Science.gov

Sample records for spectroscopic phase microscopy

  1. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  2. Controllable tomography phase microscopy

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-03-01

    Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample's refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.

  3. Super-resolution spectroscopic microscopy via photon localization.

    PubMed

    Dong, Biqin; Almassalha, Luay; Urban, Ben E; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm-a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  4. Super-resolution spectroscopic microscopy via photon localization

    NASA Astrophysics Data System (ADS)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-07-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm--a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra.

  5. Super-resolution spectroscopic microscopy via photon localization

    PubMed Central

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm—a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  6. Low dose, limited energy spectroscopic x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nelson Weker, Johanna; Li, Yiyang; Chueh, William C.

    2015-09-01

    In order to achieve high quality in situ spectroscopic X-ray microscopy of complex systems far from equilibrium, such as lithium ion batteries under standard electrochemical cycling, careful consideration of the total number of energy points is required. Enough energy points are need to accurately determine the per pixel chemical information; however, total radiation dose needs to be limited to avoid damaging the system which would produce misleading results. Here we consider the number of energy points need to accurately reproduce the state of charge maps of a LiFePO2 electrode recorded during electrochemical cycling. We observe very good per pixel agreement using only 13 energy points. Additionally, we find the quality of the agreement is heavily dependent on the number of energy points used in the post edge fit during normalization of the spectra rather than the total number of energies used. Finally, we suggest a straightforward protocol for determining the minimum number of energy points needed prior to initiating any in situ spectroscopic X-ray microscopy experiment.

  7. Spectroscopic analysis of skin intrinsic signals for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Strupler, Mathias; Boulesteix, Thierry; Senni, Karim; Godeau, Gaston; Beaurepaire, Emmanuel; Schanne-Klein, Marie-Claire

    2006-02-01

    We recorded multiphoton images of human skin biopsies using endogenous sources of nonlinear optical signals. We detected simultaneously two-photon excited fluorescence (2PEF) from intrinsic fluorophores and second harmonic generation (SHG) from collagen. We observed SHG from fibrillar collagens in the dermis, whereas no SHG was detectable from the non fibrillar type IV collagen in the basal laminae. We compared these distinct behaviours of collagens I and IV in SHG microscopy to polarization-resolved surface SHG experiments on thin films of collagens I and IV molecules. We observed similar signals for both types of molecular films, except for the chiroptical contributions which are present only for collagen I and enhance the signal typically by a factor of 2. We concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues. In order to elucidate the origin of the endogenous fluorescence signals, we recorded 2PEF spectra at various positions in the skin biopsies, and compared these data to in vitro spectroscopic analysis. In particular, we studied the keratin fluorescence and determined its 2PEF action cross section. We observed a good agreement between 2PEF spectra recorded in the keratinized upper layers of the epidermis and in a solution of purified keratin. Finally, to illustrate the capabilities of this technique, we recorded 2PEF/SHG images of skin biopsies obtained from patients of various ages.

  8. Numerical focusing in diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Talaikova, N. A.; Grebenyuk, A. A.; Kalyanov, A. L.; Ryabukho, V. P.

    2016-04-01

    Diffraction phase microscopy (DPM) provides the possibility of high-resolution quantitative phase imaging, based on equipment of an optical microscope with a special module working in a common-path off-axis configuration. As an optical microscopy technique, DPM has a limited focus depth, which is the smaller the higher is the objective's numerical aperture. In this paper we present the results of experimental investigation of numerical focusing with the angular spectrum method in DPM.

  9. Tomographic phase microscopy using optical tweezers

    NASA Astrophysics Data System (ADS)

    Habaza, Mor; Gilboa, Barak; Roichman, Yael; Shaked, Natan T.

    2015-07-01

    We review our technique for tomographic phase microscopy with optical tweezers [1]. This tomographic phase microscopy approach enables full 3-D refractive-index reconstruction. Tomographic phase microscopy measures quantitatively the 3- D distribution of refractive-index in biological cells. We integrated our external interferometric module with holographic optical tweezers for obtaining quantitative phase maps of biological samples from a wide range of angles. The close-tocommon- path, off-axis interferometric system enables a full-rotation tomographic acquisition of a single cell using holographic optical tweezers for trapping and manipulating with a desired array of traps, while acquiring phase information of a single cell from all different angles and maintaining the native surrounding medium. We experimentally demonstrated two reconstruction algorithms: the filtered back-projection method and the Fourier diffraction method for 3-D refractive index imaging of yeast cells.

  10. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  11. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer E.

    2011-12-01

    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s± within a single family, FeTe1-xSex. Second, STM has imaged C4 → C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.

  12. A novel phase shifting structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Veena; Dubey, Vishesh; Ahmad, Azeem; Singh, Gyanendra; Mehta, D. S.

    2016-03-01

    This paper describes a new and novel phase shifting technique for qualitative as well as quantitative measurement in microscopy. We have developed a phase shifting device which is robust, inexpensive and involves no mechanical movement. In this method, phase shifting is implemented using LED array, beam splitters and defocused projection of Ronchi grating. The light from the LEDs are made incident on the beam splitters at spatially different locations. Due to variation in the geometrical distances of LEDs from the Ronchi grating and by sequentially illuminating the grating by switching on one LED at a time the phase shifted grating patterns are generated. The phase shifted structured patterns are projected onto the sample using microscopic objective lens. The phase shifted deformed patterns are recorded by a CCD camera. The initial alignment of the setup involves a simple procedure for the calibration for equal fringe width and intensity such that the phase shifted fringes are at equal phase difference. Three frame phase shifting algorithm is employed for the reconstruction of the phase map. The method described here is fully automated so that the phase shifted images are recorded just by switching of LEDs and has been used for the shape measurement of microscopic industrial objects. The analysis of the phase shifted images provides qualitative as well as quantitative information about the sample. Thus, the method is simple, robust and low cost compared to PZT devices commonly employed for phase shifting.

  13. Photorefractive phase-conjugation digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ching; Chan, Huang-Tian; Shiu, Min-Tzung; Chew, Yang-Kun

    2015-05-01

    In this work, we propose an innovative method for digital holographic microscopy named as photorefractive phaseconjugation digital holographic microscopy (PPCDHM) technique based on the phase conjugation dynamic holographic process in photorefractive BaTiO3 crystal and the retrieval of phase and amplitude of the object wave were performed by a reflection-type digital holographic method. Both amplitude and phase reconstruction benefit from the prior amplification by self-pumped conjugation (SPPC) as they have an increased SNR. The interest of the PPCDHM is great, because its hologram is created by interfered the amplified phase-conjugate wave field generated from a photorefractive phase conjugator (PPC) correcting the phase aberration of the imaging system and the reference wave onto the digital CCD camera. Therefore, a precise three-dimensional description of the object with high SNR can be obtained digitally with only one hologram acquisition. The method requires the acquisition of a single hologram from which the phase distribution can be obtained simultaneously with distribution of intensity at the surface of the object.

  14. Video-rate tomographic phase microscopy

    PubMed Central

    Fang-Yen, Christopher; Choi, Wonshik; Sung, Yongjin; Holbrow, Charles J.; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Tomographic phase microscopy measures the 3-D refractive index distribution of cells and tissues by combining the information from a series of angle-dependent interferometric phase images. In the original device, the frame rate was limited to 0.1 frames per second (fps) by the technique used to acquire phase images, preventing measurements of moving or rapidly changing samples. We describe an improved tomographic phase microscope in which phase images are acquired via a spatial fringe pattern demodulation method, enabling a full tomogram acquisition rate of 30 fps. In addition, in this system the refractive index is calculated by a diffraction tomography algorithm that accounts for the effects of diffraction in the 3-D reconstruction. We use the instrument to quantitatively monitor rapid changes in refractive index within defined subregions of cells due to exposure to acetic acid or changes in medium osmolarity. PMID:21280892

  15. Ex-vivo holographic microscopy and spectroscopic analysis of head and neck cancer

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Wurtz, Robert; Auyeung, Kelsey; Auyeung, Kris; Paspaley-Grbavac, Milan; Mulroe, Brigid; Sobrero, Maximiliano; Miles, Brett

    2015-03-01

    Optical probes to identify tumor margins in vivo would greatly reduce the time, effort and complexity in the surgical removal of malignant tissue in head and neck cancers. Current approaches involve visual microscopy of stained tissue samples to determine cancer margins, which results in the excision of excess of tissue to assure complete removal of the cancer. Such surgical procedures and follow-on chemotherapy can adversely affect the patient's recovery and subsequent quality of life. In order to reduce the complexity of the process and minimize adverse effects on the patient, we investigate ex vivo tissue samples (stained and unstained) using digital holographic microscopy in conjunction with spectroscopic analyses (reflectance and transmission spectroscopy) in order to determine label-free, optically identifiable characteristic features that may ultimately be used for in vivo processing of cancerous tissues. The tissue samples studied were squamous cell carcinomas and associated controls from patients of varying age, gender and race. Holographic microscopic imaging scans across both cancerous and non-cancerous tissue samples yielded amplitude and phase reconstructions that were correlated with spectral signatures. Though the holographic reconstructions and measured spectra indicate variations even among the same class of tissue, preliminary results indicate the existence of some discriminating features. Further analyses are presently underway to further this work and extract additional information from the imaging and spectral data that may prove useful for in vivo surgical identification.

  16. Quantitative Phase Microscopy: how to make phase data meaningful.

    PubMed

    Goldstein, Goldie; Creath, Katherine

    2014-03-12

    The continued development of hardware and associated image processing techniques for quantitative phase microscopy has allowed superior phase data to be acquired that readily shows dynamic optical volume changes and enables particle tracking. Recent efforts have focused on tying phase data and associated metrics to cell morphology. One challenge in measuring biological objects using interferometrically obtained phase information is achieving consistent phase unwrapping and -dimensions and correct for temporal discrepanices using a temporal unwrapping procedure. The residual background shape due to mean value fluctuations and residual tilts can be removed automatically using a simple object characterization algorithm. Once the phase data are processed consistently, it is then possible to characterize biological samples such as myocytes and myoblasts in terms of their size, texture and optical volume and track those features dynamically. By observing optical volume dynamically it is possible to determine the presence of objects such as vesicles within myoblasts even when they are co-located with other objects. Quantitative phase microscopy provides a label-free mechanism to characterize living cells and their morphology in dynamic environments, however it is critical to connect the measured phase to important biological function for this measurement modality to prove useful to a broader scientific community. In order to do so, results must be highly consistent and require little to no user manipulation to achieve high quality nynerical results that can be combined with other imaging modalities. PMID:25309099

  17. Near-infrared spectroscopic photoacoustic microscopy using a multi-color fiber laser source

    PubMed Central

    Buma, Takashi; Wilkinson, Benjamin C.; Sheehan, Timothy C.

    2015-01-01

    We demonstrate a simple multi-wavelength optical source suitable for spectroscopic optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue. 1064 nm laser pulses are converted to multiple wavelengths beyond 1300 nm via nonlinear optical propagation in a birefringent optical fiber. OR-PAM experiments with lipid phantoms clearly show the expected absorption peak near 1210 nm. We believe this simple multi-color technique is a promising cost-effective approach to spectroscopic OR-PAM of lipid-rich tissue. PMID:26309746

  18. Bright-field quantitative phase microscopy (BFQPM) for accurate phase imaging using conventional microscopy hardware

    NASA Astrophysics Data System (ADS)

    Jenkins, Micah; Gaylord, Thomas K.

    2015-03-01

    Most quantitative phase microscopy methods require the use of custom-built or modified microscopic configurations which are not typically available to most bio/pathologists. There are, however, phase retrieval algorithms which utilize defocused bright-field images as input data and are therefore implementable in existing laboratory environments. Among these, deterministic methods such as those based on inverting the transport-of-intensity equation (TIE) or a phase contrast transfer function (PCTF) are particularly attractive due to their compatibility with Köhler illuminated systems and numerical simplicity. Recently, a new method has been proposed, called multi-filter phase imaging with partially coherent light (MFPI-PC), which alleviates the inherent noise/resolution trade-off in solving the TIE by utilizing a large number of defocused bright-field images spaced equally about the focal plane. Despite greatly improving the state-ofthe- art, the method has many shortcomings including the impracticality of high-speed acquisition, inefficient sampling, and attenuated response at high frequencies due to aperture effects. In this report, we present a new method, called bright-field quantitative phase microscopy (BFQPM), which efficiently utilizes a small number of defocused bright-field images and recovers frequencies out to the partially coherent diffraction limit. The method is based on a noiseminimized inversion of a PCTF derived for each finite defocus distance. We present simulation results which indicate nanoscale optical path length sensitivity and improved performance over MFPI-PC. We also provide experimental results imaging live bovine mesenchymal stem cells at sub-second temporal resolution. In all, BFQPM enables fast and accurate phase imaging with unprecedented spatial resolution using widely available bright-field microscopy hardware.

  19. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  20. Orbital lesions: proton spectroscopic phase-dependent contrast MR imaging.

    PubMed

    Atlas, S W; Grossman, R I; Axel, L; Hackney, D B; Bilaniuk, L T; Goldberg, H I; Zimmerman, R A

    1987-08-01

    Thirteen orbital lesions in 12 patients were evaluated with both conventional spin-echo magnetic resonance (MR) imaging and phase-dependent proton spectroscopic imaging. This technique, which makes use of small differences in the resonant frequencies of water and fat protons, provides excellent high-resolution images with simultaneous chemical shift information. In this method, there is 180 degrees opposition of phase between fat protons and water protons at the time of the gradient echo, resulting in signal cancellation in voxels containing equal signals from fat and water. In this preliminary series, advantages of spectroscopic images in orbital lesions included better lesion delineation, with superior anatomic definition of orbital apex involvement; more specific characterization of high-intensity hemorrhage with a single pulse sequence; elimination of potential confusion from chemical shift misregistration artifact; further clarification of possible intravascular flow abnormalities; and improved apparent intralesional contrast. PMID:3602394

  1. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  2. Design Of A New In Situ Spectroscopic Phase Modulated Ellipsometer

    NASA Astrophysics Data System (ADS)

    Drevillon, Bernard; Parey, J. Y.; Stchakovsky, M.; Benferhat, Ramdane; Josserand, Yves; Schlayen, B.

    1990-02-01

    A new spectroscopic phase modulated ellipsometer (SPME) is presented. As compared to other ellipsometric techniques like rotating analyzer ellipsometry (RAE), the phase modulation uses a high frequency modulation (50 kHz) provided by a photoelastic modulator. Then SPME allows at least two orders of magnitude faster real-time mesurements than RAE. Thus, SPME is particularly suitable for in situ real-time applications. New insights on phase modulated ellipsometry are given. In particular, it is shown that an optical model, taking into account the presence of higher harmonics in the modulation, leads to an improvement of the precision measurement. Therefore, it can be inferred that both RAE and SPME provide comparable high precision measurements. Moreover SPME can be combined with numerical data processing systems. A new Fourier analysis of the signal, based on the use of a high precision analog digital converter and a fast digital processor, is presented. The adaptation of the SPME to a deposition chamber is illustrated. In particular, the use of optical fibers in both optical arms allows an increase of the compactness of the ellipsometer. Four detectors can be used simultaneously providing the spectroscopic capability for real-time applications. On-line connexions between the data acquisition system and external analog signals and triggers can also be used. Thus phase modulated ellipsometry appears a powerful technique for in situ control processing applications.

  3. Quantitative Phase Retrieval in Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    McLeod, Robert Alexander

    Phase retrieval in the transmission electron microscope offers the unique potential to collect quantitative data regarding the electric and magnetic properties of materials at the nanoscale. Substantial progress in the field of quantitative phase imaging was made by improvements to the technique of off-axis electron holography. In this thesis, several breakthroughs have been achieved that improve the quantitative analysis of phase retrieval. An accurate means of measuring the electron wavefront coherence in two-dimensions was developed and pratical applications demonstrated. The detector modulation-transfer function (MTF) was assessed by slanted-edge, noise, and the novel holographic techniques. It was shown the traditional slanted-edge technique underestimates the MTF. In addition, progress was made in dark and gain reference normalization of images, and it was shown that incomplete read-out is a concern for slow-scan CCD detectors. Last, the phase error due to electron shot noise was reduced by the technique of summation of hologram series. The phase error, which limits the finest electric and magnetic phenomena which can be investigated, was reduced by over 900 % with no loss of spatial resolution. Quantitative agreement between the experimental root-mean-square phase error and the analytical prediction of phase error was achieved.

  4. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  5. Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Mingfei; Shan, Yanke; Yan, Keding; Xue, Liang; Wang, Shouyu; Liu, Fei

    2014-11-01

    Quantitative interferometric microscopy is an important method for observing biological samples such as cells and tissues. In order to obtain continuous phase distribution of the sample from the interferogram, phase extracting and phase unwrapping are both needed in quantitative interferometric microscopy. Phase extracting includes fast Fourier transform method and Hilbert transform method, etc., almost all of them are rapid methods. However, traditional unwrapping methods such as least squares algorithm, minimum network flow method, etc. are time-consuming to locate the phase discontinuities which lead to low processing efficiency. Other proposed high-speed phase unwrapping methods always need at least two interferograms to recover final phase distributions which cannot realize real time processing. Therefore, high-speed phase unwrapping algorithm for single interferogram is required to improve the calculation efficiency. Here, we propose a fast phase unwrapping algorithm to realize high-speed quantitative interferometric microscopy, by shifting mod 2π wrapped phase map for one pixel, then multiplying the original phase map and the shifted one, then the phase discontinuities location can be easily determined. Both numerical simulation and experiments confirm that the algorithm features fast, precise and reliable.

  6. Partial wave spectroscopic microscopy can predict prostate cancer progression and mitigate over-treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim

    2016-02-01

    Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.

  7. Phase contrast and operation regimes in multifrequency atomic force microscopy

    SciTech Connect

    Santos, Sergio

    2014-04-07

    In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)

  8. Detection of a MoSe{sub 2} secondary phase layer in CZTSe by spectroscopic ellipsometry

    SciTech Connect

    Demircioğlu, Özden; Riedel, Ingo; Gütay, Levent; Mousel, Marina; Redinger, Alex; Rey, Germain; Weiss, Thomas; Siebentritt, Susanne

    2015-11-14

    We demonstrate the application of Spectroscopic Ellipsometry (SE) for identification of secondary phase MoSe{sub 2} in polycrystalline Cu{sub 2}ZnSnSe{sub 4} (CZTSe) samples. A MoSe{sub 2} reference sample was analyzed, and its optical constants (ε{sub 1} and ε{sub 2}) were extracted by SE analysis. This dataset was implemented into an optical model for analyzing SE data from a glass/Mo/CZTSe sample containing MoSe{sub 2} at the back side of the absorber. We present results on the n and k values of CZTSe and show the extraction of the thickness of the secondary phase MoSe{sub 2} layer. Raman spectroscopy and scanning electron microscopy were applied to confirm the SE results.

  9. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    NASA Astrophysics Data System (ADS)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  10. Drive frequency dependent phase imaging in piezoresponse force microscopy

    SciTech Connect

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-08-15

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  11. Terahertz phase microscopy in the sub-wavelength regime

    NASA Astrophysics Data System (ADS)

    Yi, Minwoo; Lee, Kanghee; Song, Jin-Dong; Ahn, Jaewook

    2012-04-01

    Gouy phase shift is a well-known behavior that occurs when a propagating light is focused, but its behavior in the sub-wavelength confinement is not yet known. Here, we report the theoretical and experimental study of the aperture-size dependency of the Gouy phase shift in the sub-wavelength diffraction regime. In experiments carried out with laser-induced terahertz (THz) wave emission from various semiconductor apertures, we demonstrate the use of Guoy phase shit for sub-wavelength THz microscopy.

  12. Spectroscopic microscopy can quantify the statistics of subdiffractional refractive-index fluctuations in media with random rough surfaces.

    PubMed

    Zhang, Di; Cherkezyan, Lusik; Capoglu, Ilker; Subramanian, Hariharan; Chandler, John; Thompson, Sebastian; Taflove, Allen; Backman, Vadim

    2015-11-01

    We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwell's equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells. PMID:26512486

  13. Spectroscopic microscopy can quantify the statistics of subdiffractional refractive-index fluctuations in media with random rough surfaces

    PubMed Central

    Zhang, Di; Cherkezyan, Lusik; Capoglu, Ilker; Subramanian, Hariharan; Chandler, John; Thompson, Sebastian; Taflove, Allen; Backman, Vadim

    2016-01-01

    We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwell’s equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells. PMID:26512486

  14. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph

    2013-01-01

    Structured illumination microscopy (SIM) is an established microscopy technique typically used to image samples at resolutions beyond the diffraction limit. Until now, however, achieving sub-diffraction resolution has predominantly been limited to intensity-based imaging modalities. Here, we introduce an analogue to conventional SIM that allows sub-diffraction resolution, quantitative phase-contrast imaging of optically transparent objects. We demonstrate sub-diffraction resolution amplitude and quantitative-phase imaging of phantom targets and enhanced resolution quantitative-phase imaging of cells. We report a phase accuracy to within 5% and phase noise of 0.06 rad. PMID:24156044

  15. Quantitative phase microscopy and synthetic aperture tomography of live cells

    NASA Astrophysics Data System (ADS)

    Lue, Niyom

    For more than a decade MIT's George R. Harrison Spectroscopy Laboratory has been developing quantitative phase microscopy (QPM) for biological study. Measurements of a point field were made in the mid 90s, then extended to the full 2D field, and recently, to 3D by using tomography. In the first part of this thesis improvements in the techniques of Fourier Phase Microscopy (FPM) and Hilbert Phase Microscopy (HPM) and their applications to characterize cells and tissues are reported. Tomographic phase microscopy (TPM) provides quantitative information and highly detailed structural information about a live cell, but in its current form it can only examine one cell at a time. Many biological applications including statistical analysis of a large collection of cells such as flow cytometry need a tomography technique that can measure many cells at a time. For the second part of this thesis we have developed a new tomography technique that can measure many cells continuously. In this study we demonstrate the new technique by translating a live cell across a focused beam. This beam is composed of many angular plane waves, and by applying a so-called synthetic aperture algorithm we retrieve individual wave components of the focused beam. We demonstrate for the first time that we can retrieve the field of the focused beam and synthesize any arbitrary angular plane wave. We then construct a 3D map of the variations of the refractive index in a live cell from a series of these synthesized angular plane waves. This new technique is the first step needed to analyze cells flowing through a beam to provide a high-throughput 3D refractive index tomograms that can be used as a new kind of statistical optical assay of living cells.

  16. Probing the duplex stainless steel phases via magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  17. Hilbert phase microscopy for investigating fast dynamics in transparent systems

    NASA Astrophysics Data System (ADS)

    Ikeda, Takahiro; Popescu, Gabriel; Dasari, Ramachandra R.; Feld, Michael S.

    2005-05-01

    We introduce Hilbert phase microscopy (HPM) as a novel optical technique for measuring high transverse resolution quantitative phase images associated with optically transparent objects. Because of its single-shot nature, HPM is suitable for investigating rapid phenomena that take place in transparent structures such as biological cells. The potential of this technique for studying biological systems is demonstrated with measurements of red blood cells, and its ability to quantify dynamic processes on a millisecond scale is exemplified with measurements of evaporating micrometer-sized water droplets.

  18. Phase modulation mode of scanning ion conductance microscopy

    SciTech Connect

    Li, Peng; Zhang, Changlin; Liu, Lianqing E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang; Li, Guangyong E-mail: gli@engr.pitt.edu

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  19. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  20. Performance analysis of quantitative phase retrieval method in Zernike phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Heng, Chen; Kun, Gao; Da-Jiang, Wang; Li, Song; Zhi-Li, Wang

    2016-02-01

    Since the invention of Zernike phase contrast method in 1930, it has been widely used in optical microscopy and more recently in X-ray microscopy. Considering the image contrast is a mixture of absorption and phase information, we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy. In this contribution, we analyze the performance of this method at different photon energies. Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV, respectively, and phase retrieval is performed using the proposed method. The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range. For weakly absorbing features, the optimal photon energy is 2.5 keV, from the point of view of image contrast and accuracy of phase retrieval. On the other hand, in the case of strong absorption objects, a higher photon energy is preferred to reduce the error of phase retrieval. These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method. Supported by the State Key Project for Fundamental Research (2012CB825801), National Natural Science Foundation of China (11475170, 11205157 and 11179004) and Anhui Provincial Natural Science Foundation (1508085MA20).

  1. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy.

    PubMed

    Yan, Yangzhi; Ding, Zhihua; Shen, Yi; Chen, Zhiyan; Zhao, Chen; Ni, Yang

    2013-11-01

    Spectral domain phase microscopy for high-sensitive and broad-dynamic-range quantitative phase imaging is presented. The phase retrieval is realized in the depth domain to maintain a high sensitivity, while the phase information obtained in the spectral domain is exploited to extend the dynamic range of optical path difference. Sensitivity advantage of phase retrieved in the depth domain over that in the spectral domain is thoroughly investigated. The performance of the proposed depth domain phase based approach is illustrated by phase imaging of a resolution target and an onion skin. PMID:24216799

  2. Bitumen morphologies by phase-detection atomic force microscopy.

    PubMed

    Masson, J-F; Leblond, V; Margeson, J

    2006-01-01

    Summary Bitumen is a complex mixture of hydrocarbons for which microstructural knowledge is incomplete. In an effort to detail this microstructure, 13 bitumens were analysed by phase-detection atomic force microscopy. Based on morphology, the bitumens could be classified into three distinct groups. One group showed fine domains down to 0.1 microm, another showed domains of about 1 microm, and a third group showed up to four different domains or phases of different sizes and shapes. No correlation was found between the atomic force microscopy morphology and the composition based on asphaltenes, polar aromatics, naphthene aromatics and saturates. A high correlation was found between the area of the 'bee-like' structures and the vanadium and nickel content in bitumen, and between the atomic force microscopy groups and the average size of molecular planes made of fused aromatics. The morphology and the molecular arrangements in bitumen thus appear to be partly governed by the molecular planes and the polarity defined by metallic cations. PMID:16438686

  3. Atomic force microscopy images of lyotropic lamellar phases.

    PubMed

    Garza, C; Thieghi, L T; Castillo, R

    2007-02-01

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction. PMID:17302467

  4. Atomic force microscopy images of lyotropic lamellar phases

    NASA Astrophysics Data System (ADS)

    Garza, C.; Thieghi, L. T.; Castillo, R.

    2007-02-01

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.

  5. Region-referenced phase unwrapping architecture for digital holographic microscopy.

    PubMed

    Hwang, Wen-Jyi; Chen, Huan-Yuan; Cheng, Chau-Jern

    2015-01-01

    This work presents a novel hardware phase-unwrapping architecture for digital holographic microscopy. The architecture is based on an iterative region-referenced algorithm because of its simplicity and effectiveness for phase unwrapping. The architecture therefore consumes fewer hardware resources for very large-scale integration implementation. In addition, a novel data reuse scheme is adopted for reducing the memory bandwidth required by the architecture. The architecture can then have fast computation speed for the iterative operations. The architecture has been implemented by field programmable gate array. It acts as a hardware accelerator in an embedded system developed by a network-on-chip platform for performance measurement. The superiorities of the proposed architecture have been confirmed by the experiments. PMID:25967024

  6. Efficient Phase Unwrapping Architecture for Digital Holographic Microscopy

    PubMed Central

    Hwang, Wen-Jyi; Cheng, Shih-Chang; Cheng, Chau-Jern

    2011-01-01

    This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize throughput of the computation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system. PMID:22163688

  7. Quantitative Phase Contrast Digital Holographic Microscopy in Biophotonics

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2010-11-01

    Label-free, non-contact, non-destructive, on-line (video repetition rate), high resolution, full field (no scanning), quantitative analysis of morphology and dynamic processes in living cells are required features in life science research and medical diagnostics. Digital Holography combined with microscopic imaging provides these features simultaneously. The modular integration of digital holographic microscopy (DHM) into commercial microscopes yields an axial resolution with interferometric resolution while the lateral resolution is diffraction limited. As amplitude and phase are available by numerical reconstruction from a single digital hologram subsequent automated focus correction is enabled. The evaluation of quantitative digital holographic phase contrast images permits also an effective detection of lateral object movements. Thus, 3D tracking is achieved. The applicability of DHM techniques for dynamic live cell analysis is demonstrated by results from tumor cells and human erythrocytes.

  8. Multi-pore carbon phase plate for phase-contrast transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Junesch, Juliane; Hosokawa, Fumio; Nagayama, Kuniaki; Arai, Yoshihiro; Kayama, Yoko

    2014-11-01

    A new fabrication method of carbon based phase plates for phase-contrast transmission electron microscopy is presented. This method utilizes colloidal masks to produce pores as well as disks on thin carbon membranes for phase modulation. Since no serial process is involved, carbon phase plate membranes containing hundreds of pores can be mass-produced on a large scale, which allows "disposal" of contaminated or degraded phase modulating objects after use. Due to the spherical shape of the mask colloid particles, the produced pores are perfectly circular. The pore size and distribution can be easily tuned by the mask colloid size and deposition condition. By using the stencil method, disk type phase plates can also be fabricated on a pore type phase plate. Both pore and disk type phase plates were tested by measuring amorphous samples and confirmed to convert the sinus phase contrast transfer function to the cosine shape. PMID:25129640

  9. IMAGING RED BLOOD CELL DYNAMICS BY QUANTITATIVE PHASE MICROSCOPY

    PubMed Central

    Popescu, Gabriel; Park, YoungKeun; Choi, Wonshik; Dasari, Ramachandra R.; Feld, Michael S.; Badizadegan, Kamran

    2008-01-01

    Red blood cells (RBCs) play a crucial role in health and disease, and structural and mechanical abnormalities of these cells have been associated with important disorders such as Sickle cell disease and hereditary cytoskeletal abnormalities. Although several experimental methods exist for analysis of RBC mechanical properties, optical methods stand out as they enable collecting mechanical and dynamic data from live cells without physical contact and without the need for exogenous contrast agents. In this report, we present quantitative phase microscopy techniques that enable imaging RBC membrane fluctuations with nanometer sensitivity at arbitrary time scales from milliseconds to hours. We further provide a theoretical framework for extraction of membrane mechanical and dynamical properties using time series of quantitative phase images. Finally, we present an experimental approach to extend quantitative phase imaging to 3-dimensional space using tomographic methods. By providing non-invasive methods for imaging mechanics of live cells, these novel techniques provide an opportunity for high-throughput analysis and study of RBC mechanical properties in health and disease. PMID:18387320

  10. Automatic deconvolution in 4Pi-microscopy with variable phase.

    PubMed

    Vicidomini, Giuseppe; Schmidt, Roman; Egner, Alexander; Hell, Stefan; Schönle, Andreas

    2010-05-10

    4Pi-microscopy doubles the aperture of the imaging system by coherent addition of the wavefronts for illumination and/or detection through opposing objective lenses. This improves the axial resolution 3-7 fold, but the raw data usually features ghost images which have to be removed by image reconstruction. This straightforward procedure is sometimes precluded by imperfect alignment of the instrument or a specimen with strong variations of its refractive index, because the image formation process now depends on the space-variant phase difference between the counter-propagating wavefronts. Here we present a computationally fast method of parametric blind deconvolution that allows for automatic and robust simultaneous estimation of both the object and the phase function in such cases. We verify the performance of our approach on both synthetic and real data. Because the method does not require a-priori knowledge of the phase function it is major step towards reliable 4Pi-imaging and automatic image restoration by non-expert users. PMID:20588870

  11. Tomographic phase microscopy of living three-dimensional cell cultures.

    PubMed

    Kuś, Arkadiusz; Dudek, Michał; Kemper, Björn; Kujawińska, Małgorzata; Vollmer, Angelika

    2014-04-01

    A successful application of self-interference digital holographic microscopy in combination with a sample-rotation-based tomography module for three-dimensional (3-D) label-free quantitative live cell imaging with subcellular resolution is demonstrated. By means of implementation of a hollow optical fiber as the sample cuvette, the observation of living cells in different 3-D matrices is enabled. The fiber delivers a stable and accurate rotation of a cell or cell cluster, providing quantitative phase data for tomographic reconstruction of the 3-D refractive index distribution with an isotropic spatial resolution. We demonstrate that it is possible to clearly distinguish and quantitatively analyze several cells grouped in a "3-D cluster" as well as subcellular organelles like the nucleoli and local internal refractive index changes. PMID:24723114

  12. Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy

    PubMed Central

    Liao, Chien-Sheng; Slipchenko, Mikhail N.; Wang, Ping; Li, Junjie; Lee, Seung-Young; Oglesbee, Robert A.; Cheng, Ji-Xin

    2015-01-01

    Real-time vibrational spectroscopic imaging is desired for monitoring cellular states and cellular processes in a label-free manner. Raman spectroscopic imaging of highly dynamic systems is inhibited by relatively slow spectral acquisition on millisecond to second scale. Here, we report microsecond scale vibrational spectroscopic imaging by lock-in free parallel detection of spectrally dispersed stimulated Raman scattering signal. Using a homebuilt tuned amplifier array, our method enables Raman spectral acquisition, within the window defined by the broadband pulse, at the speed of 32 microseconds and with close to shot-noise limited detection sensitivity. Incorporated with multivariate curve resolution analysis, our platform allows compositional mapping of lipid droplets in single live cells, observation of intracellular retinoid metabolism, discrimination of fat droplets from protein-rich organelles in Caenorhabditis elegans, spectral detection of fast flowing tumor cells, and monitoring drug diffusion through skin tissue in vivo. The reported technique opens new opportunities for compositional analysis of cellular compartment in a microscope setting and high-throughput spectral profiling of single cells in a flow cytometer setting. PMID:26167336

  13. Quantitative phase microscopy: automated background leveling techniques and smart temporal phase unwrapping.

    PubMed

    Goldstein, Goldie; Creath, Katherine

    2015-06-01

    In order for time-dynamic quantitative phase microscopy to yield meaningful data to scientists, raw phase measurements must be converted to sequential time series that are consistently phase unwrapped with minimal residual background shape. Beyond the initial phase unwrapping, additional steps must be taken to convert the phase to time-meaningful data sequences. This consists of two major operations both outlined in this paper and shown to operate robustly on biological datasets. An automated background leveling procedure is introduced that consistently removes background shape and minimizes mean background phase value fluctuations. By creating a background phase value that is stable over time, the phase values of features of interest can be examined as a function of time to draw biologically meaningful conclusions. Residual differences between sequential frames of data can be present due to inconsistent phase unwrapping, causing localized regions to have phase values at similar object locations inconsistently changed by large values between frames, not corresponding to physical changes in the sample being observed. This is overcome by introducing a new method, referred to as smart temporal unwrapping that temporally unwraps and filters the phase data such that small motion between frames is accounted for and phase data are unwrapped consistently between frames. The combination of these methods results in the creation of phase data that is stable over time by minimizing errors introduced within the processing of the raw data. PMID:26192681

  14. Computational methods for microfluidic microscopy and phase-space imaging

    NASA Astrophysics Data System (ADS)

    Pegard, Nicolas Christian Richard

    Modern optical devices are made by assembling separate components such as lenses, objectives, and cameras. Traditionally, each part is optimized separately, even though the trade-offs typically limit the performance of the system overall. This component-based approach is particularly unfit to solve the new challenges brought by modern biology: 3D imaging, in vivo environments, and high sample throughput. In the first part of this thesis, we introduce a general method to design integrated optical systems. The laws of wave propagation, the performance of available technology, as well as other design parameters are combined as constraints into a single optimization problem. The solution provides qualitative design rules to improve optical systems as well as quantitative task-specific methods to minimize loss of information. Our results have applications in optical data storage, holography, and microscopy. The second part of this dissertation presents a direct application. We propose a more efficient design for wide-field microscopy with coherent light, based on double transmission through the sample. Historically, speckle noise and aberrations caused by undesired interferences have made coherent illumination unpopular for imaging. We were able to dramatically reduce speckle noise and unwanted interferences using optimized holographic wavefront reconstruction. The resulting microscope not only yields clear coherent images with low aberration---even in thick samples---but also increases contrast and enables optical filtering and in-depth sectioning. In the third part, we develop new imaging techniques that better respond to the needs of modern biology research through implementing optical design optimization. Using a 4D phase-space distribution, we first represent the state and propagation of incoherent light. We then introduce an additional degree of freedom by putting samples in motion in a microfluidic channel, increasing image diversity. From there, we develop a

  15. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-11-01

    The field of three-dimensional quantitative phase imaging (3D QPI) is expanding rapidly with applications in biological, medical, and industrial research, development, diagnostics, and metrology. Much of this research has centered on developing optical diffraction tomography (ODT) for biomedical applications. In addition to technical difficulties associated with coherent noise, ODT is not congruous with optical microscopy utilizing partially coherent light, which is used in most biomedical laboratories. Thus, ODT solutions have, for the most part, been limited to customized optomechanical systems which would be relatively expensive to implement on a wide scale. In the present work, a new phase reconstruction method, called tomographic deconvolution phase microscopy (TDPM), is described which makes use of commercial microscopy hardware in realizing 3D QPI. TDPM is analogous to methods used in deconvolution microscopy which improve spatial resolution and 3D-localization accuracy of fluorescence micrographs by combining multiple through-focal scans which are deconvolved by the system point spread function. TDPM is based on the 3D weak object transfer function theory which is shown here to be capable of imaging "nonweak" phase objects with large phase excursions. TDPM requires no phase unwrapping and recovers the entire object spectrum via object rotation, mitigating the need to fill in the "missing cone" of spatial frequencies algorithmically as in limited-angle ODT. In the present work, TDPM is demonstrated using optical fibers, including single-mode, polarization-maintaining, and photonic-crystal fibers as well as an azimuthally varying CO2-laser-induced long-period fiber grating period as test phase objects. PMID:26560576

  16. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-02-01

    The use of AgNP is becoming more and more widespread in biomedical field. But compared with the promising bactericidal function, other physiological effects of AgNP on cells are relatively scant. In this research, we propose quantitative phase microscopy (QPM) as a new method to study the degranulation, and AgNP-induced RBL-2H3 cell degranulation is studied as well. Firstly, HeLa cells as the cell control and PBS as the solvent control, we measured the cell volume and cross section profile (x-z plane) with QPM. The results showed that the volume and cross section profile changed only the RBL-2H3 cells exposed to calcium ionophore A23187, which demonstrates the validity of QPM in degranulation research. Secondly, 50μg/mL of AgNP was used instead of A23187, and the measurement of cell volume and cross section profile was carried out again. RBL-2H3 cell volume increased immediately after AgNP was added, and cross section profile showed that the cell surface became granulated, but HeLa cell was lack of that effect. Phase images obviously indicated the RBL-2H3 cell deformation. Thirdly, stained with Fluo-3/AM, intracellular calcium Ca2+]i of single RBL-2H3 cell treated with AgNP was observed with fluorescent microscopy; incubated with AgNP for 20min, the supernatant of RBL-2H3 cells was collected and reacted with o-phthalaldehyde (OPA), then the fluorescent intensity of histamine-OPA complex was assayed with spectrofluorometer. The results of Ca2+]i and histamine increase showed that degranulation of AgNP-induced RBL-2H3 cell occurred. So, the cell volume was used as a parameter of degranulation in our study and AgNP-induced RBL-2H3 cells degranulation was confirmed by the cell volume increment, cross section profile change, and [Ca2+]i and histamine in supernatant increase.

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  18. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  19. Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes

    USGS Publications Warehouse

    Nord, G.L., Jr.

    1982-01-01

    Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.

  20. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-07-01

    Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.

  1. On measuring cell confluence in phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Dempsey, K. P.; Richardson, J. B.; Lam, K. P.

    2014-03-01

    A principal focus highlighting recent advances in cell based therapies concerns the development of effective treatments for osteoarthritis. Earlier clinicaltrials have shown that 80% of patients receiving mesenchymal stem cell(MSC) based treatment have improved their quality of life by alleviating pain whilst extending the life of their natural joints. The current challenge facing researchers is to identify the biological differences between the treatments that have worked and those which have shown little improvement. One possible candidate for the difference in treatment prognosis is an examination of the proliferation of the ( type) cells as they grow. To further understanding of the proliferation and differentiation of MSC, non-invasive live cell imaging techniques have been developed which capture important cell events and dynamics in cell divisions over an extended period of time. An automated image analysis procedure capable of tracking cell confluence over time has also been implemented, providing an objective and realistic estimation of cell growth within continuous live cell cultures. The proposed algorithm accounts for the halo artefacts that occur in phase microscopy. In addition to a favourable run-time performance, the method was also validated using continuous live MSC cultures, with consistent and meaningful results.

  2. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOEpatents

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  3. Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2

    NASA Technical Reports Server (NTRS)

    Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam

    1990-01-01

    This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.

  4. Spectroscopic studies of gas-phase molecular clusters

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Kin

    Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions in molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation. The infrared predissociation spectroscopy of CN-·(H 2O)n (n = 2--6) clusters was reported in the region of 2950--3850 cm-1. The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters. The infrared predissociation spectroscopy of Br-·(NH 3) and I-·(NH3) n (n = 1--3) clusters was reported in the region of 3050--3450 cm-1. For the Br -·(NH3) complex, a dominating ionic NH stretch appeared at 3175 cm-1, and the weaker free NH stretch appeared at 3348 cm-1. The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br- and the NH3 moiety. For the I- ·(NH3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations---complex with one, two and three hydrogen bondings between I- and the NH3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I- ·(NH3)n (n = 2--3), suggesting the presence of multiple isomers. The REMPI spectroscopy of the bound 4p 2pi 1/2 and 2pi3/2 states, and the dissociative 3d 2Sigma+1/2 state in the Al·Ar complex was reported. The dissociative spectrum at Al+ channel suggested the coupling of the 4p 2pi 1/2,3/2 states to the repulsive 3d 2Sigma+1/2 state. The spin-electronic coupling was further manifested in the dissociative Al+ spectrum of the 3d 2Sigma+1/2 state. Using the potential energy curves obtained from ab initio

  5. Principal Component Analysis of Spectroscopic Imaging Data in Scanning Probe Microscopy

    SciTech Connect

    Jesse, Stephen; Kalinin, Sergei V

    2009-01-01

    The approach for data analysis in band excitation family of scanning probe microscopies based on principal component analysis (PCA) is explored. PCA utilizes the similarity between spectra within the image to select the relevant response components. For small signal variations within the image, the PCA components coincide with the results of deconvolution using simple harmonic oscillator model. For strong signal variations, the PCA allows effective approach to rapidly process, de-noise and compress the data. The extension of PCA for correlation function analysis is demonstrated. The prospects of PCA as a universal tool for data analysis and representation in multidimensional SPMs are discussed.

  6. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  7. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy.

    PubMed

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density. PMID:26886803

  8. Volta potential phase plate for in-focus phase contrast transmission electron microscopy

    PubMed Central

    Danev, Radostin; Buijsse, Bart; Khoshouei, Maryam; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2014-01-01

    We describe a phase plate for transmission electron microscopy taking advantage of a hitherto-unknown phenomenon, namely a beam-induced Volta potential on the surface of a continuous thin film. The Volta potential is negative, indicating that it is not caused by beam-induced electrostatic charging. The film must be heated to ∼200 °C to prevent contamination and enable the Volta potential effect. The phase shift is created “on the fly” by the central diffraction beam eliminating the need for precise phase plate alignment. Images acquired with the Volta phase plate (VPP) show higher contrast and unlike Zernike phase plate images no fringing artifacts. Following installation into the microscope, the VPP has an initial settling time of about a week after which the phase shift behavior becomes stable. The VPP has a long service life and has been used for more than 6 mo without noticeable degradation in performance. The mechanism underlying the VPP is the same as the one responsible for the degradation over time of the performance of thin-film Zernike phase plates, but in the VPP it is used in a constructive way. The exact physics and/or chemistry behind the process causing the Volta potential are not fully understood, but experimental evidence suggests that radiation-induced surface modification combined with a chemical equilibrium between the surface and residual gases in the vacuum play an important role. PMID:25331897

  9. Hyperfine spectroscopic study of Laves phase HfFe 2

    NASA Astrophysics Data System (ADS)

    Belošević-Čavor, J.; Novaković, N.; Cekić, B.; Ivanović, N.; Manasijević, M.

    2004-05-01

    Hyperfine fields in HfFe 2 were measured at 181Ta probe using the time-differential perturbed angular correlation method (TDPAC) in the temperature range 78-1200 K. Analysis of the spectra revealed two interactions with hyperfine fields of 13.82(7) T and 8.0(2) T, at 293 K. First is ascribed to the interaction at the 8a position in the cubic C15 structure. The second can be assigned to a minor amount of hexagonal C14 phase, or to an irregular position of the probe in the C15 lattice. Results of calculations using LAPW-WIEN97 are in a good agreement with experiment.

  10. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A.; Castro-Domínguez, B.; Hernández-Hernández, P.; Newman, R.C.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  11. Structured illumination diffraction phase microscopy for broadband, sub-diffraction resolution, quantitative phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph A.

    2015-01-01

    Structured illumination microscopy (SIM) is an established technique that allows sub-diffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve sub-diffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband-light source to obtain noise-reduced, sub-diffraction resolution, quantitative-phase (QPM) imaging of cells. We compare this with a previous work for sub-diffraction QPM imaging via SIM that used a laser source, and was thus still corrupted by coherent noise. PMID:24562266

  12. Intensity and phase fields behind Phase Shifting Masks studied with High Resolution Interference Microscopy

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Weichelt, Tina; Zeitner, Uwe; Vogler, Uwe; Voelkel, Reinhard

    2015-03-01

    The proximity printing industry is in real need of high resolution results and it can be done using Phase Shift Mask (PSM) or by applying Optical Proximity Correction (OPC). In our research we are trying to find out details of how light fields behind the structures of photo masks develop in order to determine the best conditions and designs for proximity printing. We focus here on parameters that are used in real situation with gaps up to 50 μm and structure sizes down to 2 μm. The light field evolution behind the structures is studied and delivers insight in to precisions and tolerances that need to be respected. It is the first time that an experimental analysis of light propagation through mask is presented in detail, which includes information on intensity and phase. The instrument we use is known as High Resolution Interference Microscopy (HRIM). HRIM is a Mach-Zehnder interferometer which is capable of recording three dimensional distributions of intensity and phase with diffraction limited resolution. Our characterization technique allows plotting the evolution of the desired light field and therefore printable structure till the desired proximity gap. In this paper we discuss in detail the evolution of intensity and phase fields of elbow or corner structure at different position behind a phase mask and interpret the main parameters. Of particular interest are tolerances against proximity gap variation and the resolution in printed structures.

  13. High-Temperature Phase Transition in Enstatite : Raman Spectroscopic Results

    NASA Astrophysics Data System (ADS)

    Reynard, B.; Bass, J.

    2003-12-01

    (Mg,Fe)SiO3 enstatite has various polymorphs of which orthoenstatite with space group Pbca is the most common in natural rocks. The existence of a high temperature form has been suggested from various experiments but its symmetry remains unknown. Recent high-temperature Brillouin measurements on nearly pure MgSiO3 show that this transition is first order with a strong hysteresis (Tc at about 1200-1250° C with increasing temperature, Tc around 1000° C with decreasing temperature; Jackson et al, 2003). It is accompanied by strong pretransitional softening of some elastic constants and has some important consequences in the understanding of upper mantle seismic properties especially in hot regions. In order to more fully understand the nature of this transition and possibly the structural changes associated with it, we have performed in situ Raman spectroscopy on pure enstatite up to the transition temperature. The transition is observed in the same temperature range with increasing temperature, and is characterized by a decrease of the number of Raman modes, which can be interpreted as the transition to a space group with reduced Wigner-Seitz cell. Pretransitional effects are observed especially on a low frequency mode at 80 cm-1, which displays pronounced anharmonic behaviour. Possible space groups are Pbcn (protoenstatite), C2/c (high-clinoenstatite) or a previously unreported Cmca structure. The latter is a supergroup of Pbca and could account for the pretransitional softening. On decreasing temperature, backtransformation to orthoenstatite is marked by the appearance of cracks along simple crystallographic directions, which eventually leads to the breaking of the submillimeter-sized single crystals used as starting materials. Areas of untransformed high-temperature phase can be preserved down to about 750° C. This large hysteresis is strongly controlled by crystal shape and size as well as thermal history. In a parallel experiments, needle shaped thin (5x50

  14. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  15. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  16. Effects of polarization and phase modulation on the focal spot in 4Pi microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Shaocong; You, Shangting; Fang, Yue; Wang, Yifan; Kuang, Cuifang; Liu, Xu

    2016-07-01

    In 4Pi microscopy, the intensity and polarization distributions of the focal spot directly determine the system resolution, influencing its extended applications. This paper illustrates how the focal spot is affected by the polarization and phase modulation of the incident beams. Various combinations of polarization states and phase modulations are considered and their effects on the focal spot are investigated. The optimal configurations for generating a solid spot and a doughnut-shaped spot are proposed. This paper provides the theoretical basis and reference for extended applications, such as super-resolution confocal microscopy, 4Pi microscopy or 4Pi-STED microscopy.

  17. Intensity and phase fields behind phase-shifting masks studied with high-resolution interference microscopy

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Kim, Myun Sik; Naqavi, Ali; Herzig, Hans Peter; Weichelt, Tina; Zeitner, Uwe; Vogler, Uwe; Voelkel, Reinhard

    2016-04-01

    We try to find out the details of how light fields behind the structures of photomasks develop in order to determine the best conditions and designs for proximity printing. The parameters that we use approach real situations like structure printing at proximity gaps of 20 to 50 μm and structure sizes down to 2 μm. This is the first time that an experimental analysis of light propagation through a mask is presented in detail, which includes information on intensity and phase. We use high-resolution interference microscopy (HRIM) for the measurement. HRIM is a Mach-Zehnder interferometer, which is capable of recording three-dimensional distributions of intensity and phase with diffraction-limited resolution. Our characterization technique allows plotting the evolution of the desired light field, usually called the aerial image, and therefore gives access to the printable structure until the desired proximity gap. Here, we discuss in detail the evolution of intensity and phase fields of elbow or corner structures at different positions behind a phase mask and interpret the main parameters. Of particular interest are tolerances against proximity gap variation and the theoretical explanation of the resolution in printed structures.

  18. Super-resolution microscopy of lipid bilayer phases.

    PubMed

    Kuo, Chinkuei; Hochstrasser, Robin M

    2011-04-01

    Sub-diffraction optical imaging with nanometer resolution of lipid phase-separated regions is reported. Merocyanine 540, a probe whose fluorescence is sensitive to the lipid phase, is combined with super-resolution imaging to distinguish the liquid- and gel-phase nanoscale domains of lipid bilayers supported on glass. The monomer-dimer equilibrium of MC540 in membranes is deemed responsible for the population difference of single-molecule fluorescence bursts in the different phase regions. The extension of this method to other binary or ternary lipid models or natural systems provides a promising new super-resolution strategy. PMID:21405121

  19. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  20. Artifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Holzner, Christian; Mohacsi, Istvan; Karvinen, Petri; Diaz, Ana; Pigino, Gaia; David, Christian

    2015-05-18

    Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well. PMID:26074579

  1. LDRD final report : raman spectroscopic measurements to monitor the HMX beta-delta phase transition.

    SciTech Connect

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    2000-11-01

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell was heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.

  2. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  3. Raman Spectroscopic and Ultrasonic Measurements to Monitor the HMX ( ) Phase Transition

    SciTech Connect

    GIESKE,JOHN H.; MILLER,JILL C.; RENLUND,ANITA M.; TAPPAN,ALEXANDER S.

    1999-10-14

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is clearly linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to a predictive safety model for HMX and HMX-containing EMs. We report work in progress on monitoring the phase transition with real-time Raman spectroscopy and ultrasonic measurements aimed towards a better understanding of physical properties through the phase transition. HMX samples were confined with minimal free volume.in a cell with constant volume. The cell was heated at a controlled rate and real-time Raman spectroscopic or ultrasonic measurements were performed. Raman spectroscopy provides a clear distinction between the two phases because the vibrational transitions of the molecule change with confirmational changes associated with the phase transition. Ultrasonic time-of-flight measurements provide an additional method of distinguishing the two phases because the sound speed through the material changes with the phase transition. Ultrasonic attenuation measurements also provide information about microstructural changes such as increased porosity due to evolution of gaseous decomposition products.

  4. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  5. Spectroscopic and Structural Investigations of alpha-beta-, and gamma-AIH3 Phases

    SciTech Connect

    Manciu, F.S.; Graetz, J.; Reza, L.; Durrer, W.G.; Bronson, A.; Lacina, D.

    2010-07-01

    With its reputation as a high-energy density fuel, aluminum hydride (AlH{sub 3}) has received renewed attention as a material that is particularly suitable, not only for hydrogen storage but also for rocket propulsion. While the various phases of AlH{sub 3} have been investigated theoretically, there is a shortage of experimental studies corroborating the theoretical findings. In response to this, we present here an investigation of these compounds based primarily on two research areas in which there is the greatest scarcity of information in the literature, namely Raman and infrared (IR) absorption analysis. To the authors knowledge, this is the first report of experimental far-IR absorption results on these compounds. Two different samples prepared by broadly similar ethereal reactions of AlCl{sub 3} with LiAlH{sub 4} were analyzed. Both Raman and IR absorption measurements indicate that one sample is purely {gamma}-AlH{sub 3} and that the other is a mixture of {alpha}-, {beta}-, and {gamma}-AlH{sub 3} phases. X-ray diffraction confirms the spectroscopic findings, most notably for the {beta}-AlH{sub 3} phase, for which optical spectroscopic data are reported here for the first time.

  6. Dynamic speckle illumination wide-field reflection phase microscopy

    PubMed Central

    Choi, Youngwoon; Hosseini, Poorya; Choi, Wonshik; Dasari, Ramachandra R.; So, Peter T. C.; Yaqoob, Zahid

    2014-01-01

    We demonstrate a quantitative reflection-phase microscope based on time-varying speckle-field illumination. Due to the short spatial coherence length of the speckle field, the proposed imaging system features superior lateral resolution, 520 nm, as well as high-depth selectivity, 1.03 µm. Off-axis interferometric detection enables wide-field and single-shot imaging appropriate for high-speed measurements. In addition, the measured phase sensitivity of this method, which is the smallest measurable axial motion, is more than 40 times higher than that available using a transmission system. We demonstrate the utility of our method by successfully distinguishing the motion of the top surface from that of the bottom in red blood cells. The proposed method will be useful for studying membrane dynamics in complex eukaryotic cells. PMID:25361156

  7. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy

    SciTech Connect

    Reed, B W; Armstrong, M R; Blobaum, K J; Browning, N D; Burnham, A K; Campbell, G H; Gee, R; Kim, J S; King, W E; Maiti, A; Piggott, W T; Torralva, B R

    2007-02-22

    The Dynamic Transmission Electron Microscope (DTEM) project is developing an in situ electron microscope with nanometer- and nanosecond-scale resolution for the study of rapid laser-driven processes in materials. We report on the results obtained in a year-long LDRD-supported effort to develop DTEM techniques and results for phase transitions in molecular crystals, reactive multilayer foils, and melting and resolidification of bismuth. We report the first in situ TEM observation of the HMX {beta}-{delta} phase transformation in sub-{micro}m crystals, computational results suggesting the importance of voids and free surfaces in the HMX transformation kinetics, and the first electron diffraction patterns of intermediate states in fast multilayer foil reactions. This project developed techniques which are applicable to many materials systems and will continue to be employed within the larger DTEM effort.

  8. Geometric phase-shifting for low-coherence interference microscopy

    NASA Astrophysics Data System (ADS)

    Roy, M.; Svahn, P.; Cherel, L.; Sheppard, C. J. R.

    2002-06-01

    A low-coherence Linnik interference microscope using high numerical aperture optics has been constructed. The system uses a tungsten halogen lamp and Köhler illumination, with separate control over field and aperture stops, so that experiments can be conducted with a range of different operating conditions. The novel feature of the system is the use of an achromatic phase-shifter operating on the principle of the geometric phase, achieved by using a polarising beam splitter, a quarter wave plate and a rotating polariser. Image information is extracted from the visibility of the fringes, the position of the visibility peak along the scanning axis yielding the height of the test surface at the corresponding point.

  9. Simultaneous microscopic measurements of thermal and spectroscopic fields of a phase change material

    NASA Astrophysics Data System (ADS)

    Romano, M.; Ryu, M.; Morikawa, J.; Batsale, J. C.; Pradere, C.

    2016-05-01

    In this paper, simultaneous microscopic measurements of thermal and spectroscopic fields of a paraffin wax n-alkane phase change material are reported. Measurements collected using an original set-up are presented and discussed with emphasis on the ability to perform simultaneous characterization of the system when the proposed imaging process is used. Finally, this work reveals that the infrared wavelength contains two sets of important information. Furthermore, this versatile and flexible technique is well adapted to characterize many systems in which the mass and heat transfers effects are coupled.

  10. Off-axis digital holographic camera for quantitative phase microscopy

    PubMed Central

    Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2014-01-01

    We propose and experimentally demonstrate a digital holographic camera which can be attached to the camera port of a conventional microscope for obtaining digital holograms in a self-reference configuration, under short coherence illumination and in a single shot. A thick holographic grating filters the beam containing the sample information in two dimensions through diffraction. The filtered beam creates the reference arm of the interferometer. The spatial filtering method, based on the high angular selectivity of the thick grating, reduces the alignment sensitivity to angular displacements compared with pinhole based Fourier filtering. The addition of a thin holographic grating alters the coherence plane tilt introduced by the thick grating so as to create high-visibility interference over the entire field of view. The acquired full-field off-axis holograms are processed to retrieve the amplitude and phase information of the sample. The system produces phase images of cheek cells qualitatively similar to phase images extracted with a standard commercial DHM. PMID:24940535

  11. A phase space model of Fourier ptychographic microscopy

    PubMed Central

    Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995

  12. Two-step phase-shifting fluorescence incoherent holographic microscopy

    PubMed Central

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Yao, Hai; Qu, Xinghua; Gao, Bruce Z.

    2014-01-01

    Abstract. Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from three to two. Using this method, we resolved microscopic fluorescent beads that were three-dimensionally distributed at different depths with two interferograms captured by a CCD camera. The method enables the FINCHSCOPE to work in conjunction with the frame-straddling technique and significantly enhance imaging speed. PMID:24972355

  13. The lamina splendens of articular cartilage is an artefact of phase contrast microscopy.

    PubMed

    Aspden, R M; Hukins, D W

    1979-11-30

    The so-called lamina splendens of articular cartilage is shown to be a characteristic of phase contrast microscopy; this technique provides no evidence for an anatomically distinct surface layer. Fresnel diffraction occurs at edges separating regions of different refractive indices. These diffraction effects, when viewed under phase contrast, lead to the appearance of a bright line along the edge. PMID:42065

  14. Neural stem cell tracking with phase contrast video microscopy

    NASA Astrophysics Data System (ADS)

    Rigaud, Stéphane U.; Loménie, Nicolas

    2011-03-01

    Tracking and segmenting objects for video surveillance is a well known field of research and very efficient methods exist. Usually embedded in traffic surveillance camera, these processes are not necessary adapted for biological surveillance context. In stem cell study, the design of a framework to monitor cell development in real time improves the stem cell analysis and biological understanding. In this purpose, we propose to test the Σ - ▵ motion filter, normally developed for security and surveillance camera, in order to track neural stem cells and their evolution over time, based on phase contrast image sequences. The motion filter is based on the difference between the current frame and a reference image of the background and uses a recursive spatio-temporal morphological operator called hybrid reconstruction to compensate for ghost and trace usually occurring with those kinds of methods.

  15. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy.

    PubMed

    Trujillo, Carlos; Doblas, Ana; Saavedra, Genaro; Martínez-Corral, Manuel; García-Sucerquia, Jorge

    2016-04-01

    The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device. PMID:27192250

  16. Unstained viable cell recognition in phase-contrast microscopy

    NASA Astrophysics Data System (ADS)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-09-01

    Individual cell recognition is a relevant task to be accomplished when single-ion microbeam irradiations are performed. At INFN-LNL facility cell visualization system is based on a phase-contrast optical microscope, without the use of any cell dye. Unstained cells are seeded in the special designed Petri dish, between two mylar foils, and at present the cell recognition is achieved manually by an expert operator. Nevertheless, this procedure is time consuming and sometimes it could be not practical if the amount of living cells to be irradiated is large. To reduce the time needed to recognize unstained cells on the Petri dish, it has been designed and implemented an automated, parallel algorithm. Overlapping ROIs sliding in steps over the captured grayscale image are firstly pre-classified and potential cell markers for the segmentation are obtained. Segmented objects are additionally classified to categorize cell bodies from other structures considered as sample dirt or background. As a result, cell coordinates are passed to the dedicated CELLView program that controls all the LNL single-ion microbeam irradiation protocol, including the positioning of individual cells in front of the ion beam. Unstained cell recognition system was successfully tested in experimental conditions with two different mylar surfaces. The recognition time and accuracy was acceptable, however, improvements in speed would be useful.

  17. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy

    PubMed Central

    Shaked, Natan T.; Satterwhite, Lisa L.; Bursac, Nenad; Wax, Adam

    2010-01-01

    We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy. PMID:21258502

  18. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy.

    PubMed

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order. PMID:26530779

  19. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    PubMed Central

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order. PMID:26530779

  20. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-11-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order.

  1. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites.

    PubMed

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo; Sobanska, Sophie; Martins, Jean M F

    2015-12-30

    Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts. PMID:26253233

  2. Etch depth mapping of phase binary computer-generated holograms by means of specular spectroscopic scatterometry

    NASA Astrophysics Data System (ADS)

    Korolkov, Victor P.; Konchenko, Alexander S.; Cherkashin, Vadim V.; Mironnikov, Nikolay G.; Poleshchuk, Alexander G.

    2013-09-01

    Detailed analysis of etch depth map for phase binary computer-generated holograms intended for testing aspheric optics is a very important task. In particular, diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. We offer a simplified version of the specular spectroscopic scatterometry method. It is based on the spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase the phase depth of the grooves by a factor of 2 and measure more precisely shallow phase gratings. Measurement uncertainty is mainly defined by the following parameters: shifts of the spectrum maximums that occur due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method we describe can ensure 1% error. However, fiber spectrometers are more convenient for scanning measurements of large area computer-generated holograms. Our experimental system for characterization of binary computer-generated holograms was developed using a fiber spectrometer.

  3. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis.

    PubMed

    Huck, Christian W

    2016-01-01

    A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE) prior and for in situ near and attenuated total reflection (ATR) infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided. PMID:27187347

  4. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    PubMed Central

    Kurhekar, Anil Sudhakar; Apte, Prakash R

    2014-01-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces. PMID:24619506

  5. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    NASA Astrophysics Data System (ADS)

    Kurhekar, Anil Sudhakar; Apte, Prakash R.

    2013-02-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces.

  6. Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Bosse, J. L.; Timofeeva, M.; Tovee, P. D.; Robinson, B. J.; Huey, B. D.; Kolosov, O. V.

    2014-10-01

    The thermal properties of amorphous and crystalline phases in chalcogenide phase change materials (PCM) play a key role in device performance for non-volatile random-access memory. Here, we report the nanothermal morphology of amorphous and crystalline phases in laser pulsed GeTe and Ge2Sb2Te5 thin films by scanning thermal microscopy (SThM). By SThM measurements and quantitative finite element analysis simulations of two film thicknesses, the PCM thermal conductivities and thermal boundary conductances between the PCM and SThM probe are independently estimated for the amorphous and crystalline phase of each stoichiometry.

  7. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy

    SciTech Connect

    Xu, Xiaoji G.; Gilburd, Leonid; Walker, Gilbert C.

    2014-12-29

    Scattering type scanning near-field optical microscopy (s-SNOM) allows sub diffraction limited spatial resolution. Interferometric homodyne detection in s-SNOM can amplify the signal and extract vibrational responses based on sample absorption. A stable reference phase is required for a high quality homodyne-detected near-field signal. This work presents the development of a phase stabilization mechanism for s-SNOM to provide stable homodyne conditions. The phase stability is found to be better than 0.05 rad for the mid infrared light source. Phase stabilization results in improved near field images and vibrational spectroscopies. Spatial inhomogeneities of the boron nitride nanotubes are measured and compared.

  8. Observation of dendritic cell morphology under light, phase-contrast or confocal laser scanning microscopy.

    PubMed

    Tan, Yuen-Fen; Leong, Chooi-Fun; Cheong, Soon-Keng

    2010-12-01

    Dendritic cells (DCs) are professional antigen presenting cells of the immune system. They can be generated in vitro from peripheral blood monocytes supplemented with GM-CSF, IL-4 and TNF alpha. During induction, DCs will increase in size and acquire multiple cytoplasmic projections when compared to their precursor cells such as monocytes or haematopoietic stem cells which are usually round or spherical. Morphology of DCs can be visualized by conventional light microscopy after staining or phase-contrast inverted microscopy or confocal laser scanning microscopy. In this report, we described the morphological appearances of DCs captured using the above-mentioned techniques. We found that confocal laser scanning microscopy yielded DCs images with greater details but the operating cost for such a technique is high. On the other hand, the images obtained through light microscopy after appropriate staining or phase contrast microscopy were acceptable for identification purpose. Besides, these equipments are readily available in most laboratories and the cost of operation is affordable. Nevertheless, morphological identification is just one of the methods to characterise DCs. Other methods such as phenotypic expression markers and mixed leukocyte reactions are additional tools used in the characterisation of DCs. PMID:21329180

  9. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    PubMed

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  10. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo

    2009-10-01

    Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.

  11. High-resolution transmission electron microscopy with an electrostatic Zach phase plate

    NASA Astrophysics Data System (ADS)

    Hettler, S.; Dries, M.; Zeelen, J.; Oster, M.; Schröder, R. R.; Gerthsen, D.

    2016-05-01

    A new method to control lattice-fringe contrast in high-resolution transmission electron microscopy (HRTEM) images by the implementation of a physical phase plate (PP) is proposed. PPs are commonly used in analogy to Zernike PPs in light microscopy to enhance the phase contrast of weak-phase objects with nm-sized features, which often occur in life science applications. Such objects otherwise require strong defocusing, which leads to a degradation of the instrumental resolution and impedes intuitive image interpretation. The successful application of an electrostatic Zach PP in HRTEM is demonstrated by the investigation of single crystalline Si and Ge samples. The influence of the Zach PP on the image formation process is assessed by analyzing the amplitudes of (111) reflections in power spectra which show a cosine-type dependence on the induced phase shift under certain conditions as predicted by theory.

  12. High Resolution Phase-Sensitive Magnetomotive Optical Coherence Microscopy for Tracking Magnetic Microbeads and Cellular Mechanics

    PubMed Central

    Crecea, Vasilica; Graf, Benedikt W.; Kim, Taewoo; Popescu, Gabriel; Boppart, Stephen A.

    2014-01-01

    We present a real-time multimodal near-infrared imaging technology that tracks externally induced axial motion of magnetic microbeads in single cells in culture. The integrated multimodal imaging technique consists of phase-sensitive magnetomotive optical coherence microscopy (MM-OCM) and multiphoton microscopy (MPM).MPMis utilized for the visualization of multifunctional fluorescent and magnetic microbeads, while MM-OCM detects, with nanometer-scale sensitivity, periodic displacements of the microbeads induced by the modulation of an external magnetic field. Magnetomotive signals are measured from mouse macrophages, human breast primary ductal carcinoma cells, and human breast epithelial cells in culture, and validated with full-field phase-sensitive microscopy. This methodology demonstrates the capability for imaging controlled cell dynamics and has the potential for measuring cell biomechanical properties, which are important in assessing the health and pathological state of cells. PMID:25400496

  13. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  14. Monitoring cells in engineered tissues with optical coherence phase microscopy: Optical phase fluctuations as endogenous sources of contrast

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Holmes, Christina; Tabrizian, Maryam

    2013-02-01

    There is a need in tissue engineering to monitor cell growth and health within 3D constructs non-invasively and in a label-free manner. We have previously shown that optical coherence phase microscopy was sensitive enough to monitor intracellular motion. Here we demonstrate that intracellular motility can be used as an endogeneous contrast agent to image cells in various 3D engineered tissue architectures. Phase and intensity-based reconstruction algorithms are compared. In this study, we used an optical coherence phase microscope set up in a common path configuration, developed around a Callisto OCT engine (Thorlbas) centred at 930nm and an inverted microscope with a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and the first time derivative of the phase, i.e. time fluctuations, was analysed over the acquisition time interval to map the motility. Alternative intensity-based Doppler variance algorithms were also investigated. Two distinct scaffold systems seeded with adult stem cells; algimatrix (Invitrogen) and custom microfabricated poly(D,L-lactic-co-glycolic acid) fibrous scaffolds, as well as cell pellets were imaged. We showed that optical phase fluctuations resulting from intracellular motility can be used as an endogenous source of contrast for optical coherence phase microscopy enabling the distinction of viable cells from the surrounding scaffold.

  15. Measurements of adipose derived stem cell vitality with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Holmes, C.; Drummond, N.; Daoud, J.; Tabrizian, M.

    2011-03-01

    Live cells display a constant vertical motility due partly to a constant rearrangement of focal contacts and to cell shape fluctuations. This cellular micromotion has been clearly demonstrated with electric cell impedance sensing (ECIS) on 2D micro-electrodes, and correlated to cell vitality. In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be correlated to cell motility. An OCPM has been developed around a Thorlabs engine (λο=930nm FWHM: 90nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC motility was measured by ECIS and a spectral analysis was performed to retrieve the power spectral density (PSD) of the fluctuations. Cells in standard media and fixed cells were investigated. The same conditions were then investigated for ADSCs in 2D and in 3D with optical coherence phase microscopy. Significant differences were found in phase fluctuations between the different conditions, which correlated well with ECIS experiments. These preliminary results indicated that optical coherence phase microscopy could assess cell vitality in 2D and potentially in 3D microstructures.

  16. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  17. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  18. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  19. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; Drake, Tyler K.; Robles, Francisco E.; Rohan, Lisa C.; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  20. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  1. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  2. Pre-phase A: Development of a far-ultraviolet photometric- and spectroscopic-survey small-explorer experiment

    NASA Technical Reports Server (NTRS)

    Martin, Christopher

    1993-01-01

    We propose to perform a far ultraviolet photometric and spectroscopic survey covering the lambda lambda 1300-2000 band with a sensitivity comparable to that of the Palomar Sky Survey. This survey will proceed in three phases: an all-sky survey in three bands to 18-19.5(sup m), deep surveys of selected targets of interest in the same bands to 21-22(sup m), and a spectroscopic survey of 2 percent of the sky to 18(sup m) with a resolution of 3-20A. This mission, the Joint Ultraviolet Nightsky Observer (JUNO), can be performed by a Small-Explorer-class satellite.

  3. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics. PMID:24690848

  4. Using quantitative interference phase microscopy for sperm acrosome evaluation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Balberg, Michal; Kalinowski, Ksawery; Levi, Mattan; Shaked, Natan T.

    2016-03-01

    We demonstrate quantitative assessment of sperm cell morphology, primarily acrosomal volume, using quantitative interference phase microscopy (IPM). Normally, the area of the acrosome is assessed using dyes that stain the acrosomal part of the cell. We have imaged fixed individual sperm cells using IPM. Following, the sample was stained and the same cells were imaged using bright field microscopy (BFM). We identified the acrosome using the stained BFM image, and used it to define a quantitative corresponding area in the IPM image and determine a quantitative threshold for evaluating the volume of the acrosome.

  5. One-particle spectroscopic intensities as a signature of shape phase transition: The {gamma}-unstable case

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2006-08-15

    We investigate the evolution of one-particle spectroscopic intensities as a possible signature of shape phase transitions. The study describes the odd systems in terms of the interacting boson-fermion model. We consider the particular case of an odd j=3/2 particle coupled to an even-even boson core that undergoes a phase transition from spherical U(5) to {gamma}-unstable O(6) situation. At the critical point, our findings are compared with the one-particle spectroscopic intensities that can be obtained within the E(5/4) model proposed by[F. Iachello, Phys. Rev. Lett. 95, 052503 (2005); F. Iachello, in Symmetries and Low-Energy Phase Transitions in Nuclear Structure Physics, edited by G. Lo Bianco (University of Camerino Press, Camerino, Italy, in press)].

  6. Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging.

    PubMed

    Lins, U; Farina, M

    1998-09-15

    We report uncultured rod-shaped magnetotactic bacteria from natural waters that biomineralize magnetic crystals in two different size ranges. Electron spectroscopic imaging of whole bacteria deposited over formvar-coated grids permitted a better visualization and measurement of the magnetosomes. All magnetosomes of individual bacteria could be observed by this technique. The magnetosomes formed one large chain, composed of three to four columns of crystals, disposed in parallel to the main axis of the bacteria. The magnetosomes ranged from 19 to 136 nm in length and 14 to 112 nm width. Smaller magnetosomes (less than 80 nm in length) localized mostly in extremities of the bacterial body while larger preferentially localized in the middle part of the cell. Electron spectroscopic diffraction and X-ray microanalysis indicate that both types of magnetosomes contain magnetite (Fe3O4). In projection, most magnetosomes seem to present pseudo-hexagonal morphologies described for magnetite. As the aspect ratios for smaller and larger magnetosomes are different, we suggest that different levels of control on biomineralization of magnetosomes may exist. PMID:9817552

  7. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel. PMID:27177001

  8. Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer

    SciTech Connect

    Salditt, T.; Giewekemeyer, K.; Fuhse, C.; Krueger, S. P.; Tucoulou, R.; Cloetens, P.

    2009-05-01

    We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radiation focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and the validity of the weak phase object approximation is confirmed for the experimental conditions.

  9. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  10. Using imaging raman microscopy to explore phase evolution in composite ceramic superconductors.

    SciTech Connect

    Fischer, A. K.; Maroni, V. A.; Wu, K. T.

    1998-09-17

    Raman microspectroscopy and imaging Raman microscopy have proven to be powerful tools for studying the evolution and spatial distribution of chemical phases in the bismuth-based (BSCCO) and thallium-based (TBCCO) families of high-critical-temperature (high- Tc) superconducting ceramics. These techniques have been applied to compressed/sintered powders and silver-clad composite conductors in conjunction with scanning electron microscopy and energy dispersive x-ray spectroscopy. Many important insights have been gained about the identity, size, shape, orientation, and spatial distribution of the various nonsuperconducting secondary phases (NSPS) that form and dissipate during heat treatment of the BSCCO and TBCCO silver-clad composite tapes. The resuIts have aHowed us to determine key mechanistic features that influence the formation of the super- conducting phases as heat treatment progresses, incIuding the location of lead-rich NSPS and the identification of the constituent phases in certain NSP agglomerations that tend to resist dissipation as high-Tc phase formation proceeds to completion.

  11. Intracellular subsurface imaging using a hybrid shear-force feedback/scanning quantitative phase microscopy technique

    NASA Astrophysics Data System (ADS)

    Edward, Kert

    Quantitative phase microscopy (QPM) allows for the imaging of translucent or transparent biological specimens without the need for exogenous contrast agents. This technique is usually applied towards the investigation of simple cells such as red blood cells which are typically enucleated and can be considered to be homogenous. However, most biological cells are nucleated and contain other interesting intracellular organelles. It has been established that the physical characteristics of certain subsurface structures such as the shape and roughness of the nucleus is well correlated with onset and progress of pathological conditions such as cancer. Although the acquired quantitative phase information of biological cells contains surface information as well as coupled subsurface information, the latter has been ignored up until now. A novel scanning quantitative phase imaging system unencumbered by 2pi ambiguities is hereby presented. This system is incorporated into a shear-force feedback scheme which allows for simultaneous phase and topography determination. It will be shown how subsequent image processing of these two data sets allows for the extraction of the subsurface component in the phase data and in vivo cell refractometry studies. Both fabricated samples and biological cells ranging from rat fibroblast cells to malaria infected human erythrocytes were investigated as part of this research. The results correlate quite well with that obtained via other microscopy techniques.

  12. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells

    PubMed Central

    Xue, Liang; Lai, Jiancheng; Wang, Shouyu; Li, Zhenhua

    2011-01-01

    A slightly-off-axis interferometry based Hilbert phase microscopy (HPM) method is developed to quantitatively obtain the phase distribution. Owing to its single-shot nature and details detection ability, HPM can be used to investigate rapid phenomena that take place in transparent structures such as biological cells. Moreover, the slightly-off-axis interferometry owns higher effective bandwidth and more sensitivity than traditional off-axis interferometry. The proposed method takes advantages of the above techniques to obtain the phase image of the red blood cells and compared with the traditional off-axis interferometry and phase retrieval algorithm based on the FFT. The experimental results show that the proposed method owns fine spatial details and real-time imaging ability. We are sure that the proposed method provides a breakthrough for real-time observing and quantitative analyzing of cells in vivo. PMID:21483620

  13. On the role of inelastic scattering in phase-plate transmission electron microscopy.

    PubMed

    Hettler, Simon; Wagner, Jochen; Dries, Manuel; Oster, Marco; Wacker, Christian; Schröder, Rasmus R; Gerthsen, Dagmar

    2015-08-01

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic-inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. PMID:25879156

  14. Quantitative phase microscopy using defocusing by means of a spatial light modulator.

    PubMed

    Camacho, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier

    2010-03-29

    A new method for recovery the quantitative phase information of microscopic samples is presented. It is based on a spatial light modulator (SLM) and digital image processing as key elements to extract the sample's phase distribution. By displaying a set of lenses with different focal power, the SLM produces a set of defocused images of the input sample at the CCD plane. Such recorded images are then numerically processed to retrieve phase information. This iterative process is based on the wave propagation equation and leads on a complex amplitude image containing information of both amplitude and phase distributions of the input sample diffracted wave front. The proposed configuration is a non-interferometric architecture (conventional transmission imaging mode) where no moving elements are included. Experimental results perfectly correlate with the results obtained by conventional digital holographic microscopy (DHM). PMID:20389696

  15. Physical phase compensation in digital holographic microscopy by using of electrical tunable lens

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Cheng, Chee Yuen; Asundi, Anand

    2013-06-01

    An electrical tunable lens is applied in digital holographic microscopy for physical spherical phase compensation. When different microscope objectives are applied to one digital holographic microscope, the physical spherical phase compensation needs different reference wavefronts. The focal length of the electric tunable lens can be adjusted by applying different voltages. We have measured the morphology changes of the tunable lens under different voltages. According to the measurement, the tunable lens has the capability to change wavefront via changing of the applied voltages. Thus we apply the tunable lens in the digital holographic microscope with multiple microscope objectives to fulfill the physical spherical phase compensation. The measurement results for the tunable lens together with the phase compensation results are presented.

  16. Variable multimodal light microscopy with interference contrast and phase contrast; dark or bright field.

    PubMed

    Piper, T; Piper, J

    2014-07-01

    Using the optical methods described, specimens can be observed with modified multimodal light microscopes based on interference contrast combined with phase contrast, dark- or bright-field illumination. Thus, the particular visual information associated with interference and phase contrast, dark- and bright-field illumination is joined in real-time composite images appearing in enhanced clarity and purified from typical artefacts, which are apparent in standard phase contrast and dark-field illumination. In particular, haloing and shade-off are absent or significantly reduced as well as marginal blooming and scattering. The background brightness and thus the range of contrast can be continuously modulated and variable transitions can be achieved between interference contrast and complementary illumination techniques. The methods reported should be of general interest for all disciplines using phase and interference contrast microscopy, especially in biology and medicine, and also in material sciences when implemented in vertical illuminators. PMID:24832212

  17. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    NASA Astrophysics Data System (ADS)

    Glaeser, Robert M.

    2013-11-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar "phase-contrast" light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics.

  18. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    PubMed Central

    Glaeser, Robert M.

    2013-01-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics. PMID:24289381

  19. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    PubMed

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  20. Deconvolution approach for 3D scanning microscopy with helical phase engineering.

    PubMed

    Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; Jesacher, Alexander

    2016-07-11

    RESCH (refocusing after scanning using helical phase engineering) microscopy is a scanning technique using engineered point spread functions which provides volumetric information. We present a strategy for processing the collected raw data with a multi-view maximum likelihood deconvolution algorithm, which inherently comprises the resolution gain of pixel-reassignment microscopy. The method, which we term MD-RESCH (for multi-view deconvolved RESCH), achieves in our current implementation a 20% resolution advantage along all three axes compared to RESCH and confocal microscopy. Along the axial direction, the resolution is comparable to that of image scanning microscopy. However, because the method inherently reconstructs a volume from a single 2D scan, a significantly higher optical sectioning becomes directly visible to the user, which would otherwise require collecting multiple 2D scans taken at a series of axial positions. Further, we introduce the use of a single-helical detection PSF to obtain an increased post-acquisition refocusing range. We present data from numerical simulations as well as experiments to confirm the validity of our approach. PMID:27410820

  1. Cell morphology classification in phase contrast microscopy image reducing halo artifact

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Since the morphology of tumor cells is a good indicator of their invasiveness, we used time-lapse phase-contrast microscopy to examine the morphology of tumor cells. This technique enables long-term observation of the activity of live cells without photobleaching and phototoxicity which is common in other fluorescence-labeled microscopy. However, it does have certain drawbacks in terms of imaging. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we examined cell morphology to classify tumor cells as malignant and benign.

  2. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  3. Sulfur doping of diamond films: Spectroscopic, electronic, and gas-phase studies

    NASA Astrophysics Data System (ADS)

    Petherbridge, James R.; May, Paul W.; Fuge, Gareth M.; Robertson, Giles F.; Rosser, Keith N.; Ashfold, Michael N. R.

    2002-03-01

    Chemical vapor deposition (CVD) has been used to grow sulfur doped diamond films on undoped Si and single crystal HPHT diamond as substrates, using a 1% CH4/H2 gas mixture with various levels of H2S addition (100-5000 ppm), using both microwave (MW) plasma enhanced CVD and hot filament (HF) CVD. The two deposition techniques yield very different results. HFCVD produces diamond films containing only trace amounts of S (as analyzed by x-ray photoelectron spectroscopy), the film crystallinity is virtually unaffected by gas phase H2S concentration, and the films remain highly resistive. In contrast, MWCVD produces diamond films with S incorporated at levels of up to 0.2%, and the amount of S incorporation is directly proportional to the H2S concentration in the gas phase. Secondary electron microscopy observations show that the crystal quality of these films reduces with increasing S incorporation. Four point probe measurements gave the room temperature resistivities of these S-doped and MW grown films as ˜200 Ω cm, which makes them ˜3 times more conductive than undoped diamond grown under similar conditions. Molecular beam mass spectrometry has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for H2S doping levels (1000-10 000 ppm in the gas phase) in 1% CH4/H2 mixtures, and for 1% CS2/H2 gas mixtures, for both MW and HF activation. CS2 and CS have both been detected in significant concentrations in all of the MW plasmas that yield S-doped diamond films, whereas CS was not detected in the gas phase during HF growth. This suggests that CS may be an important intermediary facilitating S incorporation into diamond. Furthermore, deposition of yellow S was observed on the cold chamber walls when using H2S concentrations >5000 ppm in the MW system, but very little S deposition was observed for the HF system under similar conditions. All of these results are rationalized by a model of the important gas phase

  4. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay

    PubMed Central

    Joo, Chulmin; Özkumur, Emre; Ünlü, M. Selim; de Boer, Johannes F.

    2009-01-01

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning quantitative imaging method, referred to as spectral-domain optical coherence phase microscopy, as an optical platform for label-free detection of biomolecular interactions. The instrument is based on a confocal interferometric microscope that enables depth-resolved quantitative phase measurements on sensor surface with high spatial resolution and phase stability. We demonstrate picogram per square millimeter surface mass sensitivity, and show its sensing capability by presenting static and dynamic detection of multiplexed protein microarray as immobilized antigens capture their corresponding antibodies. PMID:19674885

  5. Magneto-optical spectroscopic studies of solid and solution-phase tetra-phenyl porphyrin

    NASA Astrophysics Data System (ADS)

    Wahlen-Strothman, Jacob; Pan, Zhen Wen; Manning, Lane; Furis, Madalina; Chu, Kelvin

    2011-03-01

    Tetraphenylporphyrin (TPP) is a synthetic heterocyclic compound that serves as a model system for heme proteins and cytochromes. TPP can accomodate a metal ion in the center; D-shell ion porphyrin complexes with a crystalline solid phase are of interest for magnetic studies because of the possibility of macroscopic long range magnetic order of the ion spins. We have investigated the 5K magnetic properties of poly-crystalline thin films of the heme protoporphyrin IX analogue tetra-phenyl porphyrin, complexed with Zn and Mn, deposited through a capillary pen technique that produces 100um to 1 mm sized grains. Our novel experimental setup measures the UV/VIS, linear dichroism and magnetic circular dichorism simultaneously, incorporates a photoelastic modulator and a microscopy superconducting magnet for high-field (5T) measurements. We present solution and crystalline data on metal-complexed TPP; data are analyzed in terms of A and B-type MCD using a perimeter model. We find good agreement with previous solution data, and novel crystalline phase spectra that are correlated to the long range ordering. This work supported by NSF DMR-0821268, DUE-0942562 and EPS-0701410.

  6. Magneto-optical spectroscopic studies of solid and solution-phase tetra-phenyl porphyrin

    NASA Astrophysics Data System (ADS)

    Wahlen-Strothman, Jacob; Pan, Zhen Wen; Lamarche, Cody; Manning, Lane; Rawat, Naveen; Tokumoto, Takahisa; McGill, Stephen; Furis, Madalina; Chu, Kelvin

    2012-02-01

    Tetraphenylporphyrin (TPP) is a heterocyclic model system for porphyrins found in heme proteins, cytochromes and photosynthetic cofactors. TPP can accommodate a metal ion in the center; D-shell ion porphyrin complexes with a crystalline solid phase are of interest for magnetic studies because of the possibility of macroscopic long-range magnetic order of the ion spins. We have investigated the 5K magnetic properties of poly-crystalline thin films of TPP complexed with Zn, Mn and Cu and deposited through a room temperature capillary pen technique that produces grain size in the 100 micron to 1mm range. Our novel setup measures the UV/VIS, linear dichroism and MCD simultaneously and incorporates a photoelastic modulator and a microscopy superconducting magnet for high-field (5T) measurements. In addition, we present 25T data on samples from the new split magnet at NHMFL. We present solution and crystalline data on metal-complexed TPP; data are analyzed in terms of A and B-type MCD using a perimeter model. We find good agreement with previous solution data, and novel crystalline phase spectra that are correlated to the long range ordering of the solid state.

  7. Laser Spectroscopic Study of Cold Gas-Phase Host-Guest Complexes of Crown Ethers.

    PubMed

    Ebata, Takayuki; Inokuchi, Yoshiya

    2016-06-01

    The structure, molecular recognition, and inclusion effect on the photophysics of guest species are investigated for neutral and ionic cold host-guest complexes of crown ethers (CEs) in the gas phase. Here, the cold neutral host-guest complexes are produced by a supersonic expansion technique and the cold ionic complexes are generated by the combination of electrospray ionization (ESI) and a cryogenically cooled ion trap. The host species are 3n-crown-n (3nCn; n = 4, 5, 6, 8) and (di)benzo-3n-crown-n ((D)B3nCn; n = 4, 5, 6, 8). For neutral guests, we have chosen water and aromatic molecules, such as phenol and benzenediols, and as ionic species we have chosen alkali-metal ions (M(+) ). The electronic spectra and isomer-specific vibrational spectra for the complexes are observed with various laser spectroscopic methods: laser-induced fluorescence (LIF); ultraviolet-ultraviolet hole-burning (UV-UV HB); and IR-UV double resonance (IR-UV DR) spectroscopy. The obtained spectra are analyzed with the aid of quantum chemical calculations. We will discuss how the host and guest species change their flexible structures for forming best-fit stable complexes (induced fitting) and what kinds of interactions are operating for the stabilization of the complexes. For the alkali metal ion•CE complexes, we investigate the solvation effect by attaching water molecules. In addition to the ground-state stabilization problem, we will show that the complexation leads to a drastic effect on the excited-state electronic structure and dynamics of the guest species, which we call a "cage-like effect". PMID:27006080

  8. Analysis of mixed cell cultures with quantitative digital holographic phase microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Wibbeling, Jana; Ketelhut, Steffi

    2014-05-01

    In order to study, for example, the influence of pharmaceuticals or pathogens on different cell types under identical measurement conditions and to analyze interactions between different cellular specimens a minimally-invasive quantitative observation of mixed cell cultures is of particular interest. Quantitative phase microscopy (QPM) provides high resolution detection of optical path length changes that is suitable for stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and is in particular suitable for long term time-lapse investigations, e.g., for the detection of cell morphology alterations due to drugs and toxins. Furthermore, QPM has been demonstrated to be a versatile tool for the quantification of cellular growth, the extraction morphological parameters and cell motility. We studied the feasibility of QPM for the analysis of mixed cell cultures. It was explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with digital holographic microscopy (DHM) was utilized. Mixed cell cultures with different types of human pancreatic tumor cells were observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted algorithms for image segmentation. From the segmented images the cellular dry mass and the mean cell thickness were calculated and used in the further analysis as parameters to quantify the reliability the measurement principle. The obtained results demonstrate that it is possible to characterize the growth of cell types with different morphologies in a mixed cell culture separately by consideration of specimen size and cell thickness in the evaluation of quantitative DHM phase images.

  9. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    SciTech Connect

    Lian, S.; Yang, H.; Kudo, H.; Momose, A.; Yashiro, W.

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  10. Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schlichthaber, Frank; Vollmer, Angelika; Ketelhut, Steffi; Przibilla, Sabine; von Bally, Gert

    2011-05-01

    Quantitative holographic phase contrast imaging enables high-resolution inspection of reflective surfaces and technical phase specimen as well as the minimally invasive analysis of living cells. However, a drawback of many experimental arrangements is the requirement for a separate reference wave which results in a phase stability decrease and the demand for a precise adjustment of the intensity ratio between object and reference wave. Thus, a self interference digital holographic microscopy (DHM) approach was explored which only requires a single object illumination wave. Due to the Michelson interferometer design of the proposed setup two wave fronts with an almost identical curvature are superimposed. This results in a nearly ideal pattern of spatial off-axis carrier fringes and a constant interferogram contrast in the hologram plane. Moreover, the hologram evaluation with spatial phase shifting reconstruction algorithms and Fourier transformation-based spatial filtering methods as well as the integration of DHM in common research microscopes is simplified. Furthermore, the use of laser light sources with a short coherence length is enabled. The applicability of the proposed self interference principle is illustrated by data from the analysis of technical and biological phase specimens. The obtained results demonstrate that the method prospects to be a versatile tool for quantitative phase contrast imaging.

  11. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.

    PubMed

    Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon

    2016-05-01

    We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed. PMID:27137562

  12. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGESBeta

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  13. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  14. Nanoimaging and spectroscopic analysis of rubber/ZnO interfaces by energy-filtering transmission electron microscopy.

    PubMed

    Horiuchi, Shin; Dohi, Hidehiko

    2006-05-01

    Energy-filtering transmission electron microscopy (EFTEM) was employed for investigating interactions between rubber and ZnO particles in the accelerated vulcanization process. Combining elemental mapping and electron energy loss spectroscopy (EELS) by EFTEM enabled the characterization of the interfaces with spatial resolutions of less than 10 nm and with high elemental detection sensitivity. We found that a sulfur- and zinc-rich compound was generated around ZnO particles, and that product was then revealed to be ZnS-generated as a byproduct in the accelerated vulcanization process. Through this study, it is indicated that the accelerated vulcanization with ZnO does not occur uniformly in the rubber matrix; it occurs locally around ZnO particles at a higher reaction rate, implying that the rubber network structure is not uniform on the nanoscale. PMID:16649771

  15. Spectroscopic microscopy as a powerful tool for the assessment of dermal exposure to pesticides and environmental pollutants

    SciTech Connect

    Saleh, M.A.; Dary, C.; Blancato, J.N.

    1995-12-01

    FTIR Microscopy and Computerized Video Optical Imaging in Ultraviolet Induced Visible fluorescence Techniques were used to study the behavior of malathion and deltamethrin through die skin layers of rats exposed to dermal doses of the individual insecticide. The technique was also shown to be useful for monitoring penetration of pesticide through protective clothing and therefore may serve as a straight forward direct tool for assessing human dermal exposure to pesticides. One advantage of this techniques is the ability to detect both parent compounds and their metabolites by scanning for the desired wave numbers in the IR spectra or by controlling excitation and emission wavelengths. The technique was also compared to microscopic autoradiography where the skin was treated with radioactive malathion and distribution of the radioactivity was located by gel X Ray film on the microscope slide.

  16. FT-IR spectroscopic study of phase transformation of chloropinnoite in boric acid solution at 303 K

    NASA Astrophysics Data System (ADS)

    Zhihong, Liu; Shiyang, Gao; Shuping, Xia

    2003-01-01

    The dissolution and transformation of chloropinnoite in boric acid solution at 303 K has been studied using FT-IR difference spectroscopic technique. After equilibrium was reached, liquid and solid phases were separated and FT-IR spectra of each phase were recorded, FT-IR spectroscopic analysis of solid phases indicated that the transformation products, with the increase of boron-concentration in solution, were 2MgO · 3B 2O 3 · 15H 2O (inderite), 2MgO · 3B 2O 3 · 15H 2O (kurnakovite), MgO · 3B 2O 3 · 7.5H 2O, and MgO · 3B 2O 3 · 7H 2O, respectively. The main polyborate anions and their interaction in each borate saturated aqueous solution have been proposed according to the FT-IR difference spectra of borate in liquid phase, and some assignments were tentatively given firstly. The relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained.

  17. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  18. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  19. Nanosecond switching in GeSe phase change memory films by atomic force microscopy

    SciTech Connect

    Bosse, James L.; Huey, Bryan D.; Grishin, Ilya; Kolosov, Oleg V.; Gyu Choi, Yong; Cheong, Byung-ki; Lee, Suyoun

    2014-02-03

    Nanosecond scale threshold switching is investigated with conducting atomic force microscopy (AFM) for an amorphous GeSe film. Switched bits exhibit 2–3 orders of magnitude variations in conductivity, as demonstrated in phase change based memory devices. Through the nm-scale AFM probe, this crystallization was achieved with pulse durations of as low as 15 ns, the fastest reported with scanning probe based methods. Conductance AFM imaging of the switched bits further reveals correlations between the switched volume, pulse amplitude, and pulse duration. The influence of film heterogeneities on switching is also directly detected, which is of tremendous importance for optimal device performance.

  20. Atomic force microscopy studies of domain structures in phase-separated monolayers

    NASA Astrophysics Data System (ADS)

    Xiao, Shou-Jun; Wu, Hai-Ming; Yang, Xiao-Min; Wei, Yu; Tai, Zi-Hou; Sun, Xing-Zhong

    1994-10-01

    Domain structures were studied with atomic force microscopy (AFM) in binary phase-separated monolayer films composed of 5, 10, 15-triphenyl-20-(4-dl-α-phenylalanylamindo) phenyl porphyrin (TPPP) and one of a series of fatty acids which are arachidic acid (AA), palmitic acid (PA), and lauric acid (LA). The liquid-condensed (LC) domain structures of AA and PA were observed in their corresponding mixed monolayers. However, instead of the fatty acid domain, a liquid-expanded (LE) domain structure of TPPP appears in the mixed monolayer of LA/TPPP.

  1. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy

    PubMed Central

    Danev, Radostin; Glaeser, Robert M.; Nagayama, Kuniaki

    2011-01-01

    A number of practical issues must be addressed when using thin carbon films as quarter-wave plates for Zernike phase-contrast electron microscopy. We describe, for example, how we meet the more stringent requirements that must be satisfied for beam alignment in this imaging mode. In addition we address the concern that one might have regarding the loss of some of the scattered electrons as they pass through such a phase plate. We show that two easily measured parameters, (1) the low-resolution image contrast produced in cryo-EM images of tobacco mosaic virus particles and (2) the fall-off of the envelope function at high resolution, can be used to quantitatively compare the data quality for Zernike phase-contrast images and for defocused bright-field images. We describe how we prepare carbon-film phase plates that are initially free of charging or other effects that degrade image quality. We emphasize, however, that even though the buildup of hydrocarbon contamination can be avoided by heating the phase plates during use, their performance nevertheless deteriorates over the time scale of days to weeks, thus requiring their frequent replacement in order to maintain optimal performance. PMID:19157711

  2. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy.

    PubMed

    Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun

    2014-01-01

    The delithiation reaction in lithium ion batteries is often accompanied by an electrochemically driven phase transformation process. Tracking the phase transformation process at nanoscale resolution during battery operation provides invaluable information for tailoring the kinetic barrier to optimize the physical and electrochemical properties of battery materials. Here, using hard X-ray microscopy--which offers nanoscale resolution and deep penetration of the material, and takes advantage of the elemental and chemical sensitivity--we develop an in operando approach to track the dynamic phase transformation process in olivine-type lithium iron phosphate at two size scales: a multiple-particle scale to reveal a rate-dependent intercalation pathway through the entire electrode and a single-particle scale to disclose the intraparticle two-phase coexistence mechanism. These findings uncover the underlying two-phase mechanism on the intraparticle scale and the inhomogeneous charge distribution on the multiple-particle scale. This in operando approach opens up unique opportunities for advancing high-performance energy materials. PMID:25087693

  3. Phase noise induced due to amplitude fluctuations in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Rast, S.; Gysin, U.; Meyer, E.

    2009-02-01

    In dynamic force microscopy, the force sensor is driven on its resonance frequency and the amplitude of the cantilever is sustained at a constant value. The amplitude typically ranges between 0.1 and 30 nm. If a large amplitude is set, the cantilever tip senses both long-range and short-range interaction forces provided that the tip is close to the sample surface. The short-range interactions are decisive for the atomic contrast in atomic force microscopy (AFM) images. They can be separated from the long-range interactions by setting an amplitude which encompasses the typical range of the interaction force, i.e., the subangstrom regime for van der Waals contribution. It is distinctive for cantilevers operated at small driving amplitudes that the cantilever deflection can be considered as a sinusoidal signal superimposed with a quasimonochromatic random signal originating from fluctuations. If one measures experimentally the standard deviation of the phase σφ of the signal with respect to a monochromatic reference signal, a universal relationship between the standard deviation of the phase σφ and the cantilever amplitude x0 is found. The smaller the ratio of rms amplitude of the sinusoidal signal and the rms value of random signal is, the larger the phase fluctuations are. Phase fluctuations are of importance for measurements at small amplitudes, since they determine the limit of phase-sensitive measurements or the lateral imaging resolution in the so-called pendulum mode of AFM operation. In this paper we develop a heuristic model, which provides an analytical formula for the probability density of phase noise of a sinusoidal signal superimposed by a quasimonochromatic one with respect to a reference oscillator. The variance of the phase noise can be deduced from the distribution functions. The suggested model is verified experimentally and is compared with theoretical predictions. The amplitude-dependent phase fluctuations are a powerful tool to determine the

  4. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  5. Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-07-01

    We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.

  6. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient. PMID:25176993

  7. Studies on the interaction of heparin with lysozyme by multi-spectroscopic techniques and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Hu, Xiaoli; Liu, Zhongfang; Liu, Shaopu

    2016-02-01

    The interaction between heparin (Hep) and lysozyme (Lyso) in vitro was studied by fluorescence, UV-vis, circular dichroism (CD), resonance Rayleigh scattering (RRS) spectroscopy and atomic force microscopy (AFM) under normal physiological conditions. UV-vis spectra of Lyso showed the absorbance was significantly increased with the addition of Hep. Fluorescence studies revealed that the emission quenching of Lyso with Hep was initiated by static quenching mechanism. CD spectral studies showed that Hep induced conformational changes in the secondary structure of Lyso. RRS spectra of Lyso showed the intensity of scattering was significantly increased with the addition of Hep and the enhanced RRS intensities were proportional to the concentration of Hep in a certain range. Thus, a new RRS method using Lyso as a probe could be used for the determination of Hep. The detection limit for Hep was 3.9 ng mL- 1. In addition, the shape of the complex was characterized by AFM. The possible reaction mechanism and the reasons for the enhancement of RRS intensity had been discussed through experimental results.

  8. Au Colloids Formed by Ion Implantation in Muscovite Mica Studied by Vibrational and Electronic Spectroscopes and Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Tung, Y. S.; Henderson, D. O.; Mu, R.; Ueda, A.; Collins, W. E.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.

    1997-01-01

    Au was implanted into the (001) surface of Muscovite mica at an energy of 1.1 MeV and at doses of 1, 3, 6, and 10 x 10(exp 16) ions/cu cm. Optical spectra of the as-implanted samples revealed a peak at 2.28 eV (545 nm) which is attributed to the surface plasmon absorption of Au colloids. The infrared reflectance measurements show a decreasing reflectivity with increasing ion dose in the Si-O stretching region (900-1200 /cm). A new peak observed at 967 /cm increases with the ion dose and is assigned to an Si-O dangling bond. Atomic force microscopy images of freshly cleaved samples implanted with 6 and 10 x 10(exp 16) ions/sq cm indicated metal colloids with diameters between 0.9- 1.5 nm. AFM images of the annealed samples showed irregularly shaped structures with a topology that results from the fusion of smaller colloids.

  9. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    PubMed Central

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments. PMID:25110690

  10. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A Feature-Based Taxonomy

    NASA Astrophysics Data System (ADS)

    Bus, Schelte J.; Binzel, Richard P.

    2002-07-01

    The second phase of the Small Main-belt Asteroid Spectroscopic Survey (SMASSII) produced an internally consistent set of visible-wavelength charge-coupled device (CCD) spectra for 1447 asteroids (Bus and Binzel 2002, Icarus, ). These data provide a basis for developing a new asteroid taxonomy that utilizes more of the information contained in CCD spectra. Here we construct a classification system that builds on the robust framework provided by existing asteroid taxonomies. In particular, we define three major groupings (the S-, C-, and X-complexes) that adhere to the classical definitions of the S-, C-, and X-type asteroids. A total of 26 classes are defined, based on the presence or absence of specific spectral features. Definitions and boundary parameters are provided for each class, allowing new spectral observations to be placed in this system. Of these 26 classes, 12 bear familiar single-letter designations that follow previous conventions: A, B, C, D, K, O, Q, R, S, T, V, and X. A new L-class is introduced to describe 35 objects with spectra having a steep UV slope shortward of 0.75 μm, but which are relatively flat longward of 0.75 μm. Asteroids with intermediate spectral characteristics are assigned multiletter designations: Cb, Cg, Cgh, Ch, Ld, Sa, Sk, Sl, Sq, Sr, Xc, Xe, and Xk. Members of the Cgh- and Ch-classes have spectra containing a 0.7-μm feature that is generally attributed to hydration. Although previously considered featureless, CCD observations reveal distinct features of varying strengths in the spectra of asteroids in the X-complex, thus allowing the Xc-, Xe-, and Xk-classes to be established. Most notably, the spectra of Xe-type asteroids contain an absorption feature centered near 0.49 μm that may be associated with troilite. Several new members are identified for previously unique or sparsely populated classes: 12 A-types, 3 O-types, and 3 R-types. Q-types are common within the near-Earth asteroid population but remain unobserved in

  11. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  12. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes.

    PubMed

    Debeir, O; Van Ham, P; Kiss, R; Decaestecker, C

    2005-06-01

    In this paper, we propose a combination of mean-shift-based tracking processes to establish migrating cell trajectories through in vitro phase-contrast video microscopy. After a recapitulation on how the mean-shift algorithm permits efficient object tracking we describe the proposed extension and apply it to the in vitro cell tracking problem. In this application, the cells are unmarked (i.e., no fluorescent probe is used) and are observed under classical phase-contrast microscopy. By introducing an adaptive combination of several kernels, we address several problems such as variations in size and shape of the tracked objects (e.g., those occurring in the case of cell membrane extensions), the presence of incomplete (or noncontrasted) object boundaries, partially overlapping objects and object splitting (in the case of cell divisions or mitoses). Comparing the tracking results automatically obtained to those generated manually by a human expert, we tested the stability of the different algorithm parameters and their effects on the tracking results. We also show how the method is resistant to a decrease in image resolution and accidental defocusing (which may occur during long experiments, e.g., dozens of hours). Finally, we applied our methodology on cancer cell tracking and showed that cytochalasin-D significantly inhibits cell motility. PMID:15957594

  13. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    PubMed

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells. PMID:26440914

  14. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  15. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

    PubMed

    Kosaka, Priscila M; González, Sheila; Domínguez, Carmen M; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-08-21

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties. PMID:23832284

  16. Multinuclear NMR microscopy of two-phase fluid systems in porous rock.

    PubMed

    Doughty, D A; Tomutsa, L

    1996-01-01

    The high-field magnetic resonance (MR) characteristics of fluids in porous reservoir rock exhibit short T2 relaxation times and broad natural line widths. These characteristics severely restrict which MR imaging (MRI) methodology can be used to obtain high-resolution porescale images of fluids in porous rock. An MR microscopy protocol based on 3D backprojection using strong imaging gradients was developed to overcome many of these constraints. To improve the image quality of two-phase systems, multinuclear MRI using proton MR to image the brine phase and 19F MR of a fluorinated hydrocarbon to image the oil phase was used. Resolution as high as 25 microns per pixel has been obtained for fluid systems in Bentheim and Fontainebleau sandstones. Separate proton and 19F images of brine and oil phases show good agreement with total saturation images. Software has been developed to perform 3D erosion/dilations and to extract the pore size distribution from binarized 3D images of fluid filled porosity. Results from pore size measurements show significant differences in the nature of the pore network in Fontainebleau and Bentheim sandstones. PMID:8970097

  17. Microstructure of massively transformed {gamma}-TiAl phase studied by high-resolution electron microscopy

    SciTech Connect

    Abe, E.; Kumagai, T.; Kajiwara, S.; Nakamura, M.

    1997-12-31

    A microstructure of the massively transformed {gamma}-TiAl ({gamma}{sub m}) phase in a Ti-48at.%Al alloy, which was heat treated in the high-temperature {alpha}-Ti (disordered hcp) single phase field (1,683 K), followed by ice water quenching, has been examined using high-resolution electron microscopy. The characteristic features of the microstructure originated from the {alpha}{yields}{gamma} massive transformation have been clarified in detail, which are as follows. (1) Extremely thin hcp plates (about 0.8--2nm in thickness), which are considered to be a retained {alpha} phase, are found to exist in the {gamma}{sub m} phase. (2) Twin boundaries are found to be not flat interfaces, that is, twin interfaces are not on the exact (111) mirror plane. This situation is attributed to the existence of a number of partial dislocations at the twin boundaries. (3) Antiphase relationship between the regions either side of the thin rotated domain wall is confirmed. The validity of this situation is explained by assuming that the thin rotated domain wall has been grown from a simple antiphase domain boundary. On the basis of these facts, mechanism of the {alpha}{yields}{gamma} massive transformation has been discussed.

  18. Early responses of human cancer cells upon photodynamic treatment monitored by laser phase microscopy

    NASA Astrophysics Data System (ADS)

    Roelofs, Theo A.; Graschew, Georgi; Perevedentseva, Elena V.; Rakowsky, Stefan; Dressler, Cathrin; Beuthan, Juergen; Schlag, Peter M.

    2001-04-01

    Photodynamic treatment of cancer cells is known to eventually cause cell death in most cases. The precise pathways and the time course seem to vary among different cell types and modes of photodynamic treatment. In this contribution, the focus was put on the responses of human colon carcinoma cells HCT-116 within the first 15 minutes after laser irradiation in the presence of Photofrin« II (PII). To monitor the cell response in this early time period laser phase microscopic imaging was used, a method sensitive to changes in overall cell shape and intracellular structures, mediated by changes in the local refractive index. Laser irradiation of cells loaded with PII induced a significant reduction of the phase shifts, which probably reflects the induced damage to the different cellular membrane structures. The data suggest that even within the first 30 s after the onset of laser illumination, a significant reduction of the phase shifts can be detected. These results underline that laser phase microscopy is a suitable diagnostic tool for cellular research, also in the early time domain.

  19. Combined optical coherence phase microscopy and impedance sensing measurements of differentiating adipose derived stem cells

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    There is a growing interest in monitoring differentiating stem cells in 2D culture without the use of labelling agents. In this study we explore the feasibility of a multimodality method that combines impedance sensing (IS) and optical coherence phase microscopy (OCPM) to monitor the main biological events associated with adipose derived stem cells differentiation into different lineages. Adipose derived stem cells were cultured in Mesenpro RS medium on gold electrode arrays. The system (ECIS, Applied biophysics) is connected to a lock-in amplifier controlled by a computer, and the complex impedance is derived from the in phase and out of phase voltages. Multi-frequency measurements spanning from 500Hz to 100 kHz are recorded every 2 minutes. The Optical coherence phase microscope is build around a Thorlabs engine (930nm FWHM: 90nm) and connected to a custom build microscope probe. The IS and OCPM were successfully integrated. The electrode area (250um) was imaged with a lateral resolution of 1.5um during impedance measurements. Impedance sensing gave an average measurement of differentiation, as a change in impedance over the electrode area, whereas OCPM provides additional information on the cellular events occurring on top of the electrode. The information retrieved from OCPM will feed a mathematical model correlating cellular differentiation and impedance variation. In this study we have demonstrated the feasibility of integrating two non-invasive monitoring techniques that will be instrumental in designing stem cell based screening assays.

  20. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy.

    PubMed

    Sheeran, Paul S; Matsunaga, Terry O; Dayton, Paul A

    2013-07-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  1. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  2. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments

    SciTech Connect

    Bunkin, N. F.; Gorelik, V. S.; Kozlov, V. A. Shkirin, A. V. Suyazov, N. V.

    2014-11-15

    Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

  3. Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy

    NASA Astrophysics Data System (ADS)

    Juchtmans, Roeland; Verbeeck, Jo

    2016-02-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their "magnetic charge." Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.

  4. Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method

    NASA Astrophysics Data System (ADS)

    Zheng, Quan; Han, Zhigang; Chen, Lei

    2016-09-01

    The spectroscopic phase shifting method was proposed to determine the misalignment error of a compound zero-order waveplate. The waveplate, which is composed of two separate multi-order quartz waveplates, was measured by a polarizer-waveplate-analyser setup with a spectrometer as the detector. The theoretical relationship between the misalignment error and the azimuth of the polarized light that emerged from the waveplate was studied by comparing two forms of the Jones matrix of the waveplate. Four spectra were obtained to determine the wavelength-dependent azimuth using a phase shifting algorithm when the waveplate was rotated to four detection angles. The misalignment error was ultimately solved from the wavelength-dependent azimuth by the Levenberg-Marquardt method. Experiments were conducted at six misalignment angles. The measured results of the misalignment angle agree well with their nominal values, indicating that the spectroscopic phase shifting method can be a reliable way to measure the misalignment error of a compound zero-order waveplate.

  5. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase

    PubMed Central

    Andris, Erik; Jašík, Juraj; Gómez, Laura

    2016-01-01

    Abstract Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  6. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells.

    PubMed

    Žižka, Zdeněk; Gabriel, Jiří

    2015-11-01

    Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity

  7. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  8. High throughput imaging of blood smears using white light diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Bhaduri, Basanta; Han, Kevin; Luo, Zelun; Tangella, Krishnarao; Popescu, Gabriel

    2015-03-01

    While automated blood cell counters have made great progress in detecting abnormalities in blood, the lack of specificity for a particular disease, limited information on single cell morphology and intrinsic uncertainly due to high throughput in these instruments often necessitates detailed inspection in the form of a peripheral blood smear. Such tests are relatively time consuming and frequently rely on medical professionals tally counting specific cell types. These assays rely on the contrast generated by chemical stains, with the signal intensity strongly related to staining and preparation techniques, frustrating machine learning algorithms that require consistent quantities to denote the features in question. Instead we opt to use quantitative phase imaging, understanding that the resulting image is entirely due to the structure (intrinsic contrast) rather than the complex interplay of stain and sample. We present here our first steps to automate peripheral blood smear scanning, in particular a method to generate the quantitative phase image of an entire blood smear at high throughput using white light diffraction phase microscopy (wDPM), a single shot and common path interferometric imaging technique.

  9. Video-rate processing in tomographic phase microscopy of biological cells using CUDA.

    PubMed

    Dardikman, Gili; Habaza, Mor; Waller, Laura; Shaked, Natan T

    2016-05-30

    We suggest a new implementation for rapid reconstruction of three-dimensional (3-D) refractive index (RI) maps of biological cells acquired by tomographic phase microscopy (TPM). The TPM computational reconstruction process is extremely time consuming, making the analysis of large data sets unreasonably slow and the real-time 3-D visualization of the results impossible. Our implementation uses new phase extraction, phase unwrapping and Fourier slice algorithms, suitable for efficient CPU or GPU implementations. The experimental setup includes an external off-axis interferometric module connected to an inverted microscope illuminated coherently. We used single cell rotation by micro-manipulation to obtain interferometric projections from 73 viewing angles over a 180° angular range. Our parallel algorithms were implemented using Nvidia's CUDA C platform, running on Nvidia's Tesla K20c GPU. This implementation yields, for the first time to our knowledge, a 3-D reconstruction rate higher than video rate of 25 frames per second for 256 × 256-pixel interferograms with 73 different projection angles (64 × 64 × 64 output). This allows us to calculate additional cellular parameters, while still processing faster than video rate. This technique is expected to find uses for real-time 3-D cell visualization and processing, while yielding fast feedback for medical diagnosis and cell sorting. PMID:27410107

  10. Investigations of the ultrafast laser induced melt dynamics by means of transient quantitative phase microscopy (TQPm)

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Horn, Alexander

    2008-05-01

    Modifications of bulk aluminum irradiated well above ablation threshold (F < 300 J.cm-2) have been investigated in situ by means of shadowgraphy and transient quantitative phase microscopy (TQPm) using ultrafast laser radiation (tp=80 fs, λ=800 nm). This novel pump-probe technique enables quantitative time-resolved measurements of object's properties, e.g. dimensions of melt droplets and layer thickness or transient refractive index changes. A series of time-resolved phase images of vaporized material and/or melt, which are induced by n=1..8 pulses on an aluminum target, are obtained using TQPm. Dynamics and characteristics of melting, dependence of the ablated material volume on process parameters and thereby induced structural modifications have been studied. An increase of material ejection rate is observed at delay time of approximately τ=300 ns and τ>800 ns after the incident pulse. Transient refractive index modifications have been investigated in technical glass (Schott D263) by means of TQPm. By using high-repetition rate ultra-short pulsed laser radiation (tp=400 fs, λ=1045 nm, frep=1 MHz) focused by a microscope objective (w0 ~ 4 μm) heat accumulation and thereby glass melting as well as welding is enabled. Transient optical phase variation has been measured up to τ=2.1 μs after the incident pulse and can be attributed to the generation of free charge carriers and compression forces inside glass.

  11. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  12. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy

    PubMed Central

    Lee, Jieun; Ju, Soomi; Kim, In Tae; Jung, Sun-Hwa; Min, Sun-Joon; Kim, Chulki; Sim, Sang Jun; Kim, Sang Kyung

    2015-01-01

    Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction. PMID:26690165

  13. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  14. Phasing of the Triatoma virus diffraction data using a cryo-electron microscopy reconstruction

    SciTech Connect

    Estrozi, L.F.; Neumann, E.; Squires, G.; Rozas-Dennis, G.; Costabel, M.; Rey, F.A.; Guerin, D.M.A. Navaza, J.

    2008-05-25

    The blood-sucking reduviid bug Triatoma infestans, one of the most important vector of American human trypanosomiasis (Chagas disease) is infected by the Triatoma virus (TrV). TrV has been classified as a member of the Cripavirus genus (type cricket paralysis virus) in the Dicistroviridae family. This work presents the three-dimensional cryo-electron microscopy (cryo-EM) reconstruction of the TrV capsid at about 25 A resolution and its use as a template for phasing the available crystallographic data by the molecular replacement method. The main structural differences between the cryo-EM reconstruction of TrV and other two viruses, one from the same family, the cricket paralysis virus (CrPV) and the human rhinovirus 16 from the Picornaviridae family are presented and discussed.

  15. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images

    PubMed Central

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L.; Levin, Michael; Miller, Eric L.

    2015-01-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach. PMID:26601004

  16. Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Sánchez-Vílchez, José Manuel; Cortijo, Julio; Hueso, José L; Riera, Jaime; Moratal, David

    2014-04-01

    Primary ciliary dyskinesia implies cilia with defective or total absence of motility, which may result in sinusitis, chronic bronchitis, bronchiectasis and male infertility. Diagnosis can be difficult and is based on an abnormal ciliary beat frequency (CBF) and beat pattern. In this paper, we present a method to determine CBF of isolated cells through the analysis of phase-contrast microscopy images, estimating cilia motion by means of an optical flow algorithm. After having analyzed 28 image sequences (14 with a normal beat pattern and 14 with a dyskinetic pattern), the normal group presented a CBF of 5.2 ± 1.6 Hz, while the dyskinetic patients presented a 1.9 ± 0.9 Hz CBF. The cutoff value to classify a dyskinetic specimen was set to 3.45 Hz (sensitivity 0.86, specificity 0.93). The presented methodology has provided excellent results to objectively diagnose PCD. PMID:24438822

  17. Inclusion interaction of chloramphenicol and heptakis (2,6-di- O-methyl)-β-cyclodextrin: Phase solubility and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Zhou, Ya-fang

    2011-12-01

    The inclusion interaction between chloramphenicol and heptakis (2,6-di- O-methyl)-β-cyclodextrin (DMBCD) had been investigated by phase solubility and spectroscopic methods such as UV-vis spectroscopy, circular dichroism, Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance spectroscopy ( 1H NMR) as well as 2D-ROESY spectra. Phase solubility analysis showed A L-type diagram with DMBCD, which suggested the formation of 1:1 inclusion complex of DMBCD with chloramphenicol. The estimated stability constant ( Ks) of the inclusion complex of chloramphenicol with DMBCD is 493 M -1 at 293 K. The solubility enhancement of chloramphenicol in the presence of DMBCD is stronger than that in the presence of β-CD, HP-β-CD and M-β-CD. The results obtained by spectroscopic methods showed that the nitrophenyl moiety of chloramphenicol is deeply inserted into inner cavity of DMBCD from the narrow rim of DMBCD, which the inclusion model of chloramphenicol with DMBCD differs from that with β-CD.

  18. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water

    USGS Publications Warehouse

    Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.

    2004-01-01

    Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.

  19. Identifying ferroelectric phase and domain structure using angle-resolved piezoresponse force microscopy

    SciTech Connect

    Kim, K. L.; Huber, J. E.

    2014-03-24

    We used angle-resolved piezoresponse force microscopy (AR-PFM), vertical PFM (VPFM), and electron backscatter diffraction (EBSD) to provide a systematic interpretation of domain patterns in polycrystalline, near-morphotropic lead zirconate titanate. This material was used to illustrate the power of AR-PFM methods in resolving complex domain patterns where multiple phases may be present. AR-PFM was carried out with a 30° rotation interval, and the resulting data were analysed to identify the orientation of the underlying axis of piezoelectricity. The additional information provided by AR-PFM was studied, comparing its capabilities to those of 3-dimensional PFM, consisting of one VPFM image and two orthogonal lateral PFM (LPFM) images. We show that, in certain conditions, using AR-PFM can identify the phases present at the sub-grain scale. This was confirmed using VPFM and EBSD data. Furthermore, the method can discriminate laminated domain patterns that appear similar in VPFM and can reliably expose domain patterns that may not be seen in LPFM data from a single orientation, or even in 3D PFM data.

  20. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy.

    PubMed

    Aboulfadl, Hanane; Hulliger, Jürg

    2015-10-01

    The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front. PMID:26297858

  1. Atomic-force-microscopy studies of phase separations in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. G.; Malkin, A. J.; McPherson, A.

    1998-09-01

    Atomic force microscopy (AFM) has been used to visualize events arising from the formation of intervening metastable phases at the surfaces of macromolecular crystals growing from solution. Crystals investigated were of the proteins canavalin, thaumatin, lipase, xylanase, and catalase, crystals of transfer RNA, and crystals of satellite tobacco mosaic virus. Two types of aggregates were observed. The first were small, linear and branched aggregates, perhaps fractile in structure. These were incorporated into growing crystals as impurities, and they produced defects of various kinds. The second aggregate form we infer to be liquid-protein droplets which were particularly evident in freshly mixed protein-precipitant solutions. Droplets, upon sedimentation, have two possible fates. In some cases they immediately restructured as crystalline multilayer stacks whose development was guided by and contiguous with the underlying lattice. These contributed to the ordered growth of the crystal by serving as sources of growth steps. In other cases, liquid-protein droplets formed distinct microcrystals, somehow discontinuous with the underlying lattice, and these were subsequently incorporated into the growing substrate crystal with the formation of defects. Scarring experiments with the AFM tip indicated that liquid-protein droplets with the potential to rapidly crystallize were a consequence of concentration instabilities near the crystal's surfaces. The AFM study suggests that phase separation and the appearance of aggregates having limited order is a common occurrence in supersaturated macromolecular solutions such as the protein-precipitant solutions used for crystallization.

  2. Oxidation of β-Zr and related phases in Zr Nb alloys: an electron microscopy investigation

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Woo, O. T.

    2000-01-01

    The oxidation of the metastable β-Zr phase in Zr-Nb alloys, primarily Zr-2.5Nb, in 673 K steam or in lithiated water at 583 K, was investigated using electron microscopy and microanalyses. In the SEM, oxidised β-Zr regions in the Zr-2.5Nb alloy were imaged via a field effect contrast mechanism. In the TEM, microanalyses consistently showed the presence of Nb associated with the oxidised β-regions in suitably prepared samples. The β-Zr was found to form a Nb 2Zr x-2O 2x+1 oxide, while the β-Nb exhibited delayed oxidation with respect to α-Zr, forming a metallic sub-oxide initially and becoming amorphous when oxidised. For the partially decomposed β-Zr, the ω-phase was found to form monoclinic ZrO 2, while the Nb-enriched β-Zr followed the behaviour of either β-Zr or β-Nb depending on the Nb concentration.

  3. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques.

    PubMed

    Li, Shu; Tang, Lin; Bi, Hongna

    2016-03-01

    The aim of this study is to evaluate the binding behavior between pelargonidin-3-O-glucoside (P3G) and bovine serum albumin (BSA) using multi-spectroscopic, transmission electron microscopy (TEM) and molecular docking methods under physiological conditions. Fluorescence spectroscopy and time-resolved fluorescence showed that the fluorescence of BSA could be quenched remarkably by P3G via a static quenching mechanism, and there is a single class of binding site on BSA. In addition, the thermodynamic functions ΔH and ΔS were -21.69 kJ/mol and 24.46 J/mol/K, indicating that an electrostatic interaction was a main acting force. The distance between BSA and P3G was 2.74 nm according to Förster's theory, illustrating that energy transfer occurred. In addition, the secondary structure of BSA changed with a decrease in the α-helix content from 66.2% to 64.0% as seen using synchronous fluorescence, UV/vis, circular dichroism and Fourier transform infrared spectroscopies, whereas TEM images showed that P3G led to BSA aggregation and fibrillation. Furthermore, site marker competitive experiments and molecular docking indicated that P3G could bind with subdomain IIA of BSA. The calculated results of the equilibrium fraction showed that the concentration of free P3G in plasma was high enough to be stored and transported from the circulatory system to its target sites to provide therapeutic effects. PMID:26249529

  4. Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase contrast microscopy

    PubMed Central

    Kaur, Prabhpreet; Astekar, Madhusudan; Singh, Jappreet; Arora, Karandeep Singh; Bhalla, Gagandeep

    2015-01-01

    Context: The identification of living or deceased persons using unique traits and characteristics of the teeth and jaws is a cornerstone of forensic science. Teeth have been used to estimate age both in the young and old, as well as in the living and dead. Gradual structural changes in teeth throughout life are the basis for age estimation. Tooth cementum annulation (TCA) is a microscopic method for the determination of an individual's age based on the analysis of incremental lines of cementum. Aim: To compare ages estimated using incremental lines of cementum as visualized by bright field microscopy, polarized microscopy, and phase contrast microscopy with the actual age of subject and to determine accuracy and feasibility of the method used. Materials and Methods: Cementum annulations of 60 permanent teeth were analyzed after longitudinal ground sections were made in the mesiodistal plane. The incremental lines were counted manually using a light, polarized and phase contrast microscopy. Ages were estimated and then compared with the actual age of individual. Statistical Analysis: Analysis of variance (ANOVA), Student's t-test, the Pearson product-moment corre (PPMCC) and regression analysis were performed. Results: PPMCC value r = 0.347, 0.542 and 0.989 were obtained using light, polarized and phase contrast microscopy methods respectively. Conclusion: It was concluded that incremental lines of cementum were most clearly visible under a phase contrast microscope, followed by a polarized microscope, and then a light microscope when used for age estimation. PMID:26816462

  5. Polymorphic phase behavior of lysophosphatidylethanolamine dispersions. A thermodynamic and spectroscopic characterization.

    PubMed Central

    Slater, J L; Huang, C H; Adams, R G; Levin, I W

    1989-01-01

    We have investigated the phase behavior of aqueous dispersions of a series of synthetic lysophosphatidylethanolamines as a function of the acyl chain length. Lysophosphatidylethanolamines exhibit phase polymorphism encompassing a well-ordered crystalline phase which may arise either from a metastable interdigitated lamellar gel phase or a metastable micellar phase. The time course of interconversion between these various phases have been outlined by observing the low temperature incubation time dependence of the calorimetric thermograms. We have determined differences in structure of these phases by Raman spectroscopy and 31P nuclear magnetic resonance spectroscopy. It appears that a principal contribution to this polymorphic phase behavior lies in the nature of headgroup hydration and headgroup-headgroup interactions. PMID:2775827

  6. Context based mixture model for cell phase identification in automated fluorescence microscopy

    PubMed Central

    Wang, Meng; Zhou, Xiaobo; King, Randy W; Wong, Stephen TC

    2007-01-01

    Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Maximum Margin Criterion (MMC), Stepwise Discriminate Analysis based Feature Selection (SDAFS), and Genetic Algorithm based Feature Selection (GAFS). Then, we propose a Context Based Mixture Model (CBMM) for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM), Neural Network (NN), and K-Nearest Neighbor (KNN). Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The experimental results show

  7. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  8. Characterization of connective tissue progenitors through phase contrast and multicolor fluorescence time-lapse microscopy

    NASA Astrophysics Data System (ADS)

    Kwee, Edward; Powell, Kimerly; Muschler, George

    2015-03-01

    Connective tissue progenitors (CTPs) are defined as the heterogeneous population of tissue resident stem and progenitor cells capable of proliferating and differentiating into connective tissue phenotypes. The prevalence and variation in clonal progeny of CTPs can be characterized using a colony formation assay. However, colony assays do not directly assess the characteristics of the colony founding CTP. We developed a large field of view, time lapse microscopy system with phase contrast and fluorescence capabilities that enables tracking from seeding through colony formation. Cells derived from the trabecular surface of bone were prepared and seeded in an Ibidi-Ph+ chamber slide. Phase contrast images of the slide were obtained every hour using a DMI6000 Leica microscope, 10X objective, and Retiga 2000R camera. Cells were stained using fluorescent antibodies for multiple markers at the time of plating to determine marker expression on seeded cells and re-stained to determine expression on their progeny. Colonies were identified and characterized using automated image processing and quantitative analysis methods. Following colony identification, the time lapse was reversed to identify and characterize the colony founding CTP according to morphology and marker expression. As a representative example, a CD73+/CD90-/CD105- and a CD73+/CD90+/CD105- CTP resulted in a colony with an area of 3720826 microns2 and percent area expression of 2.98%, 3.62%, and 1.13% for CD73, CD90, and CD105, respectively. This method can be used to study CTPs and other stem and progenitor cell populations to benefit point-of-care methods for assay and isolation in cell based therapies.

  9. Phase stability and atom probe field ion microscopy of type 308 cre stainless steel weld metal

    NASA Astrophysics Data System (ADS)

    Babu, S. S.; David, S. A.; Vitek, J. M.; Miller, M. K.

    1996-03-01

    Improvement in high-temperature creep-rupture properties of type 308 stainless steel welds due to the controlled addition of boron is related to microstructural evolution during welding and thermal phase stability at creep service temperatures. The microstructure of boron-containing type 308 austenitic stainless steel welds, in the as-welded state, consisted of 8 to 10 pct ferrite in an austenite matrix. Atom probe field ion microscopy studies revealed segregation of boron and carbon to ferriteaustenite boundaries in the as-welded state; the segregation level was less than one monolayer coverage. On aging at 923 K for 100 hours, M23C6 carbides precipitated at ferrite-austenite boundaries. On further aging at 923 K for 1000 hours, the ferrite transformed into σ phase. Similar microstructural evolution was observed in a type 308 stainless steel weld without boron addition. The volume fractions of M23C6 carbides were identical in boron-containing and boron-free welds. Atom probe results from the welds with boron addition in the aged condition showed that the boron dissolved in the M23C6 carbides. However, lattice parameter analysis showed no apparent difference in the extracted carbides from the welds with and without boron. Creep property improvement due to boron addition could not be related to any change in the volume fraction of carbides. However, the results suggest that the incorporation of boron into M23C6 carbides may reduce the tendency for cavity formation along the M23C6 carbide-austenite boundaries and hence improve the resistance to creep fracture. The observed microstructural evolution in welds is consistent with thermodynamic calculations by THERMOCALC software.

  10. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  11. System model enabling fast tomographic phase microscopy with total variation regularisation.

    PubMed

    Guo, Min; Chen, Lijun; Shen, Xiaoyan; Iwai, Hidenao; Chen, Yunmei; Liu, Huafeng

    2015-12-01

    Tomographic phase microscopy (TPM) facilitates three-dimensional imaging of live cells based on quantitative measurement of the distribution of the refractive index, but without the need for specific staining. However, the limited imaging speed and the anisotropic resolution of the reconstructed refractive index map remain major obstacles to the extension and further application of TPM. To address these obstacles, we first formulate a general measurement model that linearises the relationship between the measurement data and refractive index map based on a system matrix. In this way, the measurement system is interpreted as a linear system in a complete manner. Then we propose a reconstruction framework for retrieving the refractive index map from the measurement data with reduced angular sample frequency and limited angular coverage of illumination. The framework aims to transform the reconstruction task into an optimisation scheme based on total variation norm regularisation, followed by an efficient solution using the accelerated alternating direction method of multipliers algorithm. Using this method, only sparse angular illuminations need to be collected, thus speeding up the imaging process. We obtained experimental results from both cell-mimic phantom data and real measurement data, which showed that the proposed method can improve the imaging speed while still providing refractive index images with better quality compared with a conventional reconstruction method. PMID:26562522

  12. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    SciTech Connect

    Moddeman, William E.; Birkbeck, Janine C.; Barklay, Chadwick D.; Kramer, Daniel P.; Miller, Roger G.; Allard, Lawrence F.

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries.

  13. System model enabling fast tomographic phase microscopy with total variation regularisation

    NASA Astrophysics Data System (ADS)

    Guo, Min; Chen, Lijun; Shen, Xiaoyan; Iwai, Hidenao; Chen, Yunmei; Liu, Huafeng

    2015-12-01

    Tomographic phase microscopy (TPM) facilitates three-dimensional imaging of live cells based on quantitative measurement of the distribution of the refractive index, but without the need for specific staining. However, the limited imaging speed and the anisotropic resolution of the reconstructed refractive index map remain major obstacles to the extension and further application of TPM. To address these obstacles, we first formulate a general measurement model that linearises the relationship between the measurement data and refractive index map based on a system matrix. In this way, the measurement system is interpreted as a linear system in a complete manner. Then we propose a reconstruction framework for retrieving the refractive index map from the measurement data with reduced angular sample frequency and limited angular coverage of illumination. The framework aims to transform the reconstruction task into an optimisation scheme based on total variation norm regularisation, followed by an efficient solution using the accelerated alternating direction method of multipliers algorithm. Using this method, only sparse angular illuminations need to be collected, thus speeding up the imaging process. We obtained experimental results from both cell-mimic phantom data and real measurement data, which showed that the proposed method can improve the imaging speed while still providing refractive index images with better quality compared with a conventional reconstruction method.

  14. USE OF IMMUNOFLUORESCENCE AND PHASE-CONTRAST MICROSCOPY FOR DETECTION AND IDENTIFICATION OF 'GIARDIA' CYSTS IN WATER SAMPLES

    EPA Science Inventory

    A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia ...

  15. Phase diagram of ammonium perchlorate: Raman spectroscopic constrains at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2016-06-01

    We present the pressure-temperature (PT) induced physical and chemical transformations in ammonium perchlorates (APs) up to 50 GPa and 450 °C, using diamond anvil cells and confocal micro-Raman spectroscopy, which provide new constraints for the phase diagram of AP. The results show spectral evidences for three new polymorphs (III, IV, and VI) of AP, in addition to two previously known phases (I and II), at various PT conditions with varying degrees of hydrogen bonding and lack of strong spectral evidence for previously known high-temperature cubic phase (phase V). Upon further heating, AP chemically decomposes to N2, N2O, and H2O. The present phase diagram is, therefore, in sharp contrast to the previous one, underscoring a rich polymorphism, a large stability field for solids, and a replacement of the melt with a decomposition line.

  16. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    PubMed

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2014-01-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes. PMID:24948190

  17. Spectroscopic studies of kinetically trapped conformations in the gas phase: the case of triply protonated bradykinin.

    PubMed

    Voronina, Liudmila; Rizzo, Thomas R

    2015-10-21

    Understanding the relation between the gas-phase structure of biological molecules and their solution-phase structure is important when attempting to use gas-phase techniques to address biologically relevant questions. Directly after electrospray ionization, molecules can be kinetically trapped in a state that retains some "memory" of its conformation in solution and is separated from the lowest-energy gas-phase structure by barriers on the potential energy surface. In order to identify and characterize kinetically trapped structures, we have explored the conformational space of triply protonated bradykinin in the gas phase by combining field-asymmetric ion mobility spectrometry (FAIMS) with cold ion spectroscopy. We isolate three distinct conformational families and characterize them by recording their UV-photofragment spectra and vibrational spectra. Annealing of the initial conformational distribution produced by electrospray reveals that one of the conformational families is kinetically trapped, while two others are stable, gas-phase structures. We compare our results to previously published results obtained using drift-tube ion mobility spectrometry (IMS) and propose a correspondence between the conformational families separated by FAIMS and those by IMS. PMID:25940085

  18. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  19. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  20. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    PubMed Central

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-01-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems. PMID:26915398

  1. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    DOE PAGESBeta

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, II Woong; Walko, Donald A.; Dufresne, Eric M.; Jaewoo, Jeong; Samant, Mahesh G.; et al

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiatedmore » at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less

  2. Graphene Near-Degenerate Four-Wave Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy.

    PubMed

    Ciesielski, Richard; Comin, Alberto; Handloser, Matthias; Donkers, Kevin; Piredda, Giovanni; Lombardo, Antonio; Ferrari, Andrea C; Hartschuh, Achim

    2015-08-12

    We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light. PMID:26121487

  3. Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Underdoped Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Lee, J.; Davis, J.; Fujita, K.; Schmidt, A.R.; Kim, C.K.; Eisaki, H.; Uchida, S.

    2009-08-28

    A possible explanation for the existence of the cuprate 'pseudogap' state is that it is a d-wave superconductor without quantum phase rigidity. Transport and thermodynamic studies provide compelling evidence that supports this proposal, but few spectroscopic explorations of it have been made. One spectroscopic signature of d-wave superconductivity is the particle-hole symmetric 'octet' of dispersive Bogoliubov quasiparticle interference modulations. Here we report on this octet's evolution from low temperatures to well into the underdoped pseudogap regime. No pronounced changes occur in the octet phenomenology at the superconductor's critical temperature T{sub c}, and it survives up to at least temperature T {approx} 1.5 T{sub c}. In this pseudogap regime, we observe the detailed phenomenology that was theoretically predicted for quasiparticle interference in a phase-incoherent d-wave superconductor. Thus, our results not only provide spectroscopic evidence to confirm and extend the transport and thermodynamics studies, but they also open the way for spectroscopic explorations of phase fluctuation rates, their effects on the Fermi arc, and the fundamental source of the phase fluctuations that suppress superconductivity in underdoped cuprates.

  4. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  5. Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite

    SciTech Connect

    D Liu; W Lei; Z Liu; Y Lee

    2011-12-31

    Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

  6. Serpentines, talc, chlorites, and their high-pressure phase transitions: a Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno; Bezacier, Lucile; Caracas, Razvan

    2015-09-01

    Raman spectra of magnesian phyllosilicates belonging to the serpentine, talc, and chlorite groups have been obtained at ambient conditions, and at high pressures and up to 200 °C in order to study high-pressure transformations in the 10 GPa range. The complex and distinct Raman spectra of these minerals allow straightforward identification, which may otherwise be difficult from optical microscopy. High-pressure measurements are in good agreement with DFT calculations for talc and lizardite. Pressure-induced displacive modifications are identified in lizardite and antigorite serpentines, and in chlorite at ~4, 7 and 8 GPa, respectively, while talc shows no transition up to ~11 GPa. At high temperature, the high-pressure distortions of serpentines shift to higher pressures. Given the stability limits of these minerals, and the natural range of P-T conditions, none of the high-pressure distortions observed at high pressure are likely to occur at depth in the Earth.

  7. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  8. Spectroscopic studies of the ferroelectric and magnetic phase transitions in multiferroic Sr1-xBaxMnO3.

    PubMed

    Goian, V; Kadlec, F; Kadlec, C; Dabrowski, B; Kolesnik, S; Chmaissem, O; Nuzhnyy, D; Kempa, M; Bovtun, V; Savinov, M; Hejtmánek, J; Prokleška, J; Kamba, S

    2016-05-01

    Dielectric response of perovskite Sr1-xBaxMnO3 (x = 0.43 and 0.45) ceramics was investigated using microwave, THz and infrared spectroscopic techniques in order to study the ferroelectric and antiferromagnetic phase transitions with critical temperatures TC ≈ 350 K and TN ≈ 200 K, respectively. The two lowest-frequency polar phonons are overdamped above TN and they exhibit pronounced softening on heating towards TC. Nevertheless, permittivity ε' in the THz range shows only a small anomaly at TC because the phonon contribution to ε' is rather small. The phonons are coupled with a central mode which provides the main contribution to the dielectric anomaly at TC. Thus, the ferroelectric phase transition has characteristics of a crossover from displacive to order-disorder type. At the same time, the intrinsic THz central peak is partially screened by conductivity and related Maxwell-Wagner relaxation, which dominates the microwave and lower-frequency spectra. Below TN, the ferroelectric distortion markedly decreases, which has an influence on the frequencies of both the central and soft modes. Therefore, ε' in the THz range increases at TN on cooling. In spite of the strong spin-phonon coupling near TN, surprisingly no magnetodielectric effect was observed in the THz spectra upon applying magnetic field of up to 7 T, which is in contradiction with the theoretically expected huge magnetoelectric coupling. We explain this fact as due to the insensitivity of TN to magnetic field. PMID:27023160

  9. Comprehensive size-determination of whole virus vaccine particles using gas-phase electrophoretic mobility macromolecular analyzer, atomic force microscopy, and transmission electron microscopy.

    PubMed

    Havlik, Marlene; Marchetti-Deschmann, Martina; Friedbacher, Gernot; Winkler, Wolfgang; Messner, Paul; Perez-Burgos, Laura; Tauer, Christa; Allmaier, Günter

    2015-09-01

    Biophysical properties including particle size distribution, integrity, and shape of whole virus vaccine particles at different stages in tick-borne encephalitis (TBE) vaccines formulation were analyzed by a new set of methods. Size-exclusion chromatography (SEC) was used as a conservative sample preparation for vaccine particle fractionation and gas-phase electrophoretic mobility macromolecular analyzer (GEMMA) for analyzing electrophoretic mobility diameters of isolated TBE virions. The derived particle diameter was then correlated with molecular weight. The diameter of the TBE virions determined after SEC by GEMMA instrumentation was 46.8 ± 1.1 nm. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were implemented for comparison purposes and to gain morphological information on the virion particle. Western blotting (Dot Blot) as an immunological method confirmed biological activity of the particles at various stages of the developed analytical strategy. AFM and TEM measurements revealed higher diameters with much higher SD for a limited number of virions, 60.4 ± 8.5 and 53.5 ± 5.3 nm, respectively. GEMMA instrumentation was also used for fractionation of virions with specifically selected diameters in the gas-phase, which were finally collected by means of an electrostatic sampler. At that point (i.e., after particle collection), AFM and TEM showed that the sampled virions were still intact, exhibiting a narrow size distribution (i.e., 59.8 ± 7.8 nm for AFM and 47.5 ± 5.2 nm for TEM images), and most importantly, dot blotting confirmed immunological activity of the collected samples. Furthermore dimers and virion artifacts were detected, too. PMID:26266988

  10. Comprehensive Size-Determination of Whole Virus Vaccine Particles Using Gas-Phase Electrophoretic Mobility Macromolecular Analyzer, Atomic Force Microscopy, and Transmission Electron Microscopy

    PubMed Central

    Havlik, Marlene; Marchetti-Deschmann, Martina; Friedbacher, Gernot; Winkler, Wolfgang; Messner, Paul; Perez-Burgos, Laura; Tauer, Christa; Allmaier, Günter

    2015-01-01

    Biophysical properties including particle size distribution, integrity, and shape of whole virus vaccine particles at different stages in tick-borne encephalitis (TBE) vaccines formulation were analyzed by a new set of methods. Size-exclusion chromatography (SEC) was used as a conservative sample preparation for vaccine particle fractionation and gas-phase electrophoretic mobility macromolecular analyzer (GEMMA) for analyzing electrophoretic mobility diameters of isolated TBE virions. The derived particle diameter was then correlated with molecular weight. The diameter of the TBE virions determined after SEC by GEMMA instrumentation was 46.8 ± 1.1 nm. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were implemented for comparison purposes and to gain morphological information on the virion particle. Western blotting (Dot Blot) as an immunological method confirmed biological activity of the particles at various stages of the developed analytical strategy. AFM and TEM measurements revealed higher diameters with much higher SD for a limited number of virions, 60.4 ± 8.5 and 53.5 ± 5.3 nm, respectively. GEMMA instrumentation was also used for fractionation of virions with specifically selected diameters in the gas-phase, which were finally collected by means of an electrostatic sampler. At that point (i.e., after particle collection), AFM and TEM showed that the sampled virions were still intact, exhibiting a narrow size distribution (i.e., 59.8 ± 7.8 nm for AFM and 47.5 ± 5.2 nm for TEM images), and most importantly, dot blotting confirmed immunological activity of the collected samples. Furthermore dimers and virion artifacts were detected, too. PMID:26266988

  11. New pressure-induced phase transitions of L-threonine crystal: A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Holanda, R. O.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Polian, A.

    2015-07-01

    L-threonine crystal was studied by Raman spectroscopy under pressure in the spectral range from 50 to 3300 cm-1. The pressure range of a previous study has been extended from 4 to 27.0 GPa. Modifications in the whole spectrum give us evidence of three structural phase transitions undergone by this amino acid as well as two conformational change. The classification of the vibrational modes and the behavior of their frequencies as a function of the pressure are presented.

  12. In-situ microscopy of the first-order magnetic phase transition in FeRh thin films

    NASA Astrophysics Data System (ADS)

    Baldasseroni, Chloe

    Simple ferromagnetic (FM) and antiferromagnetic (AF) materials such as Fe and Cr become paramagnetic when heated above some critical temperature, in what is known as a second-order phase transition. Less usual magnetic transitions are found in the magnetic world, for example a first-order magnetic phase transition from AF to FM with increasing temperature. Equiatomic FeRh has been known to exhibit such a transition for over 50 years, with a transition temperature slightly above room temperature. Interest in this material has been renewed in the recent years due to its potential application for heat-assisted magnetic recording, as well as a test system for fundamental studies of the physics of magnetic phase transitions. Similarly to crystallization, this AF-FM transition is expected to proceed by nucleation of magnetic domains but the features of the first-order hysteretic transition have been difficult to study with macroscopic measurements and very few microscopic studies have been performed. In this work, FeRh thin films were synthesized by magnetron sputtering and structurally and magnetically characterized. A membrane-based heating device was designed to enable temperature-dependent microscopy measurements, providing a thermally uniform and well-controlled sample area. Synchrotron x-ray magnetic microscopy was used to study the temperature-driven AF-FM phase transition in epitaxial FeRh thin films in zero field. Using magnetic microscopy with x-ray magnetic circular dichroism, the different stages of nucleation, growth and coalescence of FM domains were observed across the transition and details of the nucleation were identified. The FM phase nucleates into single domain islands and the width of the transition of the individual nuclei upon heating is sharper than that of the macroscopic transition. Using magnetic microscopy with x-ray magnetic linear dichroism, the evolution of the AF phase was studied. Differences in the morphology of AF and FM phases were

  13. Crystallization kinetics of the phase change material GeSb6Te measured with dynamic transmission electron microscopy.

    PubMed

    Winseck, M M; Cheng, H-Y; Campbell, G H; Santala, M K

    2016-06-14

    GeSb6Te is a chalcogenide-based phase change material that has shown great ptoential for use in solid-state memory devices. The crystallization kinetics of amorphous thin films of GeSb6Te during laser crystallization were followed with dynamic transmission electron microscopy, a photo-emission electron microscopy technique with nanosecond-scale time resolution. Nine-frame movies of crystal growth were taken during laser crystallization. The nucleation rate is observed to be very low and the growth rates are very high, up to 10.8 m s(-1) for amorphous as-deposited films and significantly higher for an amorphous film subject to sub-threshold laser annealing before crystallization. The measured growth rates exceed any directly measured growth rate of a phase change material. The crystallization is reminiscent of explosive crystallization of elemental semiconductors both in the magnitude of the growth rate and in the resulting crystalline microstructures. PMID:27026479

  14. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins.

    PubMed

    Mehra, R K; Miclat, J; Kodati, V R; Abdullah, R; Hunter, T C; Mulchandani, P

    1996-02-15

    Optical spectroscopy and reverse-phase HPLC were used to investigate the binding of Hg(II) to plant metal-binding peptides (phytochelatins) with the structure (gammaGlu-Cys)2Gly, (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly. Glutathione-mediated transfer of Hg(II) into phytochelatins and the transfer of the metal ion from one phytochelatin to another was also studied using reverse-phase HPLC. The saturation of Hg(II)-induced bands in the UV/visible and CD spectra of (gammaGlu-Cys)2Gly suggested the formation of a single Hg(II)-binding species of this peptide with a stoichiometry of one metal ion per peptide molecule. The separation of apo-(gammaGlu-Cys)2Gly from its Hg(II) derivative on a C18 reverse-phase column also indicated the same metal-binding stoichiometry. The UV/visible spectra of both (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly at pH 7.4 showed distinct shoulders in the ligand-to-metal charge-transfer region at 280-290 mm. Two distinct Hg(II)-binding species, occurring at metal-binding stoichiometries of around 1.25 and 2.0 Hg(II) ions per peptide molecule, were observed for (gammaGlu-Cys)3Gly. These species exhibited specific spectral features in the charge-transfer region and were separable by HPLC. Similarly, two main Hg(II)-binding species of (gammaGlu-Cys)4Gly were observed by UV/visible and CD spectroscopy at metal-binding stoichiometries of around 1.25 and 2.5 respectively. Only a single peak of Hg(II)-(gammaGlu-Cys)4Gly complexes was resolved under the conditions used for HPLC. The overall Hg(II)-binding stoichiometries of phytochelatins were similar at pH 2.0 and at pH 7.4, indicating that pH did not influence the final Hg(II)-binding capacity of these peptides. The reverse-phase HPLC assays indicated a rapid transfer of Hg(II) from glutathione to phytochelatins. These assays also demonstrated a facile transfer of the metal ion from shorter- to longer-chain phytochelatins. The strength of Hg(II) binding to glutathione and phytochelatins followed the

  15. Influence of the phase effect on gradient-based and statistics-based focus measures in bright field microscopy.

    PubMed

    Schoell, S; Mualla, F; Sommerfeldt, B; Steidl, S; Maier, A; Buchholz, R; Hornegger, J

    2014-05-01

    Autofocusing is essential to high throughput microscopy and live cell imaging and requires reliable focus measures. Phase objects such as separated single Chinese hamster ovary cells are almost invisible at the optical focus position in bright field microscopy images. Because of the phase effect, defocused images of phase objects have more contrast. In this paper, we show that widely used focus measures exhibit an untypical behaviour for such images. In the case of homogeneous cells, that is, when most cells tend to lie in the same focal plane, both gradient-based and statistics-based focus measures tend to have a local minimum instead of a global maximum at the optical focus position. On the other hand, if images show inhomogeneous cells, gradient-based focus measures tend to yield typical focus curves, whereas statistics-based focus measures deliver curves similar to the case of homogeneous cells. These results were interpreted using the equation describing the phase effect and patch-wise analysis of the focus curves. Bioprocess engineering experts are also influenced by the phase effect. Forty-four focus positions selected by them led to the conclusion that they prefer to look at defocused images instead of those at the optical focus. PMID:24611652

  16. Infrared spectroscopic characterization of dehydration and accompanying phase transition behaviors in NAT-topology zeolites

    SciTech Connect

    Wang, Hsiu-Wen; Bishop, David

    2012-01-01

    Relative humidity (PH2O, partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known PH2O conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na?/Ca2? cations and H2O molecules. The observation of different interactions of H2O molecules and Na?/Ca2? cations with host aluminosilicate frameworks under highand low-PH2O conditions indicated the development of different local strain fields, arising from cation H2O interactions in NAT-type channels. These strain fields influence the Si O/Al O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm-1 in natrolite, 2,276 cm-1 in scolecite, and 2,176 and 2,259 cm-1 in mesolite) result from strong cation H2O Al Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na?/Ca2? cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm-1 absorption bands in mesolite also appear to be related to Na?/Ca2? order disorder that occur when mesolite loses its Ow4 H2O molecules.

  17. The investigation of phase evolution in composite ceramic superconductors using Raman microscopy techniques

    SciTech Connect

    Maroni, V. A.; Fischer, A. K.; Wu, K. T.

    1999-12-23

    Raman microspectroscopy and imaging techniques have been used to investigate key mechanistic features that influence the formation of layered Bi- and Tl-based superconducting phases during the thermal treatment employed to produce BSCCO and TBCCO composite conductors. Seminal information gained from these studies includes the location of lead-rich nonsuperconducting second phases (NSPS) and the identification of the constituent phases in certain NSP agglomerations that tend to resist dissipation as high-Tc phase formation proceeds to completion.

  18. The investigation of phase evolution in composite ceramic superconductors using Raman microscopy techniques

    NASA Astrophysics Data System (ADS)

    Maroni, V. A.; Fischer, A. K.; Wu, K. T.

    Raman microspectroscopy and imaging techniques are being used to investigate key mechanistic features that influence the formation of layered Bi-based superconducting phases during the thermal treatment employed to produce silversheathed Bi-2223 composite conductors. Seminal information gained from these studies includes the identification of the constituent phases in certain nonsuperconducting second phase (NSP) agglomerations that tend to resist dissipation as high-Tc phase formation proceeds to completion.

  19. A Combined Gas-Phase Photoelectron Spectroscopic and Theoretical Study of Zeise's Anion and Its Bromine and Iodine Analogues

    SciTech Connect

    Hou, Gaolei; Wen, Hui; Lopata, Kenneth A.; Zheng, Weijun; Kowalski, Karol; Govind, Niranjan; Wang, Xue B.; Xantheas, Sotiris S.

    2012-06-25

    We report the first photoelectron spectroscopic study of Zeise’s anion, [PtCl3(C2H4)], and its Br- and I- analogs in the gas phase. Well-resolved and rich spectral features are obtained for each species, yielding detailed electronic structure information, which is assigned with the aid of highlevel electronic structure calculations at the Coupled Cluster (CC) level of theory. The electron binding energies of [PtX3(C2H4)] are found to decrease with the size of halogen (4.57, 4.51, and 4.18 eV for X = Cl, Br, and I, respectively). The calculations indicate a synergistic η2 interaction [with interaction strengths of 1.54 (Cl), 1.37 (Br) and 1.10 eV (I)] between the perpendicular C2H4 fragment and the nearly horizontal planar PtX3- anions, resulting in activating the ethylene molecule. The detailed insights of the chemical bonding and underlying electronic structure can be used to benchmark interactions between olefins and transition metal complexes, which are crucial to a wide range of catalytic processes.

  20. Gas-Phase Spectroscopic Signatures of Carboxylate-Li(+) Contact Ion Pairs: New Benchmarks For Characterizing Ion Pairing in Solution.

    PubMed

    Habka, Sana; Brenner, Valérie; Mons, Michel; Gloaguen, Eric

    2016-04-01

    The coexistence of several types of ion pairs in solution together with their elusive nature hampers their experimental characterization, which relies in practice on theoretical models resorting to numerous approximations. In this context, a series of isolated contact ion pairs between a lithium cation and phenyl-tagged carboxylate anions of various lengths (Ph-(CH2)n-COO(-), n = 1-3) has been investigated in a conformer-selective manner by IR and UV laser spectroscopy, in conjunction with quantum chemistry calculations. The typical gas-phase IR signature of the bidentate structure formed between the carboxylate moiety and Li(+) has thus been obtained in the CO2(-) stretch region. In addition to the cation-anion interaction, a cation-π interaction occurs simultaneously in the largest system investigated (n = 3). The resulting distorted ion pair structure has been evidenced from both the IR signature of the CO2(-) stretches and the unique vibrationally resolved UV spectroscopy of a phenyl ring interacting with a cation. Such specific spectroscopic signatures of contact ion pairs provide experimental benchmarks, alternative to theoretical predictions, that can assist the assignment of vibrational spectra in solution. PMID:26978595

  1. X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Park, Yong-Sung

    2012-04-01

    A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.

  2. Spectroscopic studies of the ferroelectric and magnetic phase transitions in multiferroic Sr1-x Ba x MnO3

    NASA Astrophysics Data System (ADS)

    Goian, V.; Kadlec, F.; Kadlec, C.; Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Nuzhnyy, D.; Kempa, M.; Bovtun, V.; Savinov, M.; Hejtmánek, J.; Prokleška, J.; Kamba, S.

    2016-05-01

    Dielectric response of perovskite Sr1-x Ba x MnO3 (x  =  0.43 and 0.45) ceramics was investigated using microwave, THz and infrared spectroscopic techniques in order to study the ferroelectric and antiferromagnetic phase transitions with critical temperatures T C  ≈  350 K and T N  ≈  200 K, respectively. The two lowest-frequency polar phonons are overdamped above T N and they exhibit pronounced softening on heating towards T C. Nevertheless, permittivity ɛ‧ in the THz range shows only a small anomaly at T C because the phonon contribution to ɛ‧ is rather small. The phonons are coupled with a central mode which provides the main contribution to the dielectric anomaly at T C. Thus, the ferroelectric phase transition has characteristics of a crossover from displacive to order-disorder type. At the same time, the intrinsic THz central peak is partially screened by conductivity and related Maxwell-Wagner relaxation, which dominates the microwave and lower-frequency spectra. Below T N, the ferroelectric distortion markedly decreases, which has an influence on the frequencies of both the central and soft modes. Therefore, ɛ‧ in the THz range increases at T N on cooling. In spite of the strong spin-phonon coupling near T N, surprisingly no magnetodielectric effect was observed in the THz spectra upon applying magnetic field of up to 7 T, which is in contradiction with the theoretically expected huge magnetoelectric coupling. We explain this fact as due to the insensitivity of T N to magnetic field.

  3. Spectroscopic investigation of the high-current phase of a pulsed GMAW process

    NASA Astrophysics Data System (ADS)

    Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.

    2010-11-01

    While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.

  4. A computational and spectroscopic study of the gas-phase conformers of adrenaline

    NASA Astrophysics Data System (ADS)

    Çarçabal, P.; Snoek, L. C.; van Mourik, T.

    The conformational landscapes of the neurotransmitter l-adrenaline (l-epinephrine) and its diastereoisomer pseudo-adrenaline, isolated in the gas phase and un-protonated, have been investigated by using a combination of mass-selected ultraviolet and infrared holeburn spectroscopy, following laser desorption of the sample into a pulsed supersonic argon jet, and DFT and ab initio computation (at the B3LYP/6-31+G*, MP2/6-31+G* and MP2/aug-cc-pVDZ levels of theory). Both for adrenaline and its diastereoisomer, pseudo-adrenaline, one dominant molecular conformation, very similar to the one seen in noradrenaline, has been observed. It could be assigned to an extended side-chain structure (AG1a) stabilized by an OH → N intramolecular hydrogen bond. An intramolecular hydrogen bond is also formed between the neighbouring hydroxyl groups on the catechol ring. The presence of further conformers for both diastereoisomers could not be excluded, but overlapping electronic spectra and low ion signals prevented further assignments.

  5. Phase transformation of calcium oxalate dihydrate-monohydrate: Effects of relative humidity and new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Casati, Marco; Colombo, Chiara; Realini, Marco; Brambilla, Luigi; Zerbi, Giuseppe

    2014-07-01

    New data on vibrational properties of calcium oxalates and their controversial transformation mechanism are presented. We have focused on whewellite (CaC2O4·H2O) and weddellite [CaC2O4·(2 + x) H2O], the most common phases of calcium oxalate; these compounds occur in many organisms, in kidney stones and in particular kinds of films found on the surface of many works of art. Low temperature experiments carried out by Fourier transform infrared spectroscopy have highlighted both the high structural order in the crystalline state of whewellite and the disordered distribution of the zeolitic water molecules in weddellite. The synthesised nanocrystals of weddellite have been kept under different hygrometric conditions in order to study, by X-ray powder diffraction, the role of “external” water molecules on their stability. Moreover, in order to identify the different kinds of water molecules, a re-investigation, supported by quantum chemical calculations, of the observed vibrational spectra (IR and Raman) of whewellite has been conducted.

  6. Characterization of U(VI)-phases in corroded cement products by micro(μ)-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Brendebach, B.; Bube, C.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Metz, V.; Prüßmann, T.; Rickers-Appel, K.; Schild, D.; Soballa, E.; Vitova, T.

    2013-04-01

    Cementation is an industrial scale conditioning method applied to fix and solidify liquid low and intermediate level radioactive wastes (LLW/ILW) prior to underground disposal in geological formations.To assist prognosis of the long-term safety of cemented waste, alteration of uranium doped cement productswas studied in chloride-rich solutions relevant for final LLW/ILW disposal in rock salt. After long-time exposure of the full-scale LLW/ILW simulates to concentrated NaCl and MgCl2 brines, solid samples were retrieved for chemical and mineralogical analysis with an emphasis on uranium speciation in the corroded cement matrix.Bulk and recent spatially resolved micro(μ) U L3-XAFS measurements point to the occurrence of a diuranate type U(VI) phase forming throughout the corroded cement monoliths. U-enriched hot spots with dimensions up to several tens of μm turn out to be generally X-ray amorphous.

  7. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    SciTech Connect

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-12-31

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40{degrees}C for 4 years with those leached at 90{degrees}C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs.

  8. Coherence-controlled holographic microscopy principle embodiment into Q-PHASE microscope: story of a successful technology transfer

    NASA Astrophysics Data System (ADS)

    Lostak, M.; Chmelik, R.

    2016-03-01

    Curiously, the coherence-controlled holographic microscopy (CCHM) was brought into the world owing to the endeavor of Chmelik's team at Brno University of Technology (BUT) to avoid scanning in confocal microscopy. As coherence gating seemed to be the way, the Leith & Upatnieks proposal of incoherent holography had been considered attractive. Their method made interference system free from strict dependence on both spatial and temporal coherence. Off axis holographic system proposed on such basis has been proved capable of coherence based depth discrimination in single wide-field shot in reflected-light arrangement. Consequently, extremely low-coherence holographic imaging had been found highly contributive also to the image quality depriving it from coherence artefacts and improving its transversal resolution. This is why CCHM promised high precision of quantitative phase imaging (QPI) in transmitted light set up that was realized for cell biology. However the cost of necessarily complicated optical design and need of very precise mechanics forced the team of prof Chmelik at BUT to search for a company capable of mastering the instrument. It was TESCAN ORSAY the highly successful scanning electron microscopes producer that finally took charge of the commercial design. Long-term collaboration of the company with BUT made possible both the CCHM technology successful transfer up to Q-PHASE microscope production as well as the company Light microscopy division reinforcement. This contribution merges views of CCHM technology author and the TESCAN development team.

  9. Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens

    PubMed Central

    Schubert, Robin; Vollmer, Angelika; Ketelhut, Steffi; Kemper, Björn

    2014-01-01

    Self-interference digital holographic microscopy (DHM) has been found particular suitable for simplified quantitative phase imaging of living cells. However, a main drawback of the self-interference DHM principle are scattering patterns that are induced by the coherent nature of the laser light which affect the resolution for detection of optical path length changes. We present a simple and efficient technique for the reduction of coherent disturbances in quantitative phase images. Therefore, amplitude and phase of the sample illumination are modulated by an electrically focus tunable lens. The proposed method is in particular convenient with the self-interference DHM concept. Results from the characterization of the method show that a reduction of coherence induced disturbances up to 70 percent can be achieved. Finally, the performance for enhanced quantitative imaging of living cells is demonstrated. PMID:25574433

  10. Contrast transfer functions for Zernike phase contrast in full-field transmission hard X-ray microscopy.

    PubMed

    Yang, Yang; Cheng, Yin; Heine, Ruth; Baumbach, Tilo

    2016-03-21

    Full-field transmission hard X-ray microscopy (TXM) has been widely applied to study morphology and structures with high spatial precision and to dynamic processes. Zernike phase contrast (ZPC) in hard X-ray TXM is often utilized to get an in-line phase contrast enhancement for weak-absorbing materials with little contrast differences. Here, following forward image formation, we derive and simplify the contrast transfer functions (CTFs) of the Zernike phase imaging system in TXM based on a linear space-shift-invariant imaging mode under certain approximations. The CTFs in ZPC in their simplified forms show a high similarity to the one in free-space propagation X-ray imaging systems. PMID:27136800