Science.gov

Sample records for speed controller parameters

  1. Robust output feedback cruise control for high-speed train movement with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Li, Shu-Kai; Yang, Li-Xing; Li, Ke-Ping

    2015-01-01

    In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.2014JBM150).

  2. Position and Speed Sensorless Control System of Permanent Magnet Synchronous Motor with Parameter Identification

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Shimmei, Akihide; Sanada, Masayuki; Takeda, Yoji

    The model parameters of permanent magnet synchronous motor (PMSM) are required for a high-performance control and a model based sensorless control. This paper proposes the sensorless control system of PMSM that doesn't need parametric information beforehand. The parameters of PMSM drive system including inverter are identified at standstill and operating condition. At first, the initial rotor position is estimated by a signal injection sensorless scheme, in which the machine parameters are not required. After the initial position has been estimated, the resistance including on-resistance of IGBT, the voltage error caused by dead-time of inverter, d-axis and q-axis inductances are identified at standstill. After the motor starts by the signal injection sensorless control, the sensorless scheme changes to an extended EMF estimation based scheme. The estimated parameters of resistance, d-axis and q-axis inductances are used in such sensorless control. The magnet flux-linkage, which can not be estimated at standstill, is identified under the sensorless operation at medium and high speeds. The effectiveness of the proposed method is verified by several experimental results.

  3. Design of an adaptive control for a magnetorheological fluid brake with model parameters depending on temperature and speed

    NASA Astrophysics Data System (ADS)

    Russo, R.; Terzo, M.

    2011-11-01

    This paper describes experimental/theoretical activities carried out on a magnetorheological fluid brake (MRFB) prototype. A device model is derived and a detailed evaluation of the influence of temperature and speed on its parameters is performed. It can be seen that temperature and speed act as modifying inputs for the system model and change the value of some of its parameters. More specifically, time constant and torque/current gain are affected by velocity whereas fluid viscosity is only affected by temperature. The presence of the above modifying input suggests the employment of an adaptive approach for MRFB feedback control based on the torque measurement only. Starting from the proposed model, a model reference adaptive control is designed, ensuring that the tracking error converges to zero as time t \\to \\infty . Simulation activity, carried out on the device validated model, confirms the effectiveness of the proposed adaptive controller.

  4. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  5. Vehicle speed control system

    SciTech Connect

    Yoshida, D.; Tanno, T.; Fukunaga, T.

    1987-06-16

    This patent describes a vehicle speed control system for performing vehicle speed control by controlling the displacement of at least one of a hydraulic pump and a hydraulic motor of a hydraulic transmission through an electric servo device, comprising: vehicle speed setting means for generating a voltage signal corresponding to a vehicle speed to be set; compensating means interposed between the vehicle speed setting means and the electric servo device, the compensating means comprising a first delay element; and second delay element having a response characteristic slower than that of the first delay element. A selecting means for judging as to whether a voltage signal changed by the operation of the vehicle speed setting means represents an acceleration command or a deceleration command and for selecting the first delay element when the voltage signal represents an acceleration command and for selecting the second delay element when the voltage signal represents a deceleration command.

  6. Engine speed control apparatus

    SciTech Connect

    Ishii, M.; Miyazaki, M.; Nakamura, N.; Kakinuma, H.

    1986-11-04

    This patent describes an engine speed control apparatus. The system comprises an actuator for adjusting an engine speed, a first unit for computing a desired engine speed, a second unit for detecting the actual engine speed, and a third unit for detecting the difference between the outputs of the first and second units. The system also includes a fourth unit for computing a control pulse width for the actuator in accordance with the output of the third unit, a fifth unit for generating a control signal, a sixth unit for driving the actuator in response to the output of the fifth unit, and a seventh unit for computing an optimal halt time to interrupt the driving of the actuator. The actuator is driven intermittently in conformity in the control pulse width and the halt time.

  7. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  8. Variable speed controller

    NASA Technical Reports Server (NTRS)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Younger, Frank

    1992-01-01

    This report details a new design for a variable speed controller which can be used to operate lunar machinery without the astronaut using his or her upper body. In order to demonstrate the design, a treadle for an industrial sewing machine was redesigned to be used by a standing operator. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from sit down to stand up operation involving modular stations. The old treadle worked well with a sitting operator, but problems have been found when trying to use the same treadle with a standing operator. Emphasis is placed on the ease of use by the operator along with the ergonomics involved. Included with the design analysis are suggestions for possible uses for the speed controller in other applications.

  9. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  10. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  11. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  12. BMI, a Performance Parameter for Speed Improvement

    PubMed Central

    Sedeaud, Adrien; Marc, Andy; Marck, Adrien; Dor, Frédéric; Schipman, Julien; Dorsey, Maya; Haida, Amal; Berthelot, Geoffroy; Toussaint, Jean-François

    2014-01-01

    The purpose of this study is to investigate the association between anthropometric characteristics and performance in all track and field running events and assess Body Mass Index (BMI) as a relevant performance indicator. Data of mass, height, BMI and speed were collected for the top 100 international men athletes in track events from 100 m to marathon for the 1996–2011 seasons, and analyzed by decile of performance. Speed is significantly associated with mass (r = 0.71) and BMI (r = 0.71) in world-class runners and moderately with height (r = 0.39). Athletes, on average were continuously lighter and smaller with distance increments. In track and field, speed continuously increases with BMI. In each event, performances are organized through physique gradients. «Lighter and smaller is better» in endurance events but «heavier and taller is better» for sprints. When performance increases, BMI variability progressively tightens, but it is always centered around a distance-specific optimum. Running speed is organized through biometric gradients, which both drives and are driven by performance optimization. The highest performance level is associated with narrower biometric intervals. Through BMI indicators, diversity is possible for sprints whereas for long distance events, there is a more restrictive aspect in terms of physique. BMI is a relevant indicator, which allows for a clear differentiation of athletes' capacities between each discipline and level of performance in the fields of human possibilities. PMID:24587266

  13. Closed-Loop Motor-Speed Control

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Delcher, Ray C.; Huston, Steven W.

    1989-01-01

    Electronic motor-speed control circuit designed to operate in electrically noisy environment. Includes optoelectronic pick-up device, placed inside motor housing to provide speed feedback signal. Automatically maintains speed motor at commanded value. Measures speed of motor in terms of frequency of pulses of infrared light chopped by fan blades of motor. Difference between measured and commanded speeds serves as control signal for external amplifier driving motor. Major advantage of circuit is low cost.

  14. Turbine speed control system based on a fuzzy-PID

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Hua; Wang, Wei; Yu, Hai-Yan

    2008-12-01

    The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can’t meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control’s quick dynamic response and PID control’s steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.

  15. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  16. Implementation of PMSM speed control software based on CAN bus

    NASA Astrophysics Data System (ADS)

    Cao, Wenlun; Chen, Bei; He, Yuyao

    2013-03-01

    In this paper, the driver's hardware structure based on TMS320F28335 is introduced, the control software flow of host computer based on CAN bus is designed, the rule of CAN communication protocol is fulfilled and accordingly the hybrid programming is realized in the background of low speed and large sinusoid operation. This system can realize the CAN communication setting, download the PID parameters to DSP, operate at constant rotate speed and at given large sinusoid rotate speed. Meanwhile the dynamical monitoring and alarm are implemented. Finally the real-time display and storage of measured current, voltage and rotate speed are completed well.

  17. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  18. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  19. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  20. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  1. Speed control system for a windmill

    SciTech Connect

    Kenney, C.E.

    1981-06-23

    A speed control system for a windmill having blades which can be feathered for altering speed and with the blades under the control of a mechanism which includes a piston assembly and a fluid governor associated therewith. Spring means are used to feather the blades against the force of the piston assembly which is interconnected with the blades, and the speed of blade rotation actually creates the fluid pressure acting on the piston assembly and a governor is associated with the piston assembly for controlling the position of the piston and thus controlling the feathering of the blades, all according to the speed of rotation of the windmill blades. The windmill can be used for generating electric power, and fail-safe mechanisms are employed for protecting in the event of a windmill blade breakage.

  2. Helicopter low-speed yaw control

    NASA Technical Reports Server (NTRS)

    Wilson, John C. (Inventor); Kelley, Henry L. (Inventor); Crowell, Cynthia A. (Inventor)

    1993-01-01

    A system for improving yaw control at low speeds consists of one strake placed on the upper portion of the fuselage facing the retreating rotor blade and another strake placed on the lower portion of the fuselage facing the advancing rotor blade. These strakes spoil the airflow on the helicopter tail boom during hover, low speed flight, and right or left sidewards flight so that less side thrust is required from the tail rotor.

  3. Speed control system for an access gate

    SciTech Connect

    Bzorgi, Fariborz M.

    2012-03-20

    An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the output element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.

  4. Miniature, Variable-Speed Control Moment Gyroscope

    NASA Technical Reports Server (NTRS)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul

    2011-01-01

    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  5. Congestion control of high-speed networks

    NASA Astrophysics Data System (ADS)

    1993-06-01

    We report on four areas of activity in the past six months. These areas include the following: (1) work on the control of integrated video and image traffic, both at the access to a network and within a high-speed network; (2) more general/game theoretic models for flow control in networks; (3) work on fault management for high-speed heterogeneous networks to improve survivability; and (4) work on all-optical (lightwave) networks of the future, designed to take advantage of the enormous bandwidth capability available at optical frequencies.

  6. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b)...

  7. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b)...

  8. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b)...

  9. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b)...

  10. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b)...

  11. Speed control of switched reluctance motor using sliding mode control strategy

    SciTech Connect

    John, G.; Eastham, A.R.

    1995-12-31

    A robust speed drive system for a switched reluctance motor (SRM) using sliding mode control strategy (SLMC) is presented. After reviewing the operation of an SRM drive, a SLMC based scheme is formulated to control the drive speed. The scheme is implemented using a micro-controller and a high resolution position sensor. The parameter insensitive characteristics are demonstrated through computer simulations and experimental verification.

  12. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground,...

  13. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground,...

  14. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pump speed control. 870... Cardiopulmonary bypass pump speed control. (a) Identification. A cardiopulmonary bypass pump speed control is a... control the speed of blood pumps used in cardiopulmonary bypass surgery. (b) Classification. Class...

  15. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass pump speed control. 870... Cardiopulmonary bypass pump speed control. (a) Identification. A cardiopulmonary bypass pump speed control is a... control the speed of blood pumps used in cardiopulmonary bypass surgery. (b) Classification. Class...

  16. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground,...

  17. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum control speed. 25.149 Section 25... Minimum control speed. (a) In establishing the minimum control speeds required by this section, the method... prevent a heading change of more than 20 degrees. (e) VMCG, the minimum control speed on the ground,...

  18. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and...

  19. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and...

  20. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and...

  1. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and...

  2. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and...

  3. Planktonic foraminifera: factors controlling sinking speeds

    NASA Astrophysics Data System (ADS)

    Takahashi, Kozo; Be, Allan W. H.

    1984-12-01

    Sinking speeds of 330 specimens belonging to 10 extant species of planktonic foraminifera were determined in a sinking column device filled with 3°C seawater. The sinking speed is governed primarily by shell weight and presence/absence of spines. For example, preserved planktonic specimens of Orbulina universa, whose shell weight ranged from 2 to 21 μg, sank 122 to 583 m day -1, with a correlation coefficient of 0.92 on log-log scale. Progressive shell thickening during foraminiferal growth accounts for some of the higher sinking speeds. In addition, shells from sediment on the average sink about three times faster than shells (of equivalent size and species) of planktonic foraminifera collected in near-surface waters. These high values are in part due to the shells often being encrusted with clay and nannoplankton remains. In contrast, the sinking speeds of the spinose species are approximately 3-fold slower than those of the non-spinose species. Based on data from plankton tows, most planktonic foraminifera > 150 μm reach the mean ocean depth of 3800 m in 3 to 12 days depending upon shell weight and presence or absence of spines. Estimated Reynolds numbers range from 0.05 to 24.85 and most exceed a value of 0.5 which is an upper for limit Stokes' Law range, suggesting that foraminifera are out of Stokes' sinking range. The Reynolds number and drag coefficients are negatively well correlated, indicating that drag is one of the important controlling factors in the sinking regime. The presence of spines is significant in increasing drag, decreasing the Reynolds number, and hence reducing the sinking speed.

  4. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of...

  5. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of...

  6. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of...

  7. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of...

  8. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of...

  9. Controlled Speed Accessory Drive demonstration program

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1981-01-01

    A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.

  10. Quantum speed problem: Theoretical hints for control

    NASA Astrophysics Data System (ADS)

    Lisboa, Alexandre Coutinho; Piqueira, José Roberto Castilho

    2016-06-01

    The transition time between states plays an important role in designing quantum devices as they are very sensitive to environmental influences. Decoherence phenomenon is responsible for possible destructions of the entanglement that is a fundamental requirement to implement quantum information processing systems. If the time between states is minimized, the decoherence effects can be reduced, thus, it is advantageous to the designer to develop expressions for time performance measures. Quantum speed limit (QSL) problem has been studied from the theoretical point of view, providing general results. Considering the implementation of quantum control systems, as the decoherence phenomenon is unavoidable, it is important to apply these general results to particular cases, developing expressions and performance measures, to assist control engineering designers. Here, a minimum time performance measure is defined for quantum control problems, for time-independent or time-dependent Hamiltonians, and applied to some practical examples, providing hints that may be useful for researchers pursuing optimization strategies for quantum control systems.

  11. Rotor Speed Detection Method for Vector Control of Induction Motor without Speed Sensor Utilizing Slot Harmonics

    NASA Astrophysics Data System (ADS)

    Kiyotake, Hirofumi; Shinohara, Katsuji; Yamamoto, Kichiro

    Speed sensorless vector controlled induction motor drives are the standard choice in many industrial applications, but this can hardly control torque and rotor speed at low speed. Recently, a method based on the high-frequency signal injection has been studied. This paper presents a method for suppressing the effects of the saturation saliency by using high pass filter, and a new approach to estimate the rotor speed. The effectiveness of these methods are demonstrated through experimental results showing both good suppression of saturation harmonics and good sensorless speed control at low speed.

  12. Low Speed Control for Automatic Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  13. Speed control of automotive diesel engines

    NASA Astrophysics Data System (ADS)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  14. High speed parameter estimation for a homogenized energy model

    NASA Astrophysics Data System (ADS)

    Ernstberger, Jon M.

    Industrial, commercial, military, biomedical, and civilian uses of smart materials are increasingly investigated for high performance applications. These compounds couple applied field or thermal energy to mechanical forces that are generated within the material. The devices utilizing these compounds are often much smaller than their traditional counterparts and provide greater design capabilities and energy efficiency. The relations that couple field and mechanical energies are often hysteretic and nonlinear. To accurately control devices employing these compounds, models must quantify these effects. Further, since these compounds exhibit environment-dependent behavior, the models must be robust for accurate actuator quantification. In this dissertation, we investigate the construction of models that characterize these internal mechanisms and that manifest themselves in material deformation in a hysteretic fashion. Results of previously-presented model formulations are given. New techniques for generating model components are presented which reduce the computational load for parameter estimations. The use of various deterministic and stochastic search algorithms for parameter estimation are discussed with strengths and weaknesses of each examined. New end-user graphical tools for properly initiating the parameter estimation are also presented. Finally, results from model fits to data from ferroelectric---e.g., Lead Zirconate Titanate (PZT)---and ferromagnetic---e.g., Terfenol-D---materials are presented.

  15. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en...

  16. 14 CFR 23.1513 - Minimum control speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  17. 14 CFR 23.1513 - Minimum control speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  18. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en...

  19. 14 CFR 25.1513 - Minimum control speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  20. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en...

  1. 14 CFR 23.1513 - Minimum control speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  2. 14 CFR 25.1513 - Minimum control speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  3. 14 CFR 25.1513 - Minimum control speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  4. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en...

  5. 14 CFR 23.1513 - Minimum control speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  6. 14 CFR 25.1513 - Minimum control speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  7. 14 CFR 25.1513 - Minimum control speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum control speed. 25.1513 Section 25.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1513 Minimum control speed. The minimum control speed V MC determined under § 25.149 must...

  8. 14 CFR 23.1513 - Minimum control speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 23.1513 Section 23.1513 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Information § 23.1513 Minimum control speed. The minimum control speed V MC, determined under § 23.149,...

  9. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en...

  10. Speed control system design and experimentation for interior PMSM drives

    NASA Astrophysics Data System (ADS)

    Quang Dang, Dong; Thi-Thuy Vu, Nga; Choi, Han Ho; Jung, Jin-Woo

    2015-05-01

    This paper presents a robust speed-control strategy using a Takagi-Sugeno fuzzy model for interior permanent magnet synchronous motor (IPMSM) drives. The sufficient conditions of linear matrix inequalities, which can guarantee the existence of the fuzzy controller gains, are derived from a common quadratic Lyapunov function. Moreover, the maximum torque per ampere control is incorporated to improve the torque production in the constant torque region and the efficiency of the IPMSM drive. The global stability of an observer-based control system is analytically proven. Simulations and experiments are conducted to demonstrate the feasibility of the proposed approach through a prototype IPMSM drive system. Consequently, the proposed fuzzy control methodology can achieve less steady-state error and less sensitivity than the conventional feedback linearisation control method under motor parameter variations and external disturbances.

  11. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  12. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    SciTech Connect

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  13. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow...

  14. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow...

  15. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow...

  16. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow...

  17. 14 CFR 23.149 - Minimum control speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum control speed. 23.149 Section 23... Maneuverability § 23.149 Minimum control speed. (a) VMC is the calibrated airspeed at which, when the critical... still inoperative, and thereafter maintain straight flight at the same speed with an angle of bank...

  18. 14 CFR 23.149 - Minimum control speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum control speed. 23.149 Section 23... Maneuverability § 23.149 Minimum control speed. (a) VMC is the calibrated airspeed at which, when the critical... still inoperative, and thereafter maintain straight flight at the same speed with an angle of bank...

  19. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow...

  20. Vibration suppression of speed-controlled robots with nonlinear control

    NASA Astrophysics Data System (ADS)

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-06-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  1. Vibration suppression of speed-controlled robots with nonlinear control

    NASA Astrophysics Data System (ADS)

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-04-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  2. High speed parametric processing controlled by few photons

    NASA Astrophysics Data System (ADS)

    Pejkic, Ana; Radic, Stojan

    2015-11-01

    Optical signal processing has long been recognized as a promising route to a new class of fast and energy efficient devices. The former parameter, the speed, has indeed been addressed in a number of different signal processing roles, confirming the superiority of optical signal processing devices with respect to their electronic counterpart. After gaining some maturity, the field has now advanced to reducing the energy consumption. In this regard, new efforts are directed toward designing an efficient photon interaction mediator, expected to provide both fast and energy efficient devices. The key topic of this review is the progress in longitudinal silica fiber dispersion engineering enabling efficient, non-reciprocal parametric mixers. We present how longitudinal dispersion fluctuations, once considered detrimental, can now be exploited to alter the phase matching condition, and thus, enable fast control of a high power beam by few photons. The potential of such a functionality in high-speed optical signal processing and sensing is discussed.

  3. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  4. Scalar control on speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    This paper aims to investigate the performance of ABB ACS800 variable speed drive operating under Scalar Control mode, and eventually develop a set of experimental procedures for undergraduate laboratory purposes. Scalar Control is the most widespread form of ac drive, for its low cost and simplicity especially implemented in the open loop mode. Scalar control is achieved by controlling the stator voltage and frequency, thus maintaining the motor's air-gap flux at a constant value. To illustrate the control method, the ac drive is configured according to the wiring diagram in the firmware manual that the drive control location can be both local and external. The drive is selected to operate under Factory application macro, whereby either ordinary speed control applications or constant speeds applications may be used. Under ordinary speed control, frequency reference signals are provided to the drive through the analogue input AI1. The drive will operate at the given frequency reference value throughout the operation regardless of any changes in the load. The torque speed curve moves along the speed axis with no changes to the shape as the supply frequencies changes. On the other hand, the drive allows three preset constant speed through digital inputs DI5 and DI6. The drive operate at a constant speed value over a time period, and only switch from one constant speed to another constant speed by triggering the two input switches. Scalar control is most suitable for applications not required high precision, such as blowers, fans and pumps.

  5. Control methods for high-speed supercavitating vehicles

    NASA Astrophysics Data System (ADS)

    Vanek, Balint

    Supercavitation is an emerging technology that enables underwater vehicles to reach unprecedented speed. With proper design of cavitator attached to the vehicle nose, the vehicle body is surrounded by water vapor cavity, eliminating skin friction drag. This technology offers unprecedented drag reduction, though poses problems for vehicle design. The gas bubble surrounding the hull introduces highly coupled dynamic behavior, representing a challenge for the control designer. Development of stable, controllable supercavitating vehicles requires solution for several open problems. This dissertation addresses the problem of control oriented modeling, stability augmentation, and reference tracking using parameter dependent control techniques for supercavitating vehicles. The thesis is divided into three parts. A nonlinear dynamical model capturing the most important properties of the vehicle motion is developed from a control design perspective. The model includes memory effects associated with the time evolution of the cavity and uses lookup tables to determine forces. To aid understanding the cavity-vehicle interaction, a longitudinal control scenario is developed for a simplified longitudinal dynamical model with guaranteed properties. Significant insight is gained on planing behavior and operating envelope using constrained control inputs. Extending the longitudinal control problem, a linear parameter varying model of the coupled motion is developed to provide a platform for parameter dependent control synthesis. The mathematical model is scheduled with aerodynamic angles, uses steady-state approximation of the cavity, leading to uncertainty in the governing equations. Two Linear Parameter Varying (LPV) controllers are synthesized for the angle rate tracking problem, taking uncertainty into account. One uses traditional decoupled loops for pitch-, roll- and yaw-rate tracking. Ignoring the cross coupling, leads to more tractable subproblems. A controller, taking

  6. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  7. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    NASA Astrophysics Data System (ADS)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  8. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  9. Improvement of speed control performance using PID type neurocontroller in an electric vehicle system

    SciTech Connect

    Matsumura, S.; Omatu, S.; Higasa, H.

    1994-12-31

    In order to develop an efficient driving system for electric vehicle (EV), a testing system using motors has been built to simulate the driving performance of EVs. In the testing system, the PID (Proportional Integral Derivative) controller is used to control rotating speed of motor when the EV drives. In this paper, in order to improve the performance of speed control, a neural network is applied to tuning parameters of PID controller. It is shown, through experiments that a neural network can reduce output error effectively while the PID controller parameters are being tuned online. 6 refs.

  10. Engine control system having speed-based timing

    DOEpatents

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  11. Adaptive torque control of variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Johnson, Kathryn E.

    Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.

  12. A Sequential Shifting Algorithm for Variable Rotor Speed Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.

    2007-01-01

    A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.

  13. A novel robust speed controller scheme for PMBLDC motor.

    PubMed

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations. PMID:17544426

  14. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  15. Gravitational search algorithm based tuning of a PI speed controller for an induction motor drive

    NASA Astrophysics Data System (ADS)

    Abd Ali, Jamal; Hannan, M. A.; Mohamed, Azah

    2016-03-01

    Proportional-integral (PI)-controller is very useful for controlling speed and mechanical load variables for the three-phase induction motor (TIM) operation. However, the conventional PI-controller has a very exhaustive trial and error procedure for obtaining it is parameters. In this paper, PI speed controller has been improved in it is design technique to suite TIM by utilizing a gravitational search algorithm (GSA) optimization technique. The mean absolute error (MAE) of the speed response has been used as an objective function. An optimal GSA based PI speed controller (GSA-PI) objective function is also employed to tune and minimize the MAE for developing the performance of the TIM in terms of changes speed and mechanical load. This experiment use space vector pulse width modulation (SVPWM) technique to create pulse width modulation for switching devices for three phase bridge inverter. Results obtained from the GSA-PI speed controller are compared with those obtained through particle swarm optimization (PSO) to validate the developed controller. Then it has been proved that the robustness of the GSA-PI speed controller is far better than that of the1 PSO controller in all tested cases in terms of damping capability and transient response under different mechanical loads and speeds.

  16. Speed control of a small turbine using electrical loading.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small wind turbines with permanent magnet alternators (PMA) seldom have active speed control systems. The turbines rely on passive mechanisms such as furling and/or blade flutter to control the rotational speed. These passive methods cause high mechanical stresses and undesirable noise. One metho...

  17. A Sensorless Speed Control System for DC Motor Drives

    NASA Astrophysics Data System (ADS)

    Georgiev, Tsolo; Mikhov, Mikho

    2009-01-01

    An approach to sensorless speed control of permanent magnet DC motor drives is presented in this paper. The motor speed has been estimated indirectly by the respective back EMF voltage. Using a discrete vector-matrix description of the controlled object, an optimal modal state observer has been synthesized, as well as an optimal modal controller. The results obtained show that the applied control method can ensure good performance.

  18. Speed sensorless hybrid vector controlled induction motor drive

    SciTech Connect

    Bose, B.K.; Simoes, M.G.; Crecelius, D.R.; Rajashekara, K.; Martin, R.

    1995-12-31

    The paper describes a speed and flux sensorless vector-controlled induction motor drive primarily aimed for electric vehicle type applications. The stator flux oriented drive starts at zero speed in indirect vector control mode, transitions to direct vector control mode as the speed develops, and then transitions back to indirect vector control at zero speed. The vector control uses stator flux orientation in both indirect and direct vector control modes with the stator resistance variation compensated by measurement of stator temperature. The problem of integration at low stator frequency is solved by cascaded low pass filters with programmable time constants. The control strategy of the four-quadrant drive has been analyzed, validated by simulation study, and finally evaluated by experimental study on a laboratory 5 hp drive system.

  19. Implementation of Temperature Sequential Controller on Variable Speed Drive

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  20. Control of an ultrasonic transducer to realize low speed driven.

    PubMed

    Zhangfan; Chen, Weishan; Liu, Junkao; Zhao, Xuetao

    2006-12-22

    This paper deals with the control of a transducer to realize low speed. A new PWM control is proposed to fit the transducer. By this control method, the transducer is directly excited by pulses whose width can be modulated. The noise induced by conventional PWM control is eliminated and the motor works more steadily and more quietly. Instead of the general method of decreasing vibrating amplitude of ultrasonic motor to realize low speed, in this paper, two fast contrary elliptical vibrations of the transducer's two Langevin vibrators are excited to restrain skip-slip influence on ultrasonic motor's low speed performance and the driven is realized by the difference of the two vibrators' vibrating amplitudes. Experiments had been carried out by driving an aerostatic guide and fuzzy control is applied. The controlled speed reached 0.1 mm/s. PMID:16793079

  1. Internal Model Controller of an ANN Speed Sensorless Controlled Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Hamed Mouna, Ben; Lassaad, Sbita

    This study deals with the performance analysis and implementation of a robust sensorless speed controller. The robustness is guaranteed by the use of the Internal Model Controller (IMC). An intelligent algorithm is evolved to eliminate the mechanical speed. It is based on the Artificial Neural Network (ANN) principle. Verification of the proposed robust sensorless controller is provided by experimental realistic tests on a scalar controlled induction motor drive. Sensorless robust speed control at low speeds and in field weakening region (high speeds) is studied in order to show the robustness of the speed controller under a wide range of load.

  2. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  3. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    This viewgraph presentation provides information on the design of analog speed controllers for DC motors on aerospace systems. The presentation includes an overview of controller evolution, evolvable controller configuration, an emphasis on proportion integral (PI) controllers, schematic diagrams, and experimental results.

  4. Using Simulation Speeds to Differentiate Controller Interface Concepts

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Pope, Alan

    2008-01-01

    This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.

  5. Type-1 and Type-2 Fuzzy Logic and Sliding-Mode Based Speed Control of Direct Torque and Flux Control Induction Motor Drives - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva

    2013-08-01

    In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.

  6. Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Hui; Wu, Han; Lai, Jiang; Sheng, Hong-Zhi

    2014-12-01

    The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study. A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads: the aerodynamic loads can change the position of vehicle system (consequently the contact relations), the wheel/rail normal contact forces, the gravitational restoring forces/moments and the creep forces/moments. A mathematical model for hunting stability incorporating such influences was developed. A computer program capable of incorporating the effects of aerodynamic loads based on the model was written, and the critical speeds were calculated using this program. The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method, the results were also compared with the situations without aerodynamic loads. It is shown that the most dominant factors affecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not. The damping of yaw damper is the most dominant influencing factor for linear critical speeds, while the damping of lateral damper is most dominant for nonlinear ones. When the influences of aerodynamic loads are considered, the linear critical speeds decrease with the rise of crosswind velocity, whereas it is not the case for the nonlinear critical speeds. The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads. Combined actions of aerodynamic loads and suspension parameters also affect the critical speeds. The effects of such joint action are more obvious for nonlinear critical speeds.

  7. Follow the leader: Visual control of speed in pedestrian following

    PubMed Central

    Rio, Kevin W.; Rhea, Christopher K.; Warren, William H.

    2014-01-01

    When people walk together in groups or crowds they must coordinate their walking speed and direction with their neighbors. This paper investigates how a pedestrian visually controls speed when following a leader on a straight path (one-dimensional following). To model the behavioral dynamics of following, participants in Experiment 1 walked behind a confederate who randomly increased or decreased his walking speed. The data were used to test six models of speed control that used the leader's speed, distance, or combinations of both to regulate the follower's acceleration. To test the optical information used to control speed, participants in Experiment 2 walked behind a virtual moving pole, whose visual angle and binocular disparity were independently manipulated. The results indicate the followers match the speed of the leader, and do so using a visual control law that primarily nulls the leader's optical expansion (change in visual angle), with little influence of change in disparity. This finding has direct applications to understanding the coordination among neighbors in human crowds. PMID:24511143

  8. Telemetry Speeds Forest-Fire Control

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Cherbonneaux, J. W.

    1984-01-01

    Airborne system rapidly delivers hard copy to firefighters. Sensors in airplane send data to ground station for image processing. Imagery immediately transferred to U.S. Geologic Survey (USGS) maps by photo interpreter. Maps transmitted by telecopies directly to fire-control camps. Receipt by fire camp less than 10 minutes. Information aids in decisions involving deployment of firefighters and equipment, flood control, monitoring oilspills, observing thermal currents, and pollutions monitoring.

  9. An Automatic Speed Control for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1928-01-01

    Described here is an automatic control that has been used in several forms in wind tunnels at the Washington Navy Yard. The form now in use with the 8-foot tunnel at the Navy Yard is considered here. Details of the design and operation of the automatic control system are given. Leads from a Pitot tube are joined to an inverted cup manometer located above a rheostat. When the sliding weight of this instrument is set to a given notch, say for 40 m.p.h, the beam tip vibrates between two electric contacts that feed the little motor. Thus, when the wind is too strong or too weak, the motor automatically throws the rheostat slide forward and backward. If it failed to function well, the operator would notice the effect on his meniscus, and would operate the hand control by merely pressing the switch.

  10. Flow Control Effectiveness at High Speed Flows

    NASA Astrophysics Data System (ADS)

    Kontis, K.; Lada, C.

    2005-02-01

    The effects of two important flow control techniques, i.e. jet control and dimples, on the aerodynamic characteristics and performance of a number of body configurations have been studied experimentally. The dimple studies have been carried out in a transonic-supersonic wind tunnel and the jet studies in a hypersonic gun tunnel at a Mach number of 8.2. Air was used as the working gas. The tests employed schlieren photography and oil-flow to study the overall flow field. Quantitative studies have been made by pressure measurements.

  11. Automotive speed control and cruise controls. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning speed controls and cruise controls for automobiles, trucks, and industrial forklifts. Topics include stability analysis, H-infinity control theory, Proportional Integrative Derivative (PID) control, and idle speed control. The use and effect of controls in various highway situations are reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. A virtual reality simulation for high supersonic speed vehicle's control of moving mass

    NASA Astrophysics Data System (ADS)

    Wang, Yongjiao; Liang, Lei

    2010-07-01

    Moving mass control implements the maneuver control of vehicle through moving the movable slide inside vehicle in order to move the mass center position. In this paper, take missile as an example, based on the derivation of six degree of freedom (6-dof) model of mass moment missile, combined with the law of parameter variation of aerodynamic and speed during missile flight, combined with virtual simulation technology, to establish a virtual reality simulation for high supersonic speed vehicle's control of moving mass model, and provide necessary foundation for the next further study of moving mass control.

  13. Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drive

    SciTech Connect

    Heber, B.; Xu, L.; Tang, Y.

    1997-09-01

    Field orientation control (FOC) of induction machines has permitted fast transient response by decoupled torque and flux control. However, field orientation detuning caused by parameter variations is a major difficulty for indirect FOC methods. Traditional probability density function (PID) controllers have trouble meeting a wide range of speed tracking performance even when proper field orientation is achieved. PID controller performance is severely degraded when detuning occurs. This paper presents a fuzzy logic design approach that can meet the speed tracking requirements even when detuning occurs. Computer simulations and experimental results obtained via a general-purpose digital signal processor (DSP) system are presented.

  14. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  15. Control structures for high speed processors

    NASA Technical Reports Server (NTRS)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  16. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  17. Parameter sensitivities affecting the flutter speed of a MW-sized blade.

    SciTech Connect

    Lobitz, Donald Wayne, Jr.

    2004-10-01

    With the current trend toward larger and larger horizontal axis wind turbines, classical flutter is becoming a more critical issue. Recent studies have indicated that for a single blade turning in still air the flutter speed for a modern 35 m blade occurs at approximately twice its operating speed (2 per rev), whereas for smaller blades (5-9 m), both modern and early designs, the flutter speeds are in the range of 3.5-6 per rev. Scaling studies demonstrate that the per rev flutter speed should not change with scale. Thus, design requirements that change with increasing blade size are producing the concurrent reduction in per rev flutter speeds. In comparison with an early small blade design (5 m blade), flutter computations indicate that the non rotating modes which combine to create the flutter mode change as the blade becomes larger (i.e., for the larger blade the second flapwise mode, as opposed to the first flapwise mode for the smaller blade, combines with the first torsional mode to produce the flutter mode). For the more modern smaller blade design (9 m blade), results show that the non rotating modes that couple are similar to those of the larger blade. For the wings of fixed-wing aircraft, it is common knowledge that judicious selection of certain design parameters can increase the airspeed associated with the onset of flutter. Two parameters, the chordwise location of the center of mass and the ratio of the flapwise natural frequency to the torsional natural frequency, are especially significant. In this paper studies are performed to determine the sensitivity of the per rev flutter speed to these parameters for a 35 m wind turbine blade. Additional studies are performed to determine which structural characteristics of the blade are most significant in explaining the previously mentioned per rev flutter speed differences. As a point of interest, flutter results are also reported for two recently designed 9 m twist/coupled blades.

  18. Parameter sensitivities affecting the flutter speed of a MW-sized blade.

    SciTech Connect

    Lobitz, Donald Wayne, Jr.

    2005-08-01

    With the current trend toward larger and larger horizontal axis wind turbines, classical flutter is becoming a more critical issue. Recent studies have indicated that for a single blade turning in still air the flutter speed for a modern 35 m blade occurs at approximately twice its operating speed (2 per rev), whereas for smaller blades (5-9 m), both modern and early designs, the flutter speeds are in the range of 3.5-6 per rev. Scaling studies demonstrate that the per rev flutter speed should not change with scale. Thus, design requirements that change with increasing blade size are producing the concurrent reduction in per rev flutter speeds. In comparison with an early small blade design (5 m blade), flutter computations indicate that the non rotating modes which combine to create the flutter mode change as the blade becomes larger (i.e., for the larger blade the second flapwise mode, as opposed to the first flapwise mode for the smaller blade, combines with the first torsional mode to produce the flutter mode). For the more modern smaller blade design (9 m blade), results show that the non rotating modes that couple are similar to those of the larger blade. For the wings of fixed-wing aircraft, it is common knowledge that judicious selection of certain design parameters can increase the airspeed associated with the onset of flutter. Two parameters, the chordwise location of the center of mass and the ratio of the flapwise natural frequency to the torsional natural frequency, are especially significant. In this paper studies are performed to determine the sensitivity of the per rev flutter speed to these parameters for a 35 m wind turbine blade. Additional studies are performed to determine which structural characteristics of the blade are most significant in explaining the previously mentioned per rev flutter speed differences. As a point of interest, flutter results are also reported for two recently designed 9 m twist/coupled blades.

  19. Controller parameter tuning of delta robot based on servo identification

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Wang, Panfeng; Mei, Jiangping

    2015-03-01

    High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations. High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error. By taking Delta robot as an example, a method for parameter tuning of the fixed gain motion controller is presented. Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation, the PD+feedforward control strategy is proposed to adapt to the varying inertia loads, allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory. A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine. Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50% in comparison with the conventional auto-tuning and Z-N methods. The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.

  20. Stability control for high speed tracked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  1. Systematic Controller Design Methodology for Variable-Speed Wind Turbines

    SciTech Connect

    Hand, M. M.; Balas, M. J.

    2002-02-01

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

  2. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  3. Rotating speed control apparatus for an internal combustion engine

    SciTech Connect

    Umehara, K.

    1987-10-06

    A rotating speed control apparatus is described for controlling the rotating speed of an internal combustion engine, comprising: a capacitive discharge ignition circuit; rotating speed detecting circuit means for monitoring the rotating speed for the engine; overspeed preventing circuit means cooperable with the capacitive discharge ignition circuit and responsive to the rotating speed detecting circuit means; and independently manually actuable cut-off circuit means for disabling the overspeed preventing circuit means so as to prevent the overspeed preventing circuit means from limiting the rotating speed of the engine; wherein the cut-off circuit means includes a reset switch and is actuated in response to manual actuation of the reset switch; wherein the reset switch is a momentary push button switch; wherein following manual actuation of the momentary push button switch the cut-off circuit means remains continuously actuated until the engine is stopped, and wherein at a subsequent restart of the engine the cut-off circuit means is deactuated; wherein the ignition circuit includes a capacitive charging coil, wherein the push button switch has first and second terminals; and wherein the cut-off circuit means includes: a thyristor; a first resistor; a second resistor; a third resistor; a capacitor; first means electrically coupling the capacitive charging coil of the ignition circuit to the first terminal of the push button switch; and second means electrically coupling the anode of the thyristor to the overspeed preventing circuit means.

  4. Adaptive speed/position control of induction motor based on SPR approach

    NASA Astrophysics Data System (ADS)

    Lee, Hou-Tsan

    2014-11-01

    A sensorless speed/position tracking control scheme for induction motors is proposed subject to unknown load torque via adaptive strictly positive real (SPR) approach design. A special nonlinear coordinate transform is first provided to reform the dynamical model of the induction motor. The information on rotor fluxes can thus be derived from the dynamical model to decide on the proportion of input voltage in the d-q frame under the constraint of the maximum power transfer property of induction motors. Based on the SPR approach, the speed and position control objectives can be achieved. The proposed control scheme is to provide the speed/position control of induction motors while lacking the knowledge of some mechanical system parameters, such as the motor inertia, motor damping coefficient, and the unknown payload. The adaptive control technique is thus involved in the field oriented control scheme to deal with the unknown parameters. The thorough proof is derived to guarantee the stability of the speed and position of control systems of induction motors. Besides, numerical simulation and experimental results are also provided to validate the effectiveness of the proposed control scheme.

  5. Neural control and modulation of swimming speed in the larval zebrafish

    PubMed Central

    Marques, João C.; O'Malley, Donald M.; Orger, Michael B.; Engert, Florian

    2014-01-01

    Summary Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics we build a better understanding of how the brain controls movement. PMID:25066084

  6. Control algorithms for effective operation of variable-speed wind turbines

    SciTech Connect

    Not Available

    1993-10-01

    This report describes a computer code, called ASYM and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

  7. Control algorithms for effective operation of variable-speed wind turbines

    NASA Astrophysics Data System (ADS)

    1993-10-01

    This report describes a computer code, called ASYM, and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

  8. Parameters and controlling of plasma chemistry

    NASA Technical Reports Server (NTRS)

    Tsuji, O.

    1981-01-01

    The parameters involved in plasma polymerization reactions are examined and the use of these parameters in the control of plasma reactions is dicussed. The variables associated with the reaction chamber, electrical discharge form, frequency and electrical source for the development of plasma, and monitoring techniques are addressed.

  9. Linear Parameter Varying Control for Actuator Failure

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.

  10. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  11. Implementation of motor speed control using PID control in programmable logic controller

    NASA Astrophysics Data System (ADS)

    Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.

    2012-11-01

    This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.

  12. Controlled Speed Accessory Drive Program: Programmatic environmental assessment

    SciTech Connect

    Not Available

    1980-04-14

    This document is a programmatic environmental assessment of the Department of Energy's Controlled Speed Accessory Drive (CSAD) program and alternatives. Its purpose is to evaluate CSAD alternatives to assure that environmental priorities are considered at the earliest meaningful point in the decision-making process, and to facilitate the choice of preferable options. This document accords with both the letter and the spirit of the National Environmental Policy Act (NEPA) requirements as interpreted and standardized by the Council on Environmental Quality. The major conclusions reached in this assessment are as follows: (1) controlled speed accessory drive bolted onto existing automobile designs may not provide adequate engine cooling when operated at high ambient temperatures or under heavy loading; (2) when the CSAD is adopted for production, the emissions effect of controlled speed accessory drive will not be a problem. Auto emissions are already controlled by existing regulations, and automobiles with a CSAD must meet the same emission standards as non-CSAD vehicles; (3) the nature of the impact is such that significant expansion of the market will not affect it. The one adverse environmental concern, the engine cooling problem, will probably be remedied by proper optimization of automobiles for controlled speed accessory drive, or, until the problem can be alleviated, it will delay commercialization of the drive. No safety hazard will be introduced to the American roadways. In addition, no adverse environmental concerns directly related to the Controlled Speed Accessory Drive demonstration program are anticipated. Therefore, it is recommended that a finding of no significant impact be prepared.

  13. High-speed train control based on multiple-model adaptive control with second-level adaptation

    NASA Astrophysics Data System (ADS)

    Zhou, Yonghua; Zhang, Zhenlin

    2014-05-01

    Speed uplift has become the leading trend for the development of current railway traffic. Ideally, under the high-speed transportation infrastructure, trains run at specified positions with designated speeds at appointed times. In view of the faster adaptation ability of multiple-model adaptive control with second-level adaptation (MMAC-SLA), we propose one type of MMAC-SLA for a class of nonlinear systems such as cascaded vehicles. By using an input decomposition technique, the corresponding stability proof is solved for the proposed MMAC-SLA, which synthesises the control signals from the weighted multiple models. The control strategy is utilised to challenge the position and speed tracking of high-speed trains with uncertain parameters. The simulation results demonstrate that the proposed MMAC-SLA can achieve small tracking errors with moderate in-train forces incurred under the control of flattening input signals with practical enforceability. This study also provides a new idea for the control of in-train forces by tracking the positions and speeds of cars while considering power constraints.

  14. 14 CFR 23.149 - Minimum control speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operating. (d) A minimum speed to intentionally render the critical engine inoperative must be established... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the...

  15. 14 CFR 23.149 - Minimum control speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operating. (d) A minimum speed to intentionally render the critical engine inoperative must be established... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the...

  16. 14 CFR 23.149 - Minimum control speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operating. (d) A minimum speed to intentionally render the critical engine inoperative must be established... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the...

  17. 6. GOVERNOR AND SPEED CONTROL MECHANISMS TANK, AT LEFT AN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GOVERNOR AND SPEED CONTROL MECHANISMS TANK, AT LEFT AN ACCUMULATOR TANK WHICH STORE AIR PRESSURE TO OPEN GATES AND GET GENERATOR STARTED. LARGE TANK AT RIGHT IS THE MAIN GUARD VALVE FOR THE GENERATOR - Los Angeles Aqueduct, Haiwee Power Plant, Los Angeles, Los Angeles County, CA

  18. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  19. Research on AHP speed adjusting based on fuzzy-PID double-mode complex control

    NASA Astrophysics Data System (ADS)

    Sang, Yong; Liu, Yang; Lin, Hongbin; Wang, Zhanlin

    2008-10-01

    In the ground test station of AC motor driven airborne hydraulic pump (referred to as AHP, hereinafter), speed adjusting is usually worsened by the high order, nonlinearity and time-varying features of AC motor, as well as the nonlinearity of the hydraulic system. In order to solve these problems a new complex control method based on Fuzzy-PID control theory is brought forward. The control method adopts fuzzy controller to enhance the system's tracing features under big error conditions and adopts parameter self-modifying Fuzzy-PID control to eliminate static errors under small error conditions. Simulation results show that the complex controller has faster response, higher accuracy, stronger robust, compared with the general PID controller. The AHP speed and robust requirements can be satisfied.

  20. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  1. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.

    PubMed

    Park, Hae-Won; Kim, Sangbae

    2015-04-01

    This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground

  2. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  3. Robust motor speed control under time varying loads in moving actuator type artificial heart (AnyHeart).

    PubMed

    Lee, J J; Kim, W E; Choi, J; Park, J W; Chung, J; Nam, K; Park, S K; Son, H S; Sun, K; Min, B G

    2004-09-01

    The Moving Actuator type artificial heart(AnyHeart) as well as many other artificial hearts uses a motor as its power source. For controllability of control parameters such as pump rate, pump output, blood pressure profile and flow form, the precise motor speed control is important. However, because the implantable device has limited carrying capacity of hardware components in size and number, applying diverse motor control methods are not possible. In addition, the existing PI (Proportional-Integral) motor controller does not show satisfactory performance. A new controller that is sufficiently robust for the changes of load and physical system parameters has been designed and tested. The robust speed controller is based on the sliding mode control method that is applicable to a system of which the ranges of uncertainty in physical parameters are known. In a mock circulation system test, the actual speed showed good tracking characteristics in respect to the reference speed. Fast follow-up characteristics were also observed under high afterload and speed conditions. The speed error, current and power consumption were reduced by about 40%. The proposed control technique overcomes the limitations of the PI controller, and makes important improvements in both performance and stability. PMID:15521219

  4. The Speed of Light and the Hubble parameter: The Mass-Boom Effect

    SciTech Connect

    Alfonso-Faus, Antonio

    2008-05-29

    We prove here that Newton's universal gravitation and momentum conservation laws together reproduce Weinberg's relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light co taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, {omega}{sub m} {omega}{sub k}, so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck's fluctuation length of 10{sup -33} cm to the present size of the Universe (about 10{sup 28} cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 10{sup 15} gr) to the value at the present time of about 10{sup 55} gr.

  5. Research on speed control of secondary regulation lifting system of parking equipment

    NASA Astrophysics Data System (ADS)

    Zang, Faye

    2005-12-01

    Hydrostatic transmission with secondary regulation is a new kind of hydrostatic transmission that can regenerate inertial and gravitational energy of load. On the basis of an in-depth analysis of the working principles and energy-saving mechanisms of the parking equipment lifting systems with, secondary regulating technology, this paper proposes a method of regenerating a lifting system's inertial energy by controlling rotational speed and reclaiming the gravitational energy by use of a constant rotational speed. Considering large changes of the parameters of lifting systems and then non-linearity, a fuzzy control was adopted to control the lifting system, and a mathematical model of the system was established. By simulation and experiment of the lifting system, the conclusion was reached a lifting system's braking achieved by controlling rotational speed is reliable and stable at a definite speed. It also permits changing the efficiency of recovery by changing the rotational speed. The design power of the lifting system can be chosen in terms of the system's average power, so the system's power can be reduced and energy savings achieved.

  6. A speed feedback control strategy for car-following model

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Xing; Zhang, Li-Dong

    2014-11-01

    A speed feedback control mechanism was introduced into the system to improve the dynamical performance of the traffic flow. The modern control theory was used to analyze the stability of the system. It is found that the stability region varies with the feedback coefficient proportionally. In addition, the unit step responses in time domain and phase-frequency curves in frequency domain were given with different feedback coefficients in step response diagram and Bode diagram respectively. The overshoot and phase margins are inversely proportional to the speed feedback coefficients in an underdamped condition. The simulations were conducted to verify the validity of the improvement. The conclusion can be drawn that the analytical result and the simulation result are in good agreement with each other.

  7. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  8. Speed Control of General Purpose Engine with Electronic Governor

    NASA Astrophysics Data System (ADS)

    Sawut, Umerujan; Tohti, Gheyret; Takigawa, Buso; Tsuji, Teruo

    This paper presents a general purpose engine speed control system with an electronic governor in order to improve the current system with a mechanical governor which shows unstable characteristics by change of mecanical friction or A/F ratio (Air/Fuel ratio). For the control system above, there are problems that the feedback signal is only a crank angle because of cost and the controlled object is a general purpose engine which is strongly nonlinear. In order to overcome these problems, the system model is shown for the dynamic estimation of the amount of air flow and the robust controller is designed. That is, the proposed system includes the robust sliding-mode controller by the feedback signal of only a crank angle where Genetic Algorithm is applied for the controller design. The simulation and the experiments by MATLAB/Simulink are performed to show the effectiveness of our proposal.

  9. Changing Throwing Pattern: Instruction and Control Parameter

    ERIC Educational Resources Information Center

    Southard, Dan

    2006-01-01

    The purpose of this study was to determine the effects of instruction and scaling up a control parameter (velocity of throw) on changes in throwing pattern. Sixty adult female throwers (ages 20-26 years) were randomly placed into one of four practice conditions: (a) scale up on velocity with no instruction, (b) maintain constant velocity with no…

  10. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-12-01

    Field orientation control and fuzzy logic control are designed for variable speed drive systems with a doubly fed machine in slip power recovery configuration. Laboratory implementation with a general purpose DSP (digital signal processing) system is described and experimental results are given. High performance potential of a slip power recovery system is realized with these advanced controls, while flexible reactive power control becomes possible, and compared to the ordinary variable speed drives with singly fed induction machine, power converter rating is reduced.

  11. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations

    PubMed Central

    Heidari, Ali; Forouzan, Mohammad R.

    2012-01-01

    Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed. PMID:25685398

  12. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations.

    PubMed

    Heidari, Ali; Forouzan, Mohammad R

    2013-01-01

    Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed. PMID:25685398

  13. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  14. A transputer-based adaptive speed controller for AC induction motor drives with load torque estimation

    SciTech Connect

    Tsai, M.F.; Tzou, Y.Y.

    1997-03-01

    In this paper, the authors design and implement an adaptive speed controller that can estimate load torque for ac induction motor drives employing a transputer-based parallel processing technique. The adaptive speed controller, which precedes the field-oriented control loop, consists of a two-degree-of-freedom controller and a feedforward load-torque compensator. The two-degree-of-freedom controller is designed by a pole-placement technique with polynomial manipulations. Its parameters are adjusted adaptively in terms of estimated model parameters. Estimating the model parameters entails a second-order least-squares estimator with constant trace to avoid estimator windup. The design of the feedforward compensator is based on an estimated load-torque model. Estimating the load torque entails a first-order least-squares estimator with variable forgetting factor and covariance resetting, the purposes of which are to detect any slow or sudden changes of torque disturbance, respectively. The resulting adaptive controller is implemented in parallel by IMS T800-20 transputers. Experimental results demonstrate the robustness of the proposed control method in contending with varying load and torque disturbance.

  15. Design and control of a novel two-speed Uninterrupted Mechanical Transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Fang, Shengnan; Song, Jian; Song, Haijun; Tai, Yuzhuo; Li, Fei; Sinh Nguyen, Truong

    2016-06-01

    Conventional all-electric vehicles (EV) adopt single-speed transmission due to its low cost and simple construction. However, with the adoption of this type of driveline system, development of EV technology leads to the growing performance requirements of drive motor. Introducing a multi-speed or two-speed transmission to EV offers the possibility of efficiency improvement of the whole powertrain. This paper presents an innovative two-speed Uninterrupted Mechanical Transmission (UMT), which consists of an epicyclic gearing system, a centrifugal clutch and a brake band, allowing the seamless shifting between two gears. Besides, driver's intention is recognized by the control system which is based on fuzzy logic controller (FLC), utilizing the signals of vehicle velocity and accelerator pedal position. The novel UMT shows better dynamic and comfort performance in compare with the optimized AMT with the same gear ratios. Comparison between the control strategy with recognition of driver intention and the conventional two-parameter gear shifting strategy is presented. And the simulation and analysis of the middle layer of optimal gearshift control algorithm is detailed. The results indicate that the UMT adopting FLC and optimal control method provides a significant improvement of energy efficiency, dynamic performance and shifting comfort for EV.

  16. The hippocampus participates in the control of locomotion speed.

    PubMed

    López Ruiz, J R; Osuna Carrasco, L P; López Valenzuela, C L; Franco Rodríguez, N E; de la Torre Valdovinos, B; Jiménez Estrada, I; Dueñas Jiménez, J M; Dueñas Jiménez, S H

    2015-12-17

    The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery. PMID:26597762

  17. Effects of water-current speed on hematological, biochemical and immune parameters in juvenile tinfoil barb, Barbonymus schwanenfeldii (Bleeker, 1854)

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiming; Song, Bolan; Lin, Xiaotao; Xu, Zhongneng

    2016-01-01

    This study examines the effect of water-current speed on hematological, biochemical and immune parameters in juvenile tinfoil barb ( Barbonymus schwanenfeldii). Blood samples were taken on days 1, 23 and 45 from control fish and from two training groups maintained at current speeds of 0.06 bl/s (body length per second), 0.66 bl/s, and 1.92 bl/s, respectively. Significantly increased red-blood-cell counts and hematocrit were observed in the post-training groups on days 23 and 45. Significantly increased hemoglobin concentrations were also observed in the 1.92 bl/s group on days 23 and 45. In contrast, values of mean corpuscular volume were significantly lower in the 1.92 bl/s group than in the other groups on day 45. Nitroblue-tetrazolium-positive cells and lysozyme and superoxidase dismutase activities in the plasma increased significantly with increasing training intensity on days 23 and 45. Antibacterial activities were significantly increased in the trained groups compared with the control group on day 23; significantly elevated alkaline phosphatase activity was observed in the 1.92 bl/s groups on day 45. Therefore, training intensities of 0.66 and 1.92 bl/s enhanced the blood oxygen-carrying capability and plasma immune parameters of juvenile tinfoil barbs.

  18. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  19. Speed Isn't Everything: Complex Processing Speed Measures Mask Individual Differences and Developmental Changes in Executive Control

    ERIC Educational Resources Information Center

    Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko

    2013-01-01

    The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of "processing speed" may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and…

  20. Pulsewidth modulated speed control of brushless dc motors

    NASA Astrophysics Data System (ADS)

    Askinas, A. A.

    1984-09-01

    Until recently, few alternatives existed for the use of hydraulic and pneumatic actuators in primary flight control applications. With the advent of the samarium-cobalt permanent magnet brushless DC motor, consideration must now be given to the utilization of an electromechanical actuator in missiles which require significant maneuvering capability and hence, greater torques. This thesis investigates the theory and techniques of pulse width modulator speed control of brushless DC motors. After describing basic pulse width modulation (PWM) concepts, two constant velocity control schemes are presented: current feedback and a limit cycle scheme. By calculating the motor form factor (a figure of merit for power losses in the switching transistors which comprise the PWM network), the relative worth of each scheme is then evaluated. An in depth study is conducted of the limit cycle approach, with an emphasis on the power loss reductions obtained through the reduction of the velocity limit settings.

  1. Behavioural system identification of visual flight speed control in Drosophila melanogaster

    PubMed Central

    Rohrseitz, Nicola; Fry, Steven N.

    2011-01-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744

  2. The Impact of Back Squat and Leg-Press Exercises on Maximal Strength and Speed-Strength Parameters.

    PubMed

    Wirth, Klaus; Hartmann, Hagen; Sander, Andre; Mickel, Christoph; Szilvas, Elena; Keiner, Michael

    2016-05-01

    Wirth, K, Hartmann, H, Sander, A, Mickel, C, Szilvas, E, and Keiner, M. The impact of back squat and leg-press exercises on maximal strength and speed-strength parameters. J Strength Cond Res 30(5): 1205-1212, 2016-Strength training-induced increases in speed strength seem indisputable. For trainers and athletes, the most efficient exercise selection in the phase of preparation is of interest. Therefore, this study determined how the selection of training exercise influences the development of speed strength and maximal strength during an 8-week training intervention. Seventy-eight students participated in this study (39 in the training group and 39 as controls). Both groups were divided into 2 subgroups. The first training group (squat training group [SQ]) completed an 8-week strength training protocol using the parallel squat. The second training group (leg-press training group [LP]) used the same training protocol using the leg press (45° leg press). The control group was divided in 2 subgroups as controls for the SQ or the LP. Two-factorial analyses of variance were performed using a repeated measures model for all group comparisons and comparisons between pretest and posttest results. The SQ exhibited a statistically significant (p ≤ 0.05) increase in jump performance in squat jump (SJ, 12.4%) and countermovement jump (CMJ, 12.0%). Whereas, the changes in the LP did not reach statistical significance and amounted to improvements in SJ of 3.5% and CMJ 0.5%. The differences between groups were statistically significant (p ≤ 0.05). There are also indications that the squat exercise is more effective to increase drop jump performance. Therefore, the squat exercise increased the performance in SJ, CMJ, and reactive strength index more effectively compared with the leg-press in a short-term intervention. Consequently, if the strength training aims at improving jump performance, the squat should be preferred because of the better transfer effects. PMID:26439782

  3. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  4. Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, B.; Kritsuk, A. G.

    2016-02-01

    The Yee & Sjögreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov et al. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjögreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the

  5. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  6. Method and system for controlling a rotational speed of a rotor of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2008-12-30

    A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.

  7. Distributed control architecture of high-speed networks

    NASA Astrophysics Data System (ADS)

    Cidon, Israel; Gopal, Inder; Kaplan, Marc A.; Kutten, Shay

    1995-05-01

    A control architecture for a high-speed packet-switched network is described. The architecture was designed and implemented as part of the PARIS (subsequently plaNET and BBNS) networking project at IBM. This high bandwidth network for integrated communication (data, voice, video) is currently operational as a laboratory prototype. It will also be deployed within the AURORA Testbed that is part of the NSF/DARPA gigabit networking program. The high bandwidth dictates the need for specialized hardware to support faster packet handling for both point-to-point and multicast connections. A faster and more efficient network control is also required in order to support the increased number of connections and their changing requirements with time. The new network control architecture presented exploits specialized hardware, thereby enabling tasks to be performed faster and with less computation overhead. In particular, since control information can be distributed quickly using hardware packet handling mechanisms, decisions can be made based upon more complete and accurate information. In some respects, this has the effect of having the benefits of centralized control (e.g., easier bandwidth resource allocation to connections), while retaining the fault tolerance and scalability of a distributed architecture.

  8. Laser systems with acoustical optical control of output parameters for medical applications

    NASA Astrophysics Data System (ADS)

    Kazaryan, M. A.; Mokrushin, Yu. M.; Morozova, E. A.; Shakin, O. V.

    2006-05-01

    A high-speed system for controlling spectral and temporal parameters of copper vapor laser radiation was developed and studied. The laser is designed for medical applications, in particular, for photodynamic therapy and thermal destruction of pathological neoplasm formations. Repetition frequency of pulses and their on-off time ratio are synchronized by pumping pulses and can be independently controlled from a computer.

  9. Stall inception and the prospects for active control in four high-speed compressors

    SciTech Connect

    Day, I.J.; Breuer, T.; Escuret, J.; Cherrett, M.; Wilson, A.

    1999-01-01

    As part of a European collaborative project, four high-speed compressors were tested to investigate the generic features of stall inception in aero-engine type compressors. Tests were run over the full speed range to identify the design and operating parameters that influence the stalling process. A study of data analysis techniques was also conducted in the hope of establishing early warning of stall. The work presented here is intended to relate the physical happenings in the compressor to the signals that would be received by an active stall control system. The measurements show a surprising range of stall-related disturbances and suggest that spike-type stall inception is a feature of low-speed operation while modal activity is clearest in the midspeed range. High-frequency disturbances were detected at both ends of the speed range and nonrotating stall, a new phenomenon, was detected in three out of the four compressors. The variety of the stalling patterns, and the ineffectiveness of the stall warning procedures, suggests that the ultimate goal of a flightworthy active control system remains some way off.

  10. Highly Precise Rotational Speed Control by a Hybrid of PLL and Repetitive Control

    NASA Astrophysics Data System (ADS)

    Machida, Hidekazu; Inoue, Takashi; Kobayashi, Fuminori

    PLL speed control system has excellent ‘macroscopic’, or long-term, steadiness. However, ‘microscopic’ speed fluctuation is another important issue. It is called ‘cogging,’ caused by electro-magnetic structural property of motor. Although repetitive control is useful for reducing such fluctuation, stability condition is hard to be satisfied for PLL which inevitably includes integrator. In this article, we propose a D repetitive controller to ease this condition. Rather simple implementation with an FPGA and effective experimental results revealing 60% reduction in fluctuation are shown.

  11. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  12. Motor cortical control of movement speed with implications for brain-machine interface control

    PubMed Central

    Golub, Matthew D.; Yu, Byron M.; Schwartz, Andrew B.

    2014-01-01

    Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications. PMID:24717350

  13. Parameter study and optimization for piezoelectric energy harvester for TPMS considering speed variation

    NASA Astrophysics Data System (ADS)

    Toghi Eshghi, Amin; Lee, Soobum; Lee, Hanmin; Kim, Young-Cheol

    2016-04-01

    In this paper, we perform design parameter study and design optimization for a piezoelectric energy harvester considering vehicle speed variation. Initially, a FEM model using ANSYS is developed to appraise the performance of a piezoelectric harvester in a rotating tire. The energy harvester proposed here uses the vertical deformation at contact patch area from the car weight and centrifugal acceleration. This harvester is composed of a beam which is clamped at both ends and a piezoelectric material is attached on the top of that. The piezoelectric material possesses the 31 mode of transduction in which the direction of applied field is perpendicular to that of the electric field. To optimize the harvester performance, we would change the geometrical parameters of the harvester to obtain the maximum power. One of the main challenges in the design process is obtaining the required power while considering the constraints for harvester weight and volume. These two concerns are addressed in this paper. Since the final goal of this study is the development of an energy harvester with a wireless sensor system installed in a real car, the real time data for varied velocity of a vehicle are taken into account for power measurements. This study concludes that the proposed design is applicable to wireless tire sensor systems.

  14. FASTBUS Readout Controller card for high speed data acquisition

    SciTech Connect

    Zimmermann, S. Rio Grande do Sul Univ., Porto Alegre, RS . Dept. of Electrical Engineering); Areti, V.H.; Foster, G.W.; Joshi, U.; Treptow, K. )

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs.

  15. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  16. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  17. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  18. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  19. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  20. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  1. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  2. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  3. 30 CFR 57.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating speeds and control of equipment. 57... Loading, Hauling, and Dumping Traffic Safety § 57.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  4. 30 CFR 56.9101 - Operating speeds and control of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating speeds and control of equipment. 56... Loading, Hauling, and Dumping Traffic Safety § 56.9101 Operating speeds and control of equipment.... Operating speeds shall be consistent with conditions of roadways, tracks, grades, clearance, visibility,...

  5. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    NASA Astrophysics Data System (ADS)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  6. Active vibration control for high speed train bogies

    NASA Astrophysics Data System (ADS)

    Peiffer, Alexander; Storm, Stefan; Röder, Arno; Maier, Rudolf; Frank, Paul-Gerhard

    2005-02-01

    This report deals with the design of an active vibration control (AVC) system integrated into the primary suspension of the bogie of a German high-speed train (ICE). As a design case a prototype bogie (WU92) for the ICE2 was taken. This paper comprises all parts and stages of the development of an AVC system. First, a transfer path analysis was performed in order to identify the main paths of propagation and to determine the boundary conditions at the actuator contact points. A detailed FE-analysis performed on the basis of an already existing FE-model serves as a support to investigate the actuator performance and evaluate several actuator concepts. However, the evaluation of a multifold of varying configurations of actuator, error sensor and monitor sensor positions is obviously not possible in the experiment, but is in the simulation. Based on the simulations and the experiments the control system is implemented on a digital signal processor (DSP) system. The structure borne noise level was determined during running tests at the ICE3 and measurements at the WU92 installed in the test rig. The design of the actuator system includes the layout of the specific system as well as the selection of the piezoelectric elements. A specifically developed amplifier drives the actuators. Finally the system is integrated into one axle of the WU92 and tested during roller-rig measurements.

  7. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  8. Excitations for Rapidly Estimating Flight-Control Parameters

    NASA Technical Reports Server (NTRS)

    Moes, Tim; Smith, Mark; Morelli, Gene

    2006-01-01

    A flight test on an F-15 airplane was performed to evaluate the utility of prescribed simultaneous independent surface excitations (PreSISE) for real-time estimation of flight-control parameters, including stability and control derivatives. The ability to extract these derivatives in nearly real time is needed to support flight demonstration of intelligent flight-control system (IFCS) concepts under development at NASA, in academia, and in industry. Traditionally, flight maneuvers have been designed and executed to obtain estimates of stability and control derivatives by use of a post-flight analysis technique. For an IFCS, it is required to be able to modify control laws in real time for an aircraft that has been damaged in flight (because of combat, weather, or a system failure). The flight test included PreSISE maneuvers, during which all desired control surfaces are excited simultaneously, but at different frequencies, resulting in aircraft motions about all coordinate axes. The objectives of the test were to obtain data for post-flight analysis and to perform the analysis to determine: 1) The accuracy of derivatives estimated by use of PreSISE, 2) The required durations of PreSISE inputs, and 3) The minimum required magnitudes of PreSISE inputs. The PreSISE inputs in the flight test consisted of stacked sine-wave excitations at various frequencies, including symmetric and differential excitations of canard and stabilator control surfaces and excitations of aileron and rudder control surfaces of a highly modified F-15 airplane. Small, medium, and large excitations were tested in 15-second maneuvers at subsonic, transonic, and supersonic speeds. Typical excitations are shown in Figure 1. Flight-test data were analyzed by use of pEst, which is an industry-standard output-error technique developed by Dryden Flight Research Center. Data were also analyzed by use of Fourier-transform regression (FTR), which was developed for onboard, real-time estimation of the

  9. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  10. Gait parameter control timing with dynamic manual contact or visual cues.

    PubMed

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  11. Planning Robot-Control Parameters With Qualitative Reasoning

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.

    1993-01-01

    Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.

  12. A new method for speed control of a DC motor using magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Choi, Seung-Bok

    2014-03-01

    In this research, a new method to control speed of DC motor using magnetorheological (MR) clutch is proposed and realized. Firstly, the strategy of a DC motor speed control using MR clutch is proposed. The MR clutch configuration is then proposed and analyzed based on Bingham-plastic rheological model of MR fluid. An optimal designed of the MR clutch is then studied to find out the optimal geometric dimensions of the clutch that can transform a required torque with minimum mass. A prototype of the optimized MR clutch is then manufactured and its performance characteristics are experimentally investigated. A DC motor speed control system featuring the optimized MR clutch is designed and manufactured. A PID controller is then designed to control the output speed of the system. In order to evaluate the effectiveness of the proposed DC motor speed control system, experimental results of the system such as speed tracking performance are obtained and presented with discussions.

  13. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. PMID:25887841

  14. Measured sound speeds and acoustic nonlinearity parameter in liquid water up to 523 K and 14 MPa

    NASA Astrophysics Data System (ADS)

    Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2016-07-01

    Sound speed in liquid water at temperatures between 275 and 523 K and pressures up to 14 MPa were experimentally determined using a high temperature/high pressure capable acoustic resonance cell. The measurements enabled the determination of the temperature and pressure dependence of sound speed and thus the parameter of acoustic nonlinearly, B/A, over this entire P-T space. Most of the sound speeds measured in this work were found to be within 0.4% of the IAPWS-IF97 formulation, an international standard for calculating sound speed in water as a function of temperature and pressure. The values for B/A determined at laboratory ambient pressure and at temperatures up to 356 K, were found to be in general agreement with values calculated from the IAPWS-IF97 formulation. Additionally, B/A at 293 K was found to be 4.6, in agreement with established literature values.

  15. An exploration of the influence of diagonal dissociation and moderate changes in speed on locomotor parameters in trotting horses.

    PubMed

    Hobbs, Sarah Jane; Bertram, John E A; Clayton, Hilary M

    2016-01-01

    Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF) data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%). In these speed-matched trials, mean centre of pressure (COP) cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001) from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04) through synchronous (0.36 ± 0.02) to a more cranial location in fore-first dissociation (0.32 ± 0.02). Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation time (R = .594

  16. An exploration of the influence of diagonal dissociation and moderate changes in speed on locomotor parameters in trotting horses

    PubMed Central

    Bertram, John E.A.; Clayton, Hilary M.

    2016-01-01

    Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF) data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%). In these speed-matched trials, mean centre of pressure (COP) cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001) from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04) through synchronous (0.36 ± 0.02) to a more cranial location in fore-first dissociation (0.32 ± 0.02). Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation time (R = .594

  17. Analysis and control of high-speed wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Velenis, Efstathios

    In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable

  18. Control of the variable speed generator on the Sandia 34-metre vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Ralph, Mark E.

    The DOE/Sandia 34-meter VAWT Test Bed is a 500kW variable-speed wind turbine. The turbine is operated between 25 and 38 rpm and has been characterized from a structural and aerodynamic standpoint. A preliminary variable speed control algorithm has been implemented on the Test Bed. This paper describes the initial variable-speed control algorithm developed for the Test Bed and the performance of that algorithm to date. Initial performance comparisons between variable-speed and fixed-speed operation are made as well as some thoughts on the expansion of the operating envelope of the Test Bed.

  19. Control of the variable speed generator on the Sandia 34-metre vertical axis wind turbine

    SciTech Connect

    Ralph, M.E.

    1989-01-01

    The DOE/Sandia 34-metre VAWT Test Bed is a 500kW variable-speed wind turbine. The turbine is operated between 25 and 38 rpm and has been characterized from a structural and aerodynamic stand point. A preliminary variable speed control algorithm has been implemented on the Test Bed. This paper describes the initial variable-speed control algorithm developed for the Test Bed and the performance of that algorithm to date. Initial performance comparisons between variable-speed and fixed-speed operation are made as well as some thoughts on the expansion of the operating envelope of the Test Bed. 7 refs., 4 figs.

  20. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  1. The selective use of functional optical variables in the control of forward speed

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Awe, Cynthia A.

    1994-01-01

    Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.

  2. Intelligent modified internal model control for speed control of nonlinear uncertain heavy duty vehicles.

    PubMed

    Yadav, Anil Kumar; Gaur, Prerna

    2015-05-01

    The objective of this paper is to control the speed of heavy duty vehicle (HDV) through angular position of throttle valve. Modified internal model control (IMC) schemes with fuzzy supervisor as an adaptive tuning are proposed to control the speed of HDV. Internal model (IM) plays a key role in design of various IMC structures with robust and adaptive features. The motivation to design an IM is to produce nearly stable performance as of the system itself. Clustering algorithm and Hankel approximation based model order reduction techniques are used for the design of suitable IM. The time domain performance specifications such as overshoot, settling time, rise time and integral error performance indices such as the integral of the absolute error and the integral of the square of error are taken into consideration for performance analysis of HDV for various uncertainties. PMID:25563057

  3. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  4. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  5. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOEpatents

    Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  6. Benefits of variable rotor speed in integrated helicopter/engine control

    NASA Technical Reports Server (NTRS)

    Iwata, Takanori; Rock, Stephen M.

    1993-01-01

    Current helicopter flight and propulsion controls are typically designed with the assumption that rotor speed will be held to a constant setpoint. A new flight and propulsion control system using a continuously variable rotor speed command is proposed to improve the maneuverability and agility of helicopter systems. In this new approach, the flight control system generates an optimal variable rotor speed command in addition to conventional control commands in a framework of integrated flight/propulsion control. The benefits (i.e. improved maneuverability and agility) of varying rotor speed during transient maneuvers are demonstrated using a bob-up maneuver as an example. In particular, two types of benefits are identified in different maneuver conditions. One comes from a thrust augmentation, while the other comes from an exchange of rotational and translational energy. In the example, a simple linear dynamic hover model is used with an optimal control design method to generate the optimal rotor speed command.

  7. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  8. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder

    PubMed Central

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  9. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  10. Optimal V/f control of super high-speed PMSM and its application

    NASA Astrophysics Data System (ADS)

    Bian, Chunyuan; Ren, Shuangyan; Yan, Shijie; Man, Yongkui; Wang, Zhiqiang

    2006-11-01

    Due to the features such as high efficiency, small volume and high power density, super high-speed permanent magnet synchronous motor (PMSM) are becoming attractive in many fields such as high-speed micro-turbine generators, centrifugal compressors and pumps. V/f control is flexible and easy to be realized, moreover, voltage utilization ratio of SVPWM modulation is high, so the plan combined with V/f control and SVPWM modulation can be adopted for PMSM. The effects of the stator resistance and the dead-time on the control are generally neglected in traditional V/f control, which leads to that the low-speed performance is poor and the system is not stable at high speed. Based on considering the effects of stator resistance and dead-time, an optimal V/f control of the super high-speed PMSM is presented. Combined with the optimal V/f control and SVPWM modulation, soft starting and operating experiments for PMSM generator (105Kw, 61000rpm) are successfully implemented in the designed system of super high-speed gas micro-turbine based on DSP 320F2407A. The experiment results shows that this optimal V/f control is virtual and feasible for super high-speed PMSM. The proposed scheme provided dynamic stability and high performance of the super high-speed PMSM with an open-loop control.

  11. Guidance and Control Design for High-Speed Rollout and Turnoff (ROTO)

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.; Dangaran, R. D.; Dwyer, J. P.; McBee, L. S.; Norman, R. M.; Shannon, J. H.; Summers, L. G.

    1996-01-01

    A ROTO architecture, braking and steering control law and display designs for a research high speed Rollout and Turnoff (ROTO) system applicable to transport class aircraft are described herein. Minimum surface friction and FMS database requirements are also documented. The control law designs were developed with the aid of a non-real time simulation program incorporating airframe and gear dynamics as well as steering and braking guidance algorithms. An attainable objective of this ROTO system, as seen from the results of this study, is to assure that the studied aircraft can land with runway occupancy times less then 53 seconds. Runway occupancy time is measured from the time the aircraft crosses the runway threshold until its wing tip clears the near side of the runway. Turnoff ground speeds of 70 knots onto 30 degree exits are allowed with dry and wet surface conditions. Simulation time history and statistical data are documented herein. Parameters which were treated as variables in the simulation study include aircraft touchdown weight/speed/location, aircraft CG, runway friction, sensor noise and winds. After further design and development of the ROTO control system beyond the system developed earlier, aft CG MD-11 aircraft no longer require auto-asymmetric braking (steering) and fly-by-wire nose gear steering. However, the auto ROTO nose gear hysteresis must be less than 2 degrees. The 2 sigma dispersion certified for MD-11 CATIIIB is acceptable. Using this longitudinal dispersion, three ROTO exits are recommended at 3300, 4950 and 6750 feet past the runway threshold. The 3300 foot exit is required for MD-81 class aircraft. Designs documented in this report are valid for the assumptions/models used in this simulation. It is believed that the results will apply to the general class of transport aircraft; however further effort is required to validate this assumption for the general case.

  12. Proposal of Current Control Method for High-Speed AC Motor System

    NASA Astrophysics Data System (ADS)

    Furutani, Shinichi; Satake, Akira

    In this paper, current control method for High-Speed AC Motor System is proposed. In High-Speed driving operation, Current controller tends to lose stability because of dead time caused by computational delay and Electromagnetic coupling included AC Motor Model. The Main purpose of the proposed method is reduction of dead time on current controller. Proposed method based model predictive control and optimizing of start timing. The Effectiveness of proposed method is confirmed by simulation results.

  13. Anti-Windup Algorithm with Priority to Proportinal Control Output of Speed PI Controller for Position Servo System

    NASA Astrophysics Data System (ADS)

    Sazawa, Masaki; Yamada, Takahiro; Ohishi, Kiyoshi; Katsura, Seiichiro

    A robust servo system is important for performance improvement of motion control system in several industry applications. Generally, a high speed positioning servo system consists of robust control systems with integrator, such as PI controller. The industrial servo system always has the limitation for the capacity of actuator and power amplifier. An ordinary industrial position servo system often has the saturation of motor current and motor speed. It is difficult for the high speed positioning servo system to keep the robust position control against the saturation of motor current and motor speed. Because, an ordinary position servo system has the complicated control structure with many control loops. Hence, it sometimes has the large overshoot and the oscillated response by the limitation of motor current and motor speed. In order to overcome this problem, this paper proposes a new robust high speed positioning servo system considering the saturation of torque current and motor speed. The experimental results show that the proposed robust high speed positioning servo system the quick and stable position response for the saturation of motor current and motor speed.

  14. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  15. Parameter Optimization During Forging Process of a Novel High-Speed-Steel Cold Work Roll

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Sun, Yanliang; Li, Qiang; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The forging of high-speed-steel (HSS) roll has always been a technical problem in manufacturing industry. In this study, the forging process of a novel HSS cold work roll was simulated by deform-3D on the basis of rigid-viscoplastic finite element model. The effect of heating temperature and forging speed on temperature and stress fields during forging process was simulated too. The results show that during forging process, the temperature of the contact region with anvils increases. The stress of the forging region increases and distributes un-uniformly, while that of the non-forging region is almost zero. With increasing forging time, Z load on anvil increases gradually. With increasing heating temperature or decreasing forging speed, the temperature of the whole billet increases, while the stress and Z load on anvil decrease. In order to ensure the high efficiency and safety of the forging process, the heating temperature and the forging speed are chosen as 1160 °C and 16.667 mm/s, respectively.

  16. Optimizing wind turbine control system parameters

    SciTech Connect

    Schluter, L.L.; Vachon, W.A.

    1993-08-01

    The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

  17. Optimizing wind turbine control system parameters

    NASA Astrophysics Data System (ADS)

    Schluter, Larry L.; Vachon, William A.

    1993-05-01

    The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

  18. Speed control device for a heavy duty shaft. [solar sails for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1980-01-01

    A speed control device is characterized by a reference speed shaft spatially related to a heavy duty shaft, a drive train for driving the reference speed shaft at a constant angular velocity, a drive train for driving the heavy duty shaft at a variable angular velocity and a speed control assembly for continuously comparing the angular velocity of the heavy duty shaft with the angular velocity of the reference speed shaft. A brake assembly is connected to the heavy duty shaft and is adapted to respond to errors in the angular velocity of the heavy duty shaft in order to reduce the angular velocity of the heavy duty shaft to that of the reference speed shaft.

  19. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  20. Mental state inference using visual control parameters.

    PubMed

    Oztop, Erhan; Wolpert, Daniel; Kawato, Mitsuo

    2005-02-01

    Although we can often infer the mental states of others by observing their actions, there are currently no computational models of this remarkable ability. Here we develop a computational model of mental state inference that builds upon a generic visuomanual feedback controller, and implements mental simulation and mental state inference functions using circuitry that subserves sensorimotor control. Our goal is (1) to show that control mechanisms developed for manual manipulation are readily endowed with visual and predictive processing capabilities and thus allows a natural extension to the understanding of movements performed by others; and (2) to give an explanation on how cortical regions, in particular the parietal and premotor cortices, may be involved in such dual mechanism. To analyze the model, we simulate tasks in which an observer watches an actor performing either a reaching or a grasping movement. The observer's goal is to estimate the 'mental state' of the actor: the goal of the reaching movement or the intention of the agent performing the grasping movement. We show that the motor modules of the observer can be used in a 'simulation mode' to infer the mental state of the actor. The simulations with different grasping and non-straight line reaching strategies show that the mental state inference model is applicable to complex movements. Moreover, we simulate deceptive reaching, where an actor imposes false beliefs about his own mental state on an observer. The simulations show that computational elements developed for sensorimotor control are effective in inferring the mental states of others. The parallels between the model and cortical organization of movement suggest that primates might have developed a similar resource utilization strategy for action understanding, and thus lead to testable predictions about the brain mechanisms of mental state inference. PMID:15653289

  1. Analytical determination of PID coefficients for temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed variation

    SciTech Connect

    Krakow, K.I.; Lin, S.; Zeng, Z.S.

    1995-08-01

    A linearized analysis of temperature and relative humidity control using proportional-integral-differential (PID) controls to vary compressor motor speed and evaporator fan speed enables analytical determination of suitable PID coefficients. The PID coefficients are related to refrigeration system performance parameters and the volume of the conditioned space. Analytical determination of coefficients may eliminate or supplement trial-and-error methods. System response characteristics--damping ratios and periods--are related to PID coefficients, sampling intervals, performance parameters of a refrigeration system, and the volume of a conditioned space. Two control strategies are possible in order to control space temperature and relative humidity simultaneously. One strategy controls temperature by varying compressor speed and controls relative humidity by varying evaporator fan speed. The other strategy controls temperature by varying evaporator fan speed and controls relative humidity by varying compressor fan speed The first strategy was successfully implemented experimentally as well as by simulation. The second strategy was not successfully implemented due to an adverse interaction between the two control systems.

  2. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  3. Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Zhang, Jingrui

    2015-08-01

    In this paper, the variable-speed control moment gyros (VS-CMGs) are adopted as actuators for vibration suppression of space flexible manipulators. They are directly mounted on the flexible links of the manipulator. Such system can be viewed as a flexible multibody system in chain topology actuated by both joint motors and VS-CMGs. We first develop a general approach for establishing the system equations of motion through Kane's method. Then, two controllers are designed for trajectory tracking and vibration suppression: one is an inverse dynamics control, whereas the other is based on the singular perturbation method. The proposed two control strategies are applied to a free-flying platform with a flexible manipulator. Sample numerical results show that the VS-CMGs can significantly suppress the induced vibration of the flexible links during the large angle maneuver.

  4. Computational methods for the control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Cliff, E. M.; Powers, R. K.

    1986-01-01

    Finite dimensional approximation schemes that work well for distributed parameter systems are often not suitable for the analysis and implementation of feedback control systems. The relationship between approximation schemes for distributed parameter systems and their application to optimal control problems is discussed. A numerical example is given.

  5. Development of methodology for controlling the parameters of TP

    NASA Astrophysics Data System (ADS)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article describes TP control step of the intelligent system for predicting the properties of CGI, which includes three parts: the selection of parameters for comparison, the comparison with the simulation results, the change of the current TP. The list of parameters under which control in the production is carried out has been determined, the adjustment algorithm of TP is designed.

  6. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. PMID:27126600

  7. HyDRa: control of parameters for deterministic polishing.

    PubMed

    Ruiz, E; Salas, L; Sohn, E; Luna, E; Herrera, J; Quiros, F

    2013-08-26

    Deterministic hydrodynamic polishing with HyDRa requires a precise control of polishing parameters, such as propelling air pressure, slurry density, slurry flux and tool height. We describe the HyDRa polishing system and prove how precise, deterministic polishing can be achieved in terms of the control of these parameters. The polishing results of an 84 cm hyperbolic mirror are presented to illustrate how the stability of these parameters is important to obtain high-quality surfaces. PMID:24105579

  8. Biocybernetic Control of Vigilance Task Parameters

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick G.

    2000-01-01

    that tracking involves a continuous, though low level, motor response. Since it is not clear how such activity might affect performance of the adaptive automation system, it was thought to be important to evaluate how the system functioned when there was minimal motor output by the subjects. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a vigilance task. Several experiments were conducted to examine the use of EEG feedback to control a target dimension used in the task. Changes in a subject's arousal, as defined by specific EEG indexes, produced stimulus changes known to affect task performance. In addition, different electrode sites, compared to previous research, were sampled to determine the optimum configuration with regard to the following criteria: (1) task performance and (2) EEG index.

  9. Estimator Based Controller for High Speed Flywheel Magnetic Bearing System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.

    2002-01-01

    A flywheel system and its operator interface are described. Measurements of magnetic bearing negative stiffness are performed. Two digital magnetic bearing control algorithms (PD and estimator based) are defined and their implementations are described. Tuning of each controller is discussed. Comparison of the two controllers' stability, damping noise, and operating current are described. Results describing the superiority of the estimator-based controller are presented and discussed.

  10. 2-SPEED, a single-gimbal control moment gyro attitude control system.

    NASA Technical Reports Server (NTRS)

    Crenshaw, J. W.

    1973-01-01

    In 2-SPEED (Two Scissored Pair Ensemble, Explicit Distribution) four single-gimbal control moment gyros (SGCMGs) configured into two scissored pairs are combined with an explicit distribution of angular momentum between pairs to produce a system relatively insensitive to the singularity problems which have plagued other SGCMG concepts. In this system, the singularity surfaces in momentum space degenerate to discrete curves. Further, the system permits a smooth passage through these remaining singularities with, at worst, a temporary delay while momentum redistribution takes place. Finally, CMG-out operation is possible within the full volume of the reduced momentum envelope.

  11. Speed and efficiency control of an induction motor with input-output linearization

    SciTech Connect

    Wang, W.J.; Wang, C.C.

    1999-09-01

    A combination of a composite adaptive speed controller and an explicit efficiency control algorithm is proposed to control the speed and power efficiency of the induction motor in this paper. First, the input-output linearization method is used to dynamically decouple the motor speed and rotor flux. Then, a composite adaptive control algorithm is designed to control the speed of the induction motor. At steady-state light-load conditions, the magnetizing current command is adjusted on the basis of the product of magnetizing current command and torque current command such that the steady-state power loss is minimum. A PC-based experimental drive system has been implemented, and some experimental results are provided to demonstrate the effectiveness of the presented approach.

  12. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  13. Measuring Ability, Speed, or Both? Challenges, Psychometric Solutions, and What Can Be Gained From Experimental Control

    PubMed Central

    Goldhammer, Frank

    2015-01-01

    The main challenge of ability tests relates to the difficulty of items, whereas speed tests demand that test takers complete very easy items quickly. This article proposes a conceptual framework to represent how performance depends on both between-person differences in speed and ability and the speed-ability compromise within persons. Related measurement challenges and psychometric models that have been proposed to deal with the challenges are discussed. It is argued that addressing individual differences in the speed-ability trade-off requires the control of item response times. In this way, response behavior can be captured exclusively with the response variable remedying problems in traditional measurement approaches. PMID:26807063

  14. Control of the SCOLE configuration using distributed parameter models

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang

    1994-01-01

    A continuum model for the SCOLE configuration has been derived using transfer matrices. Controller designs for distributed parameter systems have been analyzed. Pole-assignment controller design is considered easy to implement but stability is not guaranteed. An explicit transfer function of dynamic controllers has been obtained and no model reduction is required before the controller is realized. One specific LQG controller for continuum models had been derived, but other optimal controllers for more general performances need to be studied.

  15. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  16. Functional integration of vertical flight path and speed control using energy principles

    NASA Technical Reports Server (NTRS)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  17. Parameter optimization in AQM controller design to support TCP traffic

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Yang, Oliver W.

    2004-09-01

    TCP congestion control mechanism has been widely investigated and deployed on Internet in preventing congestion collapse. We would like to employ modern control theory to specify quantitatively the control performance of the TCP communication system. In this paper, we make use of a commonly used performance index called the Integral of the Square of the Error (ISE), which is a quantitative measure to gauge the performance of a control system. By applying the ISE performance index into the Proportional-plus-Integral controller based on Pole Placement (PI_PP controller) for active queue management (AQM) in IP routers, we can further tune the parameters for the controller to achieve an optimum control minimizing control errors. We have analyzed the dynamic model of the TCP congestion control under this ISE, and used OPNET simulation tool to verify the derived optimized parameters of the controllers.

  18. Comprehensive analysis of the carbon impacts of vehicle intelligent speed control

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Goodman, Paul S.; Lai, Frank C. H.; Carsten, Oliver M. J.

    2010-07-01

    In recent years sophisticated technologies have been developed to control vehicle speed based on the type of road the vehicle is driven on using Global Positioning Systems and in-car technology that can alter the speed of the vehicle. While reducing the speed of road vehicles is primarily of interest from a safety perspective, vehicle speed is also an important determinant of vehicle emissions and thus these technologies can be expected to have impacts on a range of exhaust emissions. This work analyses the results from a very large, comprehensive field trial that used 20 instrumented vehicles with and without speed control driven almost 500,000 km measuring vehicle speed at 10 Hz. We develop individual vehicle modal emissions models for CO 2 for 30 Euro III and Euro IV cars at a 1-Hz time resolution. Generalized Additive Models were used to describe how emissions from individual vehicles vary depending on their driving conditions, taking account of variable interactions and time-lag effects. We quantify the impact that vehicle speed control has on-vehicle emissions of CO 2 by road type, fuel type and driver behaviour. Savings in CO 2 of ≈6% were found on average for motorway-type roads when mandatory speed control was used compared with base case conditions. For most other types of road, speed control has very little effect on emissions of CO 2 and in some cases can result in increased emissions for low-speed limit urban roads. We also find that there is on average a 20% difference in CO 2 emission between the lowest and highest emitting driver, which highlights the importance of driver behaviour in general as a means of reducing emissions of CO 2.

  19. Scale-Free Correlations, Influential Neighbours and Speed Control in Flocks of Birds

    NASA Astrophysics Data System (ADS)

    Hemelrijk, Charlotte K.; Hildenbrandt, Hanno

    2015-02-01

    Coordination of birds in large flocks is amazing, especially, since individual birds only interact with a few neighbors (the so-called `influential neighbours'). Yet, empirical data show that fluctuations of velocity and speed of different birds are correlated beyond the influential neighbours and are correlated over a larger distance in a larger flock. This correlation between the correlation length of velocity or speed and flock size was found to be linear, called a scale-free correlation. It depends on the way individuals interact in the flock, for instance, on the number of influential neighbours and speed control. It is unknown however, how exactly the number of influential neighbours affects this scale-free correlation. Recent empirical data show that different degrees of control of speed affect the scale-free correlation for speed fluctuations. Theoretically, based on statistical mechanics, it is predicted that at very high speed control, the correlation is no longer scale-free but saturates at a certain correlation length and this hampers coordination in flocks. We study these issues in a model, called StarDisplay, because its behavioural rules are biologically inspired and many of its flocking patterns resemble empirical data. Our results show that the correlation length of fluctuations of velocity as well as speed correlate with flock size in a scale-free manner. A higher number of influential neighbours causes a diminishing increase of the slope of the scale-free correlation with velocity, resulting thus in flocks that coordinate more uniformly. Similar to recent empirical data higher speed control reduces the correlation length of speed fluctuations in our model. As predicted theoretically, at very high speed control the model generates a non-scale free correlation, and although there are still flocks, they are in the process of disintegrating.

  20. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  1. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  2. Rotational speed control of Na +-driven flagellar motor by dual pipettes.

    PubMed

    Nogawa, Kousuke; Kojima, Masaru; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2009-12-01

    Single cell analysis has attracted much attention to reveal the detailed and localized biological information. Local environmental control technique is desired to analyze the detailed and localized properties of single cells. In this paper, we propose the local environmental control system with nano/micro dual pipettes to control the local reagent concentration dynamically and arbitrarily. Local environmental control by dual pipettes is applied to the rotational speed control of bacterial flagellar motor, which is a rotary molecular machine. We demonstrate quick response and iterative rotational speed control of Na (+)-driven flagellar motor in both accelerating and relaxing directions by switching the local spout between Na (+)-containing and Na (+) -free solutions with dual pipettes. It is shown that the rotational speed might be controllable by changing the spouting velocity of Na (+)-containing solution with multiplying the applied dc voltage. PMID:19887330

  3. Servo control system for friction drive with ultra-low speed and high accuracy

    NASA Astrophysics Data System (ADS)

    Yang, Shihai; Zhang, Zhenchao

    2008-07-01

    Due to its high accuracy and good performance at low speed, friction drive is widely used in turntable and large astronomical telescopes such as LAMOST and Keck. Especially, friction drives are implemented on the axes of azimuth, altitude and field rotation in LAMOST telescope. This paper describes the study on servo control system for friction drive with ultra-low speed and high accuracy. The principle, constitution, control algorithm and realization of servo system based on friction drive are analyzed and explored.

  4. An interdisciplinary school project using a Nintendo Wii controller for measuring car speed

    NASA Astrophysics Data System (ADS)

    Hansen, Nils Kristian; Mitchell, James Robert

    2013-03-01

    This work examines the feasibility of employing a Nintendo Wii game controller for measuring car speed in an interdisciplinary school project. It discusses the physical characteristics of the controller and of vehicle headlights. It suggests how an experiment may be linked to topics in mathematics, statistics, physics and computer science. An algorithm for calculating speed from repeated recordings of car headlights is provided. Finally the results of repeated experiments with an approaching car are provided.

  5. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed

    PubMed Central

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives. PMID:26959240

  6. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  7. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  8. Hi-speed versatile serial crate controller for CAMAC

    SciTech Connect

    Horelick, D.

    1984-10-01

    A serial crate controller, primarily for use in the SLC CAMAC control system, has been designed, and has been in use for about 2 years. The design supports a party line approach, with up to 16 crates on a single twisted pair for data transfers, plus another pair for prompt L response. The bit rate is 5 megabits/s, and complete transaction times of about 10 ..mu..s are achieved for 16-bit data transfers over cables up to 1000 feet long. One of the primary objects of the design was simplicity - there are approximately 60 chips in the two-board unit.

  9. Performance Improvement of Induction Motor Speed Sensor-Less Vector Control System Using an Adaptive Observer with an Estimated Flux Feedback in Low Speed Range

    NASA Astrophysics Data System (ADS)

    Fukumoto, Tetsuya; Kato, Yousuke; Kurita, Kazuya; Hayashi, Yoichi

    Because of various errors caused by dead time, temperature variation of resistance and so on, the speed estimation error is inevitable in the speed sensor-less vector control methods of the induction motor. Especially, the speed control loop becomes unstable at near zero frequency. In order to solve these problems, this paper proposes a novel design of an adaptive observer for the speed estimation. Adding a feedback loop of the error between the estimated and reference fluxes, the sensitivity of the current error signals for the speed estimation and the primary resistance identification are improved. The proposed system is analyzed and the appropriate feedback gains are derived. The experimental results showed good performance in low speed range.

  10. Effects of Control Stick Parameters on Human Controller Response

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Levinson, W. H.

    1984-01-01

    A fixed base laboratory tracking study was conducted to determine the effects of stick displacement and stick force characteristics on human tracking performance. Three different levels of control stick force/displacement characteristics and stick electrical gain were varied to observe their influence on RMS (Root Mean Square) tracking error and RMS control activity (stick output). The results indicated that both RMS tracking error and RMS control activity were influenced by the three different levels of control stick force/displacement characteristics and stick electrical gain. The human neuromotor time constant was affected by the electrical control gain of the stick while the spring stiffness of the stick influenced the time delay characteristics of the human response behavior.