, M; Liyanage, A; Luo, W; Maeda, K; Margaryan, A; Markowitz, P; Maruta, T; Matsumura, A; Maxwell, V; Mkrtchyan, A; Mkrtchyan, H; Nagao, S; Nakamura, S N; Narayan, A; Neville, C; Niculescu, G; Niculescu, M I; Nunez, A; Nuruzzaman,; Okayasu, Y; Petkovic, T; Pochodzalla, J; Qiu, X; Reinhold, J; Rodriguez, V M; Samanta, C; Sawatzky, B; Seva, T; Shichijo, A; Tadevosyan, V; Tang, L; Taniya, N; Tsukada, K; Veilleux, M; Vulcan, W; Wesselmann, F R; Wood, S A; Yamamoto, T; Ya, L; Ye, Z; Yokota, K; Yuan, L; Zhamkochyan, S; Zhu, L

    2015-01-01

    A spectroscopy of a $^{10}_{\\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$^{-}$ and 2$^{-}$ states) was obtained to be B$_{\\Lambda}$=8.55$\\pm$0.07(stat.)$\\pm$0.11(sys.) MeV. The result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on Charge Symmetry Breaking (CSB) effect in the $\\Lambda N$ interaction.

  18. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    SciTech Connect

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G. E-mail: dgonzalez@astro.unam.mx E-mail: zhar@astro.unam.mx E-mail: borisov@sao.ru

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ?1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ?5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  19. A spectroscopic study of IRAS F10214+4724

    E-print Network

    Stephen Serjeant; Steve Rawlings; Mark Lacy; Richard G. McMahon; Andy Lawrence; Michael Rowan-Robinson; Matt Mountain

    1998-02-16

    The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct components: lines of width ~1000 km/s from a Seyfert-II nucleus; <~200 km/s lines which are likely to be associated with star formation; and a broad ~4000 km/s CIII] 1909ang emission line which is blue-shifted by ~1000 km/s with respect to the Seyfert-II lines. Our study of the Seyfert-II component leads to several new results, including: (i) From the double-peaked structure in the Ly alpha line, and the lack of Ly beta, we argue that the Ly alpha photons have emerged through a neutral column of N_H ~ 2.5 x 10^{25}/m^2, possibly located within the AGN narrow-line region as argued in several high redshift radiogalaxies. (ii) The resonant O VI 1032,1036ang doublet (previously identified as Ly beta) is in an optically thick (1:1) ratio. At face value this implies an an extreme density (n_e ~ 10^{17}/m^3) more typical of broad line region clouds. However, we attribute this instead to the damping wings of Ly beta from the resonant absorption. (iii) A tentative detection of HeII 1086 suggests little extinction in the rest-frame ultraviolet.

  20. Vibrational assignments, spectroscopic investigation (FT-IR and FT-Raman), NBO, MEP, HOMO?LUMO analysis and intermolecular hydrogen bonding interactions of 7-fluoroisatin, 7-bromoisatin and 1-methylisatin ? A comparative study

    NASA Astrophysics Data System (ADS)

    Polat, Turgay; Bulut, Fatih; Ar?can, Ilknur; Kandemirli, Fatma; Yildirim, Gürcan

    2015-12-01

    In this comprehensive study, theoretical and experimental studies were carried out on 7-fluoroisatin, 7-bromoisatin and 1-methylisatin using FT-Raman and FT-IR spectra. The optimized geometrical parameters and theoretical vibrational frequencies were calculated by means of density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set based on scaled quantum mechanical (SQM) method for the first time. The relative abundances of the possible tautomers or conformers found were calculated with respect to the Boltzmann distribution. Moreover, the harmonic vibrational frequencies including IR and Raman intensities, thermodynamic and electronic parameters were computed in detail. The effects of substituents -F, ?Br and -CH3 on the crucial characteristics pertaining to the title compound of isatin were investigated, and the obtained data were compared with each other. Natural bond orbital (NBO) analysis was applied to study the stability arising from charge delocalization along with the compound. The chemical reactivity parameters (chemical hardness and softness, electronegativity, chemical potential and electrophilicity index) were discussed clearly. The HOMO and LUMO energies determined showed that the serious charge transfer occurs in the title molecules studied. Furthermore, the size, shape, charge density distributions and chemical reactivity sites belonging to the molecules were obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Additionally, the hydrogen-bonded complexes were simulated to describe the roles of intermolecular hydrogen bonding on the molecular structures and vibrational frequencies.

  1. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  2. The Penn State-Torun Centre for Astronomy Planet Search stars. I. Spectroscopic analysis of 348 red giants

    E-print Network

    Zielinski, P; Wolszczan, A; Adamow, M; Nowak, G

    2012-01-01

    We present basic atmospheric parameters (Teff, logg, vt and [Fe/H]) as well as luminosities, masses, radii and absolute radial velocities for 348 stars, presumably giants, from the ~1000 star sample observed within the Penn State-Torun Centre for Astronomy Planet Search with the High Resolution Spectrograph of the 9.2m Hobby-Eberly Telescope. The stellar parameters are key ingredients in proper interpretation of newly discovered low-mass companions while a systematic study of the complete sample will create a basis for future statistical considerations concerning low-mass companions appearance around evolved low and intermediate-mass stars. The atmospheric parameters were derived using a strictly spectroscopic method based on the LTE analysis of equivalent widths of FeI and FeII lines. With existing photometric data and the Hipparcos parallaxes we estimated stellar masses and ages via evolutionary tracks fitting. The stellar radii were calculated from either estimated masses and the spectroscopic logg or from...

  3. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L{sub cm} (I), {beta}{sup 18} (II), and {alpha}{sup AP-B} (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A{sub max} = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  4. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  5. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  6. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  7. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  8. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Varghese, Hema Tresa; Panicker, C. Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Alsenoy, C. Van

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated 1H NMR results are in good agreement with experimental data. Molecular docking study is also reported.

  9. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    NASA Astrophysics Data System (ADS)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to ?-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  10. [Spectroscopic and dynamical studies of highly energized small polyatomic molecules]. [Stimulated emission pumping

    SciTech Connect

    Not Available

    1992-01-01

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0[sup 0][sub 0] band performed.

  11. Can spectroscopic analysis improve our understanding of biogeochemical processes in agricultural streams?

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Ann Louise

    2015-04-01

    In agricultural catchments diffuse fluxes of nutrients, mainly nitrogen (N) and phosphorus (P) from arable land and livestock are responsible for pollution of receiving waters and their eutrophication. Organic matter (OM) can play an important role in mediating a range of biogeochemical processes controlling diffuse pollution in streams and at their interface with surrounding land in the riparian and hyporheic zones. Thus, a holistic and simultaneous monitoring of N, P and OM fractions can help to improve our understanding of biogeochemical functioning of agricultural streams. In this study we build on intensive in situ monitoring of diffuse pollution in a small agricultural groundwater-fed stream in NW England carried out since 2009. The in situ monitoring unit captures high-frequency (15 minutes to hourly) responses of water quality parameters including total phosphorus, total reactive phosphorus and nitrate-nitrogen to changing flow conditions. For two consecutive hydrological years we have carried out additional spectroscopic water analyses to characterise organic matter components and their interactions with nutrient fractions. Automated and grab water samples have been analysed using ultraviolet-visible (UV-Vis) absorbance and excitation-emission (EEM) fluorescence spectroscopy. In addition, a tryptophan sensor was trialled to capture in situ fluorescence dynamics. Our paper evaluates patterns in nutrient and OM responses to baseflow and storm flow conditions and provides an assessment of storage-related changes of automated samples and temperature and turbidity effects on in situ tryptophan measurements. The paper shows the value of spectroscopic measurements to understand biogeochemical and hydrological nutrient dynamics and quantifies analytical uncertainty associated with both laboratory-based and in situ spectroscopic measurements.

  12. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (?), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes. PMID:23867645

  13. Ultraviolet and optical spectroscopic studies of Lambda Andromedae - The chromosphere and interstellar medium

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Dupree, A. K.

    1979-01-01

    Chromospheric lines of, and interstellar lines toward, the spectroscopic binary Lambda And (primary component G7-G8 III-IV) have been observed in the ultraviolet with the spectrometer and telescope on board the Copernicus satellite. An extensive, high-resolution spectroscopic study of the Ca II H and K profiles has also been undertaken. Some of these optical spectra were obtained simultaneously with the ultraviolet data. The ultraviolet emission lines of Lamba And are compared to the sun and to stars of similar spectral type. The star Lamba And resembles the active sun in surface brightness of chromospheric emissions and in appearance of the Mg II and Ca II profiles. The largest variations in the integrated calcium emission cores amount to an 80% increase in the K core and a corresponding 40% increase in the H core between observations two years apart. Variations in the cores may show a dependence on spectroscopic phase, and may be contributed to by circumstellar matter in the binary system. Previously unreported, transient emission features have also been observed, at a velocity of -70 km/s with respect to the Ca II emission cores.

  14. Spectroscopic study of early-type multiple stellar systems II. New binary subsystems

    E-print Network

    Veramendi, M E

    2014-01-01

    Context. This work is part of a long-term spectroscopic study of a sample of 30 multiple stars with early-type components. In this second paper we present the results of six multiple systems in which new stellar components have been detected. Aims. The main aim is to increase the knowledge of stellar properties and dynamical structure of early-type multiple stellar systems. Methods. Using spectroscopic observations taken over a time baseline of more than 5 years we measured RVs by cross-correlations and applied a spectral disentangling method to double-lined systems. Besides the discovery of objects with double-lined spectra, the existence of new spectroscopic subsystems have been inferred from the radial velocity variations of single-lined components and through the variation of the barycentric velocity of double-lined subsystems. Orbital elements have been calculated when possible. Results. Seven new stellar components and two members that we expect to confirm with new observations have been discovered in t...

  15. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Long, S. A. T.

    1985-01-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  16. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Haress, Nadia G.; Al-Omary, Fatmah; El-Emam, Ali A.; Mary, Y. Sheena; Panicker, C. Yohannan; Al-Saadi, Abdulaziz A.; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-01

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the Csbnd C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  17. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole.

    PubMed

    Haress, Nadia G; Al-Omary, Fatmah; El-Emam, Ali A; Mary, Y Sheena; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-25

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the C-C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity. PMID:25168235

  18. Concentration dependence of spectroscopic properties and energy transfer analysis in Nd3+ doped bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Tian, Cong; Chen, Xi; Shuibao, Yu

    2015-10-01

    A detailed investigation on 1.06 ?m spectroscopic properties as a function of Nd3+ ions concentration in bismuth silicate glasses is reported. Judd-Ofelt analysis indicated that Nd2O3 has no substantial influence on glass structure. Based on the Judd-Ofelt intensity parameters, several radiative properties such as radiative transition probability, radiative lifetime, branching ratio and emission cross-section of Nd3+ ions have been derived. The 1.06 ?m emission intensity increases firstly and then attains maximum at 0.5 mol% Nd2O3 and decreases with further increase of dopant concentration. The luminescence quenching behavior at higher Nd3+ concentration has been ascribed to the hopping migration assisted cross relaxation mechanism. The high emission cross section (2.33 × 10-20 cm2) and large quantum efficiency (90.7%) suggests their potential for compact 1.06 ?m lasers applications.

  19. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples.

    PubMed

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Rani, Manviri; Lee, Jongmyoung; Shim, Won Joon

    2015-04-15

    The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (<1mm) were compared using the same samples from the sea surface microlayer (SML) and beach sand. Fragmented microplastics were significantly (p<0.05) underestimated and fiber was significantly overestimated using the stereomicroscope both in the SML and beach samples. The total abundance by FT-IR was higher than by microscope both in the SML and beach samples, but they were not significantly (p>0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution. PMID:25682567

  20. [FT-IR spectroscopic analysis in monitoring of hydroxyl stretching vibrations in plant hydrogels].

    PubMed

    Pielesz, Anna; Binia?, Dorota; Wieczorek, Joanna

    2011-01-01

    In recent years, some bioactive hydrogels isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. This article attempts to review the current structural and conformational characterization of some importantly bioactive hydrogels isolated from following plant: Symphytum officinale, Thymus pulegioides, Trigonella foenum-graecum L., Tussilago farfara L., Hyssopus officinalis, Althaea officinalis L., Equisetum arvense L. Linum usitatissimum L. and Fucus vesiculosus L. Hydrogels are cross-linked three-dimensional polysaccharide macromolecular networks that contain a large fraction of water within their structure. FT-IR spectroscopic analysis showed a strong band at 3500-3100 cm(-1) attributed to hydroxyl (the intermolecular and the intramolecular hydrogen bonds) stretching vibrations changes. PMID:22332324

  1. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  2. Spectroscopic study of sub-barrier quasi-elastic nuclear reactions

    SciTech Connect

    Pass, C.N.; Evans, P.M.; Smith, A.E.; Stuttge, L.; Betts, R.R.; Lilley, J.S.; Connell, K.A.; Simpson, J.; Smith, J.R.; James, A.N.

    1988-01-01

    The technique developed in this paper is particularly well suited to the detailed spectroscopic study of low energy quasi-elastic nuclear reactions and by overcoming the limitations of conventional procedure, the prospect of detailed studies of inclusive reaction mechanism may be realised. With only limited statistics we find evidence for strong multistep character in the transfer of a single nucleon from spherical vibrational target to spherical projectile nuclei. The suggestive measurements reported here may be made definitive through extended runs based on this technique and experiments planned for the future offer the real prospect of developing a quantified interpretation of the reaction process. 9 refs. 5 figs.

  3. Gold nanoparticles-globulin protein bio-conjugates: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Ghosh, Kalyan S.; Singh, Bhanu P.; Gathania, Arvind K.

    2015-06-01

    Interaction between gold nanoparticles (AuNPs) of different sizes with Bovine gamma globulin (BGG) protein, in the form of bio-conjugates, was studied spectroscopically. Optical properties studied using UV-Visible spectra revealed a change in the environment of protein as well as AuNPs. Quenching of fluorescence of tryptophan residues was observed in case of bio-conjugates which confirmed a strong interaction between protein and AuNPs. Obtained values of binding constant inferred the effect of size and surface of nanoparticles on protein's structure.

  4. Detailed spectroscopic analysis of SN 1987A: The distance to the LMC using the SEAM method

    SciTech Connect

    Mitchell, Robert C.; Baron, E.; Branch, David; Hauschildt, Peter H.; Nugent, Peter E.; Lundqvist, Peter; Blinnikov, Sergei; Pun, Chun S.J.

    2002-05-21

    Supernova 1987A remains the most well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. We model the observed spectra from Day 1 to Day 81 using a hydrodynamical model. We show that good agreement can be obtained at times up to about 60 days, if we allow for extended nickel mixing. Later than about 60 days the observed Balmer lines become stronger than our models can reproduce. We show that this is likely due to a more complicated distribution of gamma-rays than we allow for in our spherically symmetric calculations. We present synthetic light curves in UBVRIJHK and a synthetic bolometric light curve. Using this broad baseline of detailed spectroscopic models we find a distance modulus mu = 18.5 +/- 0.2 using the SEAM method of determining distances to supernovae. We find that the explosion time agrees with that of the neutrino burst and is constrained at 68 percent confidence to within +/- 0.9 days. We argue that the weak Balmer lines of our detailed model calculations casts doubt on the accuracy of the purely photometric EPM method. We also suggest that Type IIP supernovae will be most useful as distance indicators at early times due to a variety of effects.

  5. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups

    NASA Astrophysics Data System (ADS)

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  6. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    SciTech Connect

    Mini, S. Sadasivan, V.; Meena, S. S. Bhatt, Pramod

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  7. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    NASA Astrophysics Data System (ADS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-10-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl3?2H2O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H2O)2] and [Fe(FAHP)Cl2(H2O)2].

  8. The molecular structure of chloritoid: a mid-infrared and near-infrared spectroscopic study.

    PubMed

    Li, Kuo; Liu, Qinfu; Cheng, Hongfei; Deng, Yutao; Frost, Ray L

    2015-06-15

    The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (?+?)OH bands with the fundamental stretching (?) and bending (?) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis. PMID:25828887

  9. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high ?6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 ? 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 ? 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 ? 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 ? 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  10. Raman spectroscopic studies of the phase transitions in hexane at high pressure.

    PubMed

    Huai, Wang; Haifei, Zheng; Qiang, Sun

    2005-12-01

    Raman spectroscopic study of n-hexane was carried out in a cubic zirconia anvil cell up to approximately 2.0 GPa. Under high pressure, the C-H stretching region of the spectrum at 2850-3000 cm(-1) shows measurable changes in frequency, bandwidth, and intensity. These Raman bands shift towards higher frequencies with increasing pressure. At about 1.4 GPa, phase transition from liquid to solid was induced by compression, as was simultaneously observed with the built-in microscope. PMID:16390589

  11. Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping

    NASA Astrophysics Data System (ADS)

    Naka, Nobuyuki; Kashiwagi, Shinsuke; Nagai, Yuji; Namazu, Takahiro

    2015-10-01

    In this paper, an experimental analysis using a micro-Raman spectroscope for surface stress distribution in single crystal silicon (SCS) microstructures is described. Specially developed tensile test equipment applies a uniaxial tensile stress on SCS specimens with a 270 nm-high, 4 µm2 convex structures in the gauge section. Raman spectra around the convex region are measured using an ultraviolet laser with an excitation line of 363.8 nm. The shape of the Raman spectrum on the flat surface is symmetrical, whereas that around the edge of the convex is asymmetrical due to the multi-stress condition. Two-curve fitting is adopted for the asymmetric spectrum obtained at the edge, and the stress distribution estimated by the two peak positions is much closer to finite element analysis (FEA) results than that obtained by the one peak position. In partial least squares (PLS) analysis that is performed at the edge of the convex section only, explanatory variables are Raman spectral parameters, such as peak position, peak intensity, and full width at half maximum, and the response variable is the FEA stress distribution. The plane stress distributions derived from PLS analyses on each component are in good agreement with that from FEA. The combination of micro-Raman spectroscopy and tensile testing enables us to directly determine the stress components as well as stress magnitudes on SCS microstructures.

  12. Laser Spectroscopic Study of CaH in the B^2?^+ and D^2?^+ States

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyohei; Uchida, Kanako; Kobayashi, Kaori; Matsushima, Fusakazu; Moriwaki, Yoshiki

    2015-06-01

    Calcium hydride is one of the abundant molecules in the stellar environment, and is considered as a probe of stellar analysis. Ab initio calculations have shown that the electronic excited states of CaH have complex potential curves. It is suggested that the B^2?^+ state has an interesting double minimum potential due to the avoided crossing. Such a potential leads to drastic change of the rotational constants when the vibrational energy level goes across the potential barrier. Spectroscopic studies on CaH began in the 1920's, and many studies have been carried out since then. Bell et al. extensively assigned the D^2?^+-X^2?^+ bands in the UV region. Bernath's group has observed transitions in the IR and visible regions and identified their upper states as the A^2?^+, B^2?^+ and E^2?^+ states. We have carried out a laser induced fluorescence (LIF) study in the UV region between 360 and 430 nm. We have produced CaH by using laser ablation of a calcium target in a hydrogen gas environment, then molecules have been excited by a second harmonic pulse of dye laser and the fluorescence from molecules have been detected through a monochromator. Detection of the D^2?^+-X^2?^+ bands already identified by Bell et al. indicates the production of CaH. In addition, many other bands have been also found and a few bands have been assigned by using the combination differences, the lower state of these bands have been confirmed to the vibrational ground state of X^2?^+ state. We have tentatively assigned these bands as the B^2?^+ -X^2?^+ transition. We will discuss the assignment of these bands, together with the rotational constants comparing with those calculated from the ab initio potential. B. Barbuy, R. P. Schiavon, J. Gregorio-Hetem, P. D. Singh C. Batalha , Astron. Astrophys. Sippl. Ser. 101, 409 (1993). P. F. Weck and P. C .Stabcil, J. Chem. Phys. {118}, 9997 (2003). R. S. Mulliken, Phys. Rev. {25}, 509 (1925). G. D. Bell, M, Herman, J. W. C. Johns, and E. R. Peck, Physica Scripta {20}, 609 (1979). A. Shayesteh, K. A. Walker, I. Gordon, D. R. T. Appadoo, and P. F. Bernath, J. Mol. Struct. {695-696}, 23 (2004). R. S. Ram, K. Tereszchuk, I. E. Gordon, K. A. Walker, and P. F. Bernath, J. Mol. Spec. {266}, 86 (2011). G. Li, J. J. Harrison, R. S. Ram, C. M. Western, and P. F. Bernath Quant. Spectrosc. Rad. Transfer. {113}, 67 (2012). A. Shayesteh, R. S. Ram, and P. F. Bernath, J. Mol. Spec. {288}, 46 (2013).

  13. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    SciTech Connect

    Pizarro, Shelly A.

    2000-05-12

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because LR32.3 and LRC28.5 modulate the PC trimer spectral properties in distinct manners, it suggests different chromophore-interaction mechanisms for each linker. The low temperature absorbance spectrum of the PC trimer is consistent with an excitonic coupling interaction between neighboring a84 and b84 chromophores. Association with LR32.3 does not greatly alter this band shape but the absorbance of the PC/LRC28.5 complex is dramatically different. This indicates that LRC28.5 is disrupting the a84 - b84 relation established in the PC trimer. From these, and other polarized spectroscopy measurements, we conclude that both LR32.3 and LRC28.5 affect the spectral properties of the terminally emitting PC trimer chromophore (b84), and that LRC28.5 is additionally perturbing the relationship between the a84 and b84 chromophores to either disrupt or enhance their coupling interaction. The linker can perturb the PC chromophores through either specific aromatic residues or a concentration of electrostatically charged residues. Structurally, the linker disrupts the C3 symmetry of the associated biliprotein and this asymmetric interaction can serve to guide the transfer of excitation energy in one direction.

  14. Chemical identification and determination of sulfonamides in n-component solid mixtures within THz-region--solid-state Raman spectroscopic and mass spectrometric study.

    PubMed

    Lamshöft, M; Ivanova, B B; Spiteller, M

    2011-10-15

    The identification and quantitative determination of sulfonamidesin solid-state as n-component mixtures is performed. The limits of detection (LODs), accuracy, precision and repeatability are obtained and discussed, using the Raman spectra within 200-30 cm(-1) region (6.00-0.9 THz). The excitations, corresponding to H-bonding deformations, lattice vibrations, as well as coupling modes are used for determination. The validation of the statistical and mathematical tools for procedure of the spectroscopic patterns is performed. The possibilities of baseline correction methods, smoothing procedures, and non-linear curve fitting method for quantitative analysis within THz-region for complex spectroscopic patterns of n-component mixtures (n=1-5) are discussed. The hybrid HPLC tandem mass spectrometry (MS/MS) and powder XRD are applied as independent physical methods for analysis of the studied systems. PMID:21962684

  15. Preparation and spectroscopic studies on charge-transfer complexes of 2,2'-bipyridine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Teleb, Said M.; Gaballa, Akmal S.

    2005-11-01

    Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.

  16. Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme

    NASA Astrophysics Data System (ADS)

    Ali, Mohd. Sajid; Al-Lohedan, Hamad A.; Rafiquee, M. Z. A.; Atta, Ayman M.; Ezzat, Abdurrahman O.

    2015-01-01

    Silver nanoparticles were functionalized with polyvinylthiol (Ag-PVT) and their effect on the conformation of hen-egg white lysozyme was seen by means of spectroscopic techniques, viz., UV visible, fluorescence (intrinsic and synchronous), resonance Rayleigh scattering and circular dichroism. UV absorption spectra of lysozyme show a hyperchromic shift on the addition of Ag-PVT nanoparticles indicating the complex formation between the two. The interaction between lysozyme and Ag-PVT nanoparticles was takes place via static quenching with 1:1 binding ratio as revealed by the analysis of fluorescence measurements. Circular dichroism spectroscopic data show a decrease in ?-helical content of lysozyme on interaction with Ag-PVT nanoparticles which was due to the partial unfolding of the protein. Synchronous fluorescence spectroscopy disclosed that the microenvironments of both tryptophan and tyrosine residues were perturbed in the presence of Ag-PVT nanoparticles and perturbation in the tryptophan environment was more prominent. Rayleigh scattering (RRS) intensity increases on increasing the Ag-PVT nanoparticles concentration till it reaches to the saturation. The RRS intensity increases four times as compared to the native protein indicating the possibility of protein aggregation at higher concentrations of nanoparticles.

  17. The June 6 2012 transit of Venus: Imaging and spectroscopic analysis of the upper atmosphere emission

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Zhi, X.; Valls-Gabaud, D.; Koutchmy, S.; Rocher, P.; Zin, Z. Y.; Fu, Y.; Yang, L.; Liu, G. Q.; Liu, Z.; Ji, K.; Goodarzi, H.

    2014-12-01

    In the context of transiting exoplanets, the last June 6, 2012 Venus transit was a unique opportunity to address important questions regarding its atmosphere. The transit of Venus is indeed a particular case of an Earth-like planet transit, and the inference one can make about the upper layers of its atmosphere can be applied to other exoplanets. To this aim, we designed a small spectrograph that we placed at the focus of the New Vacuum Solar Telescope of Yunnan Observatory in China (45 m focus and 1 m of aperture), coupled to a 4K×2K 14 bit CCD detector, to measure low-resolution optical spectra of the refracted, scattered and transmitted solar radiation in the upper layers of the planet. It covered the 385-780 nm range when Venus was over the disc, and 540-680 nm (including the O_2 terrestrial bands) during the 18 minutes-long egress. The H? and He I D3 lines were recorded repeatedly. The atmospheric Lomonossov arc of Venus was simultaneously imaged using H? and TiO filters, allowing us to check the slit position on the images of Venus and to locate the spectroscopic features on its disc. The spectra show the signature of the Northern Pole horn part; a second part was evidenced on the spectra taken near but outside the limb. We studied the O_2, H_2O and H? line profiles searching for signatures arising from Venus and we compared the observed spectra with synthetic models. The spectroscopic dataset can now be used by a large community for discussing the properties of the upper atmosphere of Venus and the future detection of Venus-like exoplanets. Finally, the study is completed using a unique very high resolution deconvolved image of the arc and Venus silhouetted at the limb of the Sun, from the SOT of the Hinode space mission.

  18. A Spectroscopic Study of Type Ibc Supernova Host Galaxies from Untargeted Surveys

    E-print Network

    Sanders, Nathan E; Levesque, Emily M; Foley, Ryan J; Chornock, Ryan; Milisavljevic, Dan; Margutti, Raffaella; Berger, Edo; Drout, Maria R; Czekala, Ian; Dittmann, Jason A

    2012-01-01

    We present the largest spectroscopic study of the host environments of Type Ibc supernovae (SN Ibc) discovered exclusively by untargeted SN searches. Past studies of SN Ibc host environments have been biased towards high-mass, high-metallicity galaxies by focusing on SNe discovered in galaxy-targeted SN searches. Our new observations more than double the total number of spectroscopic stellar population age and metallicity measurements published for untargeted SN Ibc host environments, and extend to a median redshift about twice as large as previous statistical studies (z = 0.04). For the 12 SNe Ib and 21 SNe Ic in our metallicity sample, we find median metallicities of log(O/H)+12 = 8.48 and 8.61, respectively, but determine that the discrepancy in the full distribution of metallicities is not statistically significant. This median difference would correspond to only a small difference in the mass loss via metal-line driven winds (<30%), suggesting this does not play the dominant role in distinguishing SN ...

  19. Spectroscopic studies on chemical- and photo-responsive molecular machines and their bio-applications

    NASA Astrophysics Data System (ADS)

    Lau, Yuen Agnes

    2011-07-01

    The four chapters presented in this dissertation describe how various spectroscopic techniques are used: 1) to study the operation of molecular machines in solution, 2) to track the operation of molecular machines inside a single cell, and 3) to investigate the photo-decomposition pathway of a biological chromophore. Recent advances in nanotechnology have enriched the development of nano-scale molecular assemblies to be used as delivery platforms for biologically relevant molecules. Among all the molecular assemblies, molecular machines that are incorporated onto various domains of mesoporous silica nanoparticles (MSN) hold considerable potential as a reliable delivery system. Because the ease of functionalization enables chemical or photo-responsive molecular moieties to be covalently attached to the silica framework, these molecular assemblies, with defined mechanized properties, can perform specific functions under external stimuli (pH, redox, or light). While the primary function of these molecular machines is to deliver stored cargo molecules, the means of activation and the motif in which they operate are different. In the first and second chapters of this dissertation, two types of molecular machines, nanovalves and nanoimpellers, and their operations are studied. The ability to continuously monitor and image progression of molecular-based biological events in real-time can enhance our understanding of intracellular processes upon drug, protein and nucleic acid delivery. Using the photo-activated nanoimpeller described in the second chapter, the third chapter explores how it can be used to transport a nuclear staining agent, PI, inside a single cell. Nanoimpellers are made by functionalizing azobenzene molecules to the internal pore surface of MSN. The continuous cis/trans isomerizations are set in motion upon laser illumination at optimal wavelength(s), which facilitate cargo molecules to be expelled from the pores to the surrounding medium. By refining a conventional epi-fluorescence technique and complementing it with spectral acquisition, the course of the intracellular delivery event, from photo-isomeriza tion of azobenzene to PI's eventual intercalation with nuclear DNA is mapped in real-time spectroscopically. Finally, continuous spectroscopic monitoring of PI in vitro also led us to an unexpected, yet interesting observation. Upon prolonged laser exposure, both the absorption and emission maxima of PI exhibit remarkable spectral shifts. The photo-product has successfully been separated from PI using column chromatography. Spectroscopic investigations suggest that the observed large magnitude shift is the result of the N-dealkylation of the butylammonium side chain from PI. Through electron paramagnetic resonance measurement, the formation of a long-lived radical (with increasing intensity over time) is detected during this photo-decomposition process.

  20. Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2015-08-01

    Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  1. Spectroscopic studies on the interaction of cimetidine drug with biologically significant ?- and ?-acceptors

    NASA Astrophysics Data System (ADS)

    Pandeeswaran, M.; Elango, K. P.

    2010-05-01

    Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to ?as(I-I) and ?s(I-I) of the I-I bond and at 73 cm -1 due to bending ?(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.

  2. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  3. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  4. Spectroscopic studies and crystal structure of (E)-N Prime -(2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

    SciTech Connect

    Ozay, H. Yildiz, M.; Unver, H.; Kiraz, A.

    2013-01-15

    The structure of compound has also been examined cyrstallographically. It crystallizes in the monoclinic space group P2{sub 1}/c with a = 7.673(1), b = 16.251(2), c = 10.874(1) A, {beta} = 110.42(1) Degree-Sign , V = 1270.7(3) A{sup 3}, D{sub x} = 1.418 g cm{sup -3}, R{sub 1} = 0.0349 and wR{sub 2} = 0.0935 [I > 2{sigma}(I)], respectively. The title compound has been synthesized from the reaction of isonicotinohydrazide with 2-hydroxy-3-methoxybenzaldehyde. It has been characterized by using elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR and UV-Visible spectroscopic techniques.

  5. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    NASA Astrophysics Data System (ADS)

    Vera, L. P.; Pérez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3?g?a3?u), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  6. Structural investigations of lead germanosilicate glasses doped with Nb2O5 by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Narendrudu, T.; Suresh, S.; Yusub, S.; Kumar, A. Suneel; Rajyasree, Ch.; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna

    2015-10-01

    The transparent glasses with composition 30PbO-10GeO2-(60-x)SiO2-xNb2O5 (mol%) (0 ? x ? 2.5) are prepared by conventional melt quenching technique. The amorphous nature of the prepared glasses is characterized by XRD. The spectroscopic studies such as optical absorption, FTIR, Raman spectra were carried out at room temperature on these glasses. Besides this electrical properties, like dielectric constant ?', loss tan ?, ac conductivity ?ac etc., were also investigated over a moderately wide range of frequency (103-106 Hz) and temperature (30-300 °C). The optical absorption spectrum of the prepared glasses has exhibited absorption bands around 325 nm and 340 nm and these are due to the triplet - singlet electronic transition of Ge2+ state presents in the glass matrix as conversion of GeO2 into GeO is much easier rather than SiO2. From FTIR spectra of as prepared glasses, it is noticed that the intensity of octahedral NbO6 structural units is found to increase up to 2 mol% of Nb2O5 there after it is observed to decrease. It is also supported by Raman shift of NbO6 structural units observed around 650 and 930 cm-1. The analysis of electrical studies is also revealed that the conductivity of prepared glasses is found to increase gradually up to 2 mol% of Nb2O5 beyond this concentration it is observed to decrease. When the spectroscopic investigations are coupled with electrical studies it is concluded that the glass samples doped with 2 mol% of Nb2O5 are found to exhibit good semiconducting nature among the prepared glasses. Such glasses are suitable for fabrication of solid state devices.

  7. Spectroscopic Studies on Eu{sup 3+} Doped Boro-Tellurite Glasses

    SciTech Connect

    Selvaraju, K.; Marimuthu, K.

    2011-07-15

    Eu{sup 3+} doped boro-tellurite glasses have been synthesized and its optical behavior have been studied and reported. The presence of varying tellurium dioxide content results changes in spectroscopic behavoir were explored through UV-VIS, and Luminescence spectra. The bonding parameters have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) have been determined through the luminescence spectra without applying any constraints and the results are presented. The Judd-Ofelt parameters have been used to determine various optical properties corresponding to {sup 5}D{sub 0}{yields}{sup 7}F{sub J}(J = 1,2,3 and 4) transitions of Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar studies.

  8. Spectroscopic, crystallographic and theoretical studies of lasalocid complex with ammonia and benzylamine

    NASA Astrophysics Data System (ADS)

    Huczy?ski, Adam; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumil

    A natural antibiotic - Lasalocid is able to form stable complexes with ammonia and organic amines. New complexes of lasalocid with benzylamine and ammonia were obtained in the crystal forms and studied using X-ray, FT-IR, 1H NMR, 13C NMR and DFT methods. These studies have shown that in both complexes the proton is transferred from the carboxylic group to the amine group with the formation of a pseudo-cyclic structure of lasalocid anion complexing the protonated amine or NH4+ cation. The spectroscopic and DFT studies demonstrated that the structure of the complex formed between Lasalocid and benzylamine in the solid is also conserved in the solution and gas phase. In contrast, the structure of the complex formed between lasalocid and ammonium cation found in the solid state undergoes dissociation in chloroform solution accompanied with a change in the coordination form of the NH4+ cation.

  9. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  10. [Study on the spectroscopic data and vibrational levels of the ground SiH+ molecular ion].

    PubMed

    Zhao, Jun; Zeng, Hui

    2014-12-01

    The ground electronic state and the reasonable dissociation limit of SiH+ molecular ion have been correctly determined based on group theory and atomic and molecular reaction statics. The energy, equilibrium geometry and harmonic frequency of the ground electronic state of SiH+ molecular ion have been calculated using the method QCISD(T)/cc-pVQZ. The whole potential curves for the ground electronic state is further scanned using the above method, the potential energy functions and relevant spectroscopic constants of this state are then first obtained by least square fitting to the Murrell-Sorbie function (n=9) and the modified Murrell-Sorbie+c6 function, respectively. The present results showed that the calculated results based on the Murrell-Sorbie function (n=9) are in better agreement with the experimental values, with the relative errors between spectroscopic constants and the experimental values being 0.13%, 3.07%, 0.38%, 5.25% and 0.52% respectively. With the potential obtained at the QCISD(T)/cc-pVQZ level of theory, the total of 27 vibrational states are predicted when J=0 by numerically solving the radial Schrodinger equation of nuclear motion. The complete vibrational levels, inertial rotation and six centrifugal distortion constants are obtained for the ground electronic state of SiH+ molecular ion for the first time. Calculation results in the present work may provide theoretical supports for the further study of SiH+ molecular ion. PMID:25881406

  11. Configuration interaction study of the electronic states and spectroscopic properties of selenium monoxide

    NASA Astrophysics Data System (ADS)

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2012-04-01

    The electronic spectrum of the selenium monoxide (SeO) molecule has been studied theoretically by using ab initio based multireference singles and doubles configuration interaction (MRDCI) methodology, which includes relativistic effective core potentials (RECP) and suitable Gaussian basis sets of the atoms. Potential energy curves of several electronic states correlating with the lowest and second dissociation limit are constructed. Spectroscopic parameters, namely Te, re, and ?e of 10 bound ?-S states of the molecule within 4.71 eV are estimated and compared with the available data. In addition, binding energies of the ground and some excited states are computed. The changes in the potential energy curves and spectroscopic properties after the inclusion of the spin-orbit coupling are discussed and also compared with the available data. Transition probabilities of some dipole-allowed and spin forbidden transitions are estimated and radiative lifetimes of some excited states are reported. Dipole moments of some low-lying ?-S states as a function of bond distance have also been computed.

  12. Design of and Studies with a Novel One Meter Multi - Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Barry, Donald James

    A traditional one-meter imaging telescope costs 250,000 and weighs several tons. A novel multi -element spectroscopic telescope is described which trades imaging ability and monolithic size for low cost and weight, producing the same light gathering power at under one-tenth the cost. A complete spectroscopic facility consisting of one-meter equivalent-aperture telescope, fiber optical feed, Newtonian-Ebert spectrograph, and automated processing software has been prototyped, constructed, and placed into operation. The total cost of materials is under 85,000. A variety of science observations have been conducted with this facility including a tomographic reconstruction of the component spectra of the massive binary Plaskett's star components, a measurement of the line-profile variability of the Be stars lambda Eridani and BK Camelopardalis, and a dynamical study of the orbit of the triple star system 55 Ursae Majoris. The instrument performs well and is now in regular use as a scheduled telescope at the Georgia State University Hard Labor Creek Observatory. Improvements continue, and the telescope continues to serve a valuable role in the GSU Astronomy program's scientific programs and pedagogical mission.

  13. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    SciTech Connect

    Allers, K. N.; Liu, Michael C.

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  14. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  15. Ascidian (Chordata-Tunicata) glycosaminoglycans: extraction, purification, biochemical, and spectroscopic analysis.

    PubMed

    Pavão, Mauro S G

    2015-01-01

    Sulfated polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from-ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans is purified by gel-filtration chromatography on a Superdex-peptide column and analyzed by HPLC on a strong ion exchange Sax-Spherisorb column. 1H or 13C nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans. PMID:25325946

  16. Embedded spectroscopic fiber sensor for on-line arc-welding analysis.

    PubMed

    Mirapeix, Jesús; Cobo, Adolfo; Quintela, Antonio; López-Higuera, José-Miguel

    2007-06-01

    A new fiber sensor system designed for spectroscopic analysis and on-line quality assurance of arc-welding processes is presented here. Although several different approaches have been considered for the optical capture of plasma emission in arc-welding processes, they tend to be invasive and make use of optical devices such as collimators or photodiodes. The solution proposed here is based on the arrangement of an optical fiber, which is used at the same time as the optical capturing device and also to deliver the optical information to a spectrometer, embedded within an arc-welding torch. It will be demonstrated that, by using the shielding gas as a protection for the fiber end, the plasma light emission is efficiently collected, forming a sensor system completely transparent and noninvasive for the welding operator. The feasibility of the proposed sensor designed to be used as the input optics of a welding quality-assurance system based on plasma spectroscopy will be demonstrated by means of several welding tests. PMID:17514278

  17. Silicon fin line edge roughness determination and sensitivity analysis by Mueller matrix spectroscopic ellipsometry based scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; O'Mullane, Samuel; Sunkoju, Sravan; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe; Keller, Nick; Race, Joseph; Muthinti, Gangadhara Raja; Diebold, Alain C.

    2015-03-01

    Measurement and control of line edge roughness (LER) is one of the most challenging issues facing patterning technology. As the critical dimensions (CD) of patterned structures decrease, LER of only a few nanometers can negatively impact device performance. Here, Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry is used to determine LER in periodic line-space structures in 28 nm pitch Si fin samples fabricated by directed selfassembly (DSA) patterning. The optical response of the Mueller matrix (MM) elements is influenced by structural parameters like pitch, CD, height, and side-wall angle (SWA), as well as the optical properties of the materials. Evaluation and decoupling MM element response to LER from other structural parameters requires sensitivity analysis using simulations of optical models that include LER. Here, an approach is developed that quantifies Si fin LER by comparing the optical responses generated by systematically varying the grating shape and measurement conditions. Finally, the validity of this approach is established by comparing the results obtained from top down scanning electron microscope (SEM) images and cross-sectional TEM image of the 28 nm pitch Si fins.

  18. Studies on the spectroscopic behavior of cryptotanshinone, tanshinone IIA, and tanshinone I

    NASA Astrophysics Data System (ADS)

    Li, Jun-Fen; Wei, Yu-Xia; Xu, Zhi-Cheng; Dong, Chuan; Shuang, Shao-Min

    2004-03-01

    A comparative study on the spectroscopic behavior of cryptotanshinone (CTan), tanshinone IIA (Tan IIA), and tanshinone I (Tan I) has been investigated, including UV-Vis absorption, low temperature phosphorescence (LTP), low temperature fluorescence (LTF), paper substrate-room temperature phosphorescence (PS-RTP), paper substrate-room temperature fluorescence (PS-RTF) and fluorescence in liquid (LF). The effect of pH on the luminescence intensity is discussed. Lifetime and polarization of the LTP and RTP have been examined with phosphorescence lifetime in the range of 0.6-0.9 s and polarization in the range of 0.10-0.27. Analytical characteristics of LF, PS-RTF and PS-RTP of CTan, Tan IIA, and Tan I have been studied.

  19. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  20. Synthesis, Spectroscopic, ac Conductivity and Thermal Studies on Co(III) Acetylacetonate-Iodine Complex

    NASA Astrophysics Data System (ADS)

    Hashem, H. A.; Refat, M. S.

    A spectrophotometric study of 1:1 donor-acceptor complex, cobalt (III) acetylacetonate (donor) and iodine (?-acceptor) has been preformed. The equilibrium constants, (K) and the absorpitivity (?) for the formation of the iodine complex have been calculated. The predicted structure of the solid triiodide charge-transfer complex reported in this study is further supported by thermal, far and mid infrared spectroscopic measurements. Electron transfer from Co (acac = 2, 4-pentanedionate)3 to iodine leads to the formation of an organic semiconductor with the formula of [Co(acac)3]_2 I+. I3-. The kinetic parameters (nonisothermal method) for their decomposition have been evaluated by graphical methods using the equations of Freeman-Carroll (FC), Horowitz-Metzger (HM) and Coats-Redfern (CR). The ac conductivity and dielectric properties of [Co(acac)3]_2 I+. I3- have been measured over the frequency 50-106 Hz at temperature 298 K.

  1. OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope. [Optical Surface Analysis Code

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Thomas, David A.; Osantowski, John F.

    1986-01-01

    An investigation is made of the sensitivity of the image quality for the proposed FUSE telescope to mirror misalignments and a wide spatial frequency range of figure errors. Representative figure error data was obtained for the analysis from measurements made on the SEUTS (Solar Extreme Ultraviolet Telescope Spectrograph) telescope mirrors. The tolerancing analysis was carried out with the aid of the Optical Surface Analysis Code (OSAC) program.

  2. Quantitative Near Infrared Spectroscopic Analysis of Q-switched Nd:YAG Treatment of Generalized Argyria

    PubMed Central

    Saager, Rolf B; Hassan, Khaled M; Kondru, Clement; Durkin, Anthony J; Kelly, Kristen M

    2012-01-01

    Background and Objective Generalized argyria is a blue-gray hyperpigmentation of the skin resulting from ingestion or application of silver compounds, such as silver colloid. Case reports have noted improvement after Q-Switched Neodymium--Yttrium Aluminum Garnet laser (1064nm QS Nd:YAG) laser treatment to small surface areas. No reports have objectively monitored laser treatment of generalized argyria over large areas of skin, nor have long-term outcomes been evaluated. Study Design/Materials and Methods An incremental treatment plan was developed for a subject suffering from argyria. A quantitative near infrared spectroscopic measurement technique was employed to non-invasively analyze tissue-pigment characteristics pre- and post-laser treatment. Post-treatment measurements were collected at weeks 1, 2, 3, and 4, and again at 1 year. Results Immediate apparent removal of pigment was observed with 1 Q-switched 1064 nm Nd:YAG laser treatment (3-6 mm spot; 0.8-2 J/cm2) per area. Entire face, neck, upper chest and arms were treated over multiple sessions. Treatments were very painful and general anesthesia was utilized in order to treat large areas. Near-infrared spectroscopy was used to characterize and quantify the concentration of silver particles in the dermis based on the absorption features of the silver particles as well as the optical scattering effects they impart. We were able to estimate that there was, on average, 0.042 mg/mL concentration of silver prior to treatment and that these levels went below the minimum detectable limit of the instrument post-treatment. There was no recurrence of discoloration over the 1-year study period. Conclusion QS 1064 nm laser treatment of argyria is a viable method to restore normal skin pigmentation with no evidence of recurrence over study period. Quantitative spectroscopic measurements, 1) confirmed dyspigmentation was due to silver, 2) validated our clinical assessment of no recurrence up to one year post-treatment and 3) indicated no collateral tissue damage with treatments. PMID:23322674

  3. Structural and thermal stability analysis of Escherichia coli and Alicyclobacillus acidocaldarius thioredoxin revealed a molten globule-like state in thermal denaturation pathway of the proteins: an infrared spectroscopic study.

    PubMed Central

    Pedone, Emilia; Bartolucci, Simonetta; Rossi, Mosè; Pierfederici, Francesco Maria; Scirè, Andrea; Cacciamani, Tiziana; Tanfani, Fabio

    2003-01-01

    The structure of thioredoxin from Alicyclobacillus acidocaldarius (previously named Bacillus acidocaldarius ) (BacTrx) and from Escherichia coli ( E. coli Trx) was studied by Fourier-transform IR spectroscopy. Two mutants of BacTrx [Lys(18)-->Gly (K18G) and Arg(82)-->Glu (R82E)] were also analysed. The data revealed similar secondary structures in all proteins, but BacTrx and its mutants showed a more compact structure than E. coli Trx. In BacTrx and its mutants, the compactness was p(2)H-dependent. All proteins revealed the existence of a molten globule-like state. At p(2)H 5.8, the temperature at which this state was detected was higher in BacTrx and decreased in the different proteins in the following order: BacTrx>R82E>K18G> E. coli Trx. At neutral or basic p(2)H, the molten globule-like state was detected at the same temperature in both BacTrx and R82E, whereas it was found at the same temperature in all p(2)Hs tested for E. coli Trx. The thermal stability of the proteins was in the following order at all p(2)Hs tested: BacTrx>R82E>K18G> E. coli Trx, and was lower for each protein at p(2)H 8.4 than at neutral or acidic p(2)Hs. The formation of protein aggregates, brought about by thermal denaturation, were observed for BacTrx and K18G at all p(2)Hs tested, whereas they were present in R82E and E. coli Trx samples only at p(2)H 5.8. The results indicated that a single mutation might affect the structural properties of a protein, including its propensity to aggregate at high temperatures. The data also indicated a possible application of Fourier-transform IR spectroscopy for assessing molten globule-like states in small proteins. PMID:12733987

  4. Spectroscopic monitoring of the Herbig Ae star HD 104237. II. Non-radial pulsations, mode analysis, and fundamental stellar parameters

    NASA Astrophysics Data System (ADS)

    Fumel, A.; Böhm, T.

    2012-04-01

    Context. Herbig Ae/Be stars are intermediate-mass pre-main sequence (PMS) stars showing signs of intense activity and strong stellar winds, whose origin is not yet understood in the frame of current theoretical models of stellar evolution for young stars. In addition, the evolutionary tracks of the earlier Herbig Ae stars cross the theoretical PMS instability strip located roughly in the same area of the HR diagram as the ? Scuti variables. Many of these stars exhibit pulsations of ? Scuti type. Aims: Understanding the internal structure of pulsating Herbig Ae stars based on asteroseismic studies will help constraining the origin of their tremendous activity, winds, and variability. It is therefore necessary to investigate the location of the PMS instability strip and of its boundaries, and to extend the sample of observed and studied pulsating Herbig Ae stars. The aim of this work was to carry out a thorough analysis of the line profile variations of the prototype Herbig Ae star HD 104237 based on high-resolution spectroscopy and to redetermine precisely its fundamental parameters, which are the basic ingredients of a forthcoming asteroseismic modeling. Methods: HD 104237 is a pulsating Herbig Ae star with eight detected frequencies based on the analysis of radial velocity variations. In this article, we reinvestigated an extensive high-resolution quasi-continuous spectroscopic data set in order to search for very faint indications of non-radial pulsations in the line profile by working on dynamical spectra of equivalent photospheric (LSD) profiles of HD 104237. A 2D Fourier analysis (F2D) was performed of the entire profile and the temporal variation of the central depth of the line was studied with the time-series analysis tools Period04 and SigSpec. We present the results of these analysis including the mode identification corresponding to the detected dominant frequency, as well as a new determination of its fundamental stellar parameters. Results: The analysis of spectroscopic data set of April 22-25 obtained at SAAO in 1999 has confirmed the presence of multiple oscillation modes of low-degree ? in HD 104237 and led to the first direct detection of a non-radial pulsation mode in this star: the dominant mode F1 was identified by the Fourier 2D method having a degree ? value comprised between 1 and 2, the symmetry of the pattern variation indicating an azimuthal order of ± 1. The detailed study of the fundamental stellar parameters has provided a Teff, log g, and iron abundance of 8550 ± 150 K, 3.9 ± 0.3, and -4.38 ± 0.19 (i.e. [Fe/H] = +0.16 ± 0.19 ), respectively. Based on observations collected at the 1.9 m SAAO telescope.

  5. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  6. Multivariate analysis of ATR-IR spectroscopic data: applications to the solid-liquid catalytic interface.

    PubMed

    Ortiz-Hernandez, Ivelisse; Owens, D Jason; Strunk, Michael R; Williams, Christopher T

    2006-03-14

    It is demonstrated that attenuated total reflection infrared (ATR-IR) spectroscopy coupled with multivariate data analysis can be effectively used for in situ investigation of supported catalyst-liquid interfaces. Both formaldehyde adsorption/dissociation in water and acetonitrile adsorption in hexane on thin (ca 10 mum) films of 5 wt % Pt/gamma-Al(2)O(3) deposited on a germanium waveguide have been investigated. The multivariate analysis applies classical least squares (CLS) and partial least squares (PLS) methods to the ATR-IR data in order to correlate spectral changes with known sources of experimental variation (i.e., time, concentration of solution species, etc.). The formaldehyde adsorption experiments revealed no spectroscopic evidence for adsorbed molecular formaldehyde under the conditions examined. However, the dissociation product carbon monoxide was observed to form in atop configuration on Pt, likely on edges and terrace sites. Isotope labeling experiments suggest that a pair of peaks observed at 1990 and 2060 cm(-)(1) during treatments of Pt in H(2)-saturated water arise at least in part from nu(Pt)(-)(H) stretching of adsorbed atomic hydrogen. Acetonitrile was found to adsorb on the Pt catalyst by sigma-bonding of the CN group with the platinum, yielding apparent surface peaks that are almost identical to that observed in the liquid phase. A peak at 1641 cm(-)(1) was observed which was assigned to the adsorption of the CN group in a tilted configuration involving a combination of end-on and pi interaction with the surface. This species was found to be reactive toward hydrogen, suggesting that it might play a role in nitrile hydrogenation. The prospects of using this approach to examine solid-catalyzed liquid-phase reactions are discussed in light of these findings. PMID:16519463

  7. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission.

    PubMed

    Edwards, Howell G M; Hutchinson, Ian B; Ingley, Richard; Parnell, John; Vítek, Petr; Jehli?ka, Jan

    2013-06-01

    A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification. PMID:23758166

  8. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  9. 14986 Biochemistry 1994,33, 14986-14992 Spectroscopic Study of Ser92 Mutants of Human Myoglobin: Hydrogen Bonding

    E-print Network

    Boxer, Steven G.

    14986 Biochemistry 1994,33, 14986- 14992 Spectroscopic Study of Ser92 Mutants of Human Myoglobin: Hydrogen Bonding Effect of Ser92 to Proximal His93 on Structure and Property of Myoglobin' Yoshitsugu Shire , 1994@ ABSTRACT: Neutron diffraction studies have demonstrated that the hydroxyl group oxygen of Ser92(F

  10. Insight into the secondary structure of chloramphenicol acetyltransferase type I — computer analysis and FT-IR spectroscopic characterization of the protein structure

    NASA Astrophysics Data System (ADS)

    Andreeva, A. E.; Karamancheva, I. R.

    2001-05-01

    The secondary structure of chloramphenicol O-acetyltransferase type I (CAT I) and an N-terminal deleted mutant has been studied by Fourier transform infrared spectroscopy. The analysis of the amide I band of different samples (KBr, hydrated films and buffer solution) by Fourier self-deconvolution followed by a curve fitting was performed. The spectroscopic data have been utilized to determine the ?-helix and ?-structure % contents, which depend strongly on the protein sample preparation. Furthermore, the secondary structure of the enzyme-inhibitor Crystal Violet complex was analyzed. The observed difference in the secondary structural contents suggests that some conformational changes of the enzyme are induced by the inhibitor after binding.

  11. An infrared and Raman spectroscopic study on hofmann type complexes of pyridine derivatives

    NASA Astrophysics Data System (ADS)

    Akyoz, S.; Davies, J. E. D.; Demir, Y.; Vabman, N.

    The results of an infrared and Raman spectroscopic study are presented for eight new Hofmann type complexes of pyridinc derivaties, M(NH 3)(L)Ni(CN) 4, {L = 4-chloro-pyridine or 4-methylpyridine} and M(L) 2Ni (CN) 4 {L = 3-methylpyridine or 4-methyl-pyridine}, M = Ni or Cd. Several modes of the coordinated pyridine derivaties have upward shifts in frequency compared to those in the free molecule and the shifts are metal dependent. Low temperature (83K) infrared spectra are also recorded and it is noted that whilst the ligand frequencies are virtually insensitive to temperature, the Ni(CN) 4 group frequencies increase with decreasing temperature.

  12. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Yang, Ran; Liang, Huili; Qu, Ling-Bo

    2015-12-01

    In the work described on this paper, the inhibitory effect of 10 flavonoids on pepsin and the interactions between them were investigated by a combination of spectroscopic and molecular docking methods. The results indicated that all flavonoids could bind with pepsin to form flavonoid-pepsin complexes. The binding parameters obtained from the data at different temperatures revealed that flavonoids could spontaneously interact with pepsin mainly through electrostatic forces and hydrophobic interactions with one binding site. According to synchronous and three-dimensional fluorescence spectra and molecular docking results, all flavonoids bound directly into the enzyme cavity site and the binding influenced the microenvironment and conformation of the pepsin activity site which resulted in the reduced enzyme activity. The present study provides direct evidence at a molecular level to understand the mechanism of digestion caused by flavonoids. PMID:26162346

  13. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    SciTech Connect

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.

    1988-01-01

    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates.

  14. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  15. Constraining the orbits of small solar system bodies using spectroscopic Doppler shift measurements - a preliminary study

    NASA Astrophysics Data System (ADS)

    Zucker, S.; Tzur, I.

    2015-09-01

    In this short paper we examine whether the measurement of Doppler shifts in the solar light reflected off an asteroid surface may improve the accuracy of the determined orbit. Our results suggest it will be worthwhile to use high-resolution spectrographs, of the exoplanet-hunting type, to measure those Doppler shifts. Spectroscopic Doppler shifts might improve the accuracy of Earth-impact predictions, help to recover ``lost'' near-Earth objects, and may also significantly enhance the knowledge about dynamics of the Kuiper belt. Future high-resolution spectrographs on the VLT and the E-ELT may thus have an important role in studies of Solar-System dynamics and kinematics.

  16. Photoelectron spectroscopic and computational study of (M-CO2)- anions, M = Cu, Ag, Au

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Lim, Eunhak; Kim, Seong K.; Bowen, Kit H.

    2015-11-01

    In a combined photoelectron spectroscopic and computational study of (M-CO2)-, M = Au, Ag, Cu, anionic complexes, we show that (Au-CO2)- forms both the chemisorbed and physisorbed isomers, AuCO 2- and Au-(CO2), respectively; that (Ag-CO2)- forms only the physisorbed isomer, Ag-(CO2); and that (Cu-CO2)- forms only the chemisorbed isomer, CuCO 2- . The two chemisorbed complexes, AuCO 2- and CuCO 2- , are covalently bound, formate-like anions, in which their CO2 moieties are significantly reduced. These two species are examples of electron-induced CO2 activation. The two physisorbed complexes, Au-(CO2) and Ag-(CO2), are electrostatically and thus weakly bound.

  17. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes.

    PubMed

    Bozkurt, Ebru; Bayraktutan, Tu?ba; Acar, Murat; Toprak, Mahmut

    2013-01-15

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching. PMID:23099157

  18. A study of the composition uniformity, electrical and spectroscopic properties of CdZnTe detectors

    SciTech Connect

    Gagliardi, M.A.; Nenonen, S.; Gagliardi, T.; Hjelt, K.T.; Juvonen, M.; Tuomi, T.; Bavdaz, M.

    1998-12-31

    The electrical and charge collection properties of a semiconductor detector play an important role in a spectrometer`s final performance. However, the studies of these properties often concentrate on only a few samples. In this work over 100 CdZnTe detectors from 12 different growth boules were characterized with one of the following test methods. The composition uniformity was evaluated with low temperature photoluminescence (PL) measurements. From the current-voltage characteristics the differences in CdZnTe detector resistivities were investigated. Charge collection properties, {mu}{tau}-products, and energy resolutions were characterized with spectroscopic methods using an alpha and isotopic sources. A wide selection of test results are presented indicating the variety of CdZnTe material.

  19. Spectroscopic and structural studies of L-arginine doped Potassium Dihydrogen Phosphate crystals

    NASA Astrophysics Data System (ADS)

    Govani, Jayesh; Botez, Cristian; Durrer, William; Manciu, Felicia

    2009-03-01

    We report in this study the spectroscopic and structural characterization of standard and L-arginine doped potassium dihydrogen phosphate crystals synthesized by a solution growth technique. The infrared absorption and Raman results demonstrate chemical functionalization between the amino (NH3^+) groups of the organic material and the phosphate units of the inorganic crystals. This affirmation, which also implies the achievement of successful doping, is supported by the existence of extra vibrational lines in the IR and Raman spectra of L-arginine doped potassium dihydrogen phosphate crystals; these vibrational lines exhibit shifting towards lower frequencies as compared with the characteristic bands of L-arginine. Incorporation of the amino acid into the structure of the inorganic material is revealed by X-ray diffraction results also, where the shifting of diffraction lines and the appearance of a new one are observed.

  20. A photometric and spectroscopic study of the brightest northern Cepheids. III. A high-resolution view of Cepheid atmospheres

    E-print Network

    L. L. Kiss; J. Vinko

    1999-12-21

    We present new high-resolution (R=40000) spectroscopic observations of 18 bright northern Cepheids carried out at David Dunlap Observatory, in 1997. The measurements mainly extend those of presented in Paper I adding three more stars (AW Per, SV Vul, T Mon). The spectra were obtained in the interval of 5900 A and 6660 A. New radial velocities determined with the cross-correlation technique and the bisector technique are presented. We found systematic differences between the spectroscopic and CORAVEL-type measurements as large as 1-3 km/s in certain phases. We performed Baade-Wesselink analysis for CK Cam discovered by the Hipparcos satellite. The resulting radius is 31+/-1 Ro, which is in very good agreement with recent period-radius relation by Gieren et al. (1999). Observational pieces of evidence of possible velocity gradient affecting the individual line profiles are studied. The FWHM of the metallic lines, similarly to the velocity differences, shows a very characteristic phase dependence, illustrating the effect of global compression in the atmosphere. The smallest line widths always occur around the maximal radius, while the largest FWHM is associated with the velocity reversal before the minimal radius. Three first overtone pulsators do not follow the general trend: the largest FWHM in SU Cas and SZ Tau occurs after the smallest radius, during the expansion, while in V1334 Cyg there are only barely visible FWHM-variations. The possibility of a bright yellow companion of V1334 Cyg is briefly discussed. The observed line profile asymmetries can be partly associated with the velocity gradient, which is also supported by the differences between individual line velocities of different excitation potentials.

  1. Ex-vivo holographic microscopy and spectroscopic analysis of head and neck cancer

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Wurtz, Robert; Auyeung, Kelsey; Auyeung, Kris; Paspaley-Grbavac, Milan; Mulroe, Brigid; Sobrero, Maximiliano; Miles, Brett

    2015-03-01

    Optical probes to identify tumor margins in vivo would greatly reduce the time, effort and complexity in the surgical removal of malignant tissue in head and neck cancers. Current approaches involve visual microscopy of stained tissue samples to determine cancer margins, which results in the excision of excess of tissue to assure complete removal of the cancer. Such surgical procedures and follow-on chemotherapy can adversely affect the patient's recovery and subsequent quality of life. In order to reduce the complexity of the process and minimize adverse effects on the patient, we investigate ex vivo tissue samples (stained and unstained) using digital holographic microscopy in conjunction with spectroscopic analyses (reflectance and transmission spectroscopy) in order to determine label-free, optically identifiable characteristic features that may ultimately be used for in vivo processing of cancerous tissues. The tissue samples studied were squamous cell carcinomas and associated controls from patients of varying age, gender and race. Holographic microscopic imaging scans across both cancerous and non-cancerous tissue samples yielded amplitude and phase reconstructions that were correlated with spectral signatures. Though the holographic reconstructions and measured spectra indicate variations even among the same class of tissue, preliminary results indicate the existence of some discriminating features. Further analyses are presently underway to further this work and extract additional information from the imaging and spectral data that may prove useful for in vivo surgical identification.

  2. Hafnium(IV) chloride complexes with chelating ?-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study

    NASA Astrophysics Data System (ADS)

    Patil, Siddappa A.; Medina, Phillip A.; Antic, Aleks; Ziller, Joseph W.; Vohs, Jason K.; Fahlman, Bradley D.

    2015-09-01

    The synthesis and characterization of four new ?-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods (1H NMR, 13C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new ?-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (?Hsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ?Hsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

  3. Comparative two- and three-dimensional analysis of nanoparticle localization in different cell types by Raman spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Bräutigam, Katharina; Bocklitz, Thomas; Silge, Anja; Dierker, Christian; Ossig, Rainer; Schnekenburger, Jürgen; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    2014-09-01

    The increasing production and application of engineered nanomaterials requires a detailed understanding of the potential toxicity of nanoparticles and their uptake in living cells and tissue. For that purpose, a highly sensitive and selective method for detecting single nonlabeled nanoparticles and nanoparticle agglomerations in cells and animal tissue is required. Here, we show that Raman microspectroscopy allows for the specific detection of TiO2 nanoparticles inside cultured NIH/3T3 fibroblasts and RAW 264.7 macrophages. The spatial position of TiO2 nanoparticles and in parallel the relative intracellular concentration and distribution of cellular constituents such as proteins or DNA residues were identified and displayed by construction of two- and three-dimensional Raman maps. The resulting Raman images reflected the significant differences in nanoparticle uptake and intracellular storage of fibroblasts and macrophages. Furthermore, TiO2 nanomaterials could be characterized and the presence of rutile- and anatase-phase TiO2 were determined inside cells. Together, the data shown here prove that Raman spectroscopic imaging is a promising technique for studying the interaction of nanomaterials with living cells and for differentiating intracellular nanoparticles from those localized on the cell membrane. The technology provides a label-free, non-destructive, material-specific analysis of whole cells with high spatial resolution, along with additional information on the current status of the material properties.

  4. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding

    NASA Astrophysics Data System (ADS)

    Fotouhi, L.; Yousefinejad, S.; Salehi, N.; Saboury, A. A.; Sheibani, N.; Moosavi-Movahedi, A. A.

    2015-02-01

    Using tetradecyltrimethylammonium bromide (TTAB) as a surfactant denaturant, and augmentation of different spectroscopic data, helped to detect the intermediates of hemoglobin (Hb) during unfolding process. UV-vis, fluorescence, and circular dichroism spectroscopy were used simultaneously to monitor different aspects of hemoglobin species from the tertiary or secondary structure points of view. Application of the multivariate curve resolution-alternating least square (MCR-ALS), using the initial estimates of spectral profiles and appropriate constraints on different parts of augmented spectroscopic data, showed good efficiency for characterization of intermediates during Hb unfolding. These results indicated the existence of five protein species, including three intermediate-like compounds in this process. The unfolding pathway in the presence of TTAB included conversion of oxyhemoglobin into deoxyhemoglobin, and then ferrylhemoglobin, ferrihemoglobin or aquamethemoglobin, which finally transformed into hemichrome. This is the first application of chemometric analysis on the merged spectroscopic data related to chemical denaturation of a protein. These types of analysis in multisubunit proteins not only increase the domain of information, but also can reduce the ambiguities of the obtained results.

  5. Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging†

    PubMed Central

    Li, Yan; Lupo, Janine M.; Parvataneni, Rupa; Lamborn, Kathleen R.; Cha, Soonmee; Chang, Susan M.; Nelson, Sarah J.

    2013-01-01

    Background The objective of this study was to examine the predictive value of parameters of 3D 1H magnetic resonance spectroscopic imaging (MRSI) prior to treatment with radiation/chemotherapy (baseline) and at a postradiation 2-month follow-up (F2mo) in relationship to 6-month progression-free survival (PFS6) and overall survival (OS). Methods Sixty-four patients with newly diagnosed glioblastoma multiforme (GBM) being treated with radiation and concurrent chemotherapy were involved in this study. Evaluated were metabolite indices and metabolite ratios. Logistic linear regression and Cox proportional hazards models were utilized to evaluate PFS6 and OS, respectively. These analyses were adjusted by age and MR scanner field strength (1.5 T or 3 T). Stepwise regression was performed to determine a subset of the most relevant variables. Results Associated with shorter PFS6 were a decrease in the ratio of N-acetyl aspartate to choline-containing compounds (NAA/Cho) in the region with a Cho-to-NAA index (CNI) >3 at baseline and an increase of the CNI within elevated CNI regions (>2) at F2mo. Patients with higher normalized lipid and lactate at either time point had significantly worse OS. Patients who had larger volumes with abnormal CNI at F2mo had worse PFS6 and OS. Conclusions Our study found more 3D MRSI parameters that predicted PFS6 and OS for patients with GBM than did anatomic, diffusion, or perfusion imaging, which were previously evaluated in the same population of patients. PMID:23393206

  6. 3.4 Spectroscopic Sensors Spectroscopy is the scientific study of the absorption, emission, or scattering of

    E-print Network

    109 3.4 Spectroscopic Sensors Spectroscopy is the scientific study of the absorption, emission spectroscopy · Atomic emission spectroscopy · Atomic fluorescence spectroscopy · Attenuated total reflectance and the other as a reference) localized in a polymer matrix by a microemulsion (Sumner et al. 2002). · A simple

  7. Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon and Heather C. Allen*

    E-print Network

    Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon peak in the 800 cm-1 region, not present in either the neat methanol or concentrated sulfuric acid was found to suggest formation of dimethyl sulfate. Introduction The uptake of methanol by sulfuric acid

  8. Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions

    E-print Network

    Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions Karen M. Callahan, Nadia N. Casillas-Ituarte, Martina Roeselova 26, 2010 Magnesium dication plays many significant roles in biochemistry. While it is available

  9. Electron-Nuclear Double Resonance and Hyperfine Sublevel Correlation Spectroscopic Studies of Flavodoxin Mutants from Anabaena sp.

    E-print Network

    Sancho, Javier

    Electron-Nuclear Double Resonance and Hyperfine Sublevel Correlation Spectroscopic Studies on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues by photore- duction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel

  10. Optical spectroscopic studies of composites of conducting PANI with CdSe and ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Bhat, S. V.; Vivekchand, S. R. C.

    2006-12-01

    Composites of CdSe and ZnO nanocrystals with conducting polyaniline have been prepared and investigated by optical spectroscopic method. A decrease in nanocrystal photoluminescence has been observed with the increase in the concentration of the polymer in the composites. The study shows that polyaniline causes the quenching of the nanocrystal luminescence.

  11. Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission

    PubMed Central

    Edwards, Howell G.M.; Ingley, Richard; Parnell, John; Vítek, Petr; Jehli?ka, Jan

    2013-01-01

    Abstract A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification. Key Words: Biosignatures—Mars Exploration Rovers—Raman spectroscopy—Search for life (biosignatures)—Planetary instrumentation. Astrobiology 13, 543–549. PMID:23758166

  12. The Near-IR Photometric and Optical Spectroscopic Study of V582 Aurigae

    NASA Astrophysics Data System (ADS)

    Seog Yoon, Tae; Oh, Hyung-Il

    2015-08-01

    We present the near-IR photometric and optical spectroscopic observational results of the FU Orionis object V582 Aurigae. The near-IR photometric observations with KASINICS and the high resolution optical spectroscopic observations with BOES attached to the 1.8-m reflector have been carried out from February 2013 to March 2015 at Bohyunsan Optical Astronomy Observatory in Korea. The periodic photometric variations of a night time scale and a year time scale in J, H, Ks bands and some typical spectroscopic features of FU Orionis objects are examined and discussed.

  13. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment.

    PubMed

    Soukhanovskii, V A; Roquemore, A L; Bell, R E; Kaita, R; Kugel, H W

    2010-10-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-? transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67?m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D(2), LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry. PMID:21033916

  14. Structural studies of E. coli ribosomes by spectroscopic techniques: A specialized review

    NASA Astrophysics Data System (ADS)

    Bonicontro, Adalberto; Risuleo, Gianfranco

    2005-12-01

    We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.

  15. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-10-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-? transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R =0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D2, LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  16. Applications of Synchrotron Radiation and Optical Spectroscopic Techniques to the Study of Electrochemical Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun

    Electrochemical interfaces, especially structural changes and spectroscopic properties of adsorbed species on electrode surfaces induced by electrode potential have been examined by means of X-ray absorption fine structure and optical spectroscopic techniques. Potential modulation reflectance spectroscopy and wavelength modulation reflectance technique have been used to monitor the spectral properties of cobalt tetrasulfonated phthalocyanine (CoTsPc) and methylene (MB) blue irreversibly adsorbed on electrode surfaces. With a combination of cyclic voltammetry, linear relationship has been found between the relative reflectivity and the coverage of oxidized species of CoTsPc on the basal plane of highly oriented pyrolytic graphite (HOPG(bp)). Wavelength modulation study has shown that CoTsPc and MB on electrode surfaces exhibit almost the same spectral properties with those when they are in solution phase. Spectral changes accompanying the one-electron reduction of mu-oxo(bis) (iron meso -tetrakis(methoxyphenyl)porphyrin) (FeTMPP)_2 O irreversibly adsorbed on Black Pearl (BP) in aqueous electrolyte have been examined in situ through X-ray absorption fine structure. In the pH range 5-10.8, the average iron -to-porphinato nitrogen distance, d(Fe-N_ {rm p}) (2.08 +/- 0.01 A) for the ferric species was found to be very similar to that for crystalline (FeTMPP)_2O. At extreme pHs, d(Fe-N_{rm p} ) values smaller than those observed in the intermediate pH range, which strongly suggest an axially coordinated dihydroxy (at very high pH) and diaquo (at very low pH) complexes as the predominant species. In contrast, the corresponding ferrous counterpart displayed values for d(Fe-N_{rm p}) (2.04 +/- 0.01 A) consistent with the iron center placed in the plane of the ring over the whole pH region examined. The XAFS studies of Ni and 9:1 Ni/Fe and 9:1 Ni/Co composite hydroxide have shown that (i) Ni-O and Ni-Ni distances in Ni(OH)_2 system are larger than those in NiOOH produced by oxidation; (ii) iron and cobalt ions replace nickel ions in hydrous oxide lattice forming single phase; (iii) iron and cobalt do not undergo oxidation state changes upon oxidizing Ni(OH) _2 to NiOOH, but remain as 3+ state. The XAFS studies of FeS_2 and its Li ion intercalated species have shown that electrochemical insertion of Li ion brings about a marked decrease in the amplitude of the EXAFS and makes Fe-S distance longer. (Abstract shortened by UMI.).

  17. Importance of Tissue Preparation Methods in FTIR Micro-Spectroscopical Analysis of Biological Tissues: ‘Traps for New Users’

    PubMed Central

    Zohdi, Vladislava; Whelan, Donna R.; Wood, Bayden R.; Pearson, James T.; Bambery, Keith R.; Black, M. Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy. PMID:25710811

  18. Gamma ray spectroscopic analysis of building materials used in Tiruvannamalai, Tamilnadu, India

    SciTech Connect

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Chandrasekaran, A.; Raghu, Y.; Sivakumar, S.; Vijayagopal, P.; Meenakshisundaram, V.

    2012-06-05

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials in Tiruvannamalai, city, have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. All samples under investigation are within the recommended safety limit when used as building construction.

  19. Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases.

    PubMed

    Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib

    2015-04-15

    Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases. PMID:25659815

  20. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba

    2014-03-01

    This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.

  1. Spectroscopic and photometric analysis of the early-type spectroscopic binary HD 161853 in the centre of an H II region

    E-print Network

    Gamen, R; Barbá, R H; Arias, J I; Apellániz, J Maíz; Walborn, N R; Sota, A; Alfaro, E J

    2015-01-01

    We study the O-type star HD 161853, which has been noted as a probable double-lined spectroscopic binary system. We secured high-resolution spectra of HD 161853 during the past nine years. We separated the two components in the system and measured their respective radial velocities for the first time. We confirm that HD 161853 is an $\\sim$1 Ma old binary system consisting of an O8 V star ($M_{\\rm A,RV} \\geq 22$ M$_\\odot$) and a B1--3 V star ($M_{\\rm B,RV} \\geq 7.2$ M$_\\odot$) at about 1.3 kpc. From the radial velocity curve, we measure an orbital period $P$ = 2.66765$\\pm$0.00001 d and an eccentricity $e$ = 0.121$\\pm$0.007. Its $V$-band light curve is constant within 0.014 mag and does not display eclipses, from which we impose a maximum orbital inclination $i=54$ deg. HD 161853 is probably associated with an H II region and a poorly investigated very young open cluster. In addition, we detect a compact emission region at 50 arcsec to HD 161853 in 22$\\mu$m-WISE and 24$\\mu$m-Spitzer images, which may be identif...

  2. In situ study of barrier layers using spectroscopic ellipsometry and mass spectroscopy of recoiled ions.

    SciTech Connect

    Gao, Y.; Mueller, A. H.; Irene, E. A.; Auciello, O.; Krauss, A. R.; Schultz, J. A.; Materials Science Division; Univ. of North Carolina; Ionwerks

    2000-01-01

    An in situ study of barrier layers using spectroscopic ellipsometry (SE) and Time-of-Flight (ToF) mass spectroscopy of recoiled ions (MSRI) is presented. First the formation of copper silicides has been observed by real-time SE and in situ MSRI in annealed Cu/Si samples. Second TaSiN films as barrier layers for copper interconnects were investigated. Failure of the TaSiN layers in Cu/TaSiN/Si samples was detected by real-time SE during annealing and confirmed by in situ MSRI. The effect of nitrogen concentration on TaSiN film performance as a barrier was also examined. The stability of both TiN and TaSiN films as barriers for electrodes for dynamic random access memory (DRAM) devices has been studied. It is shown that a combination of in situ SE and MSRI can be used to monitor the evolution of barrier layers and detect the failure of barriers in real-time.

  3. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

    2013-08-01

    The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K290K = 7.60 × 104 L mol-1 and K310K = 4.90 × 104 L mol-1. The thermodynamic parameters enthalpy change (?H°), entropy change (?S°) and Gibbs free energy (?G°) were calculated to be -1.69 × 104 J mol-1, 35.36 J K-1 mol-1 and -2.79 × 104 J mol-1 at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA.

  4. Intramolecular interactions in porphyrin labelled polymers studied by spectroscopic, photothermal and photoelectric examinations

    NASA Astrophysics Data System (ADS)

    Siejak, A.; Wróbel, D.; Avlasevich, Yu. S.

    2006-11-01

    The aim of this study is characterization of photophysical properties of newly synthesized porphyrin-labelled polymers in aqueous solution, methanol and dioxane. The copper, zinc and free base tetraphenylporphyrins (CuTPP, ZnTPP and H{2}TPP) covalently linked to polyethylene glycol (PEG) or poly(N)isopropylacrylamide (PNIPAM) were investigated. Absorption, fluorescence and photothermal properties were determined in order to follow deactivation pathways of radiative and non radiative processes of the excited states of the porphyrin molecules in the polymeric systems and some intramolecular interactions. The spectroscopic experiments were supported by the photoelectric studies of the investigated systems in a photoelectrochemical cell. It was shown that the polymers cause the changes in electronic distribution in porphyrin covalently linked to the polymeric chain and can lead to enhancement of the photoactivity of the porphyrin species in light energy to electric energy conversion. The absorption, fluorescence and photothermal experiments showed the existence of the aggregated porphyrins, charge transfer in the dye-polymer systems.

  5. Spectroscopic studies (FTIR, FT-Raman and UV-Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods.

    PubMed

    Muthu, S; Ramachandran, G

    2014-01-01

    The Fourier transform infrared (FT-IR) and FT-Raman of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (1RNPDA) were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1) respectively. A complete assignment and analysis of the fundamental vibrational modes of the molecule were carried out. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using HF method by employing 6-31G(d,p) basis set and DFT(B3LYP) method by employing 6-31G(d,p) basis set. The vibrational studies were interpreted in terms of Potential Energy Distribution (PED). The complete vibrational frequency assignments were made by Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The first order hyper polarizability (?0) of this molecular system and related properties (?, ?, and ??) are calculated using B3LYP/6-31G(d,p) method based on the finite-field approach. The thermodynamic functions of the title compound were also performed at the above methods and basis set. A detailed interpretation of the infrared and Raman spectra of 1RNPDA is reported. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using the GIAO method confirms with the experimental values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. UV-vis spectrum of the compound was recorded and electronic properties such as excitation energies, oscillator strength and wavelength were performed by TD-DFT/B3LYP using 6-31G(d,p) basis set. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The observed and calculated wave numbers are formed to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra. PMID:24280302

  6. AN IMAGING AND SPECTROSCOPIC STUDY OF FOUR STRONG Mg II ABSORBERS REVEALED BY GRB 060418

    SciTech Connect

    Pollack, L. K.; Prochaska, J. X.; Chen, H.-W.; Bloom, J. S.

    2009-08-20

    We present results from an imaging and spectroscopic study of four strong Mg II absorbers of W(2796) {approx}> 1 A revealed by the afterglow of GRB 060418 at z{sub GRB} = 1.491. These absorbers, at z = 0.603, 0.656, 1.107, and z {sub GRB}, exhibit large ion abundances that suggest neutral gas columns characteristic of damped Ly{alpha} systems. The imaging data include optical images obtained using Low-Resolution Imaging Spectrometer (LRIS) on the Keck I telescope and using Advanced Camera for Surveys on board Hubble Space Telescope, and near-infrared H-band images obtained using Persson's Auxiliary Nasmyth Infrared Camera on the Magellan Baade Telescope and K'-band images obtained using NIRC2 with laser guide star adaptive optics on the Keck II telescope. These images reveal six distinct objects at {delta} {theta} {approx}< 3.''5 of the afterglow's position, two of which exhibit well-resolved mature disk morphology, one shows red colors, and three are blue compact sources. Follow-up spectroscopic observations using LRIS confirm that one of the disk galaxies coincides with the Mg II absorber at z = 0.656. The observed broadband spectral energy distributions of the second disk galaxy and the red source indicate that they are associated with the absorbers at z = 0.603 and z = 1.107, respectively. These results show that strong Mg II absorbers identified in gamma-ray burst (GRB) afterglow spectra are associated with typical galaxies of luminosity {approx}0.1 - 1 L{sub *} at impact parameter of {rho} {approx}< 10 h {sup -1} kpc. The close angular separation would preclude easy detections toward a bright quasar. Finally, we associate the remaining three blue compact sources with the GRB host galaxy, noting that they are likely star-forming knots located at projected distances of {rho} = 2 - 12 h {sup -1} kpc from the afterglow. At the afterglow's position, we derive a 2{sigma} upper limit to the underlying star-formation rate intensity of 0.0074 M{sub sun} yr{sup -1} kpc{sup -2}.

  7. In situ permeation study of drug through the stratum corneum using attenuated total reflectance [corrected] Fourier transform infrared spectroscopic imaging.

    PubMed

    Andanson, Jean-Michel; Hadgraft, Jonathan; Kazarian, Sergei G

    2009-01-01

    Infrared (IR) spectroscopy is one of the most chemically specific analytical methods that gives information about composition, structure, and interactions in a material. IR spectroscopy has been successfully applied to study the permeation of xenobiotics through the skin. Combining IR spectroscopy with an IR array detector led to the development of Fourier transform infrared (FTIR) spectroscopic imaging, which generates chemical information from different areas of a sample at the microscopic level. This is particularly important for heterogeneous samples, such as skin. Attenuated total reflectance [corrected] (ATR)-FTIR imaging has been applied to measure, in situ, the diffusion of benzyl nicotinate (BN) through the outer layer of human skin [stratum corneum (SC)]. In vitro experiments have demonstrated the heterogeneous distribution of SC surface lipids before the penetration of a saturated solution of BN. Image analysis demonstrated a strong correlation between the distribution of lipids and drugs, while ethanol appeared to be homogenously distributed in the SC. These results show the ability of ATR-FTIR imaging to measure simultaneously the affinities of drug and solvent to the lipid-rich and lipid-poor skin domains, respectively, during permeation. This information may be useful in better understanding drug-diffusion pathways through the SC. PMID:19566304

  8. Spectroscopic studies of two supernova remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Pauletti, D.; Copetti, M. V. F.

    2014-10-01

    This work presents a study of two supernova remnants belonging to the Large Magellanic Cloud, N49 and N11L, based on the spectroscopic mapping of their physical properties. Long slit spectroscopy was used to collect data from a grid of different positions covering the whole nebula by positioning the slit on different and equally spaced declinations. The data were obtained with the 4.1 m SOAR telescope (Southern Astrophysical Research Telescope), in Chile. The spectral coverage was about 3500-8000 Å. For each object, about 50 emission lines were measured on the spectra, allowing to build maps of many interesting line intensity ratios. The maps of electron density and temperature were obtained using the [S II] ? 6717/? 6731 and [O III] (? 5007+? 4959)/? 4363 line ratio sensors, respectively. N49 presents a strong density gradient with the density varying from 600 cm^{-3} at the North-West to more than 3000 cm^{-3} at the South-East. The electron temperature distribution shows a rough spherical symmetry with the higher values found at the centre. In N11L the electron density varies from less than 100 cm^{-3} to about 400 cm^{-3}, with the higher values found on the bright filaments. These maps were used to build a picture of the structure of these two supernova remnants.

  9. A Spectroscopic Study of the Extreme Black Widow PSR J1311-3430

    E-print Network

    Romani, Roger W; Cenko, S Bradley

    2015-01-01

    We report on a series of spectroscopic observations of PSR J1311-3430, an extreme black-widow gamma-ray pulsar with a helium-star companion. In a previous study we estimated the neutron star mass as M_NS= 2.68+/-0.14M_Sun (statistical error), based on limited spectroscopy and a basic (direct heating) light curve model; however, much larger model-dependent systematics dominate the mass uncertainty. Our new spectroscopy reveals a range of complex source behavior. The variable He I companion wind emission lines can dominate broad-band photometry, especially in red filters or near minimum brightness, and the wind flux should complete companion evaporation in a spin-down time. The heated companion face also undergoes dramatic flares, reaching 40,000K over 20% of the star; this is likely powered by a magnetic field generated in the companion. The companion center-of-light radial velocity is now well measured with K_CoL = 615.4+/-5.km/s. We detect non-sinusoidal velocity components due to the heated face flux distri...

  10. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (?H), entropy change (?S) and Gibbs free energy (?G) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  11. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    PubMed Central

    Wood, Scott A; Tait, C Drew; Janecky, David R

    2002-01-01

    The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ?As + ?S of 0.1 and 0.5 mol kg-1 were prepared with various ?S/?As ratios (0.1–9.0) and pH values (~7–13.2). Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm-1. The data suggest that at least two different species may give rise to bands at 385 cm-1, bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ?S/?As ratio and pH. At very low ?S/?As ratios we also observe Raman bands attributable to the dissociation products of H3AsO3(aq). Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ?S/?As conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species.

  12. Spectroscopic study of partially-ordered semiconductor heterojunction under high pressure and high magnetic field

    SciTech Connect

    Yu, P.Y.; Martinez, G.; Zeman, J.; Uchida, K.

    2000-12-31

    Photoluminescence upconversion (PLU) is a phenomenon in which a sample emits photons with energy higher than that of the excitation photon. This effect has been observed in many materials including rare earth ions doped in insulating hosts and semiconductor heterostructures without using high power lasers as the excitation source. Recently, this effect has been observed also in partially CuPt-ordered GaInP{sub 2} epilayers grown on GaAs substrates. As a spectroscopic technique photoluminescence upconversion is particularly well suited for studying band alignment at heterojunction interface. The value of band-offset has been determined with meV precision using magneto-photoluminescence. Using the fact that the pressure coefficient of electrons in GaAs is higher than those in GaInP{sub 2} they have been able to manipulate the band-offset at the GaInP/GaAs interface. By converting the band-offset from Type I to Type II they were able to demonstrate that the efficiency of the upconversion process is greatly enhanced by a Type II band-offset.

  13. Spectroscopic studies of ZnSe grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, B. J.; McGee, T. F., III; Harnack, P. M.; Herko, S. P.; Bhargava, R. N.; Werkhoven, C. J.; Dean, P. J.

    1981-04-01

    Spectroscopic studies of the sources of contamination and the shallow acceptor behavior of group V-doped specimens of ZnSe grown by liquid phase epitaxy are reported. ZnSe samples were grown from molten metal solutions in a horizontal heat-pipe lined system using a four-melt graphite boat, a vertical dipping system, a horizontal tipping system for use with a sealed ampoule, or a horizontal system with a graphite slider boat, at temperatures generally between 900 and 825 C. Photoluminescence measurements made using argon ion laser irradiation at 363.8 nm in the bound exciton region reveal the presence of Al and In donors and Li acceptors, with occasional Cl and Ga donors and Na acceptors and an unidentified line apparently related to an isoelectronic center. The bound exciton lines also indicate that the total shallow donor concentration is less then 5 x 10 to the 16th/cu cm, with all transitions apparently originating from impurities in undoped material. Donor-acceptor pair region spectra of As-, P- and N-doped specimens provide evidence for the existence of shallow acceptors due to group V elements, however the nature of the acceptors as simple substitutional centers has yet to be confirmed.

  14. Spectroscopic analysis of pharmaceutical formulations through the use of chemometric tools

    NASA Astrophysics Data System (ADS)

    Ornelas-Soto, N.; Barbosa-García, O.; Meneses-Nava, M.; Ramos-Ortíz, G.; Pichardo-Molina, J.; Maldonado, J. L.; Contreras, U.; López-Martínez, L.; López-de-Alba, P.; López-Barajas, F.

    2009-09-01

    In this work, fast and reliable spectroscopic methods in combination with chemometric tools were developed for simultaneous determination of Acetylsalicylic Acid, Acetaminophen and Caffeine in commercial formulations. For the first-order multivariate calibration method (PLS-1), calibration and validation sets were constructed with 23 and 10 samples respectively according to a central composite design. The Micro-Raman, FTIR-HATR and UV absorption spectra in the region of 100-2000 cm-1, 400-4400 cm-1 and 200-350 nm, respectively, were recorded. The % REP's (Percentage of relative error of prediction) was less than 18 for all used spectroscopic techniques. Subsequently, commercial pharmaceutical samples were analyzed with percentage of recovery between 90 and 117% for the three compounds.

  15. Tautomeric 2-arylquinolin-4(1 H)-one derivatives- spectroscopic, X-ray and quantum chemical structural studies

    NASA Astrophysics Data System (ADS)

    Mphahlele, Malose J.; El-Nahas, Ahmed M.

    2004-01-01

    A convenient method for the synthesis of 2-aryl-1-methylquinolin-4(1 H)-ones is described. Spectroscopic and X-ray crystallographic techniques as well as quantum chemical calculations have been used to probe the structure of potentially tautomeric 2-arylquinolin-4(1 H)-ones in solution phase, gas phase and solid state. The exclusive NH-4-oxo nature of the title compounds in solution phase (NMR) and solid state (IR and X-ray) is also corroborated by comparison of their spectroscopic data with those of the corresponding 2-aryl-1-methylquinolin-4(1 H)-one and 2-aryl-4-methoxyquinoline derivatives. Results from mass spectrometric analysis confirm the coexistence of the 4-quinolinone and 4-hydroxyquinoline isomers in the gas phase and this is supported by quantum chemical computations.

  16. Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis.

    PubMed

    Flumignan, Danilo Luiz; Boralle, Nivaldo; de Oliveira, José Eduardo

    2010-06-30

    The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen Nuclear Magnetic Resonance ((1)H NMR) spectroscopic fingerprintings with pattern-recognition multivariate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA) and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Following optimized the (1)H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial gasoline samples, which is considered acceptable. The chemometric method is recommended for routine applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily automated. Also, police laboratories could employ this method for rapid screening analysis to discourage adulteration practices. PMID:20685442

  17. Thin-film hermeticity - A quantitative analysis of diamondlike carbon using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.

    1988-01-01

    This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.

  18. Two-Pronged Approach to Overcome Spectroscopically Interfering Organic Compounds with Isotopic Water Analysis

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Hsiao, Gregor; Chapellet-Volpini, London; Vu, Danthu

    2013-04-01

    The ability to measure the stable isotopes of hydrogen (dD) and oxygen (d18O) has become much more accessible with the advent of Cavity Ring-Down Spectroscopy (CRDS) laser optical devices. These small and inexpensive analyzers have led to a significant increase in the acquisition of data from a variety of studies in the fields of groundwater, watershed, and other water source applications. However for some samples, such as those linked to fracking, mining, and other activities where higher than normal concentrations of organic materials are to be found, optical spectroscopy may require an adaptation from current methodologies in order to ensure data confidence. That is because CRDS is able to measure all the components within a spectral region - which will include the spectral characteristics of the isotopologues of water as well as the available features from interfering organic molecules. Although, at the first level, the information from the organic material provides spectral overlaps that can perturb the isotopic ratios, a more thorough review shows that these features are a source of information that will be inherently useful. This presentation will examine the approaches developed within the past year to allow for more accurate analyses of such samples by optical methods. The first approach uses an advanced spectroscopic model to flag the presence of organic material in the sample. Signals from known interfering compounds (i.e., alcohols, ketones, aldehydes, short-chain hydrocarbons, etc.) are incorporated into the overall fit of the measured spectra used to calculate the concentration of the individual isotopes. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The vaporized liquid or solid sample travels through a cartridge packed with an oxidation catalyst. The interfering organic molecules will undergo high temperature oxidation using O2 present in the air carrier gas stream prior to isotopic measurement with CRDS. This approach is highly effective for organics at lower (< 5% v/v) concentrations and is promising to be extended to some higher concentration contamination as it was recently shown in our preliminary experiments.

  19. High-Resolution Photoelectron Spectroscopic Study of Cyclopropene (c-C_3H_4)

    NASA Astrophysics Data System (ADS)

    Vasilatou, Konstantina; Michaud, Julie M.; Grassi, Guido; Baykusheva, Denitsa; Merkt, Frederic

    2012-06-01

    The spectroscopic information available on the cyclopropene radical cation is limited to that contained in low-resolution He I photoelectron spectra. To better characterize the structure of this cation, we have recently measured high-resolution PFI-ZEKE photoelectron spectra of c-C_3H_4 and several of its deuterated isotopomers in the vicinity of the adiabatic ionization threshold. Our new data include fully rotationally resolved spectra of the origin band of the widetilde{X}^+?widetilde{X} transition of c-C_3H_4 and spectra of the low-vibrational levels of c-C_3H_4 and the deuterated isotopomers recorded at lower resolution. Because our efforts at synthesizing the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, the analysis of the isotopic shifts turned out to be challenging. Combining the information contained in the rotational structure of the origin band of c-C_3H_4 with the ionization energies of the isotopomers measured by photoionization mass spectrometry and the vibrational structure observed in the PFI-ZEKE spectra of the mixtures of deuterated isotopomers, we were able to draw conclusions on the structure of the cyclopropene radical cation based solely on experimental data. The adiabatic ionization energy of c-C_3H_4 was determined to be 77931.8(5) {cm}-1. M. B. Robin, C. R. Brundle, N. A. Kuebler, G. B. Ellison and K. B. Wiberg, J. Chem. Phys. 57, 1758 (1972). P. Bischof and E. Heilbronner, Helv. Chim. Acta 53, 1677 (1970).

  20. In situ spectroscopic applications to the study of rechargeable lithium batteries. Final report

    SciTech Connect

    Barbour, R.; Kim, Sunghyun; Tryk, D.; Scherson, D.A.

    1993-08-01

    In situ attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR) has been employed to examine the reactivity of lithium toward polyethylene oxide (PEO) at ca. 60{degree}C. Uncertainties regarding the cleanliness of the Li surfaces were, minimized by electrodepositing a film of metallic Li directly onto a thin layer of gold (ca. 60 {Angstrom}) vapor deposited on a Ge ATR optical element during the spectroscopic measurements. The ATR/FTIR features observed upon stripping the Li layer were consistent with the formation of alkoxide-type moieties resulting from the Li-induced cleavage of the ether-type functionalities. Electronic and structural aspects of the electrochemical insertion of lithium from non-aqueous electroyltes into FeS{sub 2} have been investigated using in situ Fe K-edge X-ray absorption fine structure (XAFS). The results obtained indicate that the incorporation of Li{sup +} in the pyrite lattice brings about a marked decrease in the amplitude of the extended XAFS (EXAFS) oscillations, particularly for shells associated with distant atoms and a rounding of the, X-ray absorption near edge structure (XANES) region. An analysis of the EXAFS spectra yielded a value for the FeS distance of 2.29 {plus_minus} 0.02 {Angstrom}. On this basis and additional in situ room temperature {sup 57}Fe Mossbauer effect spectroscopy data for the same system it has been proposed that the electrically formed material involves a highly disordered (possibly amorphous) form of Fe{sub l-x}S (with Li+ counterbalancing the charge).

  1. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study.

    PubMed

    Ar?, Hatice; Özpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features. PMID:25677985

  2. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Ar?, Hatice; Özpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features.

  3. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  4. Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2013-01-01

    A spectroscopic study to compare single- and double-pulse laser-induced breakdown spectroscopy (LIBS) using two Q-switched Nd:YAG lasers emitting at 532 nm is reported. The two laser beams were combined in the same direction (collinear beam geometry) to focus on the Pb targets in the open air. Various parameters, such as incident laser irradiance, placement of the laser beam focus position relative to the illuminated surface and gate delay times (delay between the incident laser pulse and the ICCD camera), were used as variables to enhance the sensitivity of LIBS signals. Several atomic and ionic emission lines of Pb were registered in the 200-290 nm UV spectral domains. In order to study the temporal evolution of plasma parameters for single- and double-pulse laser (SP and DP) configurations, the observed profiles of neutral lead lines were used to extract the plasma temperature (Te) using Boltzmann plots, whereas electron number density (ne) was determined from the profile of the Stark-broadened line. In the case of the DP configuration, the intensity of the atomic Pb I signal at 280.2 nm was enhanced eightfold. The intensity enhancement could help the analytical performance of the LIBS technique in terms of improvement of sensitivity and reduction of the self-absorption effect. This study contributes to a better understanding of the LIBS plasma dynamics by observing the temporal evolution of various emission lines of Pb. The results demonstrate a faster decay of the continuum relative to the spectral lines and a slightly longer plasma life-time for the DP configuration as compared with the SP configuration. In order to avoid inhomogeneous effects in the plasma, sufficiently high laser intensity and short delay time are required. Special attention was paid to possible self-absorption of different transitions. The micro-craters generated by SP and DP laser ablation were also compared using an optical microscope.

  5. Velocity and abundance precisions for future high-resolution spectroscopic surveys: A study for 4MOST

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Koch, A.; Sbordone, L.; Sartoretti, P.; Hansen, C. J.; Royer, F.; Leclerc, N.; Bonifacio, P.; Christlieb, N.; Ludwig, H.-G.; Grebel, E. K.; de Jong, R. S.; Chiappini, C.; Walcher, J.; Mignot, S.; Feltzing, S.; Cohen, M.; Minchev, I.; Helmi, A.; Piffl, T.; Depagne, E.; Schnurr, O.

    2013-03-01

    In preparation for future, large-scale, multi-object, high-resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4 m class telescope. We briefly discuss a number of science cases that aim at studying the chemo-dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) - either as a follow-up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high-resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1 km s-1. Under realistic survey conditions (namely, considering stars brighter than r=16 mag with reasonable exposure times) we prefer an ideal resolving power of R˜20 000 on average, for an overall wavelength range (with a common two-arm spectrograph design) of [395;456.5] nm and [587;673] nm. We show for the first time on a general basis that it is possible to measure chemical abundance ratios to better than 0.1 dex for many species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu) and to an accuracy of about 0.2 dex for other species such as Zr, La, and Sr. While our feasibility study was explicitly carried out for the 4MOST facility, the results can be readily applied to and used for any other conceptual design study for high-resolution spectrographs.

  6. Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases.

    PubMed

    Bittner, Michael M; Kraus, David; Lindeman, Sergey V; Popescu, Codrina V; Fiedler, Adam T

    2013-07-15

    The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed. PMID:23744733

  7. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems. PMID:25893445

  8. AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals

    NASA Technical Reports Server (NTRS)

    Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki

    1997-01-01

    Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy surfaces (PES) of ClSO and its isomer ClOS at the QCISD(T)/6-31 G* level of theory. For FSO and FOS, more extensive QCISD/6-31 1G(2df) calculations have been possible, and the results are summarized here.

  9. Electrical, dielectric and spectroscopic studies on MnO doped LiI-AgI-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Moguš-Milankovi?, A.; Pavi?, L.; Srilatha, K.; Srinivasa Rao, Ch.; Srikumar, T.; Gandhi, Y.; Veeraiah, N.

    2012-01-01

    LiI-AgI-B2O3 glasses doped with different concentrations of MnO (ranging from 0 to 0.8 mol%) were prepared. Electrical and dielectric properties have been studied over a wide frequency range of 10-2 - 106 Hz and in the temperature range from 173 to 523 K. The valence states of manganese ions and their coordination in the glass network have been investigated using optical absorption, luminescence, and ESR spectroscopy. The analysis of the spectroscopic results has indicated that the manganese ions exist in both Mn2+ and Mn3+ states and occupy octahedral and tetrahedral positions. With increasing MnO concentration there is a gradual increase in the tetrahedral occupancy of Mn2+ ions at the expense of octahedral occupancy in the glass network. The results of dc conductivity have indicated that when T > ?D/2, the small polaron hopping model is appropriate and the conduction is adiabatic in the nature. Further, the analysis of experimental data indicates that there is a mixed, ionic and electronic, conduction. It has been observed that the electrical conductivity decreases as the concentration of MnO increases suggesting the electronic conduction controlled by polaron hopping between manganese ions. In the low temperature region, up to 250 K, the ac conductivity is nearly temperature independent and varies linearly with frequency, which can be explained by the quantum mechanical tunneling (QMT) model. The dielectric properties have been analyzed in the framework of complex dielectric permittivity and complex electrical modulus formalisms. The evolution of the complex permittivity as a function of frequency and temperature has been investigated.

  10. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  11. MOON for spectroscopic studies of double beta decays and the present status of the MOON-1 prototype detector

    E-print Network

    Washington at Seattle, University of

    MOON for spectroscopic studies of double beta decays and the present status of the MOON-1 prototype, S Yoshidac , T Ogama, T Sakiuchi, V H Hai, Y Sugaya and the MOON collaboration Graduate school of science@fn.lns.sci.osaka-u.ac.jp, vhhai@fn.lns.sci.osaka-u.ac.jp, sugaya@fn.lns.sci.osaka-u.ac.jp Abstract. The MOON (Molybdenum

  12. High Pressure Research, 2002, Vol. 22, pp. 127130 OPTICAL SPECTROSCOPIC STUDY OF Al2O3: Ti3

    E-print Network

    Rodríguez, Fernando

    High Pressure Research, 2002, Vol. 22, pp. 127­130 OPTICAL SPECTROSCOPIC STUDY OF Al2O3: Ti3þ UNDER HYDROSTATIC PRESSURE S. GARCI´A-REVILLAa, *, F. RODRI´GUEZa , I. HERNA´ NDEZa , R. VALIENTEa and M. POLLNAUb of hydrostatic pressure on the excitation, emission and lifetime of Ti3þ - doped Al2O3 in the 0­110 kbar range

  13. Synthesis, spectroscopic (UV-vis and GIAO NMR), crystallographic and theoretical studies of triazine heterocyclic derivatives

    NASA Astrophysics Data System (ADS)

    Khan, Salman A.; Obaid, Abdullah Y.; Al-Harbi, Laila M.; Arshad, Muhammad Nadeem; ?ahin, Onur; Ersanl?, Cem Cüneyt; Abdel-Rehman, R. M.; Asiri, Abdullah M.; Hursthouse, Michael B.

    2015-09-01

    This work presents the synthesis and characterization of triazine heterocyclic derivatives. The spectroscopic properties like nuclear magnetic resonance [NMR, (1H and 13C)] were recorded in CDCl3 solution and Ultraviolet-Visible (UV-vis) absorption spectrums of compounds, 5,6-diphenyl-[1,2,4]triazin-3-ylamine (1), (5,6-diphenyl-[1,2,4]triazin-3-yl)-hydrazine (2) and 5,6-diphenyl-4H-[1,2,4] triazine-3-thione (3), were recorded in the range of 200-800 nm, using chloroform as base solvent. Molecular geometry of compounds with triazine heterocyclic derivative in the ground state have been calculated using the density functional theory (DFT) with 6-31G(d,p) basis set and compared with the X-ray experimental data. The calculated results show that the optimized geometry can well reproduce the crystal structures. Total static dipole moment (?), the average linear polarizability (?) and the first hyperpolarizability (?) values of the investigated molecules have been computed using the same methods. The energetic behavior of compounds in solvent media has been examined using B3LYP method with the 6-31G(d,p) basis set by applying the polarizable continuum model (PCM). The total energy of compounds decreases with increasing polarity of the solvent. Frontier molecular orbitals and the molecular electrostatic potential (MEP), 1H NMR, and 13C NMR of three triazine derivatives were investigated using theoretical calculations. The linear polarizabilities and first hyperpolarizabilities of the studied molecules indicate that the compounds 1-3 can be used as a good nonlinear optical material (NLO). Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT and time dependent-density functional theory (TD-DFT) method produce generally closer to good results.

  14. Matrix isolation infrared spectroscopic study of the vapor species over heated ReO{sub 3}

    SciTech Connect

    Almond, M.J.; Orrin, R.H.; Ogden, J.S.

    1996-02-01

    The vapor phase species over ReO{sub 3} heated in vacuo to approx 400C have been trapped in argon or nitrogen matrices at approx 12 K. The only species within such matrices detected by infrared spectroscopy is Re{sub 2}O{sub 7}. The bands of matrix-isolated Re{sub 2}O{sub 7} have been assigned by comparison with the spectrum of the gaseous compound. Most of the isolated Re{sub 2}O{sub 7} is shown to be in the monomeric form; thus, an infrared absorption at 916.5 cm{sup {minus}1} (N{sub 2} matrix), which had previously been assigned to an aggregate of Re{sub 2}O{sub 7} may, on the basis of annealing experiments, be attributed to the monomer. The solid remaining in the sample tube following heating of the ReO{sub 3} sample consists of ReO{sub 2} in both the monoclinic and orthorhombic crystal forms alongside some unreacted cubic ReO{sub 3} and a small amount of orthorhombic Re{sub 2}O{sub 7}. Thus, it is found that thermal decomposition of ReO{sub 3} in vacuo at 400 C follows the expected disproportionation route. The authors find no spectroscopic evidence for the existence of other species, such as ReO{sub 3} or HReO{sub 4}, in the vapor above heated ReO{sub 3}. This finding is in contrast to the results of earlier mass spectrometric studies that suggested that molecular ReO{sub 3} was present in the vapor together with Re{sub 2}O{sub 7}.

  15. Spectroscopic study of extended star clusters in dwarf galaxy NGC 6822

    SciTech Connect

    Hwang, Narae; Kim, Sang Chul; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Weisz, Daniel; Miller, Bryan

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from –61.2 ± 20.4 km s{sup –1} (for C1) to –115.34 ± 57.9 km s{sup –1} (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (?8 Gyr) and metal poor ([Fe/H] ? –1.5). NGC 6822 is found to have both metal poor ([Fe/H] ?–2.0) and metal rich ([Fe/H] ?–0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r ? 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M{sub N6822}=7.5{sub ?0.1}{sup +4.5}×10{sup 9} M{sub ?} and (M/L){sub N6822}=75{sub ?1}{sup +45}(M/L){sub ?}. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group.

  16. Speciation of Heptavalent Technetium in Sulfuric Acid: Structural and Spectroscopic Studies.

    SciTech Connect

    Poineau, Frederic; Weck, Philippe F.; German, Konstantin; Maruk, Alesya; Kirakosyan, Gayane; Lukens, Wayne; Rego, Daniel B.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

    2010-06-10

    The speciation of Tc(VII) in 12 M sulfuric acid was studied by NMR, UV-visible and XAFS spectroscopy, experimental results were supported by DFT calculation and were in agreement with the formation of TcO{sub 3}OH(H{sub 2}O){sub 2}. In summary, the speciation of heptvalent technetium has been investigated in sulfuric acid. In 12 M H{sub 2}SO{sub 4}, a yellow solution is observed, and its {sup 99}Tc NMR spectrum is consistent with a heptavalent complex. The yellow solution was further characterized by EXAFS spectroscopy, and results are consistent with the formation of TcO{sub 3}(OH)(H{sub 2}O){sub 2}. No technetium heptoxide or sulfato- complexes were detected in these conditions. The molecular structure of TcO{sub 3}(OH)(H{sub 2}O){sub 2} has been optimized by DFT techniques, and the structural parameters are well in accordance with those found by XAFS spectroscopy. The experimental electronic spectra exhibit ligand-to-metal charge transfer transitions that have been assigned using TDDFT methods. Calculations demonstrate the theoretical electronic spectrum of TcO{sub 3}(OH)(H{sub 2}O){sub 2} to be in very good agreement with the experimental one. Recent experiments in 12 M H{sub 2}SO{sub 4} show the yellow solution to be very reactive in presence of reducing agents presumably forming low valent Tc species. Current spectroscopic works focus on the speciation of these species.

  17. Origins of massive field stars in the Galactic Centre: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Mauerhan, Jon; Morris, Mark R.; Wang, Q. Daniel; Cotera, Angela

    2015-01-01

    Outside of the known star clusters in the Galactic Centre, a large number of evolved massive stars have been detected; but their origins remain uncertain. We present a spectroscopic study of eight such stars, based on new Gemini Near-Infrared Spectrograph (GNIRS) and Near-IR Integral Field Spectrograph (NIFS) near-infrared observations. This work has led to the discovery of a new O If+ star. We compare the reddening-corrected J - K versus K diagram for our stars with the massive ones in the Arches cluster and use stellar evolutionary tracks to constrain their ages and masses. The radial velocities of both the stars and their nearby H II regions are also reported. All of the stars are blueshifted relative to the Arches cluster by > 50 km s-1. We find that our source P35 has a velocity consistent with that of the surrounding molecular gas. The velocity gradient of nearby ionized gas along the Gemini GNIRS long slit, relative to P35 and the adjacent -30 to 0 km s-1 molecular cloud, can best be explained by a pressure-driven flow model. Thus, P35 most likely formed in situ. Three more of our stars have radial velocities different from their adjacent molecular gas, indicating that they are interlopers. The four stars closest to the Arches cluster have similar spectra, ages and masses to known cluster members, suggesting that they were likely ejected from the cluster via three-body interactions. Therefore, we find that the relatively isolated stars are partly form in situ and partly be ejected from the known star clusters in the Galactic Center.

  18. A Spectroscopic Study of the Extreme Black Widow PSR J1311-3430

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Filippenko, Alexei V.; Cenko, S. Bradley

    2015-05-01

    We report on a series of spectroscopic observations of PSR J1311-3430, an extreme black-widow gamma-ray pulsar with a helium-star companion. In a previous study we estimated the neutron star mass as {{M}NS}=2.68+/- 0.14 {{M}? } (statistical error), based on limited spectroscopy and a basic (direct heating) light-curve model; however, much larger model-dependent systematics dominate the mass uncertainty. Our new spectroscopy reveals a range of complex source behavior. The variable He i companion wind emission lines can dominate broadband photometry, especially in red filters or near minimum brightness, and the wind flux should complete companion evaporation in a spin-down time. The heated companion face also undergoes dramatic flares, reaching ˜40,000 K over ˜20% of the star; this is likely powered by a magnetic field generated in the companion. The companion center-of-light radial velocity is now well measured with {{K}CoL}=615.4+/- 5.1 km s-1. We detect non-sinusoidal velocity components due to the heated face flux distribution. Using our spectra to excise flares and wind lines, we generate substantially improved light curves for companion continuum fitting. We show that the inferred inclination and neutron star mass, however, remain sensitive to the poorly constrained heating pattern. The neutron star’s mass, {{M}NS}, is likely less than the direct heating value and could range as low as 1.8 M? for extreme equatorial heating concentration. While we cannot yet pin down {{M}NS}, our data imply that an intrabinary shock reprocesses the pulsar emission and heats the companion. Improved spectra and, especially, models that include such shock heating are needed for precise parameter measurement.

  19. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed

    NASA Astrophysics Data System (ADS)

    Ball, S. M.; Hollingsworth, A. M.; Humbles, J.; Leblanc, C.; Potin, P.; McFiggans, G.

    2009-12-01

    Time profiles of molecular iodine emissions from seven species of seaweed have been measured at high time resolution (7.5 s) by direct spectroscopic quantification of the gas phase I2 using broadband cavity enhanced absorption spectroscopy. Substantial differences were found between species, both in the amounts of I2 emitted when the plants were exposed to air and in the shapes of their emission time profiles. Two species of kelp, Laminaria digitata and Laminaria hyperborea, were found to be the most potent emitters, producing an intense burst of I2 when first exposed to air. I2 was also observed from Saccharina latissima and Ascophyllum nodosum but in lower amounts and with broader time profiles. I2 mixing ratios from two Fucus species and Dictyopteris membranacea were at or below the detection limit of the present instrument (25 pptv). A further set of experiments investigated the time dependence of I2 emissions and aerosol particle formation when fragments of L. digitata were exposed to desiccation in air, to ozone and to oligoguluronate stress factors. Particle formation occurred in all L. digitata stress experiments where ozone and light were present, subject to the I2 mixing ratios being above certain threshold amounts. Moreover, the particle number concentrations closely tracked variations in the I2 mixing ratios, confirming the results of previous studies that the condensable particle-forming gases derive from the photochemical oxidation of the plant's I2 emissions. This work also supports the theory that particle nucleation in the coastal atmosphere occurs in "hot-spot" regions of locally elevated concentrations of condensable gases: the greatest atmospheric concentrations of I2 and hence of condensable iodine oxides are likely to be above plants of the most efficiently emitting kelp species and localised in time to shortly after these seaweeds are uncovered by a receding tide.

  20. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed

    NASA Astrophysics Data System (ADS)

    Ball, S. M.; Hollingsworth, A. M.; Humbles, J.; Leblanc, C.; Potin, P.; McFiggans, G.

    2010-07-01

    Time profiles of molecular iodine emissions from seven species of seaweed have been measured at high time resolution (7.5 s) by direct spectroscopic quantification of the gas phase I2 using broadband cavity enhanced absorption spectroscopy. Substantial differences were found between species, both in the amounts of I2 emitted when the plants were exposed to air and in the shapes of their emission time profiles. Two species of kelp, Laminaria digitata and Laminaria hyperborea, were found to be the most potent emitters, producing an intense burst of I2 when first exposed to air. I2 was also observed from Saccharina latissima and Ascophyllum nodosum but in lower amounts and with broader time profiles. I2 mixing ratios from two Fucus species and Dictyopteris membranacea were at or below the detection limit of the present instrument (25 pptv). A further set of experiments investigated the time dependence of I2 emissions and aerosol particle formation when fragments of L. digitata were exposed to desiccation in air, to ozone and to oligoguluronate stress factors. Particle formation occurred in all L. digitata stress experiments where ozone and light were present, subject to the I2 mixing ratios being above certain threshold amounts. Moreover, the particle number concentrations closely tracked variations in the I2 mixing ratios, confirming the results of previous studies that the condensable particle-forming gases derive from the photochemical oxidation of the plant's I2 emissions. This work also supports the theory that particle nucleation in the coastal atmosphere occurs in "hot-spot" regions of locally elevated concentrations of condensable gases: the greatest atmospheric concentrations of I2 and hence of condensable iodine oxides are likely to be above plants of the most efficiently emitting kelp species and localised in time to shortly after these seaweeds are uncovered by a receding tide.

  1. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOEpatents

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  2. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals

    E-print Network

    Glotch, Timothy D.

    Imaging Spectrometer for Mars (MRO/CRISM) visible and near infrared imaging spec- trometers have shown] Phyllosilicates on Mars mapped by infrared spectroscopic techniques could have been affected by dehydration and and SCa3) with partial Mg2+ forAl3+ substitution all have new spectral feature developed at 900 cm-1 upon

  3. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  4. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ?~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (?-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  5. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (?-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  6. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  7. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile, a potential chemotherapeutic agent

    NASA Astrophysics Data System (ADS)

    Alzoman, Nourah Z.; Mary, Y. Sheena; Panicker, C. Yohannan; Al-Swaidan, Ibrahim A.; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Saadi, Abdulaziz A.; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-03-01

    Vibrational spectral analysis of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile was carried out using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry and vibrational wave numbers have been computed using density functional B3LYP method with 6-311++G(d,p)(5D,7F) as basis set. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. The nonlinear optical behavior of the title compound is also theoretically predicted. From the MEP, it is evident that the negative charge covers the Ctbnd N group and the positive region is over the phenyl and the pyrimidine rings. From the potential energy scan it is clear that the lone pairs of the sulfur atom prefer to point away from the pyrimidine ring and the Ctbnd N group resulting with two possible minimum conformations at the N4C8S1C25 angle equal nearly 0° or 150°. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb and may act as potential anti-diabetic compound.

  8. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile, a potential chemotherapeutic agent.

    PubMed

    Alzoman, Nourah Z; Mary, Y Sheena; Panicker, C Yohannan; Al-Swaidan, Ibrahim A; El-Emam, Ali A; Al-Deeb, Omar A; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-03-15

    Vibrational spectral analysis of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile was carried out using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry and vibrational wave numbers have been computed using density functional B3LYP method with 6-311++G(d,p)(5D,7F) as basis set. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. The nonlinear optical behavior of the title compound is also theoretically predicted. From the MEP, it is evident that the negative charge covers the C?N group and the positive region is over the phenyl and the pyrimidine rings. From the potential energy scan it is clear that the lone pairs of the sulfur atom prefer to point away from the pyrimidine ring and the C?N group resulting with two possible minimum conformations at the N4C8S1C25 angle equal nearly 0° or 150°. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb and may act as potential anti-diabetic compound. PMID:25576938

  9. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    SciTech Connect

    Hobart, D. E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E/sup 0/') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E/sup 0/' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E/sup 0/' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E/sup 0/' value in noncomplexing solution. This same difference in potential was observed for the E/sup 0/' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO/sub 4/ gave an E/sup 0/' value of 1.140 +- 0.005 V. An E/sup 0/' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E/sup 0/' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E/sup 0/) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E/sup 0/ value for the Cm(IV)/Cm(III) redox couple may be in error.

  10. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal orientations and a large number of different samples. To analyse the results, an innovative method was developed in which the apparently complex ring-closing reaction is distilled down to a small number of basic rotations. Immediately following photoexcitation, sub-picosecond structural changes associated with the formation of the intermediate are observed. The rotation of the thiophene rings is identified as the key motion. Subsequently, on the few picosecond time scale, the time-resolved diffraction patterns are observed to converge towards those associated with the closed-ring photoproduct. The formation of the closed-ring molecule is thus unambiguously witnessed.

  11. Optical spectroscopic studies of light-harvesting by pigment-reconstituted peridinin-chlorophyll-proteins at cryogenic temperatures

    PubMed Central

    Ilagan, Robielyn P.; Chapp, Timothy W.; Hiller, Roger G.; Sharples, Frank P.; Polívka, Tomáš

    2006-01-01

    Low temperature, steady-state, optical spectroscopic methods were used to study the spectral features of peridinin-chlorophyll-protein (PCP) complexes in which recombinant apoprotein has been refolded in the presence of peridinin and either chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll d (Chl d), 3-acetyl-chlorophyll a (3-acetyl-Chl a) or bacteriochlorophyll a (BChl a). Absorption spectra taken at 10 K provide better resolution of the spectroscopic bands than seen at room temperature and reveal specific pigment–protein interactions responsible for the positions of the Qy bands of the chlorophylls. The study reveals that the functional groups attached to Ring I of the two protein-bound chlorophylls modulate the Qy and Soret transition energies. Fluorescence excitation spectra were used to compute energy transfer efficiencies of the various complexes at room temperature and these were correlated with previously reported ultrafast, time-resolved optical spectroscopic dynamics data. The results illustrate the robust nature and value of the PCP complex, which maintains a high efficiency of antenna function even in the presence of non-native chlorophyll species, as an effective tool for elucidating the molecular details of photosynthetic light-harvesting. PMID:17361463

  12. Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine.

    PubMed

    Premkumar, S; Rekha, T N; Mohamed Asath, R; Mathavan, T; Milton Franklin Benial, A

    2016-01-20

    Conformational and molecular docking analysis of 2-acetylamino-5-bromo-6-methylpyridine molecule was carried out and the vibrational spectral analysis was also carried out using experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies of the molecule were assigned and compared. The pyridine ring CH stretching and CH3 stretching vibrational modes were shifted towards higher wavenumber (blue shift). The C=O stretching vibrational frequency was shifted towards lower wavenumber (red shift). Ultraviolet-visible spectrum of the molecule simulated theoretically was further validated experimentally. Molecular reactivity and stability were investigated using the frontier molecular orbital analysis and the related quantum chemical molecular properties. Natural bond orbital analysis and the structure activity relations were also studied to confirm the bioactivity of the molecule. Anticancer activity was examined based on molecular docking analysis and it has been identified that the AABMP molecule can act as a good inhibitor against lung cancer. PMID:26616823

  13. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    SciTech Connect

    Sawyer, Karma Rae

    2008-12-12

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  14. Tapered TeX glass optical fibers for remote IR spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Le Foulgoc, Karine; Le Neindre, Lydia; Zhang, Xhang H.; Lucas, Jacques

    1996-12-01

    Infrared TeX fibers operating in a wide wavelength region have various potential uses in the short distance area such as laser power delivery, remote temperature monitoring and chemical analysis. TeX glass fibers with a minimum attenuation of 0.5 dB/m in the 7 - 10 micrometer range have been obtained. A plastic coating protects these fibers from external environment and improves their mechanical properties. Remote spectroscopy using mono-index fiber is one of the most promising applications. This new technology allows the identification and in situ analysis of many substances such as oils and fertilizers, which have their fingerprint in the 2 - 13 micrometer domain. The detection efficiency using evanescent wave absorption has been studied as a function of the fiber's diameter. It is found that the sensitivity increases very rapidly when the fibers' diameter decreases. The possibility of detecting very low concentrations has been tested by using TeX tapered fibers.

  15. Microsampling techniques for infrared spectroscopic analysis of lunar and terrestrial minerals

    NASA Technical Reports Server (NTRS)

    Estep, P. A.; Kovach, J. J.; Karr, C.

    1973-01-01

    Microsampling techniques have been developed for infrared analysis of single mineral grains from lunar rocks and dusts, allowing a detailed molecular structure characterization of these complex fine-grained samples. The methods include special devices for isolating single grains, preparing micropellets from the grains, and obtaining in situ microspecular reflectance spectra from grains in polished rock samples. Although specifically developed for the work on lunar samples, the special techniques for single grain infrared analysis were found to be equally useful in studies of complex terrestrial mineral samples. For example, infrared microanalysis has contributed substantially in solving problems concerned with our natural resources, such as the structural characterization of minerals from commercial iron ores, marine deposits, coal, and fly ash derived from coal.

  16. Raman spectroscopic study of the photoprotection of extremophilic microbes against ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Moeller, R.; Jorge Villar, S. E.; Horneck, G.; Stackebrandt, E.

    2006-12-01

    Extremophiles use a range of pigments for protection against low-wavelength radiation in exposed terrestrial habitats and photoaccessory materials are synthesized for the effective harnessing of photosynthetically active radiation. Raman spectroscopy has been demonstrated to be a useful probe for information on the survival strategies employed by extremophilic bacteria through the identification of key biomolecular signatures of the suite of protective chemicals synthesized by the organisms in stressed environments. Raman spectroscopic analyses of Bacillus spp. spores, Bacillus atrophaeus (DSM 675: deep red) and Bacillus subtilis (DSM 5611: light grey and DSM 7264: dark grey), Deinococcus radiodurans (pink) and Natronomonas pharaonis (red), of visually different pigmentation showed the presence of different carotenoids and other protectant biomolecules, which assist microorganisms against UVA radiation. The implications for the survival of extremophilic microbes in extraterrestrial habitats and for the detection of the protectant biomolecules by remote, robotic Raman spectroscopic instrumentation in an astrobiological search for life context are discussed.

  17. Apparatus for and method of performing spectroscopic analysis on an article

    DOEpatents

    Powell, George Louis (Oak Ridge, TN); Hallman, Jr., Russell Louis (Knoxville, TN)

    1999-01-01

    An apparatus for and method of analyzing an article having an entrance and an exit in communication with the entrance. The apparatus comprises: a spectrometer having an emission source with a focal point; a plurality of mirrors; and a detector connected to the spectroscope. The emission source is positioned so that its focal point is substantially coextensive with the entrance of the article. The mirrors comprise: a first mirror positionable adjacent the exit of the article and a second mirror positioned relative to the other of said plurality of mirrors. The first mirror receives scattered emissions exiting the article and substantially collimates the scattered emissions. The second mirror substantially focuses the collimated emissions into a focused emission. The detector receives the focused emission from the mirrors.

  18. Apparatus for and method of performing spectroscopic analysis on an article

    DOEpatents

    Powell, G.L.; Hallman, R.L. Jr.

    1999-04-20

    An apparatus and method are disclosed for analyzing an article having an entrance and an exit in communication with the entrance. The apparatus comprises: a spectrometer having an emission source with a focal point; a plurality of mirrors; and a detector connected to the spectroscope. The emission source is positioned so that its focal point is substantially coextensive with the entrance of the article. The mirrors comprise: a first mirror positionable adjacent the exit of the article and a second mirror positioned relative to the other of said plurality of mirrors. The first mirror receives scattered emissions exiting the article and substantially collimates the scattered emissions. The second mirror substantially focuses the collimated emissions into a focused emission. The detector receives the focused emission from the mirrors. 6 figs.

  19. FTIR and FT-PL Spectroscopic Analysis of TPV Materials and Devices

    SciTech Connect

    Webb, J. D.; Gedvilas, L. M.; Olson, M. R.; Wu, X.; Duda, A.; Wanlass, M. W.; Jones, K. M.

    1998-10-28

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 102 micron-scale precipitates.

  20. Photometric and Spectroscopic Analysis of the delta Scuti Variable V2455 Cygni

    NASA Astrophysics Data System (ADS)

    Mannard, Marissa; Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    V2455 Cygni is a high amplitude delta Scuti variable that has received very little attention. This is surprising given its characteristics of an average magnitude of 8.8, with a full-amplitude of 0.44 in the V filter. Plus it has a published period of 0.09421 days. Finally it has been suggested that this is an SX Phe type variable. We present new photometric and spectroscopic observations of this interesting object. From both sets of observations we demonstrate that V2455 Cyg is part of a binary system with an eccentric orbit. We will present supporting evidence for this binary interpretation, show the best binary model for the system and discuss the stability of the pulsational period of the primary star.

  1. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  2. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K. K.; Prasad, M. V. R.; Kanagasabapathy, K. V.

    2015-02-01

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

  3. Spectroscopic studies of yellow supergiants in the open cluster NGC 129

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.

    2015-09-01

    Spectroscopic studies of three yellow supergiants in the open cluster NGC 129, the classical Cepheid DL Cas, SAO 21450, and SAO 21482, have been performed on the basis of high-resolution spectra. For the two nonvariable cluster supergiants, the atmospheric parameters and chemical composition have been determined for the first time. SAO 21450 ( T eff = 6541 ± 16 K, log g = 2.00, V t = 4.20 km s-1) has nearly solar abundances of the key elements in the evolution of yellow supergiants (CNO, Na, Mg, and Al), while SAO 21482 ( T eff = 4506 ± 50 K, log g = 1.10, V t = 9.90 km s-1) exhibits an overabundance of carbon ([C/H] = +0.34 dex) and aluminum and nearly solar N, O, Na, and Mg abundances. The abundances of the key elements in the Cepheid DL Cas are typical for an object that has passed the first dredge-up: a C underabundance, N and Na overabundances, and nearly solar O, Mg, and Al abundances. In all objects, the abundances of iron [Fe/H] = -0.01 dex, ?-elements, Fe-peak elements, and r- and s-process elements are virtually identical and nearly solar. The radial velocities of SAO 21482 measured from metal absorption lines have confirmed its membership in NGC 129. The knifelike shape of the H ? and H ? line profiles in SAO 21482 and the asymmetry of the Mg Ib 5183.618 Å line in SAO 21482 and DL Cas as well as the absorption lines of neutral atoms and ions of metals in the Cepheid suggest the existence of extended gaseous envelopes around them. The positions of the objects on the T eff- L diagram among the tracks of evolutionary masses for the objects show the following: (1) the primary component of SAO 21450 has a mass of 6.6 M ? and approaches the blue edge of the Cepheid instability strip (CIS) for the first time, while its companion of possible spectral type B5 V has a mass of 4.8 M ?; (2) DL Cas is on the path of its CIS with a mass of 5.8 M ? and has lost ~1.5 M ? after the first dredge-up; (3) SAO 21482 with a mass of no more than 7.3 M ? has passed the red edge of the CIS and probably enters the asymptotic giant branch. The theoretical CNO abundance estimates based on evolutionary tracks approximately coincide with the observed ones, while the age estimates for the supergiants are close to the mean cluster age, (7.6 ± 0.4) × 107 yr.

  4. Spectroscopic Study of Extended Star Clusters in Dwarf Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hwang, Narae; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Kim, Sang Chul; Miller, Bryan; Weisz, Daniel

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from -61.2 ± 20.4 km s-1 (for C1) to -115.34 ± 57.9 km s-1 (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (>=8 Gyr) and metal poor ([Fe/H] <~ -1.5). NGC 6822 is found to have both metal poor ([Fe/H] ?-2.0) and metal rich ([Fe/H] ?-0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r >= 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M_{N6822} = 7.5^{+4.5}_{-0.1} \\times 10^{9}\\ M_{\\odot } and (M/L)_{N6822} = 75^{+45}_{-1} (M/L)_{\\odot }. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  5. Spectroscopic study of a microwave resonant cavity excited xenon chloride excimer discharge

    NASA Astrophysics Data System (ADS)

    Anderson, Scott A.

    The spectral emission of rare-gas halide discharges have been of interest since the early '70s when they were discovered to be a viable medium for excimer lasers. More recently, these molecules have been investigated as a source of incoherent radiation in the lamp industry. Microwave discharges are attractive for their electrodeless excitation, inexpensive and reliable magnetron power supplies, and possibility of long lived efficient lamps. No comprehensive spectroscopic study has been performed on a binary gas xenon chloride (XeCl) discharge in a cylindrical microwave resonant cavity. In this work, a XeCl discharge excited by a microwave resonant cavity operating at 2.44 GHz was created in a 1.2 cm I.D. cylindrical quartz tube. Ratios of 10:1, 2:1, and 1:2 Xe:Cl2 were investigated. Excitation of Xe and Cl2 leads to the harpooning reaction where Xe* transfers its outermost electron to the halogen to form the XeCl* excimer. Optical emission spectroscopy indicates that the B2Sigma-X2Sigma transition dominates at pressures below 200 torr. At these pressures, the D2pi-X2Sigma transition is evident at 235 nm indicating populations of higher excited XeCl* electronic states. The Cl 2 (D'-A') transition at 258 nm is present with strong intensities at low pressures. Higher energy vibrational levels of the XeCl(B) state are excited at lower pressure and exhibit an increased full-width-half-max (FWHM) of the B2Sigma-X2Sigma. Emission from the 308 nm B2Sigma-X2Sigma at 1 to 2 Xe:Cl2 ratio is most intense at low pressures near 10 torr. The largest intensity of the 10 to 1 Xe:Cl2 ratios occurs at pressures near 150 torr. A two-dimensional CCD imaging technique provides real-time imaging of the discharge radial emission profile. Three distinct discharge regions include a diffuse plasma (<10 torr), chaotic filamented discharge (10--125 torr), and a single stable filament at the center of the tube (>125 torr).

  6. Spectroscopic and quantum chemical correlation for structural evaluation, chemical reactivity and non-linear optical property investigation of two chalcone having pyrrole moiety: A comparative study

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Rawat, Poonam; Baboo, Vikas; Kumar, Yashvinder

    2015-04-01

    As part of study of pyrrole-chalcone, ethyl 4-[3-(4-chloro-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate (ECADPC) and ethyl 3,5-dimethyl-4-[3-(3-nitro-phenyl)-acryloyl]-1H-pyrrole-2-carboxylate (EDNAPC) have been synthesized by Claisen-Schmidt condensation using chloro- and nitro- substituted aromatic aldehyde and ethyl 3,5-dimetyl-4-acetyl-1H-pyrrole-2-carboxylate. The products were characterized by 1H NMR, UV-Visible, FT-IR spectroscopic methods and Quantum chemical calculations. Conformational analysis, normal mode frequencies and corresponding vibrational assignments based on potential energy distribution study revealed that ECADPC and EDNAPC exist in dimer form in solid state. 'Quantum theory of Atoms in molecules' (QTAIM) analysis has been performed to know the strength of intra- and intermolecular interactions. The UV-Visible spectra study reveals that the compounds are almost transparent in the visible region. Angular distribution of the probability density for population conformational analysis of ECADPC and EDNAPC are determined by analysis of the potential energy surface (PES). The calculated static first hyperpolarizability (?0) value for monomers of ECADPC and EDNAPC are 17.078 × 10-30 and 2.344 × 10-30 esu respectively, infers ECADPC to be more suitable for non-linear optical (NLO) response than EDNAPC. The electronic descriptors analysis predicts the nature of local reactive sites within the molecule.

  7. Micro-Raman spectroscopic study of nanolaminated Ti{sub 5}Al{sub 2}C{sub 3}

    SciTech Connect

    Zhang, H.; Li, Z. J.; Wang, X. H.; Xiang, H. M.; Zhou, Y. C

    2014-03-31

    Micro-Raman spectroscopic study and lattice dynamics calculations were conducted to study a recently identified layered ternary carbide, Ti{sub 5}Al{sub 2}C{sub 3}. The experimental Raman shifts were remarkably consistent with the calculated values. Polarized Raman spectrum was collected in the polycrystalline sample, which confirmed the theoretical symmetry assignment of the Raman modes. In addition, the atomic vibrations of the peaks at 192?cm{sup ?1}, 311?cm{sup ?1}, and 660?cm{sup ?1} were identified to be the combination of the counterparts in Ti{sub 2}AlC and Ti{sub 3}AlC{sub 2}.

  8. Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Anoop, M. R.; Binil, P. S.; Suma, S.; Sudarsanakumar, M. R.; Y, Sheena Mary.; Varghese, Hema Tresa; Panicker, C. Yohannan

    2010-04-01

    FT-IR and FT-Raman spectra of ethyl methyl ketone thiosemicarbazone were recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF/6-31G(d) and B3LYP/6-31G(d) basis sets and are assigned with the aid of MOLEKEL program. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The red shift of the NH stretching wavenumber in the infrared spectrum compared to the computed wavenumber indicates the weakening of the N-H bond resulting in proton transfer to the neighbouring sulfur atom.

  9. Joint Raman spectroscopic and quantum chemical analysis of the vibrational features of Cs2RuO4

    PubMed Central

    Naji, M; Di Lemma, F; Kovács, A; Beneš, O; Manara, D; Colle, J-Y; Pagliosa, G; Raison, P; Konings, R J M

    2015-01-01

    The Raman spectroscopic characterization of the orthorhombic phase of Cs2RuO4 was carried out by means of group theory and quantum chemical analysis. Multiple models based on ruthenate (VI+) tetrahedra were tested, and characterization of all the active Raman modes was achieved. A comparison of Raman spectra of Cs2RuO4, Cs2MoO4, and Cs2WO4 was also performed. Raman laser heating induced a phase transition from an ordered to a disordered structure. The temperature-phase transition was calculated from the anti-Stokes/Stokes ratio and compared with the ones measured at macroscopic scale. The phase transition is connected with tilting and/or rotations of RuO4 tetrahedra, which lead to a disorder at the RuO4 sites. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd. PMID:26494941

  10. EMERGING INFRARED LASER ABSORPTION SPECTROSCOPIC

    E-print Network

    -reflector), such as light detection and ranging (LIDAR), differential optical ab- sorption spectroscopy (DOAS), laserCHAPTER 4 EMERGING INFRARED LASER ABSORPTION SPECTROSCOPIC TECHNIQUES FOR GAS ANALYSIS Frank K, Aiken, SC 4.1 Introduction Laser based spectroscopic techniques are useful for the quantitative

  11. A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite.

    PubMed

    Theiss, Frederick L; López, Andrés; Scholz, Ricardo; Frost, Ray L

    2015-08-01

    The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)?(Si,Al)?O?(OH)?. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated. PMID:25847784

  12. A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; López, Andrés; Scholz, Ricardo; Frost, Ray L.

    2015-08-01

    The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)3(Si,Al)2O5(OH)4. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.

  13. Vibrational spectroscopic methods for the overall quality analysis of washing powders.

    PubMed

    Bittner, L K; Schönbichler, S A; Schmutzler, M; Lutz, O M D; Huck, C W

    2016-02-01

    The aim of this study was to compare and evaluate the ability of near infrared- (NIR), Raman- and attenuated-total-reflection infrared (ATR-IR) spectroscopy as tools for the identification of washing powder brands as well as for an overall quantitative analysis of all ingredients of the analyzed laundry detergents. The laundry detergents used in this work were composed of 22 different ingredients. For this purpose, principal component analysis (PCA) cluster models and partial least-squares (PLS) regression models were developed and different data pre-processing algorithms such as standard-normal-variate (SNV), multiplicative scatter correction (MSC), first derivative BCAP (db1), second derivative smoothing (ds2), smoothing Savitzky Golay 9 points (sg9) as well as different normalization procedures such as normalization between 0 and 1 (n01), normalization unit length (nle) or normalization by closure (ncl) were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the number of principal components (PCs), regression coefficient (r), Bias, Standard error of prediction (SEP), ratio performance deviation (RPD) and range error ratio (RER) for each calibration model. For each of the 22 ingredients separate calibration models were developed. Raman spectroscopy was suitable for the analysis of only two ingredients (dye transfer inhibitor 1 and surfactant 6) and it was not possible to record all Raman spectra due to high fluorescence. NIR and ATR-IR are powerful methods to analyze washing detergents with low numbers of PCs being necessary, regression coefficients of only little below 1, small Biases and SEPs compared to the range and high RPDs and RERs. PMID:26653457

  14. Simple synthesis and spectroscopic studies on cobalt added ZnO nanocrystals.

    PubMed

    Pandiyarajan, T; Karthikeyan, B; Venkatesan, P; Ashok, M; Anandan, S; Giridharan, N V

    2009-09-15

    Cobalt doped zinc oxide nanoparticles were prepared through simple wet chemical method. X-ray diffraction studies confirm the prepared particles are in wurtzite structure. Scanning Electron Microscopy studies show the shape and morphology of the particles. To identify the presence of cobalt in ZnO, Energy Dispersive X-ray analysis was done. Optical absorption measurements show the presence of exciton peak at 375 nm. Photoluminescence studies were done with the excitation wavelength of 330 nm, which shows the emission because of exciton recombination and oxygen vacancy. PMID:19546025

  15. Analysis of the pressure, density, and velocity distributions in a spectroscopic heat pipe oven and the resulting limitations on device performance

    E-print Network

    Boyd, Robert W.

    Analysis of the pressure, density, and velocity distributions in a spectroscopic heat pipe oven (1975); 10.1063/1.321834 The Rotating HeatPipe Oven; A Universal Device for the Containment of Atomic and Molecular Vapors Rev. Sci. Instrum. 44, 561 (1973); 10.1063/1.1686181 HeatPipe Oven for Homogeneous Mixtures

  16. Photon-in/photon-out spectroscopic techniques for materials analysis: some recent developments.

    PubMed

    Sham, Tsun-Kong

    2014-12-10

    Third-generation synchrotron light source technology has greatly improved the capabilities for materials analysis using tunable X-rays. Two such capabilities developed recently are reported herein - inverse partial fluorescence yield (IPFY) XANES (X-ray absorption near edge structure) and 2D XANES - XEOL (X-ray excited optical luminescence) in both the energy and time domain. These techniques take advantage of recent advances in soft X-ray solid state detector, optical spectrometer with a CCD detector and optical streak camera on a soft X-ray beamline as well as new data acquisition schemes. The studies of LiFePO4 materials for Li ion battery and solid solutions of GaN-ZnO nanostructures for water splitting are used to illustrate these capabilities. The prospects of these and related synchrotron photon-in photon-out techniques are also noted. PMID:24861360

  17. Analysis of satellite data to deduce stratospheric constituents and UV spectroscopic properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard D.

    1990-01-01

    The objective is to better understand the stratosphere, its constituents, and its ultraviolet optical properties, through detailed analysis of data from the SBUV instrument on Nimbus 7 and comparison with data from other instruments, including the NOAA 9 SBUV 2, SAGE, SME, and SMM. One conclusion to be drawn from the Ozone Trends Panel report is that there are unresolved differences in the ozone profiles measured by different instruments. While the purpose of the work is more to understand the details of the UV radiation field in the stratosphere than it is to assess the accuracy of the SBUV ozone measurement itself, improved understanding of specific problems in the UV will lead to more accurate ozone retrievals. Areas of study include the effect of aerosols on the backscattered albedo, the shape of the ozone profile near the stratopause, the effect of possible polar mesospheric clouds, and the measureability of nitric oxide and sulfur dioxide.

  18. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    SciTech Connect

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.; Sparks, D.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted P in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.

  19. Temperature dependence of the electronic transitions in BiFeO{sub 3} thin film studied by spectroscopic ellipsometry

    SciTech Connect

    Kang, T. D.; Jeon, B. C.; Moon, S. J.

    2015-04-07

    The temperature dependence of the electronic response of BiFeO{sub 3} thin film grown on a SrTiO{sub 3} substrate is investigated using spectroscopic ellipsometry. By analyzing the pseudodielectric function, we identify two d-d crystal field transitions of Fe{sup 3+} ions in the energy region between 1 and 2?eV. The d-d transitions show abnormal temperature dependence that cannot be attributed to conventional electron-phonon interactions. The origin of the abnormal temperature dependence is discussed in terms of spin-charge coupling. The temperature dependence of the charge transfer transitions located above 2.5?eV is characterized by standard critical point model analysis of the 2nd derivatives of the dielectric function. This analysis provides detailed information of the critical point parameters for charge transfer transitions.

  20. Fluorescence spectroscopic studies of (acetamide + sodium/potassium thiocyanates) molten mixtures: composition and temperature dependence.

    PubMed

    Guchhait, Biswajit; Gazi, Harun Al Rasid; Kashyap, Hemant K; Biswas, Ranjit

    2010-04-22

    Steady state and time-resolved fluorescence spectroscopic techniques have been used to explore the Stokes' shift dynamics and rotational relaxation of a dipolar solute probe in molten mixtures of acetamide (CH(3)CONH(2)) with sodium and potassium thiocyanates (Na /KSCN) at T approximately 318 K and several other higher temperatures. The dipolar solute probe employed for this study is coumarin 153 (C153). Six different fractions (f) of KSCN of the following ternary mixture composition, 0.75 CH(3)CONH(2) + 0.25[(1 - f)NaSCN + fKSCN], have been considered. The estimated experimental dynamic Stokes' shift for these systems ranges between 1800 and 2200 cm(-1) (+/-250 cm(-1)), which is similar to what has been observed with the same solute probe in several imidazolium cation based room temperature ionic liquids (RTIL) and in pure amide solvents. Interestingly, this range of estimated Stokes' shift, even though not corresponding to the megavalue of static dielectric constant reported in the literature for a binary mixture of molten CH(3)CONH(2) and NaSCN, exhibits a nonmonotonic KSCN concentration dependence. The magnitudes of the dynamic Stokes' shift detected in the present experiments are significantly less than the estimated ones, as nearly 40-60% of the total shift is missed due to the limited time resolution employed (full-width at half-maximum of the instrument response function approximately 70 ps). The solvation response function, constructed from the detected shifts in these systems, exhibits triexponential decay with the fastest time constant (tau(1)) in the 10-20 ps range, which might be much shorter if measured with a better time resolution. The second time constant (tau(2)) lies in the 70-100 ps range, and the third one (tau(3)) ranges between 300 and 800 ps. Both these time constants (tau(2) and tau(3)) show alkali metal ion concentration dependence and exhibit viscosity decoupling at higher viscosity in the NaSCN-enriched region. Time dependent rotational anisotropy has been found to be biexponential at all mixture compositions studied. Both the average solvation () and rotation () times of C153 in these mixtures exhibit fractional power law dependence on medium viscosity ( is proportional to eta(p), x being solvation or rotation). For solvation, p is found to be 0.46, which is very different from that obtained for common polar and nonpolar solvents, and RTILs (p approximately = 1). For rotation, p approximately = 0.65, which is again different from the value (p approximately = 1) obtained for common polar solvents and RTILs but very similar to that (p approximately = 0.6) found for nonpolar solvents. In addition, experimentally measured average rotation times in these mixtures are found to exhibit slip behavior in the low eta/T region, which gradually transforms to subslip as eta/T increases. Calculations using a recently developed semimolecular theory predict a total dynamic Stokes' shift for C153 (dipolar solute) in these molten mixtures near approximately 1600 cm(-1) where the solute-solvent (dipole-dipole) and the ion-solute (ion-dipole) interactions contribute respectively approximately 80% and approximately 20% to the calculated total shift. Like in experiments, the theoretically predicted solvation response function in the overdamped limit at each mixture composition has been found to be triexponential. The calculations in the underdamped limit, however, suggest a biphasic decay where a composition independent subpicosecond component and a much slower component with the time constant spreading over 150-850 ps contribute equally to constitute the total decay. The calculated average solvation times in this limit are found to be in better agreement with experimental results than the predictions from the overdamped limit. PMID:20345185

  1. Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium.

    PubMed

    Mizera, Miko?aj; Lewadowska, Kornelia; Talaczy?ska, Alicja; Cielecka-Piontek, Judyta

    2015-02-25

    The work was aimed at investigating the influence of diffusion of basis functions on the geometry optimization of molecule of losartan in acidic and salt form. Spectroscopic properties of losartan potassium were also calculated and compared with experiment. Density functional theory method with various basis sets: 6-31G(d,p) and its diffused variations 6-31G(d,p)+ and 6-31G(d,p)++ was used. Application of diffuse basis functions in geometry optimization resulted in significant change of total molecule energy. Total molecule energy of losartan potassium decreased by 112.91kJ/mol and 114.32kJ/mol for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets, respectively. Almost the same decrease was observed for losartan: 114.99kJ/mol and 117.08kJ/mol respectively for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets. Further investigation showed significant difference within geometries of losartan potassium optimized with investigated basis sets. Application of diffused basis functions resulted in average 1.29Å difference in relative position between corresponding atoms of three obtained geometries. Similar study taken on losartan resulted in only average 0.22Å of dislocation. Extensive analysis of geometry changes in molecules obtained with diffused and non-diffuse basis functions was carried out in order to elucidate observed changes. The analysis was supported by electrostatic potential maps and calculation of natural atomic charges. UV, FT-IR and Raman spectra of losartan potassium were calculated and compared with experimental results. No crucial differences between Raman spectra obtained with different basis sets were observed. However, FT-IR spectra of geometry of losartan potassium optimized with 6-31G(d,p)++ basis set resulted in 40% better correlation with experimental FT-IR spectra than FT-IR calculated with geometry optimized with 6-31G(d,p) basis set. Therefore, it is highly advisable to optimize geometry of molecules with ionic interactions using diffuse basis functions when accuracy of results is a priority. PMID:25286115

  2. Analysis of the Spectroscopic Aspects of Cationic Dye Basic Orange 21.

    PubMed

    Eizig, Zehavit; Major, Dan T; Kasdan, Harvey L; Afrimzon, Elena; Zurgil, Naomi; Sobolev, Maria; Deutsch, Mordechai

    2015-09-24

    Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion. Applying density functional theory demonstrates that in aqueous solutions (a) the formation of BO21 oligomers is thermodynamically favorable, they are oriented in an antiparallel dipolar arrangement, and their binding energies are lower than those of parallel dipolar arrangements, (b) association between BO21 aggregates and heparin is highly favorable, and (c) the blue shift is due to the mixing of ? ? ?* transitions caused by BO21 molecule stacking. However, when embedded in basophils, the absorption spectra of intracellular BO21 is extremely red-shifted, with two peaks (at 505 and 550 nm) found to be attributed to BO21 and the BO21-heparin complex, respectively, which are intracellularly hosted in nonaqueous environments. Initial evidence of the ability to differentiate between leukocyte types by BO21 is presented. PMID:26295368

  3. Spectroscopic analysis of Al and N diffusion in HfO{sub 2}

    SciTech Connect

    Lysaght, P. S.; Price, J.; Kirsch, P. D.; Woicik, J. C.; Weiland, C.; Sahiner, M. A.

    2012-09-15

    X-ray photoelectron core level spectroscopy, secondary ion mass spectroscopy, spectroscopic ellipsometry, and extended x-ray absorption fine structure measurements have been employed to distinguish the effects of Al and N diffusion on the local bonding and microstructure of HfO{sub 2} and its interface with the Si substrate in (001)Si/SiO{sub x}/2 nm HfO{sub 2}/1 nm AlO{sub x} film structures. The diffusion of Al from the thin AlO{sub x} cap layer deposited on both annealed and unannealed HfO{sub 2} has been observed following anneal in N{sub 2} and NH{sub 3} ambient. Both N{sub 2} and NH{sub 3} subsequent anneals were performed to decouple incorporated nitrogen from thermal reactions alone. Causal variations in the HfO{sub 2} microstructure combined with the dependence of Al and N diffusion on initial HfO{sub 2} conditions are presented with respect to anneal temperature and ambient.

  4. AN INTERFEROMETRIC AND SPECTROSCOPIC ANALYSIS OF THE MULTIPLE STAR SYSTEM HD 193322

    SciTech Connect

    Ten Brummelaar, Theo A.; Farrington, Christopher D.; Schaefer, Gail H. E-mail: farrington@chara-array.org

    2011-07-15

    The star HD 193322 is a remarkable multiple system of massive stars that lies at the heart of the cluster Collinder 419. Here we report on new spectroscopic observations and radial velocities of the narrow-lined component Ab1 which we use to determine its orbital motion around a close companion Ab2 (P = 312 days) and around a distant third star Aa (P = 35 years). We have also obtained long baseline interferometry of the target in the K' band with the CHARA Array which we use in two ways. First, we combine published speckle interferometric measurements with CHARA separated fringe packet measurements to improve the visual orbit for the wide Aa,Ab binary. Second, we use measurements of the fringe packet from Aa to calibrate the visibility of the fringes of the Ab1,Ab2 binary, and we analyze these fringe visibilities to determine the visual orbit of the close system. The two most massive stars, Aa and Ab1, have masses of approximately 21 and 23 M{sub sun}, respectively, and their spectral line broadening indicates that they represent extremes of fast and slow projected rotational velocity, respectively.

  5. Consistent analysis of one-nucleon spectroscopic factors involving weakly- and strongly-bound nucleons

    E-print Network

    J. Oko?owicz; Y. H. Lam; M. P?oszajczak; A. O. Macchiavelli; N. A. Smirnova

    2015-11-17

    There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron $S_n$ and proton $S_p$ separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on $S_n - S_p$? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of $S_n$ and $S_p$ for mirror nuclei $^{24}$Si, $^{24}$Ne and $^{28}$S, $^{28}$Mg and for a series of neon isotopes ($20 \\leq A \\leq 28$).

  6. Spectroscopic and kinetic studies of a dye laser pumped Br2 B TPi(0 /sub u/) X /sub g/ laser

    SciTech Connect

    Perram, G.P.; Davis, S.J.

    1986-03-01

    A dye laser pumped Br2 B TPi(0 /sub u/) X /sub g/ laser has been studied. Spectroscopic assignments have shown that lasing occurs from 10< or =J'< or =63 in 12< or =v'< or =17 using Rhodamine 590 dye. The output appeared limited to the 79--81 isotope of Br2. By utilizing stimulated emission as a monitor for laser excitation spectra, dramatic increases in the resolution were observed that exceeded the normal resolution of the dye laser. The Br2 laser operated at Br2 pressures of up to 60 Torr. A simple model to explain the characteristics of the Br2 laser is described.

  7. Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation

    SciTech Connect

    Zhang, D X; Shen, B; Zheng, Y X; Wang, S Y; Zhang, J B; Yang, S D; Zhang, R J; Chen, L Y; Wang, C Z; Ho, K M

    2014-03-24

    The temperature dependent optical properties of tin film from solid to liquid were studied by spectroscopic ellipsometry and ab initio molecular dynamics simulations. The dielectric function of liquid Sn was different from solid, and an interband transition near 1.5?eV was easily observed in solid while it apparently disappeared upon melting. From the evolution of optical properties with temperature, an optical measurement to acquire the melting point by ellipsometry was presented. From first principles calculation, we show that the local structure difference in solid and liquid is responsible for this difference in the optical properties observed in experiment.

  8. Synthesis and spectroscopic study of some new rigid N-bicyclo substituted 2-phenylacetamides

    NASA Astrophysics Data System (ADS)

    Antonovi?, D. G.; Nikoli?, A. D.; Petrovi?, S. D.

    1988-05-01

    In a continuation of our previous works the conformations of some new rigid N-bicyclo substituted 2-phenylacetamides, PhCH 2 CONHR, were investigated by vibrational, 1H n.m.r. and mass spectra. N-monosubstituted 2-phenylacetamides were obtained by using the known Schotten-Baumann reaction of acylation of amines with phenylacetyl chloride. From spectroscopic data, the different conformational isomers were assigned and its structure undoubtly proven. On the other hand it can be concluded that the bulkiest substituent on the nitrogen atom have led only to the trans form.

  9. Recent Advances in Biosynthetic Modeling of Nitric Oxide Reductases and Insights Gained from Nuclear Resonance Vibrational and Other Spectroscopic Studies.

    PubMed

    Chakraborty, Saumen; Reed, Julian; Sage, J Timothy; Branagan, Nicole C; Petrik, Igor D; Miner, Kyle D; Hu, Michael Y; Zhao, Jiyong; Alp, E Ercan; Lu, Yi

    2015-10-01

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV-vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent (57)Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. The outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs. PMID:26274098

  10. Spectroscopic study of amino acids adsorption on pyrite surface: From vacuum to solution conditions.

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, E.; Sanchez-Arenillas, M.

    2015-10-01

    We characterized the adsorption of cystine molecules among other amino acids on pyrite surface via X-ray photoelectron spectroscopy. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the systems explored in this study hold interesting implications for supporting catalyzed prebiotic chemistry reactions.

  11. Investigating the Interaction of Saposin C with POPS and POPC Phospholipids: A Solid-State NMR Spectroscopic Study

    PubMed Central

    Abu-Baker, Shadi; Qi, Xiaoyang; Lorigan, Gary A.

    2007-01-01

    The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The 2H and 31P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the 2H order parameter profiles of the POPC-d31 or POPS-d31 acyl chains as well as the 31P chemical shift anisotropy width and 31P T1 relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, 31P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH. PMID:17704143

  12. High-Throughput Thermal Stability Analysis of a Monoclonal Antibody by Attenuated Total Reflection FT-IR Spectroscopic Imaging

    PubMed Central

    2014-01-01

    The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery, protein aggregation can have major effects on drug potency and cause highly undesirable immunological effects. It is thus essential to identify processing conditions which maximize recovery while avoiding aggregation. Heat resistance is a proxy for long-term aggregation propensity. Thermal stability assays are routinely performed using various spectroscopic and scattering detection methods. Here, we evaluated the potential of macro attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging as a novel method for the high-throughput thermal stability assay of a monoclonal antibody. This chemically specific visualization method has the distinct advantage of being able to discriminate between monomeric and aggregated protein. Attenuated total reflection is particularly suitable for selectively probing the bottom of vessels, where precipitated aggregates accumulate. With focal plane array detection, we tested 12 different buffer conditions simultaneously to assess the effect of pH and ionic strength on protein thermal stability. Applying the Finke model to our imaging kinetics allowed us to determine the rate constants of nucleation and autocatalytic growth. This analysis demonstrated the greater stability of our immunoglobulin at higher pH and moderate ionic strength, revealing the key role of electrostatic interactions. The high-throughput approach presented here has significant potential for analyzing the stability of biotherapeutics as well as any other biological molecules prone to aggregation. PMID:25221926

  13. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities.

    PubMed

    Abo-Aly, M M; Salem, A M; Sayed, M A; Abdel Aziz, A A

    2015-02-01

    Spectroscopic (IR, Raman, NMR, UV-visible, and ESR), and structural studies of the ligand 3-methoxy-N-salicylidene-o-amino phenol (H2L) and its synthesized complexes with some transition metal ions (Mn(II), Co(II), Ni(II)), Cu(II) and Zn(II)) were recorded and analyzed. The magnetic properties and thermal gravimetric analysis (TGA and DTA) were also measured for the complexes. The metal complexes were found to have The structural formula ML?H2O and the metal ions Mn(II), Co(II), Ni(II)) and Zn(II) were found to form tetrahedral complexes with the ligand whereas Cu(II) formed a square planar one. Antimicrobial activity of the ligand and its complexes were also investigated and discussed. PMID:25459625

  14. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities

    NASA Astrophysics Data System (ADS)

    Abo-Aly, M. M.; Salem, A. M.; Sayed, M. A.; Abdel Aziz, A. A.

    2015-02-01

    Spectroscopic (IR, Raman, NMR, UV-visible, and ESR), and structural studies of the ligand 3-methoxy-N-salicylidene-o-amino phenol (H2L) and its synthesized complexes with some transition metal ions (Mn(II), Co(II), Ni(II)), Cu(II) and Zn(II)) were recorded and analyzed. The magnetic properties and thermal gravimetric analysis (TGA and DTA) were also measured for the complexes. The metal complexes were found to have The structural formula ML?H2O and the metal ions Mn(II), Co(II), Ni(II)) and Zn(II) were found to form tetrahedral complexes with the ligand whereas Cu(II) formed a square planar one. Antimicrobial activity of the ligand and its complexes were also investigated and discussed.

  15. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as ? stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy. PMID:26117192

  16. Surface analysis of all elements with isotopic resolution at high ambient pressures using ion spectroscopic techniques

    SciTech Connect

    Smentkowski, V.S.; Krauss, A.R.; Gruen, D.M.; Holecek, J.C.; Schultz, J.A.

    1997-09-01

    The authors have developed a mass spectrometer capable of surface analysis using the techniques of secondary ion mass spectroscopy (SIMS) and mass spectroscopy of recoiled ions (MSRI). For SIMS, an energetic ion beam creates a collision cascade which results in the ejection of low kinetic energy secondary ions from the surface being analyzed. The low kinetic energy SIMS ions are very susceptible to charge neutralization with the surface, and as a result, the SIMS ion yield varies by orders of magnitude depending on the chemical state of the surface. SIM spectra contain elemental ions, and molecular ions. For MSRI, a pulsed ion beam induces a binary collision with the surface being analyzed and the surface species are recoiled into the forward scattering direction with a large kinetic energy. The violence of the binary collision results in complete molecular decomposition, and only elemental ions are detected. The high kinetic energy MSRI ions are much less susceptible to charge neutralization with the surface than the low kinetic energy SIMS ions. In MSRI, the ion yield typically varies by less than a factor of ten as the chemical state of the surface changes--simplifying quantitative analysis vs. SIMS. In this paper, they authors will demonstrate that the high kinetic energy MSRI ions are able to transverse high pressure paths with only a reduction in peak intensity--making MSRI an ideal tool for real-time, in-situ film growth studies. The use of a single analyzer for both MSRI and SIMS is unique and provides complimentary information.

  17. Three-dimensional stereoscopic analysis of a coronal mass ejection and comparison with UV spectroscopic data

    SciTech Connect

    Susino, Roberto; Bemporad, Alessandro; Dolei, Sergio E-mail: sdo@oact.inaf.it

    2014-07-20

    A three-dimensional (3D) reconstruction of the 2007 May 20 partial-halo coronal mass ejection (CME) has been made using STEREO/EUVI and STEREO/COR1 coronagraphic images. The trajectory and kinematics of the erupting filament have been derived from Extreme Ultraviolet Imager (EUVI) image pairs with the 'tie-pointing' triangulation technique, while the polarization ratio technique has been applied to COR1 data to determine the average position and depth of the CME front along the line of sight. This 3D geometrical information has been combined for the first time with spectroscopic measurements of the O VI ??1031.91, 1037.61 line profiles made with the Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory. Comparison between the prominence trajectory extrapolated at the altitude of UVCS observations and the core transit time measured from UVCS data made possible a firm identification of the CME core observed in white light and UV with the prominence plasma expelled during the CME. Results on the 3D structure of the CME front have been used to calculate synthetic spectral profiles of the O VI ?1031.91 line expected along the UVCS slit, in an attempt to reproduce the measured line widths. Observed line widths can be reproduced within the uncertainties only in the peripheral part of the CME front; at the front center, where the distance of the emitting plasma from the plane of the sky is greater, synthetic widths turn out to be ?25% lower than the measured ones. This provides strong evidence of line broadening due to plasma heating mechanisms in addition to bulk expansion of the emitting volume.

  18. Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad Nadeem; Asiri, Abdullah M.; Alamry, Khalid A.; Mahmood, Tariq; Gilani, Mazhar Amjad; Ayub, Khurshid; Birinji, Abdulhadi Salih

    2015-05-01

    N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine has been synthesized and characterized by various spectroscopic techniques including FT-IR, UV-vis, 1H-NMR, 13C-NMR spectroscopy, and the structure was unequivocally confirmed by single crystal X-ray diffraction studies. The compound crystallized in monoclinic system with P21/n space group, and adopted cis-geometry around the azomethine Cdbnd N double bond. The X-ray crystal structure revealed that the intermolecular packing was stabilized by C-H⋯O type hydrogen bonding interaction, whereas NH was not involved in hydrogen bonding due to steric hindrance. Absorption wavelength was studied by scanning UV-vis. absorption spectrum in different solvents to explore excited state stability of the molecule in polar solvent. Density functional theory calculations were performed at B3LYP/6-31G (d, p) level in order to compare the experimental results with the theoretical results. The simulated molecular electrostatic potential (MEP), Mulliken charges and NPA (natural population analysis) also confirmed the presence of specific intermolecular hydrogen bonding (C-H⋯O). In addition natural bond orbital (NBO) analysis (intra and inter molecular bonding and interaction among bonds), frontier molecular orbital analysis (electronic properties) and first hyperpolarizability analysis (nonlinear optical response) were simulated at B3LYP/6-31G (d, p) level of theory.

  19. Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA)

    NASA Astrophysics Data System (ADS)

    Li, Junfen; Li, Jinzeng; Jiao, Yong; Dong, Chuan

    2014-01-01

    In this work, the interaction of jatrorrhizine with human serum albumin (HSA) was studied by means of UV-vis and fluorescence spectra. The intrinsic fluorescence of HSA was quenched by jatrorrhizine, which was rationalized in terms of the static quenching mechanism. The results show that jatrorrhizine can obviously bind to HSA molecules. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), apparent quenching constant (KSV) at different temperatures were obtained. The binding constants K are 4059 L mol-1 and 1438 L mol-1 at 299 K and 304 K respectively, and the number of binding sites n is almost 1. The thermodynamic parameters determined by the Van't Hoff analysis of the binding constants (?H -12.25 kJ mol-1 and ?S 28.17 J mol-1 K-1) clearly indicate that the electrostatic force plays a major role in the process. The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (jatrorrhizine) were calculated as 22.2% and 3.19 nm according to Föster's non-radiative energy transfer theory. In addition, synchronous fluorescence spectroscopy reveals that jatrorrhizine can influence HSA's microstructure. That is, jatrorrhizine is more vicinal to tryptophane (Trp) residue than to tyrosine (Tyr) residue and the damage site is also mainly at Trp residue. Molecular modeling result shows that jatrorrhizine-HSA complex formed not only on the basis of electrostatic forces, but also on the basis of ?-? staking and hydrogen bond. The research results will offer a reference for the studies on the biological effects and action mechanism of small molecule with protein.

  20. Raman spectroscopic analysis of cytotoxic effect of cisplatin-treated leukemic cells

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Li, Yongzeng; Feng, Shangyuan; Chen, Rong; Chen, Guannan; Chen, Qisong; Pan, Jianji; Lin, Shaojun; Yu, Yun

    2009-08-01

    An antitumor drug cisplatin was employed to treat the leukemic cells and induce apoptosis of the cancer cells. Confocal Raman micro-spectroscopy has been applied to investigate the effectiveness of the treatment using near-infrared laser (785nm) excitation, scanning range from 500 to 2000 cm-1. The Raman spectra of leukemic cell treated with cisplatin for 4, 6, 8, 12 and 14 h were measured separately. The major difference of the apoptotic cells from the cancer cells are the reduction in intensities of vibration bands generated by cellular lipids, proteins and nucleic acids. In particular, large intensity reduction in nucleic vibrations at 782, 1092, 1320, 1340, and 1578 cm-1 was observed upon apoptosis of the leukemic cells. Up to 45% reduction in the magnitude of the 782 cm-1 peak in Raman spectra of the apoptotic cells was observed, which suggests the breakdown of phosphodiester bonds and DNA bases. We showed that the principal components analysis (PCA), a multivariate statistical tool, can be used to distinguish single apoptotic cells and leukemic cells based on their Raman spectra. Our results indicate that the Raman spectroscopy with PCA is a novel, nondestructive mean for studying the cisplatin -treated leukemic cells, which could also provide useful data for clinical dosage optimization for cisplatin.