Science.gov

Sample records for spherical calcia stabilized

  1. Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications

    SciTech Connect

    Zhou Minghua . E-mail: mzhou@nrcan.gc.ca; Ahmad, Aftab

    2006-04-13

    Precursor powders of calcia-stabilized zirconia (CSZ) solid electrolytes have been synthesized by a sol-gel method. The phase evolution of the precursor powders after thermal treatments at different temperatures were analysized by X-ray diffraction technique. Disc-shaped sensor elements were fabricated via uniaxial pressing of the calcined powders and subsequently sintered at 1650 deg. C. Scanning electron microscopy (SEM) was used to analyze the microstructure of the sintered pellets. Platinum electrodes were applied to the sintered elements to produce potentiometric/electrochemical gas sensors. The electrical response of the gas sensors to oxygen and the complex impedance of the sensors in air were measured at various temperatures. Impedance analyses indicate that the sensor cell with 15 mol% CaO has much lower resistance (the sum of bulk and grain-boundary resistance) than the sensor cell with 22 mol% CaO. This is also reflected by the EMF responses of both sensor cells to various oxygen concentrations in the testing gas. The EMF deviation from the theoretical value of the CSZ sensor cell with 22 mol% CaO was larger than that of the CSZ sensor cell with 15 mol% CaO. The corrrelations between material compositions, microstructures of the sintered pellets and the electrical properties of the sensors are discussed.

  2. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    NASA Astrophysics Data System (ADS)

    Drazin, John Walter

    while simultaneously collecting the energetic contribution of the adsorbing water vapor. With this data and apparatus, I have derived a 2nd order differential equation that relates the surface energy to the measured quantities such that I collected surfaces energies for over 35 specimens in the calcia-zirconia and yttria-zirconia systems for the first time. From the results, it was found that the monoclinic polymorph had the largest surface energy in the range of 1.9 - 2.1 ( J/m2) while the tetragonal surface energies were roughly 1.4 - 1.6 (J/m2), the cubic surface energies were roughly 0.8 - 1.0 (J/m2), and the amorphous surface energies were the smallest at roughly 0.7 - 0.8 (J/m 2). With the measured surface energy data, collected for the first time, we can create a nano-grain phase diagram similar to a bulk phase diagram that shows the stable polymorph as a function of dopant concentration and grain size using the bulk enthalpy data collected from high temperature oxide melt drop solution calorimetry. The phase diagrams show that pure zirconia will transform into tetragonal and cubic polymorphs from the monoclinic one at 7 and 5 nm respectively which confirms the experimental observations. The results are powerful predictive tools successfully applied in the nCZ and nYZ systems to a high degree of accuracy and adds a new development to conventional bulk phase diagrams. These diagrams should be the basis for nanotechnological efforts in nCZ and nYZ based systems, and suggest similar efforts are needed in other nano systems to pursue an in depth understanding and optimization of nanomaterials. After working on the theoretical aspects of phase stability, the focus of the research will shift to producing dense samples to measure observable quantities such as oxygen conduction and mechanical hardness. However, producing said samples with the nanocrystalline grain sizes has also been challenging as conventional sintering requires high temperatures which, as a consequence

  3. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    NASA Astrophysics Data System (ADS)

    Drazin, John Walter

    while simultaneously collecting the energetic contribution of the adsorbing water vapor. With this data and apparatus, I have derived a 2nd order differential equation that relates the surface energy to the measured quantities such that I collected surfaces energies for over 35 specimens in the calcia-zirconia and yttria-zirconia systems for the first time. From the results, it was found that the monoclinic polymorph had the largest surface energy in the range of 1.9 - 2.1 ( J/m2) while the tetragonal surface energies were roughly 1.4 - 1.6 (J/m2), the cubic surface energies were roughly 0.8 - 1.0 (J/m2), and the amorphous surface energies were the smallest at roughly 0.7 - 0.8 (J/m 2). With the measured surface energy data, collected for the first time, we can create a nano-grain phase diagram similar to a bulk phase diagram that shows the stable polymorph as a function of dopant concentration and grain size using the bulk enthalpy data collected from high temperature oxide melt drop solution calorimetry. The phase diagrams show that pure zirconia will transform into tetragonal and cubic polymorphs from the monoclinic one at 7 and 5 nm respectively which confirms the experimental observations. The results are powerful predictive tools successfully applied in the nCZ and nYZ systems to a high degree of accuracy and adds a new development to conventional bulk phase diagrams. These diagrams should be the basis for nanotechnological efforts in nCZ and nYZ based systems, and suggest similar efforts are needed in other nano systems to pursue an in depth understanding and optimization of nanomaterials. After working on the theoretical aspects of phase stability, the focus of the research will shift to producing dense samples to measure observable quantities such as oxygen conduction and mechanical hardness. However, producing said samples with the nanocrystalline grain sizes has also been challenging as conventional sintering requires high temperatures which, as a consequence

  4. Stability of imploding spherical shock waves

    NASA Astrophysics Data System (ADS)

    Chen, H. B.; Zhang, L.; Panarella, E.

    1995-12-01

    The stability of spherically imploding shock waves is systematically investigated in this letter. The basic state is Guderley and Landau's unsteady self-similar solution of the implosion of a spherical shock wave. The stability analysis is conducted by combining Chandrasekhar's approach to the stability of a viscous liquid drop with Zel'dovich's approach to the stability of spherical flames. The time-dependent amplitudes of the perturbations are obtained analytically by using perturbation method. The relative amplification and decay of the amplitudes of perturbations decides the stability/instability of the spherical imploding shock waves. It is found that the growth rate of perturbations is not in exponential form and near the collapse phase of the shocks, the spherically imploding shock waves are relatively stable.

  5. Stability of imploding spherical shock waves

    SciTech Connect

    Chen, H.B.; Zhang, L.; Panarella, E.

    1995-12-01

    The stability of spherically imploding shock waves is systematically investigated in this letter. The basic state is Guderley and Landau`s unsteady self-similar solution of the implosion of a spherical shock wave. The stability analysis is conducted by combining Chandrasekhar`s approach to the stability of a viscous liquid drop with Zel`dovich`s approach to the stability of spherical flames. The time-dependent amplitudes of the perturbations are obtained analytically by using perturbation method. The relative amplification and decay of the amplitudes of perturbations are obtained analytically by using perturbation method. The relative amplification and decay of the amplitudes of perturbations decides the stability/instability of the spherical imploding shock waves. It is found that the growth rate of perturbations is not in exponential form and near the collapse phase of the shocks, the spherically imploding shock waves are relatively stable. 14 refs., 1 fig.

  6. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  7. Stability of spherical converging shock wave

    SciTech Connect

    Murakami, M.; Sanz, J.; Iwamoto, Y.

    2015-07-15

    Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓ{sub c}, such that all the eigenmode perturbations for ℓ > ℓ{sub c} are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.

  8. Stability of spherical converging shock wave

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Sanz, J.; Iwamoto, Y.

    2015-07-01

    Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓc, such that all the eigenmode perturbations for ℓ > ℓc are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.

  9. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  10. Propagation and stability of expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde

    High-fidelity experiments were conducted to determine the laminar flame speeds of various fuels, to define the transition boundaries of both cellular and spiral flame front instabilities that develop over the flame surface, and to determine the cellular flame acceleration constants for outwardly propagating spherical flames in a near-constant pressure environment up to 60 atmospheres. The flame front movement was monitored using schlieren cinematography and recorded with a high-speed digital camera. Experiments were conducted for a wide range of pressures and equivalence ratios to yield flame speed data for acetylene, ethylene, ethane, propylene, propane, dimethyl ether, and hydrogen/carbon monoxide in air. These data were post-processed in order to account for stretch effects, yielding laminar, unstretched flame speeds and Markstein lengths. The results were compared with existing chemical kinetics mechanisms and used to suggest improvements. The instant of transition to cellularity was experimentally determined for various fuels and fuel mixtures and subsequently interpreted on the basis of hydrodynamic and diffusional-thermal instabilities. Experimental results show that the transition Peclet number, Pec = Rc/ℓL, assumes an almost constant value for the near-equidiffusive acetylene and ethylene flames with wide ranges in the mixture stoichiometry, oxygen concentration, and pressure, where Rc is the flame radius at transition and ℓL the laminar flame thickness. However, for the non-equidiffusive hydrogen and propane flames, Pec respectively increases and decreases somewhat linearly with the mixture equivalence ratio. Evaluation of Pec using the theory of Bechtold and Matalon show complete qualitative agreement and satisfactory quantitative agreement, demonstrating the insensitivity of Pec to all system parameters for equidiffusive mixtures, and the dominance of the Markstein number, Ze(Le-1), in destabilization for non-equidiffusive mixtures, where Ze is the

  11. Stability of spherically symmetric solutions in modified theories of gravity

    SciTech Connect

    Seifert, Michael D.

    2007-09-15

    In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our 'generalized variational principle', described in a previous work [M. D. Seifert and R. M. Wald, Phys. Rev. D 75, 084029 (2007)], to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson and Mattingly's 'Einstein-aether theory', and Bekenstein's TeVeS theory. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the 'kinetic terms' of vacuum TeVeS theory are indefinite in a curved background, leading to an instability.

  12. Stability of a dual-spin spacecraft with spherical dampers

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Likins, P. W.; Sirlin, S.

    1984-01-01

    The present investigation is concerned with the stability characteristics of a specific dual-spin satellite configuration marked by a high degree of symmetry. The configuration includes a platform and a rotor. Both components contain arbitrarily located internal spherical dampers. The symmetry of the system configuration makes it possible to illustrate clearly the relationship between Routhian analysis, energy sink analysis, and digital simulation of the full nonlinear equations. Although the dual-spin spacecraft configuration contains energy dissipating devices on both platform and rotor, it is still possible to employ the rigorous, but relatively simple, Routh stability method. This method, unlike Floquet theory, has the potential of producing closed-form stability criteria. The energy sink method is capable of providing a closed-form stability criterion. Numerical simulation is a necessary requirement in the latter stages of design when the realistic perturbation environment must be considered.

  13. Spherical aberration standards and measurement system stability over time

    NASA Astrophysics Data System (ADS)

    Compertore, David; Ignatovich, Filipp; Marcus, Michael

    2015-10-01

    A Shack-Hartmann wave-front sensor system has been used to measure a set of plano-convex lenses at two different times, separated by almost 2 years. The plano-convex lenses were selected to cover a range of powers and apertures relevant to intraocular lenses, and were measured at two different orientations. The results demonstrate the high temporal stability of the measurement system, as well as of the glass standard. In addition, both times the effective focal lengths of the standards were measured using a NIST traceable nodal slide bench, and the center thicknesses were measured using low-coherence interferometer. The spherical aberration and the effective focal length results are analyzed for statistically significant changes. The results are also compared to the Zemax models of the standards.

  14. STABILITY OF A SPHERICAL ACCRETION SHOCK WITH NUCLEAR DISSOCIATION

    SciTech Connect

    Fernandez, Rodrigo; Thompson, Christopher

    2009-06-01

    We examine the stability of a standing shock wave within a spherical accretion flow onto a gravitating star, in the context of core-collapse supernova explosions. Our focus is on the effect of nuclear dissociation below the shock on the linear growth, and nonlinear saturation, of nonradial oscillations of the shocked fluid. We combine two-dimensional, time-dependent hydrodynamic simulations using FLASH2.5 with a solution to the linear eigenvalue problem, and demonstrate the consistency of the two approaches. Previous studies of this 'standing accretion shock instability' (SASI) have focused either on zero-energy accretion flows without nuclear dissociation, or made use of a detailed finite-temperature nuclear equation of state and included strong neutrino heating. Our main goal in this and subsequent papers is to introduce equations of state of increasing complexity, in order to isolate the various competing effects. In this work, we employ an ideal gas equation of state with a constant rate of nuclear dissociation below the shock, and do not include neutrino heating. We find that a negative Bernoulli parameter below the shock significantly lowers the real frequency, growth rate, and saturation amplitude of the SASI. A decrease in the adiabatic index has similar effects. The nonlinear development of the instability is characterized by an expansion of the shock driven by turbulent kinetic energy at nearly constant internal energy. Our results also provide further insight into the instability mechanism: the rate of growth of a particular mode is fastest when the radial advection time from the shock to the accretor overlaps with the period of a standing lateral sound wave. The fastest-growing mode can therefore be modified by nuclear dissociation.

  15. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    SciTech Connect

    El-Toni, Ahmed Mohamed . E-mail: el-toni@mail.tagen.tohoku.ac.jp; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-07-12

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles.

  16. Stability and superluminality of spherical DBI Galileon solutions

    DOE PAGESBeta

    Goon, Garrett L.; Hinterbichler, Kurt; Trodden, Mark

    2011-04-12

    We showed that, when considered as local modifications to gravity, such as in the solar system, there exists a region of parameter space in which spherically symmetric static solutions to a particular class of modified gravity theories exist and are stable.

  17. Stability of pear-shaped configurations bifurcated from a pressurized spherical balloon

    NASA Astrophysics Data System (ADS)

    Fu, Y. B.; Xie, Y. X.

    2014-08-01

    It is well-known that for most spherical rubber balloons the pressure versus volume curve associated with uniform inflation is N-shaped (the pressure increases rapidly to a maximum, falls to a minimum, and subsequently increases monotonically), and that somewhere along the descending branch of this curve the spherical shape may bifurcate into a pear shape through localized thinning near one of the poles. The bifurcation is associated with the (uniform) surface tension reaching a maximum. It is previously known that whenever a pear-shaped configuration becomes possible, it has lower energy than the co-existing spherical configuration, but the stability of the pear-shaped configuration itself is unknown. With the use of the energy stability criterion, it is shown in this paper that the pear-shaped configuration is unstable under pressure control, but stable under mass control. Our calculations are carried out using the Ogden material model as an example, but it is expected that the qualitative stability results should also be valid for other material models that predict a similar N-shaped behavior for uniform inflation.

  18. Dark spherical shell solitons in three-dimensional Bose-Einstein condensates: Existence, stability, and dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.

    2016-02-01

    In this work we study spherical shell dark soliton states in three-dimensional atomic Bose-Einstein condensates. Their symmetry is exploited in order to analyze their existence, as well as that of topologically charged variants of the structures, and, importantly, to identify their linear stability Bogoliubov-de Gennes spectrum. We compare our effective one-dimensional spherical and two-dimensional cylindrical computations with the full three-dimensional numerics. An important conclusion is that such spherical shell solitons can be stable sufficiently close to the linear limit of the isotropic condensates considered herein. We have also identified their instabilities leading to the emergence of vortex line and vortex ring cages. In addition, we generalize effective particle pictures of lower-dimensional dark solitons and ring dark solitons to the spherical shell solitons concerning their equilibrium radius and effective dynamics around it. In this case too, we favorably compare, qualitatively and quantitatively, the resulting predictions such as the shell equilibrium radius with full numerical solutions in three dimensions.

  19. Ideal MHD stability of a spherical tokamak power plant and a component test facility.

    SciTech Connect

    Hole, M. J.; Wilson, H. R.; Abeysuriya, R.; Larson, J. W.

    2010-12-01

    We have investigated ideal MHD stability of two advanced spherical tokamak confinement concepts: the spherical tokamak power plant (STPP), a 3 GW concept fusion power plasma producing 1 GW of electric power, and the component test facility (CTF), a concept designed for in situ materials testing for ITER and beyond. Detailed stability studies for toroidal mode number n = 1, 2, 3 displacements are presented as a function of conformal wall radius R{sub w} and on-axis safety factor q{sub 0}. For the STPP marginal stability scans held the current profile fixed, but varied the total plasma current. For the CTF we have extended and parallelized earlier marginal stability scans to scan over both the plasma beta and q{sub 0} by varying the current profile to preserve the total plasma current. These confirm that both concepts are stable provided that the wall is sufficiently close and q{sub 0} sufficiently large (q{sub 0} > 2.8 for the power plant and q{sub 0} > 2.1 for the CTF). Both power plant and CTF configurations are found to be ballooning stable.

  20. Heaps of Shapes: Flow-Stabilized Solids with Non-Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Lindauer, Scott; Shields, C. Wyatt, IV; Lopez, Gabriel P.; Daniels, Karen E.; Riehn, Robert

    Flow-stabilized solids are a class of fragile matter that are formed when a dense suspension of hard colloids is accumulated against a semipermeable barrier. We build a microfluidic device to confine Brownian particles in a quasi-2D channel; a controlled flow rate above a critical value forms flow-stabilized solids against the barrier. We extend prior work on submicron spherical particles, to particles of size 2-5 microns, and of various shapes: circular, rectangular, hexagonal, and triangular prisms. We perform experiments on these flow-stabilized solids to observe the angle of repose, packing fraction, and orientational order as a function of flow rate. We vary the flow rate quasi-statically in order to conduct the experiment at steady state. We find a critical flow rate below which no pile forms. In general, particles with less-circular shape form more stable heaps.

  1. Study of resin-bonded calcia investment: Part 1. Setting time and compressive strength.

    PubMed

    Nakai, A

    2000-09-01

    This study was carried out to develop a new titanium casting investment consisting of calcia as the refractory material and a cold-curing resin system as the binder. The setting time of the investment was investigated under different N,N-dimethyl-p-toluidine (DMPT) contents in methyl methacrylate monomer (MMA) and benzoyl peroxide (BPO) contents in calcia without any sintering agent. The effects of the sintering agents, which were calcium fluoride (CaF2) and calcium chloride (CaCl2), on the compressive strength of the investments were investigated at room temperature before and after heating to two different temperatures. The shortest setting time (68 minutes) of the investment was obtained at 0.37 DMPT/BPO (1.5 vol% /1.0 mass%) ratio by mass. The highest strength (16.5 MPa) was obtained from the investment which contained 2 mass% CaF2 and was heated to 1,100 degrees C. It was found that the developed calcia investment containing 2 mass% CaF2 has a possibility for use in titanium castings. PMID:11218848

  2. Stability behavior of anionic spherical polyelectrolyte brushes in the presence of La(III) counterions.

    PubMed

    Schneider, Christian; Jusufi, Arben; Farina, Robert; Pincus, Philip; Tirrell, Matthew; Ballauff, Matthias

    2010-07-01

    In this paper we discuss the stability behavior of spherical polyelectrolyte brushes (SPB) in the presence of trivalent lanthanum counterions. Stability behavior is measured through the rate of coagulation of the SPB as a function of the lanthanum concentration using simultaneous static and dynamic light scattering. As the counterion concentration increases, we observe coagulation of the SPB which in turn leads to a dramatic decrease in the stability of our particles. Since the rate of coagulation is dependent upon the balance between the repulsive interactions and the thermal energy of the diffusing particles (reaction-limited colloidal aggregation; RLCA), we then can relate the measured particle stability to the value of the repulsive potential in the RLCA regime. These "microsurface potential measurements" (MSPM) allow us to measure repulsive energies down to the order of k(B)T. From the repulsive energy of the particles we can then determine precise information about the net surface potential Ψ0 of the SPB as a function of the lanthanum counterion concentration. Moreover, we demonstrate that a simple mean-field model predicts the stability of the SPB in the presence of lanthanum counterions with high accuracy. PMID:20866614

  3. Stability of Schwarzschild-AdS for the Spherically Symmetric Einstein-Klein-Gordon System

    NASA Astrophysics Data System (ADS)

    Holzegel, Gustav; Smulevici, Jacques

    2013-01-01

    In this paper, we study the global behavior of solutions to the spherically symmetric coupled Einstein-Klein-Gordon (EKG) system in the presence of a negative cosmological constant. For the Klein-Gordon mass-squared satisfying a ≥ -1 (the Breitenlohner-Freedman bound being a > -9/8), we prove that the Schwarzschild-AdS spacetimes are asymptotically stable: Small perturbations of Schwarzschild-AdS initial data again lead to regular black holes, with the metric on the black hole exterior approaching, at an exponential rate, a Schwarzschild-AdS spacetime. The main difficulties in the proof arise from the lack of monotonicity for the Hawking mass and the asymptotically AdS boundary conditions, which render even (part of) the orbital stability intricate. These issues are resolved in a bootstrap argument on the black hole exterior, with the redshift effect and weighted Hardy inequalities playing the fundamental role in the analysis. Both integrated decay and pointwise decay estimates are obtained. As a corollary of our estimates on the Klein-Gordon field, one obtains in particular exponential decay in time of spherically-symmetric solutions to the linear Klein-Gordon equation on Schwarzschild-AdS.

  4. The Effect of Viscosity on the Spherical Stability of Oscillating Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    Gas bubbles driven in radial oscillations are subject to an instability of the spherical shape that is opposed by surface tension and viscosity. An exact linear formulation for the study of the phenomenon has been available for many years, but its complexity has discouraged a detailed investigation. With the recent theory of sonoluminescence of Lohse and co-workers, there has been a renewed interest in the problem and new data have become available. This paper presents a numerical method for the solution of the pertinent equations and compares the theory with these new data. The coupling of the strong nonlinearity of the bubble radial oscillations with the parametric mechanism of the surface instability results in a very complex structure for the stability boundary. Nevertheless, a good agreement between theory and data is found. A comparison with earlier approximate models is also made.

  5. Glass formation and properties in the system calcia-gallia-silica

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Ray, Chandra S.; Day, Delbert E.

    1990-01-01

    The glass-forming region in the calcia-gallia-silica system is studied and found to be fairly large, with a density of 3-4 g/cu cm, a refractive index of 1.6-1.73, an Abbe number of 35-58, a thermal expansion coefficient of 6.5-11.5 x 10 to the -7th/deg C, and a Vickers microhardness of 5.2-7.3 GPa. Crystalline phases are identified at the boundary of the glass-forming region. The structural groups in the glass-forming compositions are analyzed by infrared absorption spectroscopy.

  6. Scale effect of spherical projectiles for stabilization of oblique detonation waves

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Sumiya, S.; Kasahara, J.; Matsuo, A.

    2015-03-01

    Oblique detonation waves (ODWs) were stabilized by launching a spherical projectile with 1.2-1.4 times the Chapman-Jouguet (C-J) velocity into detonable mixtures at rest. We used smaller projectiles (3.18 mm diameter) than those (4.76 mm diameter) in our previous studies and investigated the effect of the projectile scale on the stabilization of ODWs. We carried out high time resolution schlieren visualization using a high-speed camera. The detonable mixtures used were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They were diluted with argon with a 50 % volumetric fraction, and a dilute mixture containing 75 % argon was also tested for the acetylene/oxygen mixture. Here, we discuss the detonation stability in terms of the curvature effect arising from the three-dimensional nature of a stabilized ODW around a projectile. The curvature effect attenuated the detonation wave to below its C-J velocity in the vicinity of the projectile before the wave velocity asymptotically reached the C-J velocity in the far field. Our previous study showed that the propagation limit of the curvature effect is responsible for the stabilizing criticality of detonation waves. By obtaining detailed distributions of the wave propagation velocity and radius of curvature at the stabilizing criticality, we showed that the radius of curvature at the local minimum point of the wave propagation velocity represents the critical radius of curvature required for curved self-sustained detonation. In this study, we focused on this critical mode of the stabilized ODW for a small projectile (3.18 mm diameter). Distributions of the wave velocity and radius of curvature were obtained in the critical mode of the stabilized ODW. We compare these distributions with those for a larger projectile (4.76 mm diameter) and discuss the stabilizing criticality. For the small projectile, the observed combustion regimes had qualitatively the same trend for the initial pressure of the mixture

  7. Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.

  8. Continuation and stability of convective modulated rotating waves in spherical shells

    NASA Astrophysics Data System (ADS)

    Garcia, F.; Net, M.; Sánchez, J.

    2016-01-01

    Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves that arise at the onset of convection of a fluid contained in a rotating spherical shell, and their stability, are studied. For this purpose, Newton-Krylov continuation techniques are applied. Nonslip boundary conditions, an Ekman number E =10-4 , and a low Prandtl number fluid Pr=0.1 in a moderately thick shell of radius ratio η =0.35 , differentially heated, are considered. The MRW are obtained as periodic orbits by rewriting the equations of motion in the rotating frame of reference where the rotating waves become steady states. Newton-Krylov continuation allows us to obtain unstable MRW that cannot be found by using only time integrations, and identify regions of multistability. For instance, unstable MRW without any azimuthal symmetry have been computed. It is shown how they become stable in a small Rayleigh-number interval, in which two branches of traveling waves are also stable. The study of the stability of the MRW helps to locate and classify the large sequence of bifurcations, which takes place in the range analyzed. In particular, tertiary Hopf bifurcations giving rise to three-frequency stable solutions are accurately determined.

  9. Continuation and stability of convective modulated rotating waves in spherical shells.

    PubMed

    Garcia, F; Net, M; Sánchez, J

    2016-01-01

    Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves that arise at the onset of convection of a fluid contained in a rotating spherical shell, and their stability, are studied. For this purpose, Newton-Krylov continuation techniques are applied. Nonslip boundary conditions, an Ekman number E=10^{-4}, and a low Prandtl number fluid Pr=0.1 in a moderately thick shell of radius ratio η=0.35, differentially heated, are considered. The MRW are obtained as periodic orbits by rewriting the equations of motion in the rotating frame of reference where the rotating waves become steady states. Newton-Krylov continuation allows us to obtain unstable MRW that cannot be found by using only time integrations, and identify regions of multistability. For instance, unstable MRW without any azimuthal symmetry have been computed. It is shown how they become stable in a small Rayleigh-number interval, in which two branches of traveling waves are also stable. The study of the stability of the MRW helps to locate and classify the large sequence of bifurcations, which takes place in the range analyzed. In particular, tertiary Hopf bifurcations giving rise to three-frequency stable solutions are accurately determined. PMID:26871166

  10. Magnetic Equilibrium and Stability Simulations of the National Spherical Torus Experiment Plasmas

    NASA Astrophysics Data System (ADS)

    Paoletti, F.; Sabbagh, S.; Garofalo, A.; Kaita, R.; Kaye, S.; Hatcher, R.; Lao, L.; Lazarus, E.; Turnbull, A.

    1997-11-01

    The numerical code EFIT(L. Lao, et al., Nucl. Fusion 25, 1611 (1985).) has been modified to accommodate the geometry of the National Spherical Torus Experiment (NSTX). Equilibrium solutions are calculated for both fixed and free boundary conditions to determine the operational space of NSTX plasmas. The p(ψ) and ff'(ψ) equilibrium profiles are chosen either generically or from time dependent experimentally produced profiles, measured in various operational regimes (L-mode, H-mode, etc.) of the DIII-D tokamak. Results supporting the design of the external magnetic diagnostics are shown. Particular attention is given to assess sufficient coverage of the diagnostic setup, since the main future use of the code will be for equilibrium reconstruction. The stability codes GATO(L. Bernard,Comput. Phys. Commun. 21, 377 (1981).) and PEST(R. Grimm, et al., Comput. Phys. Commun. 16, 253 (1976).) will be used, in conjunction with EFIT, to study the effects of configuration and location of the passive plates on the stability of the various equilibria.

  11. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    SciTech Connect

    Baumgaertel, J. A.; Redi, M. H.; Budny, R. V.; Rewoldt, G.; Dorland, W.

    2005-10-19

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER.

  12. Linear stability of spherically symmetric and wormhole solutions supported by the sine-Gordon ghost scalar field

    SciTech Connect

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas; Myrzakulov, Ratbay

    2010-08-15

    In this paper we investigate wormhole and spherically symmetric solutions in four-dimensional gravity plus a matter source consisting of a ghost scalar field with a sine-Gordon potential. For the wormhole solutions we also include the possibility of electric and/or magnetic charges. For both types of solutions we perform a linear stability analysis and show that the wormhole solutions are stable and that when one turns on the electric and/or magnetic field the solution remains stable. The linear stability analysis of the spherically symmetric solutions indicates that they can be stable or unstable depending on one of the parameters of the system. This result for the spherically symmetric solution is nontrivial since a previous investigation of four-dimensional gravity plus a ghost scalar field with a {lambda}{phi}{sup 4} interaction found only unstable spherically symmetric solutions. Both the wormhole and spherically symmetric solutions presented here asymptotically go to anti-de Sitter space-time.

  13. Stability of spherically symmetric, charged black holes and multipole moments for stationary systems

    SciTech Connect

    Gursel, H.Y.

    1983-01-01

    This dissertation is written in two parts. Part I deals with the question of stability of a spherically symmetric, charged black hole against scalar, electromagnetic, and gravitational perturbations. It consists of two papers written in collaboration with Igor D. Novikov, Vernon D. Sandberg and A.A. Starobinsky. In these papers the dynamical evolution of these perturbations on the interior of a Reissner-Nordstrom black hole is described. The instability of the hole's Cauchy horizon is discussed in detail in terms of the energy densities of the test fields as measured by a freely falling observer approaching the Cauchy horizon. It is concluded that the Cauchy horizon of the analytically extended Reissner-Nordstrom solution is highly unstable and not a physical feature of a realistic gravitational collapse. Part II of this dissertation addresses two problems closely connected with multipole structure of stationary, asymptotically flat spacetimes. It consists of two papers written in collaboration with Kip S. Thorne. The first one shows the equivalence of the moments defined by Kip S. Thorne and the moments defined by Robert Geroch and Richard Hansen. The second proves a conjecture by Kip S. Thorne: In the limit of ''slow'' motion, general relativistic gravity produces no changes whatsoever in the classical Euler equations of rigid body motion. This conjecture is proved by giving an algorithm for generating rigidly rotating solutions of Einstein's equation from nonrotating, static solutions.

  14. Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks

    SciTech Connect

    Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.

    2013-10-15

    Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q{sub min} slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q{sub min} values, consistent with the observed appearance of the fishbone before the “long-lived mode” in MAST and NSTX experiments. In contrast, at lower q{sub min} values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.

  15. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    SciTech Connect

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M.; Betti, R.

    2014-05-15

    Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  16. Stability of spherically symmetric, charged black holes and multipole moments for stationary systems

    NASA Astrophysics Data System (ADS)

    Gursel, Yekta

    This dissertation is written in two parts. Part I deals with the question of stability of a spherically symmetric, charged black hole against scalar, electromagnetic, and gravitational perturbations. It consists of two papers written in collaboration with Igor D. NoVikov, Vernon D. Sandberg and A. A. Starobinsky. In these papers we describe the dynamical evolution of these perturbations on the interior of a Reissner-Nordstrom black hole. The instability of the hole's Cauchy horizon is discussed in detail in terms of the energy densities of the test fields as measured by a freely falling observer approaching the Cauchy horizon. We conclude that the Cauchy horizon of the analytically extended Reissner-Nordstrom solution is highly unstable and not a physical feature of a realistic gravitational collapse. Part II of this dissertation addresses two problems closely connected with muitipole structure of stationary, asymptotically flat spacetimes. It consists of two papers written in collaboration with Kip S. Thorne despite the fact that his name does not appear on one of them. The first one (Paper III in this thesis) shows the equivalence of the moments defined by Kip S. Thorne and the moments defined by Robert Geroch and Richard Hansen. The second (Paper IV in this thesis) proves a conjecture by Kip S. Thorne: In the limit of "slow" motion, general relativistic gravity produces no changes whatsoever in the classical Euler equations of rigid body motion. We prove this conjecture by giving an algorithm for generating rigidly rotating solutions of Einstein's equations from nonrotating, static solutions.

  17. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    SciTech Connect

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  18. Density gradient stabilization of electron temperature gradient driven turbulence in a spherical tokamak.

    PubMed

    Ren, Y; Kaye, S M; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann, N C; Smith, D R; Yuh, H

    2011-04-22

    In this Letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k(⊥)ρ(s) ≲ 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of 2 decrease in the plasma effective thermal diffusivity. PMID:21599377

  19. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another. PMID:26701708

  20. Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia

    NASA Astrophysics Data System (ADS)

    Kilo, M.; Taylor, M. A.; Argirusis, Ch.; Borchardt, G.; Lesage, B.; Weber, S.; Scherrer, S.; Scherrer, H.; Schroeder, M.; Martin, M.

    2003-12-01

    Self-diffusion of calcium, yttrium, and zirconium in single-crystalline YSZ and CSZ (YSZ: yttria-stabilized zirconia; containing 10 to 32 mol % Y2O3; CSZ: calcia-stabilized zirconia; containing 11 and 17 mol % CaO) was measured at temperatures between 960 and 1700 °C. For zirconium and calcium diffusion, the stable isotopes 44Ca and 96Zr were used as tracers and the samples were analyzed with secondary ion mass spectrometry. In the case of yttrium diffusion, the radioactive tracer 88Y was used and an abrasive sectioning technique was applied. Zirconium bulk diffusion is slower than yttrium and calcium bulk diffusion, and there is a nearly linear correlation of diffusion coefficient with cation radius. In YSZ, zirconium and yttrium bulk diffusivity are maximum for a stabilizer content of 10-11 mol %, while in CSZ both calcium and zirconium tracer diffusion are independent of the calcium content. The activation enthalpy of yttrium stabilizer bulk diffusion (4.2 eV) is, as in CSZ, slightly smaller than for zirconium bulk diffusion (4.5 eV). The yttrium dislocation pipe diffusivity is five to six orders of magnitude faster than the bulk diffusivity, and its activation enthalpy (3.5 eV) is also smaller than that of the bulk diffusion. From the activation enthalpy and from the concentration dependence of the cation bulk diffusion, it is concluded that the cation diffusion occurs either via free vacancies (VZr4' in YSZ) or via bound vacancies ([VZr4'-2VO2•]x in CSZ).

  1. The Application of a Cylindrical-spherical Floating Ring Bearing as a Device to Control Stability of Turbogenerators

    NASA Technical Reports Server (NTRS)

    Leung, P. S.; Craighead, I. A.; Wilkinson, T. S.

    1991-01-01

    The development of a new device to control stability of turbogenerators is described. The device comprises a floating ring installed between the journal and bearing housing of a fluid film bearing. The journal and the inner surface of the ring are cylindrical while the outer surface of the ring and bearing surface are spherical providing axial location of the ring and self-alignment of the bearing. The employment of this device would lead to a consistent machine performance. System stability may be controlled by changing a number of bearing and floating ring parameters. This device also offers an additional advantage of having a very low frictional characteristic. A feasibility study was carried out to investigate the suitability of the new device to turbogenerator applications. Both theoretical analysis and experimental observations were carried out. Initial results suggest that the new floating ring device is a competitive alternative to other conventional arrangements.

  2. Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C.

    1992-01-01

    A model of spherical bowl-shaped craters is described and applied to the moon, Mercury, and Mars. The maximum temperature of permanently shadowed areas are calculated using estimates of the depth/diameter ratios of typical lunar bowl-shaped craters and assuming a saturated surface in which the craters are completely overlapping. For Mars, two cases are considered: water frost in radiative equilibrium and subliming CO2 frost in vapor equilibrium. Energy budgets and temperatures are used to determine whether a craterlike depression loses mass faster or slower than a flat horizontal surface. This reveals qualitatively whether the frost surface becomes rougher or smoother as it sublimes.

  3. Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes

    NASA Astrophysics Data System (ADS)

    Su, Na

    2015-07-01

    The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly(sodium- p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

  4. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    SciTech Connect

    Temporal, M.; Canaud, B.; Garbett, W. J.; Ramis, R.

    2015-10-15

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  5. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Temporal, M.; Canaud, B.; Garbett, W. J.; Ramis, R.

    2015-10-01

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  6. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment

  7. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent.

    PubMed

    Hadinoto, Kunn

    2009-06-01

    Gas-filled hollow nanoparticulate aggregates designed for use as an ultrasound contrast agent and as an ultrasound-mediated nanoparticulate drug delivery vehicle are manufactured by spray drying of nanoparticulate suspension at a fast convective drying rate. The gas outward diffusion from the hollow particles during insonication reduces the shell mechanical stability hence shortening the lifespan of the ultrasound contrast agent. The present work aims to develop a formulation method to produce micron-size hollow nanoparticulate aggregates with high shell mechanical stability by controlling the shell thickness-to-particle radius (S/R) ratio. The impacts of changing (1) the spray drying parameters, (2) nanoparticulate suspension concentration, and (3) surfactant inclusion (i.e. phospholipids) on the particle morphology and the S/R ratio are investigated. Biocompatible PMMA-MeOPEGMA nanoparticles of varying sizes (i.e. 50+/-20, 110+/-40, and 230+/-80 nm) are used as the model nanoparticles. The results indicate that the S/R ratio increases with decreasing particle size and the shell mechanical stability is linearly dependent on the S/R ratio. The effects of the spray drying parameters and nanoparticle concentration are found to be minimal in the absence of the phospholipids. The S/R ratio can be significantly increased by using larger size nanoparticles with the phospholipids inclusion. PMID:19446772

  8. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    SciTech Connect

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  9. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    NASA Astrophysics Data System (ADS)

    Ruiz Ruiz, J.; Ren, Y.; Guttenfelder, W.; White, A. E.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-01

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, kρe ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  10. Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell

    SciTech Connect

    Starchenko, S. V.; Kotelnikova, M. S.

    2013-02-15

    In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.

  11. Numerical studies on convective stability and flow pattern in three-dimensional spherical mantle of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki

    2016-06-01

    We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated three-dimensional spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1% of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.

  12. Stability and bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell allowing rotation of the inner sphere

    NASA Astrophysics Data System (ADS)

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2013-08-01

    We investigate the stability and bifurcation of Boussinesq thermal convection in a moderately rotating spherical shell, with the inner sphere free to rotate as a solid body due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres and the Prandtl number are fixed to 0.4 and 1, respectively. The Taylor number is varied from 522 to 5002 and the Rayleigh number from 1500 to 10 000. In this parameter range, the finite-amplitude traveling wave solutions, which have four-fold symmetry in the azimuthal direction, bifurcate supercritically at the critical points. The inner sphere rotates in the prograde direction due to the viscous torque of the fluid when the rotation rate is small while it rotates in the retrograde direction when the rotation rate is large. However, the stable region of these traveling wave solutions is quantitatively similar to that in the co-rotating system where the inner and outer spheres rotate with the same angular velocity. The structures of convective motions of these solutions such as the radial component of velocity are quantitatively similar to those in the co-rotating system, but the structure of mean zonal flows is effectively changed by the inner sphere rotation.

  13. Dielectric Analysis for the Spherical and Rodlike Micelle Aggregates Formed from a Gemini Surfactant: Driving Forces of Micellization and Stability of Micelles.

    PubMed

    Wang, Shanshan; Zhao, Kongshuang

    2016-08-01

    The self-aggregation behavior of Gemini surfactant 12-2-12 (ethanediyl-1,2-bis(dimethyldodecylammonium bromide)) in water was investigated by dielectric relaxation spectroscopy (DRS) over a frequency range from 40 Hz to 110 MHz. Dielectric determination shows that well-defined spherical micelles formed when the concentration of the surfactant was above a critical micelle concentration CMC1 of 3 mM and rodlike micelles formed above CMC2, 16 mM. The formation mechanism of the spherical micelles and their transition mechanism to clubbed micelles were proposed by calculating the degree of counterion binding of the micelles. The interactions between the head groups and the hydrophobic chains of the surfactant led to the formation of the micelles, whereas the transition is mainly attributed to the interaction among the hydrophobic chains. By analyzing the dielectric relaxation observed at about 10(7) Hz based on the interface polarization theory, the permittivity and conductivity of micelle aggregates (spherical and clubbed) and volume fraction of micelles were calculated theoretically as well as the electrical properties of the solution medium. Furthermore, we also calculated the electrokinetic parameters of the micelle particle surface, surface conductivity, surface charge density, and zeta potential, using the relaxation parameters and phase parameters. On the basis of these results, the balance of forces controlling morphological transitions, interfacial electrokinetic properties, and the stability of the micelle aggregates was discussed. PMID:27396495

  14. Baroclinic instability with variable static stability - A design study for a spherical atmospheric model experiment. [for Spacelab flight

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowlis, W. W.

    1980-01-01

    The effect of a radially-variable, dielectric body force, analogous to gravity on baroclinic instability for the design of a spherical, synoptic-scale, atmospheric model experiment in a Spacelab flight is investigated. Exact solutions are examined for quasi-geostrophic baroclinic instability in which the rotational Froude number is a linear function of the height. Flow in a rotating rectilinear channel with a vertically variable body force without horizontal shear of the basic state is also discussed.

  15. Comparison of apoA-I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry.

    PubMed

    Chetty, Palaniappan Sevugan; Nguyen, David; Nickel, Margaret; Lund-Katz, Sissel; Mayne, Leland; Englander, S Walter; Phillips, Michael C

    2013-06-01

    Elucidation of apoA-I secondary structure in spherical plasma HDL particles is essential for understanding HDL structure and function at the molecular level. To provide this information, we have applied hydrogen exchange (HX) and mass spectrometry methods to compare apoA-I secondary structure in discoidal (two apoA-I molecules/particle) and spherical (five apoA-I molecules/particle) HDL particles. The HX kinetics indicate that the locations of helical segments within the apoA-I molecules are the same in both discoidal and spherical HDL particles (approximately 10 nm hydrodynamic diameter). Helix stabilities in both types of particles are 3-5 kcal/mol, consistent with the apoA-I molecules being in a highly dynamic state with helical segments unfolding and refolding in seconds. For the spherical HDL, apoA-I fragments corresponding to residues 115-158 exhibit bimodal HX kinetics consistent with this segment adopting an inter-converting (on the timescale of tens of minutes) helix-loop configuration. The segment adopting this configuration in the 10 nm disc is shorter because the surface area available to each apoA-I molecule is apparently larger. Loop formation in the central region of the apoA-I molecule contributes to the ability of the protein to adapt to changes in available space on the HDL particle surface. Overall, apoA-I secondary structure is largely unaffected by a change in HDL particle shape from disc to sphere. PMID:23580759

  16. Comparison of apoA-I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry

    PubMed Central

    Chetty, Palaniappan Sevugan; Nguyen, David; Nickel, Margaret; Lund-Katz, Sissel; Mayne, Leland; Englander, S. Walter; Phillips, Michael C.

    2013-01-01

    Elucidation of apoA-I secondary structure in spherical plasma HDL particles is essential for understanding HDL structure and function at the molecular level. To provide this information, we have applied hydrogen exchange (HX) and mass spectrometry methods to compare apoA-I secondary structure in discoidal (two apoA-I molecules/particle) and spherical (five apoA-I molecules/particle) HDL particles. The HX kinetics indicate that the locations of helical segments within the apoA-I molecules are the same in both discoidal and spherical HDL particles (approximately 10 nm hydrodynamic diameter). Helix stabilities in both types of particles are 3–5 kcal/mol, consistent with the apoA-I molecules being in a highly dynamic state with helical segments unfolding and refolding in seconds. For the spherical HDL, apoA-I fragments corresponding to residues 115–158 exhibit bimodal HX kinetics consistent with this segment adopting an inter-converting (on the timescale of tens of minutes) helix-loop configuration. The segment adopting this configuration in the 10 nm disc is shorter because the surface area available to each apoA-I molecule is apparently larger. Loop formation in the central region of the apoA-I molecule contributes to the ability of the protein to adapt to changes in available space on the HDL particle surface. Overall, apoA-I secondary structure is largely unaffected by a change in HDL particle shape from disc to sphere. PMID:23580759

  17. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Yoon-Soo; Oh, Eun-Suok; Lee, Sung-Man

    2014-02-01

    The polymeric binder is seen to affect the thermal stability and deformation of spherical graphite used in lithium ion battery anodes. Spherical natural graphite anodes are prepared using three different binders: two aqueous-based binders, polyacrylic acid (PAA) and a mixture of carboxy-methyl cellulose and styrene butadiene rubber (abbreviated CMC/SBR), and an organic-based binder, polyvinylidene fluoride (PVDF). The thermal stability of fully lithiated electrodes is measured by differential scanning calorimetry (DSC). The PAA binder effectively suppresses heat evolution (43% (PVDF) and 23% (CMC/SBR) less heat) at low temperatures up to 200 °C during DSC scans of the lithiated electrodes, compared to the PVDF and CMC/SBR binders. In addition, the PAA binder allows the graphite electrode to maintain an appropriate porous structure (13% greater porosity than the PVDF and CMC/SBR electrodes) even at high electrode density after 6 kgf cm-2 compression, thus leading to enhanced effective cycles (11% (PVDF) and 60% (CMC/SBR) greater capacity after 50 cycles).

  18. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters

    SciTech Connect

    Kandrup, H.E.; Morrison, P.J.

    1992-11-01

    The Hamiltonian formulation of the Vlasov-Einstein system, which is appropriate for collisionless, self-gravitating systems like clusters of stars that are so dense that gravity must be described by the Einstein equation, is presented. In particular, it is demonstrated explicitly in the context of a 3 + 1 splitting that, for spherically symmetric configurations, the Vlasov-Einstein system can be viewed as a Hamiltonian system, where the dynamics is generated by a noncanonical Poisson bracket, with the Hamiltonian generating the evolution of the distribution function f (a noncanonical variable) being the conserved ADM mass-energy H{sub ADM}. An explicit expression is derived for the energy {delta}({sup 2})H{sub ADM} associated with an arbitrary phase space preserving perturbation of an arbitrary spherical equilibrium, and it is shown that the equilibrium must be linearly stable if {delta}({sup 2})H{sub ADM} is positive semi-definite. Insight into the Hamiltonian reformulation is provided by a description of general finite degree of freedom systems.

  19. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters

    SciTech Connect

    Kandrup, H.E. ); Morrison, P.J. . Inst. for Fusion Studies)

    1992-11-01

    The Hamiltonian formulation of the Vlasov-Einstein system, which is appropriate for collisionless, self-gravitating systems like clusters of stars that are so dense that gravity must be described by the Einstein equation, is presented. In particular, it is demonstrated explicitly in the context of a 3 + 1 splitting that, for spherically symmetric configurations, the Vlasov-Einstein system can be viewed as a Hamiltonian system, where the dynamics is generated by a noncanonical Poisson bracket, with the Hamiltonian generating the evolution of the distribution function f (a noncanonical variable) being the conserved ADM mass-energy H[sub ADM]. An explicit expression is derived for the energy [delta]([sup 2])H[sub ADM] associated with an arbitrary phase space preserving perturbation of an arbitrary spherical equilibrium, and it is shown that the equilibrium must be linearly stable if [delta]([sup 2])H[sub ADM] is positive semi-definite. Insight into the Hamiltonian reformulation is provided by a description of general finite degree of freedom systems.

  20. Spherical Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.

  1. Instability of spherically imploding shock waves

    SciTech Connect

    Chen, H.; Hilko, B.; Zhang, L.; Panarella, E.

    1995-12-31

    The importance of spherically imploding shock waves has increased recently due to their particular applications in inertial confinement fusion (ICF) and the Spherical Pinch (SP). In particular, the stability of spherically imploding shock waves plays a critical role in the ultimate success of ICF and SP. The instability of spherically imploding shock waves is now systematically investigated. The basic state is Guderley and Landau`s unsteady self-similar solution of the implosion of a spherical shock wave. The stability analysis is conducted by combining Chandresakhar`s approach to the stability of spherical flames together. The governing equations for disturbances are derived and they use the condition that perturbed gas flow is potential. The three dimensional perturbation velocity profile and a shock front perturbation are solved by using the kinematic and dynamic boundary conditions in the shock front. The time-dependent amplitudes of the perturbations are obtained by solving the system of ordinary differential equations. This enables them to study the time history of the spherically imploding shock wave subject to perturbations. The relative amplification and decay of the amplitudes of perturbations decides the stability/instability of the spherical imploding shock waves. Preliminary results are presented.

  2. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    SciTech Connect

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.

    2009-07-15

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q=1 rational surface can destabilize the n=1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  3. Solutocapillary convection in spherical shells

    NASA Astrophysics Data System (ADS)

    Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry

    2005-01-01

    A linear stability study of solutocapillary driven Marangoni instabilities in small spherical shells is presented. The shells contain a binary fluid with an evaporating solvent. The viscosity is a strong function of the solvent concentration, the inner surface of the shell is assumed impermeable and stress free, while nonlinear boundary conditions are modeled and prescribed at the receding outer boundary. A time-dependent diffusive state is possible and may lose stability through the Marangoni mechanism due to surface tension dependence on solvent concentration (buoyant forces are negligible in this microscale problem). A frozen-time or quasisteady state linear stability analysis is performed to compute the critical Reynolds number and degree of surface harmonics, as well as the maximum growth rate of perturbations at specified parameters. The development of maximum growth rates in time was also computed by solving the initial value problem with random initial conditions. Results from both approaches are in good agreement except at short times where there is dependence on initial conditions. The physical problem models the manufacturing of spherical shells used as targets in inertial confinement fusion experiments where perfect sphericity is demanded for efficient fusion ignition. It is proposed that the Marangoni instability might be the source of observed surface roughness. Comparisons with the available experiments are made with reasonable qualitative and quantitative agreement.

  4. Quasi-random integration in quantum chemistry: Efficiency, stability, and application to the study of small atoms and molecules constrained in spherical boxes

    NASA Astrophysics Data System (ADS)

    Cuenca, D. Zorrilla; Márquez, J. Sánchez; Núñez, M. Fernández; Huertas, R. Rodríguez

    This project consists of two parts. In the first part, a series of test calculations is performed to verify that the integrals involved in the determination of atomic and molecular properties by standard self-consistent field (SCF) methods can be obtained through Halton, Korobov, or Hammersley quasi-random integration procedures. Through these calculations, we confirm that all three methods lead to results that meet the levels of precision required for their use in the calculation of properties of small atoms or molecules at least at a Hartree-Fock level. Moreover, we have ensured that the efficiency of quasi-random integration methods that we have tested is Halton=Korobov>Hammersley≫pseudo-random. We also find that these results are comparable to those yielded by ordinary Monte Carlo (pseudo-random) integration, with a calculation effort of two orders of smaller magnitude. The second part, which would not have been possible without the integration method previously analyzed, contains a first study of atoms constrained in spherical boxes through SCF calculations with basis functions adapted to the features of the problem: Slater-type orbitals (STOs) trimmed by multiplying them by a function that yields 1 for 0 < r < (R-?), polynomial values for (R-?) < r < R and null for r > R, R being the radius of the box and ? a variationally determined interval. As a result, we obtain a equation of state for electrons of small systems, valid just in the limit of low temperatures, but fairly simple.

  5. Biopolymers from Composted Biowaste as Stabilizers for the Synthesis of Spherical and Homogeneously Sized Silver Nanoparticles for Textile Applications on Natural Fibers.

    PubMed

    Nisticò, Roberto; Barrasso, Marco; Carrillo Le Roux, Galo Antonio; Seckler, Marcelo Martins; Sousa, Walter; Malandrino, Mery; Magnacca, Giuliana

    2015-12-21

    The use of bio-based substances (BBS) obtained from composted biowaste as stabilizers for the production of silver nanoparticles (AgNPs) in substitution to citrate is investigated herein, evaluating the functionalization of natural fibers for textile antibacterial applications. The results obtained evidenced that BBS can substitute citrate as reducing/stabilizing agent in the synthesis, inducing a geometrical control (in shape and size) of the AgNPs. Two different substrates were selected (wool and cotton) and two dip-coating deposition techniques investigated. The release of AgNPs from the supports in water was evaluated under two different experimental conditions: 1) soaking (static conditions) for 7 and 15 days, simulating the contact with sweat, and 2) centrifugation (dynamic conditions), simulating a washing machine treatment. A wide physicochemical characterization was carried out to evaluate the effects of BBS on the morphology and stability of AgNPs suspensions as well as the functionalization effectiveness. PMID:26507571

  6. Equilibrium orientations of non-spherical and chemically anisotropic particles at liquid-liquid interfaces and the effect on emulsion stability.

    PubMed

    Ballard, Nicholas; Bon, Stefan A F

    2015-06-15

    The effective stabilization of emulsions by solid particles, a phenomenon known as Pickering stabilization, is well known to be highly dependent on the wettability and the adhesion energy of the stabilizer employed at the liquid-liquid interface. We present a user-friendly computational model that can be used to determine equilibrium orientations and the adhesion energy of colloidal particles at interfaces. The model determines the free energy profile of particle adsorption at liquid-liquid interfaces using a triangular tessellation scheme. We demonstrate the use of the model, using a variety of anisotropic particles and demonstrate its ability to predict and explain experimental observations of particle behaviour at interfaces. In particular, we show that the concept of hydrophilic lipophilic balance commonly applied to molecular surfactants is insufficient to explain the complexity of the activity of colloidal particles at interfaces. In addition, we show the importance of the knowledge of the free energy adsorption profile of single particles at interfaces and the impact on overall free energy of emulsification of packed ensembles of particles. The delicate balance between optimization of adhesion energy, adsorption dynamics and particle packing is shown to be of great importance in the formation of thermodynamically stable emulsions. In order to use the model, the code is implemented by freely available software that can be readily deployed on personal computers. PMID:25792476

  7. Viscosity in spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Ray, Arnab K.

    2003-10-01

    The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.

  8. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility.

    PubMed

    Pardo, Alberto; Pujales, Rosa; Blanco, Mateo; Villar-Alvarez, Eva M; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor

    2016-01-14

    In this work, we analyzed the effects of subtle changes in the synthetic conditions and synthetic parameters on the resulting size, shape, monodispersity, crystallinity and magnetic properties of iron oxide nanocrystals (IONCs) obtained through a modified one pot method for the production of mainly cubic-shaped nanoparticles (NPs). Cubic, octahedral and cuboctahedral shapes with different sizes and monodispersity could be obtained by slightly changing the stabilizer/precursor molar ratio, the precursor concentration, the reaction time and temperature and/or the heating rate. Their physical properties were evaluated using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), selected-area electron diffraction (SAED) and a superconducting quantum interference (SQUID) device. It was found that monodisperse cubic nanocrystals from ca. 25 to 94 nm could be obtained either by changing the precursor concentration, the heating rate or the reaction time. These cubic nanocrystals were ferrimagnetic in the whole temperature rage analyzed, with saturation magnetization values even larger than those of bulk magnetite. In addition, slightly truncated octahedral NPs could be achieved at relatively large heating ramp rates, whereas cubooctahedral NPs were derived by simply increasing the stabilizer/precursor molar ratio. The saturation magnetization of both types of NPs was slightly lower than the cubic ones, but they were still ferrimagnetic in the whole temperature range analyzed. Moreover, transfer to aqueous solution was possible by a ligand exchange with dimercaptosuccinic acid (DMSA) providing, at the same time, chemical groups for additional functionalization if required. The DMSA-coated cubic IONCs were fairly stable in culture medium, allowing their internalization by different cell types. The NPs inside the cells were located in the cytoplasm and most of them showed a perinuclear distribution. Moreover, a great cytocompatibility in a

  9. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  10. Spectral sharpening by spherical sampling.

    PubMed

    Finlayson, Graham D; Vazquez-Corral, Javier; Süsstrunk, Sabine; Vanrell, Maria

    2012-07-01

    There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading "von Kries adaptation": the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called "sharp sensors." In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art. PMID:22751384

  11. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  12. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  13. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  14. Spherical geodesic mesh generation

    SciTech Connect

    Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  15. Recent Progress on Spherical Torus Research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  16. Retroreflector spherical satellite

    NASA Astrophysics Data System (ADS)

    Akentyev, A. S.; Vasiliev, V. P.; Sadovnikov, M. A.; Sokolov, A. L.; Shargorodskiy, V. D.

    2015-10-01

    Specific features of spherical retroreflector arrays for high-precision laser ranging are considered, and errors in distance measurements are analyzed. A version of a glass retroreflector satellite with a submillimeter "target error" is proposed. Its corner cube reflectors are located in depressions to reduce the working angular aperture, and their faces have a dielectric interference coating.

  17. Hollow spherical supramolecular dendrimers.

    PubMed

    Percec, Virgil; Peterca, Mihai; Dulcey, Andrés E; Imam, Mohammad R; Hudson, Steven D; Nummelin, Sami; Adelman, Peter; Heiney, Paul A

    2008-10-01

    The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures. PMID:18771261

  18. Spherical ion source

    NASA Technical Reports Server (NTRS)

    Hall, L. G.

    1969-01-01

    Radial focusing of electrons in ion source produces greater ion densities, resulting in higher resolution and focus capability for a given source volume. Electron beam is focused near exit aperture by spherical fields. High density ions allow focusing ion beam to high density at echo, allowing high current through small aperture.

  19. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  20. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  1. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  2. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  3. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  4. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  5. Spherical nitroguandine process

    SciTech Connect

    Sanchez, J.A.; Roemer, E.L.; Stretz, L.A.

    1990-10-30

    A process of preparing spherical high bulk density nitroguanidine by dissolving low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is presented. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.

  6. Spherical nitroguanidine process

    DOEpatents

    Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.

    1990-01-01

    A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.

  7. Spherical electrostatic electron spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.

    1982-06-01

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  8. Asymptotics for spherical needlets

    NASA Astrophysics Data System (ADS)

    Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D.

    We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This property is used to derive CLT and functional CLT convergence results for polynomial functionals of the needlet coefficients: here the asymptotic theory is considered in the high-frequency sense. Our proposals emerge from strong empirical motivations, especially in connection with the analysis of cosmological data sets.

  9. Recent progress on spherical torus research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; Kaita, Robert

    2015-04-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ˜ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ˜ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  10. Recent progress on spherical torus research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2015-04-15

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R{sub 0}/a) reduced to A ∼ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ∼ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  11. Ribozyme-Spherical Nucleic Acids.

    PubMed

    Rouge, Jessica L; Sita, Timothy L; Hao, Liangliang; Kouri, Fotini M; Briley, William E; Stegh, Alexander H; Mirkin, Chad A

    2015-08-26

    Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme-SNA are characterized in the context of the targeted knockdown of O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture. PMID:26271335

  12. Ribozyme-Spherical Nucleic Acids

    PubMed Central

    Hao, Liangliang; Kouri, Fotini M.; Briley, William E.; Stegh, Alexander H.; Mirkin, Chad A.

    2015-01-01

    Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme SNA are characterized in the context of the targeted knockdown of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture. PMID:26271335

  13. Spherically Symmetric Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Vargas Moniz, P.

    The purpose of this paper is to investigate the quantum vacua directly implied by the wave function of a gravitational configuration characterized by the presence of an apparent horizon, namely the Vaidya space-time solution. Spherical symmetry is a main feature of this configuration, with a scalar field constituting a source [a Klein-Gordon geon or Berger-Chitre-Moncrief-Nutku (BCMN) type model]. The subsequent analysis requires solving a Wheeler-DeWitt equation near the apparent horizon (following the guidelinesintroduced by A. Tomimatsu,18; M. Pollock, 19 and developed by A. Hosoya and I. Oda20,21) with the scalar field herein expanded in terms of S2 spherical harmonics: midisuperspace quantization. The main results present in this paper are as follows. It is found that the mass function characteristic of the Vaidya metric is positive definite within this quantum approach. Furthermore, the inhomogeneous matter sector determines a descrip-tion in terms of open quantum (sub)systems, namely in the form of an harmonic oscillator whose frequency depends on the mass function. For this open (sub)system, a twofold approach is employed. On the one hand, an exact invariant observable is obtained from the effective Hamiltonian for the inhomogeneous matter modes. It is shown that this invariant admits a set of discrete eigenvalues which depend on the mass function. The corresponding set of eigenstates is constructed from a particular vacuum state. On the other hand, exact solutions are found for the Schrädinger equation associated with the inhomogeneous matter modes. This paper is concluded with a discussion, where two other issues are raised: (i) the possible application to realistic black hole dynamics of the results obtained for a simplified (BCMN) model and (ii) whether such vacuum states could be related with others defined instead within scalar field theories constructed in classical backgrounds.

  14. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. Soft spherical nanostructures with a dodecagonal quasicrystal-like order.

    PubMed

    Rochal, S B; Konevtsova, O V; Shevchenko, I A; Lorman, V L

    2016-01-28

    We develop a theory which predicts curvature-related structural peculiarities of soft spherical nanostructures with a dodecagonal local arrangement of subunits. Spherical templates coated with a thin film of a soft quasicrystal (QC)-forming material constitute the most promising direction to realize these nanostructures. Disordered and perfect spherical nanostructures are simulated using two approaches. The first of them models a random QC-like spherical nanostructure with extended curvature-induced topological defects similar to scars in colloidal spherical crystals. The second approach is inspired by the physics of viral capsids. It deals with the most regular spherical nanostructures with a local QC-like order derived from three well-known planar dodecagonal tilings. We explain how the additional QC-like degrees of freedom assist the nanostructure stabilization and determine the point defect number and location without extended scar formation. Unusual for nanoassemblies snub cube geometry is shown to be the most energetically favorable global organization of these spherical QC nanostructures. PMID:26592422

  16. Multistability in rotating spherical shell convection.

    PubMed

    Feudel, F; Seehafer, N; Tuckerman, L S; Gellert, M

    2013-02-01

    The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and attractors control the dynamics for higher Rayleigh numbers. PMID:23496624

  17. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  18. Buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2011-10-01

    We investigate buckling of soft elastic capsules under negative pressure or for reduced capsule volume. Based on nonlinear shell theory and the assumption of a hyperelastic capsule membrane, shape equations for axisymmetric and initially spherical capsules are derived and solved numerically. A rich bifurcation behavior is found, which is presented in terms of bifurcation diagrams. The energetically preferred stable configuration is deduced from a least-energy principle both for prescribed volume and prescribed pressure. We find that buckled shapes are energetically favorable already at smaller negative pressures and larger critical volumes than predicted by the classical buckling instability. By preventing self-intersection for strongly reduced volume, we obtain a complete picture of the buckling process and can follow the shape from the initial undeformed state through the buckling instability into the fully collapsed state. Interestingly, the sequences of bifurcations and stable capsule shapes differ for prescribed volume and prescribed pressure. In the buckled state, we find a relation between curvatures at the indentation rim and the bending modulus, which can be used to determine elastic moduli from experimental shape analysis. PMID:22181297

  19. Consider a spherical cow

    SciTech Connect

    Harte, J.

    1985-01-01

    Consider a Spherical Cow describes relatively simple mathematical methods for developing quantitative answers to often complex environmental problems. Early chapters provide systematic insights into problem solving and identifying mathematical tools and models that lead to back of the envelope answers. Subsequent chapters treat increasingly complex problems. Solutions are sought at different levels, e.g., informed guesses, quantitative solutions based on detailed analytical models, and ultimately, critical evaluation of the consequences of removing simplifying assumptions from the models. The vehicle employed is a collection of 44 challenging problems, with clearly worked out solutions, plus ample exercises. The book, though directed at environmentalists, should appeal to chemists. Many of the problems are rooted in chemistry, including acid rain, the CO/sub 2/ greenhouse effect, chemical contamination, and the disturbing of cyclical chemical balances. Readers feeling a civic responsibility to think and speak more clearly on environmental issues will find the essential modeling and quantitative approaches valuable assets beyond the help provided by the usual courses in science and mathematics. In fact, the techniques of problem solving have broad applicability beyond the specific environmental examples covered in this text.

  20. A relativistic spherical vortex

    PubMed Central

    Pekeris, C. L.

    1976-01-01

    This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745

  1. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  2. Plasma viscosity in spherical ICF implosion simulations

    NASA Astrophysics Data System (ADS)

    Vold, E.; Joglekar, A.; Ortega, M.; Moll, R.; Fenn, D.; Molvig, K.

    2016-05-01

    Inertial confinement fusion (ICF) hydrodynamic codes often ignore the effects of viscosity though recent research indicates plasma viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. A Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport, and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation, is used to study differences between ICF implosions with and without plasma viscosity and to examine the role of artificial viscosity in a Lagrangian implosion simulation. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, fuel compression, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and this study suggests that artificial viscosity may provide an unphysical stability in implosion simulations.

  3. Convective flows of viscous fluid in spherical layers. Certain astrophysical applications

    NASA Technical Reports Server (NTRS)

    Yavorskaya, I. M.

    1980-01-01

    The convective stability of a viscous liquid in spherical layers is investigated taking into consideration rotation, the latitudinal temperature gradient, and shear flow. The results of calculating nonlinear convective motion in spherical layers are examined. A discussion is given of the applicability of the results obtained to studying convection in astrophysical objects.

  4. Crystallization of calcia-gallia-silica glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1984-01-01

    A thermal image furance is presently used to study the critical cooling rate for glass formation, and the kinetics of crystallization, of the compositions 18.4CaO-(81.6-X)Ga2O3-XSiO2, where X = 3, 6, 9, and 13.8. Crystallization was studied nonisothermally, and the data were analyzed in light of the Avrami (1939) equation. Critical cooling rate and crystallization activation energy are both found to decrease with increasing silica content, and the results obtained by the present technique are noted to agree with those obtained on the basis of differential thermal analysis measurements.

  5. Rapid Optimal SPH Particle Distributions in Spherical Geometries for Creating Astrophysical Initial Conditions

    NASA Astrophysics Data System (ADS)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core-mantle boundaries.

  6. Milking the spherical cow - on aspherical dynamics in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Read, Justin I.; Teyssier, Romain; Governato, Fabio; Gualandris, Alessia; Roth, Nina; Devriendt, Julien

    2015-08-01

    Galaxies and the dark matter haloes that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealized calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are `maximally stable', i.e. that do not evolve at first order when external potentials (which arise from baryons, large-scale tidal fields or infalling substructure) are applied. We show that a spherically symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstrate that: (a) observational analyses that falsely assume spherical symmetry are made more accurate by imposing a strong prior preference for near-isotropic velocity dispersions in the centre of spheroids; (b) numerical simulations that use an idealized spherically symmetric setup can yield misleading results and should be avoided where possible; and (c) triaxial dark matter haloes (formed in collisionless cosmological simulations) nearly attain our maximally stable limit, but their evolution freezes out before reaching it.

  7. Mechanism of crystal alignment of CaO-stabilized ZrO2 through a mismatched interface of {110} <001> textured iron tape

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Watanabe, Ken; Naka, Junpei; Uchima, Takayuki; Horii, Shigeru; Doi, Toshiya

    2015-08-01

    To reduce the material cost in REBa2Cu3Oy-coated (RE: rare-earth elements) conductors, we attempted to exchange the high-cost metal substrate with iron. The biaxially textured iron was generally {110} <001>. Although this texture was unsuitable for buffer layer growth with a cubic structure because Fe(110) is a rectangle, (001)-oriented and biaxially aligned calcia-stabilized zirconia (CSZ) was the first to be successfully fabricated on iron tape. We found that the anisotropic deformation of CSZ is due to the rectangular shape of Fe(110). Furthermore, this deformation, as well as the easy formation of a CSZ(111) facet, was important in the formation of biaxially aligned CSZ.

  8. Basketballs as spherical acoustic cavities

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  9. Localization and vector spherical harmonics

    NASA Astrophysics Data System (ADS)

    von Brecht, James H.

    2016-01-01

    This paper establishes the following localization property for vector spherical harmonics: a wide class of non-local, vector-valued operators reduce to local, multiplication-type operations when applied to a vector spherical harmonic. As localization occurs in a very precise, quantifiable and explicitly computable fashion, the localization property provides a set of useful formulae for analyzing vector-valued fractional diffusion and non-local differential equations defined on S d - 1. As such analyses require a detailed understanding of operators for which localization occurs, we provide several applications of the result in the context of non-local differential equations.

  10. Euclidean, Spherical, and Hyperbolic Shadows

    ERIC Educational Resources Information Center

    Hoban, Ryan

    2013-01-01

    Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…

  11. Gauge Measures Large Spherical Bearing Surfaces

    NASA Technical Reports Server (NTRS)

    Davis, George L.

    1992-01-01

    Radius of spherical portion of surface computed from reading of depth gauge. Measuring tool calibrated by applying it to reference spherical surface of known radius. Used onsite, so unnecessary to ship bearings to laboratory for examination by computerized test equipment.

  12. Spherical thin-shell wormholes and modified Chaplygin gas

    SciTech Connect

    Sharif, M.; Azam, M. E-mail: azammath@gmail.com

    2013-05-01

    The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].

  13. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  14. Compressible inviscid instability of rapidly expanding spherical material interfaces

    NASA Astrophysics Data System (ADS)

    Mankbadi, Mina R.; Balachandar, S.

    2012-03-01

    A high-order weighted essentially non-oscillatory scheme is employed to investigate the stability of a rapidly expanding material interface produced by a spherical shock tube. The flow structure is characterized by a forward moving primary shock, a backward moving secondary shock, and a spherical contact interface in-between. We consider herein the linear inviscid regime and focus on the development of the three-dimensional perturbations around the contact interface by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the effects of the contact interface's density discontinuity on the growth of the disturbances for various spherical wave numbers. In a spherical shock tube the instability is influenced by various mechanisms which include classical Rayleigh-Taylor (RT) effects, Bell-Plesset or geometry/curvature effects, the effects of impulsively accelerating the interface, and compressibility effects. Henceforth, the present instability will be referred to as non-classical RT instability to distinguish it from classical RT instability. For an extended intermediate time period, it can be shown that the small disturbances grow exponentially as in the classical RT instability. During this stage, the exponential growth rate increases with the spherical wave number, until it saturates for very large wave numbers due to the finite thickness limitation of the numerical representation of the contact interface. The results compare favorably with previous theoretical models; but indicate that in addition to compressibility, the space-time evolution of the contact interface's thickness plays a significant role. A parametric study is performed that varies the pressure and density ratios of the initial spherical container. The characteristics of the contact interface and the applicability of various instability theories is investigated for these regimes. Furthermore, varying the pressure and density ratios aids

  15. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  16. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  17. APPARATUS FOR GRINDING SPHERICAL BODIES

    DOEpatents

    Burch, R.F. Jr.

    1963-09-24

    A relatively inexpensive device is described for grinding rough ceramic bodies into accurate spherical shapes using a conventional drill press and a belt sander. A horizontal disk with an abrasive-surfaced recess in its lower face is mounted eccentrically on a vertical shaft which is forced downward against a stop by a spring. Bodies to be ground are placed in the recess and are subjected to the abrasive action of the belt sander as the disk is rotated by the drill press. (AEC)

  18. Superradiance in spherical layered nanostructures

    NASA Astrophysics Data System (ADS)

    Goupalov, S. V.

    2016-06-01

    We propose a design of a spherically symmetric nanostructure consisting of alternate concentric semiconductor and dielectric layers. The exciton states in different semiconductor layers of such a structure interact via the common electromagnetic field of light. We show that, if the exciton states in N semiconductor layers are in resonance with one another, then a superradiant state emerges under optical excitation of such a structure. We discuss the conditions under which superradiance can be observed and show that they strongly depend on the valence-band structure of the semiconductor layers.

  19. Physics of Spherical Torus Plasmas

    SciTech Connect

    Peng, Yueng Kay Martin

    2000-01-01

    Broad and important progress in plasma tests, theory, new experiments, and future visions of the spherical torus (ST, or very low aspect ratio tokamaks) have recently emerged. These have substantially improved our understanding of the potential properties of the ST plasmas, since the preliminary calculation of the ST magnetohydrodynamic equilibria more than a decade ago. Exciting data have been obtained from concept exploration level ST experiments of modest capabilities (with major radii up to 35 cm), making important scientific contributions to toroidal confinement in general. The results have helped approval and construction of new and/or more powerful ST experiments, and stimulated an increasing number of theoretical calculations of interest to magnetic fusion energy. Utilizing the broad knowledge base from the successful tokamak and advanced tokamak research, a wide range of new ST physics features has been suggested. These properties of the ST plasma will be tested at the 1 MA level with major radius up to similar to 80 cm in the new proof of principle devices National Spherical Torus Experiment (NSTX, U.S.) [M. Peng , European Conf. Abst. 22C, 451 (1998); S. M. Kaye , Fusion Technol. 36, 16 (1999); M. Ono , "Exploration of Spherical Torus Physics in the NSTX Device," 17th IAEA Fusion Energy Conf., paper IAEA-CN-69/ICP/01 (R), Yokohama, Japan (1998)], Mega Ampere Spherical Tokamak (MAST, U.K.) [A. C. Darke , Fusion Technol. 1, 799 (1995); Q. W. Morris , Proc. Int. Workshop on ST (Ioffe Inst., St. Petersburg, 1997), Vol. 1, p. 290], and Globus-M (R.F.) [V. K. Gusev , European Conf. Abst. 22C, 576 (1998)], which have just started full experimental operation. New concept exploration experiments, such as Pegasus (University of Wisconsin) [R. Fonck and the PEGASUS Team, Bull. Am. Phys. Soc. 44, 267 (1999)], Helicity Injected Tokamak-II (HIT-II, University of Washington) [T. R. Jarboe , Phys. Plasmas 5, 1807 (1998)], and Current Drive Experiment-Upgrade (CDX

  20. Radiative transfer in spherical atmospheres

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Wehrse, R.

    1984-01-01

    A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.

  1. Collective Motion of Spherical Bacteria

    PubMed Central

    Rabani, Amit; Ariel, Gil; Be'er, Avraham

    2013-01-01

    A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature. PMID:24376741

  2. Spherical and tubule nanocarriers for sustained drug release

    PubMed Central

    Shutava, T.; Fakhrullin, R.; Lvov, Y.

    2014-01-01

    We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068

  3. Spherical-sapphire-based whispering gallery mode resonator thermometer

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Fernicola, V.

    2012-09-01

    A novel microwave whispering gallery mode (WGM) resonator based on a spherical sapphire crystal was developed at INRIM and its use as a thermometer was tested. The temperature dependence of the WGM frequencies was studied and the most promising resonance near to 13.6 GHz, with a loaded quality factor as large as 82 000, was carefully investigated. Its potential use in thermometry was evaluated through a study of its main metrological characteristics, such as the temperature sensitivity, the frequency stability, the repeatability, and the resolution at several temperatures over the temperature range -40 °C to 85 °C. Finally, the INRIM spherical sapphire thermometer was compared with the NIST SWGT, a dielectric thermometer based on a cylindrical sapphire resonator [V. B. Braginsky, V. S. Ilchenko, and Kh. S. Bagdassarov, Phys. Lett. A 120(3), 300 (1987), 10.1016/0375-9601(87)90676-1].

  4. Spherical-sapphire-based whispering gallery mode resonator thermometer.

    PubMed

    Yu, Lili; Fernicola, V

    2012-09-01

    A novel microwave whispering gallery mode (WGM) resonator based on a spherical sapphire crystal was developed at INRIM and its use as a thermometer was tested. The temperature dependence of the WGM frequencies was studied and the most promising resonance near to 13.6 GHz, with a loaded quality factor as large as 82 000, was carefully investigated. Its potential use in thermometry was evaluated through a study of its main metrological characteristics, such as the temperature sensitivity, the frequency stability, the repeatability, and the resolution at several temperatures over the temperature range -40 °C to 85 °C. Finally, the INRIM spherical sapphire thermometer was compared with the NIST SWGT, a dielectric thermometer based on a cylindrical sapphire resonator [V. B. Braginsky, V. S. Ilchenko, and Kh. S. Bagdassarov, Phys. Lett. A 120(3), 300 (1987)]. PMID:23020404

  5. Physics Basis for a Spherical Torus Power Plant

    SciTech Connect

    C.E. Kessel; J. Menard; S.C. Jardin; T.K. Mau; et al

    1999-11-01

    The spherical torus, or low-aspect-ratio tokamak, is considered as the basis for a fusion power plant. A special class of wall-stabilized high-beta high-bootstrap fraction low-aspect-ratio tokamak equilibrium are analyzed with respect to MHD stability, bootstrap current and external current drive, poloidal field system requirements, power and particle exhaust and plasma operating regime. Overall systems optimization leads to a choice of aspect ratio A = 1:6, plasma elongation kappa = 3:4, and triangularity delta = 0:64. The design value for the plasma toroidal beta is 50%, corresponding to beta N = 7:4, which is 10% below the ideal stability limit. The bootstrap fraction of 99% greatly alleviates the current drive requirements, which are met by tangential neutral beam injection. The design is such that 45% of the thermal power is radiated in the plasma by Bremsstrahlung and trace Krypton, with Neon in the scrapeoff layer radiating the remainder.

  6. A nonlinear elasticity phantom containing spherical inclusions

    PubMed Central

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio Adilton O.; Hall, Timothy J.

    2012-01-01

    The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions has distinct Young’s modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio (CNR) between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agrees with that predicted with nonlinear FEA. PMID:22772074

  7. Properties of the hypothetical spherical superheavy nuclei

    SciTech Connect

    Smolanczuk, R. |

    1997-08-01

    Theoretical results on the ground-state properties of the hypothetical spherical superheavy atomic nuclei are presented and discussed. Even-even isotopes of elements Z=104{minus}120 are considered. Certain conclusions are also drawn for odd-A and odd-odd superheavy nuclei. Results obtained earlier for even-even deformed superheavy nuclei with Z=104{minus}114 are given for completeness. Equilibrium deformation, nuclear mass, {alpha}-decay energy, {alpha}-decay half-life, dynamical fission barrier, as well as spontaneous-fission half-life are considered. {beta}-stability of superheavy nuclei is also discussed. The calculations are based on the macroscopic-microscopic model. A multidimensional deformation space describing axially symmetric nuclear shapes is used in the analysis of masses and decay properties of superheavy nuclei. We determined the boundaries of the region of superheavy nuclei which are expected to live long enough to be detected after the synthesis in a present-day experimental setup. {copyright} {ital 1997} {ital The American Physical Society}

  8. Archimedes' floating bodies on a spherical Earth

    NASA Astrophysics Data System (ADS)

    Rorres, Chris

    2016-01-01

    Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.

  9. MUSCLE: MUltiscale Spherical-ColLapse Evolution

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-05-01

    MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

  10. Measuring Spherical Harmonic Coefficients on a Sphere

    SciTech Connect

    Pollaine, S; Haan, S W

    2003-05-16

    The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.

  11. Wormhole dynamics in spherical symmetry

    SciTech Connect

    Hayward, Sean A.

    2009-06-15

    A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.

  12. Nonadiabatic charged spherical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M. A. H.; Santos, N. O.

    2007-09-15

    We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of the energy density is discussed.

  13. Libsharp - spherical harmonic transforms revisited

    NASA Astrophysics Data System (ADS)

    Reinecke, M.; Seljebotn, D. S.

    2013-06-01

    We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library and addresses several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python, etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License.

  14. Static spherically symmetric solutions in f(G) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Fatima, H. Ismat

    2016-05-01

    We investigate interior solutions for static spherically symmetric metric in the background of f(G) gravity. We use the technique of conformal Killing motions to solve the field equations with both isotropic and anisotropic matter distributions. These solutions are then used to obtain density, radial and tangential pressures for power-law f(G) model. For anisotropic case, we assume a linear equation-of-state and investigate solutions for the equation-of-state parameter ω = ‑1.5. We check physical validity of the solutions through energy conditions and also examine its stability. Finally, we study equilibrium configuration using Tolman-Oppenheimer-Volkoff equation.

  15. Onthe static and spherically symmetric gravitational field

    NASA Astrophysics Data System (ADS)

    Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra

    Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.

  16. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  17. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  18. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  19. Light-weight spherical submergence vessel

    NASA Technical Reports Server (NTRS)

    Baker, I.

    1974-01-01

    Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.

  20. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the

  1. Statistical mechanics of thin spherical shells

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Nelson, David R.

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells via renormalization group calculations. It is well known that for flat solid membranes thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations leads to novel phenomena. In spherical shells thermal fluctuations effectively produce negative surface tension, which is equivalent to applying external pressure. We find that small spherical shells are stable, but for sufficiently large shells this thermally generated ``pressure'' becomes big enough to crush spherical shells. Such shells can be reinflated by increasing internal pressure, where the effective shell size grows non-linearly as a function of internal pressure with a power law exponent characteristic for thermally fluctuating flat membranes under uniform tension.

  2. Spherical magnetic nanoparticles fabricated by laser target evaporation

    NASA Astrophysics Data System (ADS)

    Safronov, A. P.; Beketov, I. V.; Komogortsev, S. V.; Kurlyandskaya, G. V.; Medvedev, A. I.; Leiman, D. V.; Larrañaga, A.; Bhagat, S. M.

    2013-05-01

    Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.

  3. Intrinsic cylindrical and spherical waves

    NASA Astrophysics Data System (ADS)

    Ludlow, I. K.

    2008-02-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed.

  4. Osmotic buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-01

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules. PMID:25209240

  5. Plasma Effects in Spherical Implosions

    NASA Astrophysics Data System (ADS)

    Bellei, Claudio; Amendt, Peter; Wilks, Scott

    2011-10-01

    A remarkable self-similar solution to the problem of a spherically converging shock was published by Guderley in 1942. Being applicable to an ideal gas, this solution neglects viscosity, thermal conduction and radiation losses and presents singularities when the shock reaches the origin. Radiation hydrodynamic codes include the effects of non-ideality (with artificial viscosity in place of real viscosity), ensuring that the solution is well-behaved at all times. However during an ICF implosion, separation of the electron and ion species occurs at the shock front. For the high Mach number (M > 10) incoming (coalesced) shock that is typical of ICF scenarios, the width of the plasma shock front is comparable to the ion-ion mean-free-path λii ~ 1 μ m and much larger than the shock front width in an unionized gas at the same density (~10-2 μ m). Ahead of the plasma shock front, electrons pre-heat the inner gas over distances λei ~(mi /me) 1 / 2λii ~ 70 μ m. This decreases the strength of the incoming shock and lowers the temperature behind the rebound shock, a phenomenon analogous to the non-ideal gas effects found in hydro-codes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Study on Octahedral Spherical Hohlraum

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Liu, Jie; Huo, Wenyi; Li, Zhichao; Yang, Dong; Li, Sanwei; Ren, Guoli; Chen, Yaohua; Jiang, Shaoen; He, Xian-Tu; Zhang, Weiyan

    2015-11-01

    In this talk, we report our recent study on octahedral spherical hohlraum which has six laser entrance holes (LEHs). First, our study shows that the octahedral hohlraums have robust high symmetry during the capsule implosion at hohlraum-to- capsule radius ratio larger than 3.7 and have potential superiority on low backscatter without supplementary technology. Second, we study the laser arrangement and constraints of the octahedral hohlraums and give their laser arrangement design for ignition facility. Third, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. Fourth, we study the sensitivity of capsule symmetry inside the octahedral hohlraums to laser power balance, pointing accuracy, deviations from the optimal position and target fabrication accuracy, and compare the results with that of tradiational cylinders and rugby hohlraums. Finally, we present our recent experimental studies on the octahedral hohlraums on SGIII prototype laser facility.

  7. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  8. Spherical gravitational collapse in N dimensions

    SciTech Connect

    Goswami, Rituparno; Joshi, Pankaj S.

    2007-10-15

    We investigate here spherically symmetric gravitational collapse in a space-time with an arbitrary number of dimensions and with a general type I matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface t=t{sub i} from which the collapse evolves, there exist the rest of the initial data functions and classes of solutions of Einstein equations which we construct here, such that the space-time evolution goes to a final state which is either a black hole or a naked singularity, depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions in a unified treatment. Also the earlier work is generalized to higher-dimensional space-times to allow a study of the effect of the number of dimensions on the possible final outcome of the collapse in terms of either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other limiting assumptions such as self-similarity of space-time are avoided, in order to keep the treatment general. Our methodology allows us to consider to an extent the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.

  9. Nematic textures in spherical shells

    NASA Astrophysics Data System (ADS)

    Vitelli, V.; Nelson, D. R.

    2006-08-01

    The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the ground state has four short (1)/(2) disclination lines but, as the thickness of the film increases, a three-dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an exact solution for the nematic ground state in the one Frank constant approximation and study the stability of the corresponding texture against thermal fluctuations.

  10. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    SciTech Connect

    R.B. White; Ya.I. Kolesnichenko; V.V. Lutsenko; V.S. Marchenko

    2002-05-30

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked.

  11. Two interacting particles in a spherical pore

    NASA Astrophysics Data System (ADS)

    Urrutia, Ignacio; Castelletti, Gabriela

    2011-02-01

    In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potential. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [I. Urrutia, J. Chem. Phys. 134, 104503 (2010)] for nonhard interaction potentials. This analysis enables us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by-product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.

  12. Wrinkling crystallography on spherical surfaces

    PubMed Central

    Brojan, Miha; Terwagne, Denis; Lagrange, Romain; Reis, Pedro M.

    2015-01-01

    We present the results of an experimental investigation on the crystallography of the dimpled patterns obtained through wrinkling of a curved elastic system. Our macroscopic samples comprise a thin hemispherical shell bound to an equally curved compliant substrate. Under compression, a crystalline pattern of dimples self-organizes on the surface of the shell. Stresses are relaxed by both out-of-surface buckling and the emergence of defects in the quasi-hexagonal pattern. Three-dimensional scanning is used to digitize the topography. Regarding the dimples as point-like packing units produces spherical Voronoi tessellations with cells that are polydisperse and distorted, away from their regular shapes. We analyze the structure of crystalline defects, as a function of system size. Disclinations are observed and, above a threshold value, dislocations proliferate rapidly with system size. Our samples exhibit striking similarities with other curved crystals of charged particles and colloids. Differences are also found and attributed to the far-from-equilibrium nature of our patterns due to the random and initially frozen material imperfections which act as nucleation points, the presence of a physical boundary which represents an additional source of stress, and the inability of dimples to rearrange during crystallization. Even if we do not have access to the exact form of the interdimple interaction, our experiments suggest a broader generality of previous results of curved crystallography and their robustness on the details of the interaction potential. Furthermore, our findings open the door to future studies on curved crystals far from equilibrium. PMID:25535355

  13. The secondary buckling transition: wrinkling of buckled spherical shells.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-07-01

    We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an approximate analytic model due to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region where experiments and simulations show the development of polygonal wrinkles, along the dimple edge. In a simplified model based on the stability equations of shallow shells, a critical value for the compressive hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular shape in order to release the compression. By applying this wrinkling criterion to the solutions of the axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the critical volume reduction at the classical axisymmetric buckling transition scales with the square root of the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel, Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature. PMID:25039007

  14. A deformable spherical planet exploration robot

    NASA Astrophysics Data System (ADS)

    Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun

    2013-03-01

    In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.

  15. Bounce-free spherical hydrodynamic implosion

    SciTech Connect

    Kagan, Grigory; Tang Xianzhu; Hsu, Scott C.; Awe, Thomas J.

    2011-12-15

    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.

  16. FY 2006 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  17. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  18. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  19. Transformation of complex spherical harmonics under rotations

    NASA Astrophysics Data System (ADS)

    Romanowski, Zbigniew; Krukowski, Stanislaw

    2007-12-01

    The algorithm rotating the complex spherical harmonics is presented. The convenient and ready to use formulae for ell = 0, 1, 2, 3 are listed. Any rotation in {\\bb R}^3 space is determined by the rotation axis and the rotation angle. The complex spherical harmonics defined in the fixed coordinate system is expanded as a linear combination of the spherical harmonics defined in the rotated coordinate system having 2ell + 1 terms, which are given explicitly. The derived formulae could be applied in quantum molecular calculations. The algorithm is based on the Cartesian representation of the spherical harmonics. The possible application of the algorithm to the evaluation of molecular integrals between slater type orbitals (STO) is described.

  20. FY 2005 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Johnson, Bradley R.; Riley, Brian J.; Sliger, William A.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical and chromatic aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional bistatic LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  1. Summation by parts methods for spherical harmonic decompositions of the wave equation in any dimensions

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Martín-García, José M.; Garfinkle, David

    2013-07-01

    We investigate numerical methods for wave equations in n + 2 spacetime dimensions, written in spherical coordinates, decomposed in spherical harmonics on Sn, and finite-differenced in the remaining coordinates r and t. Such an approach is useful when the full physical problem has spherical symmetry, for perturbation theory about a spherical background, or in the presence of boundaries with spherical topology. The key numerical difficulty arises from lower order 1/r terms at the origin r = 0. As a toy model for this, we consider the flat space linear wave equation in the form \\dot{\\pi }=\\psi ^{\\prime }+p\\psi /r, \\dot{\\psi }=\\pi ^{\\prime }, where p = 2l + n and l is the leading spherical harmonic index. We propose a class of summation by parts (SBP) finite-differencing methods that conserve a discrete energy up to boundary terms, thus guaranteeing stability and convergence in the energy norm. We explicitly construct SBP schemes that are second- and fourth-order accurate at interior points and the symmetry boundary r = 0, and first- and second-order accurate at the outer boundary r = R.

  2. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    DOEpatents

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  3. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    SciTech Connect

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (αRΡ²2/μ²²/³ R (where αR, Ρ2 and μ2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration αR. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Yn and Yn+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.

  4. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE PAGESBeta

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (αRΡ²2/μ²²)¹/³ R (where αR, Ρ2 and μ2 are the localmore » radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration αR. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Yn and Yn+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  5. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  6. Progress Towards High Performance, Steady-state Spherical Torus

    SciTech Connect

    M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden

    2003-10-02

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been

  7. Thin-shell wormholes: Linearization stability

    SciTech Connect

    Poisson, E.; Visser, M.

    1995-12-15

    The class of spherically symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat. {copyright} 1995 The American Physical Society.

  8. On magic numbers for super- and ultraheavy systems and hypothetical spherical double-magic nuclei

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Ellithi, A. Y.; Adel, A.; Anwer, Hisham

    2016-01-01

    Based on the calculations of the shell and the residual pairing correction energies in the framework of Strutinsky's approach, we evaluated the proton and neutron magic numbers in the range 72 ≤ Z ≤ 282 and 96 ≤ N ≤ 540. New magic numbers and new islands of stability lie in a range defined by Green's formula and the two-neutrons drip lines are presented. Our calculations reproduced known spherical double-magic nuclei and present evidences on new spherical double-magic nuclei in super- and ultraheavy regions.

  9. A feasibility study for the spherical torus experiment

    SciTech Connect

    Lazarus, E; Peng, Yueng Kay Martin

    1985-10-01

    Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to a conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.

  10. A charged fusion product diagnostic for a spherical tokamak

    NASA Astrophysics Data System (ADS)

    Perez, Ramona Leticia Valenzuela

    Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are

  11. Development of a wide-field spherical aberration corrector for the Hobby Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Benjamin, S.; Dubin, M.; Manuel, A.; Novak, M.; Oh, C. J.; Valente, M.; Zhao, C.; Booth, J. A.; Good, J. M.; Hill, Gary J.; Lee, H.; MacQueen, P. J.; Rafal, M.; Savage, R.; Smith, M. P.; Vattiat, B.

    2010-07-01

    A 4-mirror prime focus corrector is under development to provide seeing-limited images for the 10-m aperture Hobby- Eberly Telescope (HET) over a 22 arcminute wide field of view. The HET uses an 11-m fixed elevation segmented spherical primary mirror, with pointing and tracking performed by moving the prime focus instrument package (PFIP) such that it rotates about the virtual center of curvature of the spherical primary mirror. The images created by the spherical primary mirror are aberrated with 13 arcmin diameter point spread function. The University of Arizona is developing the 4-mirror wide field corrector to compensate the aberrations from the primary mirror and present seeing limited imaged to the pickoffs for the fiber-fed spectrographs. The requirements for this system pose several challenges, including optical fabrication of the aspheric mirrors, system alignment, and operational mechanical stability.

  12. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  13. Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions

    SciTech Connect

    Terrones, Mauricio; Terrones, Guillermo ); Terrones, Humberto

    2001-12-01

    We describe the topology, structure, and stability of giant fullerenes exhibiting various symmetries (I, Ih, D2h, T). Our results demonstrate that it is also possible to create two new families of nested-chiral-icosahedral (I) fullerenes namely C260@ C560@ C980@ C1520@..and C140@ C380@ C740@ C1220@..., which exhibit interlayer separations of ca. 3.4. These chiral fullerenes are thought to possess non semiconducting properties. Finally, we study in detail the transformation of polyhedral graphitic particles into quasi-spherical nested giant fullerenes by reorganization of carbon atoms which result in the formation of additional pentagonal and heptagonal carbon rings. These spherical structures are metastable and we believe they could be formed if conditions during formation are extreme such as high energy electron irradiation. There is circumstantial experimental evidence for the presence of heptagonal rings within these spherical fullerenes.

  14. Spherical shock waves in general relativity

    SciTech Connect

    Nutku, Y. )

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  15. A quadrilateralized spherical cube Earth data base

    NASA Technical Reports Server (NTRS)

    Chan, F. K.

    1980-01-01

    A quadrilateralized spherical cube was constructed to form the basis for the rapid storage and retrieval of high resolution data obtained of the Earth's surface. The structure of this data base was derived from a spherical cube, which was obtained by radially projecting a cube onto its circumscribing sphere. An appropriate set of curvilinear coordinates were chosen such that the resolution cells on the spherical cube were of equal area and were also of essentially the same shape. The main properties of the Earth data base were that the indexing scheme was binary and telescopic in nature, the resolution cells were strung together in a two dimensional manner, the cell addresses were easily computed, and the conversion from geographic to data base coordinates was comparatively simple. It was concluded that this data base structure was perhaps the most viable one for handling remotely sensed data obtained by satellites.

  16. Background reduction of a spherical gaseous detector

    SciTech Connect

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François

    2015-08-17

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  17. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  18. Spherical aberration in electrically thin flat lenses.

    PubMed

    Ruphuy, Miguel; Ramahi, Omar M

    2016-08-01

    We analyze the spherical aberration of a new generation of lenses made of flat electrically thin inhomogeneous media. For such lenses, spherical aberration is analyzed quantitatively and qualitatively, and comparison is made to the classical gradient index rod. Both flat thin and thick lenses are made of gradient index materials, but the physical mechanisms and design equations are different. Using full-wave three-dimensional numerical simulation, we evaluate the spherical aberrations using the Maréchal criterion and show that the thin lens gives significantly better performance than the thick lens (rod). Additionally, based on ray tracing formulation, third-order analysis for longitudinal aberration and optical path difference are presented, showing strong overall performance of thin lenses in comparison to classical rod lenses. PMID:27505651

  19. Spherical resonant-mass gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Carl Z.; Michelson, Peter F.

    1995-03-01

    A spherical gravitational wave antenna is a very promising detector for gravitational wave astronomy because it has a large cross section, isotropic sky coverage, and can provide the capability of determining the wave direction. In this paper we discuss several aspects of spherical detectors, including the eigenfunctions and eigenfrequencies of the normal modes of an elastic sphere, the energy cross section, and the response functions that are used to obtain the noise-free solution to the inverse problem. Using the maximum likelihood estimation method the inverse problem in the presence of noise is solved. We also determine the false-alarm probability and the detection probability for a network of spherical detectors and estimate the detectable event rates for supernova collapses and binary coalescences.

  20. Design and implementation of spherical ultrasonic motor.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki; Ishida, Hiroshi

    2009-11-01

    We present a mechanical design and implementation of spherical ultrasonic motor (SUSM) that is an actuator with multiple rotational degrees of freedom (multi-DOF). The motor is constructed of 3 annular stators and a spherical rotor and is much smaller and simpler than conventional multi-DOF mechanisms such as gimbals using servomotors. We designed a novel SUSM using experimental data from a single annular stator and a finite element method. The SUSM using a spherical rotor of diameter 20 mm without any reduction gear has demonstrated advantages of high responsiveness, good accuracy, and high torque at low speed. The dynamic implementation of SUSM was consistent with the driving model of SUSM based on a friction drive. PMID:19942537

  1. Static spherically symmetric wormholes with isotropic pressure

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo

    2016-06-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  2. Thermal Fluid Multiphysics Optimization of Spherical Tokamak

    SciTech Connect

    Lumsdaine, Arnold; Tipton, Joseph B; Peng, Yueng Kay Martin

    2012-01-01

    An experimental Fusion Nuclear Science Facility (FNSF) is required that will create the environment that simultaneously achieves high energy neutrons and high ion fluence necessary in order to bridge the gaps from ITER to the realization of a fusion nuclear power plant. One concept for achieving this is a high duty cycle spherical torus. This study will focus on thermal modeling of the spherical torus centerpost using computational fluid dynamics to effectively model the thermal transfer of the cooling fluid to the centerpost. The design of the fluid channels is optimized in order to minimize the temperature in the centerpost. Results indicate the feasibility of water cooling for a long-pulse spherical torus FNSF.

  3. Background reduction of a spherical gaseous detector

    NASA Astrophysics Data System (ADS)

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François; Savvidis, Ilias

    2015-08-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal 210Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  4. Two electronic states in spherical quantum nanolayer

    NASA Astrophysics Data System (ADS)

    Aghekyan, N. G.; Kazaryan, E. M.; Kostanyan, A. A.; Sarkisyan, H. A.

    2010-10-01

    In this paper two electronic states in spherical quantum nanolayer are discussed. The Coulomb interaction between the electrons is discussed as perturbation. For confinement potential of the nanolayer the three-dimensional radial analog of Smorodinsky-Winternitz potential is considered. The problem is discussed within the frameworks of Russell-Saunders coupling scheme, thus, the spin-orbit interaction is considered weak. Therefore the eigenfunctions of the system is represented as a multiplication of its coordinate wave function and spin wave function. For this system the analogue of helium atom theory is represented. The eigenfunctions and energy states are obtained for one and two electron cases in the spherical quantum nanolayer. For the spherical nanolayer the dependence of perturbation energy, unperturbed system energy and the total energy for the ground state upon the inner radius is represented when the outer radius is fixed.

  5. Structure of self - assembled two-dimensional spherical crystals

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas R.

    2004-03-01

    Dense spherical particles on a flat surface usually pack into a simple triangular lattice, similar to billiard balls at the start of a game. The minimum energy configuration for interacting particles on the curved surface of a sphere, however, presents special difficulties, as recognized already by J.J. Thomson. We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries or "scars" not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. First experiments where the melting of the crystal structure was observable will be discussed. Dynamic triangulation methods allow the analysis of the dynamics of the defects. Possible modifications towards mechanically stabilized self assembly structures result in so called Colloidosomes, which are promising for many different encapsulation purposes.

  6. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  7. Excitonic transitions in spherical inhomogeneous QD, new monocolor nanosource

    NASA Astrophysics Data System (ADS)

    Benhaddou, F.; Zorkani, I.; Jorio, A.; Feddi, E.

    2015-11-01

    We study in this investigation the excitonic transitions in new spherical nanosystems also called inhomogeneous quantum dots IQD. They are promising in many technological applications: photovoltaic, LED, QD Laser and quantum computing. The excitonic binding energy significantly increases; which gives them greater stability at room temperature. The well-semiconductors in these nanostructures become luminescent under dual control core-well, in a wide spectral range from near UV to near and medium infrared IR. These optical properties enriched the field of IQD which generally have a high quantum efficiency and high photostability. The IQD presented are made out off ZnSe/HgS/ZnSe; CdS/GaSb/CdS; ZnS/HgS/ZnS and CdS/InSb/CdS modeled by a spherical well with infinite potential. Our theoretical investigation shows that the high degree of confinement in the well retains the 1 se - 1 pe - 2 se (1 sh - 1 ph - 2 sh) order, guarantees excitonic transitions and isolates the ground state 1 se - 1 sh (E2se,h - E1pe,h can be exceed 6 eV). The strong confinement provided by the infinite barrier, reduces the population relaxation and limit the coupling between the well and the electrostatic environment. These results qualify the nanostructure as a monocolor source and a system of two levels.

  8. Spherical collapse in quintessence models with zero speed of sound

    SciTech Connect

    Creminelli, Paolo; D'Amico, Guido; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo E-mail: norena@sissa.it E-mail: senatore@ias.edu

    2010-03-01

    We study the spherical collapse model in the presence of quintessence with negligible speed of sound. This case is particularly motivated for w < −1 as it is required by stability. As pressure gradients are negligible, quintessence follows dark matter during the collapse. The spherical overdensity behaves as a separate closed FLRW universe, so that its evolution can be studied exactly. We derive the critical overdensity for collapse and we use the extended Press-Schechter theory to study how the clustering of quintessence affects the dark matter mass function. The effect is dominated by the modification of the linear dark matter growth function. A larger effect occurs on the total mass function, which includes the quintessence overdensities. Indeed, here quintessence constitutes a third component of virialized objects, together with baryons and dark matter, and contributes to the total halo mass by a fraction ∼ (1+w)Ω{sub Q}/Ω{sub m}. This gives a distinctive modification of the total mass function at low redshift.

  9. Divertor heat flux mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A.; Maingi, R.; Gates, D.A.; Menard, J.E.; Bush, C.E.

    2009-01-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono , Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m(-2) to 0.5-2 MW m(-2) in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  10. Acoustic perturbations on steady spherical accretion in Schwarzschild geometry

    SciTech Connect

    Naskar, Tapan; Chakravarty, Nabajit; Bhattacharjee, Jayanta K.; Ray, Arnab K.

    2007-12-15

    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized acoustic perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency traveling wave, also has its amplitude reduced.

  11. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically. PMID:26465512

  12. Spherical quartz crystals investigated with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.

    2015-10-01

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  13. Spherical quartz crystals investigated with synchrotron radiation.

    PubMed

    Pereira, N R; Macrander, A T; Hill, K W; Baronova, E O; George, K M; Kotick, J

    2015-10-01

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background. PMID:26520963

  14. Electrode shapes for spherical Pierce flow

    SciTech Connect

    Mueller, D.W.

    1981-01-01

    The problem of obtaining the electrode shapes to produce a conically converging proton beam that has constant current density over each spherical surface of convergence is treated in spherical coordinates. A cone is taken from the Langmuir and Blodgett solution for the region within, and at the edge of, the conically converging beam. A solution for the LaPlace equation, required for the region outside the beam, is in terms of a power series in r and the Legendre polynomials of cos phi.

  15. Design of artificial spherical superposition compound eye

    NASA Astrophysics Data System (ADS)

    Cao, Zhaolou; Zhai, Chunjie; Wang, Keyi

    2015-12-01

    In this research, design of artificial spherical superposition compound eye is presented. The imaging system consists of three layers of lens arrays. In each channel, two lenses are designed to control the angular magnification and a field lens is added to improve the image quality and extend the field of view. Aspherical surfaces are introduced to improve the image quality. Ray tracing results demonstrate that the light from the same object point is focused at the same imaging point through different channels. Therefore the system has much higher energy efficiency than conventional spherical apposition compound eye.

  16. Spherical harmonic analysis of steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1987-01-01

    A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.

  17. Evolution of non-spherical perturbations.

    NASA Astrophysics Data System (ADS)

    Boschan, P.

    1995-06-01

    In this paper I investigate the evolution of primordial non-spherical positive and negative fluctuations. They can be calculated by second order of perturbation theory. I solved analytically the second order equation for arbitrary density parameter {OMEGA}_M0_ and cosmological constant {LAMBDA} using the approximation introduced by Martell & Freundling (???). The second order solution is compared with the exact one in the spherical case. I find that the initial deformation grows rapidly for positive perturbations, while the negative perturbations (voids) are stable against deformations.

  18. Spherical quartz crystals investigated with synchrotron radiation

    SciTech Connect

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.

    2015-10-15

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  19. The Hadley and Rossby regimes in a spherical atmosphere

    NASA Technical Reports Server (NTRS)

    Feldstein, S. B.; Clark, J. H. E.

    1985-01-01

    The properties of the steady Hadley and Rossby regimes for a thermally forced rotating fluid on a sphere are studied. The two layer modified geostrophic model is employed which allows for thermal advection by the divergent wind and time dependent static stability. Heating processes are parameterized using the Newtonian approximation and Rayleigh friction is accounted for. The equations are transformed to spectral form using spherical harmonics and then truncated retaining a simple axisymmetric state and initial, one wave. A time independent Hadley circulation is obtained which is neutral to axisymmetric disturbances but unstable to wave like perturbations for intermediate values of the meridional temperature gradient, indicating the existence of both an upper and lower symmetric Hadley regime. An analytical solution for the steady Rossby circulation is determined for values of the meridional temperature gradient where the Hadley regime is unstable. Linear perturbation theory is used to show that within the steady Rossby regime two or more waves cannot exist simultaneously.

  20. Analytical expression for a class of spherically symmetric solutions in Lorentz-breaking massive gravity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Li, Xin-zhou; Xi, Ping

    2016-06-01

    We present a detailed study of the spherically symmetric solutions in Lorentz-breaking massive gravity. There is an undetermined function { F }(X,{w}1,{w}2,{w}3) in the action of Stückelberg fields {S}φ ={{{Λ }}}4\\int {{{d}}}4x\\sqrt{-g}{ F }, which should be resolved through physical means. In general relativity, the spherically symmetric solution to the Einstein equation is a benchmark and its massive deformation also plays a crucial role in Lorentz-breaking massive gravity. { F } will satisfy the constraint equation {T}01=0 from the spherically symmetric Einstein tensor {G}01=0, if we maintain that any reasonable physical theory should possess the spherically symmetric solutions. The Stückelberg field {φ }i is taken as a ‘hedgehog’ configuration {φ }i=φ (r){x}i/r, whose stability is guaranteed by the topological one. Under this ansätz, {T}01=0 is reduced to d{ F }=0. The functions { F } for d{ F }=0 form a commutative ring {R}{ F }. We obtain an expression of the solution to the functional differential equation with spherical symmetry if { F }\\in {R}{ F }. If { F }\\in {R}{ F } and \\partial { F }/\\partial X=0, the functions { F } form a subring {S}{ F }\\subset {R}{ F }. We show that the metric is Schwarzschild, Schwarzschild-AdS or Schwarzschild-dS if { F }\\in {S}{ F }. When { F }\\in {R}{ F } but { F }\

  1. Operational Regimes of the National Spherical Torus Experiment

    SciTech Connect

    D. Mueller; M.G. Bell; R.E. Bell; M. Bitter; T. Bigelow; P. Bonoli; M. Carter; J. Ferron; E. Fredrickson; D. Gates; L. Grisham; J.C. Hosea; D. Johnson; R. Kaita; S.M. Kaye; H. Kugel; B.P. LeBlanc; R. Maingi; R. Majeski; R. Maqueda; J. Menard; M. Ono; F. Paoletti; S. Paul; C.K. Phillips; R. Pinsker; R. Raman; S.A. Sabbagh; C.H. Skinner; V.A. Soukhanovskii; D. Stutman; D. Swain; Y. Takase; J. Wilgen; J.R. Wilson; G.A. Wurden; S. Zweben

    2002-06-03

    The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment designed to study the physics of Spherical Tori (ST), i.e., low-aspect-ratio toroidal plasmas. Important issues for ST research are whether the high-eta stability and reduced transport theoretically predicted for this configuration can be realized experimentally. In NSTX, the commissioning of a digital real-time plasma control system, the provision of flexible heating systems, and the application of wall conditioning techniques were instrumental in achieving routine operation with good confinement. NSTX has produced plasmas with R/a {approx} 0.85 m/0.68 m, A {approx} 1.25, Ip * 1.1 MA, BT = 0.3-0.45 T, k * 2.2, d * 0.5, with auxiliary heating by up to 4 MW of High Harmonic Fast Waves, and 5 MW of 80 keV D0 Neutral Beam Injection (NBI). The energy confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta (bT = 2m0

    /BT02, where BT0 is the central vacuum toroidal magnetic field) up to 22% has be en achieved. HHFW power of 2.3 MW has increased the electron temperature from an initial 0.4 keV to 0.9 keV both with and without producing a significant density rise in the plasma. The early application of both NBI and HHFW heating has slowed the penetration of the inductively produced plasma current, modifying the current profile and, thereby, the observed MHD stability.

  2. Simulation on the aggregation process of spherical particle confined in a spherical shell

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, J. J.; Zhang, L.

    2016-04-01

    The aggregation process of spherical particles confined in a spherical shell was studied by using a diffusion-limited cluster-cluster aggregation (DLCA) model. The influence of geometrical confinement and wetting-like properties of the spherical shell walls on the particle concentration profile, aggregate structure and aggregation kinetics had been explored. The results show that there will be either depletion or absorption particles near the shell walls depending on the wall properties. It is observed that there are four different types of density distribution which can be realized by modifying the property of the inner or outer spherical shell wall. In addition, the aggregate structure will become more compact in the confined spherical shell comparing to bulk system with the same particle volume fraction. The analysis on the aggregation kinetics indicates that geometrical confinement will promote the aggregation process by reducing the invalid movement of the small aggregates and by constraining the movement of those large aggregates. Due to the concave geometrical characteristic of the outer wall of the spherical shell, its effects on the aggregating kinetics and the structure of the formed aggregates are more evident than those of the inner wall. This study will provide some instructive information of controlling the density distribution of low-density porous polymer hollow spherical shells and helps to predict gel structures developed in confined geometries.

  3. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity.

    PubMed

    Iwamatsu, Masao

    2015-04-01

    The line-tension effects on heterogeneous nucleation are considered when a spherical lens-shaped nucleus is nucleated on top of a spherical substrate and on the bottom of the wall of a spherical cavity. The effect of line tension on the nucleation barrier can be separated from the usual volume term. As the radius of the substrate increases, the nucleation barrier decreases and approaches that of a flat substrate. However, as the radius of the cavity increases, the nucleation barrier increases and approaches that of a flat substrate. A small spherical substrate is a less active nucleation site than a flat substrate, and a small spherical cavity is a more active nucleation site than a flat substrate. In contrast, the line-tension effect on the nucleation barrier is maximum when the radii of the nucleus and the substrate or cavity become comparable. Therefore, by tuning the size of the spherical substrate or spherical cavity, the effect of the line tension can be optimized. These results will be useful in broad range of applications from material processing to understanding of global climate, where the heterogeneous nucleation plays a vital role. PMID:25775383

  4. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  5. Fluctuations of a spherical gravitational impulsive wave.

    NASA Astrophysics Data System (ADS)

    Hortaçsu, M.

    1993-02-01

    It is shown that quantum fluctuations, in particular vacuum polarization, vanish in the background of a spherical impulsive wave solution of the Einstein field equations, recently found by Nutku and Penrose. The calculation is done in first-order perturbation theory but arguments are given why it should persist to all orders.

  6. Programmable shape transformation of elastic spherical domes.

    PubMed

    Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy

    2016-07-20

    We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales. PMID:27435451

  7. Transfer matrix of a spherical scatterer

    SciTech Connect

    Podolsky, V.S.; Lisyansky, A.A.

    1996-11-01

    We derive the off-shell scattering matrix for a spherical scatterer. The result obtained generalizes the off-on-shell matrix commonly used in the theory of scalar waves propagation in random media. {copyright} {ital 1996 The American Physical Society.}

  8. Spherical hashing: binary code embedding with hyperspheres.

    PubMed

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement. PMID:26440269

  9. Fast discharge in a spherical cavity

    SciTech Connect

    Antsiferov, P. S. Dorokhin, L. A.

    2014-04-15

    The work is devoted to the study of the plasma, created by a fast discharge in a spherical cavity. The discharge was driven by an inductive storage with plasma erosion opening switch (dI/dt ∼10{sup 12} A/s). The plasma was produced in a spherical cavity (alumina, 11 mm diameter). Xe, Ar, and He at the pressure 80 Pa were used as working gases. The time evolution of the spatial structure and of extreme ultraviolet (EUV) spectra of the discharge plasma was studied by means of micro channel plate detector. The discharges with Xe and Ar resulted in the stable appearance of the spherically shaped plasma with the diameter about 1–3 mm. The plasma emission in the EUV region lasts ∼500 ns. The EUV spectrum of Ar discharge at the moment of maximum of the electron temperature T{sub e} contains the lines of Ar X (ionization potential 478.7 eV), that indicates a value of T{sub e} in the range 50–100 eV. The mechanism of plasma appearance can be the cumulation of the convergent spherical shock wave, generated by fast heat deposition and magnetic pressure in working media near the inner surface of the discharge volume.

  10. Progress towards high-performance, steady-state spherical torus

    NASA Astrophysics Data System (ADS)

    Ono, M.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D. S.; Diem, S. J.; Doerner, R.; Efthimion, P. C.; Ferron, J. R.; Fonck, R. J.; Fredrickson, E. D.; Garstka, G. D.; Gates, D. A.; Gray, T.; Grisham, L. R.; Heidbrink, W.; Hill, K. W.; Hoffman, D.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kim, J. H.; Kissick, M. W.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Lee, S. G.; Lewicki, B. T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T. K.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ostrander, C. N.; Pacella, D.; Paoletti, F.; Park, H. K.; Park, W.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Pinsker, R.; Probert, P. H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Schaffer, M.; Schooff, R. J.; Seraydarian, R.; Skinner, C. H.; Sontag, A. C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K. L.; Unterberg, E. A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Xu, X.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Carter, M. D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R. J.; Hatcher, R. E.; Hawryluk, R. J.; Houlberg, W.; Harvey, R.; Jardin, S. C.; Hosea, J. C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L. L.; Levinton, F. M.; Luhmann, N. C.; Marsala, R.; Mastravito, D.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G. D.; Ram, A. K.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Vero, R.; Wampler, W. R.; Wurden, G. A.

    2003-12-01

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (bgr), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bgrT of up to 35% with a near unity central bgrT have been obtained. NSTX will be exploring advanced regimes where bgrT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction (~60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX to test the method up to Ip ~ 500 k

  11. Progress towards high-performance, steady-state spherical torus

    SciTech Connect

    Ono, M.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D. S.; Diem, S. J.; Doerner, R.; Efthimion, P. C.; Ferron, J. R.; Fonck, R. J.; Fredrickson, E. D.; Garstka, G. D.; Gates, D A; Gray, T.; Grisham, L. R.; Heidbrink, W.; Hill, K. W.; Hoffman, D.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kim, J. H.; Kissick, M. W.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Lee, S. G.; Lewicki, B. T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T. K.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ostrander, C. N.; Pacella, D.; Paoletti, F.; Park, H. K.; Park, W.; Paul, S. F.; Peng, Y-K M.; Phillips, C. K.; Pinsker, R.; Probert, P. H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Schaffer, M.; Schooff, R. J.; Seraydarian, R.; Skinner, C. H.; Sontag, A. C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K. L.; Unterberg, E. A.; Halle, A. Von.; Wilgen, J.; Williams, M.; Wilson, J. R.; Xu, X.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Carter, M. D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R. J.; Hatcher, R. E.; Hawryluk, R. J.; Houlberg, W.; Harvey, R.; Jardin, S. C.; Hosea, J. C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L. L.; Levinton, F. M.; Luhmann, N. C.; Marsala, R.; Mastravito, D.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G. D.; Ram, A. K.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Vero, R.; Wampler, W. R.; Wurden, G. A.

    2003-12-01

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (β), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values βT of up to 35% with a near unity central βT have been obtained. NSTX will be exploring advanced regimes where βT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction (~ 60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX to

  12. Compressible instability of rapidly expanding spherical material interfaces

    NASA Astrophysics Data System (ADS)

    Mankbadi, Mina Reda

    The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak

  13. Progress Towards High-Performance, Steady-State Spherical Torus

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-01-04

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX

  14. Progress towards high-performance, steady-state spherical torus.

    SciTech Connect

    Lee, S.G; Kugel, W.; Efthimion, P. C.; Kissick, M. W.; Bourdelle, C.; Kim, J.H; Gray, T.; Garstka, G. D.; Fonck, R. J.; Doerner, R.; Diem, S.J.; Pacella, D.; Nishino, N.; Ferron, J. R.; Skinner, C. H.; Stutman, D.; Soukhanovskii, V.; Choe, W.; Chrzanowski, J.; Mau, T.K.; Bell, Michael G.; Raman, R.; Peng, Y-K. M.; Ono, M.; Park, W.; Hoffman, D.; Maqueda, R.; Kaye, S. M.; Kaita, R.; Jarboe, T.R.; Hill, K.W.; Heidbrink, W.; Spaleta, J.; Sontag, A.C; Seraydarian, R.; Schooff, R.J.; Sabbagh, S.A.; Menard, J.; Mazzucato, E.; Lee, K.; LeBlanc, B.; Probert, P. H.; Blanchard, W.; Wampler, William R.; Swain, D. W.; Ryan, P.M.; Rosenberg, A.; Ramakrishnan, S.; Phillips, C.K.; Park, H.K.; Roquemore, A. L.; Paoletti, F.; Medley, S. S.; Fredrickson, E. D.; Kessel, C. E.; Stevenson, T.; Darrow, D. S.; Majeski, R.; Bitter, M.; Neumeyer, C.; Nelson, B.A.; Paul, S. F.; Manickam, J.; Ostrander, C. N.; Mueller, D.; Lewicki, B.T; Luckhardt, S.; Johnson, D.W.; Grisham, L.R.; Kubota, Shigeru; Gates, D.A.; Bush, C.; Synakowski, E.J.; Schaffer, M.; Boedo, J.; Maingi, R.; Redi, M.; Pinsker, R.; Bigelow, T.; Bell, R. E.

    2004-06-01

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX

  15. Aspheric versus Spherical Posterior Chamber Intraocular Lenses

    PubMed Central

    Jafarinasab, Mohammad-Reza; Feizi, Sepehr; Baghi, Ahmad-Reza; Ziaie, Hossein; Yaseri, Mehdi

    2010-01-01

    Purpose To compare spherical aberration and contrast sensitivity function following implantation of four different foldable posterior chamber intraocular lenses (IOLs), namely Sensar, Akreos AO, Tecnis, and AcrySof IQ. Methods In this randomized clinical trial, 68 eyes of 68 patients with senile cataracts underwent phacoemulsification and IOL implantation with Sensar (n=17), Akreos AO (n=17), Tecnis (n=17), or AcrySof IQ (n=17). Uncorrected visual acuity (UCVA) and best spectacle-corrected visual acuity (BSCVA), spherical aberration and contrast sensitivity function (CSF) were compared among the study groups, 3 months after surgery. Results There was no significant difference between the study groups in terms of age (P = 0.21). Mean postoperative BSCVA with Sensar, Akreos AO, Tecnis, and AcrySof IQ was 0.15±0.10, 0.12±0.9, 0.08±0.08, and 0.08±0.07 logMAR, respectively (P=0.08). Spherical aberration measured over a 4 mm pupil was significantly higher with Sensar and Akreos AO than the two other IOLs. The difference between Tecnis and AcrySof IQ was significantly in favor of the former IOL. Over a 6 mm pupil, spherical aberrations were comparable with Sensar and Akreos AO, furthermore spherical aberration was also comparable among eyes implanted with Akreos AO, AcrySof IQ, and Tecnis. Sensar yielded significantly inferior results as compared to Acrysof IQ and Tecnis. CSF with Sensar was inferior to the three aspheric IOLs at the majority of spatial frequencies. Tecnis yielded significantly better mesopic CSF at 1.5 and 3 cycles per degree spatial frequencies. Conclusion Tecnis and AcrySof IQ provided significantly better visual function as compared to Sensar and Akreos AO, especially with smaller pupil size. However, this difference diminished with increasing pupil size. PMID:22737364

  16. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  17. Stability of phantom wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-06-15

    It has recently been shown that traversable wormholes may be supported by phantom energy. In this work phantom wormhole geometries are modeled by matching an interior traversable wormhole solution, governed by the equation of state p={omega}{rho} with {omega}<-1, to an exterior vacuum spacetime at a finite junction interface. The stability analysis of these phantom wormholes to linearized spherically symmetric perturbations about static equilibrium solutions is carried out. A master equation dictating the stability regions is deduced, and by separating the cases of a positive and a negative surface energy density, it is found that the respective stable equilibrium configurations may be increased by strategically varying the wormhole throat radius. The first model considered, in the absence of a thin shell, is that of an asymptotically flat phantom wormhole spacetime. The second model constructed is that of an isotropic pressure phantom wormhole, which is of particular interest, as the notion of phantom energy is that of a spatially homogeneous cosmic fluid, although it may be extended to inhomogeneous spherically symmetric spacetimes.

  18. Gravity-driven instability in a spherical Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Miranda, José A.; Parisio, Fernando; Moraes, Fernando; Widom, Michael

    2001-01-01

    A pair of concentric spheres separated by a small gap form a spherical Hele-Shaw cell. In this cell an interfacial instability arises when two immiscible fluids flow. We derive the equation of motion for the interface perturbation amplitudes, including both pressure and gravity drivings, using a mode coupling approach. Linear stability analysis shows that mode growth rates depend upon interface perimeter and gravitational force. Mode coupling analysis reveals the formation of fingering structures presenting a tendency toward finger tip-sharpening.

  19. Glass formation and properties in the gallia-calcia system

    NASA Technical Reports Server (NTRS)

    Whichard, G.; Day, D. E.

    1984-01-01

    The critical cooling rate for glass formation was measured for five compositions in the Ga2O3-CaO system and varied from a low of (315 + or - 85) C/s for a eutectic melt containing 37.5 mol pct Ga2O3 to a high of (840 + or - 60) C/s for a melt containing 52 mol pct Ga2O3. The density and refractive index both increased with increasing Ga2O3 content, but the crystallization temperature and microhardness varied only slightly. The IR spectra of these glasses suggest that both GaO4 tetrahedra and GaO6 octahedra are present.

  20. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    PubMed

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core. PMID:22587137

  1. D-He-3 spherical torus fusion reactor system study

    NASA Astrophysics Data System (ADS)

    Macon, William A., Jr.

    1992-04-01

    This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.

  2. Colloidal cholesteric liquid crystal in spherical confinement.

    PubMed

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  3. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  4. Clusters of polyhedra in spherical confinement

    NASA Astrophysics Data System (ADS)

    Teich, Erin; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon

    Dense particle packing in a confining volume is a rich, largely unexplored problem, with applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. We report simulation results for dense clusters of the Platonic solids in spherical confinement, for up to N = 60 constituent particles. We discuss similarities between clusters in terms of symmetry, a connection to spherical codes, and generally the interplay between isotropic geometrical confinement and anisotropic particle shape. Our results showcase the structural diversity and experimental utility of families of solutions to the problem of packing in confinement. E.T. acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  5. A Simple Weighing Method for Spherical Cells.

    PubMed

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Zhao, Xin

    2015-08-01

    This article presents a simple weighing method for spherical cells to avoid the high cost of correlated devices in traditional cell-weighing methods. In this method, the constant falling speeds of the spherical objects in liquid are derived to estimate their masses online. Using this method, the detected density of one type of microbead is highly in accordance with the known value. This method is proved to be capable of detecting tiny variations of the cell mass (at least within 1% of the cell mass). Finally, the proposed method is applied in nuclear transplantation operations, and, for the first time, the proper amount of the removed cytoplasm in porcine enucleation is estimated. The proposed method is able to weigh cells with a success rate of 92% at an average speed of 22 s/cell, and it can be performed on traditional microoperation systems, which makes it easily applicable in biological applications. PMID:25911396

  6. Lindblad dynamics of a quantum spherical spin

    NASA Astrophysics Data System (ADS)

    Wald, Sascha; Henkel, Malte

    2016-03-01

    The coherent quantum dynamics of a single bosonic spin variable, subject to a constraint derived from the quantum spherical model of a ferromagnet, and coupled to an external heat bath, is studied through the Lindblad equation for the reduced density matrix. Closed systems of equations of motion for several quantum observables are derived and solved exactly. The relationship to the single-mode Dicke model from quantum optics is discussed. The analysis of the interplay of the quantum fluctuation and the dissipation and their influence on the relaxation of the time-dependent magnetisation leads to the distinction of qualitatively different regimes of weak and strong quantum couplings. Considering the model’s behaviour in an external field as a simple mean-field approximation of the dynamics of a quantum spherical ferromagnet, the magnetic phase diagram appears to be re-entrant and presents a quantum analogue of well-established classical examples of fluctuation-induced order.

  7. Nonlinear cosmological spherical collapse of quintessence

    NASA Astrophysics Data System (ADS)

    Rekier, J.; Füzfa, A.; Cordero-Carrión, I.

    2016-02-01

    We present a study of the fully relativistic spherical collapse in the presence of quintessence using on numerical relativity, following the method proposed by the authors in a previous article [Phys. Rev. D 91, 024025 (2015)]. We ascertain the validity of the method by studying the evolution of a spherically symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the local expansion around the center of coordinates. We then proceed to compare the results of our method to those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up under the effect that matter inhomogeneities have on the local space-time, yet remain very small due to the presence of momentum transfer from the over-dense to the background regions. We expect that these might have an even more important role in modified theories of gravitation.

  8. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  9. Frequency domain photothermal radiometry with spherical solids

    SciTech Connect

    Wang, Chinhua; Liu, Yue; Mandelis, Andreas; Shen, Jun

    2007-04-15

    Motivated by increasing practical and industrial applications of photothermal techniques in the measurement of materials of various shapes with curvature, we extend the applications of photothermal diagnostics to solid spheres, in which both theoretical and experimental photothermal radiometry studies on spherical geometries and thermal diffusivity of the sample are discussed. Based on the Green function method, a full thermal-wave field distribution of a spherical solid is obtained. The characteristics of the thermal-wave field with respect to thermophysical properties of the material, the diameter of the solid, the size of the incident laser beam, and the measurement angle are discussed. Experimental results with steel spheres of different diameters exhibit good agreement between the theory and the experiments.

  10. Electron Bernstein waves in spherical torus plasmas

    SciTech Connect

    Saveliev, A. N.

    2006-11-30

    Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasma interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.

  11. Flow past a porous approximate spherical shell

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  12. Imaging with Spherically Bent Crystals or Reflectors

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Podpaly, Y; Rice, J E; Beiersdorfer, P

    2010-06-01

    This paper consists of two parts: Part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasmarotation- velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation, and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laserproduced plasmas, imaging of biological samples with synchrotron radiation, and lithography.

  13. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-08-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  14. Wave equation on spherically symmetric Lorentzian metrics

    SciTech Connect

    Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.

    2011-06-15

    Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.

  15. Sequential and Parallel Algorithms for Spherical Interpolation

    NASA Astrophysics Data System (ADS)

    De Rossi, Alessandra

    2007-09-01

    Given a large set of scattered points on a sphere and their associated real values, we analyze sequential and parallel algorithms for the construction of a function defined on the sphere satisfying the interpolation conditions. The algorithms we implemented are based on a local interpolation method using spherical radial basis functions and the Inverse Distance Weighted method. Several numerical results show accuracy and efficiency of the algorithms.

  16. Spherical Cancer Models in Tumor Biology1

    PubMed Central

    Weiswald, Louis-Bastien; Bellet, Dominique; Dangles-Marie, Virginie

    2015-01-01

    Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type. PMID:25622895

  17. Nonlinear axisymmetric flexural vibration of spherical shells

    NASA Technical Reports Server (NTRS)

    Kunieda, H.

    1972-01-01

    Axisymmetric responses are presented of a nonshallow thin-walled spherical shell on the basis of nonlinear bending theory. An ordinary differential equation with nonlinearity of quadratic as well as cubic terms associated with variable time is derived. The derivation is based on the assumption that the deflection mode is the sum of four Legendre polynomials, and the Galerkin procedure is applied. The equation is solved by asymptotic expansion, and a first approximate solution is adopted. Unstable regions of this solution are discussed.

  18. Spherical cloaking with homogeneous isotropic multilayered structures.

    PubMed

    Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun

    2009-04-01

    We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers. PMID:19518392

  19. Spherical ion kinetic simulations of DT implosions

    SciTech Connect

    Vidal, F.; Matte, J.P.; Casanova, M.; Larroche, O.

    1995-10-01

    The implosion of the DT plasma in an ablatively driven glass microballoon was simulated with a spherical ion kinetic code. The ion velocity distribution functions were strongly non-Maxwellian, and mostly depleted of fast ions. A high viscosity contributed to fuel heating, while large ion heat fluxes towards the pusher strongly cooled the fuel. This latter kinetic effect may explain in part why hydrodynamic simulations usually predict higher neutron yields than are measured.

  20. Selfsimilar Spherical Compression Waves in Gas Dynamics

    NASA Astrophysics Data System (ADS)

    Meyer-ter-Vehn, J.; Schalk, C.

    1982-08-01

    A synopsis of different selfsimilar spherical compression waves is given pointing out their fundamental importance for the gas dynamics of inertial confinement fusion. Strong blast waves, various forms of isentropic compression waves, imploding shock waves and the solution for non-isentropic collapsing hollow spheres are included. A classification is given in terms of six singular points which characterise the different solutions and the relations between them. The presentation closely follows Guderley's original work on imploding shock waves

  1. Selfsimilar spherical compression waves in gas dynamics

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, J.; Schalk, C.

    1982-05-01

    A synopsis of different selfsimilar spherical compression waves is given pointing out their fundamental importance for the gas dynamics of inertial confinement fusion. Strong blast waves, various forms of isentropic collapsing hollow spheres are included. A classification is given in terms of six singular points which characterize the different solutions and the relations between them. The presentation closely follows Guderley's original work on imploding shock waves.

  2. On Recurrence Formulae of Solid Spherical Monogenics

    SciTech Connect

    Bock, S.; Guerlebeck, K.

    2008-09-01

    We construct a new orthonormal basis of solid spherical monogenics in L{sub 2}. The important property of the basis polynomials is that the hypercomplex derivative as well as the primitive yield (up to a factor) again a basis function of the same system. Besides we refine a decomposition theorem for monogenic functions. With these properties the polynomial system provides a powerful tool to analyze orthogonal series expansions.

  3. Spherically symmetric solutions in a FRW background

    NASA Astrophysics Data System (ADS)

    Moradpour, H.; Riazi, N.

    2015-02-01

    We impose perfect fluid concept along with slow expansion approximation to derive new solutions which, considering non-static spherically symmetric metrics, can be treated as Black Holes (BHs). We will refer to these solutions as Quasi BHs. Mathematical and physical features such as Killing vectors, singularities, and mass have been studied. Their horizons and thermodynamic properties have also been investigated. In addition, relationship with other related works (including McVittie's) are described.

  4. Testing spherical evolution for modelling void abundances

    NASA Astrophysics Data System (ADS)

    Achitouv, Ixandra; Neyrinck, Mark; Paranjape, Aseem

    2015-08-01

    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the ZOBOV void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as ZOBOV. We show that the volume function returned by ZOBOV is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the ZOBOV voids - which is predicted to be a constant δv ≈ -2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z = 0 with effective radius between 1 and 10 h-1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forward.

  5. Batdorf parameter for the spherical shells tectonics

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuhei; Nagahama, Hiroyuki

    2015-04-01

    The buckling phenomena of the subducting lithosphere due to the sphericity of the earth has been studied as spherical shell tectonics which happen the megaquake along the boundary of subducting lithosphere. The earthquake scale is decided by slab length or arc length. However, a relationship between slab length and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell has not been clear yet. So, by using the data set of the geometrical parameters for subducting lithosphere andBuckingham's Pi-theorem, we found out a new linear relationship between Batdorf parameter Z = L2(l - v2)0.5/(Rh) for the measurement of the slab length L and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell Q = qRL2/(π2D), where D = Eh3/[12(1 - v2)] with E = modulus of elasticity of lithosphere, R is Earth radius, q is the hydrostatic pressure along the bottom circumferential edge of a hemispherical shell, and h is the thickness of subducting lithosphere. In the engineering sciences, a similar relationship between Batdorf parameter for the panel length and normalized hydrostatic pressure was proposed for the buckling of partially liquid-filled circular cylindrical shells under hydrostatic pressure. Moreover, by previous researches, the slab length is approximately proportional to the arc length or the lithosphere thickness related to lithosphere age. Therefore, the Batdorf parameter for subducting lithosphere is an important parameter for the spherical shells tectonics.

  6. Antenna system providing a spherical radiation pattern

    NASA Technical Reports Server (NTRS)

    Sickles, II, Louis (Inventor)

    1993-01-01

    An antenna system provides a substantially spherical radiation pattern about a structure located above ground level, by locating the individual radiation pattern of each of a plurality of individual antennae, each positioned to have a radiation pattern covering only a portion of the desired sphere, and then applying all antenna signals, during either transmission or reception time intervals, through space-diversity and/or time-diversity apparatus, to cause the patterns of all of the antennae to combine into the desired substantially-spherical pattern. The antennae may have substantially hemispherical patterns, with each antenna of a pair thereof being directed in a direction generally opposite to the other antenna of that pair. Time domain multiple access (TDMA) operation of a master system station, with transmission in different time slots for different portions of the coverage sphere, and selection of the strongest received signal from among all of the plurality N of signals simultaneously received by the plurality N of antennae, can provide the desired spherical radiation pattern in both the transmission and reception modes of operation.

  7. Afterburning in spherical premixed turbulent explosions

    SciTech Connect

    Bradley, D.; Lawes, M.; Scott, M.J. . Dept. of Mechanical Engineering); Mushi, E.M.J. )

    1994-12-01

    During the early stages of spherical turbulent flame propagation, more than half of the gas behind the visible flame front may be unburned. Previous models of the afterburning of the gas behind the apparent flame front have been extended in the present work, to include the effects of flame quenching, consequent upon localized flame stretch. The predictions of the model cover, the spatial and temporal variations of the fraction burned, the flame propagation rate, and the mass burning rate. They are all in dimensionless form and are well supported by associated experimental measurements in a fan-stirred bomb with controlled turbulence. The proportion of the gas that is unburned decreases with time and increases with the product of the Karlovitz stretch factor and the Lewis number. Simultaneous photographs were taken of the spherical schlieren image and of that due to Mie scattering from small seed particles in a thin laser sheet that sectioned the spherical flame. These clearly showed the amount of unburned gas within the sphere and, along with other evidence suggest laminar flamelet burning across a scale of distance which is close to the Taylor confirm the predictions of the fraction of gas unburned and of the rate at which it is burning.

  8. Next Step Spherical Torus Design Studies

    SciTech Connect

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-11-08

    Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program.

  9. Spherically symmetric thick branes cosmological evolution

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão

    2015-01-01

    Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).

  10. Quantum corrected spherical collapse: A phenomenological framework

    SciTech Connect

    Ziprick, Jonathan; Kunstatter, Gabor

    2010-08-15

    A phenomenological framework is presented for incorporating quantum gravity motivated corrections into the dynamics of spherically symmetric collapse. The effective equations are derived from a variational principle that guarantees energy conservation and the existence of a Birkhoff theorem. The gravitational potential can be chosen as a function of the areal radius to yield specific nonsingular static spherically symmetric solutions that generically have two horizons. For a specific choice of potential, the effective stress energy tensor violates only the dominant energy condition. The violations are maximum near the inner horizon and die off rapidly. A numerical study of the quantum corrected collapse of a spherically symmetric scalar field in this case reveals that the modified gravitational potential prevents the formation of a central singularity and ultimately yields a static, mostly vacuum, spacetime with two horizons. The matter 'piles up' on the inner horizon giving rise to mass inflation at late times. The Cauchy horizon is transformed into a null, weak singularity, but in contrast to Einstein gravity, the absence of a central singularity renders this null singularity stable.