Science.gov

Sample records for sperm cells subcellular

  1. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm

    SciTech Connect

    Cantino, M.E.; Schackmann, R.W.; Johnson, D.E.

    1983-05-01

    Energy-dispersive x-ray microanalysis was used to analyze changes in the subcellular distributions of Na, Mg, P, S, Cl, K, and Ca associated with the acrosome reaction of sea urchin sperm. Within 5 sec after induction of the acrosome reaction, nuclear Na and mitochondrial Ca increased and nuclear and mitochondrial K decreased. Uptake of mitochondrial P was detected after several minutes, and increases in nuclear Mg were detected only after 5-10 min of incubation following induction of the reaction. The results suggest that sudden permeability changes in the sperm plasma membrane are associated with the acrosome reaction, but that complete breakdown of membrane and cell function does not occur for several minutes.

  2. Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia

    PubMed Central

    Matzke-Karasz, Renate; Neil, John V.; Smith, Robin J.; Symonová, Radka; Mořkovský, Libor; Archer, Michael; Hand, Suzanne J.; Cloetens, Peter; Tafforeau, Paul

    2014-01-01

    Cypridoidean ostracods are one of a number of animal taxa that reproduce with giant sperm, up to 10 000 µm in length, but they are the only group to have aflagellate, filamentous giant sperm. The evolution and function of this highly unusual feature of reproduction with giant sperm are currently unknown. The hypothesis of long-term evolutionary persistence of this kind of reproduction has never been tested. We here report giant sperm discovered by propagation phase contrast X-ray synchrotron micro- and nanotomography, preserved in five Miocene ostracod specimens from Queensland, Australia. The specimens belong to the species Heterocypris collaris Matzke-Karasz et al. 2013 (one male and three females) and Newnhamia mckenziana Matzke-Karasz et al. 2013 (one female). The sperm are not only the oldest petrified gametes on record, but include three-dimensional subcellular preservation. We provide direct evidence that giant sperm have been a feature of this taxon for at least 16 Myr and provide an additional criterion (i.e. longevity) to test hypotheses relating to origin and function of giant sperm in the animal kingdom. We further argue that the highly resistant, most probably chitinous coats of giant ostracod sperm may play a role in delaying decay processes, favouring early mineralization of soft tissue. PMID:24827442

  3. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.

    1994-12-31

    Theories have suggested that there is a link between protamine concentrations in individual sperm and sperm fertility. At present, biochemical analyses have only been performed on bulk populations and existing methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. As part of an investigation into male sperm fertility, nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the ratio of Phosphorus to Sulfur the authors have been able to determine the amount of protamine 1 and protamine 2 in individual cells from bulk fertile samples of bull and mouse sperm. Preliminary results show that, for each species, the relative amounts of protamine 1 and protamine 2 in morphologically normal sperm agree well with expected values.

  4. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation

    PubMed Central

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F.; Fissore, Rafael; Arnoult, Christophe

    2015-01-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca2+ oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca2+ oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  5. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation.

    PubMed

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F; Fissore, Rafael; Arnoult, Christophe

    2015-02-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  6. Why so many sperm cells?

    PubMed Central

    Reynaud, Karine; Schuss, Zeev; Rouach, Nathalie; Holcman, David

    2015-01-01

    A key limiting step in fertility is the search for the oocyte by spermatozoa. Initially, there are tens of millions of sperm cells, but a single one will make it to the oocyte. This may be one of the most severe selection processes designed by evolution, whose role is yet to be understood. Why such a huge redundancy is required and what does that mean for the search process? we discuss here these questions and consequently new lines of interdisciplinary research needed to find possible answers. PMID:26478772

  7. Subcellular optogenetics – controlling signaling and single-cell behavior

    PubMed Central

    Karunarathne, W. K. Ajith; O'Neill, Patrick R.; Gautam, Narasimhan

    2015-01-01

    ABSTRACT Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide. PMID:25433038

  8. In Mice, Scientists Turn Stem Cells into Sperm

    MedlinePlus

    ... news/fullstory_157465.html In Mice, Scientists Turn Stem Cells Into Sperm Researchers from China say lab tests ... News) -- Scientists in China say they used mouse stem cells to create functional mouse sperm in the laboratory. ...

  9. Sperm Cells of a Primitive Strepsipteran.

    PubMed

    Nardi, James B; Delgado, Juan A; Collantes, Francisco; Miller, Lou Ann; Bee, Charles M; Kathirithamby, Jeyaraney

    2013-01-01

    The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera-the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects' sperm cells along with specific ultrastructural features of their organelles. PMID:26462430

  10. Sperm Cells of a Primitive Strepsipteran

    PubMed Central

    Nardi, James B.; Delgado, Juan A.; Collantes, Francisco; Miller, Lou Ann; Bee, Charles M.; Kathirithamby, Jeyaraney

    2013-01-01

    The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera—the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects’ sperm cells along with specific ultrastructural features of their organelles. PMID:26462430

  11. Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...

  12. The stochastic dance of circling sperm cells: sperm chemotaxis in the plane

    NASA Astrophysics Data System (ADS)

    Friedrich, B. M.; Jülicher, F.

    2008-12-01

    Biological systems such as single cells must function in the presence of fluctuations. It has been shown in a two-dimensional experimental setup that sea urchin sperm cells move toward a source of chemoattractant along planar trochoidal swimming paths, i.e. drifting circles. In these experiments, a pronounced variability of the swimming paths is observed. We present a theoretical description of sperm chemotaxis in two dimensions which takes fluctuations into account. We derive a coarse-grained theory of stochastic sperm swimming paths in a concentration field of chemoattractant. Fluctuations enter as multiplicative noise in the equations for the sperm swimming path. We discuss the stochastic properties of sperm swimming and predict a concentration-dependence of the effective diffusion constant of sperm swimming which could be tested in experiments.

  13. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells.

    PubMed

    de Wagenaar, B; Dekker, S; de Boer, H L; Bomer, J G; Olthuis, W; van den Berg, A; Segerink, L I

    2016-04-12

    The use of high quality semen for artificial insemination in the livestock industry is essential for successful outcome. Insemination using semen with a high number of sperm cells containing morphological defects has a negative impact on fertilization outcome. Therefore, semen with a high number of these abnormal cells is discarded in order to maintain high fertilization potential, resulting in the loss of a large number of morphologically normal sperm cells (up to 70-80% of original sample). A commonly occurring morphological sperm anomaly is the cytoplasmic droplet on the sperm flagella. Currently, no techniques are available to extract morphologically normal sperm cells from rejected samples. Therefore, we aim to develop a microfluidic setup which is able to detect and sort morphologically normal sperm cells label-free and non-invasively. In a proof-of-concept experiment, differential impedance measurements were used to detect the presence of cytoplasmic droplets on sperm flagella, which was quantified by calculating the area under the curve (AUC) of the corresponding impedance peaks. A receiver operating characteristic curve of this electrical analysis method showed the good predictive power of this analysis method (AUC value of 0.85). Furthermore, we developed a label-free cell sorting system using LabVIEW, which is capable of sorting sperm cells based on impedance. In a proof-of-concept experiment, sperm cells and 3 μm beads were sorted label-free and non-invasively using impedance detection and dielectrophoresis sorting. These experiments present our first attempt to perform sperm refinement using microfluidic technology. PMID:27025866

  14. Sperm cells as vectors in the production of transgenic animals

    SciTech Connect

    Prince, R.M.

    1993-04-28

    Transgenic animals are used in industry and in biomedical research in order to provide in vivo experimental model systems. Sperm cells have been reported used as vectors in the production of transgenic animals before, however no approach has of yet proven to be successful. Fertilizing eggs with genetically modified sperm would be advantageous in that sperm are readily accessible and stable, and eggs can be fertilized by modified sperm cells in vivo. Recent elucidations regarding the unique manner of DNA packaging in sperm chromatin by protamines has provided us with the insight for developing a method of introducing foreign DNA into sperm which is likely to succeed where others have failed. We have developed a method for mimicking the in vivo system of sperm chromatin toroid subunits in vitro, concentrating these toroids, and fluorescent visualization. Our present work concerns development of a method to successfully deliver DNA across the cell membranes and into the nucleus.

  15. Upward swimming of a sperm cell in shear flow.

    PubMed

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation. PMID:27078385

  16. Upward swimming of a sperm cell in shear flow

    NASA Astrophysics Data System (ADS)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  17. The development of cat testicular sperm cryopreservation protocols: Effects of tissue fragments or sperm cell suspension.

    PubMed

    Chatdarong, Kaywalee; Thuwanut, Paweena; Morrell, Jane M

    2016-01-15

    In endangered animals that have been found dead or sterilized for medical reasons, testis is the ultimate source of haploid DNA or sperm. Thus, preservation of testicular sperm may be performed to rescue their genetics. The aim of this study was to evaluate protocols for testicular sperm freezing: as tissue fragments or cell suspension in domestic cats as a model. A pair of testes from each cat (n = 9) were cut into eight equal pieces. Four randomly selected pieces were cryopreserved as: (1) tissue pieces using two-step freezing; (2) tissue pieces using a slow passive cooling device (CoolCell); (3) sperm suspension after single-layer centrifugation (SLC) through colloids; and (4) sperm suspension without being processed through SLC. A testicular piece from each cat served as fresh control. Testicular sperm membrane and DNA integrity were evaluated before, and after, the cryopreservation process. In addition, spermatogenic cell types (testicular sperm, spermatogonia, spermatocyte, and spermatid) present in the suspension samples were counted before and after SLC. The results found that testicular sperm membrane integrity in the suspension after SLC process was higher than that in the fragment form neither using the two-step nor CoolCell freezing, both before and after freezing (before freezing: 92.3 ± 3.4 vs. 81 ± 4.5 and 80.0 ± 7.0; after freezing: 84.5 ± 4.6 vs. 71.2 ± 12 and 76.2 ± 4.6; P ≤ 0.05). Testicular sperm DNA integrity was, however, not different among groups. Furthermore, the samples processed through the SLC had higher ration of sperm cells: other spermatogenic cells than those were not processed through the SLC (88.9 ± 3.8 vs. 30 ± 7.9; P ≤ 0.05). In summary, testicular sperm cryopreserved as a minced suspension is considered suitable in terms of preventing sperm membrane integrity, and SLC is considered a selection tool for enriching haploid sperm cells from castrated or postmortem cats. PMID:26498389

  18. How Cells Measure Length on Subcellular Scales.

    PubMed

    Marshall, Wallace F

    2015-12-01

    Cells are not just amorphous bags of enzymes, but precise and complex machines. With any machine, it is important that the parts be of the right size, yet our understanding of the mechanisms that control size of cellular structures remains at a rudimentary level in most cases. One problem with studying size control is that many cellular organelles have complex 3D structures that make their size hard to measure. Here we focus on linear structures within cells, for which the problem of size control reduces to the problem of length control. We compare and contrast potential mechanisms for length control to understand how cells solve simple geometry problems. PMID:26437596

  19. Reliable single sperm cryopreservation in Cell Sleepers for azoospermia management.

    PubMed

    Coetzee, K; Ozgur, K; Berkkanoglu, M; Bulut, H; Isikli, A

    2016-03-01

    Conventional sperm freezing methods perform best when freezing sperm samples containing at least hundreds of spermatozoa. In this severe male factor infertility case series, we examined the reproductive outcomes in 12 intracytoplasmic sperm injection cases where spermatozoa used were frozen in Cell Sleepers. Cell Sleepers are novel devices in which individual spermatozoa can be frozen in microdroplets. The case series included five men with obstructive azoospermia, six with nonobstructive azoospermia and one with cryptozoospermia, in whom microscopic sperm retrievals from testicular sperm extraction (TESE), micro-TESE extracts and a centrifugation procedure resulted in less than 50 spermatozoa. A total of 304 microscopically retrieved spermatozoa were frozen in 20 Cell Sleepers using a rapid manual cryopreservation method. A total of 179 mature oocytes were injected with recovered thawed spermatozoa, resulting in a fertilisation rate of 65.9% (118 of 179), with no total fertilisation failures. In 10 cases, an embryo transfer was performed, three on day 3 and seven on day 5, resulting in a per cycle pregnancy rate of 58.3% (seven of 12). Four of the pregnancies have progressed past 20 gestation weeks. The recovery and use of spermatozoa that were frozen in Cell Sleepers was uncomplicated and effective and eliminated the need to perform any microscopic sperm retrieval procedures on the day of oocyte collection. Modification of the routine sperm cryopreservation methodology to include the use of Cell Sleepers increases the range of sperm samples that can be effectively cryopreserved, to include men with severe male factor fertility. PMID:25988980

  20. Nuclear microscopy of sperm cell elemental structure

    NASA Astrophysics Data System (ADS)

    Bench, Graham S.; Balhorn, Rod; Friz, Alexander M.

    1995-05-01

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  1. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.; Balhorn, R.; Friz, A.M.; Freeman, S.P.H.T.

    1994-09-28

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  2. A Sub-Cellular Viscoelastic Model for Cell Population Mechanics

    PubMed Central

    Jamali, Yousef; Azimi, Mohammad; Mofrad, Mohammad R. K.

    2010-01-01

    Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and ‘in silico’ (computational) models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the communication

  3. A sub-cellular viscoelastic model for cell population mechanics.

    PubMed

    Jamali, Yousef; Azimi, Mohammad; Mofrad, Mohammad R K

    2010-01-01

    Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational) models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the communication between

  4. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    SciTech Connect

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  5. Shape and shear guide sperm cells spiraling upstream

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  6. Sperm Cells Induce Distinct Cytokine Response in Peripheral Mononuclear Cells from Infertile Women with Serum Anti-Sperm Antibodies

    PubMed Central

    Kverka, Miloslav; Ulcova-Gallova, Zdenka; Bartova, Jirina; Cibulka, Jan; Bibkova, Katarina; Micanova, Zdenka; Tlaskalova-Hogenova, Helena

    2012-01-01

    Background and Aims Anti-sperm antibodies in can markedly reduce the likelihood of natural conception. The etiology of this anti-sperm immunity in human females is unknown. We compared the cytokine response of peripheral blood mononuclear cells (PBMCs) from infertile patients with or without anti-sperm antibodies (ASA) and fertile women. Methodology/Principal Findings We cultivated the PBMCs together with sperm antigens (whole cells or cell lysate), and screened the supernatants for 40 cytokines by antibody array. When stimulated with whole sperm cells, the PBMCs from patients with ASA produce less IL-3, IL-11, IL-13, ICAM-1, GCSF and more IL-2, IL-4 and IL-12p70 as compared to healthy women. PBMCs from patients with ASA produce typically less IL-13, IL-7, IL-17 and MIG, and more MIP-1β and IL-8, as compared to PBMCs from patients without ASA. In response to sperm cell lysate, PBMCs from infertile women without ASA respond initially by increase in production of growth factors (GCSF, GM-CSF and PDGF-BB) followed by increase in chemokines (e.g. IL-8, MCP-1 and MIP-1β). Conclusions Cellular immune responses to sperm antigens, measured by production of cytokines, differ among infertile women with ASA, infertile women without ASA and healthy women. This difference could play an important role in the initial steps of the infertility pathogenesis. PMID:22952917

  7. A New Method for Multiple Sperm Cells Tracking

    PubMed Central

    Imani, Yoones; Teyfouri, Niloufar; Ahmadzadeh, Mohammad Reza; Golabbakhsh, Marzieh

    2014-01-01

    Motion analysis or quality assessment of human sperm cell is great important for clinical applications of male infertility. Sperm tracking is quite complex due to cell collision, occlusion and missed detection. The aim of this study is simultaneous tracking of multiple human sperm cells. In the first step in this research, the frame difference algorithm is used for background subtraction. There are some limitations to select an appropriate threshold value since the output accuracy is strongly dependent on the selected threshold value. To eliminate this dependency, we propose an improved non-linear diffusion filtering in the time domain. Non-linear diffusion filtering is a smoothing and noise removing approach that can preserve edges in images. Many sperms that move with different speeds in different directions eventually coincide. For multiple tracking over time, an optimal matching strategy is introduced that is based on the optimization of a new cost function. A Hungarian search method is utilized to obtain the best matching for all possible candidates. The results show nearly 3.24% frame based error in dataset of videos that contain more than 1 and less than 10 sperm cells. Hence the accuracy rate was 96.76%. These results indicate the validity of the proposed algorithm to perform multiple sperms tracking. PMID:24696807

  8. A new method for multiple sperm cells tracking.

    PubMed

    Imani, Yoones; Teyfouri, Niloufar; Ahmadzadeh, Mohammad Reza; Golabbakhsh, Marzieh

    2014-01-01

    Motion analysis or quality assessment of human sperm cell is great important for clinical applications of male infertility. Sperm tracking is quite complex due to cell collision, occlusion and missed detection. The aim of this study is simultaneous tracking of multiple human sperm cells. In the first step in this research, the frame difference algorithm is used for background subtraction. There are some limitations to select an appropriate threshold value since the output accuracy is strongly dependent on the selected threshold value. To eliminate this dependency, we propose an improved non-linear diffusion filtering in the time domain. Non-linear diffusion filtering is a smoothing and noise removing approach that can preserve edges in images. Many sperms that move with different speeds in different directions eventually coincide. For multiple tracking over time, an optimal matching strategy is introduced that is based on the optimization of a new cost function. A Hungarian search method is utilized to obtain the best matching for all possible candidates. The results show nearly 3.24% frame based error in dataset of videos that contain more than 1 and less than 10 sperm cells. Hence the accuracy rate was 96.76%. These results indicate the validity of the proposed algorithm to perform multiple sperms tracking. PMID:24696807

  9. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen M.R. Bakst*1 and C. Murphy2, 1Animal Biosciences and Biotechnology Laboratory, 2Electron & Confocal Microscopy Unit, Beltsville Area, ARS, USDA, Beltsville MD Sustained fertilization o...

  10. Hyaluronidase 2: a novel germ cell hyaluronidase with epididymal expression and functional roles in mammalian sperm.

    PubMed

    Modelski, Mark J; Menlah, Gladys; Wang, Yipei; Dash, Soma; Wu, Kathie; Galileo, Deni S; Martin-DeLeon, Patricia A

    2014-11-01

    To initiate the crucial cell adhesion events necessary for fertilization, sperm must penetrate extracellular matrix barriers containing hyaluronic acid (HA), a task thought to be accomplished by neutral-active hyaluronidases. Here we report that the ~57 kDa hyaluronidase 2 (HYAL2) that in somatic tissues has been highly characterized to be acid-active is present in mouse and human sperm, as detected by Western blot, flow cytometric, and immunoprecipitation assays. Immunofluorescence revealed its presence on the plasma membrane over the acrosome, the midpiece, and proximal principal piece in mice where protein fractionation demonstrated a differential distribution in subcellular compartments. It is significantly more abundant in the acrosome-reacted (P = 0.04) and soluble acrosomal fractions (P = 0.006) (microenvironments where acid-active hyaluronidases function) compared to that of the plasma membrane where neutral hyaluronidases mediate cumulus penetration. Using HA substrate gel electrophoresis, immunoprecipitated HYAL 2 was shown to have catalytic activity at pH 4.0. Colocalization and coimmunoprecipitation assays reveal that HYAL2 is associated with its cofactor, CD44, consistent with CD44-dependent HYAL2 activity. HYAL2 is also present throughout the epididymis, where Hyal2 transcripts were detected, and in the epididymal luminal fluids. In vitro assays demonstrated that HYAL2 can be acquired on the sperm membrane from epididymal luminal fluids, suggesting that it plays a role in epididymal maturation. Because similar biphasic kinetics are seen for HYAL2 and SPAM1 (Sperm adhesion molecule 1), it is likely that HYAL2 plays a redundant role in the catalysis of megadalton HA to its 20 kDa intermediate during fertilization. PMID:25232017

  11. Geometrical guidance and trapping transition of human sperm cells

    NASA Astrophysics Data System (ADS)

    Guidobaldi, A.; Jeyaram, Y.; Berdakin, I.; Moshchalkov, V. V.; Condat, C. A.; Marconi, V. I.; Giojalas, L.; Silhanek, A. V.

    2014-03-01

    The guidance of human sperm cells under confinement in quasi-2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with diluted sperm populations, for which effects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identified and analyzed. We also show that highly efficient microratchets can be fabricated by using curved asymmetric obstacles to take advantage of the spermatozoa specific swimming strategy.

  12. Triggering cell detachment from patterned electrode arrays by programmed subcellular release.

    PubMed

    Wildt, Bridget; Wirtz, Denis; Searson, Peter C

    2010-07-01

    Programmed subcellular release is an in vitro technique for the quantitative study of cell detachment. The dynamics of cell contraction are measured by releasing cells from surfaces to which they are attached with spatial and temporal control. Release of subcellular regions of cells is achieved by plating cells on an electrode array created by standard microfabrication methods. The electrodes are then biochemically functionalized with an arginine-glycine-aspartic acid (RGD)-terminated thiol. Application of a voltage pulse results in electrochemical desorption of the RGD-terminated thiols, triggering cell detachment. This method allows for the study of the full cascade of events from detachment to subsequent subcellular reorganization. Fabrication of the electrode arrays may take 1-2 d. Preparation for experiments, including surface functionalization and cell plating, can be completed in 10 h. A series of cell release experiments on one device may last several hours. PMID:20595956

  13. Origination of turbulence in dense suspensions of sperm cells

    NASA Astrophysics Data System (ADS)

    Denissenko, Petr; Kirkman-Brown, Jackson; Smith, David; Kantsler, Vasily

    2014-11-01

    Motile micro-organisms with pushing flagella, such as sperm cells, can be directed by ``one way'' microchannels with ratchet teeth-like wall configuration. We use an array of such micro-channels to gradually concentrate human spermatozoa in a circular arena of 1 mm diameter and 200 micron depth. Velocities of individual cells are measured by particle tracking and velocity of cell-carrying fluid is measured using PIV. At high concentrations, fluid velocities and the velocity fluctuations of individual cells exceeding that of individual swimmers in the dilute regime by an order of magnitude have been measured. Velocity correlations are calculated to study evolution of characteristic length scales as the cell concentration increases. Results are discussed in the context of self-organisation phenomena in active fluids and cooperation of sperm cells.

  14. LONG-TERM EFFECTS OF TRIETHYLENEMELAMINE EXPOSURE ON MOUSE TESTIS CELLS AND SPERM CHROMATIN STRUCTURE ASSAYED BY FLOW CYTOMETRY

    EPA Science Inventory

    The toxic and potentially mutagenic actions of triethylenemelamine (TEM) on mouse body and testis weights, testicular cell kinetics, sperm production, sperm head morphology, and sperm chromatin structure were assessed in two experiments. he first experiment examined effects of fo...

  15. Detection of dilute sperm samples using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    Viator, J. A.; Sutovsky, P.; Weight, R. M.

    2008-02-01

    Detection of sperm cells in dilute samples may have application in forensic testing and diagnosis of male reproductive health. Due to the optically dense subcellular structures in sperm cells, irradiation by nanosecond laser pulses induces a photoacoustic response detectable using a custom flow cytometer. We determined the detection threshold of bull sperm using various concentrations, from 200 to 1,000,000 sperm cells per milliliter. Using a tunable laser system set to 450nm with a 5 ns pulse duration and 11-12 mJ/pulse, we obtained a detection threshold of 3 sperm cells. The flow rate was 4 ml/minute through the flow chamber. The acoustic sensor was a 100 μm PVDF film attached to the glass flow chamber. The acoustic signal was preamplified and sent to an oscilloscope. The threshold signal indicated a signal to noise ratio of approximately 6 to 1. Improved system design may decrease the threshold to single sperm cells.

  16. Dynamic Polymeric Microtubes for the Remote-Controlled Capture, Guidance, and Release of Sperm Cells.

    PubMed

    Magdanz, Veronika; Guix, Maria; Hebenstreit, Franziska; Schmidt, Oliver G

    2016-06-01

    Remote-controlled release of single sperm cells is demonstrated by the use of polymeric microtubes that unfold upon temperature increase to 38 °C. Thermoresponsive, ferromagnetic multilayers are tailored to catch sperm cells and remotely control them by external magnetic fields. These polymeric spermbots are propelled by the sperm flagella. When the temperature is increased, the tubes unfold and the cell is set free. PMID:27003908

  17. Sub-cellular force microscopy in single normal and cancer cells

    SciTech Connect

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  18. CellWhere: graphical display of interaction networks organized on subcellular localizations.

    PubMed

    Zhu, Lu; Malatras, Apostolos; Thorley, Matthew; Aghoghogbe, Idonnya; Mer, Arvind; Duguez, Stéphanie; Butler-Browne, Gillian; Voit, Thomas; Duddy, William

    2015-07-01

    Given a query list of genes or proteins, CellWhere produces an interactive graphical display that mimics the structure of a cell, showing the local interaction network organized into subcellular locations. This user-friendly tool helps in the formulation of mechanistic hypotheses by enabling the experimental biologist to explore simultaneously two elements of functional context: (i) protein subcellular localization and (ii) protein-protein interactions or gene functional associations. Subcellular localization terms are obtained from public sources (the Gene Ontology and UniProt-together containing several thousand such terms) then mapped onto a smaller number of CellWhere localizations. These localizations include all major cell compartments, but the user may modify the mapping as desired. Protein-protein interaction listings, and their associated evidence strength scores, are obtained from the Mentha interactome server, or power-users may upload a pre-made network produced using some other interactomics tool. The Cytoscape.js JavaScript library is used in producing the graphical display. Importantly, for a protein that has been observed at multiple subcellular locations, users may prioritize the visual display of locations that are of special relevance to their research domain. CellWhere is at http://cellwhere-myology.rhcloud.com. PMID:25883154

  19. Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes

    NASA Astrophysics Data System (ADS)

    Sandersius, S. A.; Weijer, C. J.; Newman, T. J.

    2011-08-01

    Cells and the tissues they form are not passive material bodies. Cells change their behavior in response to external biochemical and biomechanical cues. Behavioral changes, such as morphological deformation, proliferation and migration, are striking in many multicellular processes such as morphogenesis, wound healing and cancer progression. Cell-based modeling of these phenomena requires algorithms that can capture active cell behavior and their emergent tissue-level phenotypes. In this paper, we report on extensions of the subcellular element model to model active biomechanical subcellular processes. These processes lead to emergent cell and tissue level phenotypes at larger scales, including (i) adaptive shape deformations in cells responding to slow stretching, (ii) viscous flow of embryonic tissues, and (iii) streaming patterns of chemotactic cells in epithelial-like sheets. In each case, we connect our simulation results to recent experiments.

  20. Sperm Cell Dynamics in Shallow Chambers

    NASA Astrophysics Data System (ADS)

    Condat, Carlos; Marconi, Veronica; Guidobaldi, Alejandro; Giojalas, Laura; Silhanek, Alejandro; Jeyaram, Yogesh; Moshchalkov, Victor

    2015-03-01

    Self-propelled microorganisms are attracted to surfaces. This makes their dynamic behavior in restricted geometries very different from that observed in the bulk. Here we analyze the motion of spermatozoids confined to shallow chambers, investigating the nature of the cell trajectories and their accumulation near the side boundaries. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and down surfaces separated by stretches of quasi-free motion near the center of the gap. Use of microstructured petal-shaped edges limits accumulation near the borders and contributes to increase the concentration in the chamber interior. System stabilization occurs over times of the order of minutes, which agrees well with a theoretical estimate that assumes that the cell mean-square displacement is largely due to the quasi-linear segments. Pure quasi-circular trajectories would require several hours to stabilize. Our estimates also indicate that stabilization proceeds 2.5 times faster in the rosette geometries than in the smooth-edged chambers, which is another practical reason to prefer the former.

  1. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt. PMID:19537160

  2. Ejaculate Oxidative Stress Is Related with Sperm DNA Fragmentation and Round Cells

    PubMed Central

    Iommiello, Valeria Maria; Albani, Elena; Di Rosa, Alessandra; Marras, Alessandra; Menduni, Francesca; Morreale, Giovanna; Levi, Shanti Lia; Pisano, Benedetta; Levi-Setti, Paolo Emanuele

    2015-01-01

    Oxidative stress (OS) plays an essential role in male infertility aetiology by affecting sperm quality, function, and also the integrity of sperm DNA. The assessment of oxidative stress in semen may be an important tool to improve the evaluation of sperm reproductive capacity. The purpose of this study was the evaluation of any possible relation between the unbalance of oxidative stress caused by superoxide anion in the ejaculate with the presence of sperm DNA fragmentation and high concentration of round cells. 56 semen samples from males from couples suffering from infertility were evaluated according to World Health Organisation (WHO) 2010 guidelines. Oxidative stress levels from N1 (low) to N4 (high) were assessed in ejaculates using oxiSperm; DFI (sperm DNA fragmentation index) as assessed by the SCSA (Sperm Chromatin Structure Assay) was used for evaluation of sperm chromatin integrity. Our data show that high oxidative stress (N3-N4 levels) correlated positively with a DFI ≥ 30% (P = 0.0379) and round cells ≥1.500.000/mL (P = 0.0084). In conclusion, OS increases sperm DNA damage. Thus evaluation of semen OS extent of sperm DNA damage in infertile man could be useful to develop new therapeutic strategies and improve success of assisted reproduction techniques (ART). PMID:25802519

  3. Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20 Antibody for Forensic DNA Analysis

    PubMed Central

    Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian

    2016-01-01

    Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128

  4. Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20 Antibody for Forensic DNA Analysis.

    PubMed

    Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian

    2016-01-01

    Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128

  5. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  6. Identification of differentially expressed proteins from primary versus metastatic pancreatic cancer cells using subcellular proteomics.

    PubMed

    McKinney, Kimberly Q; Lee, Jin-Gyun; Sindram, David; Russo, Mark W; Han, David K; Bonkovsky, Herbert L; Hwang, Sun-Il

    2012-01-01

    Pancreatic cancer is an aggressive disease with nearly equal yearly rates of diagnosis and death. Current therapies have failed to improve outcomes due to rapid disease progression and late stage at presentation. Recently, pathways involved in progression and metastasis have been elucidated; however, new knowledge has not generated more effective therapies. We report on the use of subcellular fractionation and liquid chromatography (LC)-mass spectrometry to identify 3,907 proteins in four pancreatic cancer cell lines, 540 of which are unique to primary cancer cells, and 487 unique to cells derived from metastatic sites. Statistical analysis identified 134 proteins significantly differentially expressed between the two populations. The subcellular localization of these proteins was determined and expression levels for four targets were validated using western blot techniques. These identified proteins can be further investigated to determine their roles in progression and metastasis and may serve as therapeutic targets in the development of more effective treatments for pancreatic cancer. PMID:22990105

  7. Subcellular real-time in vivo imaging of intralymphatic and intravascular cancer-cell trafficking

    NASA Astrophysics Data System (ADS)

    McElroy, M.; Hayashi, K.; Kaushal, S.; Bouvet, M.; Hoffman, Robert M.

    2008-02-01

    With the use of fluorescent cells labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and a highly sensitive small animal imaging system with both macro-optics and micro-optics, we have developed subcellular real-time imaging of cancer cell trafficking in live mice. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 small animal imaging system with a sensitive CCD camera and four objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. We have also developed real-time imaging of cancer cell trafficking in lymphatic vessels. Cancer cells labeled with GFP and/or RFP were injected into the inguinal lymph node of nude mice. The labeled cancer cells trafficked through lymphatic vessels where they were imaged via a skin flap in real-time at the cellular level until they entered the axillary lymph node. The bright dual-color fluorescence of the cancer cells and the real-time microscopic imaging capability of the Olympus OV100 enabled imaging the trafficking cancer cells in both blood vessels and lymphatics. With the dual-color cancer cells and the highly sensitive imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time.

  8. Comparison of methods for detecting mitomycin C- and ethyl nitrosourea-induced germ cell damage in mice: sperm enzyme activities, sperm motility, and testis weight

    SciTech Connect

    Ficsor, G.; Oldford, G.M.; Loughlin, K.R.; Panda, B.B.; Dubien, J.L.; Ginsberg, L.C.

    1984-01-01

    Testes weights, sperm motility and enzyme activities in single sperm were compared with respect to their ability to detect either developmental or mutational damage to germ cells. Male mice were injected i.p. with 2.5 mg/kg mitomycin C (MC) or 50 or 100 mg/kg ethylnitrosourea (ENU) or saline and were then killed at times such that sperm derived from treated vas sperm (SZ), spermatids (ST), preleptotene-late-spermatogonial cells (PLSG), spermatogonial cells (SG), or spermatogonial stem cells (SGS) could be evaluated. The authors conclude that testis weight, which is easily obtained, is a sensitive indicator of germ cell damage by these agents. Sperm from each animal were evaluated for sperm motility, acrosin activity, succinic dehydrogenase (SDH) activity with or without the competitive inhibitor malonate or after exposure to 60/sup 8/C for 10 min. The latter two assays were to detect sperm enzymes resistant to the inhibitor or heat. The presence of the acrosin protein was also detected immunologically. Of the sperm assays, acrosin activity proved to be the most sensitive indicator of germ cell damage and was the simplest to measure.

  9. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    PubMed

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells. PMID:27515077

  10. Phospholipids of subcellular organelles isolated from cultured BHK cells.

    PubMed

    Brotherus, J; Renkonen, O

    1977-02-23

    Mitochondrial and nuclei were purified from cultured hamster fibroblasts (BHK21 cells) by centrifugation in sucrose gradients. The phospholipid compositions of the preparations were compared to those of the previously purified plasma membranes, endoplasmic reticulum and lysosomes. The mitochondria had a characteristically high content (approx. 16% of lipid phosphorus) of cardiolipin, which was practically absent from the other purified organelles. The nuclei were enriched in phosphatidylcholine and phosphatidylinositol (approx. 68% and 5% of lipid phosphorus, respectively). Lysobisphosphatidic acid was almost absent from the mitochondria and nuclei, as well as from the plasma membrane and endoplasmic reticulum, which suggests that this phospholipid is confined to the lysosomes of the BHK cell. The nuclei and the mitochondria contained relatively little sphingomyelin, a characteristic lipid of the plasma membrane. The distributions of the total cellular phospholipid and protein between the various organelles were calculated and compared to the corresponding data estimated for the rat liver. The BHK cell contained relatively more phospholipids in the nucleus and the lysosomes than the liver. All the organelles of the BHK cell contained less protein per phospholipid than the equivalent organelles of the liver. PMID:836856

  11. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

    PubMed

    O'Neill, Patrick R; Kalyanaraman, Vani; Gautam, N

    2016-05-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  12. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration

    PubMed Central

    O’Neill, Patrick R.; Kalyanaraman, Vani; Gautam, N.

    2016-01-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  13. In vitro production of haploid sperm cells from male germ cells of foetal cattle.

    PubMed

    Dong, Wu-Zi; Hua, Jin-Lian; Shen, Wen-Zheng; Dou, Zhong-Ying

    2010-04-01

    The purpose of this study was to isolate the foetal cattle male germ cells (mGCs) and then induce them into sperm cells. The mGCs were purified and enriched by a two-step plating method based on the different adherence velocities of mGCs and somatic cells. The percentage of the vasa and the c-kit positive cells were 95.34+/-2.25% and 53.3+/-1.03% by using flow cytometry analysis (FCA), respectively. In feeder-free culture system, the half-suspending cells appeared and formed a 16-cell rosary in medium after the mGCs were cultured for 6-8 days. On immunocytochemical staining during the second passage, some single cells adhering to the plate appeared to be both Oct-4 and alpha6-integrin positive. During the third passage, the mGCs were induced for 48 h by retinol acid (RA) on Sertoli cell-feeder layer, followed by 5-7 days culture in an RA-free medium. Some elongated sperm-like cells appeared in the medium at this stage. We found that the most effective concentration of RA for the inducement was 10(-7)moll(-1) (P<0.01). The haploid cells in suspension were identified by FCA. The elongated sperm-like cells showed proacrosome-like structure and the flagellum with fibre construct under electron microscopy. The mRNA of outer dense fibre-3 (ODF-3) and transcription protein-1 (TP-1) could be detected in the suspended cells by using reverse transcription polymerase chain reaction (RT-PCR). About 23.1% bovine oocytes could be activated to perform cleavage by intracytoplasmic injection with the sperm-like cells, but embryos did not further develop. Our investigation further demonstrated that foetal cattle mGCs could be induced in vitro into haploid sperm in the short term. PMID:19632794

  14. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Mi, Lan; Xiong, Rongling; Wang, Pei-Nan; Chen, Ji-Yao; Yang, Wuli; Wang, Changchun; Peng, Qian

    2009-07-01

    Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  15. Effects of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics.

    PubMed

    Evenson, D P; Jost, L K; Baer, R K

    1993-01-01

    Effects of methyl methanesulfonate (MMS) on mouse testicular cell kinetics and sperm chromatin structure were determined flow cytometrically. Mice were exposed to a single ip injection of saline containing 0 or 150 mg/kg MMS. Relative ratios of 1N, 2N and 4N testicular cells were not affected until 22 days postexposure. Ratios of 1N cell types were altered from 13 to 22 days and were near normal by 25 days. This study revealed an MMS induced alteration of chromatin structure in testicular, elongated spermatids by the sperm chromatin structure assay (SCSA), a flow cytometric measure of the susceptibility of acridine orange stained sperm DNA to denaturation in situ. The SCSA also detected alterations in cauda sperm chromatin structure at 3 days, which was 8 days prior to alterations in sperm head morphology, indicating the increased sensitivity of the SCSA. SCSA data were practically similar whether measuring either fresh or frozen/thawed sperm, or whether measured by two different types of flow cytometers: a) laser driven, orthogonal optical axis; or b) low cost mercury arc lamp system with epiillumination. The data support the model of Sega and Owens [Mutat Res 111:227-244:1983] that MMS alkylates cysteine-SH groups in sperm protamines, thereby destabilizing sperm chromatin structure and leading to broken chromosomes and mutations. PMID:8444143

  16. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. PMID:26676327

  17. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  18. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments.

    PubMed

    Tanaka, N; Fujita, M; Handa, H; Murayama, S; Uemura, M; Kawamura, Y; Mitsui, T; Mikami, S; Tozawa, Y; Yoshinaga, T; Komatsu, S

    2004-06-01

    Despite recent progress in sequencing the complete genome of rice ( Oryza sativa), the proteome of this species remains poorly understood. To extend our knowledge of the rice proteome, the subcellular compartments, which include plasma membranes (PM), vacuolar membranes (VM), Golgi membranes (GM), mitochondria (MT), and chloroplasts (CP), were purified from rice seedlings and cultured suspension cells. The proteins of each of these compartments were then systematically analyzed using two-dimensional (2D) electrophoresis, mass spectrometry, and Edman sequencing, followed by database searching. In all, 58 of the 464 spots detected by 2D electrophoresis in PM, 43 of the 141 spots in VM, 46 of the 361 spots in GM, 146 in the 672 spots in MT, and 89 of the 252 spots in CP could be identified by this procedure. The characterized proteins were found to be involved in various processes, such as respiration and the citric acid cycle in MT; photosynthesis and ATP synthesis in CP; and antifungal defense and signal systems in the membranes. Edman degradation revealed that 60-98% of N-terminal sequences were blocked, and the ratios of blocked to unblocked proteins in the proteomes of the various subcellular compartments differed. The data on the proteomes of subcellular compartments in rice will be valuable for resolving questions in functional genomics as well as for genome-wide exploration of plant function. PMID:15069638

  19. Hematoporphyrin derivative induced photodamage to brain tumor cells: Alterations in subcellular membranes

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.

    1997-01-01

    Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.

  20. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    PubMed Central

    Jiang, Hua; Yi, Jun; Boavida, Leonor C.; Chen, Yuan; Becker, Jörg D.; Köhler, Claudia; McCormick, Sheila

    2015-01-01

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells. PMID:26466609

  1. Nuclear activity of sperm cells during Hyacinthus orientalis L. in vitro pollen tube growth

    PubMed Central

    Zienkiewicz, Krzysztof; Suwińska, Anna; Niedojadło, Katarzyna; Zienkiewicz, Agnieszka; Bednarska, Elżbieta

    2011-01-01

    In this study, the transcriptional state and distribution of RNA polymerase II, pre-mRNA splicing machinery elements, and rRNA transcripts were investigated in the sperm cells of Hyacinthus orientalis L. during in vitro pollen tube growth. During the second pollen mitosis, no nascent transcripts were observed in the area of the dividing generative cell, whereas the splicing factors were present and their pools were divided between newly formed sperm cells. Just after their origin, the sperm cells were shown to synthesize new RNA, although at a markedly lower level than the vegetative nucleus. The occurrence of RNA synthesis was accompanied by the presence of RNA polymerase II and a rich pool of splicing machinery elements. Differences in the spatial pattern of pre-mRNA splicing factors localization reflect different levels of RNA synthesis in the vegetative nucleus and sperm nuclei. In the vegetative nucleus, they were localized homogenously, whereas in the sperm nuclei a mainly speckled pattern of small nuclear RNA with a trimethylguanosine cap (TMG snRNA) and SC35 protein distribution was observed. As pollen tube growth proceeded, inhibition of RNA synthesis in the sperm nuclei was observed, which was accompanied by a gradual elimination of the splicing factors. In addition, analysis of rRNA localization indicated that the sperm nuclei are likely to synthesize some pool of rRNA at the later steps of pollen tube. It is proposed that the described changes in the nuclear activity of H. orientalis sperm cells reflect their maturation process during pollen tube growth, and that mature sperm cells do not carry into the zygote the nascent transcripts or the splicing machinery elements. PMID:21081664

  2. Identification of Proteins Enriched in Rice Egg or Sperm Cells by Single-Cell Proteomics

    PubMed Central

    Abiko, Mafumi; Furuta, Kensyo; Yamauchi, Yoshio; Fujita, Chiharu; Taoka, Masato; Isobe, Toshiaki; Okamoto, Takashi

    2013-01-01

    In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms. PMID:23936051

  3. Utility of magnetic cell separation as a molecular sperm preparation technique.

    PubMed

    Said, Tamer M; Agarwal, Ashok; Zborowski, Maciej; Grunewald, Sonja; Glander, Hans-Juergen; Paasch, Uwe

    2008-01-01

    Assisted reproductive techniques (ARTs) have become the treatment of choice in many cases of infertility; however, the current success rates of these procedures remain suboptimal. Programmed cell death (apoptosis) most likely contributes to failed ART and to the decrease in sperm quality after cryopreservation. There is a likelihood that some sperm selected for ART will display features of apoptosis despite their normal appearance, which may be partially responsible for the low fertilization and implantation rates seen with ART. One of the features of apoptosis is the externalization of phosphatidylserine (PS) residues, which are normally present on the inner leaflet of the sperm plasma membrane. Colloidal superparamagnetic microbeads ( approximately 50 nm in diameter) conjugated with annexin V bind to PS and are used to separate dead and apoptotic spermatozoa by magnetic-activated cell sorting (MACS). Cells with externalized PS will bind to these microbeads, whereas nonapoptotic cells with intact membranes do not bind and could be used during ARTs. We have conducted a series of experiments to investigate whether the MACS technology could be used to improve ART outcomes. Our results clearly indicate that integrating MACS as a part of sperm preparation techniques will improve semen quality and cryosurvival rates by eliminating apoptotic sperm. Nonapoptotic spermatozoa prepared by MACS display higher quality in terms of routine sperm parameters and apoptosis markers. The higher sperm quality is represented by an increased oocyte penetration potential and cryosurvival rates. Thus, the selection of nonapoptotic spermatozoa by MACS should be considered to enhance ART success rates. PMID:18077822

  4. Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility

    PubMed Central

    Fan, Zhenzhen; Sun, Yubing; Di Chen; Tay, Donald; Chen, Weiqiang; Deng, Cheri X.; Fu, Jianping

    2013-01-01

    Mechanical forces are critical to modulate cell spreading, contractility, gene expression, and even stem cell differentiation. Yet, existing tools that can apply controllable subcellular forces to a large number of single cells simultaneously are still limited. Here we report a novel ultrasound tweezing cytometry utilizing ultrasound pulses to actuate functionalized lipid microbubbles covalently attached to single live cells to exert mechanical forces in the pN - nN range. Ultrasonic excitation of microbubbles could elicit a rapid and sustained reactive intracellular cytoskeleton contractile force increase in different adherent mechanosensitive cells. Further, ultrasound-mediated intracellular cytoskeleton contractility enhancement was dose-dependent and required an intact actin cytoskeleton as well as RhoA/ROCK signaling. Our results demonstrated the great potential of ultrasound tweezing cytometry technique using functionalized microbubbles as an actuatable, biocompatible, and multifunctional agent for biomechanical stimulations of cells. PMID:23846290

  5. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion

    PubMed Central

    Rivadeneira, Dayana B.; Caino, M. Cecilia; Seo, Jae Ho; Angelin, Alessia; Wallace, Douglas C.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Survivin promotes cell division and suppresses apoptosis in many human cancers, and increased abundance correlates with metastasis and poor prognosis. Here, we showed that a pool of survivin that localized to the mitochondria of certain tumor cell lines enhanced the stability of oxidative phosphorylation Complex II, which promoted cellular respiration. Survivin also supported the subcellular trafficking of mitochondria to the cortical cytoskeleton of tumor cells, which was associated with increased membrane ruffling, increased focal adhesion complex turnover, and increased tumor cell migration and invasion in cultured cells, and enhanced metastatic dissemination in vivo. Therefore, we found that mitochondrial respiration enhanced by survivin contributes to cancer metabolism, and relocalized mitochondria may provide a “regional” energy source to fuel tumor cell invasion and metastasis. PMID:26268608

  6. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells.

    PubMed

    van Alphen, Lieke B; Bleumink-Pluym, Nancy M C; Rochat, Klazina D; van Balkom, Bas W M; Wösten, Marc M S M; van Putten, Jos P M

    2008-01-01

    The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency. PMID:18052944

  7. Phagocytosis of sperm by follicle cells of the carnivorous sponge Asbestopluma occidentalis (Porifera, Demospongiae).

    PubMed

    Riesgo, Ana

    2010-06-01

    During spermatogenesis of the carnivorous sponge Asbestopluma occidentalis, follicle cells that lined the spermatocysts phagocytosed unreleased mature sperm. Such follicle cells are part of the complex envelope that limits spermatocysts of A. occidentalis, which is also comprised of a collagen layer, a thick layer of intertwined cells, and spicules. Follicle cells showed vesicles containing single phagocytosed spermatozoa within their cytoplasm. Additionally, lipids and other inclusions were observed within the cytoplasm of follicle cells. It is likely that follicle cells recapture nutrients by phagocytosing spermatozoa and use them to form lipids and other inclusions. Such sperm phagocytosis is usually performed in higher invertebrates and vertebrates by Sertoli cells that are located in the testis wall. While Sertoli cells develop a wide range of functions such as creating a blood-testis barrier, providing crucial factors to ensure correct progression of spermatogenesis, and phagocytosis of aberrant, degenerating, and unreleased sperm cells, sponge follicle cells may only display phagocytotic activity on spermatogenic cells. PMID:20409567

  8. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  9. Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility

    PubMed Central

    Mor, I; Sklan, EH; Podoly, E; Pick, M; Kirschner, M; Yogev, L; Bar-Sheshet Itach, S; Schreiber, L; Geyer, B; Mor, T; Grisaru, D; Soreq, H

    2008-01-01

    Abstract Changes in protein subdomains through alternative splicing often modify protein-protein interactions, altering biological processes. A relevant example is that of the stress-induced up-regulation of the acetylcholinesterase (AChE-R) splice variant, a common response in various tissues. In germ cells of male transgenic TgR mice, AChE-R excess associates with reduced sperm differentiation and sperm counts. To explore the mechanism(s) by which AChE-R up-regulation affects spermatogenesis, we identified AChE-R's protein partners through a yeast two-hybrid screen. In meiotic spermatocytes from TgR mice, we detected AChE-R interaction with the scaffold protein RACK1 and elevated apoptosis. This correlated with reduced scavenging by RACK1 of the pro-apoptotic TAp73, an outcome compatible with the increased apoptosis. In contrast, at later stages in sperm development, AChE-R's interaction with the glycolytic enzyme enolase-α elevates enolase activity. In transfected cells, enforced AChE-R excess increased glucose uptake and adenosine tri-phosphate (ATP) levels. Correspondingly, TgR sperm cells display elevated ATP levels, mitochondrial hyperactivity and increased motility. In human donors' sperm, we found direct association of sperm motility with AChE-R expression. Interchanging interactions with RACK1 and enolase-α may hence enable AChE-R to affect both sperm differentiation and function by participating in independent cellular pathways. PMID:18194455

  10. Label-free biochemical characterization of bovine sperm cells using Raman microscopy

    NASA Astrophysics Data System (ADS)

    De Luca, A. C.; Managò, S.; Ferrara, M. A.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Rendina, I.; Ferraro, P.; Coppola, G.

    2014-02-01

    The current study relates to a Raman spectroscopy-based method for addressing the problem of sex assessment in mammals. A direct method for sex predetermination in animals is based on the X- and Y-bearing sperm cells sorting before insemination. Our Raman spectroscope allows distinguishing and characterizing the difference between X- and Y-bearing sperm cells by detecting and analyzing their Raman spectra in a non-invasive and non-destructive way.

  11. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    PubMed Central

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  12. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population

    PubMed Central

    Vardi, Assaf; Haramaty, Liti; Van Mooy, Benjamin A. S.; Fredricks, Helen F.; Kimmance, Susan A.; Larsen, Aud; Bidle, Kay D.

    2012-01-01

    Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi–EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems. PMID:23134731

  13. Immunostaining: detection of signaling protein location in tissues, cells and subcellular compartments.

    PubMed

    Maity, Biswanath; Sheff, David; Fisher, Rory A

    2013-01-01

    The purpose of this protocol is to describe various methodologies used to detect the distribution and localization of specific proteins within individual cells or tissues using immunostaining, defined as the use of specific antibodies to detect a single target protein. Detection of antigens in cultured cells is referred to as immunocytochemistry, whereas their detection in tissues is generally referred to as immunohistochemistry. Both methods involve exposure of fixed cells or tissues to primary antibodies directed against one or more proteins of interest. Bound antibodies are then detected using commercially available secondary antibodies directed against the invariant portion of the primary antibody. Two primary methodologies exist to visualize antigen-antibody complexes: immunofluorescence using fluorophore-conjugated antibodies or chemiluminescence using antibodies coupled to horse-radish peroxidase. This protocol details the steps involved and appropriate use of both methodologies. Immunostaining is used in cell biology to study differential protein expression, localization and distribution at the tissue, cellular, and subcellular level. PMID:23317899

  14. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells

    PubMed Central

    Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng

    2016-01-01

    Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494

  15. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells.

    PubMed

    Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng

    2016-01-01

    Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494

  16. Freezing injury: the special case of the sperm cell.

    PubMed

    John Morris, G; Acton, Elizabeth; Murray, Benjamin J; Fonseca, Fernanda

    2012-04-01

    The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice although no convincing evidence of intracellular ice formation has ever been obtained. We demonstrate that the high intracellular protein content together with the osmotic shrinkage associated with extracellular ice formation leads to intracellular vitrification of spermatozoa during cooling. At rapid rates of cooling the cell damage to spermatozoa is a result of an osmotic imbalance encountered during thawing, not intracellular ice formation. The osmotic imbalance occurs at rapid cooling rates due to a diffusion limited ice crystallisation in the extracellular fluid, i.e. the amount of ice forming during the cooling is less than expected from the equilibrium phase diagram. This explanation allows insights into other aspects of the cryobiology of spermatozoa and it is anticipated that this understanding will lead to specific improved methods of conventional cryopreservation for mammalian spermatozoa. It is also likely that this model will be relevant to the development of novel technologies for sperm preservation including vitrification and freeze drying. PMID:22197768

  17. An Improved Procedure for Subcellular Spatial Alignment during Live-Cell CLEM

    PubMed Central

    Padman, Benjamin S.; Bach, Markus; Ramm, Georg

    2014-01-01

    Live-cell correlative light and electron microscopy (CLEM) offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope. PMID:24755651

  18. Selection of nonapoptotic sperm by magnetic-activated cell sorting in Senegalese sole (Solea senegalensis).

    PubMed

    Valcarce, D G; Herráez, M P; Chereguini, O; Rodríguez, C; Robles, V

    2016-09-15

    Senegalese sole (Solea senegalensis) is a promising species in aquaculture. However, owing to decreased sperm quality in F1 generations and the absence of courtship in those individuals born in captivity, artificial fertilization is being used to generate new progenies. The objective of this study was to implement a sperm selection method for nonapoptotic sperm subpopulation recovery before sperm cryopreservation. In particular, magnetic-activated cell sorting is used to eliminate apoptotic spermatozoa. This study represents the proof-of-concept for magnetic-activated cell sorting applicability in teleost species relevant in aquaculture. Apoptotic cell population was studied by flow cytometry using YO-PRO-1 and a caspase detection kit. Also, reactive oxygen species were measured in sperm samples. Our data demonstrated that caspase detection is more specific than YO-PRO-1 in the identification of apoptotic cells in S senegalensis seminal samples. The results showed that the percentage of apoptotic cells (caspase positive) was significantly higher (P = 0.04) in seminal samples from F1 than that from wild individuals. Magnetic-activated cell sorting removed a significant number of apoptotic cells from the samples (54% and 75% in wild and F1 individuals, respectively), decreasing the level of cells positive for reactive oxygen species (P = 0.17). In conclusion, this technique reduces the percentage of nonfunctional spermatozoa in a seminal sample before cryopreservation. This novel technique can be applied directly in the aquaculture industry. PMID:27173958

  19. Investigation of gastroprotective compounds at subcellular level in isolated gastric mucosal cells.

    PubMed

    Nagy, L; Morales, R E; Beinborn, M; Vattay, P; Szabo, S

    2000-12-01

    We tested the hypothesis that recognized gastroprotective agents exert direct protection against ethanol-induced injury in isolated rat gastric mucosal cells in vitro. If protection exists, we also wanted to identify subcellular targets in the reversible and/or irreversible stages of cell injury. Ethanol-induced cell injury was quantified by measuring plasma membrane leakage (trypan blue exclusion and lactate dehydrogenase release), mitochondrial integrity (succinic dehydrogenase), and nuclear damage (ethidium bromide-DNA fluorescence). Initial cell viability and responsiveness were estimated by the effects of carbachol, carbachol + atropine, or 16,16-dimethyl-PGE(2) on chief cell pepsinogen secretion. Enriched parietal cells were stimulated by histamine, carbachol, or histamine + IBMX. Preincubation of cells with PG, sucrose octasulfate, or the sulfhydryl compounds N-acetylcysteine, taurine, or cysteamine increased cell resistance cell injury. Only a few in vivo gastroprotective agents demonstrated in vitro direct cytoprotection, which involved mainly the reversible stage of cell injury (e.g., plasma membrane changes) and, less often, irreversible (e.g., mitochondrial and nuclear) damage. Our findings also indicate that a major part of the beneficial effect of gastroprotective agents is expressed at the tissue level. PMID:11093942

  20. Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis.

    PubMed

    Soler, Laura; Labas, Valérie; Thélie, Aurore; Grasseau, Isabelle; Teixeira-Gomes, Ana-Paula; Blesbois, Elisabeth

    2016-06-01

    Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40% of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted. PMID:27044871

  1. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey hen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike most mammals, birds do not need to synchronize copulation with ovulation. Hens are endowed with tubular structures, the sperm-storage tubules (SST), in their oviducts which the sperm enter and survive for weeks after mating or artificial insemination. Sperm are slowly but continually releas...

  2. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders

    PubMed Central

    Kreis, Patricia; Leondaritis, George; Lieberam, Ivo; Eickholt, Britta J.

    2014-01-01

    PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease. PMID:24744697

  3. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    PubMed Central

    Riskin, Arieh; Mond, Yehudit

    2015-01-01

    Background Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC) in culture. Methods Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC). To study GLUT1 targeting and recycling in living mouse MEC (MMEC) in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP) and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM), or exposed to secretion medium (SM), containing prolactin. Results GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation. PMID:26886772

  4. Subcellular Localization of Proteins Responding to Mitoxantrone-Induced DNA Damage in Leukaemic Cells.

    PubMed

    Ćmielová, J; Lesná, M; Řezáčová, M

    2015-01-01

    The aim of the present study was to investigate the subcellular localization of proteins participating in the double-strand break response pathway - p53, Mdm2, p21 and Chk2. MOLT-4 cells were pre-treated with mitoxantrone in concentrations 1 nmol/l and 5 nmol/l. The trypan blue technique was used to determine cell viability and proliferation. Western blotting was used to evaluate changes in p53, Mdm2 and Chk2 protein expression and sandwich ELISA was used to evaluate changes in the p21 protein amount. After 1 nmol/l mitoxantrone cells did not die, but their ability to proliferate was decreased. The p53 protein was activated and phosphorylated at serines 15 and 392 and accumulated in the nucleus after 24 and 48 h. The Mdm2 protein was present in the cytoplasm with its maximal level after 8 and 16 h. The p21 protein was detected in the nucleus after 24 and 48 h. Increased levels of phosphorylated Chk2 at threonine 68 were observed in the cytoplasmic fraction after 24 and 48 h of mitoxantrone treatment. We used mitoxantrone as an inducer of double-strand breaks to bring new data about the subcellular distribution of proteins responding to DNA damage. In MOLT-4 cells, the p53 protein was activated. p53 was phosphorylated at serines 15 and 392 and accumulated in the nucleus. The Mdm2 protein was activated in advance to p53 and occurred in the cytoplasm. The p21 protein was present in the nucleus. Chk2 kinase was activated by the phosphorylation at threonine 68 and we observed increased levels of this protein in the cytoplasmic fraction. PMID:26333122

  5. Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis

    PubMed Central

    Liu, Weiran; Chen, Weixing; Liu, Ran; Ou, Yuan; Liu, Haoran; Xie, Lan; Lu, Ying; Li, Caixia; Li, Bin; Cheng, Jing

    2015-01-01

    In sexual assault cases, forensic samples are a mixture of sperm from the perpetrator and epithelial cells from the victim. To obtain an independent short tandem repeat (STR) profile of the perpetrator, sperm cells must be separated from the mixture of cells. However, the current method used in crime laboratories, namely, differential extraction, is a time-consuming and labor-intensive process. To achieve a rapid and automated sample pretreatment process, we fabricated a microdevice for hydrodynamic and size-based separation of sperm and epithelial cells. When cells in suspension were introduced into the device's microfluidic channels, they were forced to flow along different streamlines and into different outlets due to their different diameters. With the proposed microdevice, sperm can be separated within a short period of time (0.5 h for a 50-μl mock sample). The STR profiles of the products in the sperm outlet reservoir demonstrated that a highly purified male DNA fraction could be obtained (94.0% male fraction). This microdevice is of low-cost and can be easily integrated with other subsequent analysis units, providing great potential in the process of analyzing sexual assault evidence as well as in other areas requiring cell sorting. PMID:26392829

  6. Study of sperm cell phosphorylating systems using nucleotide photoaffinity probes

    SciTech Connect

    Khatoon, S.

    1983-01-01

    The major thrust of the research presented in this thesis was to identify specific nucleotide binding proteins and phosphoproteins of rat caput and cauda sperm. Also, the differences in these proteins between caput and cauda sperm were investigated as well as determination of the membrane sidedness of the proteins and their location in either the head or tail/mid-piece region. In addition, the effects of small molecular weight modifers such as cGMP, cAMP and Ca/sup 2 +/ on the detection of binding proteins and phosphorylated proteins was studied. The technique used to identify and locate nucleotide binding proteins was photoaffinity labeling using the proven 8-azidopurine nucleotide analogs of cAMP, ATP and GTP in radioactive form. The first study presented involved the use of (/sup 32/P)8-N /sub 3/cAMP which showed that both caput and cauda sperm contained both type I and type II regulatory subunits (R/sub I/ and R/sub II/, respectively) of the cAMP dependent kinases and that the great majority of the regulatory subunits were located in the tail/mid-piece section and not in the sperm head. The second phase of this study involved the use of (..gamma../sup 32/P)8-azidoadensosine triphosphate ((..gamma../sup 32/P)8-N/sub 3/ATP) and (..gamma../sup 32/P)8-azidoguanosine triphosphate ((..gamma../sup 32/P)8-N/sub 3/GTP) to photolable specific ATP and GTP binding proteins and to phosphorylate specific phosphoproteins. Again, this was done on caput versus cauda sperm and the location of the majority of the photolabeled or phosphorylated proteins was shown to be in the tail/mid-piece fraction. In addition, considerable differences were found in both the phosphorylated and photolabeled proteins of caput versus cauda sperm.

  7. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    PubMed Central

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  8. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.

    PubMed

    Haandbæk, Niels; Bürgel, Sebastian C; Heer, Flavio; Hierlemann, Andreas

    2014-01-21

    Single-cell impedance cytometry is an electrical analysis method, which has been used to count and discriminate cells on the basis of their dielectric properties. The method has several advantages, such as being label free and requiring minimal sample preparation. So far, however, it has been limited to measuring cell properties that are visible at low frequencies, such as size and membrane capacitance. We demonstrate a microfluidic single cell impedance cytometer capable of dielectric characterization of single cells at frequencies up to 500 MHz. This device features a more than ten-fold increased frequency range compared to other devices and enables the study of both low and high frequency dielectric properties in parallel. The increased frequency range potentially allows for characterization of subcellular features in addition to the properties that are visible at lower frequencies. The capabilities of the cytometer are demonstrated by discriminating wild-type yeast from a mutant, which differs in size and distribution of vacuoles in the intracellular fluid. This discrimination is based on the differences in dielectric properties at frequencies around 250 MHz. The results are compared to a 3D finite-element model of the microfluidic channel accommodating either a wild-type or a mutant yeast cell. The model is used to derive quantitative values to characterize the dielectric properties of the cells. PMID:24264643

  9. Subcellular location and molecular mobility of human cytosolic sulfotransferase 1C1 in living human embryonic kidney 293 cells.

    PubMed

    Sheng, Jonathan J; Acquaah-Mensah, George K

    2011-08-01

    Cytosolic sulfotransferases were first isolated from the hepatic cytosol, and they have been localized in the cytoplasm of formaldehyde-fixed human cell samples. The current work was carried out to determine the subcellular localization and molecular mobility of cytosolic sulfotransferases in living human embryonic kidney (HEK) 293 cells. In this work, the subcellular location of human cytosolic sulfotransferase 1C1 (SULT1C1) was studied in cultured HEK293 cells using confocal laser-scanning microscopy. A green fluorescent protein (GFP)-tagged SULT1C1 protein was localized in the cytoplasm of living HEK293 cells. This is consistent with results from previous studies on several other cytosolic sulfotransferase isoforms. Fluorescence recovery after photobleaching microscopy was performed to assess the molecular mobility of the expressed GFP-SULT1C1 molecules. The results suggested that the expressed recombinant GFP-SULT1C1 molecules in living HEK293 cells may include both mobile and immobile populations. To obtain additional insights into the subcellular location of SULT1C1, two machine learning algorithms, Sequential Minimal Optimization and Multilayer Perceptron, were used to compute the probability distribution for the localization of SULT1C1 in nine selected cellular compartments. The resulting probability distribution suggested that the most likely subcellular location of SULT1C1 is the cytosol. PMID:21546557

  10. Utility of Magnetic Cell Separation as a Molecular Sperm Preparation Technique

    PubMed Central

    Said, Tamer M.; Agarwal, Ashok; Zborowski, Maciej; Grunewald, Sonja; Glander, Hans-Juergen; Paasch, Uwe

    2009-01-01

    Assisted reproductive techniques (ART) have become the treatment of choice in many cases of infertility; however the current success rates of these procedures remain suboptimal. Programmed cell death (apoptosis) most likely contributes to failed ART and to the decrease in sperm quality after cryopreservation. There is likelihood that some sperm selected for ART will display features of apoptosis despite their normal appearance, which may be partially responsible for the low fertilization and implantation rates seen with ART. One of the features of apoptosis is the externalization of phosphatidylserine (PS) residues, which are normally present on the inner leaflet of the sperm plasma membrane. Colloidal super-paramagnetic microbeads (~50 nm in diameter) conjugated with annexin-V bind to PS are used to separate dead and apoptotic spermatozoa by magnetic cell sorting (MACS). Cells with externalized PS will bind to these microbeads, while non-apoptotic cells with intact membranes do not bind and could be used during ART. We have conducted a series of experiments to investigate if the MACS technology could be used to improve ART outcomes. Our results clearly indicate that integrating MACS as a part of sperm preparation techniques will improve semen quality and cryosurvival rates by eliminating apoptotic sperm. Non-apoptotic spermatozoa prepared by MACS display higher quality in terms of routine sperm parameters and apoptosis markers. The higher sperm quality is represented by an increased oocyte penetration potential and cryosurvival rates. Thus, the selection of non-apoptotic spermatozoa by MACS should be considered to enhance ART success rates. PMID:18077822

  11. Non-random subcellular distribution of variant EKLF in erythroid cells

    SciTech Connect

    Quadrini, Karen J.; Gruzglin, Eugenia; Bieker, James J.

    2008-04-15

    EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.

  12. Non-random subcellular distribution of variant EKLF in erythroid cells.

    PubMed

    Quadrini, Karen J; Gruzglin, Eugenia; Bieker, James J

    2008-04-15

    EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function. PMID:18329016

  13. Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis.

    PubMed

    Holappa, K; Mustonen, M; Parvinen, M; Vihko, P; Rajaniemi, H; Kellokumpu, S

    1999-10-01

    Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo. PMID:10491633

  14. A laboratory modification to testicular sperm preparation technique improves spermatogenic cell yield.

    PubMed

    Ozkavukcu, Sinan; Ibis, Ebru; Kizil, Sule; Isbacar, Suheyla; Aydos, Kaan

    2014-01-01

    Testicular sperm extraction is a common procedure used to find spermatogenic cells in men with nonobstructive azoospermia. The laboratory processing of biopsied testicular tissues needs to be performed meticulously to acquire a high yield of cells. In this study, the effectiveness of mincing the tissues after testicular biopsy was assessed using histological evaluation, as was the possible adverse effect of residual tissue on the migration of spermatogenic cells during density gradient centrifugation. Our results indicate that testicular residual tissue, when laid on the density gradient medium along with the sperm wash, hinders the spermatogenic cells' forming a pellet during centrifugation, and therefore impairs the intracytoplasmic sperm injection procedure. Whereas the mean number of recovered cells from the sperm wash medium (SWM) with residual tissue is 39.435 ± 24.849, it was notably higher (60.189 ± 28.214 cells) in the SWM without minced tissues. The remaining tissue contained no functional seminiferous tubules or spermatogenic cells in histological sections. In conclusion, the remaining residual tissue after mincing biopsied testicular tissue does not add any functional or cellular contribution to spermatogenic cell retrieval; in fact, it may block the cellular elements in the accompanying cell suspension from migrating through the gradient layers to form a pellet during centrifugation and cause loss of spermatogenic cells. PMID:25038178

  15. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells.

    PubMed

    Zalensky, A O; Tomilin, N V; Zalenskaya, I A; Teplitz, R L; Bradbury, E M

    1997-04-10

    We have used fluorescent in situ hybridization to localize telomeres within the nuclei of sperm from six mammals (human, rat, mouse, stallion, boar, and bull). In minimally swollen sperm of mouse and rat, most of the telomeres are clustered within a limited area in the posterior part of nuclei. In sperm of other species, telomeres associate into tetrameres and dimers. On swelling of sperm cells with heparin/dithiotriethol, telomere associations disperse, and hybridization signals become smaller in size and their numbers approach or correspond to the number of chromosome ends in a haploid genome. Quantitation of telomere loci indicates that dimeric associations are prominent features of mammalian sperm nuclear architecture. Higher order telomere-telomere interactions and organization develop during meiotic stages of human spermatogenesis. At this stage, telomeres also become associated with the nuclear membrane. In an attempt to elucidate the molecular mechanisms underlying telomere interactions in sperm, we have identified a novel protein activity that binds to the double-stranded telomeric repeat (TTAGGG)n. Sperm telomere binding protein(s) (STBP) was extracted from human and bull sperm by 0.5 M NaCl. STBP does not bind single-stranded telomeric DNA and is highly specific for single base substitutions in a duplex DNA sequence. Depending on the conditions of binding, we observed the formation of several nucleoprotein complexes. We have shown that there is a transition between complexes, which indicates that the slower migrating complex is a multimer of the higher mobility one. We propose that STBP participates in association between the telomere domains which were microscopically observed in mammalian spermatozoa. PMID:9141618

  16. How a (sub)Cellular Coincidence Detection Mechanism Featuring Layer-5 Pyramidal Cells May Help Produce Various Visual Phenomena

    PubMed Central

    Bachmann, Talis

    2015-01-01

    Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive) processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here, a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of the sub-second temporal scale. PMID:26733926

  17. Cis-Regulatory Elements Determine Germline Specificity and Expression Level of an Isopentenyltransferase Gene in Sperm Cells of Arabidopsis.

    PubMed

    Zhang, Jinghua; Yuan, Tong; Duan, Xiaomeng; Wei, Xiaoping; Shi, Tao; Li, Jia; Russell, Scott D; Gou, Xiaoping

    2016-03-01

    Flowering plant sperm cells transcribe a divergent and complex complement of genes. To examine promoter function, we chose an isopentenyltransferase gene known as PzIPT1. This gene is highly selectively transcribed in one sperm cell morphotype of Plumbago zeylanica, which preferentially fuses with the central cell during fertilization and is thus a founding cell of the primary endosperm. In transgenic Arabidopsis (Arabidopsis thaliana), PzIPT1 promoter displays activity in both sperm cells and upon progressive promoter truncation from the 5'-end results in a progressive decrease in reporter production, consistent with occurrence of multiple enhancer sites. Cytokinin-dependent protein binding motifs are identified in the promoter sequence, which respond with stimulation by cytokinin. Expression of PzIPT1 promoter in sperm cells confers specificity independently of previously reported Germline Restrictive Silencer Factor binding sequence. Instead, a cis-acting regulatory region consisting of two duplicated 6-bp Male Gamete Selective Activation (MGSA) motifs occurs near the site of transcription initiation. Disruption of this sequence-specific site inactivates expression of a GFP reporter gene in sperm cells. Multiple copies of the MGSA motif fused with the minimal CaMV35S promoter elements confer reporter gene expression in sperm cells. Similar duplicated MGSA motifs are also identified from promoter sequences of sperm cell-expressed genes in Arabidopsis, suggesting selective activation is possibly a common mechanism for regulation of gene expression in sperm cells of flowering plants. PMID:26739233

  18. Effect of Feeding Fescue Seed Containing Ergot Alkaloid Toxins on Stallion Spermatogenesis and Sperm Cells

    PubMed Central

    Fayrer-Hosken, R; Stanley, A; Hill, N; Heusner, G; Christian, M; Fuente, R De La; Baumann, C; Jones, L

    2012-01-01

    Contents The cellular effects of tall fescue grass–associated toxic ergot alkaloids on stallion sperm and colt testicular tissue were evaluated. This was a continuation of an initial experiment where the effects of toxic ergot alkaloids on the stallion spermiogram were investigated. The only spermiogram parameter in exposed stallions that was affected by the toxic ergot alkaloids was a decreased gel-free volume of the ejaculate. This study examined the effect of toxic ergot alkaloids on chilling and freezing of the stallion sperm cells. The effect of toxic ergot alkaloids on chilled extended sperm cells for 48 h at 5 °C was to make the sperm cells less likely to undergo a calcium ionophore–induced acrosome reaction. The toxic ergot alkaloids had no effect on the freezability of sperm cells. However, if yearling colts were fed toxic ergot alkaloids, then the cytological analysis of meiotic chromosome synapsis revealed a significant increase in the proportion of pachytene spermatocytes showing unpaired sex chromosomes compared to control spermatocytes. There was little effect of ergot alkaloids on adult stallions, but there might be a significant effect on yearling colts. PMID:22524585

  19. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells

    PubMed Central

    Bukatin, Anton; Kukhtevich, Igor; Stoop, Norbert; Dunkel, Jörn; Kantsler, Vasily

    2015-01-01

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell’s turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion. PMID:26655343

  20. Ubiquitins of Bombyx mori nucleopolyhedrovirus and Helicoverpa armigera nucleopolyhedrovirus show distinct subcellular localization in infected cells.

    PubMed

    Guo, Z J; Zhu, Y M; Li, G H; Chen, K P; Zhang, C X

    2011-01-01

    Ubiquitin (UB) is a conserved protein that regulates a number of processes in eukaryotic cells. Nearly all lepidopteran baculoviruses encode UB homologs showing a partial sequence identity with human UB (Hu-UB). In this study, the sequence, predicted 3D-structure and subcellular localization of UB homologs encoded by two different nucleopolyhedroviruses of Bombyx mori (BmNPV) and Helicoverpa armigera (HaNPV) were compared. UBs of BmNPV and HaNPV (Bm-UB, Ha-UB, respectively) shared only 73% of sequence identity of the different aa in relation to Hu-UB being localized in non-conserved parts, namely in two heterogeneous regions of aa 15-32 and aa 53-60. Interestingly, Bm-UB and Ha-UB share the same seven lysines except for an additional Lys54 in Bm-UB. However, in spite of the sequence heterogeneity, Bm-UB and Ha-UB have a similar predicted 3D-structure. A difference in their subcellular localization during virus growth in insect cell lines was found in the late stage of formation of occlusion-derived virus (ODV). In particular Bm-UB was localized mainly and evenly in the nucleus, while Ha-UB on the nuclear membrane. These data suggest that (i) UBs, besides being engaged in various cellular processes, have a role in specific processes of virus growth, and (ii) Bm-UB and Ha-UB may show certain different activities associated with the virus growth. PMID:21692557

  1. A laboratory modification to testicular sperm preparation technique improves spermatogenic cell yield

    PubMed Central

    Ozkavukcu, Sinan; Ibis, Ebru; Kizil, Sule; Isbacar, Suheyla; Aydos, Kaan

    2014-01-01

    Testicular sperm extraction is a common procedure used to find spermatogenic cells in men with nonobstructive azoospermia. The laboratory processing of biopsied testicular tissues needs to be performed meticulously to acquire a high yield of cells. In this study, the effectiveness of mincing the tissues after testicular biopsy was assessed using histological evaluation, as was the possible adverse effect of residual tissue on the migration of spermatogenic cells during density gradient centrifugation. Our results indicate that testicular residual tissue, when laid on the density gradient medium along with the sperm wash, hinders the spermatogenic cells’ forming a pellet during centrifugation, and therefore impairs the intracytoplasmic sperm injection procedure. Whereas the mean number of recovered cells from the sperm wash medium (SWM) with residual tissue is 39.435 ± 24.849, it was notably higher (60.189 ± 28.214 cells) in the SWM without minced tissues. The remaining tissue contained no functional seminiferous tubules or spermatogenic cells in histological sections. In conclusion, the remaining residual tissue after mincing biopsied testicular tissue does not add any functional or cellular contribution to spermatogenic cell retrieval; in fact, it may block the cellular elements in the accompanying cell suspension from migrating through the gradient layers to form a pellet during centrifugation and cause loss of spermatogenic cells. PMID:25038178

  2. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory.

    PubMed

    Takada, S H; dos Santos Haemmerle, C A; Motta-Teixeira, L C; Machado-Nils, A V; Lee, V Y; Takase, L F; Cruz-Rizzolo, R J; Kihara, A H; Xavier, G F; Watanabe, I-S; Nogueira, M I

    2015-01-22

    Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference

  3. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    PubMed Central

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  4. A NOVEL SYSTEM FOR THE CO-CULTURE OF EPIDIDYMAL EPITHELIAL CELLS AND SPERM FROM ADULT RATS

    EPA Science Inventory

    To study interactions which occur between the epididymal epithelial cells and sperm within the epididymis during sperm maturation, a specialized co-culture system capable of supporting the differentiated function of these cell types must be utilized. A multifaceted approach has b...

  5. 32P-POSTLABELING ANALYSIS OF DNA ADDUCTS IN HUMAN SPERM CELLS FROM SMOKERS AND NON-SMOKERS

    EPA Science Inventory

    To determine the feasibility of using human sperm cells for DNA 32postlabeling analyses, and to evaluate the baseline level and the possible presence of smoking-related DNA adducts in these cells, sperm DNA was isolated from 12 heavy smokers, 12 light smokers and 12 non-smokers. ...

  6. Defining the subcellular interface of nanoparticles by live-cell imaging.

    PubMed

    Hemmerich, Peter H; von Mikecz, Anna H

    2013-01-01

    Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes. PMID:23637951

  7. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.

    2006-02-01

    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  8. Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function

    PubMed Central

    Johnson, Amy R.; Lao, Sai; Wang, Tongwen; Galanko, Joseph A.; Zeisel, Steven H.

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm. PMID:22558321

  9. Effects of X-irradiation on mouse testicular cells and sperm chromatin structure

    SciTech Connect

    Sailer, B.L.; Jost, L.K.; Erickson, K.R.; Tajiran, M.A.; Evenson, D.P.

    1995-07-01

    The testicular regions of male mice were exposed to x-ray doses ranging from 0 to 400 rads. Forty days after exposure the mice were killed and the testes and cauda epididymal sperm removed surgically. Flow cytometric measurements of acridine orange stained testicular samples indicated a repopulation of testicular samples indicated a repopulation of testicular cell types following x-ray killing of stem cells. Cauda epididymal sperm were analyzed by the sperm chromatin structure assay (SCSA), a flow cytometric measurement of the susceptibility of the sperm nuclear DNA to in situ acid denaturation. The SCSA detected increased susceptibility to DNA denaturation in situ after 12.5 rads of x-ray exposure, with significant increases following 25 rads. Abnormal sperm head morphology was not significantly increased until the testes were exposed to 60 rads of x-rays. These data suggest that the SCSA is currently the most sensitive, noninvasive method of detecting x-ray damage to testicular stem spermatogonia. 47 refs., 5 figs.

  10. Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells.

    PubMed

    Pan, Wei; Wang, Honghong; Yang, Limin; Yu, Zhengze; Li, Na; Tang, Bo

    2016-07-01

    Abnormal pH values in the organelles are closely associated with inappropriate cellular functions and many diseases. Monitoring subcellular pH values and their variations is significant in biological processes occurring in living cells and tissues. Herein, we develop a series of ratiometric fluorescence nanoprobes for quantification and imaging of pH values with a single-wavelength excitation in cytoplasm, lysosomes, and mitochondria. The nanoprobes consist of mesoporous silica nanoparticles assembled with aminofluorescein as the recognition unit for pH measurement and ethidium bromide as reference fluorophore. Further conjugation of subcellular targeting moiety enables the nanoprobes to specifically target lysosome and mitochondria. Confocal fluorescence imaging demonstrated that the nanoprobes could effectively monitor the pH fluctuations from 5.0 to 8.3 in living cells by ratio imaging with 488 nm excitation. Subcellular pH determination and imaging in lysosome and mitochondria could also be achieved in different conditions. The current method can offer a general strategy to determine subcellular analytes and investigate the interactions in biological samples. PMID:27295434

  11. LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering beta-catenin subcellular distribution.

    PubMed

    Li, Yonghe; Lu, Wenyan; He, Xi; Schwartz, Alan L; Bu, Guojun

    2004-12-01

    The Wnt signaling pathway plays key roles in both embryogenesis and tumorigenesis. The low-density lipoprotein (LDL) receptor-related protein-6 (LRP6), a novel member of the expanding LDL receptor family, functions as an indispensable co-receptor for the Wnt signaling pathway. Although the role of LRP6 in embryonic development is now well established, its role in tumorigenesis is unclear. We report that LRP6 is readily expressed at the transcript level in several human cancer cell lines and human malignant tissues. Furthermore, using a retroviral gene transfer system, we find that stable expression of LRP6 in human fibrosarcoma HT1080 cells alters subcellular beta-catenin distribution such that the cytosolic beta-catenin level is significantly increased. This is accompanied by a significant increase in Wnt/beta-catenin signaling and cell proliferation. Finally, we demonstrate that LRP6 expression promotes tumorigenesis in vivo. These results thus indicate that LRP6 may function as a potential oncogenic protein by modulating Wnt/beta-catenin signaling. PMID:15516984

  12. Implications of caveolae in testicular and epididymal myoid cells to sperm motility.

    PubMed

    Oliveira, Regiana L; Parent, Adam; Cyr, Daniel G; Gregory, Mary; Mandato, Craig A; Smith, Charles E; Hermo, Louis

    2016-06-01

    Seminiferous tubules of the testis and epididymal tubules in adult rodents are enveloped by contractile myoid cells, which move sperm and fluids along the male reproductive tract. Myoid cells in the testis influence Sertoli cells by paracrine signaling, but their role in the epididymis is unknown. Electron microscopy revealed that elongated myoid cells formed several concentric layers arranged in a loose configuration. The edges of some myoid cells in a given layer closely approximated one another, and extended small foot-like processes to cells of overlying layers. Gap junction proteins, connexins 32 and 43, were detected within the myoid cell layers by immunohistochemistry. These myoid cells also had caveolae that contained caveolin-1 and cavin-1 (also known as PTRF). The number of caveolae per unit area of plasma membrane was significantly reduced in caveolin-1-deficient mice (Cav1(-/-) ). Morphometric analyses of Cav1-null testes revealed an enlargement in whole-tubule and epithelial profile areas, whereas these parameters were slightly reduced in the epididymis. Although sperm are non-motile as they pass through the proximal epididymis, statistical analyses of cauda epididymidis sperm concentrations revealed no significant differences between wild-type and Cav1(-/-) mice. Motility analyses, however, indicated that sperm velocity parameters were reduced while beat cross frequency was higher in gametes of Cav1(-/-) mice. Thus while caveolae and their associated proteins are not necessary for myoid cell contractility, they appear to be crucial for signaling with the epididymal epithelium to regulate the proper acquisition of sperm motility. Mol. Reprod. Dev. 83: 526-540, 2016. © 2016 Wiley Periodicals, Inc. PMID:27088550

  13. In Vitro Effect of Cell Phone Radiation on Motility, DNA Fragmentation and Clusterin Gene Expression in Human Sperm

    PubMed Central

    Zalata, Adel; El-Samanoudy, Ayman Z; Shaalan, Dalia; El-Baiomy, Youssef; Mostafa, Taymour

    2015-01-01

    Background Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF) has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU) gene expression. Materials and Methods In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where p<0.05 was set as significant. Results There was a significant decrease in sperm motility, sperm linear velocity, sperm linearity index, and sperm acrosin activity, whereas there was a significant increase in sperm DNA fragmentation percent, CLU gene expression and CLU protein levels in the exposed semen samples to RF-EMF compared with non-exposed samples in OAT>AT>A>N groups, respectively (p<0.05). Conclusion Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases. PMID:25918601

  14. An ARID Domain-Containing Protein within Nuclear Bodies Is Required for Sperm Cell Formation in Arabidopsis thaliana

    PubMed Central

    Zheng, Binglian; He, Hui; Zheng, Yanhua; Wu, Wenye; McCormick, Sheila

    2014-01-01

    In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain)-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation. PMID:25057814

  15. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells

    PubMed Central

    Baghirova, Sabina; Hughes, Bryan G.; Hendzel, Michael J.; Schulz, Richard

    2015-01-01

    Many types of studies require the localization of a protein to, or isolation of enriched protein from a specific cellular compartment. Many protocols in the literature and from commercially available kits claim to yield pure cellular fractions. However, in our hands, the former often do not work effectively and the latter may be prohibitively expensive if a large number of fractionations are required. Furthermore, the largely proprietary composition of reagents in commercial kits means that the user is not able to make adjustments if, for example, a particular component affects the activity of a protein of interest. The method described here allows the isolation of purified proteins from three cellular fractions: the cytosol, membrane-bound organelles, and the nucleus. It uses gentle buffers with increasing detergent strength that sequentially lyse the cell membrane, organelle membranes and finally the nuclear membrane.•Quick, simple to replicate or adjust; this method does not require expensive reagents or use of commercial kits•The protocol can be applied to tissue samples or cultured cells without changing buffer components•Yields purified fractions of cytosolic, membrane bound and nuclear proteins, with the proper distribution of the appropriate subcellular markers: GAPDH, VDAC, SERCA2 and lamin A/C PMID:26740924

  16. Precision Automation of Cell Type Classification and Sub-Cellular Fluorescence Quantification from Laser Scanning Confocal Images

    PubMed Central

    Hall, Hardy C.; Fakhrzadeh, Azadeh; Luengo Hendriks, Cris L.; Fischer, Urs

    2016-01-01

    While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to (1) segment radial plant organs into individual cells, (2) classify cells into cell type categories based upon Random Forest classification, (3) divide each cell into sub-regions, and (4) quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types. PMID:26904081

  17. Precision Automation of Cell Type Classification and Sub-Cellular Fluorescence Quantification from Laser Scanning Confocal Images.

    PubMed

    Hall, Hardy C; Fakhrzadeh, Azadeh; Luengo Hendriks, Cris L; Fischer, Urs

    2016-01-01

    While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to (1) segment radial plant organs into individual cells, (2) classify cells into cell type categories based upon Random Forest classification, (3) divide each cell into sub-regions, and (4) quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types. PMID:26904081

  18. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness.

    PubMed

    Sadeghian-Nodoushan, Fatemeh; Aflatoonian, Reza; Borzouie, Zahra; Akyash, Fatemeh; Fesahat, Farzaneh; Soleimani, Mehrdad; Aghajanpour, Samaneh; Moore, Harry D; Aflatoonian, Behrouz

    2016-04-01

    Human male germ-line stem cells (hmGSCs) and human testis-derived embryonic stem cell-like (htESC-like) cells are claimed to be in vitro pluripotent counterparts of spermatogonial stem cells (SSCs), but the origin and pluripotency of human testis-derived cell cultures are still under debate. The aim of this study was to generate putative pluripotent stem cells in vitro from human testicular sperm-extracted (TESE) samples of infertile men, and to assess their pluripotency and capacity to differentiate. TESE samples were minced, enzymatically disaggregated and dispersed into single-cell or cluster suspensions, and then cultured. Initially, cell clusters resembled those described for hmGSCs and htESC-like cells, and were positive for markers such as OCT4/POU5F1, NANOG, and TRA-2-54. Prolonged propagation of cell clusters expressing pluripotency markers did not thrive; instead, the cells that emerged possessed characteristics of mesenchymal stromal cells (MSCs) such as STRO-1, CD105/EGLN1, CD13/ANPEP, SOX9, vimentin, and fibronectin. KIT, SOX2, and CD44 were not expressed by these MSCs. The multipotential differentiation capacity of these cells was confirmed using Oil Red-O and Alizarin Red staining after induction with specific culture conditions. It is therefore concluded that pluripotent stem cells could not be derived using the conditions previously reported to be successful for TESE samples. PMID:27077675

  19. Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein.

    PubMed

    Di Sansebastiano, Gian Pietro; Rizzello, Francesca; Durante, Miriana; Caretto, Sofia; Nisi, Rossella; De Paolis, Angelo; Faraco, Marianna; Montefusco, Anna; Piro, Gabriella; Mita, Giovanni

    2015-05-20

    Plants are ideal bioreactors for the production of macromolecules but transport mechanisms are not fully understood and cannot be easily manipulated. Several attempts to overproduce recombinant proteins or secondary metabolites failed. Because of an independent regulation of the storage compartment, the product may be rapidly degraded or cause self-intoxication. The case of the anti-malarial compound artemisinin produced by Artemisia annua plants is emblematic. The accumulation of artemisinin naturally occurs in the apoplast of glandular trichomes probably involving autophagy and unconventional secretion thus its production by undifferentiated tissues such as cell suspension cultures can be challenging. Here we characterize the subcellular compartmentalization of several known fluorescent markers in protoplasts derived from Artemisia suspension cultures and explore the possibility to modify compartmentalization using a modified SNARE protein as molecular tool to be used in future biotechnological applications. We focused on the observation of the vacuolar organization in vivo and the truncated form of AtSYP51, 51H3, was used to induce a compartment generated by the contribution of membrane from endocytosis and from endoplasmic reticulum to vacuole trafficking. The artificial compartment crossing exocytosis and endocytosis may trap artemisinin stabilizing it until extraction; indeed, it is able to increase total enzymatic activity of a vacuolar marker (RGUSChi), probably increasing its stability. Exploring the 51H3-induced compartment we gained new insights on the function of the SNARE SYP51, recently shown to be an interfering-SNARE, and new hints to engineer eukaryote endomembranes for future biotechnological applications. PMID:25451863

  20. Spermatogonial stem cell transplantation into Rhesus testes regenerates spermatogenesis producing functional sperm

    PubMed Central

    Hermann, Brian P.; Sukhwani, Meena; Winkler, Felicity; Pascarella, Julia N.; Peters, Karen A.; Sheng, Yi; Valli, Hanna; Rodriguez, Mario; Ezzelarab, Mohamed; Dargo, Gina; Peterson, Kim; Masterson, Keith; Ramsey, Cathy; Ward, Thea; Lienesch, Maura; Volk, Angie; Cooper, David K.; Thomson, Angus W.; Kiss, Joseph E.; Penedo, Maria Cecilia T.; Schatten, Gerald P.; Mitalipov, Shoukhrat; Orwig, Kyle E.

    2013-01-01

    Summary Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout a man’s life and may have application for treating some cases of male infertility, including those caused by chemotherapy before puberty. We performed autologous and allogeneic SSC transplantations into the testes of 18 adult and 5 prepubertal recipient macaques that were rendered infertile with alkylating chemotherapy. After autologous transplant, the donor genotype from lentivirus-marked SSCs was evident in the ejaculated sperm of 9/12 adult and 3/5 prepubertal recipients after they reached maturity. Allogeneic transplant led to donor-recipient chimerism in sperm from 2/6 adult recipients. Ejaculated sperm from one recipient transplanted with allogeneic donor SSCs were injected into 85 rhesus oocytes via intracytoplasmic sperm injection. Eighty-one oocytes were fertilized, producing embryos ranging from 4-cell to blastocyst with donor paternal origin confirmed in 7/81 embryos. This demonstration of functional donor spermatogenesis following SSC transplantation in primates is an important milestone for informed clinical translation. PMID:23122294

  1. Geometry-Specific Heterogeneity of the Apparent Diffusion Rate of Materials Inside Sperm Cells

    PubMed Central

    Takao, Daisuke; Kamimura, Shinji

    2010-01-01

    Abstract In sea urchin spermatozoa, the energy source powering flagellar motion is provided as ATP produced by mitochondria located at the proximal ends of flagella. However, the bottleneck structure between the sperm head and the flagellar tail seems to restrict the free entry of ATP from mitochondria into the tail region. To test this possibility, we investigated the diffusion properties in sperm cells using fluorescence recovery after photobleaching. We found that the rate of fluorescence recovery in the head region was ∼10% of that observed in the flagellar tail regions. We also found that, even within the tail region, rates varied depending on location, i.e., rates were slower at the more distal regions. Using computational analysis, the rate heterogeneity was shown to be caused mainly by the geometry of the sperm structure, even if little or no difference in diffusion rates through the neck region was assumed. Therefore, we concluded that materials such as ATP would generally diffuse freely between the heads and the flagella of sperm cells. We believe these findings regarding the diffusion properties inside spermatozoa provide further insights into material transportation and chemical signaling inside eukaryotic cilia and flagella. PMID:20409478

  2. Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells.

    PubMed

    Chang, Hsiang-Hua D; Xu, Yuan; Lai, Hongyu; Yang, Xiaoyu; Tseng, Chun-Che; Lai, Ying-Jung J; Pan, Yu; Zhou, Emily; Johnson, Michael D; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells. PMID:25786220

  3. Protein subcellular localization in human and hamster cell lines: employing local ternary patterns of fluorescence microscopy images.

    PubMed

    Tahir, Muhammad; Khan, Asifullah; Kaya, Hüseyin

    2014-01-01

    Discriminative feature extraction technique is always required for the development of accurate and efficient prediction systems for protein subcellular localization so that effective drugs can be developed. In this work, we showed that Local Ternary Patterns (LTPs) effectively exploit small variations in pixel intensities; present in fluorescence microscopy based protein images of human and hamster cell lines. Further, Synthetic Minority Oversampling Technique is applied to balance the feature space for the classification stage. We observed that LTPs coupled with data balancing technique could enable a classifier, in this case support vector machine, to yield good performance. The proposed ensemble based prediction system, using 10-fold cross-validation, has yielded better performance compared to existing techniques in predicting various subcellular compartments for both 2D HeLa and CHO datasets. The proposed predictor is available online at: http://111.68.99.218/Protein_SubLoc/, which is freely accessible to the public. PMID:23988793

  4. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.

    PubMed

    Pratt, Evan P S; Owens, Jake L; Hockerman, Gregory H; Hu, Chang-Deng

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is a fluorescence imaging technique used to visualize protein-protein interactions (PPIs) in live cells and animals. One unique application of BiFC is to reveal subcellular localization of PPIs. The superior signal-to-noise ratio of BiFC in comparison with fluorescence resonance energy transfer or bioluminescence resonance energy transfer enables its wide applications. Here, we describe how confocal microscopy can be used to detect and quantify PPIs and their subcellular localization. We use basic leucine zipper transcription factor proteins as an example to provide a step-by-step BiFC protocol using a Nikon A1 confocal microscope and NIS-Elements imaging software. The protocol given below can be readily adapted for use with other confocal microscopes or imaging software. PMID:27515079

  5. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    PubMed

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi. PMID:20053634

  6. Changes in Subcellular Localization of Visfatin in Human Colorectal HCT-116 Carcinoma cell Line After Cytochalasin-B Treatment

    PubMed Central

    Skonieczna, M.; Bułdak, Ł; Matysiak, N.; Mielańczyk, Ł; Wyrobiec, G.; Kukla, M.; Michalski, M.; Żwirska-Korczala, K.

    2014-01-01

    The aim of the study was to assess the expression and subcellular localization of visfatin in HCT-116 colorectal carcinoma cells after cytokinesis failure using Cytochalasin B (CytB) and the mechanism of apoptosis of cells after CytB. We observed translocation of visfatin’s antigen in cytB treated colorectal carcinoma HCT-116 cells from cytosol to nucleus. Statistical and morphometric analysis revealed significantly higher area-related numerical density visfatin-bound nano-golds in the nuclei of cytB-treated HCT-116 cells compared to cytosol. Reverse relation to visfatin subcellular localization was observed in un-treated HCT-116 cells. The total amount of visfatin protein and visfatin mRNA level in HCT-116 cells was also decreased after CytB treatment. Additionally, CytB significantly decreased cell survival, increased levels of G2/M fractions, induced bi-nuclei formation as well as increased reactive oxygen species (ROS) level in HCT-116 cells. CytB treatment showed cytotoxic effect that stem from oxidative stress and is connected with the changes in the cytoplasmic/nuclear amount of visfatin in HCT-116 cells. PMID:25308845

  7. Quantitative evaluation of berberine subcellular distribution and cellular accumulation in non-small cell lung cancer cells by UPLC-MS/MS.

    PubMed

    Yuan, Zhong-Wen; Leung, Elaine Lai-Han; Fan, Xing-Xing; Zhou, Hua; Ma, Wen-Zhe; Liu, Liang; Xie, Ying

    2015-11-01

    Berberine, an isoquinoline alkaloid, has been demonstrated to be a safe anti-cancer agent with multiple effects on mitochondria. Intracellular concentration and distribution around the targeting sites are determinants of efficacy, but subcellular distribution of berberine has not been fully elucidated yet, which relies on the sensitive and robustness assay. In this study, a sensitive and robust UPLC-MS/MS method has been developed and validated with optimized extraction solvents and detection conditions. Key factors such as the purity and integrity of isolated organelle fractions, and the effects of isolation procedures on the subcellular concentration of berberine were systemically evaluated. With the developed assay, we found that the intracellular accumulations of berberine in two gefitinib resistant NSCLC cell lines H1650 and H1975 were 2-3 folds higher than that of normal epithelial cells BEAS-2B. Moreover, significantly different subcellular distribution profiles in NSCLC cancer cells from that of BEAS-2B cells with a striking increase in content in most organelles may contribute to its selective cytotoxicity to cancer cells. Furthermore, a predominant accumulation of berberine was observed for the first time in microsomal fraction for all three cell lines. Therefore, this method could be used for quantitative evaluation of subcellular distribution and cellular accumulation of berberine and for further evaluation of the concentration-effects relationship. PMID:26452787

  8. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. PMID:25644579

  9. Habits of cell phone usage and sperm quality - does it warrant attention?

    PubMed

    Zilberlicht, Ariel; Wiener-Megnazi, Zofnat; Sheinfeld, Yulia; Grach, Bronislava; Lahav-Baratz, Shirly; Dirnfeld, Martha

    2015-09-01

    Male infertility constitutes 30-40% of all infertility cases. Some studies have shown a continuous decline in semen quality since the beginning of the 20th century. One postulated contributing factor is radio frequency electromagnetic radiation emitted from cell phones. This study investigates an association between characteristics of cell phone usage and semen quality. Questionnaires accessing demographic data and characteristics of cell phone usage were completed by 106 men referred for semen analysis. Results were analysed according to WHO 2010 criteria. Talking for ≥1 h/day and during device charging were associated with higher rates of abnormal semen concentration (60.9% versus 35.7%, P < 0.04 and 66.7% versus 35.6%, P < 0.02, respectively). Among men who reported holding their phones ≤50 cm from the groin, a non-significantly higher rate of abnormal sperm concentration was found (47.1% versus 11.1%). Multivariate analysis revealed that talking while charging the device and smoking were risk factors for abnormal sperm concentration (OR = 4.13 [95% CI 1.28-13.3], P < 0.018 and OR = 3.04 [95% CI 1.14-8.13], P < 0.027, respectively). Our findings suggest that certain aspects of cell phone usage may bear adverse effects on sperm concentration. Investigation using large-scale studies is thus needed. PMID:26206279

  10. Raman microscopy at the subcellular level: a study on early apoptosis in endothelial cells induced by Fas ligand and cycloheximide.

    PubMed

    Czamara, Krzysztof; Petko, Filip; Baranska, Malgorzata; Kaczor, Agnieszka

    2016-02-21

    High spatially resolved Raman microscopy was applied to study the early apoptosis in endothelial cells and chemical and structural changes induced by this process. Application of cluster analysis enabled separation of signals due to various subcellular organelles and compartments such as the nuclei, nucleoli, endoplasmic reticulum or cytoplasm and analysis of alterations locally at the subcellular level. Different stimuli, i.e. Fas ligand, a tumor necrosis factor, and cycloheximide, an inhibitor of eukaryotic protein biosynthesis, were applied to induce apoptotic mechanisms. Due to different mechanisms of action, the changes observed in subcellular structures were different for FasL and cycloheximide. Although in both cases a statistically significant decrease of the protein level was observed in all studied cellular structures, the increase of the nucleic acids content locally in apoptotic nuclei was considerably more pronounced upon FasL-induced apoptosis compared to the cycloheximide one. Additionally, apoptosis invokes also a decrease of the proteins with the α-helix protein structure selectively for FasL in the cytoplasm and endoplasmic reticulum. PMID:26765153

  11. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  12. Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry

    SciTech Connect

    Evenson, D.P.; Baer, R.K.; Jost, L.K. )

    1989-01-01

    The toxic and potentially mutagenic actions of triethylenemelamine (TEM) on mouse body and testis weights, testicular cell kinetics, sperm production, sperm head morphology, and sperm chromatin structure were assessed in two experiments. The first experiment examined effects of four dose levels of TEM, assayed 1, 4, or 10 wk after toxic exposure. In the second study, effects from five dosage levels were measured at 1, 4, and 10 wk, and the highest dosage level was evaluated over 44 wk. TEM produced an expected dose related loss of spermatogenic activity and subsequent recovery as determined by dual-parameter (DNA, RNA) flow cytometry (FCM) measurements of testicular cells. Both testicular weights and caudal sperm reserves remained generally below controls after 44 wk recovery following exposure to the highest dosage. Chromatin structure alterations, defined as increased susceptibility to DNA denaturation in situ, and sperm head morphology were highly correlated with dose and with each other. Sperm head morphology and sperm chromatic structure remained abnormal at 44 wk for the 1.0 mg/kg TEM dosage, suggesting that the abnormalities, present long after the initial toxic response, may be a result of mutation. This study demonstrates that flow cytometry provides a unique, rapid, and efficient means to measure effects of reproductive toxins and potential mutagens.

  13. Monitoring cell survival after extraction of a single subcellular organelle using optical trapping and pulsed-nitrogen laser ablation.

    PubMed

    Shelby, J Patrick; Edgar, J Scott; Chiu, Daniel T

    2005-01-01

    This paper characterizes cell viability in three different cell lines--Chinese hamster ovary cells (CHO), neuroblastoma cells fused with glialoma cells (NG108-15) and murine embryonic stem cells (ES-D3)--after N2 laser disruption of the cell membrane and removal, via optical trapping, of a single subcellular organelle. Morphological changes and viability (as determined by live/dead fluorescent stains) of the cell were monitored every half hour over a 4-h period postsurgery. The ability of the cell to survive organelle extraction was found to depend both on the conditions under which surgery was performed and on the cell type. The average viability after surgery for CHO cells was approximately 80%, for NG 108 cells it was approximately 30% and for ES-D3 cells postsurgery viability was approximately 10%. From over 600 surgeries we found the survival of the cell is determined almost exclusively within the first hour postsurgery regardless of cell line. The optimal pulse energy for N2 laser ablation was approximately 0.7 microJ. The N2 pulse produced an approximately 1-3 microm hole in the cell membrane and proved to be the primary source of cell death in those cells that did not survive the procedure. PMID:15850426

  14. Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry.

    PubMed

    Evenson, D P; Baer, R K; Jost, L K

    1989-01-01

    The toxic and potentially mutagenic actions of triethylenemelamine (TEM) on mouse body and testis weights, testicular cell kinetics, sperm production, sperm head morphology, and sperm chromatin structure were assessed in two experiments. The first experiment examined effects of four dose levels of TEM, assayed 1, 4, and 10 wk after toxic exposure. In the second study, effects from five dosage levels were measured at 1, 4, and 10 wk, and the highest dosage level was evaluated over 44 wk. TEM produced an expected dose related loss of spermatogenic activity and subsequent recovery as determined by dual-parameter (DNA, RNA) flow cytometry (FCM) measurements of testicular cells. Both testicular weights and caudal sperm reserves remained generally below controls after 44 wk recovery following exposure to the highest (1.0 mg/kg daily x 5) dosage. Chromatin structure alterations, defined as increased susceptibility to DNA denaturation in situ, and sperm head morphology were highly correlated (.87-.93, P less than .001) with dose and with each other. Data obtained from the sperm chromatin structure essay (SCSA) on fresh sperm was highly correlated with measurements of aliquots of the same sample collected over 44 wk, frozen, and then measured on the same day. Sperm head morphology and sperm chromatin structure remained abnormal at 44 wk for the 1.0 mg/kg TEM dosage, suggesting that the abnormalities, present long after the initial toxic response, may be a result of mutation. This study demonstrates that flow cytometry provides a unique, rapid, and efficient means to measure effects of reproductive toxins and potential mutagens. PMID:2767059

  15. Scorpion toxins that block T-type Ca2+ channels in spermatogenic cells inhibit the sperm acrosome reaction.

    PubMed

    López-González, Ignacio; Olamendi-Portugal, Timoteo; De la Vega-Beltrán, José L; Van der Walt, Jurg; Dyason, Karin; Possani, Lourival D; Felix, Ricardo; Darszon, Alberto

    2003-01-10

    The acrosome reaction (AR) is a Ca(2+)-dependent event required for sperm to fertilize the egg. The activation of T-type voltage-gated Ca(2+) channels plays a key role in the induction of this process. This report describes the actions of two toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively) on sperm Ca(2+) channels. Both toxins decrease T-type Ca(2+) channel activity in mouse spermatogenic cells and inhibit the AR in mature sperm. Saturating concentrations of the toxins inhibited at most approximately 70% of the whole-cell Ca(2+) current, suggesting the presence of a toxin-resistant component. In addition, both toxins inhibited approximately 60% of the AR, which is consistent with the participation of T-type Ca(2+) channels in the sperm AR. PMID:12504099

  16. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution

    PubMed Central

    Majhi, Rakesh Kumar; Saha, Somdatta; Kumar, Ashutosh; Ghosh, Arijit; Swain, Nirlipta; Goswami, Luna; Mohapatra, Pratyush; Maity, Apratim; Kumar Sahoo, Vivek

    2015-01-01

    Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8) is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th–5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA). We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance. PMID:26500819

  17. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata.

    PubMed

    Stevens, L H; Blom, T J; Verpoorte, R

    1993-08-01

    The subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus (L.) G. Don and Tabernaemontana divaricata (L.) R. Br. ex Roem. et Schult, was investigated. It was found that tryptophan decarboxylase is an extra-vacuolar enzyme, whereas strictosidine synthase is active inside the vacuole. Strong indications were obtained for the localization of strictosidine glucosidase on the outside of the tonoplast. The results suggest that tryptamine is transported into the vacuole where it is condensed with secologanin to form strictosidine, and that strictosidine passes the tonoplast and is subsequently hydrolysed outside the vacuole. PMID:24201788

  18. The Usefulness of Selected Physicochemical Indices, Cell Membrane Integrity and Sperm Chromatin Structure in Assessments of Boar Semen Sensitivity

    PubMed Central

    Wysokińska, A.; Kondracki, S.; Iwanina, M.

    2015-01-01

    The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors

  19. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, p...

  20. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    PubMed Central

    Hardham, Adrienne R; Takemoto, Daigo; White, Rosemary G

    2008-01-01

    Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER) and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the pathogen as it attempts to

  1. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    SciTech Connect

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E. . E-mail: costantino@unisi.it

    2005-03-10

    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis.

  2. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells.

    PubMed

    Beuter, Simone; Ardi, Ziv; Horovitz, Omer; Wuchter, Jennifer; Keller, Stefanie; Saha, Rinki; Tripathi, Kuldeep; Anunu, Rachel; Kehat, Orli; Kriebel, Martin; Richter-Levin, Gal; Volkmer, Hansjürgen

    2016-01-01

    Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling. PMID:27405707

  3. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells

    PubMed Central

    Beuter, Simone; Ardi, Ziv; Horovitz, Omer; Wuchter, Jennifer; Keller, Stefanie; Saha, Rinki; Tripathi, Kuldeep; Anunu, Rachel; Kehat, Orli; Kriebel, Martin; Richter-Levin, Gal; Volkmer, Hansjürgen

    2016-01-01

    Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling. PMID:27405707

  4. AFM-based Mapping of the Elastic Properties of Cell Walls: at Tissue, Cellular, and Subcellular Resolutions

    PubMed Central

    Peaucelle, Alexis

    2014-01-01

    We describe a recently developed method to measure mechanical properties of the surfaces of plant tissues using atomic force microscopy (AFM) micro/nano-indentations, for a JPK AFM. Specifically, in this protocol we measure the apparent Young’s modulus of cell walls at subcellular resolutions across regions of up to 100 µm x 100 µm in floral meristems, hypocotyls, and roots. This requires careful preparation of the sample, the correct selection of micro-indenters and indentation depths. To account for cell wall properties only, measurements are performed in highly concentrated solutions of mannitol in order to plasmolyze the cells and thus remove the contribution of cell turgor pressure. In contrast to other extant techniques, by using different indenters and indentation depths, this method allows simultaneous multiscale measurements, i.e. at subcellular resolutions and across hundreds of cells comprising a tissue. This means that it is now possible to spatially-temporally characterize the changes that take place in the mechanical properties of cell walls during development, enabling these changes to be correlated with growth and differentiation. This represents a key step to understand how coordinated microscopic cellular changes bring about macroscopic morphogenetic events. However, several limitations remain: the method can only be used on fairly small samples (around 100 µm in diameter) and only on external tissues; the method is sensitive to tissue topography; it measures only certain aspects of the tissue’s complex mechanical properties. The technique is being developed rapidly and it is likely that most of these limitations will be resolved in the near future. PMID:25080133

  5. Cellular Distribution and Subcellular Localization of Molecular Components of Vesicular Transmitter Release in Horizontal Cells of Rabbit Retina

    PubMed Central

    HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN H.; BRECHA, NICHOLAS C.

    2010-01-01

    The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of γ-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca2+-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells. PMID:15912504

  6. Cis-Regulatory Elements Determine Germline Specificity and Expression Level of an Isopentenyltransferase Gene in Sperm Cells of Arabidopsis1[OPEN

    PubMed Central

    Yuan, Tong; Duan, Xiaomeng; Wei, Xiaoping; Li, Jia

    2016-01-01

    Flowering plant sperm cells transcribe a divergent and complex complement of genes. To examine promoter function, we chose an isopentenyltransferase gene known as PzIPT1. This gene is highly selectively transcribed in one sperm cell morphotype of Plumbago zeylanica, which preferentially fuses with the central cell during fertilization and is thus a founding cell of the primary endosperm. In transgenic Arabidopsis (Arabidopsis thaliana), PzIPT1 promoter displays activity in both sperm cells and upon progressive promoter truncation from the 5′-end results in a progressive decrease in reporter production, consistent with occurrence of multiple enhancer sites. Cytokinin-dependent protein binding motifs are identified in the promoter sequence, which respond with stimulation by cytokinin. Expression of PzIPT1 promoter in sperm cells confers specificity independently of previously reported Germline Restrictive Silencer Factor binding sequence. Instead, a cis-acting regulatory region consisting of two duplicated 6-bp Male Gamete Selective Activation (MGSA) motifs occurs near the site of transcription initiation. Disruption of this sequence-specific site inactivates expression of a GFP reporter gene in sperm cells. Multiple copies of the MGSA motif fused with the minimal CaMV35S promoter elements confer reporter gene expression in sperm cells. Similar duplicated MGSA motifs are also identified from promoter sequences of sperm cell-expressed genes in Arabidopsis, suggesting selective activation is possibly a common mechanism for regulation of gene expression in sperm cells of flowering plants. PMID:26739233

  7. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    PubMed

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. PMID:27480687

  8. Impact of Bep or Carboplatin Chemotherapy on Testicular Function and Sperm Nucleus of Subjects with Testicular Germ Cell Tumor

    PubMed Central

    Ghezzi, Marco; Berretta, Massimiliano; Bottacin, Alberto; Palego, Pierfrancesco; Sartini, Barbara; Cosci, Ilaria; Finos, Livio; Selice, Riccardo; Foresta, Carlo; Garolla, Andrea

    2016-01-01

    Young males have testicular germ cells tumors (TGCT) as the most common malignancy and its incidence is increasing in several countries. Besides unilateral orchiectomy (UO), the treatment of TGCT may include surveillance, radiotherapy, or chemotherapy (CT), basing on tumor histology and stage of disease. It is well known that both radio and CT may have negative effects on testicular function, affecting spermatogenesis, and sex hormones. Many reports investigated these aspects in patients treated with bleomycin, etoposide, and cisplatin (BEP), after UO. In contrast no data are available on the side effects of carboplatin treatment in these patients. We included in this study 212 consecutive subjects who undergone to sperm banking at our Andrology and Human Reproduction Unit after UO for TGCT. Hundred subjects were further treated with one or more BEP cycles (BEP-group), 54 with carboplatin (CARB group), and 58 were just surveilled (S-group). All patients were evaluated for seminal parameters, sperm aneuploidy, sperm DNA, sex hormones, volume of the residual testis at baseline (T0) and after 12 (T1) and 24 months (T2) from UO or end of CT. Seminal parameters, sperm aneuploidies, DNA status, gonadic hormones, and testicular volume at baseline were not different between groups. At T1, we observed a significant reduction of sperm concentration and sperm count in the BEP group versus baseline and versus both Carb and S-group. A significant increase of sperm aneuploidies was present at T1 in the BEP group. Similarly, the same group at 1 had altered sperm DNA integrity and fragmentation compared with baseline, S-group and Carb group. These alterations were persistent after 2 years from the end of BEP treatment. Despite a slight improvement at T2, the BEP group had still higher percentages of sperm aneuploidies than other groups. No impairment of sperm aneuploidies and DNA status were observed in the Carb group both after 1 and 2 years from the end of treatment. Despite

  9. Impact of Bep or Carboplatin Chemotherapy on Testicular Function and Sperm Nucleus of Subjects with Testicular Germ Cell Tumor.

    PubMed

    Ghezzi, Marco; Berretta, Massimiliano; Bottacin, Alberto; Palego, Pierfrancesco; Sartini, Barbara; Cosci, Ilaria; Finos, Livio; Selice, Riccardo; Foresta, Carlo; Garolla, Andrea

    2016-01-01

    Young males have testicular germ cells tumors (TGCT) as the most common malignancy and its incidence is increasing in several countries. Besides unilateral orchiectomy (UO), the treatment of TGCT may include surveillance, radiotherapy, or chemotherapy (CT), basing on tumor histology and stage of disease. It is well known that both radio and CT may have negative effects on testicular function, affecting spermatogenesis, and sex hormones. Many reports investigated these aspects in patients treated with bleomycin, etoposide, and cisplatin (BEP), after UO. In contrast no data are available on the side effects of carboplatin treatment in these patients. We included in this study 212 consecutive subjects who undergone to sperm banking at our Andrology and Human Reproduction Unit after UO for TGCT. Hundred subjects were further treated with one or more BEP cycles (BEP-group), 54 with carboplatin (CARB group), and 58 were just surveilled (S-group). All patients were evaluated for seminal parameters, sperm aneuploidy, sperm DNA, sex hormones, volume of the residual testis at baseline (T0) and after 12 (T1) and 24 months (T2) from UO or end of CT. Seminal parameters, sperm aneuploidies, DNA status, gonadic hormones, and testicular volume at baseline were not different between groups. At T1, we observed a significant reduction of sperm concentration and sperm count in the BEP group versus baseline and versus both Carb and S-group. A significant increase of sperm aneuploidies was present at T1 in the BEP group. Similarly, the same group at 1 had altered sperm DNA integrity and fragmentation compared with baseline, S-group and Carb group. These alterations were persistent after 2 years from the end of BEP treatment. Despite a slight improvement at T2, the BEP group had still higher percentages of sperm aneuploidies than other groups. No impairment of sperm aneuploidies and DNA status were observed in the Carb group both after 1 and 2 years from the end of treatment. Despite

  10. Study of acetowhitening mechanisms in live mammalian cells with label-free subcellular-level multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Teh, Sengkhoon; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2015-03-01

    The tissue acetowhitening effect in acetic acid instillation procedure is a simple and economic method for neoplasia detection and has been clinically utilized since 1925. It is suspected that the optical property (e.g. scattering) change in acetowhitening is due to coagulation of intracellular proteins, but no experimental proof has been reported yet. In this work, we use third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) to investigate the acetowhitening phenomenon induced by acidic acid in live mammalian cells without labeling. We studied the acetowhitening effect with different acetic acid concentrations and the co-localized TPEF and THG imaging on tryptophan and NADH at subcellular-level reveals that the acetowhitening phenomenon is highly related with proteins involved in metabolic pathways in the nucleus and cytoplasm in live cells.

  11. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy.

    PubMed

    Chandra, Subhash

    2005-09-01

    Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol

  12. Sperm storage and spermatozoa interaction with epithelial cells in oviduct of Chinese soft-shelled turtle, Pelodiscus sinensis.

    PubMed

    Chen, Shaofan; Zhang, Linli; Le, Yuan; Waqas, Yasir; Chen, Wei; Zhang, Qian; Ullah, Shakeeb; Liu, Tengfei; Hu, Lisi; Li, Quanfu; Yang, Ping

    2015-08-01

    Spermatozoa are known to be stored within the female genital tract after mating in various species to optimize timing of reproductive events such as copulation, fertilization, and ovulation. The mechanism supporting long-term sperm storage is still unclear in turtles. The aim of this study was to investigate the interaction between the spermatozoa and oviduct in Chinese soft-shelled turtle by light and electron microscopy to reveal the potential cytological mechanism of long-term sperm storage. Spermatozoa were stored in isthmus, uterine, and vagina of the oviduct throughout the year, indicating long-term sperm storage in vivo. Sperm heads were always embedded among the cilia and even intercalated into the apical hollowness of the ciliated cells in the oviduct mucosal epithelium. The stored spermatozoa could also gather in the gland conduit. There was no lysosome distribution around the hollowness of the ciliated cell, suggesting that the ciliated cells of the oviduct can support the spermatozoa instead of phagocytosing them in the oviduct. Immune cells were sparse in the epithelium and lamina propria of oviduct, although few were found inside the blood vessel of mucosa, which may be an indication of immune tolerance during sperm storage in the oviduct of the soft-shelled turtle. These characteristics developed in the turtle benefited spermatozoa survival for a long time as extraneous cells in the oviduct of this species. These findings would help to improve the understanding of reproductive regularity and develop strategies of species conservation in the turtle. The Chinese soft-shelled turtle may be a potential model for uncovering the mechanism behind the sperm storage phenomenon. PMID:26357535

  13. Sperm storage and spermatozoa interaction with epithelial cells in oviduct of Chinese soft-shelled turtle, Pelodiscus sinensis

    PubMed Central

    Chen, Shaofan; Zhang, Linli; Le, Yuan; Waqas, Yasir; Chen, Wei; Zhang, Qian; Ullah, Shakeeb; Liu, Tengfei; Hu, Lisi; Li, Quanfu; Yang, Ping

    2015-01-01

    Spermatozoa are known to be stored within the female genital tract after mating in various species to optimize timing of reproductive events such as copulation, fertilization, and ovulation. The mechanism supporting long-term sperm storage is still unclear in turtles. The aim of this study was to investigate the interaction between the spermatozoa and oviduct in Chinese soft-shelled turtle by light and electron microscopy to reveal the potential cytological mechanism of long-term sperm storage. Spermatozoa were stored in isthmus, uterine, and vagina of the oviduct throughout the year, indicating long-term sperm storage in vivo. Sperm heads were always embedded among the cilia and even intercalated into the apical hollowness of the ciliated cells in the oviduct mucosal epithelium. The stored spermatozoa could also gather in the gland conduit. There was no lysosome distribution around the hollowness of the ciliated cell, suggesting that the ciliated cells of the oviduct can support the spermatozoa instead of phagocytosing them in the oviduct. Immune cells were sparse in the epithelium and lamina propria of oviduct, although few were found inside the blood vessel of mucosa, which may be an indication of immune tolerance during sperm storage in the oviduct of the soft-shelled turtle. These characteristics developed in the turtle benefited spermatozoa survival for a long time as extraneous cells in the oviduct of this species. These findings would help to improve the understanding of reproductive regularity and develop strategies of species conservation in the turtle. The Chinese soft-shelled turtle may be a potential model for uncovering the mechanism behind the sperm storage phenomenon. PMID:26357535

  14. Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin.

    PubMed Central

    Wetzler, M; Talpaz, M; Yee, G; Stass, S A; Van Etten, R A; Andreeff, M; Goodacre, A M; Kleine, H D; Mahadevia, R K; Kurzrock, R

    1995-01-01

    The disruption of the BCR gene and its juxtaposition to and consequent activation of the ABL gene has been implicated as the critical molecular defect in Philadelphia chromosome-positive leukemias. The normal BCR protein is a multifunctional molecule with domains that suggest its participation in phosphokinase and GTP-binding pathways. Taken together with its localization to the cytoplasm of uncycled cells, it is therefore presumed to be involved in cytoplasmic signaling. By performing a double aphidicolin block for cell cycle synchronization, we currently demonstrate that the subcellular localization of BCR shifts from being largely cytoplasmic in interphase cells to being predominantly perichromosomal in mitosis. Furthermore, with the use of immunogold labeling and electron microscopy, association of BCR with DNA, in particular heterochromatin, can be demonstrated even in quiescent cells. Results were similar in cell lines of lymphoid or myeloid origin. These observations suggest a role for BCR in the phosphokinase interactions linked to condensed chromatin, a network previously implicated in cell cycle regulation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7724587

  15. Transmembrane topology, subcellular distribution and turnover of the gamma-aminobutyric acid/benzodizaepine receptor in chick brain cell cultures

    SciTech Connect

    Czajkowski, C.M.

    1987-01-01

    Experiments were performed utilizing trypsinization of the GABA/BZD-R in intact cells to determine (1) the subcellular distribution of membrane-associated GABA/BZD-Rs and (2) aspects of the transmembrane topology of the BZD-R. Additionally, R07-0213, a positively charged benzodiazepine, was used to distinguish between cell surface and intracellular BZD-Rs. Following trypsin treatment of intact cells a cleaved receptor fragment of M{sub r} = 24,000 (xRF24) is generated. It remains anchored in the plasma membrane and not only retains the ability to bind ({sup 3}H)flunitrazepan reversibly and irreversibly but also retains the ability to be modulated by GABA. xRF24 is not observed following trypsinization of saponin-treated cells or cell homogenates, indicating that it has a cytoplasmic domain as well as a cell surface domain, as expected for a transmembrane fragment of the BZD-R. By utilizing ({sup 3}H)flunitrazepam as an irreversible photoaffinity label, BZD-R turnover was also investigated.

  16. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics II. Identification of endosomal and lysosomal compartments in HepG2 cells combining single-step subcellular fractionation with fluorescent imaging.

    PubMed

    Manunta, Maria; Izzo, Lorella; Duncan, Ruth; Jones, Arwyn Tomos

    2007-01-01

    As they are often designed for lysosomotropic, endosomotropic and/or transcellular delivery, an understanding of intracellular trafficking pathways is essential to enable optimised design of novel polymer therapeutics. Here, we describe a single-step density gradient subcellular fractionation method combined with fluorescent detection analysis that provides a new tool for characterisation of endocytic traffic of polymer therapeutics. Hepatoma (HepG2) cells were used as a model and cell breakage was optimised using a cell cracker to ensure assay of the whole cell population. After removal of unbroken cells and nuclei, the cell lysate as a post-nuclear supernatant (PNS) was layered onto an iodixanol (OptiPrep) density gradient optimised to 5-20%. Early endosomes, late endosomes and lysosomes were identified from gradient fractions by immunoblotting for marker proteins early endosome antigen 1 (EEA 1) and lysosomal associated membrane protein 1 (LAMP 1) using horseradish peroxidase or fluorescently-labelled secondary antibodies. Lysosomes were also detected using N-acetyl-beta-glucosamindase (Hex A) activity. In addition, cells were incubated with Texas-red labelled transferrin (TxR-Tf) for 5 min to specifically label early endosomes and this was directly detected from SDS-PAGE gels. Internalised macromolecules and colloidal particles can potentially alter vesicle buoyant density. To see if typical macromolecules of interest would alter vesicle density or perturb vesicle traffic, HepG2 cells were incubated with dextran or a polyethyleneglycol (PEG)-polyester dendron G4 (1 mg/ml for 24 h). The PEG-polyester dendron G4 caused a slight redistribution of endocytic structures to lower density fractions but immunofluorescence microscopy showed no obvious dendron effects. In conclusion, the combined subcellular fractionation with fluorescent imaging approach described here can be used as a tool for both fundamental cell biology research and/or the quantitative localisation

  17. ß-cell Subcellular Localization of Glucose Stimulated Mn Uptake By X-ray Fluorescence Microscopy: Implications for Pancreatic MRI

    PubMed Central

    Leoni, Lara; Dhyani, Anita; La Riviere, Patrick; Vogt, Stefan; Lai, Barry; Roman, B.B.

    2013-01-01

    Manganese (Mn) is a calcium (Ca) analog that has long been used as a magnetic resonance imaging (MRI) contrast agent for investigating cardiac tissue functionality, for brain mapping and for neuronal tract tracing studies. Recently, we have extended its use to investigate pancreatic β-cells and showed that, in the presence of MnCl2, glucose activated pancreatic islets yield significant signal enhancement in T1-weigheted MR images. In this study, we exploited for the first time the unique capabilities of X-ray fluorescence microscopy (XFM) to both visualize and quantify the metal in pancreatic β-cells at cellular and sub-cellular levels. MIN-6 insulinoma cells grown in standard tissue culture conditions had only a trace amount of Mn, 1.14 ± 0.03 ×10-11 μg/μm2, homogenously distributed across the cell. Exposure to 2mM glucose and 50 μM MnCl2 for 20 minutes resulted in non-glucose dependent Mn uptake and the overall cell concentration increased to 8.99 ± 2.69 ×10-11 μg/μm2. When cells were activated by incubation in 16mM glucose in the presence of 50 μM MnCl2, a significant increase in cytoplasmic Mn was measured reaching 2.57 ± 1.34 ×10-10 μg/μm2. A further rise in intracellular concentration was measured following KCl induced depolarization, with concentrations totaling 1.25 ± 0.33 ×10-9 and 4.02 ± 0.71 ×10-10 μg/μm2 in the cytoplasm and nuclei respectively. In both activated conditions Mn was prevalent in the cytoplasm and localized primarily in a perinuclear region, possibly corresponding to the Golgi apparatus and involving the secretory pathway. These data are consistent with our previous MRI findings confirming that Mn can be used as a functional imaging reporter of pancreatic β-cell activation and also provide a basis for understanding how subcellular localization of Mn will impact MRI contrast PMID:22144025

  18. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  19. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.

    PubMed

    Overdijk, Elysa J R; DE Keijzer, Jeroen; DE Groot, Deborah; Schoina, Charikleia; Bouwmeester, Klaas; Ketelaar, Tijs; Govers, Francine

    2016-08-01

    Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules. PMID:27027911

  20. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging

    SciTech Connect

    Wolff, Horst; Hadian, Kamyar; Ziegler, Manja; Weierich, Claudia; Kramer-Hammerle, Susanne; Kleinschmidt, Andrea; Erfle, Volker; Brack-Werner, Ruth . E-mail: brack@gsf.de

    2006-02-15

    The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.

  1. Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Golan, Yarden; Berman, Bluma; Assaraf, Yehuda G.

    2015-01-01

    Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions. PMID:25657003

  2. Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system.

    PubMed Central

    Gorelik, Julia; Gu, Yuchun; Spohr, Hilmar A; Shevchuk, Andrew I; Lab, Max J; Harding, Sian E; Edwards, Christopher R W; Whitaker, Michael; Moss, Guy W J; Benton, David C H; Sánchez, Daniel; Darszon, Alberto; Vodyanoy, Igor; Klenerman, David; Korchev, Yuri E

    2002-01-01

    We have developed a scanning patch-clamp technique that facilitates single-channel recording from small cells and submicron cellular structures that are inaccessible by conventional methods. The scanning patch-clamp technique combines scanning ion conductance microscopy and patch-clamp recording through a single glass nanopipette probe. In this method the nanopipette is first scanned over a cell surface, using current feedback, to obtain a high-resolution topographic image. This same pipette is then used to make the patch-clamp recording. Because image information is obtained via the patch electrode it can be used to position the pipette onto a cell with nanometer precision. The utility of this technique is demonstrated by obtaining ion channel recordings from the top of epithelial microvilli and openings of cardiomyocyte T-tubules. Furthermore, for the first time we have demonstrated that it is possible to record ion channels from very small cells, such as sperm cells, under physiological conditions as well as record from cellular microstructures such as submicron neuronal processes. PMID:12496097

  3. Identification and subcellular distribution of the Gi-proteins in the enterocytic-differentiated adenocarcinoma cell-line, Caco-2.

    PubMed

    Lacombe, C; Viallard, V; Schaak, S; Paris, H

    1996-01-01

    As evidenced by pertussis toxin-catalysed [32P]ADP-ribosylation, immunoblotting and Northern blot, the human adenocarcinoma intestinal cell line Caco-2 expresses Gi2 and Gi3 proteins. The localization of these two Gis within the cell was investigated by using subcellular fractionation and confocal microscopy on intact cell layer. A brush-border rich fraction and a pellet containing the remaining cellular membranes were prepared. [32P]ADP-ribosylation and immunoblotting demonstrated the presence of both alpha i2 and alpha i3 in these two preparations. Immunofluorescence studies performed on intact cells grown on Transwell filters and viewed by confocal microscopy further confirmed the localization of alpha i3-subunit on basolateral as well as on apical membranes. In contrast, alpha i2-subunit was shown to accumulate mainly in the intra-cellular compartment while only faint staining of the plasma membrane was detectable. Based upon double-labelling experiments with antibody against rough endoplasmic reticulum (RER), there is a strong possibility that intra-cellular sites of alpha i2-subunit correspond to association with RER membranes. PMID:9237368

  4. Sperm Patch-Clamp

    PubMed Central

    Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy

    2014-01-01

    Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465

  5. Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905)

    USGS Publications Warehouse

    DiLauro, M.N.; Walsh, R.A.; Peiffer, M.; Bennett, R.M.

    2001-01-01

    Sperm-cell morphology and ultrastructure in the pallid sturgeon (Scaphirhynchus albus) were examined using transmission and scanning electron microscopy. Metrics and structure were compared with similar metrics obtained from other published descriptions of sturgeon sperm cells. General morphology was found to be similar to that of sperm cells of the white (Acipenser transmontanus), lake (A. fulvescens), stellate (A. stellatus), Chinese (A. sinensis), Russian (A. gueldenstaedti colchicus), and shortnose (A. brevirostrum) sturgeons, which all shared a gradual tapering of the nuclear diameter from posterior to anterior, unlike that of the Atlantic sturgeon (A. oxyrhynchus). The sperm cell of the pallid sturgeon was similar in size to that of the Atlantic sturgeon, being only slightly larger. The sperm cell of the pallid sturgeon differed from those of other sturgeons chiefly in the acrosomal region, where the posterolateral projections (PLP) have the shape of an acute triangle and are arranged in a spiral about the longitudinal axis of the cell. The PLP were longer than those of other sturgeons, being twice the length of those of the Atlantic sturgeon and 58% longer than those of the lake sturgeon. Also, in cross section the acrosome had the shape of a hollow cone rather than the cap of an oak tree acorn, as was found in ultrastructural studies of other sturgeons. In addition, we were able to confirm that the structural arrangement of the distal centriole of the midpiece is identical with that of the proximal centriole: nine sets of microtubular triplets around the periphery of the centriole. This information is of potential use to fishery biologists, forensic biologists, zoologists, reproductive physiologists, taxonomists, evolutionary biologists, and aquaculturists.

  6. Why so many sperm cells? Not only a possible means of mitigating the hazards inherent to human reproduction but also an indicator of an exaptation

    PubMed Central

    Barlow, Peter W.

    2016-01-01

    ABSTRACT Redundancy—the excess of supply over necessity—has recently been proposed for human sperm cells. However, the apparent superfluity of cell numbers may be necessary in order to circumvent the hazards, many of which can be quantified, that can occur during the transition from gametogenesis within the testes to zygosis within the female reproductive tract. Sperm cell numbers are directly related to testicular volume, and it is owing to a redundancy, and the possible exaptation, of this latter parameter that a putative excess of sperm cells is perceived. PMID:27574542

  7. Subcellular compartment-specific molecular diversity of pre- and postsynaptic GABAB-activated GIRK channels in Purkinje cells

    PubMed Central

    Fernández-Alacid, Laura; Aguado, Carolina; Ciruela, Francisco; Martín, Ricardo; Colón, José; Cabañero, María José; Gassmann, Martin; Watanabe, Masahiko; Shigemoto, Ryuichi; Wickman, Kevin; Bettler, Bernhard; Sánchez-Prieto, José; Luján, Rafael

    2009-01-01

    Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, postsynaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The postsynaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At presynaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and presynaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum. PMID:19558451

  8. Mitochondrial DNA typing of laser-captured single sperm cells to differentiate individuals in a mixed semen stain.

    PubMed

    Zhang, Lu; Ding, Mei; Pang, Hao; Xing, Jiaxin; Xuan, Jinfeng; Wang, Chunhong; Lin, Ziqing; Han, Song; Liang, Kewei; Li, Chunmei; Yao, Jun; Wang, Baojie

    2016-08-01

    The identification of individuals in a mixture of two semen samples usually involves an analysis of autosomal and Y chromosomal short tandem repeats (STR) which can exclude unrelated individuals but cannot achieve the purpose of individual identification. In sperm cells, there are multiple copies of mitochondrial DNAs (mtDNA) which exhibit genetic polymorphisms in different matrilineal-related individuals. Single-cell capture technology can be applied to obtain some single sperm cells in a mixed semen sample, then polymerase chain reaction can be employed to amplify the mtDNA hypervariable region I (HVR I) from each cell. By pooling the cells with the same HVR I sequence, we can obtain the sufficient nuclear DNA for STR typing. PMID:27225075

  9. Disrupting the wall accumulation of human sperm cells by artificial corrugation

    PubMed Central

    Jeyaram, Y.; Condat, C. A.; Oviedo, M.; Berdakin, I.; Moshchalkov, V. V.; Giojalas, L. C.; Silhanek, A. V.; Marconi, V. I.

    2015-01-01

    Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers. In this work, we characterize the motion of human sperm cells ∼60 μm long, strongly confined to ∼25 μm shallow chambers. We investigate the nature of the cell trajectories between the confining surfaces and their accumulation near the borders. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and bottom surfaces separated by stretches of quasi-free motion in between the two surfaces, as confirmed by depth resolved confocal microscopy studies. We show that the introduction of artificial petal-shaped corrugation in the lateral boundaries removes the tendency of cells to accumulate near the borders, an effect which we hypothesize may be valuable for microfluidic applications in biomedicine. PMID:26015834

  10. High-resolution quantitative imaging of subcellular morphology and cell refractometry in a liquid environment via endogenous mechanism

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2014-03-01

    Biological cells are composed primarily of water; and as such are challenging to image without staining since the induced intensity modulation of transmitted or reflected light is typically insufficient to permit acceptable contrast for optical imaging. This issue may be resolved with the aid of exogenous contrast agents, but this often has a deleterious effect on the cell and precludes in vivo imaging. A unique approach to this problem is afforded by the phase contrast microscope in which optical-path differences in transmitted light is exploited as a contrast mechanism for qualitative imaging. In recent years however, several quantitative phase imaging techniques have been developed which allow for diffraction limited endogenous-contrast imaging with excellent temporal resolution. We hereby present a laser scanning technique for quantitative phase imaging which achieves sub-diffraction limited resolution at the expense of temporal resolution. This instrument is based on a stabilized fiber interfometer which is incorporated into a near-field scanning optical microscope (NSOM) for tri-modal imaging. Our latest results will focus on modifications made to this system to facilitate imaging in a liquid environment. A simple approach for achieving stable shear-force feedback operation in a liquid will be presented. Acquired high resolution images of white blood cells revealed detailed sub-cellular features. Images of fibroblast cells in air and in a liquid environment confirm the efficacy of the feedback operation in a liquid. Moreover, we demonstrate cell refractometry capability without the need for ad hoc modifications. These results clearly highlight the unique potential of this instrument for the study of living cells.

  11. Quantitative subcellular study of doxorubicin in MCF-7/Adr cells using liquid chromatography-tandem mass spectrometry.

    PubMed

    Ma, Wenzhuan; Wang, Jinling; Guo, Qiang; Tu, Pengfei

    2015-12-15

    A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method has been developed and validated for the determination of doxorubicin in intracellular compartments using glibenclamide as internal standard (IS). MCF-7/Adr cancer cells (1×10(6)) were incubated with doxorubicin (8μg/mL) for 0.5, 1, 2 and 4h and then subjected to sequential extraction of cytosolic, membrane/organelle, nuclear and cytoskeleton soluble protein. Samples were extracted using protein precipitation with methanol. Chromatographic separation was carried out on a C18 column with acetonitrile and 0.1% formic acid water as mobile phase and with gradient elution at a flow rate of 0.2mL/min. The method was linear over the range of 1-300ng/mL with a lower limit of quantification (LLOQ) of 1ng/mL. The distribution of doxorubicin in subcellular components of MCF-7/Adr cancer cells was mainly in nucleic protein fraction. PMID:26562803

  12. Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment

    NASA Astrophysics Data System (ADS)

    Zhuo, Yue; Qian, Tongcheng; Wu, Yiqian; Seong, Jihye; Gong, Ya; Ma, Hongwei; Wang, Yingxiao; Lu, Shaoying

    2015-08-01

    Migration of endothelial cells is essential for wound healing and angiogenesis. Src kinase activity plays important roles at the protrusions of migrating endothelial cells. However, the spatiotemporal coordination between Src kinase activity and the protrusion of cell edge remains unclear. Therefore, we investigate these coordinated molecular events at the initiation of cell migration, by integrating microfabrication, fluorescence resonance energy transfer (FRET)-based biosensors, and automated computational image analysis. We demonstrate that the physical release of restrictive micropattern triggered a significant decrease of Src activity at the protrusive edge of endothelial cells. Computational cross-correlation analysis reveals that the decrease of Src activity occurred earlier in time, and was well-coordinated with the protrusion of cell edge in polarized cells, but not in non-polarized cells. These results suggest that the spatiotemporal control of Src kinase activity is well-coordinated with cell polarization and protrusion in endothelial cells upon the release of physical constraint, as that experienced by endothelial cells sprouting from stiff tumor micro-environment during angiogenesis. Therefore, our integrative approach enabled the discovery of a new model where Src is de-activated in coordination with membrane protrusion, providing important insights into the regulation of endothelial migration and angiogenesis.

  13. Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment.

    PubMed

    Zhuo, Yue; Qian, Tongcheng; Wu, Yiqian; Seong, Jihye; Gong, Ya; Ma, Hongwei; Wang, Yingxiao; Lu, Shaoying

    2015-01-01

    Migration of endothelial cells is essential for wound healing and angiogenesis. Src kinase activity plays important roles at the protrusions of migrating endothelial cells. However, the spatiotemporal coordination between Src kinase activity and the protrusion of cell edge remains unclear. Therefore, we investigate these coordinated molecular events at the initiation of cell migration, by integrating microfabrication, fluorescence resonance energy transfer (FRET)-based biosensors, and automated computational image analysis. We demonstrate that the physical release of restrictive micropattern triggered a significant decrease of Src activity at the protrusive edge of endothelial cells. Computational cross-correlation analysis reveals that the decrease of Src activity occurred earlier in time, and was well-coordinated with the protrusion of cell edge in polarized cells, but not in non-polarized cells. These results suggest that the spatiotemporal control of Src kinase activity is well-coordinated with cell polarization and protrusion in endothelial cells upon the release of physical constraint, as that experienced by endothelial cells sprouting from stiff tumor micro-environment during angiogenesis. Therefore, our integrative approach enabled the discovery of a new model where Src is de-activated in coordination with membrane protrusion, providing important insights into the regulation of endothelial migration and angiogenesis. PMID:26261043

  14. Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment

    PubMed Central

    Zhuo, Yue; Qian, Tongcheng; Wu, Yiqian; Seong, Jihye; Gong, Ya; Ma, Hongwei; Wang, Yingxiao; Lu, Shaoying

    2015-01-01

    Migration of endothelial cells is essential for wound healing and angiogenesis. Src kinase activity plays important roles at the protrusions of migrating endothelial cells. However, the spatiotemporal coordination between Src kinase activity and the protrusion of cell edge remains unclear. Therefore, we investigate these coordinated molecular events at the initiation of cell migration, by integrating microfabrication, fluorescence resonance energy transfer (FRET)-based biosensors, and automated computational image analysis. We demonstrate that the physical release of restrictive micropattern triggered a significant decrease of Src activity at the protrusive edge of endothelial cells. Computational cross-correlation analysis reveals that the decrease of Src activity occurred earlier in time, and was well-coordinated with the protrusion of cell edge in polarized cells, but not in non-polarized cells. These results suggest that the spatiotemporal control of Src kinase activity is well-coordinated with cell polarization and protrusion in endothelial cells upon the release of physical constraint, as that experienced by endothelial cells sprouting from stiff tumor micro-environment during angiogenesis. Therefore, our integrative approach enabled the discovery of a new model where Src is de-activated in coordination with membrane protrusion, providing important insights into the regulation of endothelial migration and angiogenesis. PMID:26261043

  15. Cell-Cycle-Regulated Expression and Subcellular Localization of the Caulobacter crescentus SMC Chromosome Structural Protein

    PubMed Central

    Jensen, Rasmus B.; Shapiro, Lucy

    2003-01-01

    Structural maintenance of chromosomes proteins (SMCs) bind to DNA and function to ensure proper chromosome organization in both eukaryotes and bacteria. Caulobacter crescentus possesses a single SMC homolog that plays a role in organizing and segregating daughter chromosomes. Approximately 1,500 to 2,000 SMC molecules are present per cell during active growth, corresponding to one SMC complex per 6,000 to 8,000 bp of chromosomal DNA. Although transcription from the smc promoter is induced during early S phase, a cell cycle transcription pattern previously observed with multiple DNA replication and repair genes, the SMC protein is present throughout the entire cell cycle. Examination of the intracellular location of SMC showed that in swarmer cells, which do not replicate DNA, the protein forms two or three foci. Stalked cells, which are actively engaged in DNA replication, have three or four SMC foci per cell. The SMC foci appear randomly distributed in the cell. Many predivisional cells have bright polar SMC foci, which are lost upon cell division. Thus, chromosome compaction likely involves dynamic aggregates of SMC bound to DNA. The aggregation pattern changes as a function of the cell cycle both during and upon completion of chromosome replication. PMID:12730166

  16. Characterization of isoform expression and subcellular distribution of MYPT1 in intestinal epithelial cells.

    PubMed

    Zha, Juan-Min; Li, Hua-Shan; Wang, Yi-Tang; Lin, Qian; Tao, Min; He, Wei-Qi

    2016-08-15

    The regulation of intestinal epithelial permeability requires phosphorylation of myosin regulatory light chain (MLC). The phosphorylation status of MLC is regulated by myosin light chain phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (PP1cδ) toward MLC depends on its regulatory subunit (MYPT1). In this study, we revealed the presence of two MYPT1 isoforms, full length and variant 2 in human intestinal (Caco-2) epithelial cells and isolated intestinal epithelial cells (IECs) from mice. In confluent Caco-2 cells, MYPT1 was distributed at cell-cell contacts and colocalized with F-actin. These results suggest that MYPT1 isoforms are expressed in intestinal epithelial cells and MYPT1 may be involved in the regulation of intestinal epithelial barrier function. PMID:27129938

  17. Using Femtosecond Laser Subcellular Surgery as a Tool to Study Cell Biology

    SciTech Connect

    Shen, N; Colvin, M E; Huser, T

    2007-02-27

    Research on cellular function and regulation would be greatly advanced by new instrumentation using methods to alter cellular processes with spatial discrimination on the nanometer-scale. We present a novel technique for targeting submicrometer sized organelles or other biologically important regions in living cells using femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we can vaporize cellular material inside the cell through nonlinear optical processes. This technique enables non-invasive manipulation of the physical structure of a cell with sub-micrometer resolution. We propose to study the role mitochondria play in cell proliferation and apoptosis. Our technique provides a unique tool for the study of cell biology.

  18. Regulation of Sertoli-Germ Cell Adhesion and Sperm Release by FSH and Nonclassical Testosterone Signaling

    PubMed Central

    Shupe, John; Cheng, Jing; Puri, Pawan; Kostereva, Nataliya

    2011-01-01

    Testosterone and FSH act in synergy to produce the factors required to maximize the production of spermatozoa and male fertility. However, the molecular mechanisms by which these hormones support spermatogenesis are not well established. Recently, we identified a nonclassical mechanism of testosterone signaling in cultured rat Sertoli cells. We found that testosterone binding to the androgen receptor recruits and activates Src tyrosine kinase. Src then causes the activation of the epidermal growth factor receptor, which results in the phosphorylation and activation of the ERK MAPK and the cAMP response element-binding protein transcription factor. In this report, we find that FSH inhibits testosterone-mediated activation of ERK and the MAPK pathway in Sertoli cells via the protein kinase A-mediated inhibition of Raf kinase. In addition, FSH, as well as inhibitors of Src and ERK kinase activity, reduced germ cell attachment to Sertoli cells in culture. Using pathway-specific androgen receptor mutants we found that the nonclassical pathway is required for testosterone-mediated increases in germ cell attachment to Sertoli cells. Studies of seminiferous tubule explants determined that Src kinase, but not ERK kinase, activity is required for the release of sperm from seminiferous tubule explants. These findings suggest the nonclassical testosterone-signaling pathway acts via Src and ERK kinases to facilitate the adhesion of immature germ cells to Sertoli cells and through Src to permit the release of mature spermatozoa. In contrast, FSH acts to limit testosterone-mediated ERK kinase activity and germ cell attachment. PMID:21177760

  19. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans

    PubMed Central

    Fenker, Kristin E.; Hansen, Angela A.; Chong, Conrad A.; Jud, Molly C.; Duffy, Brittany A.; Norton, J. Paul; Hansen, Jody M.; Stanfield, Gillian M.

    2014-01-01

    Summary Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the amoeboid sperm of C. elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals. PMID:24929237

  20. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components

    PubMed Central

    Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.

    2015-01-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000

  1. Analysis of Nuclear RNA Interference (RNAi) in Human Cells by Subcellular Fractionation and Argonaute Loading

    PubMed Central

    Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.

    2014-01-01

    RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428

  2. Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Klinge, Carolyn M.

    2010-01-01

    The role of estrogens in the increased risk of lung adenocarcinoma in women remains uncertain. We reported that lung adenocarcinoma cell lines from female, but not male, patients with non–small cell lung cancer respond proliferatively and transcriptionally to estradiol (E2), despite equal protein expression of estrogen receptors (ER) α and β. To test the hypothesis that nuclear localization of ERα corresponds to genomic E2 activity in lung adenocarcinoma cells from females, cell fractionation, immunoblot, and confocal immunohistochemical microscopy were performed. We report for the first time that E2 increases phospho-serine-118-ERα (P-ser118-ERα) and cyclin D1 (CCND1) nuclear colocalization in H1793, but not A549 lung adenocarcinoma cells, derived from a female and male patient, respectively. ERβ was primarily in the cytoplasm and mitochondria, independent of E2 treatment, and showed no difference between H1793 and A549 cells. E2 induced higher transcription of endogenous ERα-regulated CCND1 in H1793 than in A549 cells. Likewise, higher rapid, non-genomic E2-induced extracellular signal–regulated kinase 1/2 activation was detected in H1793 compared with A549 cells, linking extracellular signal–regulated kinase activation to increased P-ser118-ERα. Furthermore, E2 increased cyclin D1 and P-ser118-ERα nuclear localization in H1793, but not A549 cells. Together, our results indicate that nuclear localization of P-ser118-ERα provides one explanation for sex-dependent differences in E2-genomic responses in lung adenocarcinoma cell lines. PMID:19556604

  3. Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.

    PubMed

    Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt

    2015-10-01

    At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells. PMID:26479614

  4. Is the hook of muroid rodent's sperm related to sperm train formation?

    PubMed

    Tourmente, M; Zarka-Trigo, D; Roldan, E R S

    2016-06-01

    Competition between spermatozoa of rival males to gain fertilizations has led to a wide array of modifications in sperm structure and function. Sperm cells of most muroid rodents have hook-shaped extensions in the apical-ventral tip of the head, but the function of this structure is largely unknown. These 'hooks' may facilitate aggregation of spermatozoa in so-called 'trains', as an adaptation to sperm competition, because sperm in trains may swim faster than free-swimming cells. However, there is controversy regarding the role of the hook in train formation, and in relation to whether it is selected by sperm competition. We examined spermatozoa from muroid rodents with varying levels of sperm competition to assess whether (i) sperm aggregates are common in these taxa, (ii) presence of a hook relates to the formation of sperm aggregations, and (iii) formation of sperm aggregations is explained by sperm competition. Our analyses in 25 muroid species revealed that > 92% of spermatozoa swim individually in all species, with the exception of the wood mouse, Apodemus sylvaticus, which has ~50% spermatozoa swimming freely. Species with hooked spermatozoa had higher sperm competition levels and longer sperm than species whose sperm lack a hook. Neither the presence of hook nor sperm competition levels were related to the percentage of sperm in aggregations. Thus, (i) sperm aggregates in muroid rodents are an exceptional trait found only in a few species, (ii) evolution of the sperm hook is associated to sperm competition levels, but (iii) the hook is unlikely to be related to the formation of sperm aggregates. The evolutionary significance of the sperm head hook thus remains elusive, and future studies should examine potential roles of this pervasive structure in sperm's hydrodynamic efficiency and sperm-female tract interactions. PMID:26969911

  5. Apical blebs on sperm-storage tubule epithelial cell microvilli: their release and interaction with resident sperm in the turkey hen oviduct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Located at the anterior end of the turkey hen vagina are numerous discrete tubular invaginations of the surface epithelium, collectively referred to as the sperm-storage tubules (SSTs). Following mating or artificial insemination, sperm ascend the vagina, enter the SSTs, and ove...

  6. Improvement of bovine semen quality by removal of membrane-damaged sperm cells with DNA aptamers and magnetic nanoparticles.

    PubMed

    Farini, Veronica L; Camaño, Carla V; Ybarra, Gabriel; Viale, Diego L; Vichera, Gabriel; Yakisich, Juan S; Radrizzani, Martín

    2016-07-10

    In cattle, cryopreservation of semen and sex-sorting kill up to 50% of spermatozoa and decrease the success of assisted insemination (AI). Therefore, significant efforts are being carried out to improve the quality of semen prior to AI. In this work we used the Cell-SELEX technique to select single strand DNA aptamers able to recognize with high affinity and specificity damaged sperm cells generated by heat-treatment. We first isolated aptamers with a conserved two motifs of 6 nucleotides of length that bind to the membrane of heat-treated spermatozoa. Then, we used synthetic biotin-labeled aptamers containing the conserved motif to recognize membrane-damaged cells and separate them from viable cells by the use of avidin-coated superparamagnetic iron oxide nanoparticles (SPION). This procedure improved the quality of semen by significantly increasing the percentage of healthy sperm cells without affecting the rate of blastocyst cleavage. This technique was successfully applied to both unsorted and sex-sorted sperm suspension. PMID:27164256

  7. Subcellular imaging of freeze-fractured cell cultures by TOF-SIMS and Laser-SNMS

    NASA Astrophysics Data System (ADS)

    Fartmann, M.; Dambach, S.; Kriegeskotte, C.; Lipinsky, D.; Wiesmann, H. P.; Wittig, A.; Sauerwein, W.; Arlinghaus, H. F.

    2003-01-01

    We have examined atomic and molecular distributions in freeze-fractured freeze-dried primary osteoblasts and cancer cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and non-resonant laser secondary neutral mass spectrometry (NR-Laser-SNMS). A pulsed Ga primary ion beam with a diameter of approximately 200 nm was employed to bombard the sample. Ion-induced electron-images were used to identify individual cells. High resolution elemental and molecular images were obtained from cell cultures. From these data the K/Na ratio was determined. It shows a higher K-concentration inside individual cells demonstrating that the chemical and structural integrity of living cells were preserved by the applied preparation technique. Consecutive presputtering of the sample with different primary ion dose densities was used to move the analysis plane toward the inside of the cell. It can be concluded that TOF-SIMS and Laser-SNMS are well suited for imaging trace element and molecule concentrations in biological samples.

  8. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    PubMed

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  9. Live-cell CLEM of subcellular targets: an optimized procedure for polymer-based imaging substrates.

    PubMed

    Padman, Benjamin S; Ramm, Georg

    2014-01-01

    Live-cell correlative light and electron microscopy permits the visualization of ultrastructure details associated with dynamic biological processes. On the optical level, fluorescence microscopy can be further combined with functional studies of intracellular processes and manipulation of biological samples using laser light. However, the major challenge is to relocate intracellular compartments in three dimensions after the sample has undergone an extensive EM sample preparation process. Here, we describe a detailed protocol for live-cell CLEM that provides easy guidance for 3D relocalization. Based on the use of the novel polymer film TOPAS as direct imaging substrate, we provide a setup that uses highly visible toner particles for tracking the region of interest in 2D and fiducial markers for the 3D relocation of intracellular structures. An example is given where a single mitochondria is targeted by laser microirradiation in live-cell fluorescence microscopy. After relocating the same structure in 3D in serial EM sections, the changes to the mitochondrial ultrastructure are observed by TEM. The method is suitable for correlation of live-cell microscopy of cells and can be performed using any inverted optical microscope. PMID:25287846

  10. Generation and usage of aequorin lentiviral vectors for Ca(2+) measurement in sub-cellular compartments of hard-to-transfect cells.

    PubMed

    Lim, Dmitry; Bertoli, Alessandro; Sorgato, M Catia; Moccia, Francesco

    2016-05-01

    Targeted aequorin-based Ca(2+) probes represent an unprecedented tool for the reliable measurement of Ca(2+) concentration and dynamics in different sub-cellular compartments. The main advantages of aequorin are its proteinaceous nature, which allows attachment of a signal peptide for targeting aequorin to virtually any sub-cellular compartment; its low Ca(2+)-binding capacity; the wide range of Ca(2+) concentrations that can be measured, ranging from sub-micromolar to millimolar; its robust performance in aggressive environments, e.g., the strong acidic pH of the lysosomal lumen. Lentiviral vectors represent a popular tool to transduce post-mitotic or hard-to-transfect cells both in vitro and in vivo. Furthermore, it has great potential for gene therapy. Last generation lentiviral vectors represent a perfect compromise for combining large insert size, ease of production and handling, and high degree of biosafety. Here, we describe strategies for cloning aequorin probes - targeted to the cytosol, sub-plasma membrane cytosolic domains, the mitochondrial matrix, and the endoplasmic reticulum lumen - into lentiviral vectors. We describe methods for the production of lentiviral particles, and provide examples of measuring Ca(2+) dynamics by such aequorin-encoding lentiviral vectors in sub-cellular compartments of hard-to-transfect cells, including immortalized striatal neurons, primary cerebellar granule neurons and endothelial progenitor cells, which provide suitable in vitro models for the study of different human diseases. PMID:26992273

  11. Sperm Cell Population Dynamics in Ram Semen during the Cryopreservation Process

    PubMed Central

    Ramón, Manuel; Pérez-Guzmán, M. Dolores; Jiménez-Rabadán, Pilar; Esteso, Milagros C.; García-Álvarez, Olga; Maroto-Morales, Alejandro; Anel-López, Luis; Soler, Ana J.; Fernández-Santos, M. Rocío; Garde, J. Julián

    2013-01-01

    Background Sperm cryopreservation has become an indispensable tool in biology. Initially, studies were aimed towards the development of efficient freezing protocols in different species that would allow for an efficient storage of semen samples for long periods of time, ensuring its viability. Nowadays, it is widely known that an important individual component exists in the cryoresistance of semen, and efforts are aimed at identifying those sperm characteristics that may allow us to predict this cryoresistance. This knowledge would lead, ultimately, to the design of optimized freezing protocols for the sperm characteristics of each male. Methodology/Principal Findings We have evaluated the changes that occur in the sperm head dimensions throughout the cryopreservation process. We have found three different patterns of response, each of one related to a different sperm quality at thawing. We have been able to characterize males based on these patterns. For each male, its pattern remained constant among different ejaculates. This latter would imply that males always respond in the same way to freezing, giving even more importance to this sperm feature. Conclusions/Significance Changes in the sperm head during cryopreservation process have resulted useful to identify the ability of semen of males for freezing. We suggest that analyses of these response patterns would represent an important tool to characterize the cryoresistance of males when implemented within breeding programs. We also propose follow-up experiments to examine the outcomes of the use of different freezing protocols depending on the pattern of response of males. PMID:23544054

  12. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  13. RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    PubMed Central

    Chae, Hee-Don; Siefring, Jamie E.; Hildeman, David A.; Gu, Yi; Williams, David A.

    2010-01-01

    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway. PMID:21103055

  14. A new source of polymorphic DNA markers for sperm typing: Analysis of microsatellite repeats in single cells

    SciTech Connect

    Hubert, R.; Schmitt, K.; Zhang, L.; Arnheim, N. ); Weber, J.L. )

    1992-11-01

    The authors show that dinucleotide and tetranucleotide repeat polymorphisms can be analyzed in single cells without using radioactivity or denaturing gels. This provides a new source of DNA polymorphisms for genetic mapping by sperm typing. The recombination fraction between two CA repeat polymorphisms was determined after whole genome amplification of single sperm, followed by typing of two different aliquots, one aliquot for each polymorphic locus. Single-cell analysis of microsatellites may also be valuable both for preimplantation genetic disease diagnosis based on single-blastomere or polar-body analysis and for the typing of forensic or ancient DNA samples containing very small amounts of nucleic acid. 26 refs., 3 figs., 3 tabs.

  15. Subcellular distribution of ( sup 3 H)-dexamethasone mesylate binding sites in Leydig cells using electron microscope radioautography

    SciTech Connect

    Stalker, A.; Hermo, L.; Antakly, T. )

    1991-01-01

    The present view is that glucocorticoid hormones bind to their cytoplasmic receptors before reaching their nuclear target sites, which include specific DNA sequences. Although it is believed that cytoplasmic sequestration of steroid receptors and other transcription factors (such as NFKB) may regulate the overall activity of these factors, there is little information on the exact subcellular sites of steroid receptors or even of any other transcription factors. Tritiated (3H)-dexamethasone 21-mesylate (DM) is an affinity label that binds covalently to the glucocorticoid receptor (GR), thereby allowing morphological localization of the receptor at the light and electron microscope levels as well as for quantitative radioautographic (RAG) analysis. After injection of 3H-DM into the testis, a specific radioautographic signal was observed in Leydig cells, which correlated with a high level of immunocytochemically demonstrable GR in these cells at the light-microscope level. To localize the 3H-DM binding sites at the electron microscope (EM) level, the testes of 5 experimental and 3 control adrenalectomized rats were injected directly with 20 microCi 3H-DM; control rats received simultaneously a 25-fold excess of unlabeled dexamethasone; 15 min later, rats were fixed with glutaraldehyde and the tissue was processed for EM RAG analysis combined with quantitative morphometry. The radioautographs showed that the cytosol, nucleus, smooth endoplasmic reticulum (sER), and mitochondria were labeled. Since the cytosol was always adjacent to tubules of the sER, the term sER-rich cytosol was used to represent label over sER networks, which may also represent cytosol labeling due to the limited resolution of the radioautographic technique. Labeling was highest in sER-rich cytosol and mitochondria, at 53% and 31% of the total, respectively.

  16. B-cell lymphoma-2 localization in the female reproductive tract of the Chinese soft-shelled turtle, Pelodiscus sinensis and its relationship with sperm storage.

    PubMed

    Le, Yuan; Chen, Shaofan; Hu, Lisi; Zhang, Linli; Ullah, Shakeeb; Liu, Tengfei; Yang, Ping; Liu, Yi; Chen, Qiusheng

    2015-12-01

    The aim of the present study was to investigate the expression and localization of B-cell lymphoma-2 (Bcl-2) in the oviduct of the Chinese soft-shelled turtle, Pelodiscus sinensis, during the reproductive cycle to analyze the relationship between Bcl-2 and sperm storage. Bcl-2 expression was confirmed in the P. sinensis oviduct by western blot analysis. Hematoxylin-eosin staining showed that female P. sinensis stored sperm from November to April of the following year. The oviduct showed positive immunostaining for Bcl-2 of epithelial ciliated cells, gland ducts, and gland cells. Bcl-2 expression in the oviduct was associated with sperm storage occurrence. This indicates that the survival factor Bcl-2 may play a role in P. sinensis sperm storage. PMID:26285642

  17. A Procedure-Spanning Analysis of Plasma Membrane Integrity for Assessment of Cell Viability in Sperm Cryopreservation of Zebrafish Danio rerio.

    PubMed

    Yang, Huiping; Daly, Jonathan; Carmichael, Carrie; Matthews, Jen; Varga, Zoltan M; Tiersch, Terrence

    2016-04-01

    The goal of this study was to evaluate plasma membrane integrity and motility for zebrafish sperm quality assessment along the cryopreservation pathway-from sample collection through refrigerated storage, cryoprotectant equilibration, freezing, thawing, and fertilization. The objectives were to: (1) evaluate the effects of osmolality, extender, and refrigerated storage on sperm plasma membrane integrity and motility, and (2) compare cryopreservation of sperm from farm-raised and well-characterized research populations by evaluating motility and membrane integrity of fresh, post-equilibration (before freezing) and post-thaw sperm, and post-thaw fertility. Osmolality, extender, and storage time each influenced sperm motility and membrane integrity. Isotonic osmolality showed the best protection for motility and membrane integrity compared to hypotonic and hypertonic osmolalities. Of the four tested extenders, Hanks' balanced salt solution (HBSS) and Ca(2+)-free HBSS showed the best protection compared with NaCl and glucose, and sperm retained motility and membrane integrity for 24 h of refrigerated storage. Sperm cryopreservation of zebrafish from a farm population (n = 20) and an AB research line (n = 20) showed significant differences in post-thaw fertility (32% ± 18% vs. 73% ± 21%). No differences were found in post-thaw motility, although the farm-raised zebrafish possessed a larger body size, testis weight, and higher fresh motility. Correlation analysis of pooled data did not identify correlations among motility, flow cytometry analysis of membrane integrity and recognizable cells, and post-thaw sperm fertility (p ≥ 0.202). More research is needed to standardize the fertilization conditions especially sperm-to-egg ratio to avoid possible overabundance of sperm to obscure the differences. PMID:26859531

  18. Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation.

    PubMed

    Oliva, Harold; Pacheco, Rodrigo; Martinez-Navio, José M; Rodríguez-García, Marta; Naranjo-Gómez, Mar; Climent, Núria; Prado, Carolina; Gil, Cristina; Plana, Montserrat; García, Felipe; Miró, José M; Franco, Rafael; Borras, Francesc E; Navaratnam, Naveenan; Gatell, José M; Gallart, Teresa

    2016-08-01

    APOBEC3G (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G; A3G) is an innate defense protein showing activity against retroviruses and retrotransposons. Activated CD4(+) T cells are highly permissive for HIV-1 replication, whereas resting CD4(+) T cells are refractory. Dendritic cells (DCs), especially mature DCs, are also refractory. We investigated whether these differences could be related to a differential A3G expression and/or subcellular distribution. We found that A3G mRNA and protein expression is very low in resting CD4(+) T cells and immature DCs, but increases strongly following T-cell activation and DC maturation. The Apo-7 anti-A3G monoclonal antibody (mAb), which was specifically developed, confirmed these differences at the protein level and disclosed that A3G is mainly cytoplasmic in resting CD4(+) T cells and immature DCs. Nevertheless, A3G translocates to the nucleus in activated-proliferating CD4(+) T cells, yet remaining cytoplasmic in matured DCs, a finding confirmed by immunoblotting analysis of cytoplasmic and nuclear fractions. Apo-7 mAb was able to immunoprecipitate endogenous A3G allowing to detect complexes with numerous proteins in activated-proliferating but not in resting CD4(+) T cells. The results show for the first time the nuclear translocation of A3G in activated-proliferating CD4(+) T cells. PMID:26987686

  19. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging.

    PubMed

    Elsayad, Kareem; Werner, Stephanie; Gallemí, Marçal; Kong, Jixiang; Sánchez Guajardo, Edmundo R; Zhang, Lijuan; Jaillais, Yvon; Greb, Thomas; Belkhadir, Youssef

    2016-01-01

    Extracellular matrices (ECMs) are central to the advent of multicellular life, and their mechanical properties are modulated by and impinge on intracellular signaling pathways that regulate vital cellular functions. High spatial-resolution mapping of mechanical properties in live cells is, however, extremely challenging. Thus, our understanding of how signaling pathways process physiological signals to generate appropriate mechanical responses is limited. We introduce fluorescence emission-Brillouin scattering imaging (FBi), a method for the parallel and all-optical measurements of mechanical properties and fluorescence at the submicrometer scale in living organisms. Using FBi, we showed that changes in cellular hydrostatic pressure and cytoplasm viscoelasticity modulate the mechanical signatures of plant ECMs. We further established that the measured "stiffness" of plant ECMs is symmetrically patterned in hypocotyl cells undergoing directional growth. Finally, application of this method to Arabidopsis thaliana with photoreceptor mutants revealed that red and far-red light signals are essential modulators of ECM viscoelasticity. By mapping the viscoelastic signatures of a complex ECM, we provide proof of principle for the organism-wide applicability of FBi for measuring the mechanical outputs of intracellular signaling pathways. As such, our work has implications for investigations of mechanosignaling pathways and developmental biology. PMID:27382028

  20. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.

    PubMed

    Tourmente, M; Delbarco Trillo, J; Roldan, E R S

    2015-10-01

    Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade-off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade-off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size-determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation. PMID:26190170

  1. Subcellular Localization of ENS-1/ERNI in Chick Embryonic Stem Cells

    PubMed Central

    Blanc, Sophie; Ruggiero, Florence; Birot, Anne-Marie; Acloque, Hervé; Décimo, Didier; Lerat, Emmanuelle; Ohlmann, Théophile; Samarut, Jacques; Mey, Anne

    2014-01-01

    The protein of retroviral origin ENS-1/ERNI plays a major role during neural plate development in chick embryos by controlling the activity of the epigenetic regulator HP1γ, but its function in the earlier developmental stages is still unknown. ENS-1/ERNI promoter activity is down-regulated upon differentiation but the resulting protein expression has never been examined. In this study, we present the results obtained with custom-made antibodies to gain further insights into ENS-1 protein expression in Chicken embryonic stem cells (CES) and during their differentiation. First, we show that ENS-1 controls the activity of HP1γ in CES and we examined the context of its interaction with HP1γ. By combining immunofluorescence and western blot analysis we show that ENS-1 is localized in the cytoplasm and in the nucleus, in agreement with its role on gene's promoter activity. During differentiation, ENS-1 decreases in the cytoplasm but not in the nucleus. More precisely, three distinct forms of the ENS-1 protein co-exist in the nucleus and are differently regulated during differentiation, revealing a new level of control of the protein ENS-1. In silico analysis of the Ens-1 gene copies and the sequence of their corresponding proteins indicate that this pattern is compatible with at least three potential regulation mechanisms, each accounting only partially. The results obtained with the anti-ENS-1 antibodies presented here reveal that the regulation of ENS-1 expression in CES is more complex than expected, providing new tracks to explore the integration of ENS-1 in CES cells regulatory networks. PMID:24643087

  2. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments.

    PubMed

    Brumell, J H; Volchuk, A; Sengelov, H; Borregaard, N; Cieutat, A M; Bainton, D F; Grinstein, S; Klip, A

    1995-12-15

    Neutrophils contain at least four distinct types of secretory organelles, which undergo exocytosis during infection and inflammation. The signaling pathways leading to secretion of individual granules and their kinetics of exocytosis vary greatly, causing temporal and regional differences in docking and fusion with the plasma membrane. As a step toward understanding the processes underlying differential granular secretion in neutrophils, we assessed the presence and distribution of a number of proteins reported to be involved in vesicular docking and/or fusion in other systems. Specific Abs were used for immunoblotting of cells fractionated by density gradients and free-flow electrophoresis, and for localization by confocal immunofluorescence and electron microscopy. Syntaxin 1, VAMP (vesicle-associated membrane protein)-1, synaptosome-associated protein-25 (SNAP-25), synaptophysin, and cellubrevin were not detectable in human neutrophils. In contrast, syntaxin 4, VAMP-2, and the 39-kDa isoform of secretory carrier membrane protein (SCAMP) were present. SCAMP was found mainly in secondary and tertiary granules and in a fraction containing secretory vesicles, but was virtually absent from the primary (lysosomal) granules. This profile is consistent with the proposed "post-Golgi" distribution of SCAMP. VAMP-2 was largely absent from primary and secondary granules, but concentrated in tertiary granules and secretory vesicles. This pattern of distribution parallels the increasing sensitivity of these exocytic compartments to intracellular free calcium. Accordingly, ionomycin induced translocation of VAMP-2 toward the plasma membrane. Syntaxin 4 was found almost exclusively in the plasma membrane, and it accumulated in lamellipodia of migrating cells. This regional accumulation may contribute to localized secretion into the phagosomal lumen. PMID:7499863

  3. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    development of subcellularly targeted DDSs that will deliver specific drugs to the nuclei of the target cells and will enhance efficacy and reduce toxicity of these drugs. PMID:26731220

  4. No evidence of sperm conjugate formation in an Australian mouse bearing sperm with three hooks

    PubMed Central

    Firman, Renée C; Bentley, Blair; Bowman, Faye; Marchant, Fernando García-Solís; Parthenay, Jahmila; Sawyer, Jessica; Stewart, Tom; O'Shea, James E

    2013-01-01

    Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm “trains” have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm “trains” have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within “wild” litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three-hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s. PMID:23919134

  5. Sperm Dynamics in Spiders (Araneae): Ultrastructural Analysis of the Sperm Activation Process in the Garden Spider Argiope bruennichi (Scopoli, 1772)

    PubMed Central

    Vöcking, Oliver; Uhl, Gabriele; Michalik, Peter

    2013-01-01

    Storage of sperm inside the female genital tract is an integral phase of reproduction in many animal species. The sperm storage site constitutes the arena for sperm activation, sperm competition and female sperm choice. Consequently, to understand animal mating systems information on the processes that occur from sperm transfer to fertilization is required. Here, we focus on sperm activation in spiders. Male spiders produce sperm whose cell components are coiled within the sperm cell and that are surrounded by a proteinaceous sheath. These inactive and encapsulated sperm are transferred to the female spermathecae where they are stored for later fertilization. We analyzed the ultrastructural changes of sperm cells during residency time in the female genital system of the orb-web spider Argiope bruennichi. We found three clearly distinguishable sperm conditions: encapsulated sperm (secretion sheath present), decapsulated (secretion sheath absent) and uncoiled sperm (cell components uncoiled, presumably activated). After insemination, sperm remain in the encapsulated condition for several days and become decapsulated after variable periods of time. A variable portion of the decapsulated sperm transforms rapidly to the uncoiled condition resulting in a simultaneous occurrence of decapsulated and uncoiled sperm. After oviposition, only decapsulated and uncoiled sperm are left in the spermathecae, strongly suggesting that the activation process is not reversible. Furthermore, we found four different types of secretion in the spermathecae which might play a role in the decapsulation and activation process. PMID:24039790

  6. Sperm dynamics in spiders (Araneae): ultrastructural analysis of the sperm activation process in the garden spider Argiope bruennichi (Scopoli, 1772).

    PubMed

    Vöcking, Oliver; Uhl, Gabriele; Michalik, Peter

    2013-01-01

    Storage of sperm inside the female genital tract is an integral phase of reproduction in many animal species. The sperm storage site constitutes the arena for sperm activation, sperm competition and female sperm choice. Consequently, to understand animal mating systems information on the processes that occur from sperm transfer to fertilization is required. Here, we focus on sperm activation in spiders. Male spiders produce sperm whose cell components are coiled within the sperm cell and that are surrounded by a proteinaceous sheath. These inactive and encapsulated sperm are transferred to the female spermathecae where they are stored for later fertilization. We analyzed the ultrastructural changes of sperm cells during residency time in the female genital system of the orb-web spider Argiope bruennichi. We found three clearly distinguishable sperm conditions: encapsulated sperm (secretion sheath present), decapsulated (secretion sheath absent) and uncoiled sperm (cell components uncoiled, presumably activated). After insemination, sperm remain in the encapsulated condition for several days and become decapsulated after variable periods of time. A variable portion of the decapsulated sperm transforms rapidly to the uncoiled condition resulting in a simultaneous occurrence of decapsulated and uncoiled sperm. After oviposition, only decapsulated and uncoiled sperm are left in the spermathecae, strongly suggesting that the activation process is not reversible. Furthermore, we found four different types of secretion in the spermathecae which might play a role in the decapsulation and activation process. PMID:24039790

  7. Prognostic and Predictive Values of Subcellular Localisation of RET in Renal Clear-Cell Carcinoma

    PubMed Central

    Wang, Lei; Zhang, Yu; Gao, Yu; Fan, Yang; Chen, Luyao; Liu, Kan; Meng, Qingyu; Zhao, Chaofei; Ma, Xin

    2016-01-01

    Metastatic renal cell carcinoma (RCC) presents a poor prognosis and an unpredictable course. To date, no validated biomarkers can predict the outcome of RCC. Ongoing efforts are conducted to identify the molecular markers of RCC progression, as well as the targets for novel therapeutic approaches. RET is a tyrosine kinase receptor which has been investigated as a possible target in other cancers because it is involved in oncogenic activation. To evaluate the predictive and prognostic functions of RET in ccRCC, a tissue microarray study was conducted on 273 ccRCC patients. Results showed that both RET cytoplasmic and nuclear expression were independently associated with PFS and OS, and the combined RET cytoplasmic and nuclear statuses demonstrated that the ratio of high nuclear RET and cytoplasmic RET was the strongest predictor of both PFS and OS. The high cytoplasmic RET expression retained its independent poor prognostic value in targeted drug treated patients. The RET nuclear expression was associated with distant metastasis. Moreover, the RET nuclear expression was an independent predictor of ccRCC postoperative metastasis. In conclusion, RET may be useful in prognostication and can be used at initial diagnosis to identify patients with high potential to develop metastasis. PMID:27092013

  8. Supplementation of sperm cryopreservation media with cell permeable superoxide dismutase mimetic agent (MnTE) improves goat blastocyst formation.

    PubMed

    Forouzanfar, Mohsen; Abid, Abdolah; Hosseini, Sayyed Morteza; Hajian, Mehdi; Nasr Esfahani, Mohammad Hossein

    2013-12-01

    The aim of this study was to assess whether a cell permeable superoxide dismutase agent such as MnTE, can further improve the quality of frozen/thawed semen sample using a commercially optimized sperm cryopreservation media (Bioxcell). Bioxcell was supplemented with different concentration of MnTE. Sperm membrane integrity, motility, viability and acrosomal status were assessed after freezing. Optimized concentration of MnTE was defined and used to assess fertilization and developmental potential. 0.1 μM MnTE significantly improved membrane integrity while 0.01 μM MnTE significantly improved acrosomal integrity post thawing. Addition of 0.01 μM MnTE also improved blastocyst formation rate. Supplementation of commercially optimized cryopreservation media with MnTE further improves the quality of goat frozen semen sample and may have important consequence of future embryo development. This effect may be attributed to cell permeable behavior of this antioxidant which may protect sperm genome from ROS-induced DNA damage. PMID:23981864

  9. The Deadbeat Paternal Effect of Uncapped Sperm Telomeres on Cell Cycle Progression and Chromosome Behavior in Drosophila melanogaster.

    PubMed

    Yamaki, Takuo; Yasuda, Glenn K; Wakimoto, Barbara T

    2016-06-01

    Telomere-capping complexes (TCCs) protect the ends of linear chromosomes from illegitimate repair and end-to-end fusions and are required for genome stability. The identity and assembly of TCC components have been extensively studied, but whether TCCs require active maintenance in nondividing cells remains an open question. Here we show that Drosophila melanogaster requires Deadbeat (Ddbt), a sperm nuclear basic protein (SNBP) that is recruited to the telomere by the TCC and is required for TCC maintenance during genome-wide chromatin remodeling, which transforms spermatids to mature sperm. Ddbt-deficient males produce sperm lacking TCCs. Their offspring delay the initiation of anaphase as early as cycle 1 but progress through the first two cycles. Persistence of uncapped paternal chromosomes induces arrest at or around cycle 3. This early arrest can be rescued by selective elimination of paternal chromosomes and production of gynogenetic haploid or haploid mosaics. Progression past cycle 3 can also occur if embryos have reduced levels of the maternally provided checkpoint kinase Chk2. The findings provide insights into how telomere integrity affects the regulation of the earliest embryonic cell cycles. They also suggest that other SNBPs, including those in humans, may have analogous roles and manifest as paternal effects on embryo quality. PMID:27029731

  10. Ca exchange under non-perfusion-limited conditions in rat ventricular cells: Identification of subcellular compartments

    SciTech Connect

    Langer, G.A.; Rich, T.L.; Orner, F.B. )

    1990-08-01

    Freshly prepared ventricular myocytes from rat hearts, aliquots of which were tested for sarcolemmal integrity by La exposure, were labeled at high 45Ca specific activity. Isotope was subsequently washed out at a perfusion rate of 2.8 ml/s with washout solution sampled each 1 s. No initial unrecorded period of washout was imposed. Four compartments were distinguishable: (1) a rapid compartment (RC) containing 2.6 mmol Ca/kg dry wt of La-displaceable Ca, half time (t1/2) less than 1 s; (2) an intermediate compartment(s) (IC) containing 2.1 mmol, t1/2 = 3 and 19 s; (3) a slow compartment (SC) containing 1.6 mmol, t1/2 = 3.6 min; (4) an inexchangeable compartment that demonstrated no 45Ca uptake after 60-min labeling containing 1.2 mmol. Introduction of 10 mM caffeine as a probe for sarcoplasmic reticulum (SR) content at various times during the washouts caused an increased release of 45Ca. The net increased 45Ca release plotted as a function of time at which caffeine was introduced produced a biexponential curve with t1/2s of 2 and 22 s, very similar to the t1/2s of the IC. Ryanodine (1 microM) significantly reduced the caffeine-induced 45Ca release, confirming the SR locus of the IC. Cells were perfused with 10 mM NaH2PO4 to specifically increase mitochondrial 45Ca labeling. Subsequent removal of PO4 at various times during washouts produced large increases in effluent 45Ca. A plot of the net peak release of 45Ca vs. time of PO4 removal was monoexponential with t1/2 = 3.3 min, very similar to the SC t1/2. The large La-accessible RC remains unlocalized, but the rapidity of its exchange places it in the sarcolemma and/or at sites in rapid equilibrium with the sarcolemma.

  11. Ketotifen, a mast cell blocker improves sperm motility in asthenospermic infertile men

    PubMed Central

    Saharkhiz, Nasrin; Nikbakht, Roshan; Hemadi, Masoud

    2013-01-01

    AIM: This study aimed to evaluate the efficacy of ketotifen on sperm motility of asthenospermic infertile men. SETTING AND DESIGN: It is a prospective study designed in vivo. MATERIALS AND METHODS: In this interventional experimental study, a total of 40 infertile couples with asthenospermic infertility factor undergoing assisted reproductive technology (ART) cycles were enrolled. The couples were randomly assigned to one of two groups at the starting of the cycle. In control group (n = 20), the men did not receive Ketotifen, while in experiment group (n = 20), the men received oraly ketotifen (1 mg Bid) for 2 months. Semen analysis, under optimal circumferences, was obtained prior to initiation of treatment. The second semen analysis was done 2-3 weeks after stopped ketotifen treatment and sperm motility was defined. Clinical pregnancy was identified as the presence of a fetal sac by vaginal ultrasound examination. STATISTICAL ANALYSIS USED: All data are expressed as the mean ± standard error of mean (SEM). t test was used for comparing the data of the control and treated groups. RESULTS: The mean sperm motility increased significantly (from 16.7% to 21.4%) after ketotifen treatment (P < 0.001). This sperm motility improvement was more pronounced in the primary infertility cases (P < 0.003). The rate of pregnancy was 12.5% in infertile couples that their men receiving 1 mg/twice a day ketotifen. In 52% of infertile men's semen, the percentage of sperm motility was increased from 5% to 35% and this sperm motility improvement was also observed in 33% of necrospermia (0% motility) cases. CONCLUSION: These results suggest that ketotifen may represent as a novel therapeutic approach to improve sperm motility in the infertile men with cause of asthenospermia or necrospermia. PMID:23869145

  12. Intracytoplasmic sperm injection

    MedlinePlus Videos and Cool Tools

    ... in which fertilization occurs outside of the body. First, egg cells are harvested and transferred to a special media in a laboratory dish. Within a few hours, a single sperm is injected through a fine needle into the center of an egg cell to aid in the process of fertilization. If successful, the ...

  13. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    SciTech Connect

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  14. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  15. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  16. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  17. Evaluating the efficacy of subcellular fractionation of blast cells using live cell labeling and 2D DIGE.

    PubMed

    Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter

    2012-01-01

    Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel. PMID:22311770

  18. White blood cells in semen affect hyperactivation but not sperm membrane integrity in the head and tail regions.

    PubMed

    Chan, P J; Su, B C; Tredway, D R; Whitney, E A; Pang, S C; Corselli, J; Jacobson, J D

    1994-05-01

    The presence of high numbers of peroxidase-positive PML in ejaculated semen significantly reduced sperm HA, an important step leading to sperm capacitation. Sperm membranes at both the head and tail regions, as assessed by the hypo-osmotic viability parameter and the hypo-osmotic sperm swelling test, respectively, were not affected by peroxidase-containing leukocytes. Sperm motility was not affected, but sperm curvilinear and straight line velocity parameters were reduced in the presence of high concentrations of leukocytes in the ejaculate. The results suggested that the effect of leukocytes on sperm was through a reduction in sperm hyperactive motility but not through alterations in the sperm head and tail membranes. PMID:8174744

  19. Measuring Intracellular Ca2+ Changes in Human Sperm using Four Techniques: Conventional Fluorometry, Stopped Flow Fluorometry, Flow Cytometry and Single Cell Imaging

    PubMed Central

    Mata-Martínez, Esperanza; José, Omar; Torres-Rodríguez, Paulina; Solís-López, Alejandra; Sánchez-Tusie, Ana A.; Sánchez-Guevara, Yoloxochitl; Treviño, Marcela B.; Treviño, Claudia L.

    2013-01-01

    Spermatozoa are male reproductive cells especially designed to reach, recognize and fuse with the egg. To perform these tasks, sperm cells must be prepared to face a constantly changing environment and to overcome several physical barriers. Being in essence transcriptionally and translationally silent, these motile cells rely profoundly on diverse signaling mechanisms to orient themselves and swim in a directed fashion, and to contend with challenging environmental conditions during their journey to find the egg. In particular, Ca2+-mediated signaling is pivotal for several sperm functions: activation of motility, capacitation (a complex process that prepares sperm for the acrosome reaction) and the acrosome reaction (an exocytotic event that allows sperm-egg fusion). The use of fluorescent dyes to track intracellular fluctuations of this ion is of remarkable importance due to their ease of application, sensitivity, and versatility of detection. Using one single dye-loading protocol we utilize four different fluorometric techniques to monitor sperm Ca2+ dynamics. Each technique provides distinct information that enables spatial and/or temporal resolution, generating data both at single cell and cell population levels. PMID:23728309

  20. Tris-egg yolk-glycerol (TEY) extender developed for freezing dog semen is a good option to cryopreserve bovine epididymal sperm cells.

    PubMed

    Lopes, G; Soares, L; Ferreira, P; Rocha, A

    2015-02-01

    Cryopreservation of epididymal spermatozoa is often performed after shipping the excised testis-epididymis complexes, under refrigeration, to a specialized laboratory. However, epididymal spermatozoa can be collected immediately after excision of the epididymis and sent extended and refrigerated to a laboratory for cryopreservation. In this experiment, we evaluated the effect of both methods of cold storage bovine epididymal spermatozoa as well as of two different extenders on spermatozoa characteristics after freeze-thawing. For that, spermatozoa collected from the caudae epididymis of 19 bulls were extended and cryopreserved in either AndroMed(®) or a Tris-egg yolk (TEY)-based extender. Cryopreservation of sperm cells was performed immediately after castration (Group A, n = 9) or after cold storage for 24 h diluted in the two extenders and (Group B, n = 9) and also after cold storage for 24 h within the whole epididymis (Group C, n = 10). Sperm subjective progressive motility (light microscopy), plasma membrane integrity (hypoosmotic swelling test) and sperm viability (eosin-nigrosin) were evaluated. In vitro fertilization and culture (IVF) was performed to assess the blastocyst rate. No differences (p > 0.05) were observed on post-thaw sperm parameters between samples from Group A, B and C. TEY extended samples presented a higher (p < 0.01) percentage of progressive motile and live sperm, than those extended in AndroMed(®) . Blastocyst rate after IVF differed only (p < 0.05) between the reference group (IVF performed with frozen semen with known in vitro fertility) and Group A extended in AndroMed(®) . We conclude that when cryopreservation facilities are distant from the collection site, bovine epididymal sperm can be shipped chilled overnight either within the epididymal tail or after dilution without deleterious effect on post-thaw sperm quality. TEY extender was more suitable for cold storage and freezing bovine epididymal sperm, than the commercial

  1. Virtual azoospermia and cryptozoospermia--fresh/frozen testicular or ejaculate sperm for better IVF outcome?

    PubMed

    Hauser, Ron; Bibi, Guy; Yogev, Leah; Carmon, Ariella; Azem, Foad; Botchan, Amnon; Yavetz, Haim; Klieman, Sandra E; Lehavi, Ofer; Amit, Ami; Ben-Yosef, Dalit

    2011-01-01

    Men diagnosed as having azoospermia occasionally have a few mature sperm cells in other ejaculates. Other men may have constant, yet very low quality and quantity of sperm cells in their ejaculates, resulting in poor intracytoplasmic sperm injection (ICSI) outcome. It has not been conclusively established which source of sperm cells is preferable for ICSI when both ejaculate and testicular (fresh or frozen) sperm cells are available. It is also unclear whether there is any advantage of fresh over frozen sperm if testicular sperm is to be used. We used ejaculate, testicular (fresh or frozen) sperm cells, or both for ICSI in 13 couples. Five of these couples initially underwent ICSI by testicular sperm extraction, because the males had total azoospermia, and in later cycles with ejaculate sperm cells. Ejaculate sperm cells were initially used for ICSI in the other 8 patients, and later with testicular sperm cells. The fertilization rate was significantly higher when fresh or frozen-thawed testicular sperm cells were used than when ejaculated sperm cells were used. Likewise, the quality of the embryos from testicular (fresh and frozen) sperm was higher than from ejaculated sperm (65.3% vs 53.2%, respectively, P < .05). The use of fresh testicular sperm yielded better implantation rates than both frozen testicular sperm and ejaculate. Therefore, fresh testicular sperm should be considered first for ICSI in patients with virtual azoospermia or cryptozoospermia because of their superior fertility. PMID:21164144

  2. Fast and simple DNA extraction from saliva and sperm cells obtained from the skin or isolated from swabs.

    PubMed

    von Wurmb-Schwark, Nicole; Mályusz, Victoria; Fremdt, Heike; Koch, Christine; Simeoni, Eva; Schwark, Thorsten

    2006-05-01

    The forensic scientist often has to cope with problematic samples from the crime scene due to their minute size and thus the low amount of extractable DNA. The retrieval of DNA from swabs taken from the surface of the skin, for example, in cases of strangulation, can be especially difficult. We systematically investigated swabs taken from the skin (to obtain a genetic profile from the victim and also from a possible offender) and from sperm cell containing swabs using two extraction kits: the Invisorb forensic and the Invisorb spin swab kit (both Invitek, Germany). DNA quality and quantity were tested on ethidium bromide containing agarose gels and in a highly sensitive duplex-PCR, which amplifies fragments specific for mitochondrial and nuclear DNA. Absolute quantification was done using real time PCR. Samples, which were positive in the duplex-PCR, were also employed to genetic fingerprinting using the Powerplex ES and the AmpFlSTRIdentifiler(TM) kits. Our study shows that the easy-to-use Invisorb spin swab kit is very suitable for DNA isolation from swabs taken from the skin and also from sperm cells. Retrieval of cells from the skin with swabs moistened in extraction buffer, not in distilled water, led to a significant higher DNA yield. PMID:16516526

  3. Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells

    SciTech Connect

    Reinhard, J.F. Jr.; Diliberto, E.J. Jr.; Viveros, O.H.; Daniels, A.J.

    1987-11-01

    Cultures of bovine adrenomedullary chromaffin cells accumulated 1-methyl-4-phenylpyridinium (MPP/sup +/) in a time- and concentration-dependent manner by a process that was prevented by desmethylimipramine. The subcellular localization of the incorporated (methyl-/sup 3/H)MPP/sup +/ was examined by differential centrifugation and sucrose density gradient fractionation and was found to be predominantly colocalized with catecholamines in chromaffin vesicles, and negligible amounts were detected within the mitochondrial fraction. When chromaffin cell membranes were made permeable with the detergent digitonin the absence of calcium, there was no increase in the release of (/sup 3/H)MPP/sup +/, indicating that there is negligible accumulation of the neurotoxin in the cytosol. Simultaneous exposure to digitonin and calcium induced cosecretion of MPP/sup +/ and catecholamines. Stimulation of the cells with nicotine released both catecholamines and MPP/sup +/ at identical rates and percentages of cellular content in a calcium-dependent manner. Last, when cells were incubated with MPP/sup +/ in the presence of tetrabenazine (an inhibitor of vesicular uptake), the chromaffin cell toxicity of MPP/sup +/ was potentiated. The authors submit that the ability of the chromaffin cells to take up and store MPP/sup +/ in the chromaffin vesicle prevents the toxin's interaction with other structures and, thus, prevents cell damage. As an extension of this hypothesis, the relative resistance of some brain monoaminergic neurons to the toxic actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may result from the subcellular sequestration of MPP/sup +/ in the storage vesicle.

  4. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  5. Human sperm rheotaxis: a passive physical process.

    PubMed

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-01-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long-range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca(2+) influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis. PMID:27005727

  6. Human sperm rheotaxis: a passive physical process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-03-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long–range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca2+ influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis.

  7. Human sperm rheotaxis: a passive physical process

    PubMed Central

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-01-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long–range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca2+ influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis. PMID:27005727

  8. Why small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours

    PubMed Central

    2011-01-01

    Background Sperm cells are the target of strong sexual selection that may drive changes in sperm structure and function to maximize fertilisation success. Sperm evolution is regarded to be one of the major consequences of sperm competition in polyandrous species, however it can also be driven by adaptation to the environmental conditions at the site of fertilization. Strong stabilizing selection limits intra-specific variation, and therefore polymorphism, among fertile sperm (eusperm). Here we analyzed reproductive morphology differences among males employing characteristic alternative mating behaviours, and so potentially different conditions of sperm competition and fertilization environment, in the squid Loligo bleekeri. Results Large consort males transfer smaller (average total length = 73 μm) sperm to a female's internal sperm storage location, inside the oviduct; whereas small sneaker males transfer larger (99 μm) sperm to an external location around the seminal receptacle near the mouth. No significant difference in swimming speed was observed between consort and sneaker sperm. Furthermore, sperm precedence in the seminal receptacle was not biased toward longer sperm, suggesting no evidence for large sperm being favoured in competition for space in the sperm storage organ among sneaker males. Conclusions Here we report the first case, in the squid Loligo bleekeri, where distinctly dimorphic eusperm are produced by different sized males that employ alternative mating behaviours. Our results found no evidence that the distinct sperm dimorphism was driven by between- and within-tactic sperm competition. We propose that presence of alternative fertilization environments with distinct characteristics (i.e. internal or external), whether or not in combination with the effects of sperm competition, can drive the disruptive evolution of sperm size. PMID:21831296

  9. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  10. Dynamics of heparin-binding proteins on boar sperm.

    PubMed

    Dapino, Dora G; Teijeiro, Juan M; Cabada, Marcelo O; Marini, Patricia E

    2009-12-01

    The presence, topology and dynamics of heparin-binding proteins (HBP) on boar sperm were evaluated. HBP distribution was analyzed by subcellular parting, using biotinylated heparin followed by colorimetric detection. HBP were detected as peripherical and integral periacrosomal membrane proteins. Indirect fluorescence microscopy of sperm incubated with biotinylated heparin was used to evidence heparin binding on sperm at different physiological stages. Two different fluorescent patterns (A and B) were found, which probably correspond to non-capacitated and capacitated sperm as assessed by the ability to undergo acrosome reaction with calcium ionophore A23187 and by the increase of p32 phosphorylated protein. In A pattern, corresponding to untreated sperm, fluorescence located mostly on the post-acrosomal region; in B pattern, corresponding to incubated sperm, on the acrosomal region. Upon incubation under capacitating conditions (TALP), sperm having the B pattern was augmented compared with non-incubated sperm (p<0.001). Differences in the HBP patterns (p<0.0001) were observed in sperm incubated under non-capacitating conditions in relation to sperm incubated in TALP, indicating that the modification of HBP patterns is probably related to capacitation. No difference was observed when untreated sperm were permeabilized prior to staining, suggesting that HBP are present on the sperm surface. The effect of heparin on capacitation dependent protein tyrosine phosphorylation was also analyzed, finding a decrease in p32 phosphorylation in the presence of heparin. This suggests that the capacitation enhancement mediated by this glycosaminoglycan involves an alternative intracellular pathway. The finding that heparin binds to sperm differently according to its physiological state, is a new evidence of the remodelling of sperm membrane surface upon capacitation and may provide a useful and relatively simple method to evaluate in vitro modification of boar sperm physiological

  11. A new technique for analysis of human sperm morphology in unstained cells from raw semen.

    PubMed

    Soler, Carles; García-Molina, Almudena; Sancho, María; Contell, Jesús; Núñez, Manuel; Cooper, Trevor G

    2016-03-01

    Sperm morphology analysis is a fundamental component of semen analysis, but its real significance has been clouded by the plethora of techniques used for its evaluation. Most involve different fixation and staining procedures that induce artefacts. Herein we describe Trumorph (Proiser R+D, Paterna, Spain), a new method for sperm morphology analysis based on examination of wet preparations of spermatozoa immobilised, after a short 60°C shock, in narrow chambers and examined by negative phase contrast microscopy. A range of morphological forms was observed, similar to those found using conventional fixed and stained preparations, but other forms were also found, distinguishable only by the optics used. The ease of preparation makes the Trumorph a robust method applicable for the analysis of living unmodified spermatozoa in a range of situations. Subsequent studies on well-characterised samples are required to describe the morphology of spermatozoa with fertilising potential. PMID:25228364

  12. Calpain-mediated Processing of p53-associated Parkin-like Cytoplasmic Protein (PARC) Affects Chemosensitivity of Human Ovarian Cancer Cells by Promoting p53 Subcellular Trafficking*

    PubMed Central

    Woo, Michael G.; Xue, Kai; Liu, Jiayin; McBride, Heidi; Tsang, Benjamin K.

    2012-01-01

    Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA), and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways, and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA are unknown. Here, we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation, and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibition of calpain but not of caspases or the 26 S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca2+-dependent PARC down-regulation. The role of Ca2+ in PARC down-regulation was further confirmed as ionomycin-induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicate the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca2+/calpain in PARC post-translational processing and chemosensitivity. PMID:22117079

  13. Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells

    PubMed Central

    Reinacher-Schick, Anke; Gumbiner, Barry M.

    2001-01-01

    The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or β-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3β and β-catenin. Therefore, it is likely to correspond to the previously characterized β-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of β-catenin, or alternatively, whether they could be involved in other functions of the protein that

  14. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses.

    PubMed

    Zavaliev, Raul; Levy, Amit; Gera, Abed; Epel, Bernard L

    2013-09-01

    β-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change. In transgenic plants, AtBG2 was retained in the endoplasmic reticulum (ER) network and was not secreted. As a stress response mediated by salicylic acid, AtBG2 was secreted and appeared as a free extracellular protein localized in the entire apoplast but did not accumulate at Pd sites. At the leading edge of Tobacco mosaic virus spread, AtBG2 co-localized with the viral movement protein in the ER-derived bodies, similarly to other ER proteins, but was not secreted to the cell wall. In atbg2 mutants, callose levels at Pd and virus spread were unaffected. Likewise, AtBG2 overexpression had no effect on virus spread. However, in atbg_pap mutants, callose at Pd was increased and virus spread was reduced. Our results demonstrate that the constitutive Pd-associated BG but not the stress-regulated extracellular PR-BG are directly involved in regulation of callose at Pd and cell-to-cell transport in Arabidopsis, including the spread of viruses. PMID:23656331

  15. Phosphorylation of bovine papillomavirus E1 by the protein kinase CK2 near the nuclear localization signal does not influence subcellular distribution of the protein in dividing cells.

    PubMed

    Lentz, Michael R; Shideler, Tess

    2016-01-01

    The bovine papillomavirus E1 helicase is essential for viral replication. In dividing cells, DNA replication maintains, but does not increase, the viral genome copy number. Replication is limited by low E1 expression and an E1 nucleocytoplasmic shuttling mechanism. Shuttling is controlled in part by phosphorylation of E1 by cellular kinases. Here we investigate conserved sites for phosphorylation by kinase CK2 within the E1 nuclear localization signal. When these CK2 sites are mutated to either alanine or aspartic acid, no change in replication phenotype is observed, and there is no effect on the subcellular distribution of E1, which remains primarily nuclear. This demonstrates that phosphorylation of E1 by CK2 at these sites is not a factor in regulating viral DNA replication in dividing cells. PMID:26467928

  16. Evaluation of sperm tests as indicators of germ-cell damage in men exposed to chemical or physical agents

    SciTech Connect

    Wyrobek, A.J.; Watchmaker, G.; Gordon, L.

    1983-06-15

    As reviewed here, at least 89 chemical exposures have been studied for their effects on human spermatogenesis using sperm tests, with the majority showing some effect on sperm count, motility, or morphology. Approximately 85% of these exposures were to experimental or therapeutic drugs, 10% to occupational or environmental agents, and 5% to recreational drugs. This paper briefly describes the more common sperm-based methods and reviews some of their applications. It also includes guidelines for undertaking a human sperm study, as well as a discussion of the predictive value of induced sperm changes, an evaluation of the role of animal sperm tests, and a summary of the advantages and disadvantages of the sperm tests.

  17. On the origin of sperm epigenetic heterogeneity.

    PubMed

    Laurentino, Sandra; Borgmann, Jennifer; Gromoll, Jörg

    2016-05-01

    The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future. PMID:26884419

  18. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines

    PubMed Central

    Koukourakis, Michael I.; Kalamida, Dimitra; Giatromanolaki, Alexandra; Zois, Christos E.; Sivridis, Efthimios; Pouliliou, Stamatia; Mitrakas, Achilleas; Gatter, Kevin C.; Harris, Adrian L.

    2015-01-01

    LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies. PMID:26378792

  19. Flow cytometric sexing of mammalian sperm.

    PubMed

    Garner, Duane L

    2006-03-15

    This review reexamines parameters needed for optimization of flow cytometric sexing mammalian sperm and updates the current status of sperm sexing for various species where this technology is currently being applied. Differences in DNA content have provided both a method to differentiate between these sex-determining gametes and a method to sort them that can be used for predetermining sex in mammals. Although the DNA content of all cells for each mammalian species is highly conserved, slight but measurable DNA content differences of sperm occur within species even among cattle breeds due to different sizes of Y-chromosomes. Most mammals produce flattened, oval-headed sperm that can be oriented within a sorter using hydrodynamic forces. Multiplying the percentage the difference in DNA content of the X- or Y-chromosome bearing sperm times the area of the flat profile of the sperm head gives a simple sorting index that suggests that bull and boar sperm are well suited for separation in a flow sorter. Successful sperm sexing of various species must take into account the relative susceptibilities of gametes to the stresses that occur during sexing. Sorting conditions must be optimized for each species to achieve acceptable sperm sexing efficiency, usually at 90% accuracy. In the commercial application of sperm sexing to cattle, fertility of sex-sorted bull sperm at 2 x 10(6)/dose remains at 70-80% of unsexed sperm at normal doses of 10 to 20 x 10(6) sperm. DNA content measurements have been used to identify the sex-chromosome bearing sperm populations with good accuracy in semen from at least 23 mammalian species, and normal-appearing offspring have been produced from sexed sperm of at least seven species. PMID:16242764

  20. Sialidases on Mammalian Sperm Mediate Deciduous Sialylation during Capacitation*

    PubMed Central

    Ma, Fang; Wu, Diana; Deng, Liwen; Secrest, Patrick; Zhao, June; Varki, Nissi; Lindheim, Steven; Gagneux, Pascal

    2012-01-01

    Sialic acids (Sias) mediate many biological functions, including molecular recognition during development, immune response, and fertilization. A Sia-rich glycocalyx coats the surface of sperm, allowing them to survive as allogeneic cells in the female reproductive tract despite female immunity. During capacitation, sperm lose a fraction of their Sias. We quantified shed Sia monosaccharides released from capacitated sperm and measured sperm sialidase activity. We report the presence of two sialidases (neuraminidases Neu1 and Neu3) on mammalian sperm. These are themselves shed from sperm during capacitation. Inhibiting sialidase activity interferes with sperm binding to the zona pellucida of the ovum. A survey of human sperm samples for the presence of sialidases NEU1 and NEU3 identified a lack of one or both sialidases in sperm of some male idiopathic infertility cases. The results contribute new insights into the dynamic remodeling of the sperm glycocalyx prior to fertilization. PMID:22989879

  1. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation.

    PubMed

    Cakici, Cihangir; Buyrukcu, Bugra; Duruksu, Gokhan; Haliloglu, Ahmet Hakan; Aksoy, Ayca; Isık, Ayca; Uludag, Orhan; Ustun, Huseyin; Subası, Cansu; Karaoz, Erdal

    2013-01-01

    The recent reports on the treatment of azoospermia patients, in which spermatozoa could not be traced in their testes, are focused more on the potential use of adult stem cells, like mesenchymal stem cells (MSCs). The aim of this study was to demonstrate the potential use of MSCs derived from adipose tissue in the treatment of azoospermia using rat disease models. After busulfan application, the rats (n = 20) were injected with the GFP(+) MSCs into left rete testes. After 12 weeks, the testes with cell injection (right testes) were compared to control (left testes) after dimensional and immunohistochemical analyses. Testes treated with MSCs appeared morphologically normal, but they were atrophic in rats without stem cell treatment, in which the seminiferous tubules were empty. Spermatogenesis was detected, not in every but in some tubules of cell-treated testes. GFP(+)/VASA(+) and GFP(+)/SCP1(+) cells in testes indicated the transdifferentiation of MSCs into spermatogenetic cells in the appropriate microenvironment. Rats with cell treatment were mated to show the full recovery of spermatogenesis, and continuous generations were obtained. The expression of GFP was detected in the mesenchymal stem cells derived from adipose tissue and bone marrow and also in the sperms of offspring. In conclusion, MSCs might be studied for the same purpose in humans in future. PMID:23509736

  2. Leydig cell number and sperm production decrease induced by chronic ametryn exposure: a negative impact on animal reproductive health.

    PubMed

    Dantas, T A; Cancian, G; Neodini, D N R; Mano, D R S; Capucho, C; Predes, F S; Pulz, R Barbieri; Pigoso, A A; Dolder, H; Severi-Aguiar, G D C

    2015-06-01

    Ametryn is an herbicide used to control broadleaf and grass weeds and its acute and chronic toxicity is expected to be low. Since toxicological data on ametryn is scarce, the aim of this study was to evaluate rat reproductive toxicity. Thirty-six adult male Wistar rats (90 days) were divided into three groups: Co (control) and T1 and T2 exposed to 15 and 30 mg/kg/day of ametryn, respectively, for 56 days. Testicular analysis demonstrated that ametryn decreased sperm number per testis, daily sperm production, and Leydig cell number in both treated groups, although little perceptible morphological change has been observed in seminiferous tubule structure. Lipid peroxidation was higher in group T2, catalase activity decreased in T1 group, superoxide dismutase activity diminished, and a smaller number of sulphydryl groups of total proteins were verified in both exposed groups, suggesting oxidative stress. These results showed negative ametryn influence on the testes and can compromise animal reproductive performance and survival. PMID:25561257

  3. Intracytoplasmic Sperm Injection Using DNA-Fragmented Sperm in Mice Negatively Affects Embryo-Derived Embryonic Stem Cells, Reduces the Fertility of Male Offspring and Induces Heritable Changes in Epialleles

    PubMed Central

    Fernández-González, Raúl; Laguna-Barraza, Ricardo; Pericuesta, Eva; Calero, Antonia; Ramírez, Miguel Ángel; Gutiérrez-Adán, Alfonso

    2014-01-01

    Intracytoplasmic sperm injection (ICSI) in mice using DNA-fragmented sperm (DFS) has been linked to an increased risk of genetic and epigenetic abnormalities both in embryos and offspring. This study examines: whether embryonic stem cells (ESCs) derived from DFS-ICSI embryos reflect the abnormalities observed in the DFS-ICSI progeny; the effect of DFS-ICSI on male fertility; and whether DFS-ICSI induces epigenetic changes that lead to a modified heritable phenotype. DFS-ICSI-produced embryos showed a low potential to generate ESC lines. However, these lines had normal karyotype accompanied by early gene expression alterations, though a normal expression pattern was observed after several passages. The fertility of males in the DFS-ICSI and control groups was compared by mating test. Sperm quantity, vaginal plug and pregnancy rates were significantly lower for the DFS-ICSI-produced males compared to in vivo-produced mice, while the number of females showing resorptions was higher. The epigenetic effects of DFS-ICSI were assessed by analyzing the phenotype rendered by the Axin1Fu allele, a locus that is highly sensitive to epigenetic perturbations. Oocytes were injected with spermatozoa from Axin1Fu/+ mice and the DFS-ICSI-generated embryos were transferred to females. A significantly higher proportion of pups expressed the active kinky-tail epiallele in the DFS-ICSI group than the controls. In conclusion: 1) ESCs cannot be used as a model of DFS-ICSI; 2) DFS-ICSI reduces sperm production and fertility in the male progeny; and 3) DFS-ICSI affects the postnatal expression of a defined epigenetically sensitive allele and this modification may be inherited across generations. PMID:24743851

  4. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips.

    PubMed

    Wang, Qiaochun; Cuellar, Wilmer J; Rajamäki, Minna-Liisa; Hirata, Yukimasa; Valkonen, Jari P T

    2008-03-01

    Accumulation of viruses in vegetatively propagated plants causes heavy yield losses. Therefore, supply of virus-free planting materials is pivotal to sustainable crop production. In previous studies, Raspberry bushy dwarf virus (RBDV) was difficult to eradicate from raspberry (Rubus idaeus) using the conventional means of meristem tip culture. As shown in the present study, it was probably because this pollen-transmitted virus efficiently invades leaf primordia and all meristematic tissues except the least differentiated cells of the apical dome. Subjecting plants to thermotherapy prior to meristem tip culture heavily reduced viral RNA2, RNA3 and the coat protein in the shoot tips, but no virus-free plants were obtained. Therefore, a novel method including thermotherapy followed by cryotherapy was developed for efficient virus eradication. Heat treatment caused subcellular alterations such as enlargement of vacuoles in the more developed, virus-infected cells, which were largely eliminated following subsequent cryotherapy. Using this protocol, 20-36% of the treated shoot tips survived, 30-40% regenerated and up to 35% of the regenerated plants were virus-free, as tested by ELISA and reverse transcription loop-mediated isothermal amplification. Novel cellular and molecular insights into RBDV-host interactions and the factors influencing virus eradication were obtained, including invasion of shoot tips and meristematic tissues by RBDV, enhanced viral RNA degradation and increased sensitivity to freezing caused by thermotherapy, and subcellular changes and subsequent death of cells caused by cryotherapy. This novel procedure should be helpful with many virus-host combinations in which virus eradication by conventional means has proven difficult. PMID:18705855

  5. Cryopreservation of sea urchin (Evechinus chloroticus) sperm.

    PubMed

    Adams, Serean L; Hessian, Paul A; Mladenov, Philip V

    2004-01-01

    A method was developed for cryopreserving sperm of the sea urchin, Evechinus chloroticus. Sperm fertilisation ability, mitochondrial function and membrane integrity were assessed before and after cryopreservation. Highest post-thaw fertilisation ability was achieved with lower concentrations (2.5%-7.5%) of dimethyl sulphoxide (DMSO). In contrast, post-thaw mitochondrial function and membrane integrity were higher for sperm frozen in intermediate and high DMSO concentrations (5%-15%). Surprisingly, some sperm frozen in seawater only, without DMSO, were able to survive post-thawing, although the fertilisation ability (10(6) sperm/ml; approximately 50% fertilisation), mitochondrial function and membrane integrity of these sperm were notably lower than of sperm frozen with DMSO (10(6) sperm cells/ml; 2.5%-7.5% DMSO; >85% fertilisation) at the concentrations tested. Amongst sperm from individual males, fertilisation ability varied before and after cryopreservation for both males frozen with and without cryoprotectant. Specific differences among males also varied. Sperm mitochondrial function and membrane integrity was similar among males before cryopreservation but differed considerably after cryopreservation. Cryopreserved sperm were able to fertilise eggs and develop to pluteus stage larvae. This study has practical applications and will provide benefits such as reduced broodstock conditioning costs, control of parental input and opportunities for hybridisation studies. PMID:15375439

  6. Sperm counts and serum follicle-stimulating hormone levels before and after radiotherapy and chemotherapy in men with testicular germ cell cancer

    SciTech Connect

    Berthelsen, J.G.

    1984-02-01

    Sperm counts were low (median, 15 X 10(6) per ejaculate) and serum follicle-stimulating hormone (FSH) levels were moderately elevated (median, 31 IU/l) after unilateral orchiectomy and immediately before radiotherapy and chemotherapy in 34 patients with seminomas and 20 patients with nonseminomatous germ cell tumors. The scattered radiation (0.2 to 1.3 Gray (Gy)) reaching the remaining testicle during radiotherapy caused azoospermia in more than two thirds of the patients. A median of 540 days elapsed after the end of treatment before spermatozoa were again found in semen samples, while a median of 1250 days passed before the pretreatment sperm count was reached. One to 5 years after treatment, sperm counts were still low (median, 6 X 10(6) per ejaculate) and serum FSH was elevated (median, 61 IU/l). The adjuvant chemotherapy given to the 20 patients with nonseminomatous tumors did not appear to affect restitution appreciably.

  7. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    PubMed

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  8. Comparison of efficacy of two techniques for testicular sperm retrieval in nonobstructive azoospermia: multifocal testicular sperm extraction versus multifocal testicular sperm aspiration.

    PubMed

    Hauser, Ron; Yogev, Leah; Paz, Gedalia; Yavetz, Haim; Azem, Fuad; Lessing, Joseph B; Botchan, Amnon

    2006-01-01

    To compare the efficacy of 2 sperm-retrieval procedures, testicular sperm extraction (TESE) and testicular sperm aspiration (TESA), during the same procedure using the same subjects as their own controls. The presence of mature testicular sperm cells and motility were evaluated in 87 men with nonobstructive azoospermia (NOA) by means of multifocal TESE and multifocal TESA, which were performed during the same procedure using the same subjects as their own controls. Sperm cells were recovered by TESE in 54 cases, but by TESA in only 36 cases. There were significantly more cases (n = 20) in which sperm cells were recovered by TESE only, compared with 2 cases in whom cells were recovered by TESA only (McNemar's test, P < .001). The mean number of locations in each testis in which sperm cells were detected was significantly higher in the TESE group. In significantly more cases (n = 27), motility was observed in TESE material only, compared with 3 cases in which motility was present in material extracted by TESA only (McNemar's test, P < .001). Mean number of locations in each testis with motile sperm cells was significantly higher in the TESE group. The TESE procedure yielded significantly more sperm cells, as was also reflected by the difference in number of straws with cryopreserved sperm. This comparative prospective clinical study revealed that multifocal TESE is more efficient than multifocal TESA for sperm detection and recovery in men with NOA and should be the procedure of choice for sperm retrieval for them. PMID:16400074

  9. Biosynthesis of proteokeratan sulfate in the bovine cornea. 2) Isolation of subcellular membrane fragments from bovine cornea cells with keratan sulfate synthesizing activity.

    PubMed

    Keller, R; Stein, T; Weber, W; Kehrer, T; Stuhlsatz, H W; Greiling, H; Keyserlingk, D G

    1983-03-01

    Cornea cells were isolated from bovine corneae after collagenase treatment. Subcellular fragments were fractionated by density gradient centrifugation. The density gradient run was monitored by determination of the marker enzyme activities for mitochondria, plasma membranes, lysosomes and endoplasmatic reticulum, of the enzyme activities involved in keratan sulfate synthesis and of the protein content. The fractions were further investigated by electron microscopy. Two membrane fractions with keratan sulfate-synthesizing activity (UDP-N-acetylglucosamine:keratan-N-acetylglucosaminyl-transferase, UDPgalactose:keratan galactosyltransferase and keratan sulfotransferase) were detected: a heavy fraction separated from the other organells investigated and a light fraction exhibiting the same density as plasma membranes. The activities of the three enzymes were found in the same density gradient fractions with a similar distribution pattern between the fractions, which suggests a joint localization of these 3 enzymes at the same intracellular sites. PMID:6222957

  10. Sperm competition leads to functional adaptations in avian testes to maximize sperm quantity and quality.

    PubMed

    Lüpold, Stefan; Wistuba, Joachim; Damm, Oliver S; Rivers, James W; Birkhead, Tim R

    2011-05-01

    The outcome of sperm competition (i.e. competition for fertilization between ejaculates from different males) is primarily determined by the relative number and quality of rival sperm. Therefore, the testes are under strong selection to maximize both sperm number and quality, which are likely to result in trade-offs in the process of spermatogenesis (e.g. between the rate of spermatogenesis and sperm length or sperm energetics). Comparative studies have shown positive associations between the level of sperm competition and both relative testis size and the proportion of seminiferous (sperm-producing) tissue within the testes. However, it is unknown how the seminiferous tissue itself or the process of spermatogenesis might evolve in response to sperm competition. Therefore, we quantified the different germ cell types and Sertoli cells (SC) in testes to assess the efficiency of sperm production and its associations with sperm length and mating system across 10 species of New World Blackbirds (Icteridae) that show marked variation in sperm length and sperm competition level. We found that species under strong sperm competition generate more round spermatids (RS)/spermatogonium and have SC that support a greater number of germ cells, both of which are likely to increase the maximum sperm output. However, fewer of the RS appeared to elongate to mature spermatozoa in these species, which might be the result of selection for discarding spermatids with undesirable characteristics as they develop. Our results suggest that, in addition to overall size and gross morphology, testes have also evolved functional adaptations to maximize sperm quantity and quality. PMID:21307271