Science.gov

Sample records for spectroscopic methods examples

  1. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  2. Projector Method: theory and examples

    SciTech Connect

    Dahl, E.D.

    1985-01-01

    The Projector Method technique for numerically analyzing lattice gauge theories was developed to take advantage of certain simplifying features of gauge theory models. Starting from a very general notion of what the Projector Method is, the techniques are applied to several model problems. After these examples have traced the development of the actual algorithm from the general principles of the Projector Method, a direct comparison between the Projector and the Euclidean Monte Carlo is made, followed by a discussion of the application to Periodic Quantum Electrodynamics in two and three spatial dimensions. Some methods for improving the efficiency of the Projector in various circumstances are outlined. 10 refs., 7 figs. (LEW)

  3. Outstanding Examples of Innovative Methods.

    ERIC Educational Resources Information Center

    Fink, David R., Jr.

    1983-01-01

    The author describes a conference on exploring some educational methods that have proved effective in other fields and at other levels of medical education to see if they have application to continuing medical education. (SSH)

  4. Mass spectroscopic apparatus and method

    DOEpatents

    Bomse, David S. (Santa Fe, NM); Silver, Joel A. (Santa Fe, NM); Stanton, Alan C. (Santa Fe, NM)

    1991-01-01

    The disclosure is directed to a method and apparatus for ionization modulated mass spectrometric analysis. Analog or digital data acquisition and processing can be used. Ions from a time variant source are detected and quantified. The quantified ion output is analyzed using a computer to provide a two-dimensional representation of at least one component present within an analyte.

  5. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  6. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  7. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  8. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses ballistic electron beam injection directly into the active region of a wide bandgap semiconductor material.

  9. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, B.

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  10. Tutorial examples for uncertainty quantification methods.

    SciTech Connect

    De Bord, Sarah

    2015-08-01

    This report details the work accomplished during my 2015 SULI summer internship at Sandia National Laboratories in Livermore, CA. During this internship, I worked on multiple tasks with the common goal of making uncertainty quantification (UQ) methods more accessible to the general scientific community. As part of my work, I created a comprehensive numerical integration example to incorporate into the user manual of a UQ software package. Further, I developed examples involving heat transfer through a window to incorporate into tutorial lectures that serve as an introduction to UQ methods.

  11. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  12. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz (Los Angeles, CA); Bigio, Irving J. (Los Alamos, NM); Loree, Thomas R. (Santa Fe, NM)

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  13. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  14. Experimental Mathemataics: Examples, Methods andImplications

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-01-31

    Recent years have seen the flowering of ''experimental'' mathematics, namely the utilization of modern computer technology as an active tool in mathematical research. This development is not limited to a handful of researchers, nor to a handful of universities, nor is it limited to one particular field of mathematics. Instead, it involves hundreds of individuals, at many different institutions, who have turned to the remarkable new computational tools now available to assist in their research, whether it be in number theory, algebra, analysis, geometry or even topology. These tools are being used to work out specific examples, generate plots, perform various algebraic and calculus manipulations, test conjectures, and explore routes to formal proof. Using computer tools to test conjectures is by itself a major time saver for mathematicians, as it permits them to quickly rule out false notions.

  15. Mixed Methods Sampling: A Typology with Examples

    ERIC Educational Resources Information Center

    Teddlie, Charles; Yu, Fen

    2007-01-01

    This article presents a discussion of mixed methods (MM) sampling techniques. MM sampling involves combining well-established qualitative and quantitative techniques in creative ways to answer research questions posed by MM research designs. Several issues germane to MM sampling are presented including the differences between probability and

  16. Mixed Methods Sampling: A Typology with Examples

    ERIC Educational Resources Information Center

    Teddlie, Charles; Yu, Fen

    2007-01-01

    This article presents a discussion of mixed methods (MM) sampling techniques. MM sampling involves combining well-established qualitative and quantitative techniques in creative ways to answer research questions posed by MM research designs. Several issues germane to MM sampling are presented including the differences between probability and…

  17. Plasmonic nanostructures for surface enhanced spectroscopic methods.

    PubMed

    Jahn, Martin; Patze, Sophie; Hidi, Izabella J; Knipper, Richard; Radu, Andreea I; Mhlig, Anna; Yksel, Sezin; Peksa, Vlastimil; Weber, Karina; Mayerhfer, Thomas; Cialla-May, Dana; Popp, Jrgen

    2016-02-01

    A comprehensive review of theoretical approaches to simulate plasmonic-active metallic nano-arrangements is given. Further, various fabrication methods based on bottom-up, self-organization and top-down techniques are introduced. Here, analytical approaches are discussed to investigate the optical properties of isotropic and non-magnetic spherical or spheroidal particles. Furthermore, numerical methods are introduced to research complex shaped structures. A huge variety of fabrication methods are reviewed, e.g. bottom-up preparation strategies for plasmonic nanostructures to generate metal colloids and core-shell particles as well as complex-shaped structures, self-organization as well as template-based methods and finally, top-down processes, e.g. electron beam lithography and its variants as well as nanoimprinting. The review article is aimed at beginners in the field of surface enhanced spectroscopy (SES) techniques and readers who have a general interest in theoretical modelling of plasmonic substrates for SES applications as well as in the fabrication of the desired structures based on methods of the current state of the art. PMID:26759831

  18. Least squares methods of analyzing spectroscopic data

    NASA Technical Reports Server (NTRS)

    Shaw, J. H.

    1984-01-01

    The development of efficient techniques for extracting the maximum amount of information from the spectra of atmospheric molecules with a minimum of observer bias is discussed. In particular, an overview of the methods of line by line and whole band analysis is presented.

  19. Role of Optical Spectroscopic Methods in Neuro-Oncological Sciences

    PubMed Central

    Bahreini, Maryam

    2015-01-01

    In the surgical treatment of malignant tumors, it is crucial to characterize the tumor as precisely as possible. The determination of the exact tumor location as well as the analysis of its properties is very important in order to obtain an accurate diagnosis as early as possible. In neurosurgical applications, the optical, non-invasive and in situ techniques allow for the label-free analysis of tissue, which is helpful in neuropathology. In the past decades, optical spectroscopic methods have been investigated drastically in the management of cancer. In the optical spectroscopic techniques, tissue interrogate with sources of light which are ranged from the ultraviolet to the infrared wavelength in the spectrum. The information accumulation of light can be in a reflection which is named reflectance spectroscopy; or interactions with tissue at different wavelengths which are called fluorescence and Raman spectroscopy. This review paper introduces the optical spectroscopic methods which are used to characterize brain tumors (neuro-oncology). Based on biochemical information obtained from these spectroscopic methods, it is possible to identify tumor from normal brain tissues, to indicate tumor margins, the borders towards normal brain tissue and infiltrating gliomas, to distinguish radiation damage of tissues, to detect particular central nervous system (CNS) structures to identify cell types using particular neurotransmitters, to detect cells or drugs which are optically labeled within therapeutic intermediations and to estimate the viability of tissue and the prediction of apoptosis beginning in vitro and in vivo. The label-free, optical biochemical spectroscopic methods can provide clinically relevant information and need to be further exploited to develop a safe and easy-to-use technology for in situ diagnosis of malignant tumors. PMID:25987969

  20. Plant roots and spectroscopic methods analyzing species, biomass and vitality

    PubMed Central

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted. PMID:24130565

  1. Scanning Tunneling Microscopy methods for spectroscopic imaging of subsurface interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.

    1988-01-01

    A new method for spatially-resolved, spectroscopic investigation of subsurface interface structure has been developed. The method, Ballistic Electron Emission Microscopy (BEEM), is based on Scanning Tunneling Microscopy (STM) techniques. BEEM combines STM vacuum tunneling with unique ballistic electron spectroscopy capabilities. BEEM enables, for the first time, direct imaging of subsurface interface electronic properties with nanometer spatial resolution. STM topographic images of surface structure and BEEM images of subsurface properties are obtained simultaneously. BEEM capabilities are demonstrated by investigation of important metal-semiconductor interfaces.

  2. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco

    2012-01-01

    The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.

  3. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has been applied to map the distributions of minerals in soils and rocks; however, its application to characterize vegetation cover has been less widespread than SFA. Using IS data and the USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM; http://pubs.usgs.gov/of/2011/1155/), this talk will examine requirements for and limitations in applying SFA and SFC to characterize vegetation. A time series of Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected in the marshes of Louisiana following the Deepwater Horizon oil spill will be used to examine the impact of varying leaf water content on the shapes of the SWIR 1700, 2100, and 2300 nm features and the implications of these changes on vegetation identification and biochemical estimation. The USGS collection of HyMap data over Afghanistan, the largest terrestrial coverage of IS data to date, will be used to demonstrate the characterization of vegetation in arid and semi-arid regions, in which chlorophyll absorption is often weak and soil and rock mineral absorption features overlap vegetation features. Hyperion data, overlapping the HyMap data, will be presented to illustrate the complications that arise when signal-to-noise is low. The benefits of and challenges to applying a spectroscopic remote sensing approach to imaging spectrometer data will be discussed.

  4. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  5. Mixed Methods in Nursing Research : An Overview and Practical Examples

    PubMed Central

    Doorenbos, Ardith Z.

    2014-01-01

    Mixed methods research methodologies are increasingly applied in nursing research to strengthen the depth and breadth of understanding of nursing phenomena. This article describes the background and benefits of using mixed methods research methodologies, and provides two examples of nursing research that used mixed methods. Mixed methods research produces several benefits. The examples provided demonstrate specific benefits in the creation of a culturally congruent picture of chronic pain management for American Indians, and the determination of a way to assess cost for providing chronic pain care. PMID:25580032

  6. Can the electronegativity equalization method predict spectroscopic properties?

    PubMed

    Verstraelen, T; Bultinck, P

    2015-02-01

    The electronegativity equalization method is classically used as a method allowing the fast generation of atomic charges using a set of calibrated parameters and provided knowledge of the molecular structure. Recently, it has started being used for the calculation of other reactivity descriptors and for the development of polarizable and reactive force fields. For such applications, it is of interest to know whether the method, through the inclusion of the molecular geometry in the Taylor expansion of the energy, would also allow sufficiently accurate predictions of spectroscopic data. In this work, relevant quantities for IR spectroscopy are considered, namely the dipole derivatives and the Cartesian Hessian. Despite careful calibration of parameters for this specific task, it is shown that the current models yield insufficiently accurate results. PMID:24290357

  7. Spectroscopic method to measure the superfluid fraction of an ultracold atomic gas

    SciTech Connect

    John, S. T.; Hadzibabic, Z.; Cooper, N. R.

    2011-02-15

    We perform detailed analytical and numerical studies of a recently proposed method for a spectroscopic measurement of the superfluid fraction of an ultracold atomic gas [N. R. Cooper and Z. Hadzibabic, Phys. Rev. Lett. 104, 030401 (2010)]. Previous theoretical work is extended by explicitly including the effects of nonzero temperature and interactions, and assessing the quantitative accuracy of the proposed measurement for a one-component Bose gas. We show that for suitably chosen experimental parameters the method yields an experimentally detectable signal and a sufficiently accurate measurement. This is illustrated by explicitly considering two key examples: First, for a weakly interacting three-dimensional Bose gas it reproduces the expected result that below the critical temperature the superfluid fraction closely follows the condensate fraction. Second, it allows a clear quantitative differentiation of the superfluid and the condensate density in a strongly interacting Bose gas.

  8. Methods and apparatus for distributed resource discovery using examples

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Hill, Matthew L. (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)

    2005-01-01

    Distributed resource discovery is an essential step for information retrieval and/or providing information services. This step is usually used for determining the location of an information or data repository which has relevant information. The most fundamental challenge is the usual lack of semantic interoperability of the requested resource. In accordance with the invention, a method is disclosed where distributed repositories achieve semantic interoperability through the exchange of examples and, optionally, classifiers. The outcome of the inventive method can be used to determine whether common labels are referring to the same semantic meaning.

  9. Methods for Raman spectroscopic imaging of biological systems

    NASA Astrophysics Data System (ADS)

    Barnett, Steven M.; Carrabba, Michael M.; Bormett, Richard W.; Whitley, Andrew

    1999-04-01

    Imaging methodologies present some of the most exciting new frontiers in the biological and medical sciences. Raman spectroscopic imaging combines the power of chemical imaging with the spatial resolution for translating microscopic spectroscopic information into statements relevant to biological and medical function. Imaging results will be presented using mapping, dielectric filters, and liquid- crystalline tunable filters at different excitation wavelengths for selectively determining the spatial distribution of biomaterials in a variety of biological systems.

  10. Markov chain Monte Carlo methods: an introductory example

    NASA Astrophysics Data System (ADS)

    Klauenberg, Katy; Elster, Clemens

    2016-02-01

    When the Guide to the Expression of Uncertainty in Measurement (GUM) and methods from its supplements are not applicable, the Bayesian approach may be a valid and welcome alternative. Evaluating the posterior distribution, estimates or uncertainties involved in Bayesian inferences often requires numerical methods to avoid high-dimensional integrations. Markov chain Monte Carlo (MCMC) sampling is such a method—powerful, flexible and widely applied. Here, a concise introduction is given, illustrated by a simple, typical example from metrology. The Metropolis–Hastings algorithm is the most basic and yet flexible MCMC method. Its underlying concepts are explained and the algorithm is given step by step. The few lines of software code required for its implementation invite interested readers to get started. Diagnostics to evaluate the performance and common algorithmic choices are illustrated to calibrate the Metropolis–Hastings algorithm for efficiency. Routine application of MCMC algorithms may be hindered currently by the difficulty to assess the convergence of MCMC output and thus to assure the validity of results. An example points to the importance of convergence and initiates discussion about advantages as well as areas of research. Available software tools are mentioned throughout.

  11. A method for Hamiltonian truncation: a four-wave example

    NASA Astrophysics Data System (ADS)

    Viscondi, Thiago F.; Caldas, Iberê L.; Morrison, Philip J.

    2016-04-01

    A method for extracting finite-dimensional Hamiltonian systems from a class of 2 + 1 Hamiltonian mean field theories is presented. These theories possess noncanonical Poisson brackets, which normally resist Hamiltonian truncation, but a process of beatification by coordinate transformation near a reference state is described in order to perturbatively overcome this difficulty. Two examples of four-wave truncation of Euler’s equation for scalar vortex dynamics are given and compared: one a direct non-Hamiltonian truncation of the equations of motion, the other obtained by beatifying the Poisson bracket and then truncating.

  12. Computation of Spectroscopic Factors with the Coupled-Cluster Method

    SciTech Connect

    Jensen, O.; Hagen, Gaute; Papenbrock, T.; Dean, David Jarvis; Vaagen, J. S.

    2010-01-01

    We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of the doubly magic nucleus with mass number A and the odd-mass neighbor with mass A-1. As a proof-of-principle calculation, we consider ^{16}O and the odd neighbors ^{15}O and ^{15}N, and compute the spectroscopic factor for nucleon removal from ^{16}O. We employ a renormalized low-momentum interaction of the V_{low-k} type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study the sensitivity of our results by variation of the momentum cutoff, and then discuss the treatment of the center of mass.

  13. Does DFT-SAPT method provide spectroscopic accuracy?

    SciTech Connect

    Shirkov, Leonid; Makarewicz, Jan

    2015-02-14

    Ground state potential energy curves for homonuclear and heteronuclear dimers consisting of noble gas atoms from He to Kr were calculated within the symmetry adapted perturbation theory based on the density functional theory (DFT-SAPT). These potentials together with spectroscopic data derived from them were compared to previous high-precision coupled cluster with singles and doubles including the connected triples theory calculations (or better if available) as well as to experimental data used as the benchmark. The impact of midbond functions on DFT-SAPT results was tested to study the convergence of the interaction energies. It was shown that, for most of the complexes, DFT-SAPT potential calculated at the complete basis set (CBS) limit is lower than the corresponding benchmark potential in the region near its minimum and hence, spectroscopic accuracy cannot be achieved. The influence of the residual term δ(HF) on the interaction energy was also studied. As a result, we have found that this term improves the agreement with the benchmark in the repulsive region for the dimers considered, but leads to even larger overestimation of potential depth D{sub e}. Although the standard hybrid exchange-correlation (xc) functionals with asymptotic correction within the second order DFT-SAPT do not provide the spectroscopic accuracy at the CBS limit, it is possible to adjust empirically basis sets yielding highly accurate results.

  14. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.

    PubMed

    Lee, Kyung-Min; Davis, Jessica; Herrman, Timothy J; Murray, Seth C; Deng, Youjun

    2015-04-15

    Three commercially available vibrational spectroscopic techniques, including Raman, Fourier transform near infrared reflectance (FT-NIR), and Fourier transform infrared (FTIR) were evaluated to help users determine the spectroscopic method best suitable for aflatoxin analysis in maize (Zea mays L.) grain based on their relative efficiency and predictive ability. Spectral differences of Raman and FTIR spectra were more marked and pronounced among aflatoxin contamination groups than those of FT-NIR spectra. From the observations and findings in our current and previous studies, Raman and FTIR spectroscopic methods are superior to FT-NIR method in terms of predictive power and model performance for aflatoxin analysis and they are equally effective and accurate in predicting aflatoxin concentration in maize. The present study is considered as the first attempt to assess how spectroscopic techniques with different physical processes can influence and improve accuracy and reliability for rapid screening of aflatoxin contaminated maize samples. PMID:25466069

  15. The Young Solar Analogs Project. I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    NASA Astrophysics Data System (ADS)

    Gray, R. O.; Saken, J. M.; Corbally, C. J.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F.; Kahvaz, Y.

    2015-12-01

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300-1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (SMW), and describe the method we use to transform our instrumental indices to SMW without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our "Superstar technique" for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005-0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the "photospheric" indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days-months) and short (minutes to hours) timescales.

  16. Using Crowdsourcing to Evaluate Published Scientific Literature: Methods and Example

    PubMed Central

    Brown, Andrew W.; Allison, David B.

    2014-01-01

    Systematically evaluating scientific literature is a time consuming endeavor that requires hours of coding and rating. Here, we describe a method to distribute these tasks across a large group through online crowdsourcing. Using Amazon's Mechanical Turk, crowdsourced workers (microworkers) completed four groups of tasks to evaluate the question, Do nutrition-obesity studies with conclusions concordant with popular opinion receive more attention in the scientific community than do those that are discordant? 1) Microworkers who passed a qualification test (19% passed) evaluated abstracts to determine if they were about human studies investigating nutrition and obesity. Agreement between the first two raters' conclusions was moderate (??=?0.586), with consensus being reached in 96% of abstracts. 2) Microworkers iteratively synthesized free-text answers describing the studied foods into one coherent term. Approximately 84% of foods were agreed upon, with only 4 and 8% of ratings failing manual review in different steps. 3) Microworkers were asked to rate the perceived obesogenicity of the synthesized food terms. Over 99% of responses were complete and usable, and opinions of the microworkers qualitatively matched the authors' expert expectations (e.g., sugar-sweetened beverages were thought to cause obesity and fruits and vegetables were thought to prevent obesity). 4) Microworkers extracted citation counts for each paper through Google Scholar. Microworkers reached consensus or unanimous agreement for all successful searches. To answer the example question, data were aggregated and analyzed, and showed no significant association between popular opinion and attention the paper received as measured by Scimago Journal Rank and citation counts. Direct microworker costs totaled $221.75, (estimated cost at minimum wage: $312.61). We discuss important points to consider to ensure good quality control and appropriate pay for microworkers. With good reliability and low cost, crowdsourcing has potential to evaluate published literature in a cost-effective, quick, and reliable manner using existing, easily accessible resources. PMID:24988466

  17. Using crowdsourcing to evaluate published scientific literature: methods and example.

    PubMed

    Brown, Andrew W; Allison, David B

    2014-01-01

    Systematically evaluating scientific literature is a time consuming endeavor that requires hours of coding and rating. Here, we describe a method to distribute these tasks across a large group through online crowdsourcing. Using Amazon's Mechanical Turk, crowdsourced workers (microworkers) completed four groups of tasks to evaluate the question, "Do nutrition-obesity studies with conclusions concordant with popular opinion receive more attention in the scientific community than do those that are discordant?" 1) Microworkers who passed a qualification test (19% passed) evaluated abstracts to determine if they were about human studies investigating nutrition and obesity. Agreement between the first two raters' conclusions was moderate (κ = 0.586), with consensus being reached in 96% of abstracts. 2) Microworkers iteratively synthesized free-text answers describing the studied foods into one coherent term. Approximately 84% of foods were agreed upon, with only 4 and 8% of ratings failing manual review in different steps. 3) Microworkers were asked to rate the perceived obesogenicity of the synthesized food terms. Over 99% of responses were complete and usable, and opinions of the microworkers qualitatively matched the authors' expert expectations (e.g., sugar-sweetened beverages were thought to cause obesity and fruits and vegetables were thought to prevent obesity). 4) Microworkers extracted citation counts for each paper through Google Scholar. Microworkers reached consensus or unanimous agreement for all successful searches. To answer the example question, data were aggregated and analyzed, and showed no significant association between popular opinion and attention the paper received as measured by Scimago Journal Rank and citation counts. Direct microworker costs totaled $221.75, (estimated cost at minimum wage: $312.61). We discuss important points to consider to ensure good quality control and appropriate pay for microworkers. With good reliability and low cost, crowdsourcing has potential to evaluate published literature in a cost-effective, quick, and reliable manner using existing, easily accessible resources. PMID:24988466

  18. Denoising spectroscopic data by means of the improved least-squares deconvolution method

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Van Reeth, T.; Tsymbal, V.; Aerts, C.; Kochukhov, O.; Debosscher, J.

    2013-12-01

    Context. The MOST, CoRoT, and Kepler space missions have led to the discovery of a large number of intriguing, and in some cases unique, objects among which are pulsating stars, stars hosting exoplanets, binaries, etc. Although the space missions have delivered photometric data of unprecedented quality, these data are lacking any spectral information and we are still in need of ground-based spectroscopic and/or multicolour photometric follow-up observations for a solid interpretation. Aims: The faintness of most of the observed stars and the required high signal-to-noise ratio (S/N) of spectroscopic data both imply the need to use large telescopes, access to which is limited. In this paper, we look for an alternative, and aim for the development of a technique that allows the denoising of the originally low S/N (typically, below 80) spectroscopic data, making observations of faint targets with small telescopes possible and effective. Methods: We present a generalization of the original least-squares deconvolution (LSD) method by implementing a multicomponent average profile and a line strengths correction algorithm. We tested the method on simulated and real spectra of single and binary stars, among which are two intrinsically variable objects. Results: The method was successfully tested on the high-resolution spectra of Vega and a Kepler star, KIC 04749989. Application to the two pulsating stars, 20 Cvn and HD 189631, showed that the technique is also applicable to intrinsically variable stars: the results of frequency analysis and mode identification from the LSD model spectra for both objects are in good agreement with the findings from literature. Depending on the S/N of the original data and spectral characteristics of a star, the gain in S/N in the LSD model spectrum typically ranges from 5 to 15 times. Conclusions: The technique introduced in this paper allows an effective denoising of the originally low S/N spectroscopic data. The high S/N spectra obtained this way can be used to determine fundamental parameters and chemical composition of the stars. The restored LSD model spectra contain all the information on line profile variations present in the original spectra of pulsating stars, for example. The method is applicable to both high- (>30 000) and low- (<30 000) resolution spectra, although the information that can be extracted from the latter is limited by the resolving power itself. Based on the data gathered with the hermes spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.Based on the data extracted from the ELODIE archive and the ESO Science Archive Facility under request number TVanReeth63233.The software presented in this work is available upon request from: Andrew.Tkachenko@ster.kuleuven.be

  19. Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication

    NASA Astrophysics Data System (ADS)

    Pishva, Davar

    This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.

  20. Methods for trend analysis: Examples with problem/failure data

    NASA Technical Reports Server (NTRS)

    Church, Curtis K.

    1989-01-01

    Statistics are emphasized as an important role in quality control and reliability. Consequently, Trend Analysis Techniques recommended a variety of statistical methodologies that could be applied to time series data. The major goal of the working handbook, using data from the MSFC Problem Assessment System, is to illustrate some of the techniques in the NASA standard, some different techniques, and to notice patterns of data. Techniques for trend estimation used are: regression (exponential, power, reciprocal, straight line) and Kendall's rank correlation coefficient. The important details of a statistical strategy for estimating a trend component are covered in the examples. However, careful analysis and interpretation is necessary because of small samples and frequent zero problem reports in a given time period. Further investigations to deal with these issues are being conducted.

  1. A combustion facility for high-pressure flame studies by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1989-08-01

    We have developed a high-pressure combustion facility that includes the following: (1) a pressure vessel constructed from standard stainless-steel piping components; (2) an internal x-y burner translation system employing inexpensive stepper motors and translation mechanisms; (3) two flat-flame burners; and (4) an electronic gas delivery system, which is interfaced to a microcomputer. The facility is designed for study of high-pressure flames by spectroscopic methods and should also aid in the development of spectroscopic tools for high-pressure combustion environments.

  2. Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Leathers, D. J.; Levia, D. F.

    2016-01-01

    Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.

  3. The Erosion of a Method: Examples from Grounded Theory

    ERIC Educational Resources Information Center

    Greckhamer, Thomas; Koro-Ljungberg, Mirka

    2005-01-01

    Since its original inception in the 1960s grounded theory has been widely used by many qualitative researchers. However, recently epistemologically different versions of grounded theory have been presented and this epistemological diversity among grounded theorists and the erosion of the method will be the major focus of this paper. The first

  4. The Erosion of a Method: Examples from Grounded Theory

    ERIC Educational Resources Information Center

    Greckhamer, Thomas; Koro-Ljungberg, Mirka

    2005-01-01

    Since its original inception in the 1960s grounded theory has been widely used by many qualitative researchers. However, recently epistemologically different versions of grounded theory have been presented and this epistemological diversity among grounded theorists and the erosion of the method will be the major focus of this paper. The first…

  5. Determination of nitrous oxide concentrations by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Mirzoeva, Larissa A.; Kiseleva, Margarete S.; Sinelnikova, Galina E.

    1990-08-01

    In the proposed paper an empirical method has been developed for determination of nitrous oxide concentration using the absorption band 2'), in proximity of), 3.87J4m, free from overlapping with absorption bands from other atmospheric gases. The transmission spectra of the atmospheric air are recorded with unresolved rotation-vibration structure. The method is inexpensive, simple and efficient It may be used for determination of enviromental pollution in homogeneous media (laboratory or production plant conditions, ground layer of atmosphere) and of unhomogeneous composistion mixtures when studying the contents of nitrous oxide along slope paths in troposphere and stratosphere.

  6. Design principles for elementary gene circuits: Elements, methods, and examples

    NASA Astrophysics Data System (ADS)

    Savageau, Michael A.

    2001-03-01

    The control of gene expression involves complex circuits that exhibit enormous variation in design. For years the most convenient explanation for these variations was historical accident. According to this view, evolution is a haphazard process in which many different designs are generated by chance; there are many ways to accomplish the same thing, and so no further meaning can be attached to such different but equivalent designs. In recent years a more satisfying explanation based on design principles has been found for at least certain aspects of gene circuitry. By design principle we mean a rule that characterizes some biological feature exhibited by a class of systems such that discovery of the rule allows one not only to understand known instances but also to predict new instances within the class. The central importance of gene regulation in modern molecular biology provides strong motivation to search for more of these underlying design principles. The search is in its infancy and there are undoubtedly many design principles that remain to be discovered. The focus of this three-part review will be the class of elementary gene circuits in bacteria. The first part reviews several elements of design that enter into the characterization of elementary gene circuits in prokaryotic organisms. Each of these elements exhibits a variety of realizations whose meaning is generally unclear. The second part reviews mathematical methods used to represent, analyze, and compare alternative designs. Emphasis is placed on particular methods that have been used successfully to identify design principles for elementary gene circuits. The third part reviews four design principles that make specific predictions regarding (1) two alternative modes of gene control, (2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in inducible gene circuits, and (4) the realizability of alternative gene circuits and their response to phased environmental cues. In each case, the predictions are supported by experimental evidence. These results are important for understanding the function, design, and evolution of elementary gene circuits.

  7. Advances of vibrational spectroscopic methods in phytomics and bioanalysis.

    PubMed

    Huck, Christian W

    2014-01-01

    During the last couple of years great advances in vibrational spectroscopy including near-infrared (NIR), mid-infrared (MIR), attenuated total reflection (ATR) and imaging and also mapping techniques could be achieved. On the other hand spectral treatment features have improved dramatically allowing filtering out relevant information from spectral data much more efficiently and providing new insights into the biochemical composition. These advances offer new possible quality control strategies in phytomics and enable to get deeper insights into biochemical background in terms of medicinal relevant questions. It is the aim of the present article pointing out the technical and methodological advancements in the NIR and MIR field and to demonstrate the individual methods efficiency by discussing distinct selected applications. PMID:23787354

  8. 26 CFR 1.482-8T - Examples of the best method rule (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Examples of the best method rule (temporary). 1.482-8T Section 1.482-8T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-8T Examples of the best method...

  9. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics.

    PubMed

    Aculey, Patrick C; Snitkjaer, Pia; Owusu, Margaret; Bassompiere, Marc; Takrama, Jemmy; Nørgaard, Lars; Petersen, Mikael A; Nielsen, Dennis S

    2010-08-01

    Export of cocoa beans is of great economic importance in Ghana and several other tropical countries. Raw cocoa has an astringent, unpleasant taste, and flavor, and has to be fermented, dried, and roasted to obtain the characteristic cocoa flavor and taste. In an attempt to obtain a deeper understanding of the changes in the cocoa beans during fermentation and investigate the possibility of future development of objective methods for assessing the degree of fermentation, a novel combination of methods including cut test, colorimetry, fluorescence spectroscopy, NIR spectroscopy, and GC-MS evaluated by chemometric methods was used to examine cocoa beans sampled at different durations of fermentation and samples representing fully fermented and dried beans from all cocoa growing regions of Ghana. Using colorimetry it was found that samples moved towards higher a* and b* values as fermentation progressed. Furthermore, the degree of fermentation could, in general, be well described by the spectroscopic methods used. In addition, it was possible to link analysis of volatile compounds with predictions of fermentation time. Fermented and dried cocoa beans from the Volta and the Western regions clustered separately in the score plots based on colorimetric, fluorescence, NIR, and GC-MS indicating regional differences in the composition of Ghanaian cocoa beans. The study demonstrates the potential of colorimetry and spectroscopic methods as valuable tools for determining the fermentation degree of cocoa beans. Using GC-MS it was possible to demonstrate the formation of several important aroma compounds such 2-phenylethyl acetate, propionic acid, and acetoin and the breakdown of others like diacetyl during fermentation. Practical Application: The present study demonstrates the potential of using colorimetry and spectroscopic methods as objective methods for determining cocoa bean quality along the processing chain. Development of objective methods for determining cocoa bean quality will be of great importance for quality insurance within the fields of cocoa processing and raw material control in chocolate producing companies. PMID:20722952

  10. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  11. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  12. Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

    PubMed Central

    Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.; Ebata, Takayuki

    2010-01-01

    We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF), mass-selected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes. PMID:22319310

  13. 26 CFR 1.482-8T - Examples of the best method rule (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Examples of the best method rule (temporary). 1.482-8T Section 1.482-8T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Adjustments § 1.482-8T Examples of the...

  14. Weighted partial least squares method to improve calibration precision for spectroscopic noise-limited data

    SciTech Connect

    Haaland, D.M.; Jones, H.D.T.

    1997-09-01

    Multivariate calibration methods have been applied extensively to the quantitative analysis of Fourier transform infrared (FT-IR) spectral data. Partial least squares (PLS) methods have become the most widely used multivariate method for quantitative spectroscopic analyses. Most often these methods are limited by model error or the accuracy or precision of the reference methods. However, in some cases, the precision of the quantitative analysis is limited by the noise in the spectroscopic signal. In these situations, the precision of the PLS calibrations and predictions can be improved by the incorporation of weighting in the PLS algorithm. If the spectral noise of the system is known (e.g., in the case of detector-noise-limited cases), then appropriate weighting can be incorporated into the multivariate spectral calibrations and predictions. A weighted PLS (WPLS) algorithm was developed to improve the precision of the analysis in the case of spectral-noise-limited data. This new PLS algorithm was then tested with real and simulated data, and the results compared with the unweighted PLS algorithm. Using near-infrared (NIR) calibration precision when the WPLS algorithm was applied. The best WPLS method improved prediction precision for the analysis of one of the minor components by a factor of nearly 9 relative to the unweighted PLS algorithm.

  15. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal. PMID:26752013

  16. A new method for the spectroscopic identification of stellar non-radial pulsation modes. I. The method and numerical tests

    NASA Astrophysics Data System (ADS)

    Zima, W.

    2006-08-01

    Aims.We present the Fourier parameter fit method, a new method for spectroscopically identifying stellar radial and non-radial pulsation modes based on the high-resolution time-series spectroscopy of absorption-line profiles. In contrast to previous methods this one permits a quantification of the statistical significance of the computed solutions. The application of genetic algorithms in seeking solutions makes it possible to search through a large parameter space. Methods: .The mode identification is carried out by minimizing ?^2, using the observed amplitude and phase across the line profile and their modeled counterparts. Computations of the theoretical line profiles are based on a stellar displacement field, which is described as superposition of spherical harmonics and that includes the first order effects of the Coriolis force. Results: .We made numerical tests of the method on a grid of different mono- and multi-mode models for 0 ? ? ? 4 in order to explore its capabilities and limitations. Our results show that whereas the azimuthal order m can be unambiguously identified for low-order modes, the error of ? is in the range of 1. The value of m can be determined with higher precision than with other spectroscopic mode identification methods. Improved values for the inclination can be obtained from the analysis of non-axisymmetric pulsation modes. The new method is ideally suited to intermediatley rotating ? Scuti and ? Cephei stars.

  17. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  18. Real data examples in statistical methods papers: Tremendously valuable, and also tremendously misvalued

    PubMed Central

    Williams, K. Y.; Yoo, Yun Joo; Patki, Amit; Allison, David B.

    2011-01-01

    When a statistical methods paper is submitted to a journal for publication, examples in which the method is applied to real data are highly encouraged by many journals and in some cases are explicitly demanded. In this commentary, we argue that real data examples serve several useful purposes. However, we also argue that in many cases, particularly in the fields of genetics and genomics, there is an implicit or explicit expectation for examples to support purposes for which they are ill-suited and furthermore that these inappropriate expectations have negative consequences for the field. We conclude by noting that real data examples can be tremendously valuable and should continue to be used where appropriate, but that the demands for, expectations of, and conclusions drawn from them need to be scaled back. PMID:22132253

  19. Detailed spectroscopic analysis of SN 1987A: The distance to the LMC using the SEAM method

    SciTech Connect

    Mitchell, Robert C.; Baron, E.; Branch, David; Hauschildt, Peter H.; Nugent, Peter E.; Lundqvist, Peter; Blinnikov, Sergei; Pun, Chun S.J.

    2002-05-21

    Supernova 1987A remains the most well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. We model the observed spectra from Day 1 to Day 81 using a hydrodynamical model. We show that good agreement can be obtained at times up to about 60 days, if we allow for extended nickel mixing. Later than about 60 days the observed Balmer lines become stronger than our models can reproduce. We show that this is likely due to a more complicated distribution of gamma-rays than we allow for in our spherically symmetric calculations. We present synthetic light curves in UBVRIJHK and a synthetic bolometric light curve. Using this broad baseline of detailed spectroscopic models we find a distance modulus mu = 18.5 +/- 0.2 using the SEAM method of determining distances to supernovae. We find that the explosion time agrees with that of the neutrino burst and is constrained at 68 percent confidence to within +/- 0.9 days. We argue that the weak Balmer lines of our detailed model calculations casts doubt on the accuracy of the purely photometric EPM method. We also suggest that Type IIP supernovae will be most useful as distance indicators at early times due to a variety of effects.

  20. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  1. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples.

    PubMed

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Rani, Manviri; Lee, Jongmyoung; Shim, Won Joon

    2015-04-15

    The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (<1mm) were compared using the same samples from the sea surface microlayer (SML) and beach sand. Fragmented microplastics were significantly (p<0.05) underestimated and fiber was significantly overestimated using the stereomicroscope both in the SML and beach samples. The total abundance by FT-IR was higher than by microscope both in the SML and beach samples, but they were not significantly (p>0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution. PMID:25682567

  2. Using Mixed Methods to Analyze Video Data: A Mathematics Teacher Professional Development Example

    ERIC Educational Resources Information Center

    DeCuir-Gunby, Jessica T.; Marshall, Patricia L.; McCulloch, Allison W.

    2012-01-01

    This article uses data from 65 teachers participating in a K-2 mathematics professional development research project as an example of how to analyze video recordings of teachers' classroom lessons using mixed methods. Through their discussion, the authors demonstrate how using a mixed methods approach to classroom video analysis allows researchers

  3. Novel spectroscopic methods for determination of Cromolyn sodium and Oxymetazoline hydrochloride in binary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; El-Kosasy, A. M.; Magdy, N.; El Zahar, N. M.

    2014-10-01

    New accurate, sensitive and selective spectrophotometric and spectrofluorimetric methods were developed and subsequently validated for determination of Cromolyn sodium (CS) and Oxymetazoline HCl (OXY) in binary mixture. These methods include ‘H-point standard addition method (HPSAM) and area under the curve (AUC)' spectrophotometric method and first derivative synchronous fluorescence spectroscopic (FDSFS) method. For spectrophotometric methods, absorbances were recorded at 241.5 nm and 274.9 nm for HPSAM and the wavelength was selected in ranges 232.0-254.0 nm and 216.0-229.0 nm for AUC method, where the concentration was obtained by applying Cramer's rule. For FDSFS method, the first-derivative synchronous fluorescence signal was measured at 290.0 nm, using Δλ = 145.0 nm. The suggested methods were validated according to International Conference of Harmonization (ICH) guidelines and the results revealed that they were precise and reproducible. All the obtained results were statistically compared with those of the reported method and there was no significant difference.

  4. Structures and Encapsulation Motifs of Functional Molecules probed by Laser Spectroscopic and Theoretical methods

    SciTech Connect

    Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.; Ebata, Takayuki

    2010-04-01

    We report laser spectroscopic studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF) , massselected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet holeburning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the various structures of the complexes and the key interactions that result in the complexation as well as the effect of the host conformation in the resulting complexation mechanism.

  5. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOEpatents

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  6. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  7. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  8. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  9. Monitoring, Controlling and Safeguarding Radiochemical Streams at Spent Fuel Reprocessing Facilities, Part 1: Optical Spectroscopic Methods

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schwantes, Jon M.; Orton, Christopher R.; Peterson, James M.; Casella, Amanda J.

    2012-02-07

    Abstract: The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-useable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop and demonstrate the technologies. This paper is Part 1 of a two part series, and focuses on the optical spectroscopy based process monitoring methods.

  10. Examples of geomorphic reclamation on mined lands in Spain by using the GeoFluv method

    NASA Astrophysics Data System (ADS)

    Martín Duque, José F.; Bugosh, Nicholas; de Francisco, Cristina; Hernando, Néstor; Martín, Cristina; Nicolau, José M.; Nyssen, Sara; Tejedor, María; Zapico, Ignacio

    2015-04-01

    This paper describes seven examples of geomorphic reclamation on mined lands of Spain, as solutions for complex environmental problems, by using the GeoFluv method through the Natural Regrade software (Carlson). Of these seven examples, four of them have been partially or totally constructed. Each of them has its own particularities and contributions, becoming innovative geomorphic solutions to existing environmental (ecological, social and economic) problems. The Quebraderos de la Serrana example (Toledo province) allowed a local company to get permission for slate quarrying in a highly ecologically vulnerable area; before that, the permission for extracting rocks had been rejected with a conventional reclamation approach. The Somolinos case is, to this date, the most complete geomorphic reclamation in Spain, and the first one in Europe to have been built by using the GeoFluv method. This restoration has healed a degraded area of about six hectares at the outskirts of the Somolinos hamlet, in a valuable rural landscape of the Guadalajara province. The Arlanza example (Leon province) shows a design which proposes to restore the hydrological connectivity of a coal mine dump which blocked a valley. The Machorro and María Jose examples (Guadalajara province) are allowing kaolin mining to be compatible with the preservation of protected areas at the edge of the Upper Tagus Natural Park (UTNP), in highly vulnerable conditions for water erosion. The Campredó case (Tarragona province) shows an agreement between a mining company, the academia, and the Catalonian Agency of Water, to combine a high standard of geomorphic reclamation with solving problems caused by flooding downstream of a clay mining area. Finally, the Nuria example is also located at the UTNP area; the goals here are to stabilize a large landslide in a waste dump and to minimize the risk of occurrence of flash floods from mining ponds. Additional information on these examples and about the state of art of the Geomorphic Reclamation practice in Spain can be found at http://www.restauraciongeomorfologica.es.

  11. Apparatus for and method of performing spectroscopic analysis on an article

    DOEpatents

    Powell, G.L.; Hallman, R.L. Jr.

    1999-04-20

    An apparatus and method are disclosed for analyzing an article having an entrance and an exit in communication with the entrance. The apparatus comprises: a spectrometer having an emission source with a focal point; a plurality of mirrors; and a detector connected to the spectroscope. The emission source is positioned so that its focal point is substantially coextensive with the entrance of the article. The mirrors comprise: a first mirror positionable adjacent the exit of the article and a second mirror positioned relative to the other of said plurality of mirrors. The first mirror receives scattered emissions exiting the article and substantially collimates the scattered emissions. The second mirror substantially focuses the collimated emissions into a focused emission. The detector receives the focused emission from the mirrors. 6 figs.

  12. Apparatus for and method of performing spectroscopic analysis on an article

    DOEpatents

    Powell, George Louis; Hallman, Jr., Russell Louis

    1999-01-01

    An apparatus for and method of analyzing an article having an entrance and an exit in communication with the entrance. The apparatus comprises: a spectrometer having an emission source with a focal point; a plurality of mirrors; and a detector connected to the spectroscope. The emission source is positioned so that its focal point is substantially coextensive with the entrance of the article. The mirrors comprise: a first mirror positionable adjacent the exit of the article and a second mirror positioned relative to the other of said plurality of mirrors. The first mirror receives scattered emissions exiting the article and substantially collimates the scattered emissions. The second mirror substantially focuses the collimated emissions into a focused emission. The detector receives the focused emission from the mirrors.

  13. 26 CFR 1.482-8 - Examples of the best method rule.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-8 Examples of the best method rule. (a) Introduction... purchases in terms of the markets in which they occur, the volume of the transactions, the marketing... activities that are related to the controlled transactions and those that are not. Relevant marketing...

  14. Applying Process Improvement Methods to Clinical and Translational Research: Conceptual Framework and Case Examples.

    PubMed

    Daudelin, Denise H; Selker, Harry P; Leslie, Laurel K

    2015-12-01

    There is growing appreciation that process improvement holds promise for improving quality and efficiency across the translational research continuum but frameworks for such programs are not often described. The purpose of this paper is to present a framework and case examples of a Research Process Improvement Program implemented at Tufts CTSI. To promote research process improvement, we developed online training seminars, workshops, and in-person consultation models to describe core process improvement principles and methods, demonstrate the use of improvement tools, and illustrate the application of these methods in case examples. We implemented these methods, as well as relational coordination theory, with junior researchers, pilot funding awardees, our CTRC, and CTSI resource and service providers. The program focuses on capacity building to address common process problems and quality gaps that threaten the efficient, timely and successful completion of clinical and translational studies. PMID:26332869

  15. Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods.

    PubMed

    He, Wenying; Li, Ying; Tang, Jianghong; Luan, Feng; Jin, Jing; Hu, Zhide

    2006-11-15

    Studies on the binding affinity of protein to the active components of herbs are novel in biochemistry and are valuable for the information about speciation of drugs and exchange in biological systems. Alpinetin and cardamonin, two of the main constituents from the seeds of Alpinia katsumadai Hayata, have been used in traditional herbs as antibacterial, anti-inflammatory, and other important therapeutic activities of significant potency and low systemic toxicity. The interactions between two flavonoids analogs and lysozyme have been studied for the first time by spectroscopic method including Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) and UV-absorption spectroscopy in combination with Fluorescence quenching study. Both molecules showed high affinities to lysozyme under the experimental condition with drug concentrations from 3.33 x 10(-6) to 2.67 x 10(-5)molL(-1) for alpinetin and 1.67 x 10(-6) to 13.33 x 10(-6)molL(-1) for cardamonin. The alterations of protein secondary structure in the presence of drugs in aqueous solution were quantitatively estimated by the evidences from CD and FT-IR spectroscopy. The thermodynamic parameters obtained and the results of spectroscopic measurements suggest that hydrophobic and electrostatic interactions are the predominant intermolecular forces stabilizing two coordination compounds. The quenching mechanism and the number of binding site (n approximately 1) were obtained by fluorescence titration data. The efficiency of energy transfer provided the binding distances of 4.04 and 5.90 nm for alpinetin-LYSO and cardamonin-LYSO systems, respectively. PMID:16828496

  16. Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system

    PubMed Central

    2014-01-01

    Background Early and accurate diagnosis of melanoma, the deadliest type of skin cancer, has the potential to reduce morbidity and mortality rate. However, early diagnosis of melanoma is not trivial even for experienced dermatologists, as it needs sampling and laboratory tests which can be extremely complex and subjective. The accuracy of clinical diagnosis of melanoma is also an issue especially in distinguishing between melanoma and mole. To solve these problems, this paper presents an approach that makes non-subjective judgements based on quantitative measures for automatic diagnosis of melanoma. Methods Our approach involves image acquisition, image processing, feature extraction, and classification. 187 images (19 malignant melanoma and 168 benign lesions) were collected in a clinic by a spectroscopic device that combines single-scattered, polarized light spectroscopy with multiple-scattered, un-polarized light spectroscopy. After noise reduction and image normalization, features were extracted based on statistical measurements (i.e. mean, standard deviation, mean absolute deviation, L 1 norm, and L 2 norm) of image pixel intensities to characterize the pattern of melanoma. Finally, these features were fed into certain classifiers to train learning models for classification. Results We adopted three classifiers – artificial neural network, naïve bayes, and k-nearest neighbour to evaluate our approach separately. The naive bayes classifier achieved the best performance - 89% accuracy, 89% sensitivity and 89% specificity, which was integrated with our approach in a desktop application running on the spectroscopic system for diagnosis of melanoma. Conclusions Our work has two strengths. (1) We have used single scattered polarized light spectroscopy and multiple scattered unpolarized light spectroscopy to decipher the multilayered characteristics of human skin. (2) Our approach does not need image segmentation, as we directly probe tiny spots in the lesion skin and the image scans do not involve background skin. The desktop application for automatic diagnosis of melanoma can help dermatologists get a non-subjective second opinion for their diagnosis decision. PMID:25311811

  17. Development of vibrational spectroscopic methods to rapidly and non-destructively assess quality of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...

  18. Growing string method with interpolation and optimization in internal coordinates: Method and examples

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2013-05-01

    The growing string method (GSM) has proven especially useful for locating chemical reaction paths at low computational cost. While many string methods use Cartesian coordinates, these methods can be substantially improved by changes in the coordinate system used for interpolation and optimization steps. The quality of the interpolation scheme is especially important because it determines how close the initial path is to the optimized reaction path, and this strongly affects the rate of convergence. In this article, a detailed description of the generation of internal coordinates (ICs) suitable for use in GSM as reactive tangents and in string optimization is given. Convergence of reaction paths is smooth because the IC tangent and orthogonal directions are better representations of chemical bonding compared to Cartesian coordinates. This is not only important quantitatively for reducing computational cost but also allows reaction paths to be described with smoothly varying chemically relevant coordinates. Benchmark computations with challenging reactions are compared to previous versions of GSM and show significant speedups. Finally, a climbing image scheme is included to improve the quality of the transition state approximation, ensuring high reliability of the method.

  19. Comment on Quantitative comparison of analysis methods for spectroscopic optical coherence tomography

    PubMed Central

    Kraszewski, Maciej; Trojanowski, Micha?; Str?kowski, Marcin R.

    2014-01-01

    In a recent paper by Bosschaart et al. [Biomed. Opt. Express 4, 2570 (2013)] various algorithms of time-frequency signal analysis have been tested for their performance in blood analysis with spectroscopic optical coherence tomography (sOCT). The measurement of hemoglobin concentration and oxygen saturation based on blood absorption spectra have been considered. Short time Fourier transform (STFT) was found as the best method for the measurement of blood absorption spectra. STFT was superior to other methods, such as dual window Fourier transform. However, the algorithm proposed by Bosschaart et al. significantly underestimates values of blood oxygen saturation. In this comment we show that this problem can be solved by thorough design of STFT algorithm. It requires the usage of a non-gaussian shape of STFT window that may lead to an excellent reconstruction of blood absorption spectra from OCT interferograms. Our study shows that sOCT can be potentially used for estimating oxygen saturation of blood with the accuracy below 1% and the spatial resolution of OCT image better than 20 ?m. PMID:25401015

  20. Comparability of a Three-Dimensional Structure in Biopharmaceuticals Using Spectroscopic Methods

    PubMed Central

    Abad-Javier, Mario E.; Romero-Díaz, Alexis J.; Villaseñor-Ortega, Francisco; Pérez, Néstor O.; Flores-Ortiz, Luis F.

    2014-01-01

    Protein structure depends on weak interactions and covalent bonds, like disulfide bridges, established according to the environmental conditions. Here, we present the validation of two spectroscopic methodologies for the measurement of free and unoxidized thiols, as an attribute of structural integrity, using 5,5′-dithionitrobenzoic acid (DTNB) and DyLight Maleimide (DLM) as derivatizing agents. These methods were used to compare Rituximab and Etanercept products from different manufacturers. Physicochemical comparability was demonstrated for Rituximab products as DTNB showed no statistical differences under native, denaturing, and denaturing-reducing conditions, with Student's t-test P values of 0.6233, 0.4022, and 0.1475, respectively. While for Etanercept products no statistical differences were observed under native (P = 0.0758) and denaturing conditions (P = 0.2450), denaturing-reducing conditions revealed cysteine contents of 98% and 101%, towards the theoretical value of 58, for the evaluated products from different Etanercept manufacturers. DLM supported equality between Rituximab products under native (P = 0.7499) and denaturing conditions (P = 0.8027), but showed statistical differences among Etanercept products under native conditions (P < 0.001). DLM suggested that Infinitam has fewer exposed thiols than Enbrel, although DTNB method, circular dichroism (CD), fluorescence (TCSPC), and activity (TNFα neutralization) showed no differences. Overall, this data revealed the capabilities and drawbacks of each thiol quantification technique and their correlation with protein structure. PMID:24963443

  1. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods.

    PubMed

    Fialho, Lucimar Lopes; Lopes da Silva, Wilson Tadeu; Milori, Débora M B P; Simões, Marcelo Luiz; Martin-Neto, Ladislau

    2010-03-01

    Chemical and spectroscopic methods were used to characterize organic matter transformations during the composting process. Four different residue mixtures were studied: P1--garden trimmings (GT) only, P2 - GT plus fresh cattle manure, P3--GT plus orange pomace and P4--GT plus filter cake. The thermophilic phase was not reached in P1 compost, but the P2, P3 and P4 composts showed all three typical process phases. The thermophilic phase and CEC/C ratio stabilized after 90 days, while C/N ratio and the ash content stabilized after 60 days. The increasing E(4)/E(6) ratio indicated oxidation reactions occurring during the process in the material from P2, P3 and P4. The (13)C NMR and FTIR results suggested extraction of both pectin and lignin in the HA-like fraction. The CEC/C ratio, temperature and E(4)/E(6) ratio showed that within 90 days P2, P3 and P4 composts were humified. However, material from P1 did not show characteristics of humified compost. From these data, it is apparent that C/N ratio and ash content are not reliable methods for monitoring the composting process. PMID:19954966

  2. Pedagogies in Action: A Community Resource Linking Teaching Methods to Examples of their Use

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Fox, S. P.; Iverson, E. A.; Kirk, K.; Ormand, C. J.

    2009-12-01

    The Pedagogies in Action portal (http://serc.carleton.edu/sp) provides access to information on more than 40 teaching methods with examples of their use in geoscience and beyond. Each method is described with pages addressing what the method is, why or when it is useful, and how it can be implemented. New methods added this year include Teaching with Google Earth, Jigsaw, Teaching the Process of Science, Guided Discovery Problems, Teaching Urban Students, and Using ConceptTests. Examples then show specifically how the method has been used to teach concepts in a variety of disciplines. The example collection now includes 775 teaching activities of which more than 550 are drawn from the geosciences. Geoscience faculty are invited to add their own examples to this collection or to test examples in the collection and provide a review. Evaluation results show that the combination of modules and activities inspires teachers at all levels to use a new pedagogy and increases their confidence that they can use it successfully. In addition, submitting activities to the collection, including writing summary information for other instructors, helps them think more carefully about the design of their activity. The activity collections are used both for ready to use activities and to find ideas for new activities. The portal provides overarching access to materials developed by a wide variety of collaborating partners each of which uses the service to create a customized pedagogic portal addressing a more specific audience. Of interest to AGU members are pedagogic portals on Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo); On the Cutting Edge (http://serc.carleton.edu/NAGTWorkshops); Enduring Resources for Earth System Education (http://earthref.org/ERESE) Microbial Life Educational Resources (http://serc.carleton.edu/microbe_life); the National Numeracy Network (http://serc.carleton.edu/nnn/index.html); CAUSE: The Consortium for Undergraduate Statistics Education (http://causeweb.org); ComPADRE: Digital Resources for Physics and Astronomy Education (http://www.compadre.org) and Project Kaleidoscope (http://pkal.org). Pedagogies in Action is part of the National Science Digital Library (http://nsdl.org). Projects or groups interested in exploring use of the service can find information about using the service on the project website or contact the authors.

  3. Determination of Cephalexin Monohydrate in Pharmaceutical Dosage Form by Stability-Indicating RP-UFLC and UV Spectroscopic Methods

    PubMed Central

    Panda, Sagar Suman; Ravi Kumar, Bera V. V.; Dash, Rabisankar; Mohanta, Ganeswar

    2013-01-01

    An ultra-fast liquid chromatographic method and two UV spectroscopic methods were developed for the determination of cephalexin monohydrate in pharmaceutical dosage forms. Isocratic separation was performed on an Enable C18G column (250 mm 4.6 mm i.d., 5 ?m) using methanol:0.01 M TBAHS (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. The PDA detection wavelength was set at 254 nm. The UV spectroscopic method was performed at 261 nm and at 256266 nm for the AUC method using a phosphate buffer (pH=5.5). The linearity was observed over a concentration range of 1.0120 ?g/ml for UFLC and both of the UV spectroscopic methods (correlation coefficient=0.999). The developed methods were validated according to ICH guidelines. The relative standard deviation values for the intraday and interday precision studies were < 2%, and the accuracy was > 99% for all of the three methods. The developed methods were used successfully for the determination of cephalexin in dry syrup formulation. PMID:24482771

  4. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  5. A review of computational methods in materials science: examples from shock-wave and polymer physics.

    PubMed

    Steinhauser, Martin O; Hiermaier, Stefan

    2009-12-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  6. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Cai, Changqun; Chen, Xiaoming; Ge, Fei

    2010-07-01

    Multi-spectroscopic methods including resonance light scattering (RLS), ultraviolet spectra (UV), fluorescence spectra, 1H NMR spectroscopy, coupled with thermo-denaturation experiments were firstly used to study the interaction of antitumor drug tamoxifen (TMX) with calf thymus (ctDNA) in acetate buffer solutions (pH 4.55). The interaction of TMX with ctDNA could cause a significant enhancement of RLS intensity, the hyperchromic effect, red shift of absorption spectra and the fluorescence quenching of TMX, indicating that there is an inserting interaction between TMX and ctDNA. This inference was confirmed by 1H NMR spectroscopy. The chemical shift of the benzene proton changes significantly which indicates that TMX could insert into the base pairs of ctDNA. These studies are valuable for a better understanding the mode of TMX-ctDNA interaction further, which are important and useful for designing of new ctDNA targeted drug. And the antitumor drug TMX inserted directly into ctDNA in vitro, which can provide a lot of useful information to explore the development of new and highly effective anti-cancer drugs.

  7. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking.

    PubMed

    Wang, Qi; Huang, Chuan-Ren; Jiang, Min; Zhu, Ying-Yao; Wang, Jing; Chen, Jun; Shi, Jie-Hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.4110(5)M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (?H(0)), entropic change (?S(0)) and Gibbs free energy (?G(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA. PMID:26688207

  8. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods.

    PubMed

    Kumari, Meena; Maurya, Jitendra Kumar; Tasleem, Munazzah; Singh, Prashant; Patel, Rajan

    2014-09-01

    Herein, we report the interaction of synthesized pyrrolidinium based ionic liquid, N-butyl-N-methyl-2-oxopyrrolidinium bromide (BMOP) with human serum albumin (HSA). The BMOP was characterized by using (1)H NMR, (13)C NMR and FT-IR techniques. The critical micelle concentration (cmc) of BMOP was confirmed by surface tension, conductivity and contact angle measurements. The interactions between HSA and BMOP were studied by steady-state and time-resolved fluorescence, UV-visible, FT-IR spectroscopic and molecular docking methods. The steady-state fluorescence spectra showed that BMOP quenched the fluorescence of HSA through combined quenching mechanism. Corresponding thermodynamic parameters viz. Gibbs free energy change (?G), entropy change (?S) and enthalpy change (?H) illustrated that the binding process was spontaneous and entropy driven. It is also suggested that hydrophobic forces play a key role in the binding of BMOP to HSA. In addition, the pyrene probe analysis again suggests the involvement of hydrophobic interaction in HSA-BMOP complex formation. Surface tension profile showed that the cmc value of BMOP in the presence of HSA is higher than the cmc value of pure BMOP. The FT-IR results show a conformational change in the secondary structure of HSA upon the addition of BMOP. The molecular docking result indicated that BMOP binds with HSA at hydrophobic pocket domain IIA with hydrophobic and hydrogen bond interactions in which hydrophobic interactions are dominating. PMID:24911269

  9. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking.

    PubMed

    Wang, Jing; Liu, Rutao; Qin, Pengfei

    2012-09-01

    Acid yellow 23 (AY23) is a pervasive azo dye used in many fields which is potentially harmful to the environment and human health. This paper studied the toxic effects of AY23 on trypsin by spectroscopic and molecular docking methods. The addition of AY23 effectively quenched the intrinsic fluorescence of trypsin via static quenching with association constants of K(290 K) = 3.67 10(5) L mol(-1) and K(310 K) = 1.83 10(5) L mol(-1). The calculated thermodynamic parameters conformed that AY23 binds to trypsin predominantly via electrostatic forces with one binding site. Conformational investigations indicated the skeletal structure of trypsin unfolded and the microenvironment of tryptophan changed with the addition of AY23. Molecular docking study showed that AY23 interacted with the His 57 and Lys 224 residue of trypsin and led to the inhibition of enzyme activity. This study offers a more comprehensive picture of AY23-trypsin interaction and indicates their interaction may perform toxic effects within the organism. PMID:22807329

  10. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling.

    PubMed

    Song, Wei; Yu, Zehua; Hu, Xinxin; Liu, Rutao

    2015-02-25

    Studies on the effects of environmental pollutants to protein in vitro has become a global attention. Hydrogen peroxide (H2O2) is used as an effective food preservative and bleacher in industrial production. The toxicity of H2O2 to trypsin was investigated by multiple spectroscopic techniques and the molecular docking method at the molecular level. The intrinsic fluorescence of trypsin was proved to be quenched in a static process based on the results of fluorescence lifetime experiment. Hydrogen bonds interaction and van der Waals forces were the main force to generate the trypsin-H2O2 complex on account of the negative ?H(0) and ?S(0). The binding of H2O2 changed the conformational structures and internal microenvironment of trypsin illustrated by UV-vis absorption, fluorescence, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) results. However, the binding site was far away from the active site of trypsin and the trypsin activity was only slightly affected by H2O2, which was further explained by molecular docking investigations. PMID:25228036

  11. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling

    NASA Astrophysics Data System (ADS)

    Song, Wei; Yu, Zehua; Hu, Xinxin; Liu, Rutao

    2015-02-01

    Studies on the effects of environmental pollutants to protein in vitro has become a global attention. Hydrogen peroxide (H2O2) is used as an effective food preservative and bleacher in industrial production. The toxicity of H2O2 to trypsin was investigated by multiple spectroscopic techniques and the molecular docking method at the molecular level. The intrinsic fluorescence of trypsin was proved to be quenched in a static process based on the results of fluorescence lifetime experiment. Hydrogen bonds interaction and van der Waals forces were the main force to generate the trypsin-H2O2 complex on account of the negative ΔH0 and ΔS0. The binding of H2O2 changed the conformational structures and internal microenvironment of trypsin illustrated by UV-vis absorption, fluorescence, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) results. However, the binding site was far away from the active site of trypsin and the trypsin activity was only slightly affected by H2O2, which was further explained by molecular docking investigations.

  12. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  13. Estimation of ?- and ?-donor properties of heterocyclic thioamides by spectroscopic and magnetic resonance methods.

    PubMed

    Chernov'yants, Margarita S; Khohlov, Evgeniy V; Bondarenko, Gennadiy I; Burykin, Igor V

    2011-10-15

    The charge-transfer complexes (CTC) of few thioamide: 1-methylimidazoline-2-thione (MMI), 3-methyl-1-ethoxycarbonilimidazoline-2-thione (Carb), 5-methylbenzimidazoline-2-thione (BIZ), benzothiazoline-2-thione (BTZ), benzoxazoline-2-thione (BOZ) as ?-donors and diiodine as ?-acceptor were studied by spectroscopic methods (UV/Vis, (1)H NMR). CTC formation constants of thioamides with diiodine were determined using the function of the average-iodine number. The charge-transfer complexes of thioamides as ?-donors with tetracyanoethylene (TCNE) as ?-electron acceptor, were studied by UV-spectroscopy in dichloromethane and chloroform solutions. The mechanism of interaction MMI and Carb with TCNE have been studied by EPR spectroscopy. Spectral characteristics and formation constants are discussed in the terms of electron donor affinity of thioamides and the nature of the organic solvent used. The ionization potentials of donors were estimated from the CT transition energies of their complexes. The photolytic equilibrium constants of five thioamides are determined using pH-metric titrations. PMID:21788156

  14. Estimation of ?- and ?-donor properties of heterocyclic thioamides by spectroscopic and magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Khohlov, Evgeniy V.; Bondarenko, Gennadiy I.; Burykin, Igor V.

    2011-10-01

    The charge-transfer complexes (CTC) of few thioamide: 1-methylimidazoline-2-thione (MMI), 3-methyl-1-ethoxycarbonilimidazoline-2-thione (Carb), 5-methylbenzimidazoline-2-thione (BIZ), benzothiazoline-2-thione (BTZ), benzoxazoline-2-thione (BOZ) as ?-donors and diiodine as ?-acceptor were studied by spectroscopic methods (UV/Vis, 1H NMR). CTC formation constants of thioamides with diiodine were determined using the function of the average-iodine number. The charge-transfer complexes of thioamides as ?-donors with tetracyanoethylene (TCNE) as ?-electron acceptor, were studied by UV-spectroscopy in dichloromethane and chloroform solutions. The mechanism of interaction MMI and Carb with TCNE have been studied by EPR spectroscopy. Spectral characteristics and formation constants are discussed in the terms of electron donor affinity of thioamides and the nature of the organic solvent used. The ionization potentials of donors were estimated from the CT transition energies of their complexes. The photolytic equilibrium constants of five thioamides are determined using pH-metric titrations.

  15. Structure of Scots pine defensin 1 by spectroscopic methods and computational modeling.

    PubMed

    Ermakova, Elena A; Faizullin, Dzhigangir A; Idiyatullin, Bulat Z; Khairutdinov, Bulat I; Mukhamedova, Liya N; Tarasova, Nadezhda B; Toporkova, Yana Y; Osipova, Elena V; Kovaleva, Valentina; Gogolev, Yuri V; Zuev, Yuriy F; Nesmelova, Irina V

    2016-03-01

    Defensins are part of the innate immune system in plants with activity against a broad range of pathogens, including bacteria, fungi and viruses. Several defensins from conifers, including Scots pine defensin 1 (Pinus sylvestris defensin 1, (PsDef1)) have shown a strong antifungal activity, however structural and physico-chemical properties of the family, needed for establishing the structure-dynamics-function relationships, remain poorly characterized. We use several spectroscopic and computational methods to characterize the structure, dynamics, and oligomeric state of PsDef1. The three-dimensional structure was modeled by comparative modeling using several programs (Geno3D, SWISS-MODEL, I-TASSER, Phyre(2), and FUGUE) and verified by circular dichroism (CD) and infrared (FTIR) spectroscopy. Furthermore, FTIR data indicates that the structure of PsDef1 is highly resistant to high temperatures. NMR diffusion experiments show that defensin exists in solution in the equilibrium between monomers and dimers. Four types of dimers were constructed using the HADDOCK program and compared to the known dimer structures of other plant defensins. Gaussian network model was used to characterize the internal dynamics of PsDef1 in monomer and dimer states. PsDef1 is a typical representative of P. sylvestris defensins and hence the results of this study are applicable to other members of the family. PMID:26687241

  16. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. J.; Shental, Victor V.; Komov, D. V.; Vacoulovskaia, E. G.; Tabolinovskaia, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikchine, V. H.; Loschenov, Victor B.; Meerovich, Gennadii A.; Stratonnikov, Alexander A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, Eugeny A.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  17. Assessing the blinking state of fluorescent quantum dots in free solution by combining fluorescence correlation spectroscopy with ensemble spectroscopic methods.

    PubMed

    Dong, Chaoqing; Liu, Heng; Ren, Jicun

    2014-11-01

    The current method for investigating the blinking behavior is to immobilize quantum dots (QDs) in the matrix and then apply a fluorescent technique to monitor the fluorescent trajectories of individual QDs. So far, no method can be used to directly assess the blinking state of ensemble QDs in free solution. In this study, a new method was described to characterize the blinking state of the QDs in free solution by combining single molecule fluorescence correlation spectroscopy (FCS) with ensemble spectroscopic methods. Its principle is based on the observation that the apparent concentration of bright QDs obtained by FCS is less than its actual concentration measured by ensemble spectroscopic method due to the QDs blinking. We proposed a blinking index (Kblink) for characterizing the blinking state of QDs, and Kblink is defined as the ratio of the actual concentration (Cb,actual) measured by the ensemble spectroscopic method to the apparent concentration (Cb,app) of QDs obtained by FCS. The effects of certain factors such as laser intensity, growth process, and ligands on blinking of QDs were investigated. The Kblink data of QDs obtained were successfully used to characterize the blinking state of QDs and explain certain experimental results. PMID:25290853

  18. Military applications and examples of near-surface seismic surface wave methods (Invited)

    NASA Astrophysics Data System (ADS)

    sloan, S.; Stevens, R.

    2013-12-01

    Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.

  19. A Systematic Method For Tracer Test Analysis: An Example Using Beowawe Tracer Data

    SciTech Connect

    G. Michael Shook

    2005-01-01

    Quantitative analysis of tracer data using moment analysis requires a strict adherence to a set of rules which include data normalization, correction for thermal decay, deconvolution, extrapolation, and integration. If done correctly, the method yields specific information on swept pore volume, flow geometry and fluid velocity, and an understanding of the nature of reservoir boundaries. All calculations required for the interpretation can be done in a spreadsheet. The steps required for moment analysis are reviewed in this paper. Data taken from the literature is used in an example calculation.

  20. The Use of Matrix Methods in the Modeling of Spectroscopic Data Sets

    PubMed Central

    Henry, Eric R.

    1997-01-01

    We describe a general approach to the model-based analysis of sets of spectroscopic data that is built upon the techniques of matrix analysis. A model hypothesis may often be expressed by writing a matrix of measured spectra as the product of a matrix of spectra of individual molecular species and a matrix of corresponding species populations as a function of experimental conditions. The modeling procedure then requires the simultaneous determination of a set of species spectra and a set of model parameters (from which the populations are derived), such that this product yields an optimal description of the measured spectra. This procedure may be implemented as an optimization problem in the space of the (possibly nonlinear) model parameters alone, coupled with the efficient solution of a corollary linear optimization problem using matrix decomposition methods to obtain a set of species spectra corresponding to any set of model parameters. Known species spectra, as well as other information and assumptions about spectral shapes, may be incorporated into this general framework, using parametrized analytical functional forms and basis-set techniques. The method by which assumed relationships between global features (e.g., peak positions) of different species spectra may be enforced in the modeling without otherwise specifying the shapes of the spectra will be shown. We also consider the effect of measurement errors on this approach and suggest extensions of the matrix-based least-squares procedures applicable to situations in which measurement errors may not be assumed to be normally distributed. A generalized analysis procedure is introduced for cases in which the species spectra vary with experimental conditions. PMID:9017194

  1. Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Graf, Iulia M.; Su, Jimmy; Yeager, Doug; Amirian, James; Smalling, Richard; Emelianov, Stanislav

    2011-03-01

    Carotid atherosclerosis has been identified as a potential risk factor for cerebrovascular events, but information about its direct effect on the risk of recurrent stroke is limited due to incomplete diagnosis. The combination of vascular ultrasound, strain rate and spectroscopic photoacoustics could improve the timely diagnosis of plaque status and risk of rupturing. Current ultrasound techniques can noninvasively image the anatomy of carotid arteries. The spatio-temporal variation in displacement of different regions within the arterial wall can be derived from ultrasound radio frequency data; therefore an ultrasound based strain rate imaging modality can be used to reveal changes in arterial mechanical properties. Additionally, spectroscopic photoacoustic imaging can provide information on the optical absorption properties of arterial tissue and it can be used to identify the location of specific tissue components, such as lipid pools. An imaging technique combining ultrasound, strain rate and spectroscopic photoacoustics was tested on an excised atherosclerotic rabbit aorta. The ultrasound image illustrates inhomogeneities in arterial wall thickness, the strain rate indicates the arterial segment with reduced elasticity and the spectroscopic photoacoustic image illustrates the accumulation of lipids. The results demonstrated that ultrasound, strain rate and spectroscopic photoacoustic imaging are complementary. Thus the integration of the three imaging modalities advances the characterization of atherosclerotic plaques.

  2. An example-based face hallucination method for single-frame, low-resolution facial images.

    PubMed

    Park, Jeong-Seon; Lee, Seong-Whan

    2008-10-01

    This paper proposes a face hallucination method for the reconstruction of high-resolution facial images from single-frame, low-resolution facial images. The proposed method has been derived from example-based hallucination methods and morphable face models. First, we propose a recursive error back-projection method to compensate for residual errors, and a region-based reconstruction method to preserve characteristics of local facial regions. Then, we define an extended morphable face model, in which an extended face is composed of the interpolated high-resolution face from a given low-resolution face, and its original high-resolution equivalent. Then, the extended face is separated into an extended shape and an extended texture. We performed various hallucination experiments using the MPI, XM2VTS, and KF databases, compared the reconstruction errors, structural similarity index, and recognition rates, and showed the effects of face detection errors and shape estimation errors. The encouraging results demonstrate that the proposed methods can improve the performance of face recognition systems. Especially the proposed method can enhance the resolution of single-frame, low-resolution facial images. PMID:18784029

  3. Importance of Tissue Preparation Methods in FTIR Micro-Spectroscopical Analysis of Biological Tissues: ‘Traps for New Users’

    PubMed Central

    Zohdi, Vladislava; Whelan, Donna R.; Wood, Bayden R.; Pearson, James T.; Bambery, Keith R.; Black, M. Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy. PMID:25710811

  4. Fast proton spectroscopic imaging using steady-state free precession methods.

    PubMed

    Dreher, Wolfgang; Geppert, Christian; Althaus, Matthias; Leibfritz, Dieter

    2003-09-01

    Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-selective or chemical shift-selective pulses. The signals are detected in absence of a B(0) gradient. Spatial localization is achieved by phase-encoding gradients which are applied prior to and rewound after each signal acquisition. Measurements with 2D or 3D spatial resolution were performed at 4.7 T on phantoms and healthy rat brain in vivo allowing the detection of uncoupled and J-coupled spins. The main advantages of SSFP based SI are the short minimum total measurement time (T(min)) and the high signal-to-noise ratio per unit measurement time (SNR(t)). The methods are of particular interest at higher magnetic field strength B(0), as TR can be reduced with increasing B(0) leading to a reduced T(min) and an increased SNR(t). Drawbacks consist of the limited spectral resolution, particularly at lower B(0), and the dependence of the signal intensities on T(1) and T(2). Further improvements are discussed including optimized data processing and signal detection under oscillating B(0) gradients leading to a further reduction in T(min). PMID:12939751

  5. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures.

    PubMed

    Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  6. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    PubMed Central

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  7. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  8. Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods

    NASA Technical Reports Server (NTRS)

    Fischer, Erich M.; Pieters, Carle M.

    1994-01-01

    On the Moon, space weathering processes such as micrometeorite bombardment alter the optical properties of lunar soils. As a consequence, lunar soil optical properties are a function not only of composition, but of degree of exposure on the lunar surface as well. In order to accurately assess the compositional properties of the lunar surface using remotely acquired visible and near-infrared spectroscopic data, it is thus necessary either (1) to compare optical properties only of soils characterized by similar degrees of exposure or (2) to otherwise normalize or remove the optical effects due to exposure. Laboratory spectroscopic data for lunar soils are used to develop and test remote spectrocopic methods for determining degree of exposure and for distinguishing between the optical effects due to exposure and those due to composition. A method employing a ratio between reflectances within and outside of the 1 micrometer Fe(2+) crystal field absorption band was developed for remotely identifying highland soils that have reached a steady-state maturity. The relative optical properties of these soils are a function solely of composition and as such can be directly compared. Spectroscopic techniques for accurate quantitative determination of iron content for lunar highland soils are investigated as well. It is shown that approximations of the 1 micrometer Fe(2+) absorption band depth using few to several channel multispectral data or spectroscopic data of inadequate spectral range cannot be used with confidence for compositional analysis. However, band depth measurements derived from continuum-removed high spectral resolution data can be used to calculate the weight percent FeO and relative proportion of iron-bearing silicates in mature lunar highland and mare/highland mixture soils. A preliminary effort to calibrate telescopic band depth to laboratory soil measurements is described.

  9. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  10. Differential-Integral method in polymer processing: Taking melt electrospinning technique for example

    NASA Astrophysics Data System (ADS)

    Haoyi, Li; Weimin, Yang; Hongbo, Chen; Jing, Tan; Pengcheng, Xie

    2016-03-01

    A concept of Differential-Integral (DI) method applied in polymer processing and molding was proposed, which included melt DI injection molding, DI nano-composites extrusion molding and melt differential electrospinning principle and equipment. Taking the melt differential electrospinning for example to introduce the innovation research progress, two methods preparing polymer ultrafine fiber have been developed: solution electro-spinning and melt electro-spinning, between which solution electro-spinning is much simpler to realize in lab. More than 100 institutions have endeavored to conduct research on it and more than 30 thousand papers have been published. However, its industrialization was restricted to some extend because of the existence of toxic solvent during spinning process and poor mechanical strength of resultant fibers caused by small pores on fiber surface. Solvent-free melt electrospinning is environmentally friendly and highly productive. However, problems such as the high melt viscosity, thick fiber diameter and complex equipment makes it relatively under researched compared with solution electrospinning. With the purpose of solving the shortage of traditional electro-spinning equipment with needles or capillaries, a melt differential electro-spinning method without needles or capillaries was firstly proposed. Nearly 50 related patents have been applied since 2005, and systematic method innovations and experimental studies have also been conducted. The prepared fiber by this method had exhibited small diameter and smooth surface. The average fiber diameter can reach 200-800 nm, and the single nozzle can yield two orders of magnitude more than the capillaries. Based on the above principle, complete commercial techniques and equipment have been developed to produce ultra-fine non-woven fabrics for the applications in air filtration, oil spill recovery and water treatment, etc.

  11. Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method

    NASA Astrophysics Data System (ADS)

    Changli, Wei; Xiaomei, Zhang; Dajun, Ding; Bing, Yan

    2016-01-01

    A computational scheme for accurate spectroscopic constants was presented in this work and applied to the lowest two electronic states of sulfur dimer. A high-level ab initio calculation utilizing explicitly correlated multireference configuration interaction method (MRCI-F12) was performed to compute the potential energy curves (PECs) of the ground triplet and first excited singlet a1?g states of sulfur dimer with cc-pCVXZ-F12(X = T, Q) basis sets. The effects of Davidson modification, corevalence correlation correction, and scalar relativistic correction on the spectroscopic constants were examined. The vibrationrotation spectra of the two electronic states were provided. Our computational results show excellent agreement with existing available experimental values, and the errors of main spectroscopic constants are within 0.1% order of magnitude. The present computational scheme is cheap and accurate, which is expected for extensive investigations on the potential energy curves or surfaces of other molecular systems. Project supported by the National Natural Science Foundation of China (Grand No.11574114) and the Natural Science Foundation of Jilin Province, China (Grand No.20150101003JC).

  12. Determining spectroscopic redshifts by using k nearest neighbor regression. I. Description of method and analysis

    NASA Astrophysics Data System (ADS)

    Kgler, S. D.; Polsterer, K.; Hoecker, M.

    2015-04-01

    Context. In astronomy, new approaches to process and analyze the exponentially increasing amount of data are inevitable. For spectra, such as in the Sloan Digital Sky Survey spectral database, usually templates of well-known classes are used for classification. In case the fitting of a template fails, wrong spectral properties (e.g. redshift) are derived. Validation of the derived properties is the key to understand the caveats of the template-based method. Aims: In this paper we present a method for statistically computing the redshift z based on a similarity approach. This allows us to determine redshifts in spectra for emission and absorption features without using any predefined model. Additionally, we show how to determine the redshift based on single features. As a consequence we are, for example, able to filter objects that show multiple redshift components. Methods: The redshift calculation is performed by comparing predefined regions in the spectra and individually applying a nearest neighbor regression model to each predefined emission and absorption region. Results: The choice of the model parameters controls the quality and the completeness of the redshifts. For ?90% of the analyzed 16 000 spectra of our reference and test sample, a certain redshift can be computed that is comparable to the completeness of SDSS (96%). The redshift calculation yields a precision for every individually tested feature that is comparable to the overall precision of the redshifts of SDSS. Using the new method to compute redshifts, we could also identify 14 spectra with a significant shift between emission and absorption or between emission and emission lines. The results already show the immense power of this simple machine-learning approach for investigating huge databases such as the SDSS.

  13. The utilisation of health research in policy-making: concepts, examples and methods of assessment

    PubMed Central

    Hanney, Stephen R; Gonzalez-Block, Miguel A; Buxton, Martin J; Kogan, Maurice

    2003-01-01

    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies. PMID:12646071

  14. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Mallah, Muhammad Ali; Sherazi, Syed Tufail Hussain; Bhanger, Muhammad Iqbal; Mahesar, Sarfaraz Ahmed; Bajeer, Muhammad Ashraf

    2015-04-01

    A transmission FTIR spectroscopic method was developed for direct, inexpensive and fast quantification of paracetamol content in solid pharmaceutical formulations. In this method paracetamol content is directly analyzed without solvent extraction. KBr pellets were formulated for the acquisition of FTIR spectra in transmission mode. Two chemometric models: simple Beer's law and partial least squares employed over the spectral region of 1800-1000 cm-1 for quantification of paracetamol content had a regression coefficient of (R2) of 0.999. The limits of detection and quantification using FTIR spectroscopy were 0.005 mg g-1 and 0.018 mg g-1, respectively. Study for interference was also done to check effect of the excipients. There was no significant interference from the sample matrix. The results obviously showed the sensitivity of transmission FTIR spectroscopic method for pharmaceutical analysis. This method is green in the sense that it does not require large volumes of hazardous solvents or long run times and avoids prior sample preparation.

  15. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    DOEpatents

    Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  16. Spectroscopic methods for the determination of surface-active substances in water (a review)

    SciTech Connect

    Subbotina, E.I.; Dedkov, Yu.M.

    1987-12-01

    Synthetic surfactants, for their ability to mingle with and transform chemicals more toxic in nature such as petroleum products, oils, pesticides, and chlorinated hydrocarbons into substances that easily permeate and move through the hydrosphere into water reservoirs and other exposure pathways, pose a grave danger to water quality control. This paper reviews predominantly the spectrophotometric procedures available for monitoring these surfactants but also discusses fluorimetric, infrared spectroscopic, and atomic absorption procedures, and compares a wide range of solvents and reagents for the extraction and preparatory activation of the surfactants.

  17. Mining unusual and rare stellar spectra from large spectroscopic survey data sets using the outlier-detection method

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Luo, Ali; Li, Yinbi; Pan, Jingchang; Tu, Liangping; Jiang, Bin; Kong, Xiao; Shi, Zhixin; Yi, Zhenping; Wang, Fengfei; Liu, Jie; Zhao, Yongheng

    2013-05-01

    The large number of spectra obtained from sky surveys such as the Sloan Digital Sky Survey (SDSS) and the survey executed by the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST, also called GuoShouJing Telescope) provide us with opportunities to search for peculiar or even unknown types of spectra. In response to the limitations of existing methods, a novel outlier-mining method, the Monte Carlo Local Outlier Factor (MCLOF), is proposed in this paper, which can be used to highlight unusual and rare spectra from large spectroscopic survey data sets. The MCLOF method exposes outliers automatically and efficiently by marking each spectrum with a number, i.e. using outlier index as a flag for an unusual and rare spectrum. The Local Outlier Factor (LOF) represents how unusual and rare a spectrum is compared with other spectra and the Monte Carlo method is used to compute the global LOF for each spectrum by randomly selecting samples in each independent iteration. Our MCLOF method is applied to over half a million stellar spectra (classified as STAR by the SDSS Pipeline) from the SDSS data release 8 (DR8) and a total of 37 033 spectra are selected as outliers with signal-to-noise ratio (S/N) ≥ 3 and outlier index ≥0.85. Some of these outliers are shown to be binary stars, emission-line stars, carbon stars and stars with unusual continuum. The results show that our proposed method can efficiently highlight these unusual spectra from the survey data sets. In addition, some relatively rare and interesting spectra are selected, indicating that the proposed method can also be used to mine rare, even unknown, spectra. The proposed method can be applicable not only to spectral survey data sets but also to other types of survey data sets. The spectra of all peculiar objects selected by our MCLOF method are available from a user-friendly website: http://sciwiki.lamost.org/Miningdr8/.

  18. The spectroscopic and electronic properties of dimethylpyrazole and its derivatives using the experimental and computational methods.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2014-09-01

    In this paper the spectroscopic and the geometric properties of four ligands with pyrazole unit are studied at both experimental and computational levels. The computational results are perfectly in good agreement with the experimental results especially in terms of the IR, H-NMR and 13C-NMR shifts. The spectroscopic features as well as the computed properties help to establish the successful synthesis of ligands bdmpzm and bdmpza. The theoretical and the experimental IR and Raman significantly help in distinguishing the four ligands. The results show that the Raman spectral is better applicable in characterising the CH3 deformation, the C-H, CNN and CCNNout of the ligands but vibrations like N-H in dmpz and O-H, C=O in bdmpza are observed to be Raman inactive. A significant variations are observed among the two available * N atoms characterising the bidentate features of bdmpzm, bdmpza and bdcpzm which indicates a possible different affinities for metal coordination: Also the result suggest that bdmpza will be the best starting material for NLO application than other while bdcpzm is predicted to have potential of been a poor coordinating ligand. The computed variations in the properties of * N atoms that are the characteristic features of their power of coordination can be of immense help since these type of ligands have a wide application in transition metal coordination. PMID:25532317

  19. Evaluation of vibrational spectroscopic methods to identify and quantify multiple adulterants in herbal medicines.

    PubMed

    Rooney, Jeremy S; McDowell, Arlene; Strachan, Clare J; Gordon, Keith C

    2015-06-01

    To counter the growth of herbal medicines adulterated with pharmaceuticals crossing borders, rapid, inexpensive and non-destructive analytical techniques, that can handle complex matrices, are required. Since mid-infrared (MIR), near infrared (NIR) and Raman spectroscopic techniques meet these criteria, their performance in identifying adulterants in seized weightloss herbal medicines is definitively determined. Initially a validated high pressure liquid chromatography methodology was used for reference identification and quantification of the adulterants sibutramine H2O·HCl, fenfluramine HCl and phenolphthalein. Of 38 products, only sibutramine and phenolphthalein were detected by HPLC. The spectroscopic measurements showed Raman was ill-suited due to sample burning and emission while NIR lacked adulterant selectivity. Conversely, MIR demonstrated apt identification performance, which manifested as spectrally meaningful separation based on the presence and type of adulterant during principal component analysis (test set validated). Partial least squares regression models were constructed from the MIR training sets for sibutramine and phenolphthalein - both models fitted the training set data well. Average test set prediction errors were 0.8% for sibutramine and 2.2% for phenolphthalein over the respective concentration ranges of 1.7-11.7% and 0.9-34.4%. MIR is apposite for the screening of anorectic and laxative adulterants and is the most viable technique for wider adulterant screening in herbal medicines. PMID:25863375

  20. Methods of defining best practice for population health approaches with obesity prevention as an example.

    PubMed

    McNeil, Deborah A; Flynn, Mary A T

    2006-11-01

    Childhood obesity has reached a crisis stage and has become a population health issue. The few traditional systematic reviews that have been done to identify best practice provide little direction for action. The concept of evidence-based practice has been adopted in health care, and in medicine in particular, to determine best practice. Evidence-based medicine has its origins in the scientific method and for many researchers this concept means strict adherence to standards determining internal validity in order to justify a practice as evidence based. Practitioners addressing population health face challenges in identifying criteria for determining evidence, in part because of the nature of population health with its goal of shifting the health of whole populations. As well, the type of evidence provided by more traditional critical appraisal schema is limiting. Expanded approaches in finding and defining evidence have been proposed that use: expert panels; broad and inclusive search and selection strategies; appraisal criteria that incorporate context and generalizability. A recent synthesis of 147 programmes addressing childhood overweight and obesity provides a concrete example of using a broader approach to identify evidence for best practice (Flynn et al. 2006). Incorporating evaluation and population health frameworks as criterion components in addition to traditional methodological rigour criteria, this synthesis has identified programmes that provide contextual information that can be used to populate what Swinburn et al. (2005) have described as the 'promise table'. Using this approach a range in 'certainty of effectiveness' and a range in 'potential for population impact' are integrated to identify promising strategies. The exercise can provide direction for agencies and practitioners in taking action to address obesity. PMID:17181907

  1. Measuring maps graphical density via digital image processing method on the example of city maps

    NASA Astrophysics Data System (ADS)

    Ciolkosz-Styk, A.; Styk, A.

    2012-06-01

    During the centuries the main problem on mapping was to obtain the sufficient and reliable source data; presently, an appropriate selection of the desired information from the deluge of available data I a problem. An availability of large amount of data induces to transfer the possibly rich information by mean of map. It often results in overloading the cartographic documents, that is why they become less communicative and difficult to read. This situation is well illustrated by the example of city maps which are the most commonly used and thus the most frequently published cartographic products. Many user groups with different needs as well as preparation to read maps use these high volume publications. Therefore, the maps communication effectiveness problem is of particular importance. The city maps are the most complex cartographic presentations, because the presented areas are the places with the greatest concentration of different kinds of objects and forms of human activity arising from the civilization development. Conveying these specific features on the city maps leads to the problem of selecting the most relevant elements of content in terms of user's needs, since presenting all objects and their characteristics is impossible if the city map readability is to be kept. Although complexity has been the cartographers' object of interest for many years, because it exerts an impact on readability and effectiveness of cartographic documents, none of the measures used so far may be applied for automatic determination of complexity of such graphically complicated objects as city maps. Therefore a novel approach was needed for these applications. For that purpose digital image processing techniques have been proposed and successfully applied by the authors. The analysis of the spatial distribution of the objects' edges on the map surface, calculated using continuous wavelet transform, is the basis of the proposed measure. The method allows for comparison of complexity of city maps loaded by different type of graphical elements (point signatures, lines, text, etc.). Extended analyses of selected cartographic materials proved the usability of the method for quantitative estimation of city map complexity via formal index

  2. Inclusion interaction of chloramphenicol and heptakis (2,6-di- O-methyl)-?-cyclodextrin: Phase solubility and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Zhou, Ya-fang

    2011-12-01

    The inclusion interaction between chloramphenicol and heptakis (2,6-di- O-methyl)-?-cyclodextrin (DMBCD) had been investigated by phase solubility and spectroscopic methods such as UV-vis spectroscopy, circular dichroism, Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance spectroscopy ( 1H NMR) as well as 2D-ROESY spectra. Phase solubility analysis showed A L-type diagram with DMBCD, which suggested the formation of 1:1 inclusion complex of DMBCD with chloramphenicol. The estimated stability constant ( Ks) of the inclusion complex of chloramphenicol with DMBCD is 493 M -1 at 293 K. The solubility enhancement of chloramphenicol in the presence of DMBCD is stronger than that in the presence of ?-CD, HP-?-CD and M-?-CD. The results obtained by spectroscopic methods showed that the nitrophenyl moiety of chloramphenicol is deeply inserted into inner cavity of DMBCD from the narrow rim of DMBCD, which the inclusion model of chloramphenicol with DMBCD differs from that with ?-CD.

  3. Structural, spectroscopic, and magnetic properties of Eu3+-doped GdVO4 nanocrystals synthesized by a hydrothermal method.

    PubMed

    Szczeszak, Agata; Grzyb, Tomasz; ?niadecki, Zbigniew; Andrzejewska, Nina; Lis, Stefan; Matczak, Micha?; Nowaczyk, Grzegorz; Jurga, Stefan; Idzikowski, Bogdan

    2014-12-01

    New interesting aspects of the spectroscopic properties, magnetism, and method of synthesis of gadolinium orthovanadates doped with Eu(3+) ions are discussed. Gd(1-x)Eu(x)VO4 (x = 0, 0.05, 0.2) bifunctional luminescent materials with complex magnetic properties were synthesized by a microwave-assisted hydrothermal method. Products were formed in situ without previous precipitation. The crystal structures and morphologies of the obtained nanomaterials were analyzed by X-ray diffraction and transmission and scanning electron microscopy. Crystallographic data were analyzed using Rietveld refinement. The products obtained were nanocrystalline with average grain sizes of 70-80 nm. The qualitative and quantitative elemental composition as well as mapping of the nanocrystals was proved using energy-dispersive X-ray spectroscopy. The spectroscopic properties of red-emitting nanophosphors were characterized by their excitation and emission spectra and luminescence decays. Magnetic measurements were performed by means of vibrating sample magnetometry. GdVO4 and Gd0.8Eu0.2VO4 exhibited paramagnetic behavior with a weak influence of antiferromagnetic couplings between rare-earth ions. In the substituted sample, an additional magnetic contribution connected with the population of low-lying excited states of europium was observed. PMID:25383487

  4. Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods.

    PubMed

    Pan, Jiongwei; Ye, Zaiting; Cai, Xiaoping; Wang, Liangxing; Cao, Zhuo

    2012-12-01

    The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV-vis spectroscopy. Values of binding parameters for BSA-CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 10(3), 3.24 × 10(3), and 2.30 × 10(3) M(-1) at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. PMID:23169700

  5. Spectrophotometric, difference spectroscopic, and high-performance liquid chromatographic methods for the determination of cefixime in pharmaceutical formulations.

    PubMed

    Shah, Paresh B; Pundarikakshudu, Kilambi

    2006-01-01

    Three simple and sensitive spectrophotometric, difference spectroscopic, and liquid chromatographic (LC) methods are described for the determination of cefixime. The first method is based on the oxidative coupling reaction of cefixime with 3-methyl-2-benzothiazolinon hydrazone HCI in presence of ferric chloride. The absorbance of reaction product was measured at the maximum absorbance wavelength (wavelength(max)), 630 nm. The difference spectroscopic method is based on the measurement of absorbance of cefixime at the absorbance maximum, 268 nm, and minimum, 237 nm. The measured value was the amplitude of maxima and minima between 2 equimolar solutions of the analyte in different chemical forms, which exhibited different spectral characteristics. The conditions were optimized, and Beer's law was obeyed for cefixime at 1 to 16 microg/mL and 10 to 50 microg/mL, respectively. The third method, high-performance LC, was developed for the determination of cefixime using 50 mM potassium dihydrogen phosphate (pH 3.0)-methanol (78 + 22, v/v) as the mobile phase and measuring the response at wavelength(max) 286 nm. The analysis was performed on a Lichrospher RPC18 column. The calibration curve was obtained for cefixime at 5 to 250 microg/mL, and the mean recovery was 99.71 +/- 0.01%. The methods were validated according to the guidelines of the U.S. Pharmacopoeia and also assessed by applying the standard addition technique. The results obtained in the analysis of dosage forms agreed well with the contents stated on the labels. PMID:16915834

  6. Vibrational spectroscopic methods to characterize the bionanoparticles originating from newly developed self-forming synthetic PEGylated lipids (QuSomes)

    NASA Astrophysics Data System (ADS)

    Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.

    2011-03-01

    Vibrational spectroscopy has been used to elucidate the temperature dependence of structural and conformational changes in lipids and liposomes. In this work, the thermal properties of lipid-based nanovesicles originating from a newly developed self-forming synthetic PEGylated lipids has been investigated by variable-temperature Fourier-transform infrared (FTIR) absorption and Raman spectroscopic methods. Thermally-induced changes in infrared and Raman spectra of these artificial lipid based nanovesicles composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) were acquired by using a thin layered FTIR spectrometer in conjunction with a unique custom built temperature-controlled demountable liquid cell and variable-temperature controlled Raman microscope, respectively. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol headgroups. In contrast to conventional phospholipids, this new kind of lipid is forming liposomes or nanovesicles spontaneously upon hydration, without supplying external activation energy. We have found that the thermal stability of such PEGylated lipids and nanovesicles differs greatly depending upon the acyl chain-lengths as well as associated head group units. However, the thermal behavior observed from both spectroscopic vibrational techniques are in good agreement.

  7. Pre-evaluation method for the spectroscopic properties of YAG bulk materials by sol-gel synthetic powder

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Fujimoto, Y.; Motokoshi, S.; Fujita, H.; Nakatsuka, M.

    2011-05-01

    The sol-gel synthetic powder evaluation method is the most effective and the easiest technique for pre-evaluating the spectroscopic properties of luminescent impurity doped YAG. The luminescent elements doped sol-gel powder agrees well with that of a single crystal or ceramic YAG regarding the luminescent spectra, the intensity, and the lifetime, even though the powder sintered at a low temperature of 1100C in comparison with the YAG crystal melting point of 1970C, because a good crystallinity of the sol-gel powder is led by the hard agglomerates of very small primary particles. It is considered that the significance of this method is to apply for not only of YAG but also of other oxides, for instance Y2O3, ZrO2, TiO2, and MgAl2O4

  8. Rapid and sensitive determination of proteins with Eriochrome Red in the presence of anionic surfactant by multi-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Bian, Yongru; Cai, Changqun; Gong, Hang; Chen, Xiaoming

    2010-10-01

    A new high-sensitivity detection of protein assay at the nanogram level is proposed based on multi-spectroscopic methods including resonance light scattering (RLS), atomic force microscopy (AFM), ultraviolet spectra (UV) and fluorescence spectra etc. Under the optimum conditions, the amplified RLS signals of anionic azo dyes Eriochrome Red B (ERB) in the presence of anionic surfactant sodium dodecyl sulphonate (SDS) was in proportion to the concentration of proteins in the range of 0.0-3.5 mg L -1 and 3.5-12.5 mg L -1 for bovine serum albumin (BSA), 0.0-2.0 mg L -1 and 2.0-8.0 mg L -1 for human serum albumin (HSA). The detection limits were 4.2 ng mL -1 and 2.7 ng mL -1, respectively. The method was satisfactorily applied to the measurement of total protein in human serum samples and a high-sensitivity was achieved.

  9. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  10. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun

    The interactions of tetramethylpyrazine (TMPZ) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by various spectroscopic techniques. Fluorescence tests showed that TMPZ could bind to BSA/HSA to form complexes. The binding constants of TMPZ-BSA and TMPZ-HSA complexes were observed to be 1.442 × 104 and 3.302 × 104 M-1 at 298 K, respectively. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TMPZ-HSA was mainly depended on hydrophobic interaction, and yet the binding of TMPZ-BSA might involve hydrophobic interaction strongly and electrostatic interaction. The results of synchronous fluorescence, three-dimensional fluorescence, UV-vis absorption, FT-IR and CD spectra showed that the conformations of both BSA and HSA altered with the addition of TMPZ. The binding average distance between TMPZ and BSA/HSA was evaluated according to Föster non-radioactive energy transfer theory. In addition, with the aid of site markers (such as, phenylbutazone, ibuprofen and digitoxin), TMPZ primarily bound to tryptophan residues of BSA/HSA within site I (sub-domain II A).

  11. [Spectroscopic methods applied to component determination and species identification for coffee].

    PubMed

    Chen, Hua-zhou; Xu, Li-li; Qin, Qiang

    2014-06-01

    Spectroscopic analysis was applied to the determination of the nutrient quality of ground, instant and chicory coffees. By using inductively coupled plasma atomic emission spectrometry (ICP-ES), nine mineral elements were determined in solid coffee samples. Caffeine was determined by ultraviolet (UV) spectrometry and organic matter was investigated by Fourier transform infrared (FTIR) spectroscopy. Oxidation-reduction titration was utilized for measuring the oxalate. The differences between ground coffee and instant coffee was identified on the basis of the contents of caffeine, oxalate and mineral elements. Experimental evidence showed that, caffeine in instant coffee was 2-3 times higher than in ground coffee. Oxalate in instant coffee was significantly higher in ground coffee. Mineral elements of Mg, P and Zn in ground coffee is lower than in instant coffee, while Cu is several times higher. The mineral content in chicory coffee is overall lower than the instant coffee. In addition, we determined the content of Ti for different types of coffees, and simultaneously detected the elements of Cu, Ti and Zn in chicory coffee. As a fast detection technique, FTIR spectroscopy has the potential of detecting the differences between ground coffee and instant coffee, and is able to verify the presence of caffeine and oxalate. PMID:25358189

  12. The spectroscopic and the QTAIM properties of pyridine and phenanthroline derivatives using experimental and computational methods.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2014-07-15

    The experimental and theoretical properties of ligands consisting of pyridine and phenanthroline derivatives have been studied. The results show a very high correlation between the experimental and theoretical spectroscopic properties of the ligands such as the IR, NMR chemical shift and UV. The carboxylic units in the ligands lead to increase in the dipole and anisotropic properties of the molecules while the methyl group lead to increase in the isotropic shielding tensor of the molecules. Most of the observed UV ?max in the ligands are predominantly excitation of electrons from the HOMO-2 or HOMO-1 or HOMO to the LUMO of the ligands. The ligand 2,2-dicarboxylphenanthroline (dcphn) is predicted to be the best starting material for non-linear optical (NLO) application due to its far higher first static hyperpolarizability tensor compare to other ligands and its lowest band gap. The same ligand can also be best for DNA binding because it has the lowest value of LUMO. The atomic charge of the nitrogen is found to be highly correlated with molecular HOMO, LUMO and non-Lewis orbital. The (15)N NMR chemical shift is found to be highly correlated atomic anisotropy, energy and intra-atomic isotropic shielding tensor. PMID:24691368

  13. Detection of Hg2+ in water environment by fluorescence spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhang, Jinsong; Hu, Hong; Wan, Ruyi; Yao, Youwei

    2015-08-01

    Inorganic mercury (Hg2+) produces toxic effects even at very low concentration. High sensitive fluorescent probes for Hg2+ detection has been researched and synthesized. A fluorescence detection system is built for Hg2+ detection in water environment with fluorescent probes as the detection reagent. Fiber coupled LED with high brightness is developed and used as excitation light source. And the optimized excitation wavelength is about 520 nm. The measurements of fluorescence spectra is obtained by means of optical fiber spectroscopic techniques. Fluorescence detection experiments are carried out for a range of different concentrations of Hg2+ in aqueous solutions. The center wavelength of the fluorescence spectra is about 580 nm which is unchanged in the experiments. Relationship between Hg2+ concentrations and the fluorescence intensity is studied. A positive correlation exists between the intensity of fluorescence spectrum and the concentrations of Hg2+. The fluorescence intensity grows with increasing the concentration of Hg2+ for the same excitation light. When the concentration of Hg2+ is high enough, the fluorescence intensity increases slowly. And a numerical model is built for the concentration calculating. The detection limit is 0.005 μmol/L in the experiments. The Hg2+ detection system reported has many advantages such as small size, rapid response, high-sensitivity, and can be used for on-site testing of the water quality.

  14. Paleohydrological methods and some examples from Swedish fluvial environments. II - River meanders.

    USGS Publications Warehouse

    Williams, G.P.

    1984-01-01

    Empirical relations are developed between river-meander features and water-discharge characteristics for 19 reaches along Swedish rivers. In these relations, either average channel width or average radius of curvature of meander arcs can be used to estimate average annual peak discharge and average daily discharge. By accepting certain assumptions, the relations can be applied to other meandering Swedish rivers, present or ancient. The Oster-Dalalven River near Mora is used as an example.-Author

  15. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique.

    PubMed

    Shu, Yang; Xue, Weiwei; Xu, Xiaoying; Jia, Zhimin; Yao, Xiaojun; Liu, Shuwen; Liu, Lihong

    2015-04-15

    Overconsumption of erucic acid has been shown to cause heart damage in animals. The aim of this study is to evaluate the binding behaviour between erucic acid and bovine serum albumin using multi-spectroscopic methods and a molecular docking technique under physiological conditions. We find that erucic acid can quench the intrinsic fluorescence of BSA by dynamic quenching and there is a single class of binding site on BSA. In addition, the thermodynamic functions ?H and ?S are 119.14 kJ mol(-1) and 488.89 J mol(-1) K(-1), indicating that the hydrophobic force is a main acting force. Furthermore, the protein secondary structure changes with an increase in the content of ?-helix, measured using synchronous fluorescence, circular dichroism and Fourier transform infrared spectroscopies. The molecular docking results illustrate that erucic acid can bind with the subdomain IIA of the BSA, and hydrogen bonding is also an acting force. PMID:25465991

  16. Properties of CO/sub 2/ laser produced long-life plasmas observed by x-ray spectroscopic methods

    SciTech Connect

    Daido, H.; Nishihara, K.; Mima, K.; Kitagawa, Y.; Nakai, S.; Yamanaka, C.; Hasegawa, A.

    1988-03-01

    We present the properties of shell confinement long-life plasmas produced by a CO/sub 2/ laser. The temperature measurement for parylene shell targets based on the x-ray spectroscopic method gives the electron temperature of more than 500 eV at the center of a 1-mm-diam target. An enchanced confinement time is obtained in a thick gold shell (100 ..mu..m thick) target coated internally with parylene. The duration of the x ray emitted from the hot core in a 3-mm-diam target of this type is 34 ns, while the laser pulse duration is 1 ns. The long duration of the x-ray manifests the hot core plasma lifetime; the observed duration presents a strong evidence of thermal insulation by the self-generated magnetic field.

  17. Spectroscopic analysis of diphosphatriazolate anion (P2N3-) by coupled-cluster methods as a step toward N5-

    NASA Astrophysics Data System (ADS)

    Jin, Yifan; Perera, Ajith; Bartlett, Rodney J.

    2015-11-01

    The long sought N5- is a step from the recently synthesized aromatic pentagonal diphosphatriazolate anion (P2N3-). As accurate spectroscopic properties of N5- are only known from theoretical calculations, this manuscript demonstrates the accuracy of the computed P2N3- spectra (IR, Raman, and NMR) obtained from coupled-cluster methods [CCSD or CCSD(T)] compared to experiment, eliminating any ambiguities of the prior density functional theory (DFT) results. Excited and ionized state calculations from EOM-CCSD(T) and IP-EOM-CCSD offer predictions of those additional properties. Differences between P2N3- and N5- arise primarily due to the positive electron affinities of P2, which cause very different potential energy surfaces.

  18. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.

  19. Modern geodetic methods for high-accuracy survey coordination on the example of magnetic exploration

    NASA Astrophysics Data System (ADS)

    Krasnoperov, R. I.; Sidorov, R. V.; Soloviev, A. A.

    2015-07-01

    The purposes and problems of the international network of geomagnetic observatories INTERMAGNET are briefly described in the work. The importance of the development of the Russian segment of the network as a part of a system for monitoring and estimating geomagnetic conditions on the Russian territory is emphasized. An example of the use of modern high-precision geodetic equipment for coor-dinate referencing of field geophysical observation is described. Factors that distort the referencing of field observations in problems of survey, engineering, and technical geophysics are listed, as well as those related to detail and high-resolution geophysical surveying and those that require a corresponding accuracy of observation point coordination. The magnetic exploration at the site of the Yamal INTERMAGNET-standard observatory serves an example to describe a technique for geodetic provision of a detailed geophysical survey by means of joint use of differential GNSS measurements and electronic tacheometry. The main advantages and disadvantages of the technique suggested are listed.

  20. Using a Three-Step Method in a Calculus Class: Extending the Worked Example

    ERIC Educational Resources Information Center

    Miller, David

    2010-01-01

    This article discusses a three-step method that was used in a college calculus course. The three-step method was developed to help students understand the course material and transition to be more independent learners. In addition, the method helped students to transfer concepts from short-term to long-term memory while lowering cognitive load.

  1. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples

    NASA Astrophysics Data System (ADS)

    Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.

    2016-01-01

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  2. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples.

    PubMed

    Mabood, Fazal; Hussain, Z; Haq, H; Arian, M B; Boqué, R; Khan, K M; Hussain, K; Jabeen, F; Hussain, J; Ahmed, M; Alharasi, A; Naureen, Z; Hussain, H; Khan, A; Perveen, S

    2016-01-15

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80s, the optimal reaction temperature is 160°C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength. PMID:26312738

  3. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example

    NASA Astrophysics Data System (ADS)

    Pauling, A.; Rotach, M. W.; Gehrig, R.; Clot, B.

    2012-09-01

    Detailed knowledge of the spatial distribution of sources is a crucial prerequisite for the application of pollen dispersion models such as, for example, COSMO-ART (COnsortium for Small-scale MOdeling - Aerosols and Reactive Trace gases). However, this input is not available for the allergy-relevant species such as hazel, alder, birch, grass or ragweed. Hence, plant distribution datasets need to be derived from suitable sources. We present an approach to produce such a dataset from existing sources using birch as an example. The basic idea is to construct a birch dataset using a region with good data coverage for calibration and then to extrapolate this relationship to a larger area by using land use classes. We use the Swiss forest inventory (1 km resolution) in combination with a 74-category land use dataset that covers the non-forested areas of Switzerland as well (resolution 100 m). Then we assign birch density categories of 0%, 0.1%, 0.5% and 2.5% to each of the 74 land use categories. The combination of this derived dataset with the birch distribution from the forest inventory yields a fairly accurate birch distribution encompassing entire Switzerland. The land use categories of the Global Land Cover 2000 (GLC2000; Global Land Cover 2000 database, 2003, European Commission, Joint Research Centre; resolution 1 km) are then calibrated with the Swiss dataset in order to derive a Europe-wide birch distribution dataset and aggregated onto the 7 km COSMO-ART grid. This procedure thus assumes that a certain GLC2000 land use category has the same birch density wherever it may occur in Europe. In order to reduce the strict application of this crucial assumption, the birch density distribution as obtained from the previous steps is weighted using the mean Seasonal Pollen Index (SPI; yearly sums of daily pollen concentrations). For future improvement, region-specific birch densities for the GLC2000 categories could be integrated into the mapping procedure.

  4. Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Klett, T.R.

    2005-01-01

    Various methods for assessing undiscovered oil, natural gas, and natural gas liquid resources were compared in support of the USGS World Petroleum Assessment 2000. Discovery process, linear fractal, parabolic fractal, engineering estimates, PETRIMES, Delphi, and the USGS 2000 methods were compared. Three comparisons of these methods were made in: (1) the Neuquen Basin province, Argentina (different assessors, same input data); (2) provinces in North Africa, Oman, and Yemen (same assessors, different methods); and (3) the Arabian Peninsula, Arabian (Persian) Gulf, and North Sea (different assessors, different methods). A fourth comparison (same assessors, same assessment methods but different geologic models), between results from structural and stratigraphic assessment units in the North Sea used only the USGS 2000 method, and hence compared the type of assessment unit rather than the method. In comparing methods, differences arise from inherent differences in assumptions regarding: (1) the underlying distribution of the parent field population (all fields, discovered and undiscovered), (2) the population of fields being estimated; that is, the entire parent distribution or the undiscovered resource distribution, (3) inclusion or exclusion of large outlier fields; (4) inclusion or exclusion of field (reserve) growth, (5) deterministic or probabilistic models, (6) data requirements, and (7) scale and time frame of the assessment. Discovery process, Delphi subjective consensus, and the USGS 2000 method yield comparable results because similar procedures are employed. In mature areas such as the Neuquen Basin province in Argentina, the linear and parabolic fractal and engineering methods were conservative compared to the other five methods and relative to new reserve additions there since 1995. The PETRIMES method gave the most optimistic estimates in the Neuquen Basin. In less mature areas, the linear fractal method yielded larger estimates relative to other methods. A geologically based model, such as one using the total petroleum system approach, is preferred in that it combines the elements of petroleum source, reservoir, trap and seal with the tectono-stratigraphic history of basin evolution with petroleum resource potential. Care must be taken to demonstrate that homogeneous populations in terms of geology, geologic risk, exploration, and discovery processes are used in the assessment process. The USGS 2000 method (7th Approximation Model, EMC computational program) is robust; that is, it can be used in both mature and immature areas, and provides comparable results when using different geologic models (e.g. stratigraphic or structural) with differing amounts of subdivisions, assessment units, within the total petroleum system. ?? 2005 International Association for Mathematical Geology.

  5. Qualitative Methods Can Enrich Quantitative Research on Occupational Stress: An Example from One Occupational Group

    ERIC Educational Resources Information Center

    Schonfeld, Irvin Sam; Farrell, Edwin

    2010-01-01

    The chapter examines the ways in which qualitative and quantitative methods support each other in research on occupational stress. Qualitative methods include eliciting from workers unconstrained descriptions of work experiences, careful first-hand observations of the workplace, and participant-observers describing "from the inside" a particular…

  6. From Simulation to Real Robots with Predictable Results: Methods and Examples

    NASA Astrophysics Data System (ADS)

    Balakirsky, S.; Carpin, S.; Dimitoglou, G.; Balaguer, B.

    From a theoretical perspective, one may easily argue (as we will in this chapter) that simulation accelerates the algorithm development cycle. However, in practice many in the robotics development community share the sentiment that Simulation is doomed to succeed (Brooks, R., Matari?, M., Robot Learning, Kluwer Academic Press, Hingham, MA, 1993, p. 209). This comes in large part from the fact that many simulation systems are brittle; they do a fair-to-good job of simulating the expected, and fail to simulate the unexpected. It is the authors' belief that a simulation system is only as good as its models, and that deficiencies in these models lead to the majority of these failures. This chapter will attempt to address these deficiencies by presenting a systematic methodology with examples for the development of both simulated mobility models and sensor models for use with one of today's leading simulation engines. Techniques for using simulation for algorithm development leading to real-robot implementation will be presented, as well as opportunities for involvement in international robotics competitions based on these techniques.

  7. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives.

    PubMed

    Caignard, Grégory; Eva, Megan M; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  8. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    PubMed Central

    Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  9. Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families.

    PubMed

    Pel, Julien; Moreau, Matthieu; Abdi, Herv; Rodien, Patrice; Castel, Hlne; Chabbert, Marie

    2014-09-01

    Covariation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify covarying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a model system composed of three nested sets of G-protein-coupled receptors (GPCRs) in which a divergence event occurred. The covariation methods analyzed were based on: ?2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the covariation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven--OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)--favored pairs with intermediate entropy and a networking structure with a central residue involved in several high-scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the subfamily specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis-based mechanism of functional divergence within a protein family. PMID:24677372

  10. Using Google Analytics as a process evaluation method for Internet-delivered interventions: an example on sexual health.

    PubMed

    Crutzen, Rik; Roosjen, Johanna L; Poelman, Jos

    2013-03-01

    The study aimed to demonstrate the potential of Google Analytics as a process evaluation method for Internet-delivered interventions, using a website about sexual health as an example. This study reports visitors' behavior until 21 months after the release of the website (March 2009-December 2010). In total, there were 850 895 visitors with an average total visiting time (i.e. dose) of 5:07 min. Google Analytics provided data to answer three key questions in terms of process evaluation of an Internet-delivered intervention: (i) How do visitors behave?; (ii) Where do visitors come from? and (iii) What content are visitors exposed to? This real-life example demonstrated the potential of Google Analytics as a method to be used in a process evaluation of Internet-delivered interventions. This is highly relevant given the current expansion of these interventions within the field of health promotion. PMID:22377974

  11. Spectrophotometric method for the determination, validation, spectroscopic and thermal analysis of diphenhydramine in pharmaceutical preparation

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2010-09-01

    A sensitive, simple and rapid spectrophotometric method was developed for the determination of diphenhydramine in pharmaceutical preparation. The method was based on the charge-transfer complex of the drug, as n-electron donor, with 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), as π-acceptor. The formation of this complex was also confirmed by UV-vis, FTIR and 1H NMR spectra techniques and thermal analysis. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The linearity range for concentrations of diphenhydramine was found to be 12.5-150 μg/mL with acceptable correlation coefficients. The detection and quantification limits were found to be 2.09 and 6.27 μg/mL, respectively. The proposed and references methods were applied to the determination of drug in syrup. This preparation were also analyzed with an reference method and statistical comparison by t- and F-tests revealed that there was no significant difference between the results of the two methods with respect to mean values and standard deviations at the 95% confidence level.

  12. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    NASA Astrophysics Data System (ADS)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at ?max 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 ?g mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 ?g mL -1 using AAS method or 30-45 ?g mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  13. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    PubMed

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, Jos; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method. PMID:19533405

  14. Theoretical assessment of 3-D magnetotelluric method for oil and gas exploration: Synthetic examples

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wei, Wenbo; Lu, Qingtian; Dong, Hao; Li, Yanqing

    2014-07-01

    In petroleum explorations, seismic reflection technique has been almost always the preferred method for its high exploration depth and resolution. However, with the development of three dimensional (3D) inversion and interpretation schemes, much potential has been shown in MT method dealing with complex geological structures as in oil and gas exploration. In this study, synthetic geophysical models of petroleum reservoir structures are modeled and utilized to demonstrate that feasibility of 3-D MT technique for hydrocarbon exploration. A series of typical reservoir structure models are constructed and used to generate synthetic MT and seismic data to test the capabilities of 2-D/3-D MT and 2-D seismic inversion techniques. According to the inversion comparison, in addition to correctly retrieve the original forward model, the 3-D MT method also has some advantages over the reflective seismology method, which suffered from the lack of reflection wave and multiple wave problems. With the presented 3-D high resolution MT inversion method, MT techniques should be employed as one of the first choices for petroleum explorations.

  15. Methods for streamlining intervention fidelity checklists: an example from the chronic disease self-management program.

    PubMed

    Ahn, SangNam; Smith, Matthew Lee; Altpeter, Mary; Belza, Basia; Post, Lindsey; Ory, Marcia G

    2014-01-01

    Maintaining intervention fidelity should be part of any programmatic quality assurance (QA) plan and is often a licensure requirement. However, fidelity checklists designed by original program developers are often lengthy, which makes compliance difficult once programs become widely disseminated in the field. As a case example, we used Stanford's original Chronic Disease Self-Management Program (CDSMP) fidelity checklist of 157 items to demonstrate heuristic procedures for generating shorter fidelity checklists. Using an expert consensus approach, we sought feedback from active master trainers registered with the Stanford University Patient Education Research Center about which items were most essential to, and also feasible for, assessing fidelity. We conducted three sequential surveys and one expert group-teleconference call. Three versions of the fidelity checklist were created using different statistical and methodological criteria. In a final group-teleconference call with seven national experts, there was unanimous agreement that all three final versions (e.g., a 34-item version, a 20-item version, and a 12-item version) should be made available because the purpose and resources for administering a checklist might vary from one setting to another. This study highlights the methodology used to generate shorter versions of a fidelity checklist, which has potential to inform future QA efforts for this and other evidence-based programs (EBP) for older adults delivered in community settings. With CDSMP and other EBP, it is important to differentiate between program fidelity as mandated by program developers for licensure, and intervention fidelity tools for providing an "at-a-glance" snapshot of the level of compliance to selected program indicators. PMID:25964941

  16. Capturing Intuition Through Interactive Inverse Methods: Examples Drawn From Mechanical Non-Linearities in Structural Geology

    NASA Astrophysics Data System (ADS)

    Moresi, L.; May, D.; Peachey, T.; Enticott, C.; Abramson, D.; Robinson, T.

    2004-12-01

    Can you teach intuition ? Obviously we think that this is possible (though it's still just a hunch). People undoubtedly develop intuition for non-linear systems through painstaking repetition of complex tasks until they have sufficient feedback to begin to "see" the emergent behaviour. The better the exploration of the system can be exposed, the quicker the potential for developing an intuitive understanding. We have spent some time considering how to incorporate the intuitive knowledge of field geologists into mechanical modeling of geological processes. Our solution has been to allow expert geologist to steer (via a GUI) a genetic algorithm inversion of a mechanical forward model towards "structures" or patterns which are plausible in nature. The expert knowledge is then captured by analysis of the individual model parameters which are constrained by the steering (and by analysis of those which are unconstrained). The same system can also be used in reverse to expose the influence of individual parameters to the non-expert who is trying to learn just what does make a good match between model and observation. The ``distance'' between models preferred by experts, and those by an individual can be shown graphically to provide feedback. The examples we choose are from numerical models of extensional basins. We will first try to give each person some background information on the scientific problem from the poster and then we will let them loose on the numerical modeling tools with specific tasks to achieve. This will be an experiment in progress - we will later analyse how people use the GUI and whether there is really any significant difference between so-called experts and self-styled novices.

  17. Methods for Streamlining Intervention Fidelity Checklists: An Example from the Chronic Disease Self-Management Program

    PubMed Central

    Ahn, SangNam; Smith, Matthew Lee; Altpeter, Mary; Belza, Basia; Post, Lindsey; Ory, Marcia G.

    2015-01-01

    Maintaining intervention fidelity should be part of any programmatic quality assurance (QA) plan and is often a licensure requirement. However, fidelity checklists designed by original program developers are often lengthy, which makes compliance difficult once programs become widely disseminated in the field. As a case example, we used Stanford’s original Chronic Disease Self-Management Program (CDSMP) fidelity checklist of 157 items to demonstrate heuristic procedures for generating shorter fidelity checklists. Using an expert consensus approach, we sought feedback from active master trainers registered with the Stanford University Patient Education Research Center about which items were most essential to, and also feasible for, assessing fidelity. We conducted three sequential surveys and one expert group-teleconference call. Three versions of the fidelity checklist were created using different statistical and methodological criteria. In a final group-teleconference call with seven national experts, there was unanimous agreement that all three final versions (e.g., a 34-item version, a 20-item version, and a 12-item version) should be made available because the purpose and resources for administering a checklist might vary from one setting to another. This study highlights the methodology used to generate shorter versions of a fidelity checklist, which has potential to inform future QA efforts for this and other evidence-based programs (EBP) for older adults delivered in community settings. With CDSMP and other EBP, it is important to differentiate between program fidelity as mandated by program developers for licensure, and intervention fidelity tools for providing an “at-a-glance” snapshot of the level of compliance to selected program indicators. PMID:25964941

  18. Some illustrative examples of the use of a spectral-element method in ocean acoustics.

    PubMed

    Cristini, Paul; Komatitsch, Dimitri

    2012-03-01

    Some numerical results in the time domain obtained with the spectral-element method are presented in order to illustrate the high potential of this technique for modeling the propagation of acoustic waves in the ocean in complex configurations. A validation for a simple configuration with a known solution is shown, followed by some simulations of the propagation of acoustic waves over different types of ocean bottoms (fluid, elastic, and porous) to emphasize the wide variety of media that can be considered within the framework of this method. Finally, a movie illustrating upslope propagation over a viscoelastic wedge is presented and discussed. PMID:22423813

  19. Development and validation spectroscopic methods for the determination of lomefloxacin in bulk and pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    El-Didamony, A. M.; Hafeez, S. M.

    2016-01-01

    Four simple, sensitive spectrophotometric and spectrofluorimetric methods (A-D) for the determination of antibacterial drug lomefloxacin (LMFX) in pharmaceutical formulations have been developed. Method A is based on formation of ternary complex between Pd(II), eosin and LMFX in the presence of methyl cellulose as surfactant and acetate-HCl buffer pH 4.0. Spectrophotometrically, under the optimum conditions, the ternary complex showed absorption maximum at 530 nm. Methods B and C are based on redox reaction between LMFX and KMnO4 in acid and alkaline media. In indirect spectrophotometry method B the drug solution is treated with a known excess of KMnO4 in H2SO4 medium and subsequent determination of unreacted oxidant by reacting it with safronine O in the same medium at λmax = 520 nm. Direct spectrophotometry method C involves treating the alkaline solution of LMFX with KMnO4 and measuring the bluish green product at 604 nm. Method D is based on the chelation of LMFX with Zr(IV) to produce fluorescent chelate. At the optimum reaction conditions, the drug-metal chelate showed excitation maxima at 280 nm and emission maxima at 443 nm. The optimum experimental parameters for the reactions have been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drug in pharmaceutical preparations with good recoveries.

  20. Monte Carlo Method for Determining Earthquake Recurrence Parameters from Short Paleoseismic Catalogs: Example Calculations for California

    USGS Publications Warehouse

    Parsons, Tom

    2008-01-01

    Paleoearthquake observations often lack enough events at a given site to directly define a probability density function (PDF) for earthquake recurrence. Sites with fewer than 10-15 intervals do not provide enough information to reliably determine the shape of the PDF using standard maximum-likelihood techniques [e.g., Ellsworth et al., 1999]. In this paper I present a method that attempts to fit wide ranges of distribution parameters to short paleoseismic series. From repeated Monte Carlo draws, it becomes possible to quantitatively estimate most likely recurrence PDF parameters, and a ranked distribution of parameters is returned that can be used to assess uncertainties in hazard calculations. In tests on short synthetic earthquake series, the method gives results that cluster around the mean of the input distribution, whereas maximum likelihood methods return the sample means [e.g., NIST/SEMATECH, 2006]. For short series (fewer than 10 intervals), sample means tend to reflect the median of an asymmetric recurrence distribution, possibly leading to an overestimate of the hazard should they be used in probability calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence from limited paleoearthquake records. Further, the degree of functional dependence among parameters like mean recurrence interval and coefficient of variation can be established. The method is described for use with time-independent and time-dependent PDF?s, and results from 19 paleoseismic sequences on strike-slip faults throughout the state of California are given.

  1. Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California

    USGS Publications Warehouse

    Parsons, T.

    2008-01-01

    Paleoearthquake observations often lack enough events at a given site to directly define a probability density function (PDF) for earthquake recurrence. Sites with fewer than 10-15 intervals do not provide enough information to reliably determine the shape of the PDF using standard maximum-likelihood techniques (e.g., Ellsworth et al., 1999). In this paper I present a method that attempts to fit wide ranges of distribution parameters to short paleoseismic series. From repeated Monte Carlo draws, it becomes possible to quantitatively estimate most likely recurrence PDF parameters, and a ranked distribution of parameters is returned that can be used to assess uncertainties in hazard calculations. In tests on short synthetic earthquake series, the method gives results that cluster around the mean of the input distribution, whereas maximum likelihood methods return the sample means (e.g., NIST/SEMATECH, 2006). For short series (fewer than 10 intervals), sample means tend to reflect the median of an asymmetric recurrence distribution, possibly leading to an overestimate of the hazard should they be used in probability calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence from limited paleoearthquake records. Further, the degree of functional dependence among parameters like mean recurrence interval and coefficient of variation can be established. The method is described for use with time-independent and time-dependent PDFs, and results from 19 paleoseismic sequences on strike-slip faults throughout the state of California are given.

  2. Applying usability methods to identify health literacy issues: an example using a Personal Health Record.

    PubMed

    Monkman, Helen; Kushniruk, Andre

    2013-01-01

    The prevalence of consumer health information systems is increasing. However, usability and health literacy impact both the value and adoption of these systems. Health literacy and usability are closely related in that systems may not be used accurately if users cannot understand the information therein. Thus, it is imperative to focus on mitigating the demands on health literacy in consumer health information systems. This study modified two usability evaluation methods (heuristic evaluation and usability testing) to incorporate the identification of potential health literacy issues in a Personal Health Record (PHR). Heuristic evaluation is an analysis of a system performed by a usability specialist who evaluates how well the system abides by usability principles. In contrast, a usability test involves a post hoc analysis of a representative user interacting with the system. These two methods revealed several health literacy issues and suggestions to ameliorate them were made. Thus, it was demonstrated that usability methods could be successfully augmented for the purpose of investigating health literacy issues. To improve users' health knowledge, the adoption of consumer health information systems, and the accuracy of the information contained therein, it is encouraged that usability methods be applied with an added focus on health literacy. PMID:23388278

  3. Effects of Instruction-Supported Learning with Worked Examples in Quantitative Method Training

    ERIC Educational Resources Information Center

    Wagner, Kai; Klein, Martin; Klopp, Eric; Puhl, Thomas; Stark, Robin

    2013-01-01

    An experimental field study at a German university was conducted in order to test the effectiveness of an integrated learning environment to improve the acquisition of knowledge about empirical research methods. The integrated learning environment was based on the combination of instruction-oriented and problem-oriented design principles and…

  4. [Statistical methods for analysis of communities' species structure (with riverine macrozoobenthos as an example)].

    PubMed

    Shitikov, V K; Zinchenko, T D

    2011-01-01

    Species turnover or coherence in species co-occurrence as well as boundary clumping and nestedness in structural composition of ecological communities reflect the extent of determinancy in their organization (Leibold, Mikkelson, 2002). These phenomena may be a consequence of either interactions between species or heterogeneity in spatial distribution of populations density. We have examined statistical patterns of species structure variability using benthic communities of riverine ecosystems as an example. The ecosystems studied are characterized by strongly pronounced linear gradient of landscape features and environmental factors. The results of a long-term hydrobiological survey being conducted at 22 observational stations on the Sok River along with its tributary, the Baytugan River (Lower Volga basin, total watercourse length is 375 km) are involved into the analysis. A spreadsheet for statistical processing of the data included 375 macrozoobenthic taxa contained in 147 samples. An assessment of species structure nestedness in benthic communities at separate sites and along the watercourse as a whole has been carried out using various metrics such as nestedness "temperature" (Patterson, Atmar, 2000), discrepancy measure (Brualdi, Sanderson, 1999), nestedness based on overlap and decreasing fill (NODE--Almeida-Neto et al., 2008) and others. Statistical significance of ecosystems structural determinancy has been tested by means of randomization procedures and standard null models (Gotelli, 2000). The conclusions seem to be ambiguous and dependent on a level and scale of an ecosystem resolution into separate blocks, also on configuration and completion of initial bio-geographical tables. A searching for reliable and representative criteria of nestedness, invariant to various non-ecological modifications of the matrices but sensitive to estimation of analyzed ecological processes and suitable for comparisons of communities, is clearly needed. A quantitative estimation of species turnover and coherence in species cooccurrence has been performed using different indices of unique combinations and checkerboard score (Stone, Roberts, 1992) as well as Schluter's variance test. By means of empirical Bayesian approach (Gotelli, Ulrich, 2010) records of species pairwise combinations are formed where the frequency of species co-occurrence cannot be interpreted as a random value. Positive and negative relationships between taxa in macrozoobenthic communities, which are found out to be statistically significant, in most cases can be explained as being not the consequence of competition for resources but of spatial heterogeneity of biotopical conditions along the whole length of the watercourse. PMID:22121574

  5. EVALUATION OF EXTRACTION AND SPECTROSCOPIC METHODS FOR PB SPECIATION IN AN AMENDED SOIL

    EPA Science Inventory

    Immobilization of pyromorphite (Pbs(PO4hCI) via P amendments to Pb contaminated soils is proving to be a viable method of remediation. However, the issue of ascertaining the amount of soil Pb converted to pyromorphite is difficult in heterogeneous soil systems. Previous attempts ...

  6. Results of Bayesian methods depend on details of implementation: An example of estimating salmon escapement goals

    USGS Publications Warehouse

    Adkison, M.D.; Peterman, R.M.

    1996-01-01

    Bayesian methods have been proposed to estimate optimal escapement goals, using both knowledge about physical determinants of salmon productivity and stock-recruitment data. The Bayesian approach has several advantages over many traditional methods for estimating stock productivity: it allows integration of information from diverse sources and provides a framework for decision-making that takes into account uncertainty reflected in the data. However, results can be critically dependent on details of implementation of this approach. For instance, unintended and unwarranted confidence about stock-recruitment relationships can arise if the range of relationships examined is too narrow, if too few discrete alternatives are considered, or if data are contradictory. This unfounded confidence can result in a suboptimal choice of a spawning escapement goal.

  7. Randomization-based methods for correcting for treatment changes: examples from the Concorde trial.

    PubMed

    White, I R; Babiker, A G; Walker, S; Darbyshire, J H

    1999-10-15

    We develop analysis methods for clinical trials with time-to-event outcomes which correct for treatment changes during follow-up, yet are based on comparisons of randomized groups and not of selected groups. A causal model relating observed event times to event times that would have been observed under other treatment scenarios is fitted using the semi-parametric approach of Robins and Tsiatis (avoiding assumptions about the relationship between treatment changes and prognosis). The methods are applied to the Concorde trial of immediate versus deferred zidovudine, to investigate how the results would have differed if no participant randomized to deferred zidovudine had started treatment before reaching ARC or AIDS. We consider issues relating to model choice, non-constant treatment effects and censoring. PMID:10495460

  8. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    PubMed Central

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Drr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  9. Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan

    NASA Astrophysics Data System (ADS)

    Panet, Isabelle; Kuroishi, Yuki; Holschneider, Matthias

    2011-01-01

    With the advent of satellite gravity, large gravity data sets of unprecedented quality at low and medium resolution become available. For local, high resolution field modelling, they need to be combined with the surface gravity data. Such models are then used for various applications, from the study of the Earth interior to the determination of oceanic currents. Here we show how to realize such a combination in a flexible way using spherical wavelets and applying a domain decomposition approach. This iterative method, based on the Schwarz algorithms, allows to split a large problem into smaller ones, and avoids the calculation of the entire normal system, which may be huge if high resolution is sought over wide areas. A subdomain is defined as the harmonic space spanned by a subset of the wavelet family. Based on the localization properties of the wavelets in space and frequency, we define hierarchical subdomains of wavelets at different scales. On each scale, blocks of subdomains are defined by using a tailored spatial splitting of the area. The data weighting and regularization are iteratively adjusted for the subdomains, which allows to handle heterogeneity in the data quality or the gravity variations. Different levels of approximations of the subdomains normals are also introduced, corresponding to building local averages of the data at different resolution levels. We first provide the theoretical background on domain decomposition methods. Then, we validate the method with synthetic data, considering two kinds of noise: white noise and coloured noise. We then apply the method to data over Japan, where we combine a satellite-based geopotential model, EIGEN-GL04S, and a local gravity model from a combination of land and marine gravity data and an altimetry-derived marine gravity model. A hybrid spherical harmonics/wavelet model of the geoid is obtained at about 15 km resolution and a corrector grid for the surface model is derived.

  10. Paleohydrological methods and some examples from Swedish fluvial environments I. Cobble and boulder deposits.

    USGS Publications Warehouse

    Williams, G.P.

    1983-01-01

    Establishes approximate empirical relations for determining the minimum unit stream power, bed shear stress and mean flow velocity capable of moving cobbles and boulders on streambeds. The derived equations then are used to estimate the minimum paleoflows that could have transported the boulders of two ancient fluvial deposits in Sweden. The flow estimates are compared with those made by more conventional hydraulic methods. Bankfull flows also are estimated for one of the two deposits, using various hydraulic equations.-Author

  11. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).

    PubMed

    Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes

    2013-09-01

    Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches. PMID:23551250

  12. [Interaction between ambroxol hydrochloride and human serum albumin studied by spectroscopic and molecular modeling methods].

    PubMed

    Liang, Jing; Feng, Su-Ling

    2011-04-01

    In the present paper, the interaction between ambroxol hydrochloride (ABX) and human serum albumin (HSA) was studied under simulative physiological condition by spectroscopy and molecular modeling method. Stern-Volmer curvers at different temperatures and UV-Vis absorption spectroscopy showed that ABX quenched the fluorescence of HSA mainly through dynamic quenching mode. On the basis of the thermodynamic data, the main binding force between them is hydrophobic interaction. According to the theory of Forster non-radiation energy transfer, the binding distance between the donor and the acceptor was 3.01 nm. The effect of ABX on the conformation of HSA was analyzed by the synchronous and three-dimensional fluorescence spectroscopy. Furthermore, using the molecular modeling method, the interaction between them was predicted from molecular angle: ABX might locate in the subdomain III A of HSA. PMID:21714251

  13. A quantitative solid-state Raman spectroscopic method for control of fungicides.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2012-07-21

    A new analytical procedure using solid-state Raman spectroscopy within the THz-region for the quantitative determination of mixtures of different conformations of trifloxystrobin (EE, EZ, ZE and ZZ), tebuconazole (1), and propiconazole (2) as an effective method for the fungicide product quality monitoring programmes and control has been developed and validated. The obtained quantities were controlled independently by the validated hybrid HPLC electrospray ionization (ESI) tandem mass spectrometric (MS) and matrix-assisted laser desorption/ionization (MALDI) MS methods in the condensed phase. The quantitative dependences were obtained on the twenty binary mixtures of the analytes and were further tested on the three trade fungicide products, containing mixtures of trifloxystrobin-tebuconazole and trifloxystrobin-propiconazole, as an emissive concentrate or water soluble granules of the active ingredients. The present methods provided sufficient sensitivity as reflected by the metrologic quantities, evaluating the concentration limit of detection (LOD) and quantification (LOQ), linear limit (LL), measurement accuracy and precision, true quantity value, trueness of measurement and more. PMID:22679621

  14. A method of assessing the resilience of whole communities of children: An example from rural Australia

    PubMed Central

    2012-01-01

    Background Children living in socioeconomic disadvantage are at risk of poor mental health outcomes. In order to focus and evaluate population health programs to facilitate childrens resilience, it is important to accurately assess baseline levels of functioning. With this end in mind, the aim of this study was to test the utility of 1) a voluntary random sampling method and 2) quantitative measures of adaptation (with national normative data) for assessing the resilience of children in an identified community. Method This cross-sectional study utilized a sample of participants (N?=?309), including parents (n?=?169), teachers (n?=?20) and children (n?=?170; age range?=?5-16 years), recruited from the schools in Tenterfield; a socioeconomically disadvantaged community in New South Wales, Australia. The Strengths and Difficulties Questionnaire (SDQ; including parent, teacher and youth versions) was used to measure psychological well-being and pro-social functioning, and NAPLAN results (individual childrens and whole schools performance in literacy and numeracy) were used to measure level of academic achievement. Results The communitys disadvantage was evident in the whole school NAPLAN performance but not in the samples NAPLAN or SDQ results. The teacher SDQ ratings appeared to be more reliable than parents ratings. The voluntary random sampling method (requiring parental consent) led to sampling bias. Conclusions The key indicators of resilience - psychological well-being, pro-social functioning and academic achievement can be measured in whole communities using the teacher version of the SDQ and whole school results on a national test of literacy and numeracy (e.g., Australias NAPLAN). A voluntary random sample (dependent upon parental consent) appears to have limited value due to the likelihood of sampling bias. PMID:22559152

  15. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications.

    PubMed

    Gourvitch, Boris; Bouquin-Jeanns, Rgine Le; Faucon, Grard

    2006-10-01

    In this paper, we will present and review the most usual methods to detect linear and nonlinear causality between signals: linear Granger causality test (Geweke in J Am Stat Assoc 77:304-313, 1982) extended to direct causality in multivariate case (LGC), directed coherence (DCOH, Saito and Harashima in Recent advances in EEG and EMG data processing, Elsevier, Amsterdam, 1981), partial directed coherence (PDC, Sameshima and Baccala 1999) and nonlinear Granger causality test of Baek and Brock (in Working Paper University of Iowa, 1992) extended to direct causality in multivariate case (partial nonlinear Granger causality, PNGC). All these methods are tested and compared on several ARX, Poisson and nonlinear models, and on neurophysiological data (depth EEG). The results show that LGC, DCOH and PDC are not very robust in relation to nonlinear linkages but they seem to correctly find linear linkages if only the autoregressive parts are nonlinear. PNGC is extremely dependent on the choice of parameters. Moreover, LGC and PNGC may give misleading results in the case of causality on a spectral band, which is illustrated by our neurophysiological database. PMID:16927098

  16. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  17. Retrieval of terahertz spectroscopic signatures in the presence of rough surface scattering using wavelet methods

    NASA Astrophysics Data System (ADS)

    Arbab, M. H.; Winebrenner, D. P.; Thorsos, E. I.; Chen, A.

    2010-11-01

    Scattering of terahertz waves by surface roughness can obscure spectral signatures of chemicals at these frequencies. We demonstrate this effect using controlled levels of surface scattering on ?-lactose monohydrate pellets. Furthermore, we show an implementation of wavelet methods that can retrieve terahertz spectral information from rough surface targets. We use a multiresolution analysis of the rough-surface-scattered signal utilizing the maximal overlap discrete wavelet transform (MODWT) to extract the resonant signature of lactose. We present a periodic extension technique to circumvent the circular boundary conditions of MODWT, which can be robustly used in an automated terahertz stand-off detection device.

  18. Identification of different iron sites in ?-Ga2O3 nanoparticles by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Toloman, D.; Popa, A.; Stan, M.; Silipas, T. D.; Biris, A. R.

    2015-12-01

    This paper reports the influence of Fe doping degree (1%, 3%, 5%) on structural and optical characteristics of gallium oxide nanoparticles evidenced by XRD, Raman, UV-vis and EPR methods. XRD studies reveal a monoclinic ?-Ga2O3 structure. The lattice expansion sustains the substitutional incorporation of Fe ions in Ga2O3 host. The presence of a ?Fe2O3 secondary phase was evidenced for the samples doped with 3 and 5 % Fe only by Raman scattering. From UV-Vis absorption and EPR spectroscopy was evidenced the presence of isolated Fe3+ ions in octahedral sites, Fe2O3 particles, Fex3+Oy and oligomeric clusters.

  19. Use of recursively generated intermediates in state selective multireference coupled-cluster method: A numerical example

    SciTech Connect

    Ghose, K.B.; Adamowicz, L.

    1995-12-01

    The present work represents the first attempt to utilize the idea of recursively generated intermediates (RGI) in the framework of the state-selective multi-reference coupled-cluster method truncated at triple excitations [SS CCSD(T)]. The expressions for stepwise generation of intermediates are so structured that the spin and point symmetry simplifications can be easily applied during computation. Suitable modifications in SS CCSD(T) equations are introduced to allow for optional quasilinearization of nonlinear terms in difficult convergence situations. The computational code is, as expected, much faster than the SS CCSD(T) code without RGI adaptation. This has been numerically demonstrated by potential energy surface (PES) calculation of the HF molecule using a double zeta basis. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Frchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Frchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  1. Magnetic resonance spectroscopic methods for the assessment of metabolic functions in the diseased brain.

    PubMed

    Hall, Hlne; Cuellar-Baena, Sandra; Dahlberg, Carina; In't Zandt, Ren; Denisov, Vladimir; Kirik, Deniz

    2012-01-01

    Magnetic resonance spectroscopy (MRS) is a non-invasive technique that can be used to detect and quantify multiple metabolites. This chapter will review some of the applications of MRS to the study of brain functions. Typically, (1)H-MRS can detect metabolites reflecting neuronal density and integrity, markers of energy metabolism or inflammation, as well as neurotransmitters. The complexity of the proton spectrum has however led to the development of other nuclei-based methods, such as (31)P- and (13)C-MRS, which offer a broader chemical shift range and therefore can provide more detailed information at the level of single metabolites. The versatility of MRS allows for a wide range of clinical applications, of which neurodegeneration is an interesting target for spectroscopy-based studies. In particular, MRS can identify patterns of altered brain chemistry in Alzheimer's patients and can help establish differential diagnosis in Alzheimer's and Parkinson's diseases. Using MRS to follow less abundant neurotransmitters is currently out of reach and will most likely depend on the development of methods such as hyperpolarization that can increase the sensitivity of detection. In particular, dynamic nuclear polarization has opened up a new and exciting area of medical research, with developments that could greatly impact on the real-time monitoring of in vivo metabolic processes in the brain. PMID:22076698

  2. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method.

    PubMed

    Zhang, Hua-Xin; Xiong, Hang-Xing; Li, Li-Wei

    2016-05-15

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔH(θ)) and entropy change (ΔS(θ)) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy. PMID:26963729

  3. A spectroscopic method for identifying terrestrial biocarbonates and application to Mars

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Orofino, V.; D'Elia, M.; Fonti, S.; Mastandrea, A.; Guido, A.; Russo, F.

    2011-06-01

    Searching for traces of extinct and/or extant life on Mars is one of the major objectives for remote-sensing and in situ exploration of the planet. In previous laboratory works we have investigated the infrared spectral modifications induced by thermal processing on different carbonate samples, in the form of fresh shells and fossils of different ages, whose biotic origin is easily recognizable. The goal was to discriminate them from their abiotic counterparts. In general, it is difficult to identify biotic signatures, especially when the organisms inducing the carbonate precipitation have low fossilization potential (i.e. microbes, bacteria, archaea). A wide variety of microorganisms are implicated in carbonate genesis, and their direct characterization is very difficult to evaluate by traditional methods, both in ancient sedimentary systems and even in recent environments. In the present work we apply our analysis to problematic carbonate samples, in which there is no clear evidence of controlled or induced biomineralization. This analysis indicates a very likely biotic origin of the aragonite samples under study, in agreement with the conclusion previously reported by Guido et al. (2007) who followed a completely different approach based on a complex set of sedimentary, petrographic, geochemical and biochemical analyses. We show that our method is reliable for discriminating between biotic and abiotic carbonates, and therefore it is a powerful tool in the search for life on Mars in the next generation of space missions to the planet.

  4. Possibilities and limitations of imaging spectroscopic reflectometry in optical characterization of thin films

    NASA Astrophysics Data System (ADS)

    Ohlídal, Miloslav; Ohlidal, Ivan; Nečas, David; Vodák, Jiří; Franta, Daniel; Nádaský, Pavel; Vižd'a, František

    2015-09-01

    It is possible to encounter thin films exhibiting various defects in practice. One of these defects is area non-uniformity in optical parameters (e.g. in thickness). Therefore it is necessary to have methods for an optical characterization of nonuniform thin films. Imaging spectroscopic reflectometry provides methods enabling us to perform an efficient optical characterization of such films. It gives a possibility to determine spectral dependencies of a local reflectance at normal incidence of light belonging to small areas (37 μm × 37 μm in our case) on these non-uniform films. The local reflectance is measured by individual pixels of a CCD camera serving as a detector of an imaging spectroscopic reflectometer. It is mostly possible to express the local reflectance using formulas corresponding to a uniform thin film. It allows a relatively simple treatment of the experimental data obtained by imaging spectroscopic reflectometry. There are three methods for treating these experimental data in the special case of thickness non-uniformity, i.e. in the case of the same optical constants within a certain area of the film - single pixel imaging spectroscopic reflectometry method, combination of single-pixel imaging spectroscopic reflectometry method and conventional methods (conventional single spot spectroscopic ellipsometry and spectrophotometry), and multi-pixel imaging spectroscopic reflectometry method. These methods are discussed and examples of the optical characterization of thin films non-uniform in thickness corresponding to these methods are presented in this contribution.

  5. Identification of pyrazosulfuron-ethyl binding affinity and binding site subdomain IIA in human serum albumin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Wei; Zhang, Xi; Wu, Li-Jun; Zhang, Li; Sun, Ying

    2010-03-01

    Pyrazosulfuron-ethyl (PY) is a sulfonylurea herbicide developed by DuPont which has been widely used for weed control in cereals. The determination of PY binding affinity and binding site in human serum albumin (HSA) by spectroscopic methods is the subject of this work. From the fluorescence emission, circular dichroism and three-dimensional fluorescence results, the interaction of PY with HSA caused secondary structure changes in the protein. Fluorescence data demonstrated that the quenching of HSA fluorescence by PY was the result of the formation of HSA-PY complex at 1:1 molar ratio, a static mechanism was confirmed to lead to the fluorescence quenching. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement results show that hydrophobic patches are the major sites for PY binding on HSA. The thermodynamic parameters ? H and ? S were calculated to be -36.32 kJ mol -1 and -35.91 J mol -1 K -1, which illustrated van der Waals forces and hydrogen bonds interactions were the dominant intermolecular force in stabilizing the complex. Also, site marker competitive experiments showed that the binding of PY to HSA took place primarily in subdomain IIA (Sudlow's site I). What presented in this paper binding research enriches our knowledge of the interaction between sulfonylurea herbicides and the physiologically important protein HSA.

  6. Identification of pyrazosulfuron-ethyl binding affinity and binding site subdomain IIA in human serum albumin by spectroscopic methods.

    PubMed

    Ding, Fei; Liu, Wei; Zhang, Xi; Wu, Li-Jun; Zhang, Li; Sun, Ying

    2010-03-01

    Pyrazosulfuron-ethyl (PY) is a sulfonylurea herbicide developed by DuPont which has been widely used for weed control in cereals. The determination of PY binding affinity and binding site in human serum albumin (HSA) by spectroscopic methods is the subject of this work. From the fluorescence emission, circular dichroism and three-dimensional fluorescence results, the interaction of PY with HSA caused secondary structure changes in the protein. Fluorescence data demonstrated that the quenching of HSA fluorescence by PY was the result of the formation of HSA-PY complex at 1:1 molar ratio, a static mechanism was confirmed to lead to the fluorescence quenching. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement results show that hydrophobic patches are the major sites for PY binding on HSA. The thermodynamic parameters DeltaH degrees and DeltaS degrees were calculated to be -36.32 kJ mol(-1) and -35.91 J mol(-1)K(-1), which illustrated van der Waals forces and hydrogen bonds interactions were the dominant intermolecular force in stabilizing the complex. Also, site marker competitive experiments showed that the binding of PY to HSA took place primarily in subdomain IIA (Sudlow's site I). What presented in this paper binding research enriches our knowledge of the interaction between sulfonylurea herbicides and the physiologically important protein HSA. PMID:20064739

  7. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the 1906 surface break and at about 20 m to the east, but at lower frequencies (2-5 Hz), the guided waves show strong amplification approximately 10 m east of the 1906 surface break. We attribute the difference in amplification of guided waves to an east-dipping fault strand that merges with other strands below about 10 m depth. Vp/Vs and Poisson's ratios clearly delineate multiple fault strands about 2 km north of the mapped 1906 surface break at the SFPUC intake structure. Combining these fault-imaging methods provide a powerful set of tools for mapping fault zones in the shallow subsurface in areas of complex geology.

  8. Spectroscopic characterizations of Er doped LaPO4 submicron phosphors prepared by homogeneous precipitation method

    NASA Astrophysics Data System (ADS)

    Saltmarsh, N.; Kumar, G. A.; Kailasnath, M.; Shenoy, Vittal; Santhosh, C.; Sardar, D. K.

    2016-03-01

    Hexagonal shaped LaPO4 submicron particles doped with various concentrations of Er were successfully prepared by homogenous precipitation method using metal nitrates and ammonium phosphate. Particles of approximate particle size 125 nm and size distribution of 85 nm are obtained with good crystallinity. After heat treatment at 1200 °C for 2 h, the particles are characterized for their various optical properties such as absorption, emission, fluorescence decay and optical band gap. Optical absorption and emission data are numerically analyzed with the help of Judd-Ofelt model to evaluate various radiative spectral properties such as radiative decay rates, radiative quantum yield, emission cross-section and fluorescence branching ratios of various emission transitions. Though the radiative quantum yield of 1554 nm emission approaches the theoretical limit of 100%, the experimentally measured quantum yield is only 11% at 12 W/cm2 at 980 nm excitation power density in 2% Er doped LaPO4.

  9. Interaction Behavior Between Niclosamide and Pepsin Determined by Spectroscopic and Docking Methods.

    PubMed

    Guo, Liuqi; Ma, Xiaoli; Yan, Jin; Xu, Kailin; Wang, Qing; Li, Hui

    2015-11-01

    The interaction between niclosamide (NIC) and pepsin was investigated using multispectroscopic and molecular docking methods. Binding constant, number of binding sites, and thermodynamic parameters at different temperatures were measured. Results of fluorescence quenching and synchronous fluorescence spectroscopy in combination with three-dimensional fluorescence spectroscopy showed that changes occurred in the microenvironment of tryptophan residues and the molecular conformation of pepsin. Molecular interaction distance and energy-transfer efficiency between pepsin and NIC were determined based on Frster nonradiative energy-transfer mechanism. Furthermore, the binding of NIC inhibited pepsin activity in vitro. All these results indicated that NIC bound to pepsin mainly through hydrophobic interactions and hydrogen bonds at a single binding site. In conclusion, this study provided substantial molecular-level evidence that NIC could induce changes in pepsin structure and conformation. PMID:26410777

  10. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods

    PubMed Central

    Xu, Hongliang; Yao, Nannan; Xu, Haoran; Wang, Tianshi; Li, Guiying; Li, Zhengqiang

    2013-01-01

    This study investigated the interaction between eupatorin and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular modeling at pH 7.4. Results of UV-vis and fluorescence spectroscopies illustrated that BSA fluorescence was quenched by eupatorin via a static quenching mechanism. Thermodynamic parameters revealed that hydrophobic and electrostatic interactions played major roles in the interaction. Moreover, the efficiency of energy transfer, and the distance between BSA and acceptor eupatorin, were calculated. The effects of eupatorin on the BSA conformation were analyzed using UV-vis, CD, and synchronous fluorescence. Finally, the binding of eupatorin to BSA was modeled using the molecular docking method. PMID:23839090

  11. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultravioletvisible spectroscopy (UVvis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 9.4 nm and base length of 29.9 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  12. Interaction between deferiprone and human serum albumin: multi-spectroscopic, electrochemical and molecular docking methods.

    PubMed

    Seyed Dorraji, M S; Panahi Azar, V; Rasoulifard, M H

    2014-11-20

    The interactions between deferiprone (DEP) and human serum albumin (HSA) have been investigated systematically by fluorescence, Circular dichroism (CD) spectroscopy, UV-Vis absorption spectroscopy, electrochemistry and molecular modeling methods. The fluorescence quenching observed is attributed to the formation of a complex between HSA and DEP, and the reverse temperature effect of the fluorescence quenching has been found and discussed. The thermodynamic parameters, enthalpy changes (?H) and entropy change (?S) were calculated, according to the Van't Hoff equation. These data suggested that hydrophobic interaction was the predominant intermolecular forces stabilizing the complex, which was in good agreement with the results of molecular modeling study. The primary binding pattern is determined by hydrophobic interaction occurring in Sudlow's site I of HSA. DEP could slightly change the secondary structure and induce unfolding of the polypeptides of protein. An average binding distance of ?2.88 nm has been determined on the basis of the Frster's resonance energy theory (FRET). PMID:25159837

  13. Vibrational spectroscopic methods for the overall quality analysis of washing powders.

    PubMed

    Bittner, L K; Schönbichler, S A; Schmutzler, M; Lutz, O M D; Huck, C W

    2016-02-01

    The aim of this study was to compare and evaluate the ability of near infrared- (NIR), Raman- and attenuated-total-reflection infrared (ATR-IR) spectroscopy as tools for the identification of washing powder brands as well as for an overall quantitative analysis of all ingredients of the analyzed laundry detergents. The laundry detergents used in this work were composed of 22 different ingredients. For this purpose, principal component analysis (PCA) cluster models and partial least-squares (PLS) regression models were developed and different data pre-processing algorithms such as standard-normal-variate (SNV), multiplicative scatter correction (MSC), first derivative BCAP (db1), second derivative smoothing (ds2), smoothing Savitzky Golay 9 points (sg9) as well as different normalization procedures such as normalization between 0 and 1 (n01), normalization unit length (nle) or normalization by closure (ncl) were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the number of principal components (PCs), regression coefficient (r), Bias, Standard error of prediction (SEP), ratio performance deviation (RPD) and range error ratio (RER) for each calibration model. For each of the 22 ingredients separate calibration models were developed. Raman spectroscopy was suitable for the analysis of only two ingredients (dye transfer inhibitor 1 and surfactant 6) and it was not possible to record all Raman spectra due to high fluorescence. NIR and ATR-IR are powerful methods to analyze washing detergents with low numbers of PCs being necessary, regression coefficients of only little below 1, small Biases and SEPs compared to the range and high RPDs and RERs. PMID:26653457

  14. A new method of describing phytoplankton blooms: Examples from Helgoland Roads

    NASA Astrophysics Data System (ADS)

    Mieruch, S.; Freund, J. A.; Feudel, U.; Boersma, M.; Janisch, S.; Wiltshire, K. H.

    2010-01-01

    Phytoplankton blooms, in their pivotal position in pelagic seasonal succession require precise classification criteria in order to evaluate such parameters as bloom start, bloom timing, bloom maximum and growth rates. Such bloom parameters are linked directly to species and bloom specific features. Currently the phytoplankton bloom concept, though intuitively clear, lacks operational criteria allowing the precise definition of bloom parameters. We present a semi-quantitative method of classification of marine phytoplankton blooms based on an algorithmic estimation of several bloom descriptors computed from densely recorded phytoplankton data, like the Helgoland Roads long-term time series. Combining these descriptors we propose a novel classification scheme which may serve useful in the discussion of species fitness, competition and succession of marine algae. Special emphasis is put on the detection of the bloom start, because of its crucial importance for many current research topics, including trigger mechanisms and climate-induced temporal shifts in the context of the match/mismatch hypothesis. Visual examination of scatter plots of these parameters leads us to propose three types of blooming algae.

  15. An Internet compendium of analytical methods and spectroscopic information for monomers and additives used in food packaging plastics.

    PubMed

    Gilbert, J; Simoneau, C; Cote, D; Boenke, A

    2000-10-01

    An internet website (http:cpf.jrc.it/smt/) has been produced as a means of dissemination of methods of analysis and supporting spectroscopic information on monomers and additives used for food contact materials (principally packaging). The site which is aimed primarily at assisting food control laboratories in the European Union contains analytical information on monomers, starting substances and additives used in the manufacture of plastics materials. A searchable index is provided giving PM and CAS numbers for each of 255 substances. For each substance a data sheet gives regulatory information, chemical structures, physico-chemical information and background information on the use of the substance in particular plastics, and the food packaging applications. For monomers and starting substances (155 compounds) the infra-red and mass spectra are provided, and for additives (100 compounds); additionally proton NMR are available for about 50% of the entries. Where analytical methods have been developed for determining these substances as residual amounts in plastics or as trace amounts in food simulants these methods are also on the website. All information is provided in portable document file (PDF) format which means that high quality copies can be readily printed, using freely available Adobe Acrobat Reader software. The website will in future be maintained and up-dated by the European Commission's Joint Research Centre (JRC) as new substances are authorized for use by the European Commission (DG-ENTR formerly DGIII). Where analytical laboratories (food control or other) require reference substances these can be obtained free-of-charge from a reference collection housed at the JRC and maintained in conjunction with this website compendium. PMID:11103275

  16. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cyra?ski, Micha? K.; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jaros?aw J.; ?ukowska, Gra?yna Z.; Sporzy?ski, Andrzej

    2008-03-01

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Mller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science.

  17. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods.

    PubMed

    Cyra?ski, Micha? K; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jaros?aw J; Zukowska, Grazyna Z; Sporzy?ski, Andrzej

    2008-03-28

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293 K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Moller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science. PMID:18376948

  18. Problems in estimating self-supplied industrial water use by indirect methods, the California example

    USGS Publications Warehouse

    Burt, R.J.

    1983-01-01

    Consumptive fresh-water use by industry in California is estimated at about 230 million gallons per day, or about one-half of one percent of agricultural withdrawals in the State , and only about 1 percent of agricultural consumptive use. Therefore, a significant State-wide realignment of the total water resources could not be made by industrial conservation measures. Nevertheless, considerable latitude for water conservation exists in industry -- fresh water consumed by self-supplied industry amounts to about 40 percent of its withdrawals in California, and only about 10 to 15 percent nationally (not including power-plant use). Furthermore, where firms withdraw and consume less water there is more for others nearby to use. The main question in attempting to estimate self-supplied industrial water use in California by indirect methods was whether accurate estimates of industrial water use could be made from data on surrogates such as production and employment. The answer is apparently not. A fundamental problem was that different data bases produced variable coefficients of water use for similar industries. Much of the potential for error appeared to lie in the water data bases rather than the production or employment data. The apparent reasons are that water-use data are based on responses to questionnaires, which are prone to errors in reporting, and because the data may be aggregated inappropriately for this kind of correlation. Industries within an apparently similar category commonly use different amounts of water, both because of differences in the product and because of differences in production processes even where the end-product is similar. (USGS)

  19. PDT in the thoracic cavity: Spectroscopic methods and fluence modeling for treatment planning

    NASA Astrophysics Data System (ADS)

    Meo, Julia Lauren

    PDT for the thoracic cavity provides a promising cancer treatment modality, but improvements in treatment planning, particularly in PDT dosimetry, can be made to improve uniformity of light delivery. When a cavity of arbitrary geometry is illuminated, the fluence increases due to multiple-scattered photons, referred to as the Integrating Sphere Effect (ISE). Current pleural PDT treatment protocol at the University of Pennsylvania monitors light fluence (hereafter simply fluence, measured in W/cm2) via seven isotropic detectors sutured at different locations in thoracic cavity of a patient. This protocol monitors light at discrete locations, but does not provide a measurement of fluence for the thoracic cavity as a whole. Current calculation of light fluence includes direct light only and thus does not account for the unique optical properties of each tissue type present, which in turn affects the accuracy of the calculated light distribution in the surrounding tissue and, in turn, the overall cell death and treatment efficacy. Treatment planning for pleural PDT can be improved, in part, by considering the contribution of scattered light, which is affected by the two factors of geometry and in vivo optical properties. We expanded the work by Willem Star in regards to the ISE in a spherical cavity. A series of Monte Carlo (MC) simulations were run for semi-infinite planar, spherical, and ellipsoidal geometries for a range of optical properties. The results of these simulations are compared to theory and numerical solutions for fluence in the cavity and at the cavity-medium boundary. The development via MC simulations offers a general method of calculating the required light fluence specialized to each patient, based on the treatment surface area. The scattered fluence calculation is dependent on in vivo optical properties (?a and ?s') of the tissues treated. Diffuse reflectance and fluorescence spectroscopy methods are used to determine the optical properties and oxygenation (reflectance measurements) and drug concentration (fluorescence measurements) of different tissues in vivo, before and after treatment, in patients enrolled the Phase I HPPH study ongoing at the University of Pennsylvania. This work aims to provide the building blocks essential to pleural PDT treatment planning by more accurately calculating the required fluence using a model that accounts for the effects of treatment geometry and optical properties measured in vivo.

  20. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  1. Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods.

    PubMed

    Shen, Liangliang; Xu, Hong; Huang, Fengwen; Li, Yi; Xiao, Huafeng; Yang, Zhen; Hu, Zhangli; He, Zhendan; Zeng, Zheling; Li, Yinong

    2015-01-25

    Ligupurpuroside A is one of the major glycoside in Ku-Din-Cha, a type of Chinese functional tea. In order to better understand its digestion and metabolism in humans, the interaction between Ligupurpuroside A and pepsin has been investigated by fluorescence spectra, UV-vis absorption spectra and synchronous fluorescence spectra along with molecular docking method. The fluorescence experiments indicate that Ligupurpuroside A can effectively quench the intrinsic fluorescence of pepsin through a combined quenching way at the low concentration of Ligupurpuroside A, and a static quenching procedure at the high concentration. The binding constant, binding sites of Ligupurpuroside A with pepsin have been calculated. The thermodynamic analysis suggests that non-covalent reactions, including electrostatic force, hydrophobic interaction and hydrogen bond are the main forces stabilizing the complex. According to the Frster's non-radiation energy transfer theory, the binding distance between pepsin and Ligupurpuroside A was calculated to be 3.15 nm, which implies that energy transfer occurs between pepsin and Ligupurpuroside A. Conformation change of pepsin was observed from UV-vis absorption spectra and synchronous fluorescence spectra under experimental conditions. In addition, all these experimental results have been validated by the protein-ligand docking studies which show that Ligupurpuroside A is located in the cleft between the domains of pepsin. PMID:25078459

  2. Conformational studies of dammarane-type triterpenoids using computational and NMR spectroscopic methods.

    PubMed

    Shin, Byong-Kyu; Lee, Jihyung; Choi, Tae Hoon

    2015-12-01

    Natural triterpenoids are of great interest to researchers of various fields as they possess diverse physicochemical and biological properties. In medicinal chemistry, detailed information about the chemical structures of bioactive triterpenoids often helps find new lead compounds. Herein, the low-energy structures of (20S)-protopanaxadiol and (20S)-protopanaxatriol, the aglycones of various triterpenoid saponins found in Panax ginseng, and their (20R)-epimers have been predicted by the geometry optimization of the conformers extracted from molecular dynamics simulations with the self-consistent-charge density functional tight-binding method. By performing quantum mechanical calculations on the low-energy conformers, we have estimated the NMR chemical shifts of the compounds, which display good agreement with the most recently reported experimental values within an expected range of errors. Our results indicate that theoretical estimation of the NMR parameters of a relatively large molecule with a molecular mass of 500 is feasible. Copyright 2015 John Wiley & Sons, Ltd. PMID:26249364

  3. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method.

    PubMed

    Muthu, S; Prabhakaran, A

    2014-08-14

    In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm(-1) to 100 cm(-1) and 4000 cm(-1) to 400 cm(-1) respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the ?(*) and ?(*) antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase. PMID:24747330

  4. A method for the quantitative gamma spectroscopic analysis of an unusually shaped unknown source.

    PubMed

    Kearfott, Kimberlee J; Dewey, Steven C

    2009-02-01

    An unmarked cylindrical device, identified as a ceramic high voltage capacitor, needed its radioactivity assessed so that proper disposal and shipping requirements could be met. Using a high purity germanium detector, naturally occurring 232Th was identified as the source of radioactivity. A series of point source measurements was made along the length of the item's axis using 60Co, having a gamma ray of nearly the same energy as one of the primary 232Th progeny photopeaks. These measurements were then numerically integrated to determine the response of the detector to a line source. A correction for the self shielding of the item was estimated using Monte Carlo simulations. The item was found to contain approximately 1.85 x 10(5) Bq of uniformly distributed 232Th. The overall method has application to any unusually shaped source, with point source measurements performed using an appropriate radionuclide used to establish an overall sensitivity of the detector, including its dead layer, to the radioactivity in a simple geometric representation of the object. An estimation of self shielding from Monte Carlo is then applied to that result. PMID:19125054

  5. Studies on the interactions of kaempferol to calcineurin by spectroscopic methods and docking.

    PubMed

    Lei, Hong; Qi, Yao; Jia, Zhi-Guang; Lin, Wei-Lin; Wei, Qun

    2009-08-01

    Kaempferol, in our previous study, was a new immunosuppressant on calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependent protein phosphatase. Here, we examined the interactions of kaempferol with CN by fluorescence spectroscopy (FS), circular dichroism spectroscopy (CD) and docking. Data of kaempferol with CN catalytic subunit (CN A) and its truncated mutant CNAa obtained by FS method showed that the binding stoichiometry of kaempferol/CN A was 1:1, catalytic domain of CN A was the concrete domain for kaempferol binding while other domains contributed a lot to this binding. Distances from kaempferol to each tryptophan (Trp) in CN A by energy transfer experiments and the subsequent docking study interestingly provided the same binding sites for kaempferol, which all located in the non-active site area of CN A catalytic domain, also consisted with our previous conclusion from CN activity assay. Furthermore, CD results showed a much tighter structure of CN A for the inhibitor binding; on the other hand, presence of Ca(2+) and Mn(2+) decreased kaempferol binding on CN A. PMID:19439201

  6. Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods

    NASA Astrophysics Data System (ADS)

    Shen, Liangliang; Xu, Hong; Huang, Fengwen; Li, Yi; Xiao, Huafeng; Yang, Zhen; Hu, Zhangli; He, Zhendan; Zeng, Zheling; Li, Yinong

    2015-01-01

    Ligupurpuroside A is one of the major glycoside in Ku-Din-Cha, a type of Chinese functional tea. In order to better understand its digestion and metabolism in humans, the interaction between Ligupurpuroside A and pepsin has been investigated by fluorescence spectra, UV-vis absorption spectra and synchronous fluorescence spectra along with molecular docking method. The fluorescence experiments indicate that Ligupurpuroside A can effectively quench the intrinsic fluorescence of pepsin through a combined quenching way at the low concentration of Ligupurpuroside A, and a static quenching procedure at the high concentration. The binding constant, binding sites of Ligupurpuroside A with pepsin have been calculated. The thermodynamic analysis suggests that non-covalent reactions, including electrostatic force, hydrophobic interaction and hydrogen bond are the main forces stabilizing the complex. According to the Frster's non-radiation energy transfer theory, the binding distance between pepsin and Ligupurpuroside A was calculated to be 3.15 nm, which implies that energy transfer occurs between pepsin and Ligupurpuroside A. Conformation change of pepsin was observed from UV-vis absorption spectra and synchronous fluorescence spectra under experimental conditions. In addition, all these experimental results have been validated by the protein-ligand docking studies which show that Ligupurpuroside A is located in the cleft between the domains of pepsin.

  7. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer

    2010-05-01

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  8. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Prabhakaran, A.

    2014-08-01

    In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the ?* and ?* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  9. Using new luminescence methods to date the Palaeolithic: the example of Kalambo Falls

    NASA Astrophysics Data System (ADS)

    Duller, Geoff; Tooth, Stephen; Barham, Larry

    2013-04-01

    The Palaeolithic site of Kalambo Falls in the north of Zambia was the subject of detailed study by J.D. Clark in the 1950s with 4 excavations being located within 1 km of each other in a basin upstream of the falls. A rich palaeolithic tool record was recovered, but the value of this record was limited by the lack of chronological information available. In 2006, one of the excavation sites was re-investigated (Barham et al., 2009), including examination of the stratigraphic context and collection of samples for luminescence dating. Many of the sediments in the Kalambo basin were deposited by fluvial activity. Dose distributions in the single grain quartz optically stimulated luminescence (OSL) measurements of the youngest sediments are consistent with incomplete bleaching. However, the residual doses obtained are typically less than 10 Gy, and so for older sediments the impact of incomplete bleaching becomes insignificant. The oldest samples are affected by a different problem, namely saturation of the OSL signal, and many grains are saturated. However in all cases some grains give finite equivalent dose values, making it feasible to calculate single grain quartz OSL ages, but it is difficult to assess whether these ages are reliable or not. Thermally transferred OSL (TT-OSL) from quartz is able to date much older samples due to the high saturation dose of this signal (Duller and Wintle, 2012). Comparison of the TT-OSL and OSL demonstrates that the OSL signal yields age underestimates as samples near saturation. Only by using the two luminescence methods is it possible to create an absolute chronology for this key site stretching back over half a million years. This study demonstrates the potential of using these two luminescence signals together for dating Palaeolithic sites throughout Africa and beyond. Barham, L., Duller, G. A. T., Plater, A. J., Tooth, S. and Turner, S. (2009). Recent excavations at Kalambo Falls, Zambia. Antiquity 83(322). Duller, G. A. T. and Wintle, A. G. (2012). The potential of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology 7: 6-20.

  10. Quantification of sediment supply : a method and an example from Triassic of Western European basins

    NASA Astrophysics Data System (ADS)

    Peron, S.; Bourquin, S.; Duran, M.; Fluteau, F.; Guillocheau, F.

    2003-04-01

    Triassic is a key period of Earth history, with tectonic, climatic and eustatic events. It corresponds to (i) the initial fragmentation of the Pangea, (ii) a transition from Paleozoic ice house to Mesozoic green house, (iii) a sea-level rise from Upper Triassic, followed by an eustatic fall during Lias. This special geological setting has led to the formation of large Mesozoic basins, mainly characterized by a continental sedimentation, with fluvial and/or evaporitic environments, well-conserved in Pangean supercontinent. This Triassic specificity implies a total free space for sedimentation, i.e. accommodation (A), balanced with an important sediment supply (S), as SgeA.The purpose of this study is to develop a good methodology for understanding the S parameter in past geological systems, as Triassic. Firstly, by considering three key periods of Triassic : (1) the Lower Scythian, (2) the Lower Ladinian, (3) the Carnian-Norien ; we have realized paleogeographic and paleotopographic maps either for Western Europe or entire world. These reconstructions allow us to precise (i) erosional or sedimentary areas, (ii) coastal lines and sebkha boundaries, (iii) river basins and continental systems associated. Moreover, by using an atmospheric general circulation model (AGCM), we are actually simulating the climatic response by applying data of maps for Triassic European areas. By this way, we are able to obtain different parameters of climate (rainfall, temperature variations,...) in order to test the effect on topography, evaporitic plains and climate interactions. In parallel, paleoenvironmental maps allow us to separate three main fluvial systems developed during the Triassic period : (1) larged braided alluvial systems in vast endoreic basins that characterize the transitional stage between the Zeichstein system (Permian) and the Tethyan system (Triassic) ; (2) anastomosed systems whose preservation is controlled by sea-level (Anisian and Middle Carnian) ; (3) alluvial fans/lacustrine mixed systems, whose base-level is locally controlled by a lake but topography and local tectonic play a major role in the formation of these systems (Norian). A SW-NE transect and lithologies surimposed on isopach maps are also realized for the Buntsandstein (Scythian to Lower Anisian), from the Paris Basin to North Sea, via German Basin. It allows us to realize (i) high-resolution sequence stratigraphy correlations with surimposed paleoenvironements, and (ii) a quantification of siliciclastic volumes (sand/shale) for each stratigraphic interval. This integrated method has for ultimate question to understand the role of sediments supplies (S parameter) in stratigraphic architecture acquisition and fluviatil systems evolution.

  11. IR spectroscopic methods for the investigation of the CO release from CORMs.

    PubMed

    Klein, Moritz; Neugebauer, Ute; Gheisari, Ali; Malassa, Astrid; Jazzazi, Taghreed M A; Froehlich, Frank; Westerhausen, Matthias; Schmitt, Michael; Popp, Jrgen

    2014-07-24

    Carbon monoxide (CO) is a toxic gas for mammals, and despite this fact, it is naturally produced in these organisms and has been proven to be beneficial in medical treatments, too. Therefore, CO-releasing molecules (CORMs) are intensively developed to administer and dose CO for physiological applications. Nearly all of these compounds are metal carbonyl complexes, which have been synthesized and investigated. However, for most of these CORMs, the exact reaction mechanisms of CO release is not completely elucidated, although it is of utmost importance. The widely used myoglobin assay for testing the CO release has several disadvantages, and therefore, different methods have to be applied to characterize CORMs. In this work, different setups of IR absorption spectroscopy are used to analyze and quantify the CO release during the decay of various CORMs: IR spectroscopy of the gas phase is applied to follow the CO liberation, and attenuated total reflection (ATR) IR spectroscopy is used to record the decay of the metal carbonyl. IR spectroscopy supported by DFT calculations yields valuable insights in the CO release reaction mechanism. The focus is set on two different CORMs: CORM-2 (Ru2(CO)(6)Cl(4)) and on the photoactive CORM-S1 (photoCORM [Fe(CO)2(SCH2CH2NH2)2]). Our results indicate that the CO liberation from CORM-2 strongly depends on sodium dithionite, which is required for the commonly applied myoglobin assay and that CORM-S1 loses all its bound CO molecules upon irradiation with blue light. PMID:24978105

  12. A REVISED METHOD FOR ESTIMATING OXIDE BASICITY PER THE SMITH SCALE WITH EXAMPLE APPLICATION TO GLASS DURABILITY

    SciTech Connect

    REYNOLDS JG

    2011-07-27

    Previous researchers have developed correlations between oxide electronegativity and oxide basicity. The present paper revises those correlations using a newer method of calculating electronegativity of the oxygen anion. Basicity is expressed using the Smith {alpha} parameter scale. A linear relation was found between the oxide electronegativity and the Smith {alpha} parameter, with an R{sup 2} of 0.92. An example application of this new correlation to the durability of high-level nuclear waste glass is demonstrated. The durability of waste glass was found to be directly proportional to the quantity and basicity of the oxides of tetrahedrally coordinated network forming ions.

  13. Development of a Tunable Laser Spectroscopic Method for Determining Multiple Sulfur Isotope Composition of Nanomoles of SO2

    NASA Astrophysics Data System (ADS)

    Guo, W.; Christensen, L. E.

    2013-12-01

    Multiple sulfur isotope (32S, 33S, 34S, 36S) analyses of geological material provide important constraints on the sulfur cycles on Earth [1] and other planetary bodies, e.g., Mars [2]. However, most current multiple sulfur isotope measurements are performed on magnetic sector isotope ratio mass spectrometers (IRMS) and thus require relatively large sample size (usually about several micromoles of sulfur, except the MC-ICPMS and SIMS methods) and time-consuming sample preparation procedures. More importantly, these IRMS methods demand relatively sophisticated instrumentation, and are not ideal for field measurements or flight missions. In contrast, laser spectroscopic methods provide opportunities for significantly reducing the sample size requirement and enabling real-time monitoring in the field, and have been proven to be of great importance in the isotopic measurements of many molecules in nature, e.g. CO2, H2O, N2O, CH4. Based on a prototype built for measuring ?34S of SO2 [3], we're developing a new tunable laser spectrometer (TLS) for simultaneously determining the ?34S and ?33S of nanomoles of pure SO2. We have identified a new spectral window (<1 cm-1 wide) suitable for measuring 32SO2, 33SO2, 34SO2 simultaneously. Ongoing work focuses on increasing the optical path length of the analysis cell and determining the optimal analytical conditions, with the goal of achieving ?0.5 precision in both ?34S and ?33S over 30 seconds of analysis duration of ~20 nmol of pure SO2. Progress of these developments and comparison with conventional IRMS methods will be presented at the meeting. As a case study, we will also present preliminary TLS results from laboratory low pressure SO2 UV photolysis experiments where ?34S and ?33S of the residual SO2 are expected to decrease as the photolysis proceeds [4]. Future developments of this method will involve the coupling of a sample introduction system to enable multiple sulfur isotope analysis of samples other than pure SO2 [3]. [1] Johnston (2011) Earth Sci. Rev. 106, 161-183; [2] Farquhar et al. (2000) Nature. 404, 50-52; [3] Christensen et al. (2007) Anal. Chem. 79, 9261-9268; [4] Guo et al. (2010) Geochim. Cosmochim. Acta. 74, A366.

  14. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  15. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods

    PubMed Central

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  16. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  17. Simulation of a method for determining one-dimensional 137 Cs distribution using multiple gamma spectroscopic measurements with an adjustable cylindrical collimator and center shield.

    PubMed

    Whetstone, Z D; Dewey, S C; Kearfott, K J

    2011-05-01

    With multiple in situ gamma spectroscopic measurements obtained with an adjustable cylindrical collimator and a circular shield, the arbitrary one-dimensional distribution of radioactive material can be determined. The detector responses are theoretically calculated, field measurements obtained, and a system of equations relating detector response to measurement geometry and activity distribution solved to estimate the distribution. This paper demonstrates the method by simulating multiple scenarios and providing analysis of the system conditioning. PMID:21310624

  18. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    PubMed

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates. PMID:26579896

  19. Development of multidimensional HPLC and atomic spectroscopic methods for the separation and determination of metal compounds in petroleum

    SciTech Connect

    Danna, M.R.

    1986-01-01

    The research presented in this thesis focused on two goals: (1) to develop a direct method for metal determinations in fuels; and (2) to utilize this method in conjunction with a chromatographic separation to produce metal speciation information. A four step approach was taken to achieve these goals. Initially a column chromatographic technique, sequential elution solvent chromatography (SESC), was employed to separate the residual fuel being studied into nine compound class fractions. The question of how the chromatographic behavior of metal-containing compounds compares to that of nonmetal-containing analogs was investigated by subjecting metal-containing complexes to SESC. The fuel fractions were then analyzed by a direct atomic absorption technique, which was developed as the second part of this research. These results were used to produce metal distribution profiles, according to compound class. In the third part of this work, the SESC fractions were further characterized by HPLC techniques. This work included single-column, size-exclusion and normal phase separations. A computer-controlled multidimensional HPLC system, which was developed in this laboratory, was employed to develop methods applicable to this research. An example is the mode-coupling of a size-exclusion column with a reverse-phase column to produce a size polarity matrix. The final step of this project involved the interface of the HPLC to an element-specific detector. This was investigated for both an atomic absorption spectrometer and an inductively-coupled plasma optical emission spectrometer.

  20. Infrared spectroscopic method for analysis of Mg 2Ca(SO 4) 3 in mixtures with MgSO 4 and/or CaSO 4

    NASA Astrophysics Data System (ADS)

    Smith, Duane H.; Seshadri, Kal S.

    1999-04-01

    Mg 2Ca(SO 4) 3 is prepared from, and may be found in, mixtures with MgSO 4 and CaSO 4. Such mixtures frequently occur in the ash produced by various types of coal combustion, especially in filter cakes from pressurized fluidized bed combustion with dolomite as a SO x sorbent. Previously, qualitative analyses could be performed for Mg 2Ca(SO 4) 3 in these mixtures, but no quantitative analytical method was available. An infrared spectroscopic method has been developed that provides reasonably quantitative results for Mg 2Ca(SO 4) 3, MgSO 4,and CaSO 4 in their mixtures.

  1. Raman spectroscopic analysis of human tissue engineered oral mucosa constructs (EVPOME) perturbed by physical and biochemical methods

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Ganguly, Arindam; Raghavan, Mekhala; Kuo, Shiuhyang; Cole, Jacqueline H.; Marcelo, Cynthia L.; Feinberg, Stephen E.; Izumi, Kenji; Morris, Michael D.

    2012-01-01

    We show the application of near-infrared Raman Spectroscopy to in-vitro monitoring of the viability of tissue constructs (EVPOMEs). During their two week production period EVPOME may encounter thermal, chemical or biochemical stresses that could cause development to cease, rendering the affected constructs useless. We discuss the development of a Raman spectroscopic technique to study EVPOMEs noninvasively, with the ultimate goal of applying it in-vivo. We identify Raman spectroscopic failure indicators for EVPOMEs, which are stressed by temperature, and discuss the implications of varying calcium concentration and pre-treatment of the human keratinocytes with Rapamycin. In particular, Raman spectra show correlation of the peak height ratios of CH2 deformation to phenylalanine ring breathing, providing a Raman metric to distinguish between viable and nonviable constructs. We also show the results of singular value decomposition analysis, demonstrating the applicability of Raman spectroscopic technique to both distinguish between stressed and non-stressed EVPOME constructs, as well as between EVPOMEs and bare AlloDerm substrates, on which the oral keratinocytes have been cultured. We also discuss complications arising from non-uniform thickness of the AlloDerm substrate and the cultured constructs, as well as sampling protocols used to detect local stress and other problems that may be encountered in the constructs.

  2. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Liang, Ming; Chu, Fulei

    2013-07-01

    Nonstationary signal analysis is one of the main topics in the field of machinery fault diagnosis. Time-frequency analysis can identify the signal frequency components, reveals their time variant features, and is an effective tool to extract machinery health information contained in nonstationary signals. Various time-frequency analysis methods have been proposed and applied to machinery fault diagnosis. These include linear and bilinear time-frequency representations (e.g., wavelet transform, Cohen and affine class distributions), adaptive parametric time-frequency analysis (based on atomic decomposition and time-frequency auto-regressive moving average models), adaptive non-parametric time-frequency analysis (e.g., Hilbert-Huang transform, local mean decomposition, and energy separation), and time varying higher order spectra. This paper presents a systematic review of over 20 major such methods reported in more than 100 representative articles published since 1990. Their fundamental principles, advantages and disadvantages, and applications to fault diagnosis of machinery have been examined. Some examples have also been provided to illustrate their performance.

  3. Spectroscopic detection

    DOEpatents

    Woskov, Paul P. (Bedford, MA); Hadidi, Kamal (Cambridge, MA)

    2003-01-01

    In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.

  4. Organic matter characterization by infrared spectroscopic methods in lake sediment records from boreal and subarctic Sweden: Implications for long-term carbon cycling

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, Carsten; Rosn, Peter; Bindler, Richard

    2013-04-01

    Freshwater systems play an important role in the global carbon cycle. In this dynamic system, inorganic and organic carbon can be incorporated into biota, effluxed to the atmosphere or accumulated in sediments. The amount and composition of the carbon, derived from both aquatic and terrestrial sources, accumulated in sediments depend on the climatic and environmental conditions present in the lake and its catchment, and are thus sensitive to changes in, e.g., temperature, precipitation, vegetation and hydrological flow patterns. In this study, we show the application of infrared spectroscopic methods to qualitatively and quantitatively characterize organic matter stored in lake sediments with a focus on changes in the source of terrestrial-derived organic matter. Infrared spectroscopic methods facilitate a fast, cost-efficient and non-destructive analysis of minerogenic as well as organic sediment components. We applied three different infrared spectroscopic analyses - visible-near infrared spectroscopy (VNIRS; 25000-4000 cm-1), Fourier-transform infrared spectroscopy in the mid-IR region (FTIR; 3750-400 cm-1) and a combined Fourier-transformed infrared - thermal programmed desorption technique (FTIR-TPD; 3750-400 cm-1) - to Holocene sediment records from two Swedish lakes, Lng-lgsjn and Lake Koukkel, to reconstruct past changes in the organic matter composition. The infrared spectral information of these records indicate sections of different organic matter composition reflecting varying stages of the lake and landscape development. An early-Holocene mire development around the boreal lake Lng-lgsjn led to an increased input of organic matter from the catchment into the lake initiating an early natural lake acidification, whereas the subarctic Lake Koukkel has been affected by mire and potentially late-Holocene permafrost dynamics, which caused an increased and less variable input of allochthonous organic matter. Overall, variations in organic matter composition seem mainly driven by changes in the landscape rather than any direct effects of successive climate changes. Our findings emphasize that infrared spectroscopic methods are a promising tool for the fast and cost-effective characterization of organic matter in sediment samples, particularly with regard to the detection of qualitative differences between samples. An improved understanding of past variations in the organic matter composition and the related processes driving these changes is essential to further understand the interactions in the carbon cycle between the terrestrial and aquatic systems.

  5. Extraction of weak PcP phases using the slant-stacklet transform - I: method and examples

    NASA Astrophysics Data System (ADS)

    Ventosa, Sergi; Romanowicz, Barbara

    2015-04-01

    In order to study fine scale structure of the Earth's deep interior, it is necessary to extract generally weak body wave phases from seismograms that interact with various discontinuities and heterogeneities. The recent deployment of large-scale dense arrays providing high-quality data, in combination with efficient seismic data processing techniques, may provide important and accurate observations over large portions of the globe poorly sampled until now. Major challenges are low signal-to-noise ratios (SNR) and interference with unwanted neighbouring phases. We address these problems by introducing scale-dependent slowness filters that preserve time-space resolution. We combine complex wavelet and slant-stack transforms to obtain the slant-stacklet transform. This is a redundant high-resolution directional wavelet transform with a direction (here slowness) resolution that can be adapted to the signal requirements. To illustrate this approach, we use this expansion to design coherence-driven filters that allow us to obtain clean PcP observations (a weak phase often hidden in the coda of the P wave), for events with magnitude Mw > 5.4 and distances up to 80°. In this context, we then minimize a linear misfit between P and PcP waveforms to improve the quality of PcP-P traveltime measurements as compared to a standard cross-correlation method. This significantly increases both the quantity and the quality of PcP-P differential traveltime measurements available for the modelling of structure near the core-mantle boundary. The accuracy of our measurements is limited mainly by the highest frequencies of the signals used and the level of noise. We apply this methodology to two examples of high-quality data from dense arrays located in north America. While focusing here on body-wave separation, the tools we propose are more general and may contribute to enhancing seismic signal observations in global seismology in situations of low SNR and high signal interference.

  6. Empirical evaluation of decision support systems: Needs, definitions, potential methods, and an example pertaining to waterfowl management

    USGS Publications Warehouse

    Sojda, R.S.

    2007-01-01

    Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verification is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is examining whether the system is realistic and useful to the user or decision maker, and should answer the question: “Was the system successful at addressing its intended purpose?” A rich literature exists on verification and validation of expert systems and other artificial intelligence methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.

  7. Sorption of selenium oxyanions on TiO2 (rutile) studied by batch or column experiments and spectroscopic methods.

    PubMed

    Svecova, Lenka; Dossot, Manuel; Cremel, Sbastien; Simonnot, Marie-Odile; Sardin, Michel; Humbert, Bernard; Den Auwer, Christophe; Michot, Laurent J

    2011-05-30

    Selenium is a known toxic element released in the environment by anthropogenic activities. The present study is devoted to the aqueous sorption behaviour of selenium oxyanions (selenate and selenite) on a reference oxide surface, namely rutile TiO(2). Batch sorption kinetics and isotherms have been studied using different physico-chemical conditions of the solution (changes of pH and ionic strength). The sorption was favoured for both anions in acidic conditions, in agreement with a surface complexation mechanism and CD-MUSIC predictions. Spectroscopic investigations of the sorbed rutile powder were also consistent with such a mechanism. EXAFS spectra confirmed that for selenite anions, an inner-sphere mechanism was the most probable process observed. Dynamic sorption experiments using a column filled with rutile powder also substantiated that a part of the surface complexes follows the inner-sphere mechanism, but also evidenced that an outer-sphere mechanism cannot be excluded, especially for selenate anions. PMID:21458156

  8. A Single Chiroptical Spectroscopic Method May Not Be Able To Establish the Absolute Configurations of Diastereomers: Dimethylesters of Hibiscus and Garcinia Acids

    PubMed Central

    Polavarapu, Prasad L.; Donahue, Emily A.; Shanmugam, Ganesh; Scalmani, Giovanni; Hawkins, Edward K.; Rizzo, Carmelo; Ibnusaud, Ibrahim; Thomas, Grace; Habel, Deenamma; Sebastian, Dellamol

    2013-01-01

    Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), and vibrational circular dichroism (VCD) spectra of hibiscus acid dimethyl ester have been measured and analyzed in combination with quantum chemical calculations of corresponding spectra. These results, along with those reported previously for garcinia acid dimethyl ester, reveal that none of these three (ECD, ORD, or VCD) spectroscopic methods, in isolation, can unequivocally establish the absolute configurations of diastereomers. This deficiency is eliminated when a combined spectral analysis of either ECD and VCD or ORD and VCD methods is used. It is also found that the ambiguities in the assignment of absolute configurations of diastereomers may also be overcome when unpolarized vibrational absorption is included in the spectral analysis. PMID:21568330

  9. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments.

    PubMed

    Stach, Robert; Pejcic, Bobby; Crooke, Emma; Myers, Matthew; Mizaikoff, Boris

    2015-12-15

    The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels. PMID:26599809

  10. X-ray spectroscopic methods in the studies of nonstoichiometric TiO2-x thin films

    NASA Astrophysics Data System (ADS)

    Kollbek, K.; Sikora, M.; Kapusta, Cz.; Szlachetko, J.; Zakrzewska, K.; Kowalski, K.; Radecka, M.

    2013-09-01

    X-ray spectroscopic techniques have been used in the studies of electronic and structural properties of nonstoichiometric TiO2-x thin films obtained by reactive sputtering from Ti target. Films characterisation has been completed by means of X-ray diffraction in grazing incidence, GID, UV Raman and impedance spectroscopy, optical spectrophotometry, 1s3p Resonant X-ray Emission Spectroscopy, RXES, and X-ray Photoelectron Spectroscopy, XPS. Stoichiometric thin films of TiO2 are composed of a well-crystallised anatase-rutile mixture with the predominance of anatase while the films with higher oxygen deficit are amorphous to larger extent. Oxidation state changes from Ti4+ in stoichiometric films towards Ti3+ upon increasing departure from stoichiometric composition. This change is accompanied by the significant decrease in the electrical resistivity. The comparison of band gap energies, determined independently from optical and valence band X-ray absorption/emission spectra is good assuming direct allowed transitions.

  11. Hybrid coupled cluster methods based on the split virtual orbitals: barrier heights of reactions and spectroscopic constants of open-shell diatomic molecules.

    PubMed

    Kou, Zhuangfei; Shen, Jun; Xu, Enhua; Li, Shuhua

    2013-01-24

    We report an efficient implementation of the coupled cluster (CC) singles, doubles, and a hybrid treatment of triples based on the split virtual orbitals (SVO-CCSD(T)-h) method [J. Chem. Phys.2012, 136, 044101]. In this approach, virtual orbitals are split into two subsets, and correspondingly triple excitations are divided into active and inactive subsets. The active triple excitations are treated with the CCSDt (CC singles, doubles, and active triples) method, while the inactive triple excitations are treated with the CCSD(T) (CC singles, doubles, and perturbative triples) method. In the present work, the use of semicanonical molecular orbitals allows the CCSD(T)-like equations in SVO-CCSD(T)-h to be solved without iteration. As a result, the present SVO-CCSD(T)-h scheme does not need a large disk space to store the large number of triple excitation amplitudes, which is required by the original scheme. Test applications indicate that the present method can give results almost identical to those of the original scheme. The present method is then applied to investigate the reaction barriers for a number of simple reactions and spectroscopic constants including the equilibrium bond lengths and vibrational frequencies in several open-shell diatomic molecules. The SVO-CCSD(T)-h method is demonstrated to provide a significant improvement upon the CCSD(T) method in many cases. PMID:23270485

  12. Shining examples

    SciTech Connect

    Flavin, C.; O`Meara, M.

    1997-05-01

    Creative financing for setting up individual solar power systems and energy efficient appliances is beginning to come of age in developing countries. This article describes the practical implementation of such solar energy financing as well as the broader implications, using India, Indonesia and the Dominican Republic as examples. Also included is a discussion of the government and publically supported organizations which are encouraging solar energy use and realistic financing.

  13. Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods.

    PubMed

    Yang, Jian; Lv, Baoyi; Zhang, Jie; Xing, Meiyan

    2014-02-01

    This work illustrated the effects of earthworm in vermicomposting (Eisenia fetida) by determining the water-extracts through chemical and spectroscopic methods. A field experiment with sludge as the only feed was subjected to vermicomposting and the control (without worms) for three weeks. Compared to the control, vermicomposting resulted in lower pH and water-extractable organic carbon (WEOC) along with higher electrical conductivity (EC). Moreover, vermicomposting caused nearly two times higher content of water-extractable nitrate (WEN-NO3(-)) than the control. Furthermore, fourier transform infrared spectra (FT-IR) revealed that vermicomposting promoted the hydrolysis/transformation of macromolecular organic matters and accelerated the degradation of polysaccharide-like and protein-like materials. Fluorescence spectroscopy also reflected vermicomposting led to higher humification degree than the control. In all, this study supplies a new view to assess the roles of earthworm in vermicomposting of sewage sludge by evaluating the water extracts. PMID:24384315

  14. Spectroscopic evaluation of thymol dissolved by different methods and influence on acaricidal activity against larvae of Rhipicephalus microplus (Acari: Ixodidae).

    PubMed

    Daemon, Erik; Monteiro, Caio Mrcio Oliveira; Maturano, Ralph; Senra, Tatiane Oliveira Souza; Calmon, Fernanda; Faza, Aline; de Azevedo Prata, Mrcia Cristina; Georgopoulos, Stfanos Leite; de Oliveira, Luiz Fernando Cappa

    2012-11-01

    The acaricidal activity of three thymol formulations was investigated at five concentrations (1.25, 2.5, 5.0, 7.5, and 10.0 mg/ml) on Rhipicephalus microplus larvae, and the behavior of its solubility in these formulations was analyzed. The thymol was dissolved in distilled water plus 1 % dimethylsulfoxide as adjuvant under two heating regimes (water bath in formulation 1 and hot plate in formulation 2) as well as without heating in 50 % ethanol and 50 % water (v/v). The acaricidal activity was assessed by the modified larval packet test, and the solubilization behavior was investigated by ultraviolet-visible spectroscopy, based on the Beer-Lambert law. With formulations 1 and 2, the mortality was greater than 95 % starting at the thymol concentrations of 5.0 and 7.5 mg/ml, respectively, while with formulation 3, this mortality level was reached starting at a concentration of 2.5 mg/ml, showing that the addition of ethanol in the solution enhanced the acaricidal action of thymol. This result was supported by the LC 90 values, which were 3.3, 2.4, and 1.6 mg/ml of thymol for formulations 1, 2, and 3, respectively. This result is related to the better solubility of thymol in the hydroethanolic formulation, since the spectroscopic analysis revealed that the thymol dissolved more completely in this formulation. This fact was evident once the R (2) obtained from the linear regression analysis of the relation absorbance concentration of the formulations 1, 2, and 3 approached the optimal value (R (2)?=?1) in the following sequence: 1, 2, and 3 (0.717, 0.901, and 0.968, respectively). PMID:22797607

  15. An ab initio study of the magnetic ground states of organic molecules of di-resp. tetramethyl types as examples with a non-collinear density functional method

    NASA Astrophysics Data System (ADS)

    Anton, J.; Ishii, T.; Fricke, B.

    2004-04-01

    Using a sophisticated full relativistic all-electron density functional method we are able to describe the correct magnetic ground states of three organic molecules which are chosen as first examples to proof the quality of the method. S=0 for 3,4-dimethyl-tetrahydrofuran and 3,4-dimethyl-tetrahydrothiophene biradicals and S=1 for 1,1,3,4-tetramethyl-cyclopentane biradical. In addition we are able to give a magnetic density distribution within the molecules.

  16. Exploration of Porphyrin-based Semiconductors for Negative Charge Transport Applications Using Synthetic, Spectroscopic, Potentiometric, Magnetic Resonance, and Computational Methods

    NASA Astrophysics Data System (ADS)

    Rawson, Jeffrey Scott

    Organic pi-conjugated materials are emerging as commercially relevant components in electronic applications that include transistors, light-emitting diodes, and solar cells. One requirement common to all of these functions is an aptitude for accepting and transmitting charges. It is generally agreed that the development of organic semiconductors that favor electrons as the majority carriers (n-type) lags behind the advances in hole transporting (p-type) materials. This shortcoming suggests that the design space for n-type materials is not yet well explored, presenting researchers with the opportunity to develop unconventional architectures. In this regard, it is worth noting that discrete molecular materials are demonstrating the potential to usurp the preeminent positions that pi-conjugated polymers have held in these areas of organic electronics research. This dissertation describes how an extraordinary class of molecules, meso-to-meso ethyne-bridged porphyrin arrays, has been bent to these new uses. Chapter one describes vis-NIR spectroscopic and magnetic resonance measurements revealing that these porphyrin arrays possess a remarkable aptitude for the delocalization of negative charge. In fact, the miniscule electron-lattice interactions exhibited in these rigid molecules allow them to host the most vast electron-polarons ever observed in a pi-conjugated material. Chapter two describes the development of an ethyne-bridged porphyrin-isoindigo hybrid chromophore that can take the place of fullerene derivatives in the conventional thin film solar cell architecture. Particularly noteworthy is the key role played by the 5,15-bis(heptafluoropropyl)porphyrin building block in the engineering of a chromophore that, gram for gram, is twice as absorptive as poly(3-hexyl)thiophene, exhibits a lower energy absorption onset than this polymer, and yet possesses a photoexcited singlet state sufficiently energetic to transfer a hole to this polymer. Chapter three describes synthetic efforts that expand the repertoire of readily available meso-heptafluoropropyl porphyrin building blocks. The findings suggest that the remaining challenges to the exploitation of these pigments will be overcome by a sufficiently firm grasp of their subtle electronic structures, and a willingness to eschew the customary strategies of chromophore assembly.

  17. An efficient, maintenance free and approved method for spectroscopic control and monitoring of blend uniformity: The moving F-test.

    PubMed

    Besseling, Rut; Damen, Michiel; Tran, Thanh; Nguyen, Thanh; van den Dries, Kaspar; Oostra, Wim; Gerich, Ad

    2015-10-10

    Dry powder mixing is a wide spread Unit Operation in the Pharmaceutical industry. With the advent of in-line Near Infrared (NIR) Spectroscopy and Quality by Design principles, application of Process Analytical Technology to monitor Blend Uniformity (BU) is taking a more prominent role. Yet routine use of NIR for monitoring, let alone control of blending processes is not common in the industry, despite the improved process understanding and (cost) efficiency that it may offer. Method maintenance, robustness and translation to regulatory requirements have been important barriers to implement the method. This paper presents a qualitative NIR-BU method offering a convenient and compliant approach to apply BU control for routine operation and process understanding, without extensive calibration and method maintenance requirements. The method employs a moving F-test to detect the steady state of measured spectral variances and the endpoint of mixing. The fundamentals and performance characteristics of the method are first presented, followed by a description of the link to regulatory BU criteria, the method sensitivity and practical considerations. Applications in upscaling, tech transfer and commercial production are described, along with evaluation of the method performance by comparison with results from quantitative calibration models. A full application, in which end-point detection via the F-test controls the blending process of a low dose product, was successfully filed in Europe and Australia, implemented in commercial production and routinely used for about five years and more than 100 batches. PMID:26257268

  18. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values. PMID:17499074

  19. NMR, FT-IR, FT-Raman, UV spectroscopic, HOMO-LUMO and NBO analysis of cumene by quantum computational methods

    NASA Astrophysics Data System (ADS)

    Sivaranjani, T.; Xavier, S.; Periandy, S.

    2015-03-01

    This work presents the investigation of cumene using the FT-IR, FT-Raman, NMR and UV spectra obtained through various spectroscopic techniques. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been scaled and compared with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, and potential energy surface (PES) is performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. NLO properties related to polarizability and hyperpolarizability are also discussed.

  20. Reexamination of Statistical Methods for Comparative Anatomy: Examples of Its Application and Comparisons with Other Parametric and Nonparametric Statistics

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2015-01-01

    Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy. PMID:26413553

  1. Reexamination of Statistical Methods for Comparative Anatomy: Examples of Its Application and Comparisons with Other Parametric and Nonparametric Statistics.

    PubMed

    Aversi-Ferreira, Roqueline A G M F; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2015-01-01

    Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy. PMID:26413553

  2. Example of Occupational Surveillance in a Telemedicine Setting: Application of Epidemiologic Methods at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, Adriana; Ruffaner, Lanie M.; Wear, Mary L.; Crucian, Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary

    2016-01-01

    In 2010, NASA implemented Lifetime Surveillance of Astronaut Health, a formal occupational surveillance program for the U.S. astronaut corps. Because of the nature of the space environment, space medicine presents unique challenges and opportunities for epidemiologists. One such example is the use of telemedicine while crewmembers are in flight, where the primary source of information about crew health is verbal communication between physicians and their crewmembers. Due to restricted medical capabilities, the available health information is primarily crewmember report of signs and symptoms, rather than diagnoses. As epidemiologists at NASA, Johnson Space Center, we have shifted our paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one in which we also incorporate reported symptomology as potential antecedents of disease. In this presentation we describe how characterization of reported signs and symptoms can be used to establish incidence rates for inflight immunologic events. We describe interdisciplinary data sources of information that are used in combination with medical information to analyze the data. We also delineate criteria for symptom classification inclusion. Finally, we present incidence tables and graphs to illustrate the final outcomes. Using signs and symptoms reported via telemedicine, the epidemiologists provide summary evidence regarding incidence of potential inflight medical conditions. These results inform our NASA physicians and scientists, and support evaluation of the occupational health risks associated with spaceflight.

  3. [Use of the OTE-staining method for ultrathin sections on the example of microsporidia (Protozoa: Microsporidia)].

    PubMed

    Miller, A A; Simakova, A V

    2009-01-01

    A novel method for staining ultrathin sections and examining organelles of taxonomic importance in microsporidian parasites was evaluated using oolong tea extract (OTE) and compared with traditional staining with uranyl acetate (UA). All basic intracellular structures of taxonomic significance were effectively stained with the OTE-staining method and additional layers of the polar filament with more clear boundaries between them were revealed. However, greater resolution and higher general contrast of several structures including membranes, layers of the envelope of mature spores, the structure of rough endoplasmic reticulum, Golgi complex, and nuclear chromatin were achieved with traditional UA-staining. The OTE-staining method has the advantage of being safe and preparations can be stored in light at room temperature with no loss in staining properties. However, greater staining time is required. We conclude that the OTE-staining method may be used as an alternative to traditional staining with UA with successful results. PMID:19899706

  4. A theoretical vibrational spectroscopic study with density functional theory and force field refinement calculation methods on free 4-aminopyrimidine molecule

    NASA Astrophysics Data System (ADS)

    Balci, K.; Akyuz, S.

    2005-06-01

    A detailed investigation of the geometric structure, force field, electro-optical parameters, relative IR intensities and harmonic vibrational wavenumbers of free 4-aminopyrimidine molecule (4APM) in the electronically ground state has been carried out by using both the DFT-B3LYP (with 6-31++G(d,p) double and 6-311++G(d,p) triple basis sets) and force field refinement calculation methods. The vibrational wavenumbers calculated with DFT method were scaled by using two different methods: (1) scaling with dual scaling factors, (2) deriving the scaling factors from the graph of observed versus calculated wavenumbers. In the case of force field refinement method, the force constants of the pyrimidine were slightly refined so as to fit the calculated wavenumbers to the experimental ones. In order to define the contributions of the internal coordinates of the molecule on its each normal vibrational mode, P.E.D. calculations were performed. In wavenumber and PED calculations, both methods have yield results in agreement with the experimental assignment and also with each other, particularly for ring vibrations. The relative IR intensities calculated by the force field refinement method are considerably in good agreement with experimental ones, however, the results of the IR intensities, obtained from the DFT method are found to be significantly different from the experimental values.

  5. A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration

    NASA Astrophysics Data System (ADS)

    Aoun, Bachir; Yu, Cun; Fan, Longlong; Chen, Zonghai; Amine, Khalil; Ren, Yang

    2015-04-01

    A generalized method is introduced to extract critical information from series of ranked correlated data. The method is generally applicable to all types of spectra evolving as a function of any arbitrary parameter. This approach is based on correlation functions and statistical scedasticity formalism. Numerous challenges in analyzing high throughput experimental data can be tackled using the herein proposed method. We applied this method to understand the reactivity pathway and formation mechanism of a Li-ion battery cathode material during high temperature synthesis using in-situ high-energy X-ray diffraction. We demonstrate that Pearson's correlation function can easily unravel all major phase transition and, more importantly, the minor structural changes which cannot be revealed by conventionally inspecting the series of diffraction patterns. Furthermore, a two-dimensional (2D) reactivity pattern calculated as the scedasticity along all measured reciprocal space of all successive diffraction pattern pairs unveils clearly the structural evolution path and the active areas of interest during the synthesis. The methods described here can be readily used for on-the-fly data analysis during various in-situ operando experiments in order to quickly evaluate and optimize experimental conditions, as well as for post data analysis and large data mining where considerable amount of data hinders the feasibility of the investigation through point-by-point inspection.

  6. Using Visualized Matrix Effects to Develop and Improve LC-MS/MS Bioanalytical Methods, Taking TRAM-34 as an Example

    PubMed Central

    Ye, Jia-Hung; Pao, Li-Heng

    2015-01-01

    Matrix effects (MEs) continue to be an obstacle in the development of the LC-MS/MS method, with phospholipids being the major cause of MEs. Changing the mobile phase has been a common strategy to reduce MEs; however, the underlying mechanism is unclear. "In-source multiple-reaction monitoring" (IS-MRM) for glycerophosphocholines (PCs) has been commonly applied in many bioanalytical methods. "Visualized MEs" is a suitable term to describe the application of IS-MRM to visualize the elution pattern of phospholipids. We selected a real case to discuss the relationship of MEs and phospholipids in different mobile phases by quantitative, qualitative, and visualized MEs in LC-MS/MS bioanalysis. The application of visualized MEs not only predicts the ion-suppression zone but also helps in selecting an appropriate (1) mobile phase, (2) column, (3) needle wash solvent for the residue of analyte and phospholipids, and (4) evaluates the clean-up efficiency of sample preparation. The TRAM-34 LC-MS/MS method, improved by using visualized MEs, was shown to be a precise and accurate analytical method. All data indicated that the use of visualized MEs indeed provided useful information about the LC-MS/MS method development and improvement. In this study, an integrative approach for the qualitative, quantitative, and visualized MEs was used to decipher the complexity of MEs. PMID:25909956

  7. Chloride mass-balance method for estimating ground water recharge in arid areas: Examples from western Saudi Arabia

    USGS Publications Warehouse

    Bazuhair, A.S.; Wood, W.W.

    1996-01-01

    The chloride mass-balance method, which integrates time and aerial distribution of ground water recharge, was applied to small alluvial aquifers in the wadi systems of the Asir and Hijaz mountains in western Saudi Arabia. This application is an extension of the method shown to be suitable for estimating recharge in regional aquifers in semi-arid areas. Because the method integrates recharge in time and space it appears to be, with certain assumptions, particularly well suited for and areas with large temporal and spatial variation in recharge. In general, recharge was found to be between 3 to 4% of precipitation - a range consistent with recharge rates found in other arid and semi-arid areas of the earth.

  8. Catalase in fluvial biofilms: a comparison between different extraction methods and example of application in a metal-polluted river.

    PubMed

    Bonnineau, Chlo; Bonet, Berta; Corcoll, Natlia; Guasch, Helena

    2011-01-01

    Antioxidant enzymes are involved in important processes of cell detoxification during oxidative stress and have, therefore, been used as biomarkers in algae. Nevertheless, their limited use in fluvial biofilms may be due to the complexity of such communities. Here, a comparison between different extraction methods was performed to obtain a reliable method for catalase extraction from fluvial biofilms. Homogenization followed by glass bead disruption appeared to be the best compromise for catalase extraction. This method was then applied to a field study in a metal-polluted stream (Riou Mort, France). The most polluted sites were characterized by a catalase activity 4-6 times lower than in the low-polluted site. Results of the comparison process and its application are promising for the use of catalase activity as an early warning biomarker of toxicity using biofilms in the laboratory and in the field. PMID:21080224

  9. Time-independent and time-dependent methods for the calculation of the vibrational spectra: H2CN as example

    NASA Astrophysics Data System (ADS)

    Carbonniere, Philippe; Pouchan, Claude

    Computed anharmonic transitions and intensities of H2CN are reported in a spectral range ranging from 900 to 2,900 cm-1. Four vibrational treatments were considered from a B3LYP/6-31+G(d,p) potential electronic surface: The second order perturbational method, the full configuration interaction, the discrete variable representation method and the vibrational analysis arising from a molecular dynamics trajectory. The four approaches yield basically the same results since the convergence of the values is achieved by about 15-20 cm-1.

  10. Electrical Resistivity Methods to Characterize Sediment Deformation; Examples from Large-scale Glaciotectonic Structures in Michigan, USA

    NASA Astrophysics Data System (ADS)

    van Dam, R. L.

    2010-12-01

    An outcrop at the western edge of a large NW-SE trending ridge along the eastern shore of Lake Michigan south of Ludington contains Late Wisconsin deformation structures. Differential loading associated with a glacial re-advance caused glaciolacustrine loamy material to deform into several narrow anticlinal structures that rise from below beach level to near the top of the ~50 m high cliff. The anticlines separate ~100 m broad synclines that control local ground water flow and impact cliff stability. The objective of this study was to characterize the orientation and lateral extent of the structures below the ridge using different galvanic electrical resistivity methods. These methods exploit the large electrical contrast between the glaciolacustrine loams and overlying sandy outwash material. Electrical resistivity methods have long been part of the geophysical tool set. Recent advances, including the availability of multi-electrode systems and advanced data processing software, have made electrical resistivity tomography (ERT) a popular tool to obtain 2D models of subsurface resistivity. In this study, vertical electrical soundings (VES) were combined with borehole logs and lab-derived petrophysical relationships to characterize the site stratigraphy. Constant-spread traverses (CST) and ERT data were used to map the spatial extent of deformation structures. Field, lab, and modeling results presented in this work identify various strengths and limitations of electrical resistivity methods for the characterization of deformation structures in general and glaciotectonic structures in particular.

  11. A Simple Method to Predict Regional Fish Abundance: An Example in the McKenzie River Basin, Oregon

    EPA Science Inventory

    Regional assessments of fisheries resources are increasingly called for, but tools with which to perform them are limited. We present a simple method that can be used to estimate regional carrying capacity and apply it to the McKenzie River Basin, Oregon. First, we use a macroeco...

  12. Multi-spectroscopic method study the interaction of anti-inflammatory drug ketoprofen and calf thymus DNA and its analytical application

    NASA Astrophysics Data System (ADS)

    Guo, Hongqin; Cai, Changqun; Gong, Hang; Chen, Xiaoming

    2011-06-01

    Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), 1H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na 2HPO 4 buffer (pH = 6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.20 × 10 -6-1.0 × 10 -5 mol/L, and its detection limit (3 σ) is 1.33 × 10 -9 mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results.

  13. Multi-spectroscopic method study the interaction of anti-inflammatory drug ketoprofen and calf thymus DNA and its analytical application.

    PubMed

    Guo, Hongqin; Cai, Changqun; Gong, Hang; Chen, Xiaoming

    2011-06-01

    Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), (1)H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na(2)HPO(4) buffer (pH=6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.2010(-6)-1.010(-5) mol/L, and its detection limit (3?) is 1.3310(-9) mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results. PMID:21420349

  14. Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hirano, Mitsuharu; Tonosaki, Shozo; Ueno, Takahiro; Tanaka, Masato; Hasegawa, Takemi

    2014-02-01

    We report an improved method to visualize lipid distribution in axial and lateral direction within arterial vessel walls by spectroscopic spectral-domain Optical Coherence Tomography (OCT) at 1.7μm wavelength for identification of lipidrich plaque that is suspected to cause coronary events. In our previous method, an extended InGaAs-based line camera detects an OCT interferometric spectrum from 1607 to 1766 nm, which is then divided into twenty subbands, and A-scan OCT profile is calculated for each subband, resulting in a tomographic spectrum. This tomographic spectrum is decomposed into lipid spectrum having an attenuation peak at 1730 nm and non-lipid spectrum independent of wavelength, and the weight of each spectrum, that is, lipid and non-lipid score is calculated. In this paper, we present an improved algorithm, in which we have combined the lipid score and the non-lipid score to derive a corrected lipid score. We have found that the corrected lipid score is better than the raw lipid score in that the former is more robust against false positive occurring due to abrupt change in reflectivity at vessel surface. In addition, we have optimized spatial smoothing filter and reduced false positive and false negative due to detection noise and speckle. We have verified this improved algorithm by the use of measuring data of normal porcine coronary artery and lard as a model of lipid-rich plaque and confirmed that both the sensitivity and the specificity of lard are 92%.

  15. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.

    PubMed

    Ruka, Dianne R; Sangwan, Parveen; Garvey, Christopher J; Simon, George P; Dean, Katherine M

    2015-08-18

    Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal. PMID:25763925

  16. Biophysical studies on the interactions of a classic mitochondrial uncoupler with bovine serum albumin by spectroscopic, isothermal titration calorimetric and molecular modeling methods.

    PubMed

    Zhang, Yue; Li, Jia-Han; Ge, Yu-Shu; Liu, Xiao-Rong; Jiang, Feng-Lei; Liu, Yi

    2011-03-01

    The interaction between a classic uncoupler (2,4-dinitrophenol, DNP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy under the physiological conditions. The fluorescence quenching constants were calculated by the Stern-Volmer equation, and based upon the temperature dependence of quenching constants, it was proved that DNP caused a static quenching of the intrinsic fluorescence of BSA. Owing to the static quenching mechanism, different associative binding constants at various temperatures were determined and thus the thermodynamic parameters, namely enthalpy (?H=-21.12 kJ mol(-1)) and entropy changes (?S=23.51 J mol(-1) K(-1)) could be calculated based on the binding constants. Moreover, the enthalpy and entropy changes are consistent with the "Enthalpy-Entropy Compensation" equation obtained from our previous work. The negative enthalpy and positive entropy indicated that the electrostatic interactions played a major role in DNP-BSA binding process. Site marker competitive displacement experiments were carried out by using fluorescence and isothermal titration calorimetry (ITC) methods. These results showed that DNP bound with high affinity to Sudlow's site I (subdomain IIA) of BSA. The distance (r=3.78 nm) between donor (BSA) and acceptor (DNP) was obtained according to the mechanism of fluorescence resonance energy transfer (FRET). Furthermore, the results of synchronous fluorescence and circular dichroism (CD) spectroscopic studies indicated that the microenvironment and the secondary conformation of BSA were altered. The above results were supported by theoretical molecular modeling methods. PMID:20936333

  17. Melt Structure and Properties: a Spectroscopic Perspective

    NASA Astrophysics Data System (ADS)

    Stebbins, J.

    2006-12-01

    Entropy, volume, and their P/T derivatives are at the heart of models of the thermodynamics of silicate melts and magmas. Quantitative characterization of glass structure is leading to important new insights into the links from "Microscopic to Macroscopic" that can at least guide interpretations of data and in some cases even have predictive power. A few recent examples will be discussed here. The often-large configurational components to heat capacities, thermal expansivities, and compressibilities of melts strongly indicate that structural changes with temperature and pressure are of key importance. At least some aspects of thermal increases in configurational (as opposed to vibrational) disorder are amenable to spectroscopic detection, either with in situ methods or on glasses with varying quench rates and thus varying fictive temperatures. In some systems, such changes are now clear, and can be shown to make significant contributions to properties. These include network cation coordination in systems such as borate liquids (BO4 to BO3 at higher T), and Al-Si disordering in aluminosilicates. In general, however, progress in this rich problem has only begun. It has long been suspected from thermodynamic analyses (and theoretical simulations) that configurational changes in melts play a key role in volume compression at high pressure, over and above that which can be expressed in "normal" equations of state or from those expected from bond compression and bending. Scattering and spectroscopic studies have revealed some of the important aspects of pressure-induced structural changes, but again we are just at the beginning of full understanding. For example, binary silicate glasses quenched from high-P melts clearly record some systematic increases in Si coordination, while aluminosilicates record systematic pressure and compositional (modifier cation field strength) effects on Al coordination in recovered samples with large, quenched-in density increases. Compositional effects on the network structure of other oxide melts and glasses such as borates and germanates continue to provide clues to high P/T structural changes in silicates. Recent spectroscopic studies (e.g. O-17 NMR), for example, provide clear new constraints on network cation coordination and linkages in such materials that suggest processes exactly analogous to those proposed for silicates, and may help in formulating more realistic models.

  18. Variations and anisotropy of the elastic thickness of the lithosphere determined by the wavelet method: Examples from the Canadian Shield.

    NASA Astrophysics Data System (ADS)

    Audet, P.; Mareschal, J.

    2005-12-01

    Different spectral methods have been used to estimate the elastic thickness and the mechanical properties of the lithosphere. We have used a wavelet transform to compute the local variations of the coherence between Bouguer gravity and topography in eastern Canada. The isotropic coherence is calculated by averaging the wavelet spectra from optimally overlapping 2-D Morlet wavelets having an isotropic spectral enveloppe in adjacent directions within 180 °, defining the so-called 'fan' wavelet. The local isotropic wavelet coherence is inverted to obtain local estimates of the elastic thickness (T_e) of the lithosphere. We calculate the anisotropic coherence by spatially averaging adjacent local wavelet spectra obtained from the rotation of the Morlet wavelet. The anisotropic direction of maximum observed coherence is diagnostic of the direction of preferred isostatic compensation, or the direction of mechanically weak lithosphere. We have carried out extensive tests on synthetic topography and Bouguer gravity data sets to verify that: (1) the wavelet method can recover T_e for simple models with either homogeneous or spatially variable rigidity patterns; and that:(2) the method can determine azimuthal variations in the 2-D coherence for homogeneous models with anisotropic T_e. We have then used real data from the Canadian Shield to infer the variations in T_e and the anisotropy of the coherence. The relative variations in T_e agree remarkably well with our previous studies where we used the maximum entropy method to determine the elastic thickness [ Audet & Mareschal, 2004a]. The wavelet transform gives T_e values between 20 and 90 km. T_e is generally high (>70 km) throughout eastern Canada. Lower values (30-50 km) are found around Hudson and James Bay, and near the Abitibi subprovince. High values are found within Hudson Bay, which is consistent with the previous studies. The main difference between this study and the one by Audet & Mareschal [2004a] is the absence of a low T_e region in the southeastern Churchill Province. While T_e was poorly estimated by both the maximum entropy and multitaper methods in the Appalachians [ Audet & Mareschal, 2004b], the wavelet method yields values ranging from 60 to 80 km. The direction of maximum coherence obtained from the wavelet method is also consistent with our previous results obtained with the multitaper method and shows that the weak mechanical axis is perpendicular to the fast seismic axis where seismic anisotropy has been detected. Audet, P., & Mareschal, J.C., 2004a, Variations in elastic thickness in the Canadian Shield, Earth Planet. Sci. Lett., 226, 17-31, doi:10.1016/j.epsl.2004.07.035. Audet, P., & Mareschal, J.C., 2004b, Anisotropy of the flexural response of the lithosphere in the Canadian Shield, Geophys. Res. Lett., 31, L20601, doi:10.1029/2004GL021080.

  19. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum

    PubMed Central

    2012-01-01

    Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013

  20. An example of an application of the semiotic inspection method in the domain of computerized patient record system.

    PubMed

    Tancredi, Weronika; Torgersson, Olof

    2013-01-01

    Efficiently navigating through an interface and conducting work tasks in flow is what GUI designers strive for. Dental professionals, who alternate between examination and treatment of a patient and insertion of data into the Computerized Patient Record system, particularly need an interface that would facilitate the workflow. In this paper we present an inspection evaluation of an existing and widely used Computerized Patient Record system. The Semiotic Inspection Method was applied with the expectation that the method could provide evidence that task flow, navigation and wayfinding were major usability issues of the interface. Also expected was that the Semiotic Inspection would reveal the means and strategies used in the interface in order to communicate the flow. The analysis conducted using the Semiotic Inspection Method showed inconsistencies in the communication of the way forward through the interface. In addition, the profile of the users, regarding digital skills, appears to be ambiguous. Finally, the strategies used in the interface for conveying the workflow could be identified as well. PMID:23920599

  1. Reconstructing former urban environments by combining geophysical electrical methods and geotechnical investigations—an example from Chania, Greece

    NASA Astrophysics Data System (ADS)

    Soupios, P. M.; Loupasakis, C.; Vallianatos, F.

    2008-06-01

    Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.

  2. Method of Determining the Filtration Properties of oil-Bearing Crops in the Process of Their Pressing by the Example of Rape-oil Extrusion

    NASA Astrophysics Data System (ADS)

    Slavnov, E. V.; Petrov, I. A.

    2014-07-01

    A method of determining the change in the fi ltration properties of oil-bearing crops in the process of their pressing by repeated dynamic loading is proposed. The use of this method is demonstrated by the example of rape-oil extrusion. It was established that the change in the mass concentration of the oil in a rape mix from 0.45 to 0.23 leads to a decrease in the permeability of the mix by 101.5-102 times depending on the pressure applied to it. It is shown that the dependence of the permeability of this mix on the pressure applied to it is nonmonotone in character.

  3. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at ?max 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 ?g ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.151.15, 99.301.40, 99.601.50, and 99.001.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  4. Study on photophysical and aggregation induced emission recognition of 1,8-naphthalimide probe for casein by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liu, Zhen; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-05-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated in different solutions. The fluorescence intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association emission with increasing solvent polarity. Moreover, the spectral red-shift and intensity quench in protic solvents were caused by the excited-state hydrogen bond strengthening effect. Density Functional Theory (DFT) calculations revealed that 1 exhibited a strong TICT character. The AIE mechanism of 1 with casein was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with Tyr and Trp residues, resulting in the aggregation of 1 on the casein surface and emission enhancement. Based on this, a novel casein assay method was developed. The proposed exhibited a good linear range from 0.1 to 22 ?g mL-1, with the detection limit of 2.8 ng mL-1. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied to the determination of casein in milk powder samples and the results were in good agreement with the result of Biuret method.

  5. Development and Validation of a Stability-indicating UV Spectroscopic Method for Candesartan in Bulk and Formulations.

    PubMed

    Pradhan, K K; Mishra, U S; Pattnaik, S; Panda, C K; Sahu, K C

    2011-11-01

    A simple, specific, accurate and stability-indicating UV- Spectrophotometric method was developed for the estimation of candesartan cilexitil, using a Shimadzu, model 1700 spectrophotometer and a mobile phase composed of methanol: water in the ratio of 9:1 at wave length (?(max)) 254 nm. Linearity was established for candesartan in the range of 10-90 ?g/ml. The percentage recovery of was found to be in the range of 99.76-100.79%. The drug was subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, UV light and photolytic degradation. Validation experiments performed to demonstrate system suitability, specificity, precision, linearity, accuracy, interday assay, intraday assay, robustness, ruggedness, LOD, and LOQ. While estimating the commercial formulation there was no interference of excipients and other additives. Hence this method can be used for routine determination of candesartan cilexetil in bulk and their pharmaceutical dosage forms. The proposed method for stability study shows that there was appreciable degradation found in stress condition of candesartan. PMID:23112408

  6. Development and Validation of a Stability-indicating UV Spectroscopic Method for Candesartan in Bulk and Formulations

    PubMed Central

    Pradhan, K. K.; Mishra, U. S.; Pattnaik, S.; Panda, C. K.; Sahu, K. C.

    2011-01-01

    A simple, specific, accurate and stability-indicating UV- Spectrophotometric method was developed for the estimation of candesartan cilexitil, using a Shimadzu, model 1700 spectrophotometer and a mobile phase composed of methanol: water in the ratio of 9:1 at wave length (?max) 254 nm. Linearity was established for candesartan in the range of 10-90 ?g/ml. The percentage recovery of was found to be in the range of 99.76-100.79%. The drug was subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, UV light and photolytic degradation. Validation experiments performed to demonstrate system suitability, specificity, precision, linearity, accuracy, interday assay, intraday assay, robustness, ruggedness, LOD, and LOQ. While estimating the commercial formulation there was no interference of excipients and other additives. Hence this method can be used for routine determination of candesartan cilexetil in bulk and their pharmaceutical dosage forms. The proposed method for stability study shows that there was appreciable degradation found in stress condition of candesartan. PMID:23112408

  7. Synthetic, Structural, Spectroscopic, and Theoretical Studies of Structural Isomers of the Cluster Pt(3)(&mgr;-PPh(2))(3)Ph(PPh(3))(2). A Unique Example of Core Isomerism in Phosphine Phosphido-Rich Clusters.

    PubMed

    Bender, Robert; Braunstein, Pierre; Dedieu, Alain; Ellis, Paul D.; Huggins, Beth; Harvey, Pierre D.; Sappa, Enrico; Tiripicchio, Antonio

    1996-02-28

    Two isomers of the phosphido-bridged platinum cluster Pt(3)(&mgr;-PPh(2))(3)Ph(PPh(3))(2) (2 and 3) have been isolated, and their structures have been solved by single-crystal X-ray diffraction. Compound 2 crystallizes in the orthorhombic space group Cmc2(1) with a = 22.192(10) , b = 17.650(9) , c = 18.182(8) , and Z = 4. Compound 3 crystallizes with 2 molecules of dichloromethane in the monoclinic space group C2/c with a = 21.390(10) , b = 18.471(9) , c = 19.021(11) , beta = 105.27(5) degrees, and Z = 4. The two isomers differ essentially in their metal-metal distances and Pt-(&mgr;-PPh(2))-Pt angles. Thus 2, having an imposed C(s) symmetry, contains a bent chain of metal atoms with two short Pt-Pt distances of 2.758(3) and a long separation of 3.586(2) . In 3, which has an imposed C(2) symmetry, the metal atoms form an isosceles triangle with two Pt-Pt distances of 2.956(3) and one of 3.074(4) . These isomers can be smoothly interconverted by changing the crystallization solvents. Solution and solid-state (31)P NMR studies have been performed in order to assign the resonances of the different P nuclei and relate their chemical shifts with their structural environments. Raman spectroscopy was used to assign the nu(Pt-Pt) modes of the two structural isomers. Theoretical studies based on extended Hckel calculations and using the fragment molecular orbital approach show that the isomer with the three medium Pt-Pt distances is slightly more stable, in agreement with earlier theoretical predictions. Cluster core isomerism remains a rare phenomenon, and the present example emphasizes the role and the importance of flexible phosphido bridges in stabilizing clusters as well as the unprecedented features which can be observed in phosphine phosphido-rich metal clusters. PMID:11666312

  8. Direct method for magnetostriction coefficient measurement based on atomic force microscope, illustrated by the example of Tb-Co film

    NASA Astrophysics Data System (ADS)

    Lima, B. L. S.; Maximino, F. L.; Santos, J. C.; Santos, A. D.

    2015-12-01

    This paper presents a method based on the Atomic Force Microscopy technique for direct measurement of magnetostriction coefficient of amorphous Tb-Co films deposited on Si(100) substrate. The magnetostriction coefficient of the film is determined by AFM measuring the deflection of the sample when applying a magnetic field. In order to maximize the deflection of the sample, in-plane magnetic anisotropy was induced by heat treatment under a magnetic field of 5 kOe. The value obtained for the saturation magnetostriction is 20410-6 for the Tb23Co77 film.

  9. An efficient method of modeling material properties using a thermal diffusion analogy: an example based on craniofacial bone.

    PubMed

    Davis, Julian L; Dumont, Elizabeth R; Strait, David S; Grosse, Ian R

    2011-01-01

    The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy. PMID:21347288

  10. Methodical questions and accuracy problems of GPS observations by the example of the geodynamic proving ground in Bishkek

    NASA Astrophysics Data System (ADS)

    Kuzikov, S. I.

    2014-11-01

    The key questions concerning the modern methodical tasks and accuracy of GPS measurements of crustal motion spanning are discussed for a full cycle of the survey from the organization of the field operations to the interpretation of the final results. The presented data rely on the 20-year experience of the geophysicists of the Research Station of the Russian Academy of Sciences in Bishkek (RS RAS) in GPS monitoring at the Geodynamic Proving Ground in Bishkek (GPGB) and in a large part of Central Asia. The comparative characteristics of the constellations of visible GPS and GLONASS satellites are analyzed from the standpoint of their practical application for precise scientific observations of crustal motions. The studies of the contemporary movements of the Earth's crust by the methods of satellite geodesy generally comprise three stages: (1) organization of the measurement networks and acquisition of the data; (2) data processing; and (3) interpretation of the results. Each stage is associated with its own block of the tasks and problems, and neither is guaranteed against uncertainties and errors which may affect the results, conclusions, and reconstructions.

  11. An Efficient Method of Modeling Material Properties Using a Thermal Diffusion Analogy: An Example Based on Craniofacial Bone

    PubMed Central

    Davis, Julian L.; Dumont, Elizabeth R.; Strait, David S.; Grosse, Ian R.

    2011-01-01

    The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy. PMID:21347288

  12. An exploratory method to detect tephras from quantitative XRD scans: Examples from Iceland and east Greenland marine sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.

    2006-01-01

    Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.

  13. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    PubMed Central

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  14. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method.

    PubMed

    Fugit, Kyle D; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D

    2015-01-10

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  15. Spectroscopic and molecular structure investigation of 2-furanacrylic acid monomer and dimer using HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Ghalla, H.; Issaoui, N.; Govindarajan, M.; Flakus, H. T.; Jamroz, M. H.; Oujia, B.

    2014-02-01

    In the present work, we reported a combined experimental and theoretical study on molecular structure and vibrational spectra of 2-furanacrylic acid (abbreviated as 2FAA). The FT-IR and FT-Raman spectra of 2FAA have been recorded in the regions 4000-400 and 4000-100 cm-1. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The monomer and dimer structures of the title molecule have been obtained from Hartree-Fock (HF) and density functional theory (DFT) B3LYP methods with 6-311++G(d,p) as basis set calculations. The vibrational frequencies were calculated by DFT method and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. Intermolecular OH⋯O hydrogen bonds are discussed in dimer structure of the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. A study on the electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. In addition, Milliken atomic charges, possible charge transfer, natural bond orbital (NBO) and AIM topological analysis were performed. Moreover, molecular electrostatic potential (MEP) and the thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  16. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-01

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. PMID:25440584

  17. A comparison of bivariate statistical model and deterministic model-based landslide susceptibility mapping methods: An example from North Turkey

    NASA Astrophysics Data System (ADS)

    Akgun, Aykut; Erkan, Oguzhan

    2015-04-01

    In Turkey, landslide is one of the most important natural hazards. Due to landslide occurrence, several landforms and man made structures are adversely affected, and may cause many injuries and loss of life. In this context, landslide susceptibility assessment is important task to determine susceptible areas to landslide occurrence. Especially, several dam reservoir areas in Turkey are threated by landslide phenomena. For this reason, in this study, a dam reservoir area located in North Turkey was selected, and investigated in point of landslide susceptibility assessment. A landslide susceptibility assessment for the Kurtun dam reservoir area (Gumushane, North Turkey) was carried out by geographical information systems (GIS)-based statistical and deterministic models. For this purpose, frequency ratio (FR) and stability index mapping (SINMAP) methodologies were applied. In this context, eight conditioning parameters such as altitude, lithology, slope gradient, slope aspect, distance to drainage, distance to lineament, stream power index (SPI) and topographical wetness index (TWI) were considered. After assessment of these parameters by FR and SINMAP methods in a GIS environment, two landslide susceptibility maps were obtained. Then, the maps obtained were analyzed for verification purpose. For this purpose, area under curvature (AUC) approach was used. At the end of this process, the AUC values of 0.73 and 0.70 were found for FR and SINMAP methods, respectively. Additionally, the SINMAP statistical results showed that the 93.8% of the observed landslides in the area falls into the lower and upper threshold showing the stability index classes. These values indicate that the accuracies of landslide susceptibility maps are acceptable, and the maps are feasible for further natural hazard management affairs in the area.

  18. A mass spectroscopic method for analysis of AHH-inducing and other polychlorinated biphenyl congeners and selected pesticides in fish

    USGS Publications Warehouse

    Schmidt, Larry J.; Hesselberg, Robert J.

    1992-01-01

    The 209 polychlorinated biphenyl (PCB) congeners exhibit a wide range in toxicity to fish, birds, and mammals. This paper discusses the use of gas chromatography/mass spectrometry negative chemical ionization (GC/MS-NCI) to quantify congeners of highly suspected toxicity such as IUPAC #77 (3,3',4,4'-tetrachlorobiphenyl) and #126 (3,3',4,4',5-pentachlorobiphenyl). GC/MS analysis time needed to produce the necessary resolution was reduced to 1 h per sample or standard, allowing an autosampler to inject 12 samples in 24 hours, plus 12 standards/QC samples. Identification and quantification of some 60+ congeners and several selected pesticides and estimation of total PCBs are also possible within the 1 h analysis. For congeners of high chlorination (penta through octa), the method exhibited excellent sensitivity, such that we could not locate a fish which exhibited PCB levels below our calibrated quantitation range. NCI was not as sensitive for mono through tri and for some tetrachlorinated PCB congeners, an exception being PCB #77, for which sensitivity was of the same order as for the more highly chlorinated biphenyls. Long term stability was excellent. Over a 6-mo period, results of replicate analyses for PCB congeners and pesticides in a composited sample of lake trout (Salvelinus namaycush) from Lake Michigan had a relative standard deviation of 12% of the mean. Over the same time period, mean recoveries for samples spiked at concentrations similar to those in Lake Michigan lake trout were 90-102%. Response was linear over a wide range of concentrations for each of the analyzed compounds. This method is now being used for routine analysis of PCB congeners and selected pesticides in our laboratory.

  19. Thermodynamic evaluation and restoration of volcanic gas analyses: an example based on modern collection and analytical methods

    USGS Publications Warehouse

    Gerlach, T.M.

    1993-01-01

    Thermodynamic evaluation and restoration procedures are applied to a set of 10 volcanic gas analyses obtained by modern collection and analytical methods. The samples were collected from a vigorously fuming fissure during episode 1 of the Puu Oo eruption of Kilauea Volcano in 1983. A variety of analytical techniques were used to determine the gas compositions. In most samples, the combined amounts of N2 + Ar + O2 are far less abundant than H2, CO, or H2S, suggesting little or no contamination or reaction with atmospheric gases. Thermodynamic evaluation shows that 6 of the 10 analyses are equilibrium compositions, and 4 analyses are disequilibrium compositions. Three of the disequilibrium analyses involve samples affected by minor spilling of NaOH solution from the sample bottles during collection. The deviation of these analyses from equilibrium is dominated by the effects of disequilibrium water-loss. The fourth disequilibrium analysis is contaminated with meteoric water. In all 4 cases, the restoration procedures retrieve the original equilibrium compositions. -from Author

  20. [Thoughts and methods of study on acupuncture medical history: an example of Mr. MA Ji-Xing].

    PubMed

    Yang, Feng; Zhu, Ling

    2014-03-01

    Mr. MA Ji-xing has devoted himself into the study of acupuncture medical history for more than 70 years. As a result, a great work of Zhenjiuxue Tongshi (see text), History of Acupuncture-Moxibustion) has been completed. The author has expensively studied for history of acupuncture medicine in time and space. Base on abundant historical materials, deliberate textual research as well as strategically situated academic view, it is considered as a masterpiece of acupuncture on real significance. It is worthwhile to note that the book has a systematic and profound explanation on Bian-stone therapy, unearthed literature relics of acupuncture, the bronze figure or illustration of acupoint as well as special topics of Japan and Korea acupuncture history. Filled several gaps of the field, and explored some significant new paths of study, it laid the groundwork for the profound study and unscramble of traditional acupuncture theory as well as the investigation of the academic history, which is considered to have a profound and persistent influence. The careful sorting and profound digging of many distinguish thoughts and methods of Mr. MA Ji-xing in the study of acupuncture medical history has significant meaning in references and enlightenment of the future research on acupuncture medical history. PMID:24843982

  1. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.

    PubMed

    Jrgensen, Thomas Martini; Thomadsen, Jakob; Christensen, Ulrik; Soliman, Wael; Sander, Birgit

    2007-01-01

    Optical coherence tomography (OCT) has already proven an important clinical tool for imaging and diagnosing retinal diseases. Concerning the standard commercial ophthalmic OCT systems, speckle noise is a limiting factor with respect to resolving relevant retinal features. We demonstrate successful suppression of speckle noise from mutually aligning a series of in vivo OCT recordings obtained from the same retinal target using the Stratus system from Humphrey-Zeiss. Our registration technique is able to account for the axial movements experienced during recording as well as small transverse movements of the scan line from one scan to the next. The algorithm is based on a regularized shortest path formulation for a directed graph on a map formed by interimage (B-scan) correlations. The resulting image enhancement typically increases the contrast-to-noise ratio (CNR) with a factor of three or more and facilitates segmentation and quantitative characterization of pathologies. The method is currently successfully being applied by medical doctors in a number of specific retinal case studies. PMID:17867797

  2. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    SciTech Connect

    Meyer, L.; Witzel, G.; Ghez, A. M.; Longstaff, F. A.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.

  3. On the methods for the construction of seabed digital elevation models (using the example of the White Sea)

    NASA Astrophysics Data System (ADS)

    Nikiforov, S. L.; Koshel, S. M.; Frol, V. V.; Popov, O. E.; Levchenko, O. V.

    2015-03-01

    A digital elevation model (DEM) of the White Sea has been constructed based on navigational maps on different scales. The maps have been scanned, and their raster images have been processed. The isobaths have been vectorized, and attribute tables have been created. The vector layers have been transformed from map projections to geographical coordinates. The sheets have been edited and stapled. The geometry and attributes have been corrected. When constructing a DEM, it is important to choose an algorithm that will make it possible to maintain the bed forms expressed in the raw isobaths with maximum detail in the model. An original algorithm developed and implemented by the authors is used. It is based on the fast computation of the distances to the two nearest isobaths at different levels. Its main feature is the interpretation of the contour lines as linear vector objects. The comparison of the depths based on the constructed seabed DEM with depths measured during echo sounding in natural conditions shows their good agreement. Currently, not only the constructed seabed digital elevation model but also methodical and methodological bases of numerical simulations, including the new classification approaches to the terrain description, are relevant.

  4. Methods and approaches to support Indigenous water planning: An example from the Tiwi Islands, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Hoverman, Suzanne; Ayre, Margaret

    2012-12-01

    SummaryIndigenous land owners of the Tiwi Islands, Northern Territory Australia have begun the first formal freshwater allocation planning process in Australia entirely within Indigenous lands and waterways. The process is managed by the Northern Territory government agency responsible for water planning, the Department of Natural Resources, Environment, The Arts and Sport, in partnership with the Tiwi Land Council, the principal representative body for Tiwi Islanders on matters of land and water management and governance. Participatory planning methods ('tools') were developed to facilitate community participation in Tiwi water planning. The tools, selected for their potential to generate involvement in the planning process needed both to incorporate Indigenous knowledge of water use and management and raise awareness in the Indigenous community of Western science and water resources management. In consultation with the water planner and Tiwi Land Council officers, the researchers selected four main tools to develop, trial and evaluate. Results demonstrate that the tools provided mechanisms which acknowledge traditional management systems, improve community engagement, and build confidence in the water planning process. The researchers found that participatory planning approaches supported Tiwi natural resource management institutions both in determining appropriate institutional arrangements and clarifying roles and responsibilities in the Islands' Water Management Strategy.

  5. A Formal Method for Identifying Distinct States of Variability in Time-varying Sources: Sgr A* as an Example

    NASA Astrophysics Data System (ADS)

    Meyer, L.; Witzel, G.; Longstaff, F. A.; Ghez, A. M.

    2014-08-01

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 ?m flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.

  6. Method for Finding Metabolic Properties Based on the General Growth Law. Liver Examples. A General Framework for Biological Modeling

    PubMed Central

    Shestopaloff, Yuri K.

    2014-01-01

    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs and constraints for many applications in biology (such as protein expression), biotechnology (synthesis of substances), and medicine. PMID:24940740

  7. Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method

    NASA Astrophysics Data System (ADS)

    Neelakandeswari, N.; Sangami, G.; Dharmaraj, N.; Taek, Nam Ki; Kim, Hak Yong

    2011-05-01

    A novel method to prepare cadmium sulphide nanoparticles (CdS NPs) possessing nearly uniform size was adopted using eggshell membrane (ESM), under different pH conditions. Significant yield of CdS NPs with smallest possible size was obtained by increasing the pH of the reaction medium from acidic to alkaline. The above prepared CdS NPs have been characterized by UV-vis absorption as well as emission spectra, powder X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The efficiency of the above prepared CdS NPs as a catalyst for the photodegradation of toluidine blue (TB) dye, as a function of pH as well as the ratio between the catalyst and the substrate was studied after irradiation with UV light. The results showed that an efficient interaction took place between the catalyst and the substrate to cause degradation of the selected dye. A maximum degradation of toluidine blue dye (90%) was observed at pH 8 which is higher than that of the efficiencies at pH 4 and pH 6.

  8. Structural and vibrational spectroscopic analysis of anticancer drug mitotane using DFT method; a comparative study of its parent structure

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2015-04-01

    A comprehensive screening of the density functional theoretical approach to structural analysis is presented in this section. DFT calculations using B3LYP/6-311++G(d,p) level of theory were found to yield results that are very comparable to experimental IR and Raman spectra. Computed geometrical parameters and harmonic vibrational wavenumbers of the fundamentals were found in satisfactory agreement with the experimental data and also its parent structure. The vibrational assignments of the normal modes were performed on the basis of the potential energy distribution (PED) calculations. It can be proven from the comparative results of mitotane and its parent structure Dichlorodiphenyldichloroethane (DDD), the intramolecular nonbonding interaction between (C1sbnd H19⋯Cl18) in the ortho position which is calculated 2.583 and the position of the substitution takeover the vibrational wavenumber to redshift of 47 cm-1. In addition, natural bond orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity and charge delocalization has been analyzed. 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method and compared with published results.

  9. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites.

    PubMed

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo; Sobanska, Sophie; Martins, Jean M F

    2015-12-30

    Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts. PMID:26253233

  10. Investigation of trypsin-CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity.

    PubMed

    Kaur, Gurvir; Tripathi, S K

    2015-01-01

    The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 ?l. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent. PMID:25011044

  11. Investigation of trypsin-CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity

    NASA Astrophysics Data System (ADS)

    Kaur, Gurvir; Tripathi, S. K.

    2015-01-01

    The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 μl. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent.

  12. Chiral selectors for enantioresolution and quantitation of the antidepressant drug fluoxetine in pharmaceutical formulations by (19)F NMR spectroscopic method.

    PubMed

    Shamsipur, Mojtaba; Dastjerdi, Leila Shafiee; Haghgoo, Soheila; Armspach, Dominique; Matt, Dominique; Aboul-Enein, Hassan Y

    2007-10-01

    (19)F NMR spectroscopy was applied to the quantitative determination of fluoxetine enantiomers using different chiral recognition agents in pharmaceutical formulations. Several parameters affecting the enantioresolution including the type and concentration of chiral selector, concentration of fluoxetine and temperature were studied. The chiral selectors investigated are the cyclic oligosaccharides alpha-, beta- and gamma-cyclodextrin and a diamino derivative of methylated alpha-cyclodextrin (DAM-alpha-CD), linear polysaccharides (maltodextrin with dextrose equivalents of 4.0-7.0, 13.0-17.0 and 16.5-19.5) and the macrocyclic antibiotic vancomycin. Among the chiral selectors used, DAM-alpha-CD turned out to give the best resolution of the (19)F NMR signals of (R)- and (S)-fluoxetine. The calibration curve was linear for (R)- and (S)-fluoxetine over the range 0.10-1.35 mgmL(-1), the detection limits (S/N=3) being 5.9 and 7.5 microgmL(-1) for the pure solutions of (R)- and (S)-fluoxetine, respectively. The recovery studies performed on pharmaceutical samples ranged from about 90 to 110% with relative standard deviations of <8%. The results showed that the proposed method is rapid, precise and accurate. Applying statistical Student's t-test revealed insignificant difference between the real and measured contents at the 95% confidence level. PMID:17904479

  13. Correlation mapping: rapid method for identification of histological features and pathological classification in mid infrared spectroscopic images of lymph nodes

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Rogers, Keith; Stone, Nicholas

    2010-03-01

    In this work, a novel technique for rapid image analysis of Fourier transform infrared (FTIR) data obtained from human lymph nodes is explored. It uses the mathematical principle of orthogonality as a method to quickly and efficiently obtain tissue and pathology information from a spectral image cube. It requires less computational power and time compared to most forms of cluster analysis. The values obtained from different tissue and pathology types allows for discrimination of noncancerous from cancerous lymph nodes. It involves the calculation of the dot product between reference spectra and individual spectra from across the tissue image. These provide a measure of the correlation between individual spectra and the reference spectra, and each spectrum or pixel in the image is given a color representing the reference most closely correlating with it. The correlation maps are validated with the tissue and pathology features identified by an expert pathologist from corresponding hematoxylin and eosin stained tissue sections. Although this novel technique requires further study to properly test and validate this tool, with inclusion of more lymph node hyperspectral datasets (containing a greater variety of tissue states), it demonstrates significant clinical potential for pathology diagnosis.

  14. USING AN INTENSIVE ASSESSMENT METHOD TO CALIBRATE A RAPID WETLAND ASSESSMENT METHOD: AN EXAMPLE FROM NANTICOKE BASIN, DELAWARE AND MARYLAND, USA

    EPA Science Inventory

    The development of rapid assessment methods has become a priority for many organizations that want to report on the condition of wetlands at larger scales requiring many sampling sites. To have faith in these rapid methods, however, requires that they be verified with more compr...

  15. Development and validation of a laser-induced breakdown spectroscopic method for ultra-trace determination of Cu, Mn, Cd and Pb metals in aqueous droplets after drying.

    PubMed

    Aras, Nadir; Yalçın, Şerife

    2016-03-01

    The present study reports a fast and accurate methodology for laser-induced breakdown spectroscopic, LIBS, analysis of aqueous samples for environmental monitoring purposes. This methodology has two important attributes: one is the use of a 300nm oxide coated silicon wafer substrate (Si+SiO2) for the first time for manual injection of 0.5 microliter aqueous metal solutions, and two is the use of high energy laser pulses focused outside the minimum focus position of a plano convex lens at which relatively large laser beam spot covers the entire droplet area for plasma formation. Optimization of instrumental LIBS parameters like detector delay time, gate width and laser energy has been performed to maximize atomic emission signal of target analytes; Cu, Mn, Cd and Pb. Under the optimal conditions, calibration curves were constructed and enhancements in the LIBS emission signal were obtained compared to the results of similar studies given in the literature. The analytical capability of the LIBS technique in liquid analysis has been improved. Absolute detection limits of 1.3pg Cu, 3.3pg Mn, 79pg Cd and 48pg Pb in 0.5 microliter volume of droplets were obtained from single shot analysis of five sequential droplets. The applicability of the proposed methodology to real water samples was tested on the Certified Reference Material, Trace Metals in Drinking Water, CRM-TMDW and on ICP multi-element standard samples. The accuracy of the method was found at a level of minimum 92% with relative standard deviations of at most 20%. Results suggest that 300nm oxide coated silicon wafer has an excellent potential to be used as a substrate for direct analysis of contaminants in water supplies by LIBS and further research, development and engineering will increase the performance and applicability of the methodology. PMID:26717813

  16. Spatially Resolved Chemical Imaging for Biosignature Analysis: Terrestrial and Extraterrestrial Examples

    NASA Astrophysics Data System (ADS)

    Bhartia, R.; Wanger, G.; Orphan, V. J.; Fries, M.; Rowe, A. R.; Nealson, K. H.; Abbey, W. J.; DeFlores, L. P.; Beegle, L. W.

    2014-12-01

    Detection of in situ biosignatures on terrestrial and planetary missions is becoming increasingly more important. Missions that target the Earth's deep biosphere, Mars, moons of Jupiter (including Europa), moons of Saturn (Titan and Enceladus), and small bodies such as asteroids or comets require methods that enable detection of materials for both in-situ analysis that preserve context and as a means to select high priority sample for return to Earth. In situ instrumentation for biosignature detection spans a wide range of analytical and spectroscopic methods that capitalize on amino acid distribution, chirality, lipid composition, isotopic fractionation, or textures that persist in the environment. Many of the existing analytical instruments are bulk analysis methods and while highly sensitive, these require sample acquisition and sample processing. However, by combining with triaging spectroscopic methods, biosignatures can be targeted on a surface and preserve spatial context (including mineralogy, textures, and organic distribution). To provide spatially correlated chemical analysis at multiple spatial scales (meters to microns) we have employed a dual spectroscopic approach that capitalizes on high sensitivity deep UV native fluorescence detection and high specificity deep UV Raman analysis.. Recently selected as a payload on the Mars 2020 mission, SHERLOC incorporates these optical methods for potential biosignatures detection on Mars. We present data from both Earth analogs that operate as our only examples known biosignatures and meteorite samples that provide an example of abiotic organic formation, and demonstrate how provenance effects the spatial distribution and composition of organics.

  17. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: Application to H2O, N2H+, NO2+, and C2H2

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.

    2010-12-01

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.

  18. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.

    PubMed

    Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J

    2010-12-28

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for (14)N(2)H(+) and (14)N(2)D(+) was excellent, but for (14)N(16)O(2)(+) agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N(2)H(+) and NO(2)(+) will be useful in the interpretation of future laboratory or astronomical observations. PMID:21197977

  19. Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: part I. Method and examples.

    PubMed

    Du, Ke; Rood, Mark J; Welton, Ellsworth J; Varma, Ravi M; Hashmonay, Ram A; Kim, Byung J; Kemme, Michael R

    2011-01-15

    The emissions of particulate matter (PM) from anthropogenic sources raise public concern. A new method is described here that was developed to complete in situ rapid response measurements of PM mass emissions from fugitive dust sources by use of optical remote sensing (ORS) and an anemometer. The ORS system consists of one ground-based micropulse light detection and ranging (MPL) device that was mounted on a positioner, two open path-Fourier transform infrared (OP-FTIR) spectrometers, and two open path-laser transmissometers (OP-LT). An algorithm was formulated to compute PM light extinction profiles along each of the plume's cross sections that were determined with the MPL. Size-specific PM mass emission factors were then calculated by integrating the light extinction profiles with particle mass extinction efficiencies (determined with the OP-FTIRs/OP-LTs) and the wind's speed and direction. This method also quantifies the spatial and temporal variability of the plume's PM mass concentrations across each of the plume's cross sections. Example results from three field studies are also described to demonstrate how this new method is used to determine mass emission factors as well as characterize the dust plumes' horizontal and vertical dimensions and temporal variability of the PM's mass concentration. PMID:21142142

  20. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG<0, ΔH<0 and ΔS<0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37nm and 1.27nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  1. Retrieval of greenhouse gases from space-based spectroscopic measurements with the photon pathlength probability density function method: application to GOSAT observations

    NASA Astrophysics Data System (ADS)

    Oshchepkov, Sergey; Morino, Isamu; Yoshida, Yukio; Yokota, Tatsuya; Bril, Andrey

    The Greenhouse Gases Observing Satellite IBUKI (GOSAT) is the worlds first satellite to observe concentrations of carbon dioxide (CO2) and methane (CH4) through the atmosphere. The spacecraft is in orbit since 23rd January, 2009. A large number of high-resolution spectroscopic observational data of reflected sunlight measured with the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) are available from the National Institute for Environmental Studies (NIES). The major source of error in retrieving gas amounts from space-based measurements of reflected sunlight is atmospheric light scattering. Several algorithms have been developed in different groups throughout the world to process the GOSAT data for retrieving global and temporal distributions of the gas amounts. These algorithms mainly differ in how they account for atmospheric light scattering. This presentation describes application of the photon Path length Probability Density Function (PPDF) method to process GOSAT observations from three TANSO-FTS Short-Wavelength InfraRed (SWIR) bands (centered at 0.76 m, 1.6 m, and 2.0 m). The retrieval procedure includes constrained minimization of the residual between the modeled and observed GOSAT spectra. We retrieve the column-averaged dry air mole fractions of the greenhouse gases (XCO2 and XCH4) simultaneously with PPDF parameters from each GOSAT single sounding. PPDF parameters characterize light path shortening and light path lengthening that could take place depending on the amount and location of thin clouds and aerosols as well as depending on surface properties. As a part of validation study, we compared PPDF-based gas retrievals with those derived from FTS ground-based measurements over twelve sites included in the Total Carbon Column Observing Network (TCCON). The sites are located in both the Southern (3 sites) and the Northern (9 sites) Hemispheres. TCCON is a reliable reference source of greenhouse gas measurements due to the direct solar-viewing geometry, which virtually eliminates the impact of atmospheric light scattering on the measurements. Both seasonal trends and pairwise GOSAT-TCCON statistical comparisons have been considered. We also evaluated XCO2 and XCH4 retrievals globally using atmospheric transport model.

  2. Evaluation of Polycyclic Aromatic Hydrocarbons Using Analytical Methods, Toxicology, and Risk Assessment Research: Seafood Safety after a Petroleum Spill as an Example

    PubMed Central

    Overton, Edward; Frickel, Scott; Howard, Jessi; Wilson, Mark; Simon, Bridget; Echsner, Stephen; Nguyen, Daniel; Gauthe, David; Blake, Diane; Miller, Charles; Elferink, Cornelis; Ansari, Shakeel; Fernando, Harshica; Trapido, Edward; Kane, Andrew

    2013-01-01

    Background: Polycyclic aromatic hydrocarbons (PAHs) are abundant and widespread environmental chemicals. They are produced naturally and through man-made processes, and they are common in organic media, including petroleum. Several PAHs are toxic, and a subset exhibit carcinogenic activity. PAHs represent a range of chemical structures based on two or more benzene rings and, depending on their source, can exhibit a variety of side modifications resulting from oxygenation, nitrogenation, and alkylation. Objectives: Here we discuss the increasing ability of contemporary analytical methods to distinguish not only different chemical structures among PAHs but also their concentrations in environmental media. Using seafood contamination following the Deepwater Horizon accident as an example, we identify issues that are emerging in the PAH risk assessment process because of increasing analytical sensitivity for individual PAHs, and we describe the paucity of toxicological literature for many of these compounds. Discussion: PAHs, including the large variety of chemically modified or substituted PAHs, are naturally occurring and may constitute health risks if human populations are exposed to hazardous levels. However, toxicity evaluations have not kept pace with modern analytic methods and their increased ability to detect substituted PAHs. Therefore, although it is possible to measure these compounds in seafood and other media, we do not have sufficient information on the potential toxicity of these compounds to incorporate them into human health risk assessments and characterizations. Conclusions: Future research efforts should strategically attempt to fill this toxicological knowledge gap so human health risk assessments of PAHs in environmental media or food can be better determined. This is especially important in the aftermath of petroleum spills. Citation: Wickliffe J, Overton E, Frickel S, Howard J, Wilson M, Simon B, Echsner S, Nguyen D, Gauthe D, Blake D, Miller C, Elferink C, Ansari S, Fernando H, Trapido E, Kane A. 2014. Evaluation of polycyclic aromatic hydrocarbons using analytical methods, toxicology, and risk assessment research: seafood safety after a petroleum spill as an example. Environ Health Perspect 122:69;?http://dx.doi.org/10.1289/ehp.1306724 PMID:24213154

  3. Spectroscopic Detection of Pathogens

    SciTech Connect

    ALAM,M. KATHLEEN; TIMLIN,JERILYN A.; MARTIN,LAURA E.; HJELLE,DRIAN; LYONS,RICK; GARRISON,KRISTIN

    2000-11-01

    The goal of this LDRD Research project was to provide a preliminary examination of the use of infrared spectroscopy as a tool to detect the changes in cell cultures upon activation by an infectious agent. Due to a late arrival of funding, only 5 months were available to transfer and setup equipment at UTTM,develop cell culture lines, test methods of in-situ activation and collect kinetic data from activated cells. Using attenuated total reflectance (ATR) as a sampling method, live cell cultures were examined prior to and after activation. Spectroscopic data were collected from cells immediately after activation in situ and, in many cases for five successive hours. Additional data were collected from cells activated within a test tube (pre-activated), in both transmission mode as well as in ATR mode. Changes in the infrared data were apparent in the transmission data collected from the pre-activated cells as well in some of the pre-activated ATR data. Changes in the in-situ activated spectral data were only occasionally present due to (1) the limited time cells were studied and (2) incomplete activation. Comparison of preliminary data to infrared bands reported in the literature suggests the primary changes seen are due an increase in ribonucleic acid (RNA) production. This work will be continued as part of a 3 year DARPA grant.

  4. Spectroscopic full polarimeters using spatial carriers

    NASA Astrophysics Data System (ADS)

    Oka, Kazuhiko; Haga, Yujin; Komaki, Yoshihiko

    2013-09-01

    Several implementations of spectroscopic polarimeters using spatial carriers are presented. The first implementation incorporates two Savart plates and a spectrometer including a two-dimensional CCD to generate a spectrum with spatial carriers. The frequency filtering along the spatial coordinate at each wavelength allows us to conduct the snapshot measurement of the wavelength-resolved Stokes parameters. The spectral resolution of the SOP measurement can be enhanced up to that of the spectrometer. In the second implementation, two achromatic birefringent prism pairs are used to decrease the limitation in the design of the spectroscopic polarimeter. Finally, the present method is combined with a channeled spectroscopic polarization state generator so that the spectroscopic Mueller matrix of a sample can be determined by the snapshot measurement of the two-dimensional spectrum.

  5. A method to analyse observer disagreement in visual grading studies: example of assessed image quality in paediatric cerebral multidetector CT images.

    PubMed

    Ledenius, K; Svensson, E; Stlhammar, F; Wiklund, L-M; Thilander-Klang, A

    2010-07-01

    The purpose was to demonstrate a non-parametric statistical method that can identify and explain the components of observer disagreement in terms of systematic disagreement as well as additional individual variability, in visual grading studies. As an example, the method was applied to a study where the effect of reduced tube current on diagnostic image quality in paediatric cerebral multidetector CT (MDCT) images was investigated. Quantum noise, representing dose reductions equivalent to steps of 20 mA, was artificially added to the raw data of 25 retrospectively selected paediatric cerebral MDCT examinations. Three radiologists, blindly and randomly, assessed the resulting images from two different levels of the brain with regard to the reproduction of high- and low-contrast structures and overall image quality. Images from three patients were assessed twice for the analysis of intra-observer disagreement. The intra-observer disagreement in test-retest assessments could mainly be explained by a systematic change towards lower image quality the second time the image was reviewed. The inter-observer comparisons showed that the paediatric radiologist was more critical of the overall image quality, while the neuroradiologists were more critical of the reproduction of the basal ganglia. Differences between the radiologists regarding the extent to which they used the whole classification scale were also found. The statistical method used was able to identify and separately measure a presence of bias apart from additional individual variability within and between the radiologists which is, at the time of writing, not attainable by any other statistical approach suitable for paired, ordinal data. PMID:20335429

  6. NMR-spectroscopic analysis of mixtures: from structure to function

    PubMed Central

    Forseth, Ry R.; Schroeder, Frank C.

    2010-01-01

    NMR spectroscopy as a particularly information-rich method offers unique opportunities for improving the structural and functional characterization of metabolomes, which will be essential for advancing the understanding of many biological processes. Whereas traditionally NMR spectroscopy was mostly relegated to the characterization of pure compounds, the last few years have seen a surge of interest in using NMR spectroscopic techniques for characterizing complex metabolite mixtures. Development of new methods was motivated partly by the realization that using NMR for the analysis of metabolite mixtures can help identify otherwise inaccessible small molecules, for example compounds that are prone to chemical decomposition and thus cannot be isolated. Furthermore, comparative metabolomics and statistical analyses of NMR-spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the range of NMR spectroscopic techniques recently developed for characterizing metabolite mixtures, including methods used in discovery-oriented natural product chemistry, in the study of metabolite biosynthesis and function, or for comparative analyses of entire metabolomes. PMID:21071261

  7. Use of new field methods of semen analysis in the study of occupational hazards to reproduction: the example of ethylene dibromide

    SciTech Connect

    Schrader, S.M.; Ratcliffe, J.M.; Turner, T.W.; Hornung, R.W.

    1987-12-01

    Increasing attention has been paid to the use of semen analysis as an indicator of exposure to potential mutagenic and reproductive hazards. In the infertility clinic setting, semen evaluations include the measurement of sperm concentration, volume, pH, motility, velocity and morphology, the analysis of seminal plasma to evaluate accessory sex gland function and, in some cases, the in vitro evaluation of fertilization capacity and sperm-cervical mucus interaction. To date, however, the study of semen characteristics of occupationally exposed populations has been confined principally to the measurement of sperm concentration and sperm morphology. This has been largely due to the unavailability of portable equipment suitable for the measurement of other semen characteristics and the difficulty of obtaining fresh semen samples in the field setting. National Institute for Occupational Safety and Health researchers have developed mobile laboratory facilities which enable us to evaluate fresh samples, in the field, for semen characteristics in addition to concentration and morphology. This paper describes the application of these methods using the example of our recent cross-sectional study of workers occupationally exposed to ethylene dibromide in the papaya fumigation industry. We discuss our findings in the context of the usefulness of semen analysis as an indicator of occupational hazards to male reproduction.

  8. Research on the calculation method of shale and tuff content: taking tuffaceous reservoirs of X depression in the Hailar-Tamtsag Basin as an example

    NASA Astrophysics Data System (ADS)

    Liu, Sihui; Huang, Buzhou; Pan, Baozhi; Wang, Guiping; Sun, Fengxian; Qiu, Haibo; Guo, Yuhang; Fang, Chunhui; Jiang, Bici

    2015-10-01

    Shale content is known in reservoir evaluation as an important parameter in well logging. However, the log response characteristics are simultaneously affected by shale and tuff existing in tuffaceous sandstone reservoirs. Due to the fact that tuff content exerts an influence on the calculation of shale content, the former is equally important as the latter. Owing to the differences in the source and composition between shale and tuff, the calculation of tuff content using the same methods for shale content cannot meet the accuracy requirements of logging evaluation. The present study takes the tuffaceous reservoirs in the X depression of the Hailar-Tamtsag Basin as an example. The differences in the log response characteristics between shale and tuff are theoretically analyzed and verified using core analysis data. The tuff is then divided into fine- and coarse-grained fractions, according to the differences in the distribution of the radioactive elements, uranium, thorium and potassium. Next, a volume model suitable for tuffaceous sandstone reservoirs is established to include a sandstone matrix, shale, fine-grained tuff, coarse-grained tuff and pore. A comparison of three optimization algorithms shows that the particle swarm optimization (PSO) yields better calculation results with small mean errors. The resistivity differences among shale, fine-grained tuff and coarse-grained tuff are considered in the calculation of saturation. The water saturation of tuffaceous reservoirs is computed using the improved Poupon’s equation, which is suitable for tuffaceous sandstone reservoirs with low water salinity. The method is used in well Y, and is shown to have a good application effect.

  9. Discussion about decision support systems using continuous multi-criteria methods for planning in areas with hydro-basins, agriculture and forests, from examples in Argentine.

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Cisneros, J. M.; Sanchez, E.

    2012-04-01

    The authors were involved last years in projects considering diverse decision problems on the use of some regions in Argentine, and also related to rivers or rural services in them. They used sets of multi-criteria decision methods, first discrete when the problem included few distinct alternatives, such as e.g. forestry, traditional or intensive agriculture. For attributes they were different effects, classified then in environmental, economic and social criteria. Extending to other gentler areas, such as at South of the Province of Córdoba, Arg., they have balanced more delicately effects of continuous levels of actions, with a combination of Goal Programming linked methods, and they adopted compromises to have precise solutions. That has shown, and in part open, a line of research, as the setting of such models require various kinds of definitions and valuations, including optimizations, goals with penalties in deviations and restrictions. That can be in diverse detail level and horizon, in presence of various technical and human horizons, and that can influence politics of use of terrain and production that will require public and private agents. The research will consider consideration of use and conservation of soils, human systems and agro productions, and hence models for optimization, preferably in such Goal Programming ways. That will require considering various systems of models, first in theory to be reliable, and then in different areas to evaluate the quality of conclusions, and maybe that successively if results are found advantageous. The Bayesian ways will be considered, but they would require a prospective of sets of precise future states of nature or markets with elicited probabilities, which are neither evident nor decisive for the moment, as changes may occur in years but will be very unexpected or uncertain. The results will be lines of models to aid to establish policies of use of territories, by public agencies setting frames for private agents of different size and kinds, with different horizons of climatic and human changes. The usable models will depend somehow on the type of areas, which have different climates and soils, population, markets and maybe civilizations, starting with Argentine examples, if possible compared in cases with Spain.

  10. X-Ray Absorption And EPR Spectroscopic Studies of the Biotransformations of Chromium(Vi) in Mammalian Cells. Is Chromodulin An Artifact of Isolation Methods?

    SciTech Connect

    Levina, A.; Harris, H.H.; Lay, P.A.; /Sydney U.

    2007-07-10

    Very different biological activities are usually ascribed to Cr(VI) (a toxin and carcinogen) and Cr(III) (an antidiabetic agent), although recent evidence suggests that both these types of actions are likely to arise from cellular uptake of varying concentrations of Cr(VI). The first systematic study of XANES spectra of Cr(III) complexes formed in Cr(VI)-treated mammalian cells (A549, HepG2, V79, and C2C12 cell lines), and in subcellular fractions of A549 cells, has been performed using a library of XANES spectra of model Cr(III) complexes. The results of multiple linear regression analyses of XANES spectra, in combination with multiple-scattering fits of XAFS spectra, indicate that Cr(III) formed in Cr(VI)-treated cells is most likely to bind to carboxylato, amine, and imidazole residues of amino acids, and to a lesser extent to hydroxo or aqua ligands. A combination of XANES and EPR spectroscopic data for Cr(VI)-treated cells indicates that the main component of Cr(III) formed in such cells is bound to high-molecular-mass ligands (>30 kDa, probably proteins), but significant redistribution of Cr(III) occurs during the cell lysis, which leads to the formation of a low-molecular-mass (<30 kDa) Cr(III)-containing fraction. The spectroscopic (XANES, XAFS, and EPR) properties of this fraction were strikingly similar to those of the purported natural Cr(III)-containing factor, chromodulin, that was reported to be isolated from the reaction of Cr(VI) with liver. These data support the hypothesis that a chromodulin-like species, which is formed from such a reaction, is an artifact of the reported isolation procedure.

  11. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and

  12. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  13. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  14. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  15. Study on the interaction between methyl jasmonate and the coiled-coil domain of rice blast resistance protein Pi36 by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Liu, Xin Q.; Zhang, Dan; Zhang, Xiang M.; Wang, Chun T.; Liu, Xue Q.; Tan, Yan P.; Wu, Yun H.

    2012-03-01

    Interaction between the coiled-coil domain of rice blast resistance protein Pi36 and methyl-jasmonate (MeJA) was studied by fluorescence and UV-vis spectroscopic techniques. The quenching mechanism of fluorescence of MeJA by this domain was discussed to be a static quenching procedure. Fluorescence quenching was explored to measure the number of binding sites n and apparent binding constants K. The thermodynamics parameters ΔH, ΔG, ΔS were also calculated. The results indicate the binding reaction was not entropy-driven but enthalpy-driven, and hydrophobic binding played major role in the interaction. The binding sites of MeJA with the coiled-coil structural domain of rice blast resistance protein Pi36 were found to approach the microenvironment of both Tyr and Trp by the synchronous fluorescence spectrometry. The distance r between donor (the coiled-coil domain of rice blast resistance protein Pi36) and acceptor (MeJA) was obtained according to Förster theory of non-radioactive energy transfer.

  16. Application of spectroscopic and theoretical methods in the studies of photoisomerization and photophysical properties of the push-pull styryl-benzimidazole dyes.

    PubMed

    J?drzejewska, B; O?mia?owski, B; Zale?ny, R

    2016-01-01

    The synthesis and spectroscopic properties of a series of substituted 1,3-dimethyl-2-aminostyrylbenzimidazolium iodides are described and discussed. The products were identified by NMR, IR and UV-Vis spectroscopy and elemental analysis. Their electronic absorption and fluorescence band positions are affected by the character of the substituent and by the solvent polarity. The fluorescence decay of the dyes shows two lifetimes interpreted in terms of emission from two forms of the dye in the excited state. Moreover, the photochemical trans?cis isomerization is reported for these compounds. It occurs from the first excited singlet state of the trans isomer to the cis isomer following a trans-S0? S1 excitation. The electron-donating character of the substituent in a styrene moiety is one of the crucial factors influencing the photoisomerization process. The structure of the cis isomer was established by (1)H and (15)N NMR. Experimental studies are supported by the results of quantum chemical calculations. PMID:26692103

  17. A comparative study of caffeine and theophylline binding to Mg(II) and Ca(II) ions: studied by FTIR and UV spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Shamloo, Delaram Sadraii; Mohajerani, Nasser; Omidi, Akram

    2002-08-01

    The interactions of calcium and magnesium ions with caffeine and theophylline have been investigated in aqueous solution at physiological pH. Fourier Transform infrared (FTIR) spectroscopy and absorption spectra were used to determine the cation binding mode and the association constants. Our spectroscopic results showed that calcium and magnesium ions do not complex with caffeine strongly and the weak interactions between caffeine and Mg 2+ and Ca 2+ might be via O6 atom. In Ca 2+-theophylline complex, binding between Ca 2+ with C?O and N7 is observed, however in Mg 2+-theophylline complex, binding between Mg 2+ and N7 is more likely. The k values of these complexes are as follows: k(caffeine-Ca)=29.8 M -1, k(caffeine-Mg)=22.4 M -1, k(theophylline-Ca)=59.8 M -1 and k(theophylline-Mg)=33.8 M -1. These values are evidence for a weak cation interaction in these metal complexes.

  18. Comparative investigation of methods for the numerical prediction of motion of asteroids that approach the Earth: Example of the 99942 Apophis asteroid

    NASA Astrophysics Data System (ADS)

    Smirnov, E. A.; Timoshkova, E. I.

    2014-03-01

    Using the 99942 Apophis asteroid (currently known as one of the most dangerous asteroids that is approaching the Earth) as an example, we estimate the error of predicting its motion with the use of several integrators over the time interval from 2012 to 2029. The minimum distance (and its error) between the Earth's center and Apophis was estimated for the rendezvous moment on April 13, 2029. It is shown that this error for various integrators is comparable in the order of magnitude with the influence of certain components of the dynamic model of motion, such as, for example, the influence of harmonics of the Earth's gravitational filed, solar-light pressure, the Jarkowski effect, etc.

  19. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  20. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  1. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  2. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  3. Spectroscopic diversity of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi Chi Eric

    Type Ia supernovae (SNe Ia) are excellent tools in cosmology. Their intrinsic luminosities are found to vary systematically with the light-curve widths, providing an empirical calibration. This property, called the width-luminosity relation (WLR), is the basis of modern SN Ia cosmology and led to the unexpected discovery of the current accelerated rate of cosmic expansion. By examining the spectroscopic diversity of SNe Ia, this thesis aims to improve both the use of SNe Ia in cosmology and the physical understanding of the observed properties. Spectra of SNe Ia contain a wealth of information, but are difficult to organize. In this thesis, new methods are developed to consistently quantify and analyze the spectral features of supernovae. The efficacy of the methods is tested on a large library of observed spectra encompassing a wide range of properties. The spectroscopic diversity of SNe Ia enters cosmology through K-correction calculations. Before this work, K-correction was a major contributor of the systematic errors in cosmology. It is shown here that the systematic errors can be largely diminished by carefully quantifying the mean spectroscopic properties of SNe Ia. The remaining statistical errors are also quantified and shown to be redshift dependent. With the aid of principal component analysis (PCA), the multidimensional spectral information is reduced to a few components describing the largest variations in the spectral library. Using this tool, it is shown here that SN Ia intrinsic luminosity is the main driver of the spectroscopic diversity at maximum light, for every spectral feature from the ultraviolet to the near-infrared. These spectroscopic sequences can potentially account for a large fraction of the K-correction statistical errors and even enable the use of SN Ia spectra as independent indicators of intrinsic luminosity and colors. The established relations will also disentangle the effects of demographic shift and true evolution in high-redshift SN Ia spectra. The temporal evolution of the spectral features is shown to exhibit the persistence of the spectroscopic sequences throughout other epochs. The effect is attributed to the more rapid spectroscopic temporal evolution of fainter SNe Ia. This conclusion supports the theory that WLR is primarily a spectroscopic effect, rather than a bolometric one.

  4. Spectroscopic Monitoring of Be type Stars

    NASA Astrophysics Data System (ADS)

    Desnoux, V.; Buil, C.

    2005-05-01

    The study of Be stars is a perfect example of spectrography that amateurs can participate in. Several types of spectroscopes can be used depending of what physical parameters are monitored: classical surveys at low-resolution or high-resolution profile study of the H-alpha line are just two examples of what can be monitored. By grouping observations on long time scales, a database of stellar spectra can be built and placed at the disposal of professionals. Over a period of 10 years, starting at the Pic du Midi observ- atory and continuing later on by Christian Buil, and other French amateur groups using Musicos professional spectroscope, the monitoring of Be stars produced scientific results and are now supported by professional astron- omers. Some are already using the ARAS (Astronomical Ring for Amateur Spec- troscopy) list to ask for specific monitoring and get additional observations from the amateur community. Spectral processing will be also discussed, using Visual Spec and Iris freeware, from the basic calibration up to time reso- lution H-alpha profile evolution and Equivalent Width computation. Be Stars survey is just an example of how powerful spectroscopy can be, and can be practiced by amateurs. Amateurs are really capable of playing a key part in astrophysical studies.

  5. A Comparison of Near- and Mid-Infrared Spectroscopic Methods for the Analysis of Several Nutritionally Important Chemical Substances in the Chinese Yam (Dioscorea opposita): Total Sugar, Polysaccharides, and Flavonoids.

    PubMed

    Zhuang, Hua; Ni, Yongnian; Kokot, Serge

    2015-04-01

    The Chinese yam (Dioscorea opposita) is a basic food in Asia and especially China. Consequently, an uncomplicated, reliable method should be available for the analysis of the quality and origin of the yams. Thus, near-infrared (NIR) and mid-infrared (mid-IR) spectroscopic methods were developed to discriminate among Chinese yam samples collected from four geographical regions. The yam samples were analyzed also for total sugar, polysaccharides, and flavonoids. These three analytes were used to compare the performance of the analytical methods. Overlapping spectra were resolved using chemometrics methods. Such spectra were compared qualitatively using principal component analysis (PCA) and quantitatively using partial least squares (PLS) and least squares-support vector machine (LS-SVM) models. We discriminated among the four sets of yam data using PCA, and the NIR data performed somewhat better than the mid-IR data. We constructed the PLS and LS-SVM calibration models for the prediction of the three key variables, and the LS-SVM model produced better results. Also, the NIR prediction model produced better outcomes than the mid-IR prediction model. Thus, both infrared (IR) techniques performed well for the analysis of the three key analytes, and the samples were qualitatively discriminated according to their provinces of origin. Both techniques may be recommended for the analysis of Chinese yams, although the NIR technique would be preferred. PMID:25742643

  6. Validation of a near-infrared transmission spectroscopic procedure. Part B: Application to alternate content uniformity and release assay methods for pharmaceutical solid dosage forms.

    PubMed

    Ritchie, Gary E; Roller, Robert W; Ciurczak, Emil W; Mark, Howard; Tso, Cindy; MacDonald, Stacy A

    2002-06-20

    NIR analytical methods can be validated to meet the requirement of demonstrating that it is suitable for the analysis of the materials for which it is being used. Applying previously described protocols for NIR methods to the analysis of two types of pharmaceutical products shows that for these products, NIR is suitable as an alternate analytical method for assay and for content uniformity. PMID:12062675

  7. Spectroscopic Follow Up of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Latham, David W.; Cochran, W. D.; Marcy, G. W.; Buchhave, L.; Endl, M.; Isaacson, H.; Gautier, T. N.; Borucki, W. J.; Koch, D.; Kepler Team

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using high-resolution spectrometers on the Lick 3.0-m Shane Telescope, the McDonald 2.7-m Reflector, the 2.5-m Nordic Optical Telescope, and the 1.5-m Tillinghast Reflector at the Whipple observatory. In this paper we will summarize the scope and organization of the spectroscopic follow-up observations, showing examples of the types of false positives found and ending with a presentation of the characteristics of a confirmed planet.

  8. Benefits and challenges to using DNA-based identification methods: An example study of larval fish from nearshore areas of Lake Superior

    EPA Science Inventory

    DNA-based identification methods could increase the ability of aquatic resource managers to track patterns of invasive species, especially for taxa that are difficult to identify morphologically. Nonetheless, use of DNA-based identification methods in aquatic surveys is still unc...

  9. Electromagnetic and geochemical methods applied to investigations of hydrothermal/volcanic unrests: Examples of Taal (Philippines) and Miyake-jima (Japan) volcanoes

    NASA Astrophysics Data System (ADS)

    Zlotnicki, Jacques; Sasai, Y.; Toutain, J. P.; Villacorte, E.; Harada, M.; Yvetot, P.; Fauquet, F.; Bernard, A.; Nagao, T.; Phivolcs Team

    Magnetic, -electric and -electromagnetic phenomena (EM) are almost always observed on volcanoes before and during volcanic eruptions, if EM methods are well-designed and applied on the field. But unfortunately these methods are, most often, still used independently. They also do not benefit of dense inter-correlated networks which should allow more accurate results and fine modelling of the volcanic activity. On volcanoes which display hydrothermal/magmatic unrests, EM methods can be combined with geochemical (GC) methods. The integration of these methods allows us to image in detail hydrothermal systems, to find out possible scenarios of volcanic unrest, and to monitor the on-going activity with some knowledge on the sources of heat, gas and fluid transfers. The objectives of this paper is (1) to outline the appearance and the characteristics of EM signals before an eruptive event when multi-EM methods are applied on the field, (2) to sketch out the complementary between EM and GC methods when these methods are jointly applied on volcanic/hydrothermal systems. Two case studies are given in the paper. On Miyake-jima volcano in Japan integrated EM methods started in 1995. Although the seismicity only appeared 13 days before the July 8, 2000 collapse of the summit, changes in the magnetic field, electrical resistivity and electric potential have progressively appeared after 1996. Based on geophysical observations and on continuous magnetotelluric soundings, a synthesis of the EM observations allows proposing a coherent model of the volcano unrest. The second case study is Taal volcano in Philippines on which sporadic, but sometimes intense, seismic crises are observed since 1992. A strong and large scale hydrothermal system stands on the volcano and is periodically re-activated. Commonly applied since 2005, combined EM and GC methods give an accurate description of the hydrothermal activity and heat discharge. EM methods, as magnetic and self-potential, map the hydrothermal system and locate the source of thermal and fluid transfers at depth, while soil degassing and thermal imageries clearly point out the location of the most active areas where thermal discharges take place. GC methods also specify the origin of the gas and fluids escaping from faults, fumaroles, and geothermal areas. Between 2005 and 2007, no large change in the hydrothermal activity took place, in spite of sporadic seismic swarms and surface activities which could lead to sudden phreatic explosions. The heat discharge of the volcano is estimated and monitored with time, based on repeated surveys. Such combined EM and GC methods are now integrated in the monitoring of the slow unrest of the volcano.

  10. Comparison of a new GIS-based technique and a manual method for determining sinkhole density: An example from Illinois' sinkhole plain

    USGS Publications Warehouse

    Angel, J.C.; Nelson, D.O.; Panno, S.V.

    2004-01-01

    A new Geographic Information System (GIS) method was developed as an alternative to the hand-counting of sinkholes on topographic maps for density and distribution studies. Sinkhole counts were prepared by hand and compared to those generated from USGS DLG data using ArcView 3.2 and the ArcInfo Workstation component of ArcGIS 8.1 software. The study area for this investigation, chosen for its great density of sinkholes, included the 42 public land survey sections that reside entirely within the Renault Quadrangle in southwestern Illinois. Differences between the sinkhole counts derived from the two methods for the Renault Quadrangle study area were negligible. Although the initial development and refinement of the GIS method required considerably more time than counting sinkholes by hand, the flexibility of the GIS method is expected to provide significant long-term benefits and time savings when mapping larger areas and expanding research efforts. ?? 2004 by The National Speleological Society.

  11. A Cell Derived Active Contour (CDAC) Method for Robust Tracking in Low Frame Rate, Low Contrast Phase Microscopy - an Example: The Human hNT Astrocyte

    PubMed Central

    Nejati Javaremi, Alireza; Unsworth, Charles P.; Graham, E. Scott

    2013-01-01

    The problem of automated segmenting and tracking of the outlines of cells in microscope images is the subject of active research. While great progress has been made on recognizing cells that are of high contrast and of predictable shape, many situations arise in practice where these properties do not exist and thus many interesting potential studies - such as the migration patterns of astrocytes to scratch wounds - have been relegated to being largely qualitative in nature. Here we analyse a select number of recent developments in this area, and offer an algorithm based on parametric active contours and formulated by taking into account cell movement dynamics. This Cell-Derived Active Contour (CDAC) method is compared with two state-of-the-art segmentation methods for phase-contrast microscopy. Specifically, we tackle a very difficult segmentation problem: human astrocytes that are very large, thin, and irregularly-shaped. We demonstrate quantitatively better results for CDAC as compared to similar segmentation methods, and we also demonstrate the reliable segmentation of qualitatively different data sets that were not possible using existing methods. We believe this new method will enable new and improved automatic cell migration and movement studies to be made. PMID:24358233

  12. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    NASA Astrophysics Data System (ADS)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used to create customized curriculum integrating geospatial science and technology into geoscience programs.

  13. A cross-site comparison of methods used for hydrogeologic characterization of the Galena-Platteville aquifer in Illinois and Wisconsin, with examples from selected Superfund sites

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Dunning, Charles P.; Yeskis, Douglas J.; Ursic, James R.; Vendl, Mark

    2004-01-01

    The effectiveness of 28 methods used to characterize the fractured Galena-Platteville aquifer at eight sites in northern Illinois and Wisconsin is evaluated. Analysis of government databases, previous investigations, topographic maps, aerial photographs, and outcrops was essential to understanding the hydrogeology in the area to be investigated. The effectiveness of surface-geophysical methods depended on site geology. Lithologic logging provided essential information for site characterization. Cores were used for stratigraphy and geotechnical analysis. Natural-gamma logging helped identify the effect of lithology on the location of secondary- permeability features. Caliper logging identified large secondary-permeability features. Neutron logs identified trends in matrix porosity. Acoustic-televiewer logs identified numerous secondary-permeability features and their orientation. Borehole-camera logs also identified a number of secondary-permeability features. Borehole ground-penetrating radar identified lithologic and secondary-permeability features. However, the accuracy and completeness of this method is uncertain. Single-point-resistance, density, and normal resistivity logs were of limited use. Water-level and water-quality data identified flow directions and indicated the horizontal and vertical distribution of aquifer permeability and the depth of the permeable features. Temperature, spontaneous potential, and fluid-resistivity logging identified few secondary-permeability features at some sites and several features at others. Flowmeter logging was the most effective geophysical method for characterizing secondary-permeability features. Aquifer tests provided insight into the permeability distribution, identified hydraulically interconnected features, the presence of heterogeneity and anisotropy, and determined effective porosity. Aquifer heterogeneity prevented calculation of accurate hydraulic properties from some tests. Different methods, such as flowmeter logging and slug testing, occasionally produced different interpretations. Aquifer characterization improved with an increase in the number of data points, the period of data collection, and the number of methods used.

  14. Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: A comparison between ball-on-ring and micro-indentation methods

    NASA Astrophysics Data System (ADS)

    Miyatake, Takahiro; Pezzotti, Giuseppe

    2011-11-01

    Of main interest in the present work is a quantitative comparison between the phonon deformation potential (PDP) values determined for silicon single crystals by two different calibration methods: (i) a macroscopic method exploiting the stress field developed in a ball-on-ring (biaxial) bending configuration; and (ii) a microscopic method using the residual stress field stored around an indentation print. A comparison between the two methods helps to establish the reliability limits for experimental stress analyses in the (001), (011), and (111) planes of silicon devices by means of polarized Raman spectroscopy. Emphasis is also placed on evaluating the degree of precision involved with using a closed-form equation (i.e., as proposed by other authors), which describes the stress state when different crystallographic planes of the Si sample are loaded in the ball-on- ring jig. A comparison between stress profiles obtained by such equations and those computed by the finite element method (FEM) in the loaded disk reveals a clear discrepancy for the (011) plane. Such a discrepancy could be attributed to elastic coupling and anisotropic effects (particularly relevant along the <011> direction), which can lead to errors up to 15% in computing the stress field stored in the silicon lattice.

  15. Validated spectrophotometric method for the determination, spectroscopic characterization and thermal structural analysis of duloxetine with 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2012-03-01

    A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.

  16. Monte Carlo Example Programs

    Energy Science and Technology Software Center (ESTSC)

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  17. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results

    EPA Science Inventory

    The new version of EPAs positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...

  18. Vector image method for the derivation of elastostatic solutions for point sources in a plane layered medium. Part 1: Derivation and simple examples

    NASA Technical Reports Server (NTRS)

    Fares, Nabil; Li, Victor C.

    1986-01-01

    An image method algorithm is presented for the derivation of elastostatic solutions for point sources in bonded halfspaces assuming the infinite space point source is known. Specific cases were worked out and shown to coincide with well known solutions in the literature.

  19. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results

    EPA Science Inventory

    The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...

  20. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    PubMed Central

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of ones field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  1. Application of Blind Deconvolution Methods in two Complex Seismological Examples: Transfert Function Evaluation (Site Effect Assessment at GVDA) and Source Wavelet Evaluation (Kursk).

    NASA Astrophysics Data System (ADS)

    Sebe, O.; Guilbert, J.; Bard, P.

    2002-12-01

    In seismology the source and the Green function are unknown, the only available information is surface or deep seismograms. So the deconvolution associated with the classical input-output system identification is impossible without strong physical assumption. Many blind deconvolution methods, recently developped in the domain of communications, aim to retrieve the unknown information of a system from output only. We apply two of these methods to seismology: the multichannel blind deconvolution to retrieve the transfert function and high order statistics to estimate source wavelet. In the first case, the multichannel method is applied in the scope of site effect estimation. It treats the problem of a signal transmitted through different channels (propagation mediums) and recorded at several receivers. From seismograms recorded at different sites, it intends to separate the common convolutive part of the signals (identified as the incident wave) and the specific site impulse response. The two main advantages of this method are that we don't need any reference site record and that the result contains the temporal properties of site responses. We test the method on a synthetic set of seismic signals based on a 1D model. We then apply it on the recordings obtained at various depths in the Garner Valley Down-hole Array. In the second case, the high order statistics blind deconvolution is applied to study the main caracteristics of Kurk's underwater explosion. It treats the problem of a source transmitted through a specific channel and recorded on single receiver. This blind deconvolution computed in bispectral and cepstral domains, gives us the opportunity to separate the wavelet (source function) and the propagation with one single geophysical assumption on the transfer function. It allows us to extract the bubble effect and the reflection at the sea surface as well as the source (amplitude and phase) from seismograms recorded at regional distance.

  2. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example.

    PubMed

    Liang, Jian; Wu, Wan-ying; Sun, Guo-xiang; Wang, Dan-dan; Hou, Jin-jun; Yang, Wen-zhi; Jiang, Bao-hong; Liu, Xuan; Guo, De-an

    2013-06-14

    It is a challenging task to simultaneously and quantitatively analyze multiple components in DFF [Da-Fu-Fang, namely, complex traditional Chinese medicine (TCM) preparations containing more than ten TCMs] due to their numerous and extreme complex chemical compositions possessing a wide variety of chemical and physical features, and their very low content. Rather than using a conventional mass spectrometry (MS) method with multiple reaction monitoring (MRM), in the current study, this challenge was addressed by using dynamic multiple reaction monitoring (DMRM). Using a DFF, Niuhuang Shangqing pill, which is composed of 19 TCMs, as a model, a rapid (one run in 20min), sensitive [lower limit of detection (LOD) and limit of quantitation (LOQ) were achieved comparable with MRM] and accessible (a standard HPLC/MS/MS instrumentation was employed) MS method was successfully developed for the simultaneous quantification of 41 bioactive components which represented 15 of the 19 medicinal plants. A comparison of LOD and LOQ using MRM and DMRM was made to quantitatively reveal that the latter demonstrated advantages over the former. Meanwhile, a standard operating procedure concerning the development of a new DMRM method was recommended. The MS data were obtained in the positive ion mode with electrospray ionization as the ion source, acetonitrile and water as mobile phase and a Kinetex C18 core-shell column (100mm2.10mm, 2.6?m, Phenomenex Inc.) as the analytical column. This method was then applied to 32 batches of samples. It transpired, through principal component analysis and orthogonal partial least squares discriminant analysis, that the consistency of the products was relatively good within one company, but poor among different companies among the 32 samples; one failed to qualify in terms of the Chinese Pharmacopeia. This work illustrated that the proposed DMRM method was particularly suitable for quantifying the trace components in DFF and capable of ensuring the quality of DFF. PMID:23647610

  3. Tuberculosis - A global emergency: Tools and methods to monitor, understand, and control the epidemic with specific example of the Beijing lineage.

    PubMed

    Couvin, David; Rastogi, Nalin

    2015-06-01

    We argue in favor of a concerted and coordinated response to stop tuberculosis (TB) by monitoring global TB spread, drug-resistance surveillance and populations at risk using available molecular and web tools to identify circulating clones of Mycobacterium tuberculosis complex (MTBC). We took specific example of the Beijing lineage associated with worldwide emergence of both multiple, and extensively drug resistant (MDR/XDR)-TB. The study dataset (n=10,850 isolates, 92 countries of patient origin) was extracted from our multimarker SITVIT2 database on MTBC genotyping (n=111,635 isolates, 169 countries of patient origin). Epidemiological and demographic information in conjunction with spoligotyping (n=10,850), MIRU-VNTR minisatellites (n=2896), and drug resistance (n=2846) data was mapped at macro-geographical (United Nations subregions) and country level, followed by statistical, bioinformatical, and phylogenetical analysis. The global male/female sex ratio was 1.96, the highest being 4.93 in Russia vs. range of 0.8-1.13 observed in Central America, Caribbean, Eastern Africa and Northern Europe (p < 0.0001). The major patient age-group was 21-40 yrs worldwide except Japan (with majority of patients >60 yrs). Younger patients were more common in South America, South Asia, and Western Africa since 25-33% of TB cases due to Beijing genotype occurred in the age group 0-20 yrs. A continuous progression in the proportion of MDR and XDR strains is visible worldwide since 2003 and 2009 respectively. Pansusceptible TB mainly concerned older patients >60 yrs (44%) whereas Drug resistant, MDR and XDR-TB concerned patients preferentially aged 21-40 yrs (between 52 and 58%). Although the proportion of SIT1 pattern vs. other patterns was very high (93%); the proportion of MDR was highest for an emerging genotype SIT190 (p < 0.0001). Lastly, proportion of pansusceptible strains was highest in Japan, while MDR/XDR strains were most common in Russia and Northern Europe. We underline remarkable macro/micro-geographical cleavages in phylogenetic and epidemiologic diversity of Beijing genotype, with phylogeographical specificity of certain genotypes. PMID:25797613

  4. Near-infrared spectroscopic method for the identification of Fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), or scab, can result in significant crop yield losses and contaminated grain in wheat (Triticum aestivum L.). Growing less susceptible varieties is one of the most effective methods for managing FHB and for reducing deoxynivalenol (DON) levels in grain, but breeding progra...

  5. A Novel Method to Couple Electrophysiological Measurements and Fluorescence Imaging of Suspended Lipid Membranes: The Example of T5 Bacteriophage DNA Ejection

    PubMed Central

    Chiaruttini, Nicolas; Letellier, Lucienne; Viasnoff, Virgile

    2013-01-01

    We present an innovative method to couple electrophysiological measurements with fluorescence imaging of functionalized suspended bilayers. Our method combines several advantages: it is well suited to study transmembrane proteins that are difficult to incorporate in suspended bilayers, it allows single molecule resolution both in terms of electrophysiological measurements and fluorescence imaging, and it enables mechanical stimulations of the membrane. The approach comprises of two steps: first the reconstitution of membrane proteins in giant unilamellar vesicles; then the formation of a suspended bilayer spanning a 5 to 15 micron-wide aperture that can be visualized by high NA microscope objectives. We exemplified how the technique can be used to detect in real time the translocation of T5 DNA across the bilayer during its ejection from the bacteriophage capsid. PMID:24376806

  6. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results.

    PubMed

    Brown, Steven G; Eberly, Shelly; Paatero, Pentti; Norris, Gary A

    2015-06-15

    The new version of EPA's positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP). These methods capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. To demonstrate the utility of the EE methods, results are presented for three data sets: (1) speciated PM2.5 data from a chemical speciation network (CSN) site in Sacramento, California (2003-2009); (2) trace metal, ammonia, and other species in water quality samples taken at an inline storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic aerosol data set from high-resolution aerosol mass spectrometer (HR-AMS) measurements in Las Vegas, Nevada (January 2008). We present an interpretation of EE diagnostics for these data sets, results from sensitivity tests of EE diagnostics using additional and fewer factors, and recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying too many factors. DISP diagnostics were consistently robust, indicating its use for understanding rotational uncertainty and as a first step in assessing a solution's viability. The uncertainty of each factor's identifying species is shown to be a useful gauge for evaluating multiple solutions, e.g., with a different number of factors. PMID:25776202

  7. Spectroscopic Databases for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Brown, L. R.

    2011-05-01

    Astronomers detect new species (atoms, molecules, ions, radicals present in gas, liquid and solid phase) and determine their abundances, temperatures, pressures, velocities etc. through spectroscopic remote sensing. Nearly every physical phenomenon that in uences the radiative transfer of an astronomical body can be detected and quantified using specific spectral features, provided sufficient spectroscopic knowledge is available. Collections of spectroscopic information are formed and then revised as new objectives and techniques evolve. The resulting spectroscopic databases should be complete, accurate and organized in convenient forms. Much is accessible for far- and mid-IR applications, but the available compilations are often deficient at shorter wavelengths. In this presentation, the current status of these molecular spectroscopic databases will be reviewed.

  8. An Improved Method for TIMS High Precision Nd Isotopic Analysis of Very Small Aliquots (1- 10ng) With Example Application in Garnet Sm/Nd Geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Harvey, J.; Mehl, L. Y.; Peterman, E. M.

    2007-12-01

    Technological and scientific developments have demonstrated both the attainability and the utility of very high precision (i.e. 5-20ppm 2 σ) Nd isotopic measurements with TIMS. However such high precision has been limited to relatively large aliquots of Nd, on the order of several hundred nanograms. Several potential applications of precise Nd isotopic measurements, including garnet Sm/Nd geochronology, do not always permit such large samples, instead yielding only a few nanograms of Nd. We have explored and tested an improved method for Nd isotopic analysis of such small (1-10ng) aliquots of Nd using the NdO+ method with a Triton TIMS at Boston University. Analyzing Nd isotopes as the oxide is a well known technique, frequently involving an oxygen bleed valve. Instead, we forego the bleed valve and load samples with a TaO slurry which provides the oxygen source. Using an in-house Nd isotopic standard solution, 4ng loads easily yield stable 2.0-2.5 volt beams resulting in internal precisions of 10ppm 2 σ RSE. Within barrel external precision of 4ng loads of the Nd standard is 13ppm 2 σ RSD (n=20). Long term (6 months, six analysts) external precision of 4ng loads of the standard is currently 23ppm 2 σ RSD (n=55) suggesting that further improvements are possible. As a further test of this method, we dissolved a natural rock sample (a metapelite), separated the Nd using TRU- spec and MLA column chemistry, and loaded nineteen 4ng loads in one barrel. Within barrel external precision was 21ppm 2 σ RSD (n=18). This precision represents a significant advance over previous NdO+ analyses of small samples using an oxygen bleed valve. The TaO loading method for small Nd aliquots is useful in Sm/Nd garnet geochronology as exemplified by two case studies. Garnets from eclogite facies gneisses from Norway ran very well with 2.4-18ng loads and yielded age precision as good as 0.8 million years 2 σ. Conversely, garnets from blueschist facies rocks from Sifnos, Greece, ran poorly with similarly sized 1-17ng loads and consequently yielded generally poorer age precision. Differences between the two garnet sample suites must relate to the garnets themselves (notably including much lower Nd concentration in Sifnos garnets), not the identical column chemistry nor the TaO loading method. Additional procedures may be required to cleanly separate Nd from samples where Nd concentrations are very low (≪1ppm). As always, clean separation and column chemistry represents an unavoidable limiting factor in achieving precise isotopic measurements.

  9. Adjusted blank correction method for UV-vis spectroscopic analysis of PTIO-coated filters used in nitrogen oxide passive samplers

    NASA Astrophysics Data System (ADS)

    DeForest Hauser, Cindy; Battle, Paul; Mace, Nina

    Passive sampling devices are popular in applications which do not require the monitoring of hourly concentrations. Nitrogen oxides are often collected using filters coated with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The filter extract can then be analyzed using flow injection analysis ion chromatography fitted with a copper/cadmium reduction column or UV-vis spectroscopy. When the latter is used to measure low concentrations of nitrogen oxides, absorbance by PTIO at the analytical wavelength of 545 nm contributes significantly. PTIO concentration on the filter also shows variation with filter storage and exposure time not accounted for in a single point blank subtraction at the analytical wavelength. A method is presented that uses a scaling factor to account for variations in concentration of PTIO on the field blank and provides a more accurate method for determining and correcting for the PTIO contribution to absorption when measuring ambient nitrogen oxide concentrations.

  10. New validated liquid chromatographic and chemometrics-assisted UV spectroscopic methods for the determination of two multicomponent cough mixtures in syrup.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-01-01

    Multivariate spectrophotometric calibration and liquid chromatographic (LC) methods were applied to the determination of 2 multicomponent mixtures containing diprophylline, guaiphenesin, methylparaben, and propylparaben (Mixture 1), or clobutinol, orciprenaline, saccharin sodium, and sodium benzoate (Mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least-squares regression (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in 0.1 M HCl. Analytical figures of merit such as sensitivity, selectivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC separation was achieved on a reversed-phase C18 analytical column by using isocratic elution with 20 mM potassium dihydrogen phosphate, pH 3.3-acetonitrile (55 + 45, v/v) as the mobile phase and UV detection at 260 and 220 nm for Mixture 1 and Mixture 2, respectively. The proposed methods were validated and successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations. PMID:18376584

  11. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide.

    PubMed

    Thygesen, Lisbeth Garbrecht; Jrgensen, Kirsten; Mller, Birger Lindberg; Engelsen, Sren Balling

    2004-02-01

    Cyanogenic glucosides were studied using Raman spectroscopy. Spectra of the crystal forms of linamarin, linustatin, neolinustatin, amygdalin, sambunigrin, and dhurrin were obtained using a Raman spectrograph microscope equipped with a 532 nm laser. The position of the signal from the C identical with N triple bond of the cyanohydrin group was influenced by the nature of the side group and was above 2240 cm(-1) for the three cyanogenic glucosides that contain a neighboring aromatic ring, and below or partially below 2240 cm(-1) for the non-aromatic cyanoglucosides. Signals from the CN bond of linamarin/lotaustralin in leaves and roots from a medium cyanogenic cassava variety were obtained in situ using a Fourier transform near-infrared (FT-NIR) Raman interferometer with a 1064 nm laser, but the signal was very weak and difficult to obtain. A spectrum containing a signal from the CN bond of dhurrin in a freeze-dried sorghum leaf was also obtained using this instrument. Surface-enhanced Raman Spectroscopy (SERS) was demonstrated to be a more sensitive method that enabled determination of the cyanogenic potential of plant tissue. The SERS method was optimized by flow injection (FI) using a colloidal gold dispersion as effluent. Potential problems and pitfalls of the method are discussed. PMID:15000716

  12. Exploring supervised neighborhood preserving embedding (SNPE) as a nonlinear feature extraction method for vibrational spectroscopic discrimination of agricultural samples according to geographical origins.

    PubMed

    Lee, Sanguk; Hwang, Jinyoung; Lee, Hyeseon; Chung, Hoeil

    2015-11-01

    Supervised neighborhood preserving embedding (SNPE), a nonlinear dimensionality reduction method, was employed to represent near-infrared (NIR) and Raman spectral features of agricultural samples (Angelica gigas, sesame, and red pepper), and the newly constructed variables were used to discriminate their geographical origins. This study was done to evaluate the potential of SNPE for recognizing minute spectral differences between classes by preserving local relationships, in comparison with widely adopted linear feature representation methods such as principal component analysis (PCA) and partial least squares (PLS). For this purpose, diffuse reflectance NIR spectral datasets of Angelica gigas, sesame, and red pepper, and a Raman spectral dataset of the same red pepper were prepared. The spectra were represented into new variables in reduced dimensions by PCA, PLS, neighborhood preserving embedding (NPE), and SNPE, and the represented variables were used to determine the geographical origins of samples by using the k-nearest neighbor (k-NN) and support vector machine (SVM). The combination of SNPE and SVM differentiated the geographical origins with improved accuracy. Overall results demonstrate that SNPE is a valuable alternative feature representation method, especially when complex and highly overlapping vibrational spectra are used for analysis. PMID:26452914

  13. Age Determinations of Early-M Type Pre-Main Sequence Stars Using a High-Resolution Near-Infrared Spectroscopic Method

    NASA Astrophysics Data System (ADS)

    Takagi, Yuhei; Itoh, Yoichi; Oasa, Yumiko; Sugitani, Koji

    2011-06-01

    We present a method for determining the age of early-M type pre-main sequence (PMS) stars based on estimations of the surface gravity. The surface gravity was measured using high-resolution near-infrared K-band spectroscopy. The age of the PMS stars can be determined from the surface gravity, which correlates with the photospheric contraction. To estimate the surface gravity while avoiding veiling contamination, we developed a surface gravity indicator using equivalent width ratios (EWRs) of nearby absorption lines. We derived a relationship between the ratios of the Sc (22057.8 and 22071.3 ) and Na (22062.4 and 22089.7 ) absorption lines and the surface gravity by observing giants and main-sequence stars. The surface gravities of early-M type stars were determined with an accuracy of 0.1 in logg. The ages of target PMS stars were estimated within a factor of 1.5 by comparing the surface gravity with the evolution model of Baraffe et al. (1998, A&A, 337, 403). The ages of 4 PMS stars were estimated to be older than indicated by previous age determinations made using the photometric method. The EWR method allows estimating the age of PMS stars without contaminating the uncertainty of the distance, extinction, and veiling.

  14. Improving survey methods in sero-epidemiological studies of injecting drug users: a case example of two cross sectional surveys in Serbia and Montenegro

    PubMed Central

    2009-01-01

    Background Little is known about the prevalence of HIV or HCV in injecting drug users (IDUs) in Serbia and Montenegro. We measured prevalence of antibodies to HIV (anti-HIV) and hepatitis C virus (anti-HCV), and risk factors for anti-HCV, in community-recruited IDUs in Belgrade and Podgorica, and determined the performance of a parallel rapid HIV testing algorithm. Methods Respondent driven sampling and audio-computer assisted survey interviewing (ACASI) methods were employed. Dried blood spots were collected for unlinked anonymous antibody testing. Belgrade IDUs were offered voluntary confidential rapid HIV testing using a parallel testing algorithm, the performance of which was compared with standard laboratory tests. Predictors of anti-HCV positivity and the diagnostic accuracy of the rapid HIV test algorithm were calculated. Results Overall population prevalence of anti-HIV and anti-HCV in IDUs were 3% and 63% respectively in Belgrade (n = 433) and 0% and 22% in Podgorica (n = 328). Around a quarter of IDUs in each city had injected with used needles and syringes in the last four weeks. In both cities anti-HCV positivity was associated with increasing number of years injecting (eg Belgrade adjusted odds ratio (AOR) 5.6 (95% CI 3.29.7) and Podgorica AOR 2.5 (1.35.1) for ? 10 years v 04 years), daily injecting (Belgrade AOR 1.6 (1.02.7), Podgorica AOR 2.1 (1.35.1)), and having ever shared used needles/syringes (Belgrade AOR 2.3 (1.05.4), Podgorica AOR 1.9 (1.42.6)). Half (47%) of Belgrade participants accepted rapid HIV testing, and there was complete concordance between rapid test results and subsequent confirmatory laboratory tests (sensitivity 100% (95%CI 59%100%), specificity 100% (95%CI 98%100%)). Conclusion The combination of community recruitment, ACASI, rapid testing and a linked diagnostic accuracy study provide enhanced methods for conducting blood borne virus sero-prevalence studies in IDUs. The relatively high uptake of rapid testing suggests that introducing this method in community settings could increase the number of people tested in high risk populations. The high prevalence of HCV and relatively high prevalence of injecting risk behaviour indicate that further HIV transmission is likely in IDUs in both cities. Urgent scale up of HIV prevention interventions is needed. PMID:19203380

  15. Spectroscopic Detection of Caries Lesions

    PubMed Central

    Ruohonen, Mika; Palo, Katri; Alander, Jarmo

    2013-01-01

    Background. A caries lesion causes changes in the optical properties of the affected tissue. Currently a caries lesion can be detected only at a relatively late stage of development. Caries diagnosis also suffers from high interobserver variance. Methods. This is a pilot study to test the suitability of an optical diffuse reflectance spectroscopy for caries diagnosis. Reflectance visible/near-infrared spectroscopy (VIS/NIRS) was used to measure caries lesions and healthy enamel on extracted human teeth. The results were analysed with a computational algorithm in order to find a rule-based classification method to detect caries lesions. Results. The classification indicated that the measured points of enamel could be assigned to one of three classes: healthy enamel, a caries lesion, and stained healthy enamel. The features that enabled this were consistent with theory. Conclusions. It seems that spectroscopic measurements can help to reduce false positives at in vitro setting. However, further research is required to evaluate the strength of the evidence for the method's performance.

  16. A numerical method for retrieving high oxygen isotope temperatures from plutonic igneous rocks: An example from the Laramie Anorthosite Complex, Wyoming, USA

    SciTech Connect

    Farquhar, J.; Chacko, T. . Dept. of Geology); Frost, B.R. )

    1992-01-01

    The Sybille Pit is a late-stage magnetite-ilmenite-plagioclase-bearing differentiate of the Laramie Anorthosite with a wide range of grain sizes and modal mineralogy. This variability makes Sybille an ideal locality in which to study the factors that affect isotopic thermometry in plutonic environments. The authors have developed a numerical model based on isotope exchange trajectories that retrieves close to magmatic temperatures for samples from Sybille. This method is based on the premise that hand sample-scale sub-systems close to exchange with each other at temperatures that exceed those of the constituent minerals. The temperature of hand-sample scale closure is retrieved by back calculating the isotope exchange trajectories to the temperature at which two samples with widely different model compositions are in isotopic equilibrium. Application of these methods to samples from Sybille provides promising results. Whereas conventional isotopic thermometry of individual samples yields a wide range of temperatures ([approximately]600 to > 1000 C) depending on the mineral-pair chosen, application of this numerical model to multiple samples yields temperatures of 1,070 [+-] 100 C which corresponds closely to the inferred solidus for these rocks.

  17. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  18. The limit of detection for explosives in spectroscopic differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  19. Linking geophysics and soil function modelling - two examples

    NASA Astrophysics Data System (ADS)

    Krger, J.; Franko, U.; Werban, U.; Dietrich, P.; Behrens, T.; Schmidt, K.; Fank, J.; Kroulik, M.

    2011-12-01

    iSOIL - "Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping" is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment. The iSOIL project aims at reliable mapping of soil properties and soil functions with various methods including geophysical, spectroscopic and monitoring techniques. The general procedure contains three steps (i) geophysical monitoring, (ii) generation of soil property maps and (iii) process modelling. The objective of this work is to demonstrate the methodological procedure on two different examples. Example A focuses on the turnover conditions for soil organic matter (SOM) since many soil functions in a direct or indirect way depend on SOM and SOM depletion is amongst the worst soil threats. Example B deals with the dynamics of soil water and the direct influence on crop biomass production. The applied CANDY model (Franko et al. 1995) was developed to describe dynamics of soil organic matter and mineral nitrogen as well as soil water and temperature. The new module PLUS extends CANDY to simulate crop biomass production based on environmental influences (Krger et al. 2011). The methodological procedure of example A illustrates a model application for a field site in the Czech Republic using generated soil maps from combined geophysical data. Modelling requires a complete set of soil parameters. Combining measured soil properties and data of geophysical measurements (electrical conductivity and gamma spectrometry) is the basis for digital soil mapping which provided data about clay, silt and sand as well as SOC content. With these data pedotransfer functions produce detailed soil input data (e.g. bulk and particle density, field capacity, wilting point, saturated conductivity) for the rooted soil profile. CANDY calculated different indicators for SOM and gave hints about potential hot spots where local adaptations of agricultural management would be required to improve soil functions. Example B realizes a soil function modelling with an adapted model parameterization based on data of ground penetration radar (GPR). This work shows an approach to handle heterogeneity of soil properties with geophysical data used for modelling. The field site in Austria is characterised by highly heterogenic soil with fluvioglacial gravel sediments. The variation of thickness of topsoil above a sandy subsoil with gravels strongly influences the soil water balance. GPR detected exact soil horizon depth between topsoil and subsoil. The extension of the input data improves the model performance of CANDY PLUS for plant biomass production. Both examples demonstrate how geophysics provide a surplus of data for agroecosystem modelling which identifies and contributes alternative options for agricultural management decisions.

  20. Active Learning with Irrelevant Examples

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item to present to the expert for labeling. Experiments on several data sets have demonstrated that the Relevance Bias approach significantly decreases the number of irrelevant items queried and also accelerates learning speed.

  1. Quantitative spectroscopic imaging of the human brain.

    PubMed

    Pan, J W; Twieg, D B; Hetherington, H P

    1998-09-01

    A method to provide B1 correction and cerebrospinal fluid (CSF) referencing is developed and applied to spectroscopic imaging of the human brain at 4.1 T using a volume head coil. The B1 image allows rapid determination of the spatially dependent B1 that is then used to compensate for the B1 sensitivity of the spectroscopic sequence. The reference signal is acquired from CSF located in a lateral ventricular position using a point-resolved echo spectroscopy (PRESS) acquisition. The CSF spectrum is also corrected for B1 dependence. Together with T2 and T1 corrections, this method is used to provide quantitative values of N-acetylaspartate (NAA), creatine (Cr), and choline (Ch). The metabolite concentrations obtained from a spectroscopic imaging slice through the ventricles in seven normal controls are in good agreement with previously published literature values. This method is applied in a patient with secondary progressive multiple sclerosis, showing separate areas of abnormalities in both NAA and Cr. PMID:9727938

  2. Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO-LUMO of midodrine by using density functional methods.

    PubMed

    Shahidha, R; Al-Saadi, Abdulaziz A; Muthu, S

    2015-01-01

    The FTIR (4000-400 cm(-1)), FT-Raman (4000-100 cm(-1)) and UV-Visible (400-200 nm) spectra of midodrine were recorded in the condensed state. The complete vibrational frequencies, optimized geometry, intensity of vibrational bands and atomic charges were obtained by using Density Functional Theory (DFT) with the help of 6-311++G(d,p) basis set. The first order hyperpolarizability (?) and related properties (?, ? and ??) of this molecular system were calculated by using DFT/6-311++G(d,p) method based on the finite-field approach. The assignments of the vibrational spectra have been carried out with the help of Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force methodology. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, oscillator strength and wavelength are calculated by DFT in water and gas methods using 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies confirm that charge transfer occurs within the molecule. Besides MEP, NLO and thermodynamic properties were also calculated and interpreted. The electron density-based local reactivity descriptor such as Fukui functions was calculated to explain the chemical selectivity or reactivity site in midodrine. PMID:25011041

  3. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods.

    PubMed

    Qi, Sheng; Moffat, Jonathan G; Yang, Ziyi

    2013-03-01

    Phase separation in pharmaceutical solid dispersion thin films under high humidity is still poorly understood on the submicrometer scale. This study investigated the phase separation of a model solid dispersion thin film, felodipine-PVP K29/32, prepared by spin-coating and analyzed using probe-based methods including atomic force microscopy, nanothermal analysis, and photothermal infrared microspectroscopy. The combined use of these techniques revealed that the phase separation process occurring in the thin films under high humidity is different from that in dry conditions reported previously. The initial stage of phase separation is primarily initiated in the bulk of the films as amorphous drug domains. Drug migration toward the surface of the solid dispersion film was then observed to occur under exposure to increased humidity. PVP cannot prevent phase separation of felodipine under high humidity but can minimize the crystallization of amorphous felodipine domains in the solid dispersion thin films. This study demonstrates the unique abilities of these nanocharacterization methods for studying, in three dimensions, the phase separation of thin films for pharmaceutical applications. PMID:23320617

  4. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF

    NASA Astrophysics Data System (ADS)

    Kose, E.; Bardak, F.; Atac, A.; Karabacak, M.; Cipiloglu, M. A.

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. 1H and 13C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm-1 and 4000-400 cm-1, respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10 and molecular energy profile was calculated from 0 to 360. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion-1 and anion-2 forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program.

  5. A near-infrared reflectance spectroscopy method for direct analysis of several chemical components and properties of fruit, for example, Chinese hawthorn.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2013-01-23

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets. PMID:23265446

  6. Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: An example of the Kalebasi District (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Alemdag, Selcuk; Kaya, Ayberk; Karadag, Mustafa; Gurocak, Zulfu; Bulut, Fikri

    2015-06-01

    The stability of the slope debris in residential area of the Kalebasi District (Ozkurtun-Gumushane) was investigated using the Limit Equilibrium (LE) and Finite Element Shear-Strength Reduction (FE-SSR) methods. Along the survey lines, four trial pits were dug and fourteen boreholes having a total length of 345 m were drilled. Also, seismic refraction studies were conducted along the five lines. According to the field studies, thickness of the slope debris covering the 98 ha of the study area varies between 1 and 36 m. To determine the physical and shear strength properties of the slope debris, undisturbed samples were taken from the trial pits. As a result of the laboratory tests, soil categories of the debris were found to be as Clayey Sand (SC), Silty Sand (SM) and Low Plasticity Clay (CL). The deformation-controlled shear box tests were carried out to determine the shear strength parameters of the slope debris. According to these tests it was found that the peak cohesion and peak friction angle varies between 2.63-16.35 kN/m2 and 20-27°, respectively. Stability analyses were performed using the obtained data from field and laboratory investigations in the Slide v5.0 and Phase2 v6.0 software programs and results were compared. In LE stability analyses, the factor of safety (FOS) of survey lines were found to be as 1.44, 1.80, 1.96, and 1.72; however for the FE-SSR method they were determined as 1.39, 1.72, 1.59, and 1.58, respectively.

  7. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  8. Aplisulfamines, New Sulfoxide-Containing Metabolites from an Aplidium Tunicate: Absolute Stereochemistry at Chiral Sulfur and Carbon Atoms Assigned Through an Original Combination of Spectroscopic and Computational Methods

    PubMed Central

    Aiello, Anna; Fattorusso, Ernesto; Imperatore, Concetta; Luciano, Paolo; Menna, Marialuisa; Vitalone, Rocco

    2012-01-01

    Two new sulfoxide-containing metabolites, aplisulfamines A (1) and B (2), have been isolated from an Aplidium sp. collected in the Bay of Naples. Their planar structure and geometry of a double bond were readily determined by using standard methods, mainly NMR spectroscopy. An original approach was used to assign the absolute configuration at the three contiguous chiral centers present in the structures of both aplisulfamines, two at carbon and one at sulfur. This involved Electronic Circular Dichroism (ECD) studies, J-based configuration analysis and Density Functional Theory (DFT) calculations and represents an interesting integration of modern techniques in stereoanalysis, which could contribute to the enhancement of theoretical protocols recently applied to solve stereochemical aspects in structure elucidation. PMID:22363220

  9. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    SciTech Connect

    Banerjee, Amit; Banerjee, S. S.

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ?0.9 nms{sup ?1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  10. Improvement of near infrared spectroscopic (NIRS) analysis of caffeine in roasted Arabica coffee by variable selection method of stability competitive adaptive reweighted sampling (SCARS)

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P.; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping

    2013-10-01

    Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS.

  11. Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.--Improved taxane isolation by accelerated quality control and process surveillance.

    PubMed

    Gudi, Gennadi; Krhmer, Andrea; Koudous, Iraj; Strube, Jochen; Schulz, Hartwig

    2015-10-01

    Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design. PMID:26078126

  12. Comparative ab initio studies on the molecular structure and spectroscopic properties of FeF2: Single reference versus multireference methods.

    PubMed

    Solomonik, Victor G; Stanton, John F; Boggs, James E

    2008-06-28

    The electronic excitation energies, molecular geometry, quadratic force fields, and vibrational frequencies in the ground (5)Delta(g) and low-lying excited (5)Sigma(g) (+) and (5)Pi(g) electronic states of iron difluoride are studied at sophisticated levels of theory. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess relativistic, are used that range in quality from triple-zeta to quintuple-zeta. These are augmented by additional diffuse functions (on fluorine atoms) and tight functions (on all atoms) for the description of core-valence correlation and utilized to determine complete basis set molecular properties. The quality of electron correlation treatment using conventional single reference coupled cluster methods CCSD and CCSD(T) is compared to that attained at the multiconfigurational quasidegenerate second-order perturbation theory (CASSCF+MCQDPT2) and the electron attachment equation-of-motion coupled cluster (EOMEA-CCSD) levels. Spin-orbit coupling effects are studied by the SO-MCQDPT2 method using the full Breit-Pauli spin-orbit operator. Effects of spin contamination in the coupled cluster molecular calculations are carefully analyzed. Results of the single reference CCSD(T) and multireference calculations are found to be in a remarkable agreement. The calculations indicate that the EOMEA-CC approach provides a suitable tool for an accurate treatment of FeF(2) and other systems where delicate electron correlation effects have to be carefully dealt with. The inclusion of relativistic effects is shown to be necessary for an accurate description of the molecular geometry and excitation energies of FeF(2). The results of calculations are in good agreement with the experimental data available. The predicted FeF(2) molecular properties are compared to those of the related FeF(3). PMID:18601314

  13. Examples of sackungen in the French Western Alps and their geochronology based on the 10Be cosmic ray exposure dating method (Invited)

    NASA Astrophysics Data System (ADS)

    Hippolyte, J.; Bourles, D. L.; Braucher, R.; Lanni, L.; Chauvet, F.; Lebatard, A.; Arnold, M.; Aumatre, G.; Keddadouche, K.

    2013-12-01

    In the French Alps, sackung scarps were often interpreted as surface traces of active faults. A detailed mapping of the Arc and Rognier mountains shows that these scarps result from deep-seated gravitational slope deformation (DSGSD). They are short (less than 2.1 km long), numerous and organized in swarms (5.3 km long at the Arc; 9 km long at Rognier). There are mainly uphill facing scarps developed on steep slopes. Open tension cracks are present at ridge tops. These sackung fractures created ridge-top troughs, closed depressions and multiple-crests landforms. That the sackung scarps are parallel to the contour lines, and that they result from opening of fractures or from normal slips, indicates that they are controlled by topography and gravity. In the Western Alps, glacial erosion and subsequent debuttressing of oversteepened slopes seem to be the main factors for the occurrence of sackungen. However, gradual loss of rock strength, groundwater fluctuations, subsidence due to evaporite dissolution and earthquake shaking, may contribute to their formation. For a better understanding of the origin of sackungen, chronological data are crucial. We used the cosmic ray exposure (CRE) dating method for deciphering the activity of the Arc and Rognier sackungen. This method allows quantification of the exposure duration of a surface to cosmic rays, by measuring the amount of accumulated cosmogenic nuclides in surficial rocks. Because sackung scarps usually form in hard rocks containing quartz, we used the 10Be cosmogenic nuclide which is produced in situ by spallation reactions on Si and O (36Cl can be used for limestone). The measurements were performed at ASTER, the French accelerator mass spectrometry facility located at the CEREGE laboratory in Aix-en-Provence. The CRE dating method allows direct dating of most of the geomorphologic structures involved in sackungen: sackung fault scarps, rock slopes, debris slopes, screes, rock glaciers, glacier-polished rock surface... In the Alps, the sackung faults are frequently found cutting relict rock glaciers. Our five samples of these periglacial landforms provide similar ages for the two studied areas (Arcs and Rognier) clustered between 11.5 and 9.4 ka BP. Sampling a single fault scarp at different heights allowed us to determine average slip rates (between 0.3 and 3.2 mm yr-1 at Rognier) and to estimate when the scarps initiated. The age of a scarp could also be accessed by sampling faulted debris slopes. Because sampling multiples scarps for CRE dating is relatively easy, we can access the geochronology of a whole sackung structure (22 CRE ages at Rognier). We found that the Arcs sackung and the Rognier sackung had contrasting behaviors and mechanisms. At the Arcs, DSGSD occurred through flexural toppling, with an upslope migration of the activity that stopped after a few thousand years (activity between 12 ka and 8 ka BP). At the Rognier Mountain, DSGSD occurred through deep conjugate faults. The fault slips are concomitant. Gravitational speading started before 12 ka and is probably still active at the same rate.

  14. Whole Class Laboratories: More Examples

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon

    2016-03-01

    Typically, introductory physics courses are taught with a combination of lectures and laboratories in which students have opportunities to discover the natural laws through hands-on activities in small groups. This article reports the use of Google Drive, a free online document-sharing tool, in physics laboratories for pooling experimental data from the whole class. This pedagogical method was reported earlier, and the present article offers a few more examples of such "whole class" laboratories.

  15. Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues

    PubMed Central

    Witherspoon, J W; Smirnova, IV; McIff, TE

    2014-01-01

    Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4 C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 ?m instead of using glycerin and teasing the tissue apart as in Gairns modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable. PMID:24476562

  16. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: Theory, implementation, and examples

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2015-01-01

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N6 does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  17. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: Theory, implementation, and examples

    SciTech Connect

    Dutta, Achintya Kumar E-mail: s.pal@ncl.res.in; Vaval, Nayana; Pal, Sourav E-mail: s.pal@ncl.res.in

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N{sup 6} does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B{sub 2}N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  18. Are AB Initio Quantum Chemistry Methods Able to Predict Vibrational States up to the Dissociation Limit for Multi-Electron Molecules Close to Spectroscopic Accuracy?

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Holka, Filip; Fremont, Julien; Rey, Michael; Tyuterev, Vladimir G.

    2011-06-01

    The aim of the study was to explore the limits of initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, b) MVD (Mass-velocity-Darwin) relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and c) DBOC (Diagonal Born-Oppenheimer correction) obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator and by calculation of non-adiabatic coupling by ab initio methods. The calculated vibrational levels were compared with those obtained from experimental data [J.A. Coxon and C.S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ˜1 wn\\ for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of ^7LiH up to dissociation, D_0, which was predicted to be 19594 Cm-1. In addition, rotational levels have also been calculated. The RMS deviation between our ab initio calculations and empirical results by Coxon and Dickinson for rotational spacings Δ E = E(v, J = 1)-E(v, J = 0) over all available vibrational states of ^7LiH from v = 0 to v= 20 is 0.010 wn (with nuclear masses) and 0.006 wn (with atomic masses). Note that for high vibrational states with v > 6 this falls within the uncertainty of the measurements.

  19. Reconstructing seawater ? 18O from paired coral ? 18O and Sr/Ca ratios: Methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia)

    NASA Astrophysics Data System (ADS)

    Yudawati Cahyarini, Sri; Pfeiffer, Miriam; Timm, Oliver; Dullo, Wolf-Christian; Schnberg, Dieter Garbe

    2008-06-01

    We compare several statistical routines that may be used to calculate ? 18O sw and SSS from paired coral Sr/Ca and ? 18O measurements. Typically, the ? 18O coral-SST relationship is estimated by linear regression of coral ? 18O vs. SST. If this method is applied, evidence should be given that at a particular site SST and SSS do not co-vary. In the tropical oceans, SST and ? 18O sw (SSS) often co-vary, and this will bias the estimate of the regression slope of ? 18O coral-SST. Using a stochastic model, we show that covariance leads to a bias in the coefficients of the univariate regression equations. As the slope of the ? 18O coral-SST relationship has known, we propose to insert this value for ?1 in the regression models. This requires that the constants of the regression equations are removed. To omit the constants, we propose to center the regression equations (i.e., to remove the mean values from the variables). The statistical error propagation is calculated to assess our ability to resolve past variations in ? 18O sw (SSS). At Tahiti, we find that the combined analytical uncertainties of coral ? 18O and Sr/Ca equal the amplitude of the seasonal cycle of ? 18O sw (SSS). Therefore, we cannot resolve the seasonal cycle of SSS at Tahiti. At Timor, the error of reconstructed ? 18O sw (SSS) is lower than the magnitude of seasonal variations of ? 18O sw (SSS), and the seasonal cycle of ? 18O sw (SSS) can be resolved.

  20. Reconstructing seawater ?18O from paired coral ?18O and Sr/Ca ratios: Methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia)

    NASA Astrophysics Data System (ADS)

    Cahyarini, Sri Yudawati; Pfeiffer, Miriam; Timm, Oliver; Dullo, Wolf-Christian; Schnberg, Dieter Garbe

    2008-06-01

    We compare several statistical routines that may be used to calculate ?18Osw and SSS from paired coral Sr/Ca and ?18O measurements. Typically, the ?18Ocoral-SST relationship is estimated by linear regression of coral ?18O vs. SST. If this method is applied, evidence should be given that at a particular site SST and SSS do not co-vary. In the tropical oceans, SST and ?18Osw (SSS) often co-vary, and this will bias the estimate of the regression slope of ?18Ocoral-SST. Using a stochastic model, we show that covariance leads to a bias in the coefficients of the univariate regression equations. As the slope of the ?18Ocoral-SST relationship has known, we propose to insert this value for ?1 in the regression models. This requires that the constants of the regression equations are removed. To omit the constants, we propose to center the regression equations (i.e., to remove the mean values from the variables). The statistical error propagation is calculated to assess our ability to resolve past variations in ?18Osw (SSS). At Tahiti, we find that the combined analytical uncertainties of coral ?18O and Sr/Ca equal the amplitude of the seasonal cycle of ?18Osw (SSS). Therefore, we cannot resolve the seasonal cycle of SSS at Tahiti. At Timor, the error of reconstructed ?18Osw (SSS) is lower than the magnitude of seasonal variations of ?18Osw (SSS), and the seasonal cycle of ?18Osw (SSS) can be resolved.

  1. Spectroscopic and electrical studies on Nd(3+), Zr(4+) ions doped nano-sized BaTiO3 ferroelectrics prepared by sol-gel method.

    PubMed

    Sameera Devi, Ch; Kumar, G S; Prasad, G

    2015-02-01

    Lead free ferroelectric ceramics in the form of Ba(1-3x)Nd(2x)Ti(1-y)ZryO3 ((where x=0.025, y=0 (BT1), 0.025 (BT2), 0.05 (BT3)) were prepared using sol-gel method. The surface morphology and the orientation of grains of the present ceramics were examined using Field Emission Scanning Electron Microscope (FESEM) images. The effect of Nd(3+), Zr(4+) ions content on the BaTiO3 was studied using Raman and Fourier Transform Infrared (FTIR) spectroscopies. From the Raman analysis the band observed at ?838 cm(-1) was attributed due to the presence of Nd(3+)-barium vacancy pairs. The FTIR studies suggested that the addition of Nd(3+) ions in A-site of BaTiO3 (ABO3) perovskite create lattice distortion by forming A-site vacancies and Zr(4+) ions in B-site of BaTiO3 induce the lattice distortion by forming ZrO6 octahedra in the place of TiO6 octahedra. Dielectric measurements of the samples were done at different frequencies from RT-150C. Charge transportation phenomenon is explained using DC conductivity, which is found to increase with temperature. PMID:25448941

  2. Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(1 1 1) by electron spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Trk, P.; Solymosi, F.; Kiss, J.; Knya, Z.

    2015-11-01

    The adsorption and dissociation of borazine were investigated on Rh(1 1 1) single crystal surface by Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) methods. Borazine is one of the most frequently applied precursor molecules in the preparation process of boron nitride overlayer on metal single crystal surfaces. On Rh(1 1 1) surface it adsorbs molecularly at 140 K. We did not find any preferred orientation, although there is evidence of "flat" and perpendicular molecular geometry, too. Dehydrogenation starts even below 200 K and finishes until ?7-800 K. No other boron or nitrogen containing products were observed in TPD beyond molecular borazine. Through the hydrogen loss of molecules hexagonal boron nitride layer forms in the 600-1100 K temperature range as it was indicated by AES and the characteristic optical phonon HREEL losses of h-BN overlayer. The adsorption behaviour of the boron nitride covered surface was also studied through the adsorption of methanol at 140 K. HREELS and TPD measurements showed that methanol adsorbed molecularly and a fraction of it dissociated to form surface methoxy and gas phase hydrogen on the h-BN/Rh(1 1 1) surface.

  3. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods.

    PubMed

    Leela, J Sherin Percy Prema; Hemamalini, R; Muthu, S; Al-Saadi, Abdulaziz A

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm(-1) and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the ?? and ?? antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (?), polarizability (?) and the hyperpolarizability (?) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. PMID:25813174

  4. The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,5-dimethyl napthalene by density functional method.

    PubMed

    Arivazhagan, M; Subhasini, V P; Kavitha, R; Senthilkumar, R

    2014-10-15

    The Fourier-transform infrared and FT-Raman spectra of 1,5-Dimethyl Napthalene (15DMN) was recorded in the region 4000-400cm(-1) and 3500-50cm(-1) respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 6M2C were carried out by density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The values of the total dipole moment (?) and the first order hyperpolarizability (?) of the investigated compound were computed using B3LYP/6-311++G(d,p) calculations. The calculated results also show that 15DMN might have microscopic non-linear optical, MESP, NBO analysis with non-zero values. A detailed interpretation of infrared and Raman spectra of 15DMN is also reported. The calculated HOMO7-LUMO energy gap shows that charge transfer occur within the molecule. The molecular electrostatic potential map shows that the negative potential sites are on the electronegative atoms as well as the positive potential sites are around the hydrogen atoms. PMID:24915765

  5. Screening the bio-safety of wheat produced from pretreated grains to enhance tolerance against drought using physiological and spectroscopic methods.

    PubMed

    Abdelkader, Amal Fadl; Hassanein, Raifa Ahmed; Abo-Aly, Mohamed Mahmoud; Attia, Mohamed Said; Bakir, Esam Mohamed

    2010-07-01

    Drought is a serious abiotic stress, causes worldwide intensive reduction in crop growth and productivity. Plants in contrast to other organisms, do not enjoy the luxury of being able to change their environment or seeking shelters. In this investigation, wheat grains were pre-soaked for 12h in salicylic acid (SA) and/or thiourea (ThU) prior they were left to grow in dry land (40% field water capacity) until harvest. The bio-safety of the harvested wheat was deduced using technical physiological and spectral methods. The pretreatment using SA up to ( approximately 1.5mmol) viewed homologous protein profile and less flag leaf proline in comparison to the non-stressed wheat. In addition, SA-pretreatment has maintained 70% of the emission intensity of yielded grain. The spectra of FTIR were more or less similar in yielded grain and flag leaf in SA-pretreatment. On the other hand, ThU pretreatment induced varied protein profile, higher proline than normal, reduced the fluorescence emission intensity by 52%, and induced varied FTIR spectra. Pretreatment of SA not only has enhanced wheat productivity but also increased yield and straw productions even above the non-treated-non-stressed wheat plant. In contrast to ThU SA was considered safe for drought-stress alleviation in crop plant agriculture. PMID:20398722

  6. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    PubMed

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. PMID:21813258

  7. Study of fluorescence interaction and conformational changes of bovine serum albumin with histamine H₁ -receptor--drug epinastine hydrochloride by spectroscopic and time-resolved fluorescence methods.

    PubMed

    Ariga, Girish G; Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2015-11-01

    The fluorescence, ultraviolet (UV) absorption, time resolved techniques, circular dichroism (CD), and infrared spectral methods were explored as tools to investigate the interaction between histamine H1 drug, epinastine hydrochloride (EPN), and bovine serum albumin (BSA) under simulated physiological conditions. The experimental results showed that the quenching of the BSA by EPN was static quenching mechanism and also confirmed by lifetime measurements. The value of n close to unity indicated that one molecule of EPN was bound to protein molecule. The binding constants (K) at three different temperatures were calculated (7.1 × 10(4), 5.5 × 10(4), and 3.9 × 10(4) M(-1)). Based on the thermodynamic parameters (ΔH(0), ΔG(0), and ΔS(0)), the nature of binding forces operating between drug and protein was proposed. The site of binding of EPN in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz, warfarin, ibuprofen, and digitoxin. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (EPN) was evaluated and found to be 4.48 nm. The UV-visible, synchronous fluorescence, CD, and three-dimensional fluorescence spectral results revealed the changes in secondary structure of the protein upon its interaction with EPN. PMID:26215421

  8. Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy?

    PubMed

    Szalay, Pter G; Holka, Filip; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G

    2011-03-01

    The aim of the study was to explore the limits of ab initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: (a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ? extrapolation of the basis, (b) MVD relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and (c) DBOC obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator. The calculated vibrational levels were compared with those obtained from experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ?1 cm(-1) for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of (7)LiH up to dissociation, D(0), which was predicted to be 19,594 cm(-1). PMID:21180724

  9. Involvement of tyrosine residues in the protomer-protomer interaction of Proteus mirabilis flagella as studied by spectroscopic methods, chemical modification and aggregation experiments.

    PubMed

    Schalch, W; Bode, W

    1975-10-20

    Using spectrophotometrical titration, chemical modification, and ultraviolet difference spectral methods, the existence of at least two distinct tyrosine groups in the isolated flagellin of Proteus mirabilis flagella has been established. Three of the five flagellin tyrosines are buried in the protein matrix, whereas the other two seem to lie on the protein surface accessible to perturbants. Also about two tyrosine residues, presumably the latter ones exposed to the environment, can be nitrated with tetranitromethane in the monomeric flagellin with a concomitant loss of the polymerization ability after about one tyrosine per mol flagellin has been nitrated. Nitrated flagellin, homogeneous with respect to molecular weight, degree of nitration and isoelectric point, could be isolated and characterized. On the other hand, it could be shown that in the polymeric flagellum the phenolic groups of all five tyrosine residues are inaccessible to perturbing and modifying reagents. It seems, therefore, that the integrity of the phenolic groups is necessary for the proper folding and aggregation of the flagellin subunits to form the stable helical flagella. PMID:241412

  10. Improving the classification accuracy for IR spectroscopic diagnosis of stomach and colon malignancy using non-linear spectral feature extraction methods.

    PubMed

    Lee, Sanguk; Kim, Kyoungok; Lee, Hyeseon; Jun, Chi-Hyuck; Chung, Hoeil; Park, Jong-Jae

    2013-07-21

    Non-linear feature extraction methods, neighborhood preserving embedding (NPE) and supervised NPE (SNPE), were employed to effectively represent the IR spectral features of stomach and colon biopsy tissues for classification, and improve the classification accuracy for diagnosis of malignancy. The motivation was to utilize the NPE and SNPE's capability of capturing non-linear spectral behaviors by simultaneously preserving local relationships in order that minute spectral differences among classes would be effectively recognized. NPE and SNPE derive an optimal embedding feature such that the local neighborhood structure can be preserved in reduced spaces (variables). The IR spectra collected from stomach and colon tissues were represented by several new variables through NPE and SNPE, and also by using the principal component analysis (PCA). Then, the feature-extracted variables were subsequently classified into normal, adenoma and cancer tissues by using both k-nearest neighbor (k-NN) and support vector machine (SVM), and the resulting accuracies were compared with each other. In both cases, the combination of SNPE-SVM provided the best classification performance, and the accuracy was substantially improved compared to when PCA-SVM was used. Overall results demonstrate that NPE and SNPE could be potential feature-representation strategies useful in biomedical diagnosis based on vibrational spectroscopy where effective recognition of minute spectral differences is critical. PMID:23687649

  11. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods

    NASA Astrophysics Data System (ADS)

    Sherin Percy Prema Leela, J.; Hemamalini, R.; Muthu, S.; Al-Saadi, Abdulaziz A.

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm-1 and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  12. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Gersonde, I.; Meinke, M.; Sterry, W.; Lademann, J.

    2005-08-01

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar+ laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm-1, which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm2. It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group.

  13. A grid matrix-based Raman spectroscopic method to characterize different cell milieu in biopsied axillary sentinel lymph nodes of breast cancer patients.

    PubMed

    Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R

    2016-01-01

    Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms. PMID:26552923

  14. The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,5-dimethyl napthalene by density functional method

    NASA Astrophysics Data System (ADS)

    Arivazhagan, M.; Subhasini, V. P.; Kavitha, R.; Senthilkumar, R.

    2014-10-01

    The Fourier-transform infrared and FT-Raman spectra of 1,5-Dimethyl Napthalene (15DMN) was recorded in the region 4000-400 cm-1 and 3500-50 cm-1 respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 6M2C were carried out by density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The values of the total dipole moment (?) and the first order hyperpolarizability (?) of the investigated compound were computed using B3LYP/6-311++G(d,p) calculations. The calculated results also show that 15DMN might have microscopic non-linear optical, MESP, NBO analysis with non-zero values. A detailed interpretation of infrared and Raman spectra of 15DMN is also reported. The calculated HOMO7-LUMO energy gap shows that charge transfer occur within the molecule. The molecular electrostatic potential map shows that the negative potential sites are on the electronegative atoms as well as the positive potential sites are around the hydrogen atoms.

  15. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach.

    PubMed

    Paczkowska, Magdalena; Lewandowska, Kornelia; Bednarski, Waldemar; Mizera, Miko?aj; Podborska, Agnieszka; Krause, Anna; Cielecka-Piontek, Judyta

    2015-04-01

    Vibrational (FT-IR, Raman) and electronic (UV, EPR) spectral measurements were performed for an analysis of rutin (quercetin-3-O-rutinoside) obtained from Rutaofficinalis. The identification of rutin was done with the use of FT-IR and Raman spectra. Those experimental spectra were determined with the support of theoretical calculations based on a DFT method with the B3LYP hybrid functional and 6-31G(d,p) basis set. The application of UV and EPR spectra was found to be a suitable analytical approach to the evaluation of changes in rutin exposed to certain physicochemical factors. Differences in absorbance observed in direct UV spectra were used to monitor changes in the concentration of rutin in degraded samples. Spectra of electron paramagnetic resonance allowed studying the process of free-radical quenching in rutin following its exposure to light. The molecular electrostatic potential (MEP) and frontier molecular orbitals (LUMO-HOMO) were also determined in order to predict structural changes and reactive sites in rutin. PMID:25589394

  16. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach

    NASA Astrophysics Data System (ADS)

    Paczkowska, Magdalena; Lewandowska, Kornelia; Bednarski, Waldemar; Mizera, Mikołaj; Podborska, Agnieszka; Krause, Anna; Cielecka-Piontek, Judyta

    2015-04-01

    Vibrational (FT-IR, Raman) and electronic (UV, EPR) spectral measurements were performed for an analysis of rutin (quercetin-3-O-rutinoside) obtained from Rutaofficinalis. The identification of rutin was done with the use of FT-IR and Raman spectra. Those experimental spectra were determined with the support of theoretical calculations based on a DFT method with the B3LYP hybrid functional and 6-31G(d,p) basis set. The application of UV and EPR spectra was found to be a suitable analytical approach to the evaluation of changes in rutin exposed to certain physicochemical factors. Differences in absorbance observed in direct UV spectra were used to monitor changes in the concentration of rutin in degraded samples. Spectra of electron paramagnetic resonance allowed studying the process of free-radical quenching in rutin following its exposure to light. The molecular electrostatic potential (MEP) and frontier molecular orbitals (LUMO-HOMO) were also determined in order to predict structural changes and reactive sites in rutin.

  17. Interaction: Examples and Possibilities.

    ERIC Educational Resources Information Center

    Schick, James B. M.

    2000-01-01

    Explores examples of software that employs interactivity to engage students in a dialogue with the past: (1) "Reverse America"; (2) "Pilgrims and Indians"; (3) "Keys to Victory in the War for Independence"; (4) "Monmouth"; (5) "Critical Period"; (6) "Translating"; (7) "Founders"; and (8) "Convention". (CMK)

  18. Cyclostationarity by examples

    NASA Astrophysics Data System (ADS)

    Antoni, Jrme

    2009-05-01

    This paper is a tutorial on cyclostationarity oriented towards mechanical applications. The approach is voluntarily intuitive and accessible to neophytes. It thrives on 20 examples devoted to illustrating key concepts on actual mechanical signals and demonstrating how cyclostationarity can be taken advantage of in machine diagnostics, identification of mechanical systems and separation of mechanical sources.

  19. A Unifying Probability Example.

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2002-01-01

    Presents an example from probability and statistics that ties together several topics including the mean and variance of a discrete random variable, the binomial distribution and its particular mean and variance, the sum of independent random variables, the mean and variance of the sum, and the central limit theorem. Uses Excel to illustrate these

  20. Utility of telephone survey methods in population-based health studies of older adults: an example from the Alberta Older Adult Health Behavior (ALERT) study

    PubMed Central

    2014-01-01

    Background Random digit dialing is often used in public health research initiatives to accrue and establish a study sample; however few studies have fully described the utility of this approach. The primary objective of this paper was to describe the implementation and utility of using random digit dialing and Computer Assisted Telephone Interviewing (CATI) for sampling, recruitment and data collection in a large population-based study of older adults [Alberta Older Adult Health Behavior (ALERT) study]. Methods Using random digit dialing, older adults (>?=?55?years) completed health behavior and outcome and demographic measures via CATI. After completing the CATI, participants were invited to receive a step pedometer and waist circumference tape measure via mail to gather objectively derived ambulatory activity and waist circumference assessments. Results Overall, 36,000 telephone numbers were called of which 7,013 were deemed eligible for the study. Of those, 4,913 (70.1%) refused to participate in the study and 804 (11.4%) participants were not included due to a variety of call dispositions (e.g., difficult to reach, full quota for region). A total of 1,296 participants completed telephone interviews (18.5% of those eligible and 3.6% of all individuals approached). Overall, 22.8% of households did not have an age 55+ resident and 13.6% of individuals refused to participate, Average age was 66.5?years, and 43% were male. A total of 1,081 participants (83.4%) also submitted self-measured ambulatory activity (i.e., via step pedometer) and anthropometric data (i.e., waist circumference). With the exception of income (18.7%), the rate of missing data for demographics, health behaviors, and health measures was minimal (<1%). Conclusions Older adults are willing to participate in telephone-based health surveys when randomly contacted. Researchers can use this information to evaluate the feasibility and the logistics of planned studies using a similar population and study design. PMID:24884997

  1. Mono-N-acyl-2,6-diaminopimelic acid derivatives: analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity.

    PubMed

    Hlav?ek, Jan; Vtovcov, Miloslava; Szelov, Petra; Pcha, Jan; Van?k, Vclav; Bud?nsk, Milo; Jir?ek, Ji?; Gillner, Danuta M; Holz, Richard C; Mikk, Ivan; Kai?ka, Vclav

    2014-12-15

    Thirteen mono-N-acyl derivatives of 2,6-diaminopimelic acid (DAP)-new potential inhibitors of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18)-were analyzed and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and two capillary electromigration methods: capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). Structural features of DAP derivatives were characterized by IR and NMR spectroscopies, whereas CZE and MEKC were applied to evaluate their purity and to investigate their electromigration properties. Effective electrophoretic mobilities of these compounds were determined by CZE in acidic and alkaline background electrolytes (BGEs) and by MEKC in acidic and alkaline BGEs containing a pseudostationary phase of anionic detergent sodium dodecyl sulfate (SDS) or cationic detergent cetyltrimethylammonium bromide (CTAB). The best separation of DAP derivatives, including diastereomers of some of them, was achieved by MEKC in an acidic BGE (500 mM acetic acid [pH 2.54] and 60mM SDS). All DAP derivatives were examined for their ability to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichia coli (EcArgE). None of these DAP derivatives worked as an effective inhibitor of HiDapE, but one derivative-N-fumaryl, Me-ester-DAP-was found to be a moderate inhibitor of EcArgE, thereby providing a promising lead structure for further studies on ArgE inhibitors. PMID:25205653

  2. Data Acquisition System for Instructional Spectroscopes

    NASA Astrophysics Data System (ADS)

    Almeida, C. B. S. B.; Hetem, A.

    2014-10-01

    This article aims to present the software for data acquisition developed in scientific initiation program - IC, for use in the design of a spectrometer built by students. The program was built in C++, a language in wide use today. The origin of spectra used is a simplified model of rustic spectroscope. This equipment basically consists of a box that does not allow light to enter, except through a slit made in the side of it, a diffraction media and a camera for data acquisition. After the image acquisition, one executes the data processing, followed by the usual steps of reduction and analysis of this type of tool. We have implemented a method for calibrating the spectroscope, through which one can compare the incidence of the photons with characteristic of each monochromatic wave. The final result is a one-dimensional spectrum that can be subsequently analyzed.

  3. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion.

    PubMed

    Saerens, L; Segher, N; Vervaet, C; Remon, J P; De Beer, T

    2014-01-01

    A calibration model for in-line API determination was developed based on Raman spectra collected during hot-melt extrusion. This predictive model was validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the model was evaluated. A Raman probe was implemented in the die of a twin-screw extruder, to monitor the drug concentration during extrusion of physical mixtures containing 15, 20, 25, 30 and 35% (w/w) metoprolol tartrate (MPT) in Eudragit() RS PO, an amorphous copolymer of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups, which are present as salts. Several different calibration models for the prediction of the MPT content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or multivariate curve resolution (MCR). These predictive models were validated by extruding and monitoring mixtures containing 17.5, 22.5, 25.0, 27.5 and 32.5% (w/w) MPT. Each validated concentration was monitored on three different days, by two different operators. The ?-expectation tolerance intervals were calculated for each model and for each of the validated MPT concentration levels (? was set at 95%), and acceptance limits were set at 10% (relative bias), indicating that at least 95% of future measurements should not deviate more than 10% from the true value. The only model where these acceptance limits were not exceeded was the MCR model based on averaged Raman spectra. The uncertainty measurements for this model showed that the unknown true value can be found at a maximum of 7.00% around the measured result, with a confidence level of 95%. The robustness of this model was evaluated via an experimental design varying throughput, screw speed and barrel temperature. The robustness designs showed no significant influence of any of the process settings on the predicted concentration values. Raman spectroscopy proved to be a fast, non-destructive and reliable method for the quantification of MPT during hot-melt extrusion. From the accuracy profile of the MCR model based on averaged spectra, it was concluded that for each MPT concentration in the validated concentration range, 95 out 100 future routine measurements will be included within the acceptance limits (10%). PMID:24331054

  4. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  5. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    NASA Astrophysics Data System (ADS)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 ?m thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 4355 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the needle can give additional information of needle position, assuring the needle tip is directed into intervertebral disc material. Spectroscopic analysis of intervertebral disc removed during open surgery, creates background for further investigation on intervertebral disc degeneration spectral classification.

  6. Spectroscopic studies of glass structure

    SciTech Connect

    Brow, R.K.

    1994-08-01

    Today`s understanding of the molecular-level structure of inorganic glasses has been transformed by the availability of a wide range of sensitive spectroscopic probes. Today we can relate glass composition to quantitative distributions of glass-forming cations and to changes in oxygen bonding and modifying cation geometries. Future spectroscopic studies will result in improved descriptions of anion and cation geometries and should provide glass scientists with the capability to optimize atomic arrangements for specific optical, electrical, and thermal properties.

  7. Systematic reviews. Some examples.

    PubMed Central

    Knipschild, P.

    1994-01-01

    Reviewing the literature is a scientific inquiry that needs a clear design to preclude bias. It is a real enterprise if one aims at completeness of the literature on a certain subject. Going through refereed English language journals is not enough. On line databases are helpful, but mainly as a starting point. This article gives examples of systematic reviews on vitamin C and the common cold, pyridoxine against the premenstrual syndrome, homeopathy, and physiotherapy. Images p720-a PMID:7950526

  8. Paleomagnetic dating: Methods, MATLAB software, example

    NASA Astrophysics Data System (ADS)

    Hnatyshin, Danny; Kravchinsky, Vadim A.

    2014-09-01

    A MATLAB software tool has been developed to provide an easy to use graphical interface for the plotting and interpretation of paleomagnetic data. The tool takes either paleomagnetic directions or paleopoles and compares them to a user defined apparent polar wander path or secular variation curve to determine the age of a paleomagnetic sample. Ages can be determined in two ways, either by translating the data onto the reference curve, or by rotating it about a set location (e.g. sampling location). The results are then compiled in data tables which can be exported as an excel file. This data can also be plotted using variety of built-in stereographic projections, which can then be exported as an image file. This software was used to date the giant Sukhoi Log gold deposit in Russia. Sukhoi Log has undergone a complicated history of faulting, folding, metamorphism, and is the vicinity of many granitic bodies. Paleomagnetic analysis of Sukhoi Log allowed for the timing of large scale thermal or chemical events to be determined. Paleomagnetic analysis from gold mineralized black shales was used to define the natural remanent magnetization recorded at Sukhoi Log. The obtained paleomagnetic direction from thermal demagnetization produced a paleopole at 61.3N, 155.9E, with the semi-major axis and semi-minor axis of the 95% confidence ellipse being 16.6 and 15.9 respectively. This paleopole is compared to the Siberian apparent polar wander path (APWP) by translating the paleopole to the nearest location on the APWP. This produced an age of 255.2- 31.0+ 32.0Ma and is the youngest well defined age known for Sukhoi Log. We propose that this is the last major stage of activity at Sukhoi Log, and likely had a role in determining the present day state of mineralization seen at the deposit.

  9. Enhancing forensic science with spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging from analysis of trace evidence (e.g. in soil), tablets, drugs, fibres, tape explosives, biological samples to detection of gunshot residues and imaging of fingerprints.

  10. Raman spectroscopic biochemical mapping of tissues

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  11. Effects of Worked Examples, Example-Problem, and Problem-Example Pairs on Novices' Learning

    ERIC Educational Resources Information Center

    van Gog, Tamara; Kester, Liesbeth; Paas, Fred

    2011-01-01

    Research has demonstrated that instruction that relies more heavily on example study is more effective for novices' learning than instruction consisting of problem solving. However, "a heavier reliance on example study" has been implemented in different ways. For example, worked examples only (WE), example-problem pairs (WE-PS), or problem-example…

  12. Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Str?kowski, Marcin R.; Kraszewski, Maciej; Str?kowska, Paulina; Trojanowski, Micha?

    2015-03-01

    Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.

  13. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin

    PubMed Central

    Ritter, Eglof; Puskar, Ljiljana; Bartl, Franz J.; Aziz, Emad F.; Hegemann, Peter; Schade, Ulrich

    2015-01-01

    Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins. PMID:26217670

  14. An investigation using Spectroscopic Ellipsometery in Bio-Physical

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Galen; Thompson, Daniel; Berberov, Emil; Woollam, John; Bleiweiss, Michael; Datta, Timir

    2001-03-01

    The present work is an investigation of bio-physical systems using spectroscopic ellipsometry (SE), with wavelengths ranging from deep-ultraviolet to the far infrared. Recent advances in SE hardware, software and data analysis permit rapid, non-contact investigation of physical properties of nano-dimensional soft-material films and interfaces such as bio-films under liquids. The kinetics of attachment, layer thickness, density of coverage, and identification of interfacial chemistry of proteins, for example, on surfaces is of practical and fundamental importance in biology and medicine, and are potentially measurable by SE. Our initial findings determine adsorption rates of Bovine Serum Albumin (BSA) and other bio-films on gold and polystyrene substrates, as well as their spatial distributions. We were also able to identify attachment of a 2.5 nm layer of the diarrhea causing E. coli enterotoxin (LT) to ganglioside (GM1) receptor, potentially simplifying and providing more information to standard enzyme linked immuno sorbent assay (ELISA) methods. Results of studies of several different bio-physical systems using SE will be discussed.

  15. Learning from examples: from theory to practice

    SciTech Connect

    Hush, D. R.; Scovel, James C.; Kelly, P. M.; Howse, J. W.; Fugate, M. L.; Cannon, A.

    2001-01-01

    This tutorial provides an overview of the problem of learning from examples. Emphasis is placed on fundamental limitations in three areas: approximation, estimation and computation. Each of these is compared and contrasted in situations where the problem is one of regression verses pattern classification, parametric versus nonparametric, and linear versus nonlinear. General methods for improving generalization and computation speed are discussed, and practical examples are used to illustrate these methods.

  16. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrnes and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  17. [Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts].

    PubMed

    Zhao, Hong-Xia; Gan, Fu-Xi

    2009-11-01

    Laser Raman spectroscopic technique is one of the essential methods in scientific archaeological research, which belongs to the nondestructive analysis. As a very good nondestructive analysis approach, it has not been widely applied in the research of the Chinese ancient jade artifacts. First of all in the present paper the fundamentals of laser Raman spectroscopic technique and the new research progress in this field were reviewed. Secondly, the Raman spectra of five familiar jades including nephrite (mainly composed of tremolite), Xiuyan Jade (mainly composed of serpentine), Dushan Jade (mainly composed of anorthite and Zoisite), turquoise and lapis lazuli were summarized respectively. As for an example, the Raman spectra of the four Chinese ancient jade artifacts excavated from Liangzhu Site of Zhejiang Province and Yinxu Site of Anyang in Henan Province were compared with that of the nephrite sample in Hetian of Xinjiang Province. It was shown that the Raman spectroscopic technique is a good nondestructive approach to the identification and investigation of the structures and mineral composition of Chinese ancient jade artifacts. Finally, the limitations and the foreground of this technique were discussed. PMID:20101970

  18. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  19. 2-Chloroethylisocyanate. Thermal decomposition and spectroscopic properties.

    PubMed

    Martínez Córdoba, Gustavo A; Ramos, Luis A; Ulic, Sonia E; Jios, Jorge L; DellaVédova, Carlos O; Pepino, Julieta; Burgos Paci, Maxi A; Argüello, Gustavo A; Ge, Maofa; Beckers, Helmut; Willner, Helge

    2011-08-11

    2-Chloroethylisocyanate has been studied in a thorough way. NMR, Raman, FTIR, and Ar-matrix vibrational spectra of the molecule are presented and discussed with the complement of ab initio and DFT methods. The spectroscopic results reveal the existence of anti and gauche conformers that are equally populated in the gas phase. Thermal decomposition between 393 and 648 K shows two different pathways depending on the temperature, which can be interpreted in terms of simple second- and first-order mechanisms, respectively. Quantum mechanical calculations reproduce the experimental results. PMID:21718037

  20. Spectroscopic analysis of insulating crystal fibers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Albin, S.

    1988-01-01

    A new technique is described for investigating the optical properties of solid-state laser materials using single-crystal fibers grown by a laser-heated pedestal-growth technique. Single-crystal fiber samples can be prepared more rapidly and less expensively than crystals grown by more conventional methods; however, they are smaller and less uniform, making spectroscopic measurements difficult. A simple procedure for extracting the optical absorption and emission spectra of insulating crystal fibers is demonstrated with a titanium-doped sapphire fiber sample; results are comparable to those from Czochralski-grown material.

  1. Spectroscopic measurement of an atomic wave function

    SciTech Connect

    Kapale, Kishore T.; Qamar, Shahid; Zubairy, M. Suhail

    2003-02-01

    We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in which two upper levels are driven by a classical standing light, yields information about the position and momentum distribution of the atom [A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt. 44, 2507 (1997)]. In this paper, we show that both the amplitude and phase information of the center-of-mass atomic wave function can be obtained from these distributions after a series of conditional measurements on the atom and the emitted photon.

  2. Spectroscopic investigation of protein corona

    NASA Astrophysics Data System (ADS)

    Choudhary, Poonam

    Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due to the vast complexity of their hosting systems, the solubility, transformation, and biocompatibility of nanomaterials are still poorly understood. Nanotechnology has been undergoing tremendous development in recent decades, driven by realized perceived applications of nanomaterials in electronics, therapeutics, imaging, sensing, environmental remediation, and consumer products. Nanoparticles on entering the blood stream undergo an identity change, they become coated with proteins. There are different kind of proteins present in blood. Proteins compete for getting coated over the surface of nanoparticle and this whole entity of proteins coated over nanoparticle surface is called Protein Corona. Proteins tightly bound to the surface of nanoparticle form hard corona and the ones loosely bound on the outer surface form soft corona. This dissertation is aimed at spectroscopic investigation of Protein Corona. Chapter I of this dissertation offers a comprehensive review of the literature based on nanomaterials with the focus on carbon based nanomaterilas and introduction to Protein Corona. Chapter II is based different methods used for Graphene Synthesis,different types of defects and doping. In Chapter III influence of defects on Graphene Protein Corona was investigated. Chapter IV is based on the study of Apoptosis induced cell death by Gold and silver nanoparticles. In vitro study of effect of Protein Corona on toxicity of cells was done.

  3. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can

  4. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  5. Halo nucleus 11Be: a spectroscopic study via neutron transfer.

    PubMed

    Schmitt, K T; Jones, K L; Bey, A; Ahn, S H; Bardayan, D W; Blackmon, J C; Brown, S M; Chae, K Y; Chipps, K A; Cizewski, J A; Hahn, K I; Kolata, J J; Kozub, R L; Liang, J F; Matei, C; Mato, M; Matyas, D; Moazen, B; Nesaraja, C; Nunes, F M; O'Malley, P D; Pain, S D; Peters, W A; Pittman, S T; Roberts, A; Shapira, D; Shriner, J F; Smith, M S; Spassova, I; Stracener, D W; Villano, A N; Wilson, G L

    2012-05-11

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be(d,?p) reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an n?j=2s(1/2) state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p(1/2) state. PMID:23003029

  6. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT numbers to quantify multi-energy PCS-CT images, application of K-edge filtered x-rays for improved soft tissue decomposition, and several others. The study suggests that the presented PCS-CT technology meets the requirements of a particular clinical application, i.e. dedicated breast CT.

  7. Soft tissue imaging with photon counting spectroscopic CT.

    PubMed

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT numbers to quantify multi-energy PCS-CT images, application of K-edge filtered x-rays for improved soft tissue decomposition, and several others. The study suggests that the presented PCS-CT technology meets the requirements of a particular clinical application, i.e. dedicated breast CT. PMID:25739788

  8. Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

    SciTech Connect

    Stangeby, P; Fenstermacher, M

    2004-12-03

    For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.

  9. Fourier transform infared spectroscopic imaging for the identification of concealed drug residue particles and fingerprints

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Chan, K. L. Andrew; Kazarian, Sergei G.

    2006-09-01

    Conventional FTIR spectroscopy and microscopy has been widely used in forensic science. New opportunities exist to obtain rapid chemical images and to enhance the sensitivity of detection of trace materials using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy coupled with a focal-plane array (FPA) detector. In this work, the sensitivity of ATR-FTIR spectroscopic imaging using three different kinds of ATR crystals (Ge coupled with an infrared microscope, ZnSe and diamond) and resulting in three different optical arrangements for the detection of model drug particles is discussed. Model systems of ibuprofen and paracetamol particles having a size below 32 micrometers have been prepared by sieving. The sensitivity level in the three different approaches has been compared and it has been found that both micro and macro-ATR imaging methods have proven to be a promising techniques for the identification of concealed drug particles. To demonstrate the power and applicability of FTIR chemical imaging to forensic research, various examples are discussed. This includes investigation of the changes of chemical nature of latent fingerprint residue under controlled conditions of humidity and temperature studied by ATR-FTIR imaging. This study demonstrates the potential of spectroscopic imaging for visualizing the chemical changes of fingerprints.

  10. Starfish: Robust spectroscopic inference tools

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.

    2015-05-01

    Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

  11. Learning by Example.

    ERIC Educational Resources Information Center

    Butts, Thomas

    1982-01-01

    A dialog shows how student-teacher interaction on problems can help students learn. Fifty sample problems are provided as starting points for class discussions from grade three through college. Six purposes such problems can serve are identified. A method of classroom presentation, the mathematical scavenger hunt, is discussed. (MP)

  12. Cerro Armazones spectroscopic survey of F dwarfs

    NASA Astrophysics Data System (ADS)

    Pribulla, Theodor; Sebastian, Daniel; Ammler-von Eiff, Matthias; Stahl, Otmar; Berndt, Alexandra; Chini, Rolf; Hoffmeister, Vera; Mugrauer, Markus; Neuhuser, Ralph; Va?ko, Martin

    2014-09-01

    We present a spectroscopic survey of a sample of F stars that have not yet been searched for planets. The observations of 187 stars obtained with the Bochum Echelle Spectrographic Observer of the Cerro Armazones Observatory were aimed at nearby (closer than 70 pc) main-sequence stars without sufficient archive ([fiber-fed extended range optical spectrograph (FEROS)/high accuracy radial velocity planet search (HARPS)]) spectroscopy. The primary goal of the survey was to select the best candidates for radial-velocity searches of extrasolar planets. The spectra were analysed using the broadening-function technique, the method of choice for rapid rotators later than about A5. The analysis was focused not only at the determination of projected rotational velocity (defining precision of radial-velocity determination), but also at the detection of previously unknown spectroscopic binaries/multiples or stars showing strong line asymmetries. 12 previously unknown spectroscopic binaries/triples were detected. For all observed targets the spectral type was determined. About 140 stars are rotating faster than the resolution limit of 10 km s-1 sampling the onset of convection and slow rotation at mid-F spectral types in great detail. Radial-velocity precision of the data (about 100 m s-1) is insufficient to detect planets but could indicate most SB1 systems with stellar companions. As there are already 2-3 observations per object for these newly detected binary stars, only a few additional follow-up observations will be needed to obtain constraints on orbital parameters. We identified a sample of 68 bright F-type dwarf stars which are perfect targets for future planet searches. They rotate moderately or slowly and do not show any sign of binarity, pulsations, or surface activity.

  13. Extracting spectroscopic factors from direct reactions

    NASA Astrophysics Data System (ADS)

    Jones, Kate

    2009-10-01

    Direct reactions have been used to probe the structure of the nucleus for decades. After some decline in the 80's and 90's these methods have more recently had a surge in popularity, and new techniques have been added to the experimentalists toolbox. One goal of direct reaction experiments is to extract spectroscopic factors (SFs), related to the shell occupancy. SFs extracted from neutron knockout reactions show reductions, compared to the theoretical value, that are related to the neutron separation energy [1], whereas SFs from the well-established (e,e'p) reaction on stable nuclei are consistently 50% - 60% lower than those expected from the independent-particle shell model [2] over a wide range of masses. pardAs the extraction of spectroscopic factors from direct reaction measurements requires the comparison of data with calculated differential cross sections, the results are by nature model dependent. The influence of different scattering (commonly optical), and bound state potentials, should not be over-looked. Recent attempts to reanalyze single-neutron transfer data using a consistent approach have shown agreement with large basis shell model calculations [3], clearly conflicting with both the (e,e'p) and the knockout data. It has been suggested that the Asymptotic Normalization Coefficient (ANC) is a more valid quantity to extract when the reaction is peripheral [4]. spectroscopic factors are, how they are extracted and what they really mean will be discussed in this talk.[4pt] [1] Alexandra Gade, and Thomas Glasmacher, Prog Part. Nucl. Phys. 60 (2008) 161-224.[0pt] [2] G.J. Kramer, H.P. Blok, and L. Lapik'as, Nucl. Phys. A679 (2001) 267-286.[0pt] [3] Jenny Lee, M.B. Tsang, and W.G. Lynch, Phys. Rev C 75, (2007), 064320.[0pt] [4] D.Y. Pan, F.M. Nunes, and A.M. Mukhamedzhanov, Phys. Rev. C 75, (2007) 024601.

  14. Digital Mammography Example Dataset

    Cancer.gov

    This dataset includes a random sample of 20,000 digital and 20,000 film-screen mammograms received by women age 60-89 years within the BCSC between January 2005 and December 2008. Some women contribute multiple examinations to the dataset. It may be useful to people interested in teaching about data analysis, epidemiological study designs, or statistical methods for binary outcomes or correlated data.

  15. Backscattering spectroscopic contrast with angle-resolved optical coherence tomography.

    PubMed

    Desjardins, Adrien E; Vakoc, Benjamin J; Tearney, Guillermo J; Bouma, Brett E

    2007-11-01

    Backscattering spectroscopic contrast using angle-resolved optical coherence tomography is demonstrated as a powerful method for determining scatterer diameter with subwavelength resolution. By applying spectroscopic digital processing algorithms to interferograms acquired in the frequency domain with a wavelength-swept laser centered at 1295 nm, it was shown that differences in wavelength-dependent backscattering from 0.3 and 1 microm diameter microspheres can be clearly resolved. The observed backscattering spectra were found to be consistent with Mie theory. High levels of speckle noise reduction achieved by angular compounding increased the spatial resolution at which backscattering spectra could be accurately differentiated. PMID:17975629

  16. About the problems to interpret spectroscopic data from plasmas

    SciTech Connect

    Rosmej, F. B.; Guedda, E. H.; Stamm, R.; Lisitsa, V. S.; Capes, H.

    2006-01-15

    Continued developments of quantitative spectroscopy and related atomic physics are originating from inertial and magnetic fusion research. In almost all experimental facilities, non-equilibrium phenomena are now a central issue and the interpretation of related spectroscopic data is a great challenge. We discuss new general diagnostic/spectroscopic approaches and usual point of views: high density methods and high density atomic physics for magnetic fusion research like ITER and the Virtual Contour Shape Kinetic Theory VCSKT which unifies low and high density plasma regimes and therefore allows to employ complex satellite transitions in non-equilibrium, non-LTE and non-Coronal plasmas.

  17. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D-0525 and 090.D-0133.Table 1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A124Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A124

  18. Utility of magnetic resonance spectroscopic imaging for human epilepsy

    PubMed Central

    Kuzniecky, Ruben I.

    2015-01-01

    This review discusses the potential utility of broad based use of magnetic resonance (MR) spectroscopic imaging for human epilepsy and seizure localization. The clinical challenges are well known to the epilepsy community, intrinsic in the variability of location, volumetric size and network extent of epileptogenic tissue in individual patients. The technical challenges are also evident, with high performance requirements in multiple steps, including magnet homogeneity, detector performance, sequence design, speed of acquisition in addition to large territory spectral processing. We consider how MR spectroscopy and spectroscopic imaging has been informative for epilepsy thus far, with specific attention to what is measured, the interpretation of such measurements and technical performance challenges. Examples are shown from medial temporal lobe and neocortical epilepsies are considered from 4T, 7T and most recently 3T. PMID:25853088

  19. Spectroscopic X-ray imaging with photon counting pixel detectors

    NASA Astrophysics Data System (ADS)

    Tlustos, L.

    2010-11-01

    Single particle counting hybrid pixel detectors simultaneously provide low noise, high granularity and high readout speed and make it possible to build detector systems offering high spatial resolution paired with good energy resolution. A limiting factor for the spectroscopic performance of such detector systems is charge sharing between neighbouring pixels in the sensor part of the detector. The signal spectrum at the collection electrodes of the readout electronics deviates significantly from the photonic spectrum when planar segmented sensor geometries are used. The Medipix3 implements a novel, distributed signal processing architecture linking neighbouring pixels and aims at eliminating the spectral distortion produced in the sensor by charge sharing and at reducing the impact of fluorescence photons generated in the sensor itself. Preliminary results from the very first Medipix3 readouts bump bonded to 300 ?m Si sensor are presented. Material reconstruction is a possible future application of spectroscopic imaging detectors and an example of material reconstruction in small animal imaging is given.

  20. Spectroscopic imaging of serum proteins using quantum cascade lasers.

    PubMed

    Mukherjee, Anadi; Bylund, Quentin; Prasanna, Manu; Margalit, Yotam; Tihan, Tarik

    2013-03-01

    First measurements of biomedical imaging using quantum cascade lasers (QCL) are presented. We report spectroscopic imaging of serum proteins using QCLs as an example for monitoring surface biocontamination. We found that dry smears of human serum can be spectroscopically imaged, identified, and quantified with high sensitivity and specificity. The core parts of the imaging platform consist of optically multiplexing three QCLs and an uncooled microbolometer camera. We show imaging of human serum proteins at 6.1, 9.25, and 9.5 μm QCLs with high sensitivity and specificity. The sensitivity limit of 3  μg/cm² of the human serum spot was measured at an S/N=3.The specificity of human serum detection was measured at 99% probability at a threshold of 77  μg/cm². We anticipate our imaging technique to be a starting point for more sophisticated biomolecular diagnostic applications. PMID:23515866

  1. Optical wavelength selection for improved spectroscopic photoacoustic imaging☆

    PubMed Central

    Luke, Geoffrey P.; Nam, Seung Yun; Emelianov, Stanislav Y.

    2013-01-01

    Spectroscopic photoacoustic imaging has the potential to become a powerful tool that can estimate distributions of optically absorbing chromophores in the body. We have developed an algorithm to select imaging wavelengths for spectroscopic photoacoustics given the spectra of expected chromophores. The algorithm uses the smallest singular value of a matrix constructed from the absorption spectra as a criterion to remove extraneous wavelengths. The method performed significantly better than an approach where evenly spaced wavelengths were used in the presence of noise and wavelength-dependent attenuation of light in tissue. Finally, the algorithm was applied to photoacoustic imaging of a phantom containing indocyanine green dye and silica-coated gold nanorods, demonstrating significant improvements in the ability to estimate relative contrast agent concentrations compared to the case where evenly spaced wavelengths were chosen. In summary, our work provides a versatile framework to select optical wavelengths and evaluate sets of absorbers for spectroscopic photoacoustic imaging. PMID:25302148

  2. The power of example

    NASA Astrophysics Data System (ADS)

    Liliana Gheorghian, Mariana

    2014-05-01

    The Secondary School "Teodor Balan" was evaluated by the National Agency for Quality Assurance with the highest score in an urban area of the county, and is part of the community Gura Humorului, a tourist resort of national interest since 2005. Starting with 2006 the local government implemented a Local Plan, which promotes the concept of sustainable development adopted at the Earth Summit in Rio de Janeiro, in 1992. Our school shares the concept of sustainable development and regularly re-evaluates the relationship between man and nature, advocates solidarity between generations, and has constantly developed various successful programs with the students, parents, teachers, and local companies and administration. Quarterly, we maintain and protect the river valley of Moldova arboretum nearby the reserve Oligocene "Stone Pine" and the natural reserve "Stone Hawk". Regarding the preservation of forests, teams of students and teachers from the school conduct activities of afforestation and greening, for the protection of birds. In order to raise public awareness about the harmful effects of radiation on the environment, my work degree in Physics, sustained in 2007, had as theme: Ionizing radiation and radiation protection. The effects of climate change and increasing temperature, as well as the extinction of species such as Amanita regalis and Tremiscus helvelloides mushrooms was studied by my biology colleague, Adriana. She obtained her Ist teaching degree in 2008, with the study "Diversity of macromycetes reported in natural ecosystems surrounding Gura Humorului". There were also organized 3 roundtables in a public awareness campaign initiated by the Ministry of Environment and Climate Change on "Integrated Nutrient Pollution Control", and the students learned to take test samples to determine water quality in wells and springs. In order to promote these activities performed by both teachers and students, we organized a National Symposium on "Life sciences at the beginning of the XXI century" with the participation of several schools in the country in 2009 and 2011. The papers presented were diverse and gave examples of various teaching experiences and scientific information. Topics by the teachers: The impact of tourism on the environment, Tornadoes, Natural science and environmental education in school, Air Pollution and health, Ecological education of children from primary school, The effects of electromagnetic radiation, Formation of an ecological mentality using chemistry, Why should we protect water, Environmental education, Education for the future, SOS Nature, Science in the twenty-first century, etc. Topics by students: Nature- the palace of thermal phenomena, Life depends on heat, Water Mysteries, Global Heating, The Mysterious universe, etc. In March 2013 our school hosted an interesting exchange of ideas on environmental issues between our students and those from Bulgaria, Poland and Turkey, during a symposium of the Comenius multilateral project "Conserving Nature". In order to present the results of protecting nature in their communities, two projects "Citizen" qualified in the Program Civitas in the autumn of 2013. "The Battle" continues both in nature and in classrooms, in order to preserve the environment.

  3. Review of Spectroscopic Data for Measurements of Stratospheric Species

    NASA Technical Reports Server (NTRS)

    Goldman, A. (editor); Hoell, J. M., Jr. (editor)

    1980-01-01

    Results and recommendations from a two day workshop are discussed. A review of the current status of experimental and theoretical spectroscopic data on molecules of stratospheric interest is given along with recommendations for additional research. Methods for disseminating new and existing data are also discussed.

  4. Numerical Improvement of Terahertz Time-Domain Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Koseoglu, D.; Berberoglu, H.; Altan, H.

    We have developed an algorithm to efficiently eliminate unwanted reflections typically observed in the data obtained by Terahertz time-domain spectroscopic (THz-TDS) methods. The algorithm works by eliminating the reflections from the boundaries. The numerical improvement of the data allows better analysis of the critical parameters obtained by THz-TDS systems.

  5. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO21.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  6. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  7. Statistical analysis of the impact of spectral correlation on observed formation constants from UV-visible spectroscopic measurements.

    PubMed

    Meinrath, Günther; Lis, Stefan; Piskula, Zbigniew

    2004-01-01

    Information retrieved from UV-visible spectroscopic data by application of a self-modelling factor analysis algorithm showed apparently systematically shifted thermodynamic properties for the same chemical system as a function of spectral slit widths. This empirical observation triggered a systematic investigation into the likely effects of residual and spectral correlation on the numerical results from quantitative spectroscopic investigations. If slit width was a nuisance factor it would reduce the comparability of information evaluated from spectroscopic data. The influence of spectral slit width was investigated by simulation, i.e. by generating and evaluating synthetic spectra with known properties. The simulations showed that increasing spectral correlation may introduce bias into factor analysis evaluations. By evaluation of the complete measurement uncertainty budget using threshold bootstrap target factor (TB CAT) analysis, the apparent shifts are insignificant relative to the total width of the quantity's measurement uncertainty. Increasing the slit widths causes some systematic effects, for example broadening of the registered spectral bands and reduction of spectral noise, because of higher light intensity passing to the detector. Hence, the observed systematic shifts in mean values might be caused by some latent correlation. As a general conclusion, slit width does not affect bias. However, the simulations show that spectral correlation and residual correlation may cause bias. Residual correlation can be taken into account by computer-intensive statistical methods, for example moving block or threshold bootstrap analysis. Spectral correlation is a property of the chemical system under study and cannot be manipulated. As a major result, evidence is given showing that stronger spectral correlation ( r<-0.7) causes non-negligible bias in the evaluated thermodynamic information from such a system. PMID:14615865

  8. Spectroscopic Binaries in M67

    NASA Astrophysics Data System (ADS)

    Latham, D. W.

    2006-08-01

    For more than 20 years we have been monitoring the velocities of stars in the old open cluster M67 using the CfA Digital Speedometers. Altogether we have accumulated 6920 exposures of 411 proper-motion member of the cluster. We now have orbital solutions for 87 spectroscopic binaries, compared to the 22 spectroscopic binaries (13 with orbital solutions) identified and analysed by Mathieu and Latham (AJ, 92, 1364, 1986). I will summarize the characteristics of this population of binaries, such as the distribution of eccentricity versus period, and the radial distribution in the cluster. I will then review the binary status of cluster members that appear in positions on the color-magnitude diagram where they are not expected according to standard single-star evolution.

  9. Synergies between spectroscopic and asteroseismic surveys

    NASA Astrophysics Data System (ADS)

    Fu, Jianning; De Cat, Peter; Ren, An-Bing; Yang, Xiao-Hu; Catanzaro, Giovanni; Corbally, Christopher J.; Frasca, Antonio; Gray, Richard O.; Cecylia Molenda-Zakowicz, Joanna; Shi, Jian-Rong; Ali, Luo; Zhang, Haotong

    2015-08-01

    The NASA Kepler satellite has provided unprecedented high duty-cycle, high-precision light curves for a large number of stars by continuously monitoring a field of view in Cygnus-Lyra region, leading to great progress in both discovering exoplanets and characterizing planet-hosting stars by means of asteroseismic methods. The asteroseismic survey allows the investigation of stars covering the whole H-R diagram. However, the low precision of effective temperatures and surface gravities in the KIC10 catalogue and the lack of information on chemical composition, metallicity and rotation rate prevent asteroseismic modeling, requiring spectroscopic observations for thousands of asteroseismic targets in the Kepler field in a homogeneous way.In 2010, we initiated the LAMOST-Kepler project which aimed at collecting low-resolution spectra for as many objects from the KIC10 catalogue as possible, with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a 4-m telescope equipped with 4,000 optical fibers. The first round of observations has been completed in fall 2014, covering all the 14 sub-fields at least once, resulting in more than 100,000 low-resolution spectra. The stellar atmospheric parameters are then derived and the results have been confirmed to be consistent with those reported in the literature based on high-resolution spectroscopy.

  10. Spectroscopic characterization of isomerization transition states

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; Changala, P. Bryan; Mellau, Georg Ch.; Stanton, John F.; Merer, Anthony J.; Field, Robert W.

    2015-12-01

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This patterna dip in the spacings of certain barrier-proximal vibrational levelscan be understood using the concept of effective frequency, ?eff. The method is applied to the cis-trans conformational change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders.

  11. Spectroscopic detection of nitrogen concentrations in sagebrush

    SciTech Connect

    J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

    2012-07-01

    The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.760.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.410.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

  12. Spectroscopic characterization of isomerization transition states.

    PubMed

    Baraban, Joshua H; Changala, P Bryan; Mellau, Georg Ch; Stanton, John F; Merer, Anthony J; Field, Robert W

    2015-12-11

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This pattern-a dip in the spacings of certain barrier-proximal vibrational levels-can be understood using the concept of effective frequency, ?(eff). The method is applied to the cis-trans conformational change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders. PMID:26659051

  13. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  14. Maya blue: a computational and spectroscopic study.

    PubMed

    Giustetto, Roberto; Llabrés I Xamena, Francesc X; Ricchiardi, Gabriele; Bordiga, Silvia; Damin, Alessandro; Gobetto, Roberto; Chierotti, Michele R

    2005-10-20

    Maya Blue pigment, used in pre-Colombian America by the ancient Mayas, is a complex between the clay palygorskite and the indigo dye. The pigment can be manufactured by mixing palygorskite and indigo and heating to T > 120 degrees C. The most quoted hypothesis states that the dye molecules enter the microchannels which permeate the clay structure, thus creating a stable complex. Maya Blue shows a remarkable chemical stability, presumably caused by interactions formed between indigo and clay surfaces. This work aims at studying the nature of these interactions by means of computational and spectroscopic techniques. The encapsulation of indigo inside the clay framework was tested by means of molecular modeling techniques. The calculation of the reaction energies confirmed that the formation of the clay-organic complex can occur only if palygorskite is heated at temperatures well above the water desorption step, when the release of water is entropically favored. H-bonds between the clay framework and the indigo were detected by means of spectroscopic methods. FTIR spectroscopy on outgassed palygorskite and freshly synthesized Maya Blue samples showed that the presence of indigo modifies the spectroscopic features of both structural and zeolitic water, although no clear bands of the dye groups could be observed, presumably due to its very low concentration. The positions and intensities of delta(H2O) and nu(H2O) modes showed that part of the structural water molecules interact via a hydrogen bond with the C=O or N-H groups of indigo. Micro-Raman spectra clearly evidenced the presence of indigo both in original and in freshly synthesized Maya Blue. The nu(C=O) symmetric mode of Maya Blue red-shifts with respect to pure indigo, as the result of the formation of H-bonds with the nearest clay structural water. Ab initio quantum methods were applied on the indigo molecule, both isolated and linked through H-bonds with water, to calculate the magnitude of the expected vibrational shifts. Calculated and experimental vibrational shifts appeared to be in good agreement. The presence of a peak at 17.8 ppm and the shift of the N-H signal in the 1H MAS NMR spectrum of Maya Blue provide evidence of hydrogen bond interactions between indigo and palygorskite in agreement with IR and ab initio methods. PMID:16853500

  15. Spectroscopic characterization of the postsedimentary alterations of Ostrava-Karvina coals

    SciTech Connect

    Machovic, M; Sebestova, E.; Pavlikova, H.; Taraba, B.

    1994-12-31

    Spectroscopic methods provide useful information about the compositional changes of coal caused by in situ alteration in the coal seam. In Czechoslovakia, altered coals result from postsedimentary oxidation or thermal degradation of coal organic matter. Spectroscopic methods (FTIR, EPR, {sup 13}C CP/MAS NMR) have been used to determine the degree of alteration of coals from the Ostrava-Karvina basin. Useful parameters were found that included the contents of the aliphatic and aromatic C-H bonds, carbonyl groups, and the aromaticity of coals and EPR line width. Spectroscopic parameters were correlated with the spontaneous combustion characteristics of coals.

  16. Data mining in big data sets of spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Luo, A.-Li

    2015-08-01

    More and more spectroscopic surveys provide many big datasets, in which various rare objects could be found. In this presentation, we suggested two different data mining approaches based on spectral feature by detection and machine learning way respectively. The most difficult thing of data mining is try to understand the result, and most of found outliers were finally identified as bad data. Candidates need follow up observations or multi waveband data to be confirmed. Some successful examples of newly discovered rare objects in SDSS and LAMOST data release are presented in this talk.

  17. Label free molecular sexing of monomorphic birds using infrared spectroscopic imaging.

    PubMed

    Steiner, Gerald; Preusse, Grit; Zimmerer, Cordelia; Krautwald-Junghanns, Maria-Elisabeth; Sablinskas, Valdas; Fuhrmann, Herbert; Koch, Edmund; Bartels, Thomas

    2016-04-01

    The absence of sexual dimorphism in many birds often makes sex determination difficult. In particular immature birds and adults of monomorphic species show no external sex characteristics. Molecular techniques based on DNA hybridization or polymerase chain reaction (PCR) are standard methods for sex identification. However, these methods are expensive and time consuming procedures and require special sample preparation. Noninvasive methods for a rapid determination of bird's gender are of increasing importance for ornithologists, breeders as well as for successful captive-breeding programs. Fourier transform infrared (FT-IR) spectroscopy is one such technique that can provide gender specific information. In this study, using the example of domestic pigeons (Columba livia f. dom.) we demonstrate that only a small amount of the feather pulp is needed to determine the gender. FT-IR spectroscopic images of feather pulp suspensions were recorded in transmission mode. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to identify the sex. The gender related information are described by 2nd and 4th principal component principle component (PC). The 2nd PC represents different amounts of proteins while the 4th PC shows variations within the amide I and amide II bands as well as in the region of phosphate vibrations of nucleic acids. Blood cells of male pigeons exhibit a significantly higher amount of proteins and nucleic acids than those of female pigeons. Feather pulp samples of male species were assigned with 100% accuracy. Seven from eight female samples were assigned correctly while one sample could not be classified. This study demonstrates that the sex of domestic pigeons can be accurately and and rapidly identified by infrared spectroscopic imaging. PMID:26838394

  18. Effects of Example Choice on Interest, Control, and Learning

    ERIC Educational Resources Information Center

    Reber, Rolf; Hetland, Hilde; Chen, Weiqin; Norman, Elisabeth; Kobbeltvedt, Therese

    2009-01-01

    We investigated example choice as a new method for the teaching of formal theoretical principles. Formal principles are presented with several examples from different topics, and students choose the one that interests them most. Example choice might be related to prior knowledge, interest, or perceived control. In an experimental study, we

  19. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    NASA Technical Reports Server (NTRS)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  20. A MIR Spectroscopic Survey of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Verma, Aprajita; Lutz, Dieter; Sturm, Eckhard; Sternberg, Amiel; Genzel, Reinhard

    2003-02-01

    We present a mid-infrared (MIR) spectroscopic survey of starburst galaxies as an example of analysis of scientifically focused samples selected from the ISO Data Archive (IDA). We use fine structure lines (FSL) ratios of Ne, Ar and S to construct diagnostic excitation diagrams and, in combination with hydrogen recombination lines (HRL), we determine their elemental abundances. For Ne and Ar, we find that excitation indicators are positively correlated with each other and negatively with abundance. On comparison with a complementary sample of galactic H II regions we find that starbursts are generally of lower excitation. Starbursts exhibiting Wolf-Rayet (WR) features are separated both in excitation and abundance from the remaining starbursts. Most surprisingly, S is found to be underabundant by a factor of 3 in our low excitation starbursts with respect to the Ne and Ar, contrary to expectations for nucleosynthesis theory. Our results are combined with those of a related sub-sample of Seyfert galaxies (Sturm et al. 2002) to derive diagnostic diagrams discriminating the two types of activity on the basis of excitation traced by MIR lines. The data presented will be useful as a reference for observations of fainter and/or higher redshift sources with future IR observatories such as SIRTF, SOFIA and Herschel.

  1. Rent Seeking: A Textbook Example

    ERIC Educational Resources Information Center

    Pecorino, Paul

    2007-01-01

    The author argues that the college textbook market provides a clear example of monopoly seeking as described by Tullock (1967, 1980). This behavior is also known as rent seeking. Because this market is important to students, this example of rent seeking will be of particular interest to them. (Contains 24 notes.)

  2. Combining spectroscopic and photometric surveys: Same or different sky?

    NASA Astrophysics Data System (ADS)

    Eriksen, Martin; Gaztaaga, Enrique

    2015-08-01

    This paper looks at the combined constraints from a photometric and spectroscopic survey. These surveys will measure cosmology using weak lensing (WL), galaxy clustering, baryon acoustic oscillations (BAO) and redshift space distortions (RSD). We find, contrary to some findings in the recent literature, that overlapping surveys can give important benefits when measuring dark energy. We therefore try to clarify the status of this issue with a full forecast of two stage-IV surveys using a new approach to properly account for covariance between the different probes in the overlapping samples. The benefit of the overlapping survey can be traced back to two factors: additional observables and sample variance cancellation. Both needs to be taken into account and contribute equally when combining 3D power spectrum and 2D correlations for lensing. With an analytic example we also illustrate that for optimal constraints, one should minimize the (Pearson) correlation coefficient between cosmological and nuisance parameters and maximize the one among nuisance parameters (e.g. galaxy bias) in the two samples. This can be achieved by increasing the overlap between the spectroscopic and photometric surveys. We show how BAO, WL and RSD contribute to this benefit and also look at some other survey designs, such as photometric redshift errors and spectroscopic density.

  3. Compact fluorescence spectroscopic tool for cancer detection

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie; Hamdan, Khaled; Hewett, Jacqueline; Makaryceva, Juljia; Tait, Iain; Cuschieri, Alfred; Padgett, Miles J.

    2002-05-01

    We describe a compact fluorescence spectroscopic tool for in vivo point monitoring of aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence and autofluorescence, as a non-invasive method of differentiating normal and cancerous tissue. This instrument incorporates a 405nm diode laser with a shutter to prevent exposure of tissue to harmful light doses and reduce photobleaching, a bifurcated optical fibre to allow illumination of tissue and collection of fluorescence with a single fibre, a compact grating spectrometer for collection of spectra and a PC for system control. We present spectra obtained using this system both during routine gastro-intestinal (GI) endoscopy for cancer detection and during photodynamic therapy (PDT) of anal intraepithelial neoplasia (AIN) for monitoring of treatment progress. These results illustrate the potential of the system to be used for fluorescence monitoring in a variety of clinical applications.

  4. Laser spectroscopic measurement of helium isotope ratios

    NASA Astrophysics Data System (ADS)

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N. C.

    2003-06-01

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of 3He/4He = 10-7 - 10-5. The resonant absorption of 1083 nm laser light by the metastable 3He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of 4He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3? detection limit of 3He in helium is 4 10-9. This demonstration required a 200 ?L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  5. Laser spectroscopic measurement of helium isotope ratios.

    SciTech Connect

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N.; Univ. of Illinois; Univ. of Tokyo; Univ. of Illinois at Chicago

    2003-06-13

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of {sup 3}He/{sup 4}He = 10{sup -7}--10{sup -5}. The resonant absorption of 1083 nm laser light by the metastable {sup 3}He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of {sup 4}He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3{sigma} detection limit of {sup 3}He in helium is 4 x 10{sup -9}. This demonstration required a 200 {mu}L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  6. Mobile Spectroscopic Instrumentation in Archaeometry Research.

    PubMed

    Vandenabeele, Peter; Donais, Mary Kate

    2016-01-01

    Mobile instrumentation is of growing importance to archaeometry research. Equipment is utilized in the field or at museums, thus avoiding transportation or risk of damage to valuable artifacts. Many spectroscopic techniques are nondestructive and micro-destructive in nature, which preserves the cultural heritage objects themselves. This review includes over 160 references pertaining to the use of mobile spectroscopy for archaeometry. Following a discussion of terminology related to mobile instrumental methods, results of a literature survey on their applications for cultural heritage objects is presented. Sections devoted to specific techniques are then provided: Raman spectroscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, laser-induced breakdown spectroscopy, and less frequently used techniques. The review closes with a discussion of combined instrumental approaches. PMID:26767631

  7. Vibrational spectroscopic and DFT study of trimethoprim

    NASA Astrophysics Data System (ADS)

    Ungurean, Alia; Leopold, Nicolae; David, Leontin; Chi?, Vasile

    2013-02-01

    Structural investigations by different vibrational spectroscopic methods: FTIR, FT-Raman and surface-enhanced Raman scattering (SERS) spectroscopy, as well as density functional theory (DFT) calculations were performed on trimethoprim (5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine). A reliable assignment of vibrational IR, Raman and SERS bands was possible by a proper choice of model used in quantum chemical calculations. Based on SERS spectrum analysis it is shown that the molecule is adsorbed on the silver surface through the pyrimidine ring, in a perpendicular orientation. Two theoretical models were used in order to simulate the silver surface and the interaction with trimethoprim molecule, the accuracy of the models being evaluated by comparing the predicted bands position of the two complexes with the SERS result.

  8. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    SciTech Connect

    Timofeyuk, N. K.

    2009-12-11

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  9. Application of digital image processing method for measuring maps graphical density on the example of city maps. (Polish Title: Zastosowanie metody cyfrowego przetwarzania obrazw do wyznaczania g?sto?ci graficznej opracowa? kartograficznych na przyk?adzie planw miast)

    NASA Astrophysics Data System (ADS)

    Cio?kosz-Styk, A.

    2013-12-01

    During the centuries the main problem on mapping was to obtain the sufficient and reliable source data; presently, an appropriate selection of the desired information from the deluge of available data is a problem. An availability of large amount of data induces to transfer the possibly rich information by means of map. It often results in overloading the cartographic documents, that is why they become less communicative and difficult to read. This situation is well illustrated by the example of city maps which are the most commonly used and thus the most frequently published cartographic products. Many user groups with different needs as well as preparation to read maps use these high volume publications. Therefore, the maps communication effectiveness problem is of particular importance. The city maps are the most complex cartographic presentations, because the presented areas are the places with the greatest concentration of different kinds of objects and forms of human activity arising from the civilization development. Conveying these specific features on the city maps leads to the problem of selecting the most relevant elements of content in terms of user's needs, since presenting all objects and their characteristics is impossible if the city map readability is to be kept. Although complexity has been the cartographers' object of interest for many years, because it exerts an impact on readability and effectiveness of cartographic documents, none of the measures used so far may be applied for automatic determination of complexity of such graphically complicated objects as city maps. Therefore a novel approach was needed for these applications. For that purpose digital image processing techniques have been proposed and successfully applied by the authors. The analysis of the spatial distribution of the objects' edges on the map surface, calculated using continuous wavelet transform, is the basis of the proposed measure. The method allows for comparison of complexity of city maps loaded by different type of graphical elements (point signatures, lines, text, etc.). Extended analyses of selected cartographic materials proved the usability of the method for quantitative estimation of city map complexity via formal index.

  10. Spectroscopic Classifications of Optical Transients with SOAR

    NASA Astrophysics Data System (ADS)

    Foley, R. J.; Hounsell, R. A.; Downing, S.; Pan, Y.-C.; Scolnic, D.; Jha, S. W.; Rest, A.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-07-01

    We report the following classifications of optical transients from spectroscopic observations with the Goodman spectrograph (wavelength range 3100 - 7100) on the Southern Astrophysical Research (SOAR) telescope.

  11. [The spectroscopic study of topaz].

    PubMed

    Wang, B; Tu, J

    2000-02-01

    In this paper, the natural gem material--Topaz (colorless transparent samples and reactor irradiation induced blue color samples) was studied on the spectroscopic analysis of Fourier transformation infrared spectrum (FTIR) and FT-Raman spectrum. The structure of topaz consists of OH groups and SiO4 groups. Si-O vibration spectrum was characterized with the group theoretical analysis. OH stretching modes of vibration showed many changes among the different color samples, the reason of the changes was explained. The color origin was preliminary investigated by ultra-violet and visible absorption spectrum. PMID:12953446

  12. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wjcik, Marek J.; G?ug, Maciej; Boczar, Marek; Boda, ?ukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  13. Ex-Situ Spectroscopic MRI

    NASA Astrophysics Data System (ADS)

    Reimer, Jeffrey

    2007-03-01

    Spectroscopic magnetic resonance imaging of a sample placed outside of both the radio frequency and the imaging gradient coils is presented. The sample is placed in a field with a permanent one-dimensional inhomogeneity. The imaging gradients used for phase encoding are designed to produce a static field that depends only on the transverse direction, uncoupling the effects associated with the single-sided nature of these coils. Two-dimensional imaging coupled with chemical shift information is obtained via the ex situ matching technique. Open-saddle geometry is used to match the static field profile for chemical shift information recovery.

  14. Proton magnetic resonance spectroscopic imaging in patients with cerebellar degeneration.

    PubMed

    Tedeschi, G; Bertolino, A; Massaquoi, S G; Campbell, G; Patronas, N J; Bonavita, S; Barnett, A S; Alger, J R; Hallett, M

    1996-01-01

    Using proton magnetic resonance spectroscopic imaging, we studied the cerebellum of 9 patients with cerebellar degeneration and of 9 age-matched normal control subjects. This technique permits the simultaneous measurement of N-acetylaspartate, choline-containing compounds, creatine/phosphocreatine, and lactate signal intensities from four 15-mm slices divided into 0.84-ml single-volume elements. Because patients with cerebellar degeneration often show substantial atrophy on magnetic resonance imaging (MRI), we specifically chose to analyze the spectroscopic signals only from tissue that did not have an atrophic appearance on the MRI. The spectroscopic findings showed a significant reduction of N-acetylaspartate in all parts of the cerebellum, a significant correlation with MRI scores of cerebellar atrophy, and a significant correlation with clinical rating scores of cerebellar disturbance. Our method of analysis suggests the presence of a neurodegenerative process in cerebellar areas that do not appear to be atrophic on the MRI. Some limitations of proton magnetic resonance spectroscopic imaging in the present study were related to the partial field inhomogeneity characteristics of the posterior fossa, the anatomical location of the cerebellum, and the particularly severe cerebellar atrophy in some of the patients. PMID:8572670

  15. Ultraminiature one-shot Fourier-spectroscopic tomography

    NASA Astrophysics Data System (ADS)

    Sato, Shun; Qi, Wei; Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-02-01

    We propose one-shot Fourier-spectroscopic tomography as a method of ultraminiature spectroscopic imaging. The apparatus used in this technique consists solely of a glass slab with a portion of its surface polished at a certain inclination angle-a device we term a relative-inclination phase shifter-simply mounted on an infinite-distance-corrected optical imaging system. For this reason, the system may be ultraminiaturized to sizes on the order of a few tens of millimeters. Moreover, because our technique uses a near-common-path wavefront-division phase-shift interferometer and has absolutely no need for a mechanical drive unit, it is highly robust against mechanical vibrations. In addition, because the proposed technique uses Fourier-transform spectroscopy, it offers highly efficient light utilization and an outstanding signal-to-noise ratio compared to devices that incorporate distributed or hyperspectral acousto-optical tunable filters. The interferogram, which is a pattern formed by interference of waves at all wavelengths, reflects the spatial variation in the intensity of the interference depending on the magnitude of the phase shift. We first discuss the design of the phase shifter and the results of tests to validate the principles underlying one-shot Fourier-spectroscopic tomography. We then report the results of one-dimensional spectroscopic imaging using this technique.

  16. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Blondin, S.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-05-15

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SNe Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B - V color of SNe Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.

  17. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  18. Spectroscopic needs for imaging dark energy experiments

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Rza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco Kind, Matias; Cervantes-Cota, Jorge L.; Cheu, Elliott; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cunha, Carlos E.; de la Macorra, Axel; Dell'Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezi?, eljko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Mnard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Myers, Adam D.; Papovich, Casey; Peacock, John A.; Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Ane; Schmidt, Samuel J.; Stern, Daniel K.; Anthony Tyson, J.; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.

    2015-03-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our training set of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments. Requirements: Spectroscopic redshift measurements for ?30,000 objects over >?15 widely-separated regions, each at least ?20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ?50%). Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ?3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST. Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. - rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments. Requirements: If extremely low levels of systematic incompleteness (spectroscopic surveys have failed to yield secure redshifts for 30-60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ?100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary. Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy - training and calibration of photometric redshifts - will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.

  19. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGESBeta

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (λ/Δλ > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30–60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy – training and calibration of photometric redshifts – will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.« less

  20. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; Dell’Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (λ/Δλ > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30–60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy – training and calibration of photometric redshifts – will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.

  1. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; DellAntonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-zs): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-zs will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our training set of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 3060% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy training and calibration of photometric redshifts will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.

  2. Programmatic perspectives with technical examples for THz materials characterization

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter

    2011-06-01

    THz technology has a rich history of use in the field of interstellar molecule identification where a variety of molecule specific vibrational and rotational spectroscopic signatures exist and has been aggressively investigated for use in advanced radar applications because of the immediate improvement in object resolution obtained at higher frequencies. Traditionally, high power THz systems have relied upon millimeter wave sources and frequency multiplication techniques to achieve acceptable output power levels, while lower power, table top spectroscopic systems, have relied on broadband incoherent light sources. With the advent of high power lasers, advances in non-linear optics, and new material systems, a number of promising techniques for the generation, detection and manipulation of THz radiation are currently under development and are considered the enabling technologies behind a variety of advanced THz applications. This work presents a programmatic overview of current trends in THz technology of interest to a variety of government organizations. It focuses on those techniques currently under investigation for the generation and detection of THz fields motivated, for example, by such diverse applications as metamaterial spectroscopy, TH imaging, long standoff chem/bio detection and THz communications. Examples of these new techniques will be presented which in turn will motivate the need for the characterization of application specific active and passive THz components.

  3. Determination of the asymptotic normalization coefficients for 14C + n <--> 15C, the 14C(n, gamma)15C reaction rate, and evaluation of a new method to determine spectroscopic factors

    SciTech Connect

    McCleskey, M.; Mukhamedzhanov, A. M.; Trache, L.; Tribble, R. E.; Banu, A.; Eremenko, V.; Goldberg, V. Z.; Lui, Y. W.; McCleskey, E.; Roeder, B. T.; Spiridon, A.; Carstoiu, F.; Burjan, V.; Hons, Z.; Thompson, I. J.

    2014-04-17

    The 14C + n <--> 15C system has been used as a test case in the evaluation of a new method to determine spectroscopic factors that uses the asymptotic normalization coefficient (ANC). The method proved to be unsuccessful for this case. As part of this experimental program, the ANCs for the 15C ground state and first excited state were determined using a heavy-ion neutron transfer reaction as well as the inverse kinematics (d,p) reaction, measured at the Texas A&M Cyclotron Institute. The ANCs were used to evaluate the astrophysical direct neutron capture rate on 14C, which was then compared with the most recent direct measurement and found to be in good agreement. A study of the 15C SF via its mirror nucleus 15F and a new insight into deuteron stripping theory are also presented.

  4. Traversable wormholes: Some simple examples

    SciTech Connect

    Visser, M.

    1989-05-15

    Building on the work of Morris, Thorne, and Yurtsever, some particularlysimple examples of traversable wormholes are exhibited. These examples arenotable both because the analysis is not limited to spherically symmetric casesand because it is possible to in some sense minimize the use of exotic matter.In particular, it is possible for a traveler to traverse such a wormholewithout passing through a region of exotic matter. As in previous analyses, theweak-energy condition is violated in these traversable wormholes.

  5. In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography

    PubMed Central

    Maher, Jason R.; Jaedicke, Volker; Medina, Manuel; Levinson, Howard; Selim, Maria Angelica; Brown, William J.; Wax, Adam

    2015-01-01

    Spectroscopic analysis of biological tissues can provide insight into changes in structure and function due to disease or injury. Depth resolved spectroscopic measurements can be implemented for tissue imaging using optical coherence tomography (OCT). Here spectroscopic OCT is applied to in vivo measurement of burn injury in a mouse model. Data processing and analysis methods are compared for their accuracy. Overall accuracy in classifying burned tissue was found to be as high as 91%, producing an area under the curve of a receiver operator characteristic curve of 0.97. The origins of the spectral changes are identified by correlation with histopathology. PMID:25360936

  6. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crpeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chdin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphriques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are registered for on line use of GEISA. Refs: 1. Jacquinet-Husson N., N.A. Scott, A. Chdin,L. Crpeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, et al. THE GEISA SPECTROSCOPIC DATABASE: Current and future archive for Earth and planetary atmosphere studies. JQSRT, 109, 1043-1059, 2008 2. Jacquinet-Husson N., N.A. Scott, A. Chdin, K. Garceran, R. Armante, et al. The 2003 edition of the GEISA/IASI spectroscopic database. JQSRT, 95, 429-67, 2005. 3. Scott, N.A. and A. Chedin, 1981: A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteor., 20,556-564.

  7. The Nuclear Spectroscopic Telescope Array

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona; NuSTAR Team

    2010-01-01

    The Nuclear Spectroscopic Telescope Array is a Small Explorer (SMEX) mission scheduled for launch in August 2011. NuSTAR will be the first focusing high energy satellite sensitive in the hard X-ray band, and will probe the X-ray sky approximately two orders of magnitude more sensitively than currently achievable. NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos, and what is their contribution to the Cosmic X-ray Background? How were the heavy elements forged in the explosions of massive stars? What powers the relativistic jets in the most extreme active galaxies? This presentation will discuss the current status of NuSTAR and the baseline, 2-year science program.

  8. Integrating Mass Scale Spectroscopic Processing

    NASA Astrophysics Data System (ADS)

    Walton, N. A.; Irwin, M. J.; Koposov, S.; Lewis, J. R.; Gonzales-Solarez, E.

    2014-05-01

    This paper briefly presents the challenges in implementing the data driven pipelines which will support the delivery of science data products from three major new spectroscopic , namely the Gaia-ESO survey, the WEAVE multi-object spectrograph for the 4.2-m William Herschel Telescope, and the 4MOST multi-object spectrograph for the ESO VISTA telescope. We note the design solutions being implemented at the Cambridge Astronomical Survey Unit where an integrated approach in the delivery of a scalable data pipeline is being adopted. The design of the processing system is strongly science driven, which ensures that the analysis system delivers high quality data products to the science survey teams on the shortest possible time-scales, thereby allowing rapid scientific validation and exploitation of the data.

  9. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.