CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY
Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel
2012-08-10
We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.
Information geometry of the spherical model.
Janke, W; Johnston, D A; Kenna, R
2003-04-01
Motivated by the observation that geometrizing statistical mechanics offers an interesting alternative to more standard approaches, we calculate the scaling behavior of the curvature R of the information geometry metric for the spherical model. We find that R approximately epsilon(-2), where epsilon=beta(c)-beta is the distance from criticality. The discrepancy from the naively expected scaling R approximately epsilon(-3) is explained and compared with that for the Ising model on planar random graphs, which shares the same critical exponents. PMID:12786435
Characterizing student mathematics teachers' levels of understanding in spherical geometry
NASA Astrophysics Data System (ADS)
Guven, Bulent; Baki, Adnan
2010-12-01
This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, task-based interviews were held with eight student mathematics teachers at particular times through the course to determine the spherical geometry learning levels. After identifying the properties of spherical geometry levels, we developed Understandings in Spherical Geometry Test to test whether or not the levels form hierarchy, and 58 student mathematics teachers took the test. The outcomes seemed to support our theoretical perspective that there are some understanding levels in spherical geometry that progress through a hierarchical order as van Hiele levels in Euclidean geometry.
Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry
ERIC Educational Resources Information Center
Guven, Bulent; Baki, Adnan
2010-01-01
This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…
Students Discovering Spherical Geometry Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
NASA Astrophysics Data System (ADS)
Maksymowicz, Andrei
2015-09-01
Based on high-resolution bathymetry and geophysical observations, the precise continental wedge geometry along the Chilean margin is analyzed. The data show complex patterns in continental wedge geometry that challenge the most frequently used classification methodology for the convergent margin tectonics. A detailed modeling of the parameters involved in the Non-Cohesive Coulomb Wedge theory reveals a tectonic latitudinal segmentation of the Chilean offshore subduction zone. This segmentation is characterized by a sequence of broad segments with different basal effective friction coefficient and/or internal fluid pressure conditions, which are limited by the presence of bathymetric oceanic highs, fracture zones and Peninsulas. The results suggest a general increase of the fluid pressure inside the continental wedge north of 33°S, which is interpreted as a result of a more pervasive fracturing due to tectonic erosion at the base and within the continental wedge. The tectonic segmentation proposed here shows a close spatial relation with the short-term deformation process associated to the coseismic ruptures of large earthquakes in the Chilean margin.
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2012-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2011-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Explosive fragmentation of liquids in spherical geometry
NASA Astrophysics Data System (ADS)
Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.
2016-07-01
Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.
NASA Technical Reports Server (NTRS)
Maiden, D. L.
1975-01-01
A wind-tunnel investigation was conducted to determine the aeropropulsion performance (thrust-minus-drag) of a single-engine, variable-geometry, two-dimensional (2-D) wedge nozzle with simulated translating-shroud and collapsing-wedge mechanisms. The investigation was conducted statically and at Mach numbers from 0.60 to 2.01 at an angle of attack of 0 deg and at varied jet total-pressure ratios up to 21, depending on the Mach number. The results indicate that the isolated aeropropulsion performance of a variable-geometry two-dimensional wedge nozzle is competitive with axisymmetric nozzles at transonic and supersonic speeds, but the isolated performance is slightly inferior for static take-off and low subsonic speeds. With the use of a simple tertiary-air ejector, the static take-off performance was increased.
Shock Wave Boundary Layer Interaction Mechanism on a Double Wedge Geometry
NASA Astrophysics Data System (ADS)
Celik, Bayram; Barada, Mohammad Adel El Hajj Ali; Durna, Ahmet Selim
2015-11-01
A hypersonic test series by Swantek & Austin report complex shock wave boundary layer interaction mechanisms and unsteady surface heat flux from a double wedge geometry in a low enthalpy Mach 7 flow. In order to understand the physics of the flow and the heat transfer, we study the flow computationally and compare the results for the double wedge geometries, whose second angle is higher and lower than the maximum deflection angle at Mach 7. Apart from the numbers of comprehensive computational studies on the subject available in open literature, our study aims to describe the flow physics by taking the influence of both boundary layers that are formed on the two walls of the wedge into account. In addition to describing the flow and heat transfer mechanisms, we investigate the time for the flows to reach steady state. We evaluate the interaction mechanisms in term of instant and time average surface heat flux distributions. We perform all computations using a finite volume based compressible Navier-Stokes solver, rhoCentralFoam, which is one of the several compressible flow solvers of an open source software, openFOAM.
Hexatic order and surface ripples in spherical geometries.
Lenz, P; Nelson, D R
2001-09-17
In flat geometries, two-dimensional hexatic order has only a minor effect on capillary waves on a liquid substrate and on undulation modes in lipid bilayers. However, extended bond-orientational order alters the long-wavelength spectrum of these ripples in spherical geometries. We calculate this frequency shift and suggest that it might be detectable in lipid bilayer vesicles, at the surface of liquid metals, and in multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability induced in the later two systems by an excess of electric charge. PMID:11580526
Viscous Rayleigh-Taylor instability in spherical geometry
Mikaelian, Karnig O.
2016-02-08
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.
Viscous Rayleigh-Taylor instability in spherical geometry
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2016-02-01
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng; Hasegawa, Akira; Nakajima, Junichi
2015-09-01
We develop a 3-D thermal model for the Northeast Japan subduction margin, using a realistic slab geometry for the subducting Pacific plate, and investigate the effects of oblique subduction and 3-D slab geometry on the mantle wedge flow pattern and the thermal structure. In the Tohoku region, the mantle wedge flow pattern is nearly two-dimensional resulting in a thermal structure similar to those obtained by a 2-D model, owing to the simple slab geometry and subduction nearly perpendicular to the margin. However, in Hokkaido, oblique subduction leads to 3-D mantle wedge flow with northerly inflow and west-northwestward outflow and also results in lower temperatures in the shallow part of the mantle wedge than in Tohoku due to lower sinking rate of the slab. Between Hokkaido and Tohoku, the slab has a hinge-like shape due to a relatively sharp change in the dip direction. In this hinge zone, northerly mantle inflow from Hokkaido and westerly mantle inflow from Tohoku converge, discouraging inflow from northwest and resulting in a cooler mantle wedge. The model-predicted mantle wedge flow patterns are consistent with observed seismic anisotropy and may explain the orientations of volcanic cross-chains. The predicted 3-D thermal structure correlates well with the along-arc variations in the location of the frontal arc volcanoes and help to provide new insights into the surface heat flow pattern and the down-dip extent of interplate earthquakes.
The AGCE related studies of baroclinic flows in spherical geometry
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1983-01-01
Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.
Acoustic perturbations on steady spherical accretion in Schwarzschild geometry
Naskar, Tapan; Chakravarty, Nabajit; Bhattacharjee, Jayanta K.; Ray, Arnab K.
2007-12-15
The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized acoustic perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency traveling wave, also has its amplitude reduced.
Room geometry inference based on spherical microphone array eigenbeam processing.
Mabande, Edwin; Kowalczyk, Konrad; Sun, Haohai; Kellermann, Walter
2013-10-01
The knowledge of parameters characterizing an acoustic environment, such as the geometric information about a room, can be used to enhance the performance of several audio applications. In this paper, a novel method for three-dimensional room geometry inference based on robust and high-resolution beamforming techniques for spherical microphone arrays is presented. Unlike other approaches that are based on the measurement and processing of multiple room impulse responses, here, microphone array signal processing techniques for uncontrolled broadband acoustic signals are applied. First, the directions of arrival (DOAs) and time differences of arrival (TDOAs) of the direct signal and room reflections are estimated using high-resolution robust broadband beamforming techniques and cross-correlation analysis. In this context, the main challenges include the low reflected-signal to background-noise power ratio, the low energy of reflected signals relative to the direct signal, and their strong correlation with the direct signal and among each other. Second, the DOA and TDOA information is combined to infer the room geometry using geometric relations. The high accuracy of the proposed room geometry inference technique is confirmed by experimental evaluations based on both simulated and measured data for moderately reverberant rooms. PMID:24116416
Born Sensitivity Kernels in Spherical Geometry for Meridional Flows
NASA Astrophysics Data System (ADS)
Jackiewicz, Jason; Boening, Vincent; Roth, Markus; Kholikov, Shukur
2016-05-01
Measuring meridional flows deep in the solar convection zone is challenging because of their small amplitudes compared to other background signals. Typically such inferences are made using a ray theory that is best suited for slowly-varying flows. The implementation of finite-frequency Born theory has been shown to be more accurate for modeling flows of complex spatial structure in the near-surface region. Only until recently were such functions available in spherical geometry, which is necessary for applications to meridional flows. Here we compare these sensitivity kernels with corresponding ray kernels in a forward and inverse problem using numerical simulations. We show that they are suitable for inverting travel-time measurements and are more sensitive to small-scale variations of deep circulations.
Technology in Spherical Geometry Investigations: Reflections on Spontaneous Use and Motivation
ERIC Educational Resources Information Center
Sinclair, Margaret
2010-01-01
Students in a graduate geometry class used items such as paper, ribbon, plastic spheres, cardboard tubes, and markers to carry out investigations in spherical geometry. The hands-on activities helped students develop a new appreciation of geometry as a study of shape and space; however, the difficulty of subduing wayward elastics and drawing lines…
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
NASA Astrophysics Data System (ADS)
Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M.
2010-12-01
Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with
Estimating basal friction in accretionary wedges from the geometry and spacing of frontal faults
NASA Astrophysics Data System (ADS)
Schott, Bertram; Koyi, Hemin A.
2001-12-01
Elastic theory applied to the deformation in accretionary wedges is used to calculate the condition for slip along an active frontal fault and the basal décollement. The equations for calculating the stresses can be solved for the coefficient of basal friction in the situation of the formation of a new frontal thrust fault. This allows us to calculate the efficient coefficient of basal friction, which includes the weakening effect of pore-fluid pressure, from geometric parameters and material properties only. The geometric parameters, like fault dip and layer thickness, can be derived from high-resolution seismic cross-sections. Application of our analysis to the Makran and the Nankai accretionary wedge allows us to estimate the upper limit of the effective coefficient of basal friction, μb≈0.16 and μb≈0.2, in these two areas respectively.
Active plasma resonance spectroscopy: eigenfunction solutions in spherical geometry
NASA Astrophysics Data System (ADS)
Oberrath, J.; Brinkmann, R. P.
2014-12-01
The term active plasma resonance spectroscopy denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe: a radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded, and a mathematical model is used to determine plasma parameters like the electron density. The mathematical model of an arbitrarily shaped probe-plasma system can be written in an abstract but very compact equation. It contains an appropriate operator, which describes the dynamical behavior and can be split into a conservative and a dissipative part. Based on the cold plasma model, this manuscript provides a solution strategy to determine the electrical admittance of a specific probe-plasma system derived from the abstract dynamical equation. Focusing on probes with a spherical-shaped probe tip the general admittance can be derived analytically. Therefore, the matrix representation of the resolvent of the dynamical operator is determined. This matrix representation is derived by means of the eigenfunctions and eigenvalues of the conservative operator. It can be shown that these eigenvalues represent the resonance frequencies of the probe-plasma system which are simply connected to the electron density. As an example, the result is applied to established probe designs: the spherical impedance probe and the multipole resonance probe.
Stationary premixed flames in spherical and cylindrical geometries
NASA Technical Reports Server (NTRS)
Ronney, P. D.; Whaling, K. N.; Abbud-Madrid, A.; Gatto, J. L.; Pisowiscz, V. L.
1994-01-01
Stationary source-free spherical flames ('flame balls') in premixed combustible gases were studied by employing low-gravity (micro-g) environments in a drop tower and an aircraft flying parabolic trajectories to diminish the impact of buoyancy-induced convective flow. Flame balls were found in all mixture families tested when: (1) the Lewis number Le of the deficient reactant was sufficiently low; and (2) the compositions were sufficiently close to the flammability limits. Probably as a consequence of the reduction in buoyant convection, the flammability limits at micro-g were significantly more dilute than those at Earth gravity; for example, 3.35% H2 vs 4.0% H2 in lean H2-air mixtures. By comparison with analytical and computational models, it is inferred that the phenomenon is probably related to diffusive-thermal effects in low-Le mixtures in conjunction with flame-front curvature and radiative heat losses from the combustion products. The chemical reaction mechanism appears to play no qualitative role. In the aircraft experiments, the gravity levels (approximately equal 10(exp -2)g(sub 0)) were found to cause noticeable motion of flame balls due to buoyancy, which in turn influenced the behavior of flame balls. At these g levels, a new type of transient, nearly cylindrical flame structure, termed 'flame strings,' was observed.
Simulations of plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Forest, Cary; Schnack, Dalton; Ebrahimi, Fatima
2010-11-01
We have performed the numerical investigation of plasma flow and possibility of dynamo effect in Madison Plasma Couette Experiment (MPCX) and Madison Plasma Dynamo Experiment (MPDX), which are being installed at the University of Wisconsin- Madison. Using the extended MHD code, NIMROD, we have studied several types of plasma flows appropriate for dynamo excitation. Calculations are done for isothermal compressible plasma model including two-fluid effects (Hall term), which is beyond the standard incompressible MHD picture. It is found that for magnetic Reynolds numbers exceeding the critical one the counter-rotating Von Karman flow (in cylinder) and Dudley- James flow (in sphere) result in self-generation of magnetic field. Depending on geometry and plasma parameters this field can either saturate at certain amplitude corresponding to a new stable equilibrium (laminar dynamo) or lead to turbulent dynamo. It is shown that plasma compressibility results in increase of the critical magnetic Reynolds number while two- fluid effects change the level of saturated dynamo field. The work is supported by NSF.
Nematic liquid crystal in the wedge and edge geometry in the case of homeotropic alignment.
Poniewierski, A
2010-02-01
Nematic liquid crystal confined to a wedge or edge is studied on the assumption that the confining surfaces provide strong and weak homeotropic anchorings, respectively. Both infinite and finite systems are considered. The model based on the Frank-Oseen and Rapini-Papoular formalisms predicts two textures of opposite rotations of the director as in the case of strong anchoring on both surfaces. However, the presence of weak anchoring results in a length scale lambda which characterizes the crossover between the regions close to the apex and far from it. The ratio lambda/b , where b is the extrapolation length, is a function of the opening angle alpha. Both stable and metastable textures are considered and the mechanism by which a texture loses its stability is found. It is related to the formation of a defect-like structure at the surface of weak anchoring whose distance from the apex is lambda(alpha) and the loss of stability is signalled by the divergence of lambda. Only in the limit alpha --> 2tau, the defect-like structure transforms into a defect of strength -1/2 located at a finite distance from the apex. PMID:20195687
Multigroup Time-Independent Neutron Transport Code System for Plane or Spherical Geometry.
Energy Science and Technology Software Center (ESTSC)
1986-12-01
Version 00 PALLAS-PL/SP solves multigroup time-independent one-dimensional neutron transport problems in plane or spherical geometry. The problems solved are subject to a variety of boundary conditions or a distributed source. General anisotropic scattering problems are treated for solving deep-penetration problems in which angle-dependent neutron spectra are calculated in detail.
Ablation Front Rayleigh-Taylor Growth Experiments in Spherically Convergent Geometry
Glendinning, S.G.; Cherfils, C.; Colvin, J.; Divol, L.; Galmiche, D.; Haan, S.; Marinak, M.M.; Remington, B.A.; Richard, A.L.; Wallace, R.
1999-11-03
Experiments were performed on the Nova laser, using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh-Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulations of 4 {micro}m, growth factors of about 6 in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2. With initial modulations of 1 {micro}m, growth factors of about 100-150 in optical depth were seen. The Rayleigh-Taylor (RT) instability at the ablation front in an inertial confinement fusion capsule has been the subject of considerable investigation. Much of this research has been concentrated on planar experiments, in which RT growth is inferred from radiography. The evolution is somewhat different in a converging geometry; the spatial wavelength decreases (affecting the onset of nonlinear saturation), and the shell thickens and compresses rather than decompressing as in a planar geometry. In a cylindrically convergent geometry, the latter effect is proportional to the radius, while in spherically convergent geometry, the latter effect is proportional to the radius squared. Experiments were performed on the Nova and Omega lasers in cylindrical geometry (using both direct and indirect drive) and have been performed in spherical geometry using direct drive.
TOA Lightning Location Retrieval on Spherical and Oblate Spheroidal Earth Geometries
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.; Arnold, James E. (Technical Monitor)
2000-01-01
A simple linear algebraic solution is introduced for retrieving the location and time-of-occurrence of lightning ground strikes on a spherical Earth from a network of four or more time-of-arrival (TOA) sensors. Since the solution accounts for Earth curvature, it represents an extension to earlier planar model results described by Koshak et al. A test of the retrieval method is provided using computer-simulated data sets. The method is easy to comprehend and completely avoids reference to the mathematics of spherical hyperbolas such as discussed by Lewis. A quasi-analytic extension to the spherical Earth solution is provided for an oblate spheroidal Earth geometry, and the importance/relevance of oblate effects are discussed. Future application of these methods in support of the North American National Lightning Detection Network (NALDN) described by Cummins et al. is desirable, but additional theoretical investigations are required to incorporate magnetic bearing information into the present solution process.
Sum frequency generation image reconstruction: aliphatic membrane under spherical cap geometry.
Volkov, Victor
2014-10-01
The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal - a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance. PMID:25296798
Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry
Volkov, Victor
2014-10-07
The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal – a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.
NASA Astrophysics Data System (ADS)
Olsson, Peter
2016-03-01
A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Hill, R. J.; Guilliams, B. P.; Drake, S. K.; Kladden, J. L.
1979-01-01
An elastic stress analysis was performed on a wedge specimen (prismatic bar with single-wedge cross section) subjected to thermal cycles in fluidized beds. Seven different combinations consisting of three alloys (NASA TAZ-8A, 316 stainless steel, and A-286) and four thermal cycling conditions were analyzed. The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and ISO3DQ). Stress, strain, and temperature results are presented.
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Mitra, Sushanta K.
2013-09-01
In this paper, we provide a theory to pinpoint the role of electric double layer (EDL) interactions in governing the contact angle of an electrolyte drop on a charged solid in air or a bubble on a charged surface within an electrolyte solution. The EDL interactions are analytically solved by representing the three phase contact line as a wedge edge, with the wedge being formed by the solid-liquid and the air-liquid interfaces, and calculating the corresponding Maxwell stresses. We demonstrate that the EDL effects induce an “electrowetting-like” behavior, resulting in a lowering of the contact angle. As a specific example, we use this model to analyze the effect of added salt on preformed surface nanobubbles, and find, in contrast to what has been reported earlier, that even for most moderate conditions, added salt may have remarkable effect in altering the contact angle in preformed surface nanobubbles.
Williamson, D.L.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N. ); Drake, J.B. )
1991-08-01
A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers. 31 refs.
Sensitivity Kernels for Flows in Time–Distance Helioseismology: Extension to Spherical Geometry
NASA Astrophysics Data System (ADS)
Böning, Vincent G. A.; Roth, Markus; Zima, Wolfgang; Birch, Aaron C.; Gizon, Laurent
2016-06-01
We extend an existing Born approximation method for calculating the linear sensitivity of helioseismic travel times to flows from Cartesian to spherical geometry. This development is necessary for using the Born approximation for inferring large-scale flows in the deep solar interior. As first sanity check, we compare two f-mode kernels from our spherical method and from an existing Cartesian method. The horizontal and total integrals agree to within 0.3%. As a second consistency test, we consider a uniformly rotating Sun and a travel distance of 42°. The analytical travel-time difference agrees with the forward-modeled travel-time difference to within 2%. In addition, we evaluate the impact of different choices of filter functions on the kernels for a meridional travel distance of 42°. For all filters, the sensitivity is found to be distributed over a large fraction of the convection zone. We show that the kernels depend on the filter function employed in the data analysis process. If modes of higher harmonic degree (90 ≲ l ≲ 170) are permitted, a noisy pattern of a spatial scale corresponding to l ≈ 260 appears near the surface. When mainly low-degree modes are used (l ≲ 70), the sensitivity is concentrated in the deepest regions and it visually resembles a ray-path-like structure. Among the different low-degree filters used, we find the kernel for phase-speed-filtered measurements to be best localized in depth.
A quantification of the non-spherical geometry and accretion of collapsing cores
NASA Astrophysics Data System (ADS)
Smith, Rowan J.; Glover, Simon C. O.; Bonnell, Ian A.; Clark, Paul C.; Klessen, Ralf S.
2011-02-01
We present the first detailed classification of the structures of Class 0 cores in a high-resolution simulation of a giant molecular cloud. The simulated cloud contains 104 M⊙ and produces over 350 cores which allows for meaningful statistics. Cores are classified into three types according to how much they depart from spherical symmetry. We find that three-quarters of the cores are better described as irregular filaments than as spheres. Recent Herschel results have shown that cores are formed within a network of filaments, which we find has had a significant impact on the resulting core geometries. We show that the column densities and ram pressure seen by the protostar are not uniform and generally peak along the axes of the filament. The angular momentum vector of the material in the cores varies both in magnitude and direction, which will cause the rotation vector of the central source to fluctuate during the collapse of the core. In the case of the more massive stars, accretion from the environment outside the original core volume is even more important than that from the core itself. This additional gas is primarily accreted on to the cores along the dense filaments in which the cores are embedded, and the sections of the surfaces of the cores which do not coincide with a filament have very little additional material passing through them. The assumption of spherical symmetry cannot be applied to the majority of collapsing cores, and is never a good description of how stars accrete gas from outside the original core radius. This has ramifications for our understanding of collapsing cores, in particular their line profiles, the effect of radiation upon them and their ability to fragment.
Ziegler, Andy; Koehler, Thomas; Nielsen, Tim; Proksa, Roland
2006-12-15
In cone-beam transmission tomography the measurements are performed with a divergent beam of x-rays. The reconstruction with iterative methods is an approach that offers the possibility to reconstruct the corresponding images directly from these measurements. Another approach based on spherically symmetric basis functions (blobs) has been reported with results demonstrating a better image quality for iterative reconstruction algorithms. When combining the two approaches (i.e., using blobs in iterative cone-beam reconstruction of divergent rays) the problem of blob sampling without introducing aliasing must be addressed. One solution to this problem is to select a blob size large enough to ensure a sufficient sampling, but this prevents a high resolution reconstruction, which is not desired. Another solution is a heuristic low-pass filtering, which removes this aliasing, but neglects the different contributions of blobs to the absorption depending on the spatial position in the volume and, therefore, cannot achieve the best image quality. This article presents a model of sampling the blobs which is motivated by the beam geometry. It can be used for high resolution reconstruction and can be implemented efficiently.
Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil
Rothe, R.E.
1997-05-01
Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.
NASA Astrophysics Data System (ADS)
Raskin, Cody; Owen, J. Michael
2016-04-01
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core-mantle boundaries.
ERIC Educational Resources Information Center
Piva, M.
2009-01-01
In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…
Low-complexity digital filter geometry for spherical coded imaging systems
NASA Astrophysics Data System (ADS)
Feng, Guotong; Shoaib, Mohammed; Robinson, M. D.
2009-08-01
Recent research in the area of electro-optical system design identified the benefits of spherical aberration for extending the depth-of-field of electro-optical imaging systems. In such imaging systems, spherical aberration is deliberately introduced by the optical system lowering system modulation transfer function (MTF) and then subsequently corrected using digital processing. Previous research, however, requires complex digital postprocessing algorithms severely limiting its applicability to only expensive systems. In this paper, we examine the ability of low-cost spatially invariant finite impulse response (FIR) digital filters to restore system MTF degraded by spherical aberration. We introduce an analytical model for choosing the minimum, and hence cheapest, FIR filter size capable of providing the critical level sharpening to render artifact-free images. We identify a robust quality criterion based on the post-processed MTF for developing this model. We demonstrate the reliability of the estimated model by showing simulated spherical coded imaging results. We also evaluate the hardware complexity of the FIR filters implemented for various spherical aberrations on a low-end Field-Programmable Gate Array (FPGA) platform.
NASA Astrophysics Data System (ADS)
Dewitt-Morette, Cécile; Low, Stephen G.; Schulman, Lawrence S.; Shiekh, Anwar Y.
1986-04-01
The wedge problem, that is, the propagation of radiation or particles in the presence of a wedge, is examined in different contexts. Generally, the paper follows the historical order from Sommerfeld's early work to recent stochastic results—hindsights and new results being woven in as appropriate. In each context, identifying the relevant mathematical problem has been the key to the solution. Thus each section can be given both a physics and a mathematics title: Section 2: diffraction by reflecting wedge; boundary value problem of differential equations; solutions defined on mutiply connected spaces. Section 3: geometrical theory of diffraction; identificiation of function spaces. Section 4: path integral solutions; path integration on multiply connected spaces; asymptotics on the boundaries of function spaces. Section 5: probing the shape of the wedge and the roughness of its surface; stochastic calculus. Several propagators and Green functions are given explicitly, some old ones and some new ones. They include the knife-edge propagator for Dirichlet and Neumann boundary conditions, the absorbing knife edge propagator, the wedge propagators, the propagator for a free particle on a μ-sheeted Riemann surface, the Dirichlet and the Neumann wedge Green function.
DeWitt-Morette, C.; Low, S.G.; Schulman, L.S.; Shiekh, A.Y.
1986-04-01
The wedge problem, that is, the propagation of radiation or particles in the presence of a wedge, is examined in different contexts. Generally, the paper follows the historical order from Sommerfeld's early work to recent stochastic results - hindsights and new results being woven in as appropriate. In each context, identifying the relevant mathematical problem has been the key to the solution. Thus each section can be given both a physics and a mathematics title: Section 2: diffraction by reflecting wedge; boundary value problem of differential equations; solutions defined on multiply connected spaces. Section 3: geometrical theory of diffraction; identification of function spaces. Section 4: path integral solutions; path integration on multiply connected spaces; asymptotics on the boundaries of function spaces. Section 5: probing the shape of the wedge and the roughness of its surface; stochastic calculus. Several propagators and Green functions are given explicitly, some old ones and some new ones. They include the knife-edge propagator for Dirichlet and Neumann boundary conditions, the absorbing knife edge propagator, the wedge propagators, the propagator for a free particle on a /sigma phi/-sheeted Riemann surface, the Dirichlet and the Neumann wedge Green function.
NASA Technical Reports Server (NTRS)
Egan, Michael P.; Leung, Chun Ming; Spagna, George F., Jr.
1988-01-01
The program solves the radiation transport problem in a dusty medium with one-dimensional planar, spherical or cylindrical geometry. It determines self-consistently the effects of multiple scattering, absorption, and re-emission of photons on the temperature of dust grains and the characteristics of the internal radiation field. The program can treat radiation field anisotropy, linear anisotropic scattering, and multi-grain components. The program output consists of the dust-temperature distribution, flux spectrum, surface brightness at each frequency and the observed intensities (involving a convolution with a telescope beam pattern).
NASA Astrophysics Data System (ADS)
Arciniaga, Michael; Peterson, Michael R.
2016-07-01
We derive the single-particle eigenenergies and eigenfunctions for massless Dirac fermions confined to the surface of a sphere in the presence of a magnetic monopole, i.e., we solve the Landau level problem for electrons in graphene on the Haldane sphere. With the single-particle eigenfunctions and eigenenergies we calculate the Haldane pseudopotentials for the Coulomb interaction in the second Landau level and calculate the effective pseudopotentials characterizing an effective Landau level mixing Hamiltonian entirely in the spherical geometry to be used in theoretical studies of the fractional quantum Hall effect in graphene. Our treatment is analogous to the formalism in the planar geometry and reduces to the planar results in the thermodynamic limit.
Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.
2012-11-20
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20 Degree-Sign Multiplication-Sign 20 Degree-Sign . Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.
NASA Technical Reports Server (NTRS)
Band, D. L.; Grindlay, J. E.
1986-01-01
Observational implications and constraints on spherical nonthermal synchrotron self-Compton models with applications to AGNs are discussed. The Compton optical depth of the source and the synchrotron optical depth are considered, and plausible electron distributions are discussed. The alpha(0x), alpha(rx), and alpha(0r) system of comparing the fluxes in different energy bands is related to the nonthermal models, and sample spectra are presented that show the spectral features the models can produce. The models are applied to radio-quiet AGNs. It is shown that the infrared and X-ray continua of the AGNs can be produced by nonthermal processes.
Numerical study of laminar plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Bayliss, Adam; Ebrahimi, Fatima; Forest, Cary; Schnack, Dalton
2009-05-01
We have performed the numerical investigation of possibility of laminar dynamo in two new experiments, Plasma Couette and Plasma Dynamo, which have been designed at the University of Wisconsin-Madison. The plasma is confined by a strong multipole magnetic field localized at the boundary of cylindrical (Plasma Couette) or spherical (Plasma Dynamo) chamber. Electrodes positioned between the magnet rings can be biased with arbitrary potentials so that Lorenz force ExB drives any given toroidal velocity profile at the surface. Using the extended MHD code, NIMROD, we have modeled several types of plasma flows appropriate for dynamo excitation. It is found that for high magnetic Reynolds numbers the counter-rotating von Karman flow (in cylinder) and Dudley-James flow (in sphere) can lead to self-generation of non-axisymmetric magnetic field. This field saturates at certain amplitude corresponding to a new stable equilibrium. The structure of this equilibrium is considered.
Gravity, Topography, Magnetics: Geoscience Data Analysis in Spherical and Planar Geometry
NASA Astrophysics Data System (ADS)
Simons, F. J.; Harig, C.; Lewis, K. W.; Plattner, A.
2015-12-01
Data in the Earth and planetary sciences (as well as in astronomy and cosmology, medical imaging, auditory signal processing, and computer vision) often inherently have a sphere (or an ellipsoid) as their domain. However, frequently our goal is to study phenomena in a specific region of the globe. We might either have data that only cover parts of the sphere (e.g. ocean altimetry, Shuttle radar topography), or we may seek to extract a local signal from a global data set (e.g. the continental fraction of the lithospheric magnetic field, or the portion of the time-varying geopotential that is due to ice mass changes). Spectral content is always finite: all sampled data are band-limited. When the region under study is not the whole sphere, but not small enough to justify two-dimensional projection either, the question arises how to best represent the data to perform our analysis, whatever our field of interest. We present SLEPIAN, a software suite with a multitude of numerical and computational tools, and several plotting routines, to accomplish ``spatiospectral'' spherical analysis in the geosciences and beyond.
NASA Astrophysics Data System (ADS)
Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.
2013-03-01
Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and
Davidsen, Jörn; Glass, Leon; Kapral, Raymond
2004-11-01
We analyze the way topological constraints and inhomogeneity in the excitability influence the dynamics of spiral waves on spheres and punctured spheres of excitable media. We generalize the definition of an index such that it characterizes not only each spiral but also each hole in punctured, oriented, compact, two-dimensional differentiable manifolds and show that the sum of the indices is conserved and zero. We also show that heterogeneity and geometry are responsible for the formation of various spiral-wave attractors, in particular pairs of spirals in which one spiral acts as a source and a second as a sink--the latter similar to an antispiral. The results provide a basis for the analysis of the propagation of waves in heterogeneous excitable media in physical and biological systems. PMID:15600724
NASA Astrophysics Data System (ADS)
Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.
2013-03-01
Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
NASA Astrophysics Data System (ADS)
Vaudelle, F.; Askoura, M.; L'Huillier, J. P.
2015-07-01
The non-invasive research of information inside biological tissues can be made by means of setups using continuous, time-dependent or frequency modulated light sources, which emit in the visible or near-infrared range. Moreover, the biological structures such as brain, breast or fruits, can be regarded as closer to a spherical shape than a slab. This paper focus on the retrieval of tissue optical parameters in a spherical geometry using fittings with analytical solutions adapted for semi-infinite geometry. The data were generated using three different optical spectroscopy methods: frequency-resolved, spatially-resolved, and time-resolved modes. Simulations based on a Monte Carlo code were performed on homogeneous spheres, with 18 spaced detectors located on their boundary. First, data are examined in the frequency domain. Second, they are treated with optimization algorithms to assess the optical coefficients. The computations show that the spatially-resolved measurements are often more robust than those related to the frequency-resolved mode. In the temporal domain, errors on the estimates are also exhibited with the fitting by the Fourier transform of a solution based on the semi-infinite geometry. Furthermore, when the analytical solution is modified by taking into account the spherical shape, the retrieval of the coefficients is improved.
A comparison of angular difference schemes for one-dimensional spherical geometry S{sub N} equations
Lathrop, K.D.
2000-03-01
To investigate errors caused by angular differencing in approximating the streaming terms of the transport equation, five different approximations are evaluated for three test problems in one-dimensional spherical geometry. The following schemes are compared: diamond, special truncation error minimizing weighted diamond, linear continuous (the original S{sub N} scheme), linear discontinuous, and new quadratic continuous. To isolate errors caused by angular differencing, the approximations are derived from the transport equation without spatial differencing, and the resulting coupled ordinary differential equations (ODEs) are solved with an ODE solver. Results from the approximations are compared with analytic solutions derived for two-region purely absorbing spheres. Most of the approximations are derived by taking moments of the conservation form of the transport equation. The quadratic continuous approximation is derived taking the zeroth moment of both the transport equation and the first angular derivative of the transport equation. The advantages of this approach are described, In all of the approximations, the desirability is shown of using an initializing computation of the {mu} = {minus}1 angular flux to correctly compute the central flux and of having a difference approximation that ensures this central flux is the same for all directions. The behavior of the standard discrete ordinates equations in the diffusion limit is reviewed, and the linear and quadratic continuous approximations are shown to have the correct diffusion limit if an equal interval discrete quadrature is used. In all three test problems, the weighted diamond difference approximation has smaller maximum and average relative flux errors than the diamond or the linear continuous difference approximations. The quadratic continuous approximation and the linear discontinuous approximation are both more accurate than the other approximations, and the quadratic continuous approximation has a
NASA Technical Reports Server (NTRS)
Wood, Kenneth E.
1987-01-01
Structure assembled rapidly with simple hand tools. Proposed locking wedge joints enable rapid assembly of lightweight beams, towers, scaffolds, and other truss-type structures. Lightweight structure assembled from tubular struts joined at nodes by wedge pins fitting into mating slots. Joint assembled rapidly by seating wedge pin in V-shaped slots and deforming end of strut until primary pawl engages it.
Thermally actuated wedge block
Queen, Jr., Charles C.
1980-01-01
This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.
Modeling decenter, wedge, and tilt errors in optical tolerance analysis and simulation
NASA Astrophysics Data System (ADS)
Youngworth, Richard N.; Herman, Eric
2014-09-01
Many optical designs have lenses with circular outer profiles that are mounted in cylindrical barrels. This geometry leads to errors on mounting parameters such as decenter and tilt, and component error like wedge which are best modeled with a cylindrical or spherical coordinate system. In the absence of clocking registration, this class of errors is effectively reduced to an error magnitude with a random clocking azimuth. Optical engineers consequently must fully understand how cylindrical or spherical basis geometry relates to Cartesian representation. Understanding these factors as well as how optical design codes can differ in error application for Monte Carlo simulations produces the most effective statistical simulations for tolerance assignment, analysis, and verification. This paper covers these topics to aid practicing optical engineers and designers.
High-energy rate forgings of wedges :
Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.
2014-05-01
The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.
Long-range hybrid wedge plasmonic waveguide.
Zhang, Zhonglai; Wang, Jian
2014-01-01
We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius. PMID:25362900
Long-range hybrid wedge plasmonic waveguide
Zhang, Zhonglai; Wang, Jian
2014-01-01
We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius. PMID:25362900
Long polymers near wedges and cones
NASA Astrophysics Data System (ADS)
Hammer, Yosi; Kantor, Yacov
2015-12-01
We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.
Long polymers near wedges and cones.
Hammer, Yosi; Kantor, Yacov
2015-12-01
We perform a Monte Carlo study of N-step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d=2), or the tip of an impenetrable cone in d=3, of sizes ranging up to N=10(6) steps. We find that the critical exponent γ(α), which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α, is in good agreement with the theory for d=2. We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γ(α), as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions. PMID:26764719
Micromachine Wedge Stepping Motor
Allen, J.J.; Schriner, H.K.
1998-11-04
A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.
Wedges for ultrasonic inspection
Gavin, Donald A.
1982-01-01
An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.
Taper Angle Evolution in Taiwan Accretionary Wedge
NASA Astrophysics Data System (ADS)
Chen, L.; Chi, W.; Liu, C.
2011-12-01
Liwen Chena,b, Wu-Cheng Chia, Char-Shine Liuc aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan bInstitute of Geosciences, National Taiwan University, Taipei, Taiwan cInstitute of Oceanography, National Taiwan University, Taipei, Taiwan The critical taper model, originally developed using onland Taiwan as an example, is governed by force balance of a horizontal compressional wedge. This model has been successfully applied to many mountainous regions around the world. Among them, Taiwan is located in an oblique collision between the Luzon Arc and the Chinese Passive margin. Previous critical taper angle studies of Taiwan are mainly focusing on utilizing land data. In this study we want to extend these studies to offshore region from the subduction zone to collision zone. Here we study the varying taper angles of the double-vergent wedge derived from 1,000 km of reflection seismic profiles in both the pro-wedge and retro-wedge locations. These profiles were collected in the last two decades. For the retro-wedge, the topography slope angle changes from 2 to 8.8 degrees; some of the steep slope suggests that some part of the retrowedge is currently in a super-critical angle state. Such dramatic changes in taper angle probably strongly affect regional sedimentary processes, including slumping, in addition to structural deformation. These complex processes might even help develop a mélange or re-open a closed basin. We are currently working on studying the taper angle evolution of the pro-wedge from subduction to arc-continent collision zone in the offshore region. Though further works are needed, our preliminary results show that the evolution of wedge angles and the geometry of the wedge are closely linked and inseparable. The structures of the subducting plate might have strong influence on the deformation style of the over-riding plate. It would be interesting to combine the angle variation with the structure interpretation of the accretionary wedge
Mechanics of injection wedges in collision orogens
NASA Astrophysics Data System (ADS)
Thompson, A. B.; Schulmann, K.
2003-04-01
Instantaneously juxtaposed lithospheric sections, marked by different geothermal gradient and lithological make-up, are examined to identify zones of highly contrasting strength in adjacent transposed crust and lithospheric mantle. Three types of geotherms and four reference lithospheric segments: thin crust/hot geotherm (rift), thin crust/mean geotherm (relaxed rift), standard crust/hot geotherm (arc), standard crust/mean geotherm (normal crust), are compared with variable permutations of cratonic, standard and rifted lithosphere thicknesses. This permits identification of strong brittle-elastic or plastic mantle, lower and upper crust juxtaposed against plastic rocks of a weak adjacent lithosphere. Vertical positions of shallow dipping detachment zones thus delineate possible areas of hot or cold injection wedges which include: (i) Single shallow wedge (or Flake), (ii) Double shallow and deep wedge, (iii) Deep lithospheric crocodile, (iv) Crustal thickening due to shallow strength differences, (v) Mantle Lithosphere thickening, or wedging, due to deep mantle strength differences and (vii) Exchange tectonics as an extreme wedging process, in which horizontal mass exchange is approximately equal. Rheological calculations are compared to a database of seismic profiles in which the geometry of detachment zones and proposed thermal conditions and lithological make-ups have been presented.
NASA Technical Reports Server (NTRS)
1998-01-01
This image shows an area of crustal separation on Jupiter's moon, Europa. Lower resolution pictures taken earlier in the tour of NASA's Galileo spacecraft revealed that dark wedge-shaped bands in this region are areas where the icy crust has completely pulled apart. Dark material has filled up from below and filled the void created by this separation.
In the lower left corner of this image, taken by Galileo's onboard camera on December 16, 1997, a portion of one dark wedge area is visible, revealing a linear texture along the trend of the wedge. The lines of the texture change orientation slightly and reflect the fact that we are looking at a bend in the wedge. The older, bright background, visible on the right half of the image, is criss-crossed with ridges. A large, bright ridge runs east-west through the upper part of the image, cutting across both the older background plains and the wedge. This ridge is rough in texture, with numerous small terraces and troughs containing dark material.
North is to the top of the picture and the sun illuminates the surface from the northwest. This image, centered at approximately 16.5 degrees south latitude and 196.5 degrees west longitude, covers an area approximately 10 kilometers square (about 6.5 miles square). The resolution of this image is about 26 meters per picture element. This image was taken by the solid state imaging system from a distance of 1250 kilometers (750 miles).
The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).
This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.
Wedge Waveguides and Resonators for Quantum Plasmonics
2015-01-01
Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499
NASA Astrophysics Data System (ADS)
Scharstein, Robert W.; Davis, Anthony M.
1994-07-01
Two complementary analyses of the time-harmonic scattering by a penetrable wedge are presented. The distance from the apex (appropriately scaled by the wavenumber in the exterior region) of the exciting line source is the single length scale in this infinite-domain boundary value problem. The work summarized herein represents two mathematical approaches (among a series of candidates) to solve this important scattering problem and to visualize the wave physics.
Wedged AFM-cantilevers for parallel plate cell mechanics.
Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne
2013-04-01
The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778
Bouncing and bursting in a wedge
NASA Astrophysics Data System (ADS)
Reyssat, Etienne; Cohen, Caroline; Quere, David
2015-11-01
Placed into an inhomogeneous confined medium, non-wetting drops tend to be expelled from the tightest regions, where their contact with the walls would be maximized. They preferentially explore more open areas which are favorable from the point of view of capillary energy. Following this principle, one may thus use the geometry of confined environments to control fluid droplets in various ways : displacing, filtering, fragmenting... In this communication, we present experimental results on the dynamics of Leidenfrost drops launched into a wedge formed by two quasi-horizontal glass plates. Influenced by the gradient of confinement, these non-wetting liquid pucks approach the apex of the wedge to a minimal distance where they bounce back. At higher impact velocity, we observe that drops tend to penetrate deeper into the wedge but often burst into a large number of small fragments. We also discuss ways to control the deviation of droplets from their initial trajectory. We propose scaling law analyses to explain the characteristics of the observed bouncing and bursting phenomena.
NASA Technical Reports Server (NTRS)
1997-01-01
This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Euclidean, Spherical, and Hyperbolic Shadows
ERIC Educational Resources Information Center
Hoban, Ryan
2013-01-01
Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…
NASA Technical Reports Server (NTRS)
1997-01-01
Flat Top, the rectangular rock at right, is part of a stretch of rocky terrain in this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. Dust has accumulated on the top of Flat Top, but is not present on the sides due to the steep angles of the rock. This dust may have been placed by dust storms moving across the Martian surface. The rock dubbed 'Wedge' is at left. The objects have been studied using several different color filters on the IMP camera.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
A Potential Field Model for Spherical Sub-domains
NASA Astrophysics Data System (ADS)
Fisher, George H.; Bercik, David; Welsch, Brian; Kazachenko, Maria D.; CGEM Team
2016-05-01
Potential field models are used widely in Solar Physics to estimate coronal magnetic field geometry and connectivity, to provide lower limits on magnetic energies, and to provide initial configurations for time-dependent models of magnetic fields in the solar atmosphere. Potential field models in a spherical geometry can be global, covering the entire Sun, or confined to localized sub-volumes of the sphere. Here, we focus on the latter case.We describe an efficient potential field model for localized spherical sub-volumes (wedges consisting of upper and lower limits of radius, co-latitude, and longitude), employing a finite-difference approach for the solution. The solution is derived in terms of a "poloidal" potential, which can then be used to find either the scalar potential or the vector potential for the magnetic field (if desired), as well as all three magnetic field components. The magnetic field components are computed on the faces of spherical voxels, and the finite difference grid is consistent with the well-known "Yee" grid. The inner spherical boundary is defined by radial magnetic field measurements, and at the outer radius a source-surface boundary condition is imposed.Potential field solutions on active region scales, at full HMI resolution, and with the source surface located a solar radius above the photosphere, can be obtained on a laptop computer in just a few minutes. The three-dimensional finite difference equations are solved using NCAR's FISHPACK elliptic equation solver.The potential field model was developed by the Coronal Global Evolutionary Model (CGEM) project, funded by the NASA and NSF Strategic Capabilities program. The potential field model described here was motivated by CGEM's need for such a model. The model will be released as open-source code when the model details are published.
Wedge Absorber Design for the Muon Ionisation Cooling Experiment
Rogers, C.; Snopok, P.; Coney, L.; Jansson, A.; /Fermilab
2010-05-01
In the Muon Ionisation Cooling Experiment (MICE), muons are cooled by ionisation cooling. Muons are passed through material, reducing the total momentum of the beam. This results in a decrease in transverse emittance and a slight increase in longitudinal emittance, but overall reduction of 6d beam emittance. In emittance exchange, a dispersive beam is passed through wedge-shaped absorbers. Muons with higher energy pass through more material, resulting in a reduction in longitudinal emittance as well as transverse emittance. We consider the cooling performance of different wedge materials and geometries and propose a set of measurements that would be made in MICE.We outline the resources these measurements would require and detail some constraints that guide the choice of wedge parameters.
Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon
2011-07-01
Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces
Greenwood, Margaret S.
2000-01-01
The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.
Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory
NASA Technical Reports Server (NTRS)
Dahlen, F. A.; Suppe, J.; Davis, D.
1984-01-01
A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.
Thermal-wave fields in solid wedges using the Green function method: Theory and experiment
NASA Astrophysics Data System (ADS)
Tai, Rui; Zhang, Jie; Wang, Chinhua; Mandelis, Andreas
2013-04-01
In this work, we establish a theoretical model for a cylindrical rod of radius R with opening angle θ illuminated by a modulated incident beam. The model uses the Green function method in cylindrical coordinates. An analytical expression for the Green function and thermal-wave field in such a solid is presented. The theory is validated in the limit of reducing the arbitrary wedge geometrical structure to simpler geometries. For acute angle wedges, it is shown that the thermal-wave field near the edge exhibits confinement behavior and increased amplitude compared to a flat (reference) solid with θ = π. For obtuse angle wedges, it is shown that the opposite is true and relaxation of confinement occurs leading to lower amplitude thermal-wave fields. The theory provides a basis for quantitative thermophysical characterization of wedge-shaped objects and it is tested using an AISI 304 steel wedge and photothermal radiometry detection.
Wavelength meter having elliptical wedge
Hackel, Richard P.; Feldman, Mark
1992-01-01
A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.
Wavelength meter having elliptical wedge
Hackel, R.P.; Feldman, M.
1992-12-01
A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.
Spherical electrostatic electron spectrometer
NASA Astrophysics Data System (ADS)
Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.
1982-06-01
A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.
Electrodynamic Casimir effect in a medium-filled wedge.
Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A
2009-04-01
We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|<1, for purely dielectric media. We also consider the radiation produced by the sudden appearance of an infinite cosmic string, situated along the cusp line of the pre-existing wedge. PMID:19518186
Minimum work analysis on the critical taper accretionary wedges- insights from analogue modeling
NASA Astrophysics Data System (ADS)
Santimano, Tasca; Rosenau, Matthias; Oncken, Onno
2014-05-01
The Critical taper theory (CTT) is a fundamental concept for the understanding of mountain building processes. Based on force balance it predicts the preferred steady state geometry of an accretionary wedge system and its tectonic regime (extensive, compressive, stable). However, it does not specify which structures are formed and reactivated to reach the preferred state. The latter can be predicted by the minimum work concept. Here we test both concepts and their interplay by analysing two simple sand wedge models which differ only in the thickness of the basal detachment (a layer of glass beads). While the steady state critical taper is controlled by internal and basal friction coefficients and therefore the same in all experiments, different processes can minimise work by 1. reducing gravitational work e.g. by lowering the amount of uplift or volume uplifted, or 2. reducing frictional work e.g. by lowering the load or due to low friction coefficient along thrusts. Since a thick detachment allows entrainment of low friction material and therefore lowering of the friction along active thrusts, we speculate that the style of wedge growth will differ between the two models. We observe that the wedge with a thin basal detachment localizes strain at the toe of the wedge periodically and reactivate older faults to reach the critical topography. On the contrary, in the wedge with the thicker detachment layer, friction along thrusts is lowered due to the entrainment of low friction material from the detachment zone, subsequently increasing the lifetime of a thrust. Long thrust episodes are always followed by a fault of shorter lifetime, with the aim of reaching the critical taper. From the two experiments, we analyze the time-series evolution of the wedge to infer the work done by the two styles of deformation and predict the trend over time to differ but the maximum work to be similar Our observations show that the critical taper theory determines the geometry of the
Wide FOV wedge prism endoscope.
Kim, Keri; Kim, Daeyoung; Matsumiya, Kiyoshi; Kobayashi, Etsuko; Dohi, Takeyoshi
2005-01-01
We.. have developed a novel robotic endoscope system. It can be used to observe a wide field of view without moving or bending the whole endoscope system. .. It consists of a rigid endoscope and two wedge prisms at the distal tip. Rotating each wedge prism respectively, we can change the direction of view. Accordingly it becomes possible to observe a wide field of view even in a small space, and suited to clinical uses because it does not damage body tissues or internal organs. .. Wedge prisms are designed to avoid vignetting which is caused by the refraction or the reflection at prisms. The endoscope has 10mm in diameter, and the drive unit is simply separable for the sterilization. In addition, since it has a simple and small drive unit, it does not obstruct surgeon or other surgery robots. The maximum movement of local field of view is 19degrees, and global field of view is 93degrees. In the evaluation experiment, we conformed that both of the image quality and the performance are acceptable. PMID:17281566
Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF
NASA Technical Reports Server (NTRS)
Hill, Peter; Thompson, Patrick
2012-01-01
A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes
Self-similar flows in spherical geometry
NASA Astrophysics Data System (ADS)
Gerin-Roze, Jean
2007-06-01
If we are looking at the implosion of a sphere starting with a strong shock, the study of self-similar flows is a classical problem. We will assume that: - The sphere contains a perfect gas with a polytropic coefficient γ=5/3. - The shock follows the equation: rc=A(-t)^α with t0
NASA Astrophysics Data System (ADS)
Wirth, E. A.; Long, M. D.; Mccormack, K. A.
2012-12-01
Many fundamental aspects of the mantle wedge above subducting slabs, such as the dynamics of mantle flow and the transport of water and melt, have yet to be fully understood. A complete characterization of seismic anisotropy can yield powerful constraints on mantle flow and the degree of mantle wedge hydration. In this study, we characterize the geometry and strength of anisotropy in the mantle wedges beneath northeast Japan and the Ryukyu arc, which overlie the subducting Pacific and Philippine Sea plates, respectively. We compute radial and transverse component P-to-S receiver functions from 15 stations of the F-net array using the multitaper correlation receiver function estimator (Park and Levin, 2000). In both regions, we observe P-to-SV converted energy on radial component receiver functions that are consistent with conversions originating at the subducting oceanic Moho and the top of the subducting oceanic crust. We also observe P-to-SH conversions on the transverse component receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. We compute synthetic receiver functions using a forward modeling scheme to create models for the depths, thicknesses, and strengths of the anisotropic layers beneath both northeast Japan and Ryukyu. Beneath Ryukyu, we detect evidence for a layer of strong anisotropy and high Vp/Vs ratio directly above the slab, consistent with the presence of serpentinite. We see no evidence of this signature in receiver functions from northeast Japan; instead, we see evidence for relatively modest anisotropy due to olivine fabric. We also detect a low-velocity region in the mantle wedge beneath northeast Japan, which may be consistent with the presence of partial melt. Since the presence of serpentinite indicates significant hydration of the wedge, the contrast in anisotropic structure between Ryukyu and northeast Japan has important implications for our understanding of slab hydration and how water
The wedge bias in reionization 21-cm power spectrum measurements
NASA Astrophysics Data System (ADS)
Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.
2016-02-01
A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).
Mobile wedges in an active turbulent bath
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; Sokolov, Andrey; Lowen, Hartmut; Aronson, Igor S.
The motion of micro-wedges in a turbulent bacterial bath is explored using computer simulations with explicit modeling of the bacteria and experiments. We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. We will show that both polar ordering and swirl shielding inside the wedge yield an optimal transport velocity. Finally, we show the behavior of several wedges exposed to a bacterial bath.
Hollow spherical shell manufacture
O'Holleran, T.P.
1991-11-26
A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.
Hollow spherical shell manufacture
O'Holleran, Thomas P.
1991-01-01
A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.
On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole.
Aguirre
2000-01-20
Recently Van Putten has suggested that superradiance of magnetosonic waves in a toroidal magnetosphere around a Kerr black hole may play a role in the central engine of gamma-ray bursts. In this context, he computed (in the WKB approximation) the superradiant amplification of scalar waves confined to a thin equatorial wedge around a Kerr hole and found that the superradiance is higher than for radiation incident over all angles. This Letter presents calculations of both spin-0 (scalar) superradiance (integrating the radial equation rather than using the WKB method) and spin-1 (electromagnetic/magnetosonic) superradiance in Van Putten's wedge geometry. In contrast to the scalar case, spin-1 superradiance decreases in the wedge geometry, decreasing the likelihood of its astrophysical importance. PMID:10615024
Application of slip-line analysis to the mechanical model of active accretionary wedge
NASA Astrophysics Data System (ADS)
Song, I.; Lee, H.; Kim, J.
2012-04-01
shows that the solution for the simple geometry of accretionary wedge is equivalent to the critical taper solution given by Davis et al. (1983). If a sedimentary formation covers the critical wedge, the stress underneath the formation is reduced to maintain the equilibrium with the basal friction strength. Thus the formation of sediment basin on top of the active accretionary wedge leads to the stress relaxation in the region below the basin. The topography of seafloor plays a crucial role in changing the basal friction along the base fault so that the geometry of the fault might be changed. Our numerical analysis also reveals that the pore pressure within the wedge and the décollement fault has no effect on the accretionary wedge angle.
NASA Astrophysics Data System (ADS)
Ge, Wenjun; Modest, Michael F.; Marquez, Ricardo
2015-05-01
The spherical harmonics (PN) method is a radiative transfer equation solver, which approximates the radiative intensity as a truncated series of spherical harmonics. For general 3-D configurations, N(N + 1) / 2 intensity coefficients must be solved from a system of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of equations and intensity coefficients reduces to (N + 1) 2 / 4 if the geometric relations of the intensity coefficients are taken into account. This paper presents the mathematical details for the transformation and its implementation on the OpenFOAM finite volume based CFD software platform. The transformation and implementation are applicable to any arbitrary axisymmetric geometry, but the examples to test the new formulation are based on a wedge grid, which is the most common axisymmetric geometry in CFD simulations, because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two example problems for the new axisymmetric PN formulation are presented, and the results are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact solutions.
Ice Particle Impacts on a Moving Wedge
NASA Technical Reports Server (NTRS)
Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Lyer, Kaushik A.; Gold, Robert E.
2014-01-01
This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0, 30, 45, and 60. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.
Ice Particle Impacts on a Moving Wedge
NASA Technical Reports Server (NTRS)
Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.
2014-01-01
This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.
Wedged Fibers Suppress Feedback of Laser Beam
NASA Technical Reports Server (NTRS)
Ladany, I.
1986-01-01
When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.
Tumor Targeting, Trifunctional Dendritic Wedge
2015-01-01
We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602
Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins
NASA Astrophysics Data System (ADS)
Nirrengarten, M.; Manatschal, G.; Yuan, X. P.; Kusznir, N. J.; Maillot, B.
2016-05-01
The Critical Coulomb Wedge Theory (CCWT) has been extensively used in compressional tectonics to resolve the shape of orogenic or accretionary prisms, while it is less applied to extensional and gravitational wedges despite the fact that it can be described by the same equation. In particular, the hyper-extended domain at magma-poor rifted margins, forming the oceanward termination of extended continental crust, satisfies the three main requirements of the CCWT: 1) it presents a wedge shape, 2) the rocks forming the wedge are completely brittle (frictional), and 3) the base of the wedge corresponds to a low friction décollement. However hyper-extended margins present a fully frictional behaviour only for a very thin crust; therefore this study is limited to the termination of hyper-extended continental crust which deforms in the latest stage of continental rifting. In this paper we define a method to measure the surface slope and the basal deep of this wedge that we apply to 17 hyper-extended, magma-poor rifted margins in order to compare the results to the values predicted by the CCWT. Because conjugate pairs of hyper-extended, magma-poor rifted margins are commonly asymmetric, due to detachment faulting, the wedges in the upper and lower plate margins corresponding respectively to the hanging wall and footwall of the detachment system are different. While the stress field in the upper plate wedge corresponds to a tectonic extensional wedge, the one in the lower plate matches that of a gravity extensional wedge. Using typical frictional properties of phyllosilicates (e.g. clays and serpentine), the shape of the hyper-extended wedges can be resolved by the CCWT using consistent fluid overpressures. Our results show that all lower plate margins are gravitationally stable and therefore have a close to critical shape whereas the tectonic extensional wedges at upper plate margins are critical, sub or sup critical due to the detachment initial angle and the duration of
Spherical colloidal photonic crystals.
Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze
2014-12-16
generated by evaporation-induced nanoparticle crystallization or polymerization of ordered nanoparticle crystallization arrays. In particular, because microfluidics was used for the generation of the droplet templates, the development of spherical colloidal PhCs has progressed significantly. These new strategies not only ensure monodispersity, but also increase the structural and functional diversity of the PhC beads, paving the way for the development of advanced optoelectronic devices. In this Account, we present the research progress on spherical colloidal PhCs, including their design, preparation, and potential applications. We outline various types of spherical colloidal PhCs, such as close-packed, non-close-packed, inverse opal, biphasic or multiphasic Janus structured, and core-shell structured geometries. Based on their unique optical properties, applications of the spherical colloidal PhCs for displays, sensors, barcodes, and cell culture microcarriers are presented. Future developments of the spherical colloidal PhC materials are also envisioned. PMID:25393430
The effect of a dynamic wedge in the medial tangential field upon the contralateral breast dose
McParland, B.J. )
1990-12-01
The elevated incidence of breast cancer following irradiation of breast tissue has led to concern over the magnitude of the scattered radiation received by the uninvolved contralateral breast during radiation therapy for a primary breast lesion and the risk of an induced contralateral breast cancer. Some linear accelerators use a single dynamic (or universal) wedge that is mounted within the treatment head at an extended distance from the patient. Because of the combined effects of distance and shielding, the contralateral breast dose due to a medial tangent containing a dynamic wedge is expected to be less than that containing a conventional wedge. This paper presents contralateral breast dose (CBD) measurements performed on an anthropomorphic phantom with breast prostheses irradiated with 6 MV X rays from a linear accelerator equipped with a dynamic wedge. Doses were measured at 15 points within the contralateral breast prosthesis with thermoluminescent dosimeters. It was found that the contralateral breast dose per unit target breast dose decreases with the perpendicular distance from the posterior edge of the medial tangent to the dose measurement point and increases with effective wedge angle by factors ranging up to 2.8, in agreement with data presented earlier for a water phantom geometry. This dose elevation showed no statistically significant dependence (p less than 0.05) upon the perpendicular distance from the beam edge. Comparisons with data in the literature show that the contralateral breast dose increase by a dynamic wedge is typically only about half of that reported for a conventional wedge for the same wedge angle and distance from the beam.
Capillarity driven motion of solid film wedges
Wong, H.; Miksis, M.J.; Voorhees, P.W.; Davis, S.H.
1997-06-01
A solid film freshly deposited on a substrate may form a non-equilibrium contact angle with the substrate, and will evolve. This morphological evolution near the contact line is investigated by studying the motion of a solid wedge on a substrate. The contact angle of the wedge changes at time t = 0 from the wedge angle {alpha} to the equilibrium contact angle {beta}, and its effects spread into the wedge via capillarity-driven surface diffusion. The film profiles at different times are found to be self-similar, with the length scale increasing as t{sup 1 4}. The self-similar film profile is determined numerically by a shooting method for {alpha} and {beta} between 0 and 180. In general, the authors find that the film remains a wedge when {alpha} = {beta}. For {alpha} < {beta}, the film retracts, whereas for {alpha} > {beta}, the film extends. For {alpha} = 90{degree}, the results describe the growth of grain-boundary grooves for arbitrary dihedral angles. For {beta} = 90{degree}, the solution also applies to a free-standing wedge, and the thin-wedge profiles agree qualitatively with those observed in transmission electron microscope specimens.
Ultrasonic transducer with laminated coupling wedge
Karplus, Henry H. B.
1976-08-03
An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.
NASA Technical Reports Server (NTRS)
1997-01-01
Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.
Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams
NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Prasse, Ernst I
1953-01-01
An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.
NASA Astrophysics Data System (ADS)
Santra, M.; Goff, J. A.; Steel, R. J.
2011-12-01
several prograding and offlapping deltaic clinothems. The geometry of these clinothems indicates that they are truncated at the top, particularly in the proximal part of the wedge. The clinoform height systematically increases seaward as they gradually approach the Pleistocene shelf edge. These observations lead to the interpretation that the offlapping sediment wedge represents the strike-elongate lobes of a falling-stage, wave-influenced delta system fed by pre-LGM paleo-Hudson River Channel(s) that probably reached the late Pleistocene shelf-edge off New Jersey.
NASA Astrophysics Data System (ADS)
Strayer, L.; Suppe, J.
2012-12-01
It is increasingly clear that many major faults are weak relative to quasistatic friction because of dynamical effects involving the microprocesses of high-velocity friction and the energetics of large-scale fault rupture. Even at the toes of accretionary wedges where velocity strengthening is expected, large displacements can occur dynamically. We seek to better understand the relationship between the large-scale strength of such faults and of the crust containing them over a timescale much greater than seismic cycles. Critical-taper theory provides straightforward quantitative relationships between accretionary wedge geometry and absolute basal fault and wedge strengths with minimal assumptions. Wedge tapers constrain the far-field stresses under which detachments slip and wedges grow during wedge-growing events, whether they are dynamical or quasistatic. To date most applications of wedge mechanics to accretionary wedges involve analog and numerical modeling with largely conceptual insight, for example illuminating the role of geological heterogeneity. Here we demonstrate that recent theoretical advances that are successful in extracting absolute wedge and detachment strengths from the geometry of active wedges can also be applied to extract large-scale strengths in distinct element numerical models in both mechanically homogeneous and heterogeneous wedges. The distinct element method (DEM) is an ideal tool for the study and modeling of critical taper wedges: model wedges can be initially cohesive (bonded) or cohesionless. Faults and folds form naturally as the result of progressive bond breakage during shortening and wedge growth. Heterogeneity can be introduced by creating layered groups of particles of differing mechanical properties. The DEM suffers to some extent in that macro material properties cannot be directly prescribed but rather must be defined by a modest number of micro-properties and the process in necessarily iterative and developing a wide
Gui, Chengcheng; Wang, Jian
2015-01-01
We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in terms of propagation length (L), normalized mode area (Aeff /A0), figure of merit (FoM), and chromatic dispersion (D). The designed wedge hybrid plasmonic THz waveguide enables an ultra-small deep-subwavelength mode area which is more than one-order of magnitude smaller compared to previous rectangular one. When choosing the diameter of Si nanowire cylinder, a smaller diameter (e.g. 10 μm) is preferred to achieve longer L and higher FoM, while a larger diameter (e.g. 60 μm) is favorable to obtain smaller Aeff /A0 and higher FoM. We further study the impacts of possible practical fabrication errors on the mode properties. The simulated results of propagation length and normalized mode area show that the proposed wedge hybrid plasmonic THz waveguide is tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, variation of wedge tip angle, and variation of wedge tip curvature radius. PMID:26155782
Gui, Chengcheng; Wang, Jian
2015-01-01
We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in terms of propagation length (L), normalized mode area (Aeff/A0), figure of merit (FoM), and chromatic dispersion (D). The designed wedge hybrid plasmonic THz waveguide enables an ultra-small deep-subwavelength mode area which is more than one-order of magnitude smaller compared to previous rectangular one. When choosing the diameter of Si nanowire cylinder, a smaller diameter (e.g. 10 μm) is preferred to achieve longer L and higher FoM, while a larger diameter (e.g. 60 μm) is favorable to obtain smaller Aeff/A0 and higher FoM. We further study the impacts of possible practical fabrication errors on the mode properties. The simulated results of propagation length and normalized mode area show that the proposed wedge hybrid plasmonic THz waveguide is tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, variation of wedge tip angle, and variation of wedge tip curvature radius. PMID:26155782
A numerical study of the interaction between the mantle wedge, subducting slab, and overriding plate
NASA Astrophysics Data System (ADS)
Eberle, Michael A.; Grasset, Olivier; Sotin, Christophe
2002-12-01
We have formulated a numerical model with strongly temperature-dependent viscosity to calculate thermal structure and flow-field in subduction zones. One important particularity of the model is that the overriding plate is not fixed over its whole thickness in order to allow material exchange between the wedge and the upper lithosphere. Numerical problems due to very high-viscosity contrasts are avoided by coupling a finite difference method and a finite element method for solving the energy conservation equation and the Stockes equation, respectively. In this model, a temperature decrease from 1400 to 1300 °C increases the viscosity by an order of magnitude. We study the temperature structure and the velocity field of the subducting slab and mantle wedge. Surface heat flow, velocity anomalies, and geometry of the partial melting zone are also calculated. To study the effect that boundary conditions play on the interaction between the mantle wedge, overriding plate and subducting plate, we examine models with both fixed and free-slip conditions applied to the overriding plate. When the overriding plate is allowed to move laterally (free-slip), the subducting slab is thick, and both the temperature field and the convective motions in the mantle wedge are similar to those observed when using constant viscosity numerical models or analytical corner flow models. If the surface of the overriding plate is fixed, the subducting slab is thin and the mantle wedge impinges upon the overriding plate forming a high-temperature nose between the overriding plate and subducting lithosphere. Furthermore, viscous decoupling occurs implicitly at shallow depth between the slab and the wedge because hot material from the wedge is entrained close to the trench. In that case, the subducting slab tectonically erodes the lower lithosphere of the overriding plate leading to high-temperatures, low seismic velocities, high attenuation and high heat flow beneath volcanic arc, in agreement
A numerical model of deformation and fluid-flow in an evolving thrust wedge
NASA Astrophysics Data System (ADS)
Strayer, Luther M.; Hudleston, Peter J.; Lorig, Loren J.
2001-06-01
To investigate deformation and fluid-flow in an actively deforming tectonic wedge, we model the evolution of a large, two-dimensional (100 km long, 5 km thick), mechanically and hydrologically homogeneous and isotropic pile of sedimentary strata that is deformed to become a thrust wedge. We compare both 'dry' and 'wet' cases, in order to illustrate: (1) the relative importance of fluids on wedge evolution, and (2) the effect of brittle deformation on fluid-flow. We use an elastic-plastic constitutive relation, including a Mohr-Coulomb failure criterion and a non-associated flow rule, and coupled fluid flow, with bulk rock properties that approximate typical foreland sedimentary strata. Simulations are made both with and without dilation. The model is fully dynamic, but inertial forces remain small. Results show that deformation within the wedge is accommodated by reverse-slip movement on shear bands, which migrate in both directions through the wedge as both fore- and back-thrusts. The model has features predicted by the critical-taper theory: (1) overall wedge geometry; (2) crudely self-similar growth during evolution; (3) more intense deformation toward the rear of the wedge. The models show strong overall in-sequence faulting behavior with major thrusts isolating relatively undeformed packages, which are moved in a piggyback manner upon the active thrusts. Intermittent out-of-sequence faulting does however occur, in order to maintain the wedge taper. Fluid-flow in the deforming wedge is dominated by topography, but is also strongly affected by dilational plastic deformation. In all simulations, there is focused fluid flow within fault zones. When mechanical time-stepping is shut off (uncoupled), flow systems evolve to steady-state where inflow equals outflow. By subtracting the two 'states' we isolate the mechanical fluid response from the total coupled system response. The mechanical fluid response is manifest as contours of head and pressure difference and
Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.
Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A
1995-01-01
The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used. PMID:8703326
Structure of turbulent wedges created by isolated surface roughness
NASA Astrophysics Data System (ADS)
Kuester, Matthew S.; White, Edward B.
2016-04-01
Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.
Two-dimensional electronic spectroscopy with birefringent wedges
NASA Astrophysics Data System (ADS)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio
2014-12-01
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Two-dimensional electronic spectroscopy with birefringent wedges
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Two-dimensional electronic spectroscopy with birefringent wedges.
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio
2014-12-01
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria. PMID:25554272
Two-dimensional meniscus in a wedge
Kagan, M.; Pinczewski, W.V.; Oren, P.E.
1995-03-15
This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.
A review of dynamics modelling of friction wedge suspensions
NASA Astrophysics Data System (ADS)
Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan
2014-11-01
Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.
Growth of the South Pyrenean orogenic wedge
NASA Astrophysics Data System (ADS)
Meigs, Andrew J.; Burbank, Douglas W.
1997-04-01
A six-step reconstruction of the South Pyrenean foreland fold-and-thrust belt in Spain delineates the topographic slope, basal décollement angle, internal deformation, and thrust-front advance from the Early Eocene until the end of contractional deformation in the Late Oligocene. Style of thrust-front advance, dip of the basal décollement, slope of the upper surface, and internal deformation are decoupled and not simply related. Internal deformation increased, decreased, and maintained surface slope angle at different stages. From the onset to the cessation of deformation, the basal décollement angle decreased overall suggesting translation of the thrust belt onto stronger crust with time. Taper angle of the Pyrenean thrust wedge was fundamentally controlled by the flexural rigidity of the lower plate, the relative rate of creation of structural relief in the rear versus the front of the wedge, the extent of deposition of eroded material within the deforming wedge, and the taper of the pretectonic stratigraphic wedge.
38. INTERIOR VIEW, DENISON MULTIPRESS FOR INSERTION OF WEDGES ONTO ...
38. INTERIOR VIEW, DENISON MULTI-PRESS FOR INSERTION OF WEDGES ONTO HANDLES AND CUTTING OFF SCRAP END OF HANDLE FOLLOWING WEDGE INSERTION, BRIAN KIMBLE, OPERATOR - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV
21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...
21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...
NASA Astrophysics Data System (ADS)
Ellahi, R.; Hassan, M.; Zeeshan, A.; Khan, Ambreen A.
2015-07-01
The flow of mixed convection nanofluid over wedge under the effects of porous medium is investigated. The HFE-7100 Engineered Fluid having Nimonic 80a metal nanoparticles of spherical and non-spherical shapes with different sizes is used. The particle shape effects on Bejan number and entropy generation are taken into account. The system of partial differential equations is first written in terms of ordinary differential equations using adequate similarity transformations and then solved analytically. Analytical solutions of the resulting equations are obtained for the velocity and temperature profiles. Simultaneous effects of porous medium, particle volume friction, mixed convection parameter, and angle of wedge in the presence of different shapes nanoparticles are demonstrated graphically. Effects of particle concentrations, sizes on wall stress, heat transfer coefficient of Skin friction, and Nusselt are discussed in the form of tables.
NASA Astrophysics Data System (ADS)
Ellahi, R.; Hassan, M.; Zeeshan, A.; Khan, Ambreen A.
2016-06-01
The flow of mixed convection nanofluid over wedge under the effects of porous medium is investigated. The HFE-7100 Engineered Fluid having Nimonic 80a metal nanoparticles of spherical and non-spherical shapes with different sizes is used. The particle shape effects on Bejan number and entropy generation are taken into account. The system of partial differential equations is first written in terms of ordinary differential equations using adequate similarity transformations and then solved analytically. Analytical solutions of the resulting equations are obtained for the velocity and temperature profiles. Simultaneous effects of porous medium, particle volume friction, mixed convection parameter, and angle of wedge in the presence of different shapes nanoparticles are demonstrated graphically. Effects of particle concentrations, sizes on wall stress, heat transfer coefficient of Skin friction, and Nusselt are discussed in the form of tables.
NASA Astrophysics Data System (ADS)
Morales Crespo, R.
2015-08-01
This paper solves and analyses the complete characterization of the plasma-sheath transition and the characteristic I-V curves of an active and collisional plasma close to a cylindrical or spherical wall considering a wide range of the parameter which describe the model to be useful for experimental measures. Despite the difficulty of including the three possible pre-sheath mechanisms, this characterization is obtained from a self-consistent model using three easily measurable parameters, namely the electric potential of the wall, the positive ion current collected by the wall, and the radius of the wall. These parameters are easy to measure and facilitate the diagnosis of plasmas from an experimental point of view.
NASA Astrophysics Data System (ADS)
Buddensiek, M.-L.; Sheng, J.; Crosby, T.; Schuster, G. T.; Bruhn, R. L.; He, R.
2008-02-01
Four high-resolution seismic surveys were conducted across the Wasatch Fault Zone near Mapleton, Utah. The objective was twofold: (1) To use velocity tomograms and reflection images to delineate fault structures and colluvial wedges to more than twice the depth of the Mapleton Megatrench excavated by URS personnel, (2) to assess the strengths and limitations of traveltime and waveform tomography by synthetic studies and comparison of the tomogram to the ground truth seen in the Megatrench log. Four out of the five faults within the trench area are accurately identified in the migrated image and in the tomograms, and the main fault's dip angle is estimated to be between 71 and 80°. Two additional faults are interpreted outside the trench. The faults can be delineated down to 30 m below the surface, which is 20 m deeper than the excavated trench. Five out of six colluvial wedges found in the trench log were seen as low-velocity zones (LVZs) in the tomogram, however the biggest colluvial wedge could not be identified by either tomography method. Waveform tomography prevailed over ray-based traveltime tomography by more clearly recovering the faults and LVZs. A newly discovered LVZ at a depth of 18-21 m below the surface possibly represents a colluvial wedge and is estimated to be less than 21000 years old. If this LVZ is a colluvial wedge, the earthquake history obtained by trenching can be extended from 13500 to 21000 yr with seismic tomography. Our results further demonstrate the capability of tomography in identifying faults, and show that waveform tomography more accurately resolves colluvial wedges compared to traveltime tomography. However, despite the successful recovery of most faults and some, but not all, colluvial wedges, both tomography methods show many more LVZs besides the wedges, so that an unambiguous interpretation cannot be made. A major part of the ambiguity in the tomograms is due to the many major faults, which result in an uneven raypath
Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua.
Hoernle, Kaj; Abt, David L; Fischer, Karen M; Nichols, Holly; Hauff, Folkmar; Abers, Geoffrey A; van den Bogaard, Paul; Heydolph, Ken; Alvarado, Guillermo; Protti, Marino; Strauch, Wilfried
2008-02-28
Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge or eroded fore-arc complexes but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63-190 mm yr(-1)) and are comparable to the magnitude of subducting Cocos plate motion (approximately 85 mm yr(-1)). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones. PMID:18223639
Radiative transfer in spherical atmospheres
NASA Technical Reports Server (NTRS)
Kalkofen, W.; Wehrse, R.
1984-01-01
A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.
Hexatic undulations in curved geometries.
Lenz, Peter; Nelson, David R
2003-03-01
We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of liquid jets. PMID:12689068
Laser-generated ultrasonic pulse shapes at solid wedges.
Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P
2016-08-01
Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188
Wedge assembly for electrical transformer component spacing
Baggett, Franklin E.; Cage, W. Franklin
1991-01-01
A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.
Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.
2015-12-01
Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based
Characterization of the Thermal-Wave Field in a Wedge-Shaped Solid Using the Green's Function Method
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tai, Rui; Wang, Chinhua; Mandelis, Andreas
2013-09-01
In this study, a theoretical model is established for a wedge-like solid with an open sector surrounded by walls of radius of a cylindrical rod illuminated by a modulated circular Gaussian incident beam by means of the Green’s function method in cylindrical coordinates. An analytical expression for the thermal-wave field in such a sample is presented. The theory is validated by reducing the arbitrary geometrical structure of the wedge to simpler geometries. It is shown that the frequency dependence of the thermal-wave field near the edge exhibits a large phase lag compared with that at a location far from the edge. The theory provides a foundation for quantitatively characterizing wedge-shaped industrial samples, such as metals with sintered edges, using photothermal methods in a non-contact and non-destructive manner.
Stress intensity factors in a cracked infinite elastic wedge loaded by a rigid punch
NASA Technical Reports Server (NTRS)
Erdogan, F.; Civelek, M. B.
1978-01-01
A plane elastic wedge-shaped solid was split through the application of a rigid punch. It was assumed that the coefficient of friction on the the contact area was constant, and the problem had a plane of symmetry with respect to loading and geometry, with the crack in the plane of symmetry. The problem was formulated in terms of a system of integral equations with the contact stress and the derivative of the crack surface displacement as the unknown functions. The solution was obtained for an internal crack and for an edge crack. The results include primarily the stress intensity factors at the crack tips, and the measure of the stress singularity at the wedge apex, and at the end points of the contact area.
On the shape of a droplet in a wedge: new insight from electrowetting.
Baratian, D; Cavalli, A; van den Ende, D; Mugele, F
2015-10-21
The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, at a position that is determined by the drop volume and the contact angle. At this position, the net normal force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss here as well. We eventually show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation. PMID:26186493
Wightman function and scalar Casimir densities for a wedge with two cylindrical boundaries
Saharian, A.A. Tarloyan, A.S.
2008-07-15
Wightman function, the vacuum expectation values of the field square and the energy-momentum tensor are investigated for a massive scalar field with general curvature coupling parameter inside a wedge with two coaxial cylindrical boundaries. It is assumed that the field obeys Dirichlet boundary condition on bounding surfaces. The application of a variant of the generalized Abel-Plana formula enables to extract from the expectation values the contribution corresponding to the geometry of a wedge with a single shell and to present the interference part in terms of exponentially convergent integrals. The local properties of the vacuum are investigated in various asymptotic regions of the parameters. The vacuum forces acting on the boundaries are presented as the sum of self-action and interaction terms. It is shown that the interaction forces between the separate parts of the boundary are always attractive. The generalization to the case of a scalar field with Neumann boundary condition is discussed.
NASA Astrophysics Data System (ADS)
Hoth, Silvan; Kukowski, Nina; Oncken, Onno
2008-08-01
Timeseries derived from two-dimensional sandbox simulations involving surface erosion are taken for the first time to be implemented into flexure calculations of foreland basins. Based on our results we highlight that orogenic systems are a four component system, consisting of a pro-foreland basin, a pro-wedge, a retro-wedge, and a retro-foreland basin. These four components are mechanically coupled via the load dependence of tectonic faulting [Mandl, G., 1988. Mechanics of tectonic faulting, 1st Edition. Elsevier, Amsterdam.] and the finite flexural rigidity of lithospheric plates [Beaumont, C., 1981. Foreland basins. Geophys. J. R. Astron. Soc. 5 (2), 291-329.]. We further demonstrate that the impact of pro-wedge erosion is most pronounced within the pro-wedge but also modifies the shape and size of the retro-wedge, which in turn changes the geometry and propagation velocity of the retro-foreland basin and vice versa. This suggests that one out of the four components of an orogenic system cannot be fully understood without recognition of the other three components. Thus, spatial separation between processes or observations does not necessarily imply their physical independence. This conceptual model is applied in a case study to the Pyrenean orogenic wedge and its Ebro and Aquitaine foreland basins. Our analysis suggests that the Pyrenean pro- and retro-wedge are mechanically coupled and that this coupling manifests itself in the migration of depocentres in both foreland basins. We finally explore implications for the formation of Mississippi Valley Type deposits.
Spatial symmetry breaking in rapidly rotating convective spherical shells
NASA Technical Reports Server (NTRS)
Zhang, Keke; Schubert, Gerald
1995-01-01
Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.
Spherical quartz crystals investigated with synchrotron radiation
NASA Astrophysics Data System (ADS)
Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.
2015-10-01
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.
Spherical quartz crystals investigated with synchrotron radiation.
Pereira, N R; Macrander, A T; Hill, K W; Baronova, E O; George, K M; Kotick, J
2015-10-01
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background. PMID:26520963
Spherical quartz crystals investigated with synchrotron radiation
Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.
2015-10-15
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.
Optimal clinical implementation of the Siemens virtual wedge
Walker, C.P.; Richmond, N.D.; Lambert, G.D
2003-09-30
Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 deg., 30 deg., 45 deg., and 60 deg. as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degree sign to 60 degree sign in increments of 1 deg. The same result can also be produced from a combination of open and 60 deg. wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.
Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds
NASA Technical Reports Server (NTRS)
Serafini, John S
1954-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Opening wedge osteotomies for correction of hallux valgus: a review of wedge plate fixation.
Smith, W Bret; Hyer, Christopher F; DeCarbo, William T; Berlet, Gregory C; Lee, Thomas H
2009-12-01
Osteotomy of the proximal metatarsal for the correction of moderate to severe hallux valgus deformity is commonly performed. The purpose of this study is to review the early results of a technique for the correction of hallux valgus, an opening wedge osteotomy of the proximal first metatarsal with opening wedge plate fixation. A review was performed of the results of 47 patients (49 feet) who underwent correction of hallux valgus with proximal metatarsal opening wedge osteotomy. All osteotomies were secured with plate fixation on the medial side. Evaluation consisted of preoperative and postoperative radiographic as well as clinical evaluations. Mean corrections of 7 degrees were achieved for the 1-2 intermetatarsal angles. Fourteen complications occurred, 6 of which involved mild hardware irritation and did not affect outcome. Four nonunions or delayed unions were identified. The authors find the opening wedge osteotomy of the proximal first metatarsal to be a technically straightforward procedure for correcting moderate to severe hallux valgus. The correction obtained is comparable to other described techniques. PMID:20400425
Ogawa, Hiroyasu; Matsumoto, Kazu; Ogawa, Takahiro; Takeuchi, Kentaro; Akiyama, Haruhiko
2016-01-01
Background: Medial opening wedge high tibial osteotomy (HTO) is a well-established surgery for medial compartment knee osteoarthritis (OA) wherein the lower extremity is realigned to shift the load distribution from the medial compartment of the knee to the lateral compartment. However, this surgery is known to affect the posterior tibial slope angle (PTSA), which could lead to abnormal knee kinematics and instability, and eventually to knee OA. Although PTSA control is as important as coronal realignment, few appropriate measurements for this parameter have been reported. The placement of a wedge spacer might have an effect on PTSA. Purpose: To elucidate the relationship between the PTSA and the direction of insertion of a wedge spacer. Study Design: Case series; Level of evidence, 4. Methods: This study assessed 43 knees from 34 patients who underwent medial opening wedge HTO for knee OA. Pre- and postoperative lateral radiographs of the knee as well as postoperative computed tomography scans were performed to evaluate the relationship among PTSA, wedge insertion angle (WIA), and opening gap ratio (distance of the anterior opening gap/distance of the posterior opening gap at the osteotomy site). Results: The PTSA significantly increased from 9.0° ± 2.8° preoperatively to 13.2° ± 4.1° postoperatively (P < .001), resulting in a mean ΔPTSA of 4.7° ± 4.5°. The mean opening gap ratio was 0.86 ± 0.11, and the mean WIA was 25.9° ± 8.4°. The WIA and opening gap ratio were both highly correlated with ΔPTSA (r = 0.71 and 0.72, respectively), implying that a smaller WIA or smaller gap ratio leads to less increase in posterior slope. Conclusion: The direction of wedge insertion is highly correlated with PTSA increase, which suggests that the PTSA can be controlled for by adjusting the direction of wedge insertion during surgery. Clinical Relevance: Study results suggest that it is possible to adjust the PTSA by controlling the WIA during surgery. Proper
MANUAL DEGATING OPERATIONS PERFORMED BY SLEDGEHAMMERS AND PNEUMATIC WEDGE SEPARATORS. ...
MANUAL DEGATING OPERATIONS PERFORMED BY SLEDGE-HAMMERS AND PNEUMATIC WEDGE SEPARATORS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
Molecular Depth Profiling by Wedged Crater Beveling
Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas
2011-01-01
Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40keV C60+ cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ~1/3 during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm ~4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments. PMID:21744861
Protzman, Nicole M; Wobst, Garrett M; Storts, Eric C; Mulhern, Jennifer L; McCarroll, Raymond E; Brigido, Stephen A
2015-01-01
Evans calcaneal osteotomy remains a cornerstone in the correction of the flexible flatfoot. Although multiple techniques have been used to maintain the length of the lateral column, a low profile wedge locking plate was recently introduced as an alternative to the traditional tricortical allograft wedge. We hypothesized that the wedge locking plate would better maintain the mid-calcaneal length compared with the tricortical allograft wedge. To test this hypothesis, after Evans osteotomy, the mid-calcaneal length was measured in the immediate postoperative period and again at 3 and 6 months. A total of 24 patients met the inclusion criteria. The mean patient age was 48.1 years (range 11 to 66). Of the 24 patients, 9 (37.5%) were treated with a tricortical allograft wedge and 15 (62.5%) with a wedge locking plate. At 3 months postoperatively, the mean decrease in mid-calcaneal length was similar for the tricortical allograft wedge group (1.3 ± 1.9 mm) and the wedge locking plate group (0.5 ± 0.9 mm, p = .275). At 6 months postoperatively, however, the mean decrease in mid-calcaneal length was greater for the tricortical allograft wedge group (2.8 ± 1.7 mm) than for the wedge locking plate group (0.6 ± 0.7 mm, p = .004). The 2 groups demonstrated a similar incidence of dorsally displaced distal calcaneal fragments throughout the study endpoint (p ≥ .052). These results suggest that the wedge locking plate better maintains the mid-calcaneal length over time compared with the tricortical allograft wedge. PMID:25998470
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
ERIC Educational Resources Information Center
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
Transition induced by fixed and freely convecting spherical particles in laminar boundary layers
NASA Astrophysics Data System (ADS)
Petrie, H. L.; Morris, P. J.; Bajwa, A. R.; Vincent, D. C.
1993-08-01
An experimental and analytical study of aspects of transition induced by disturbances from spherical particles in laminar boundary layers is discussed. The generation of turbulent wedges by fixed spherical particles in a laminar boundary layer on or near the surface of a flat plate is considered experimentally using flow visualization with fluorescent dye and laser Doppler velocimetry. Turbulent spots generated by freely convecting spherical particles that are released in the freestream to fall into a flat plate laminar boundary layer and impact the plate are also discussed. A combination of dye flow visualization and a video based particle tracking technique was used to study the convecting particle problem. Although the Reynolds number at the critical condition for turbulent wedge generation by fixed particles and turbulent spot generation by convecting particles are similar, transition in these two situations appears to be fundamentally different. The development of a turbulent wedge near the critical condition is a relatively gradual process. In contrast, turbulent spots form relatively quickly after the convecting particles enter the boundary layer and impact the plate. Turbulent wedge formation downstream of a fixed particle results from the destabilization of the near wall flow by the vortical structures shed into particle wake. This shedding process is dominated by periodically shed loop shaped hairpin vortices. Observation of subharmonic oscillations at 1/2 and 1/4 of this shedding frequency suggest that a chaotic route to turbulence by a series of period doubling bifurcations is possible.
Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number
NASA Technical Reports Server (NTRS)
Warpinski, N. R.; Chow, W. L.
1977-01-01
An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.
Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge.
Katayama, Ikuo; Hirauchi, Ken-ichi; Michibayashi, Katsuyoshi; Ando, Jun-ichi
2009-10-22
Seismic anisotropy is a powerful tool for detecting the geometry and style of deformation in the Earth's interior, as it primarily reflects the deformation-induced preferred orientation of anisotropic crystals. Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy (delay time of one to two seconds) observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Here we show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in subduction systems. High-pressure deformation experiments reveal that the serpentine c-axis tends to rotate to an orientation normal to the shear plane during deformation; consequently, seismic velocity propagating normal to the shear plane (plate interface) is much slower than that in other directions. The seismic anisotropy estimated for deformed serpentine aggregates is an order of magnitude greater than that for olivine, and therefore the alignment of serpentine in the hydrated mantle wedge results in a strong trench-parallel seismic anisotropy in the case of a steeply subducting slab. This hypothesis is also consistent with the presence of a hydrous phase in the mantle wedge, as inferred from anomalously low seismic-wave velocities. PMID:19847262
Stability of spherical converging shock wave
Murakami, M.; Sanz, J.; Iwamoto, Y.
2015-07-15
Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓ{sub c}, such that all the eigenmode perturbations for ℓ > ℓ{sub c} are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.
Stability of spherical converging shock wave
NASA Astrophysics Data System (ADS)
Murakami, M.; Sanz, J.; Iwamoto, Y.
2015-07-01
Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓc, such that all the eigenmode perturbations for ℓ > ℓc are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.
Simulation on the aggregation process of spherical particle confined in a spherical shell
NASA Astrophysics Data System (ADS)
Wang, J.; Xu, J. J.; Zhang, L.
2016-04-01
The aggregation process of spherical particles confined in a spherical shell was studied by using a diffusion-limited cluster-cluster aggregation (DLCA) model. The influence of geometrical confinement and wetting-like properties of the spherical shell walls on the particle concentration profile, aggregate structure and aggregation kinetics had been explored. The results show that there will be either depletion or absorption particles near the shell walls depending on the wall properties. It is observed that there are four different types of density distribution which can be realized by modifying the property of the inner or outer spherical shell wall. In addition, the aggregate structure will become more compact in the confined spherical shell comparing to bulk system with the same particle volume fraction. The analysis on the aggregation kinetics indicates that geometrical confinement will promote the aggregation process by reducing the invalid movement of the small aggregates and by constraining the movement of those large aggregates. Due to the concave geometrical characteristic of the outer wall of the spherical shell, its effects on the aggregating kinetics and the structure of the formed aggregates are more evident than those of the inner wall. This study will provide some instructive information of controlling the density distribution of low-density porous polymer hollow spherical shells and helps to predict gel structures developed in confined geometries.
28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...
28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA
Magneto-optical and photoemission studies of ultrathin wedges
Bader, S.D.; Li, Dongqi
1995-12-01
Magnetic phase transitions of Fe wedges grown epitaxially on Cu(100) are detected via the surface magneto-optical Kerr effect and used to construct a phase diagram for face centered Fe. Also, the confinement of Cu sp- and d-quantum-well states is studied for Cu/Co(wedge)/Cu(100) utilizing undulator-based photoemission experiments.
Programmable shape transformation of elastic spherical domes.
Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy
2016-07-20
We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales. PMID:27435451
Configuration and Generation of Substorm Current Wedge
NASA Astrophysics Data System (ADS)
Chu, Xiangning
The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less
Characterization of CNRS Fizeau wedge laser tuner
NASA Astrophysics Data System (ADS)
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.
Characterization of CNRS Fizeau wedge laser tuner
NASA Technical Reports Server (NTRS)
1984-01-01
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.
Wide scanning spherical antenna
NASA Technical Reports Server (NTRS)
Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)
1995-01-01
A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.
Ground penetrating radar estimates of permafrost ice wedge depth
NASA Astrophysics Data System (ADS)
Parsekian, A.; Slater, L. D.; Nolan, J. T.; Grosse, G.; Walter Anthony, K. M.
2013-12-01
Vertical ground ice wedges associated with polygonal patterning in permafrost environments form due to frost cracking of soils under harsh winter conditions and subsequent infilling of cracks with snow melt water. Ice wedge polygon patterns have implications for lowland geomorphology, hydrology, and vulnerability of permafrost to thaw. Ice wedge dimensions may exceed two meters width at the surface and several meters depth, however few studies have addressed the question of ice wedge depth due to challenges related to measuring the vertical dimension below the ground. Vertical exposures where ice wedges maybe observed are limited to rapidly retreating lake, river, and coastal bluffs. Coring though the ice wedges to determine vertical extent is possible, however that approach is time consuming and labor intensive. Many geophysical investigations have noted signal anomalies related to the presence of ice wedges, but no reliable method for extracting wedge dimensions from geophysical data has been yet proposed. Here we present new evidence that ground penetrating radar (GPR) may be a viable method for estimating ice wedge depth. We present three new perspectives on processing GPR data collected over ice wedges that show considerable promise for use as a fast, cost effective method for evaluating ice wedge depth. Our novel approaches include 1) a simple frequency-domain analysis, 2) an S-transform frequency domain analysis and 3) an analysis of the returned signal power as a radar cross section (RCS) treating subsurface ice wedges as dihedral corner retro-reflectors. Our methods are demonstrated and validated using finite-difference time domain FDTD) GPR forward models of synthetic idealized ice wedges and field data from permafrost sites in Alaska. Our results indicate that frequency domain and signal power data provide information that is easier to extract from raw GPR data than similar information in the time domain. We also show that we can simplify the problem by
Transmission of a Gaussian beam by a Fizeau interferential wedge.
Stoykova, Elena
2005-12-01
Analysis of transmission of a finite-diameter Gaussian beam by a Fizeau interferential wedge is presented. The fringe calculation is based on angular spectrum expansion of the complex amplitude of the incident wave field. The developed approach is applicable to any beam diameter and wedge thickness at any distance from the wedge and yields as a boundary case the fringes at plane-wave illumination. The spatial region of resonant transmission on the wedge surface is given by the width of the transmitted peak for plane-wave illumination. At higher coating reflectivity, the direction of the transmitted beam is deviated with respect to that of the incident beam. Evaluation of the spectral response based on the spectral width of the transmitted power curve is introduced as more realistic for a correct description of the application of a Fizeau wedge as an interferential selector in laser resonators. PMID:16396037
Evolution of Strain in Obliquely Convergent Analog Doubly-Vergent Wedges
NASA Astrophysics Data System (ADS)
Davis, D. M.; Haq, S. S.
2012-12-01
We have conducted a range of analog experiments across the parameter space from 0° to 70°, in which we have tracked the evolution of the model geometries and strain fields. Surface deformation is monitored by photographic analysis of the experiment and a plane laser is used to obtain precise topography of the developing pro and retro-wedges normal to strike At both high and low obliquities, our results are broadly consistent with theoretical expectations. At obliquities ranging from 0° to close to 60°, doubly-vergent wedges with the same combination of a broad, minimum taper pro-wedge and a narrower, maximum-taper double retro-wedge found in normal convergence at obliquities up to close to 60°. Above about 60° obliquity, though, the orogen continues to grow with a much greater degree of symmetry; it never develops the broad prowedge that characterizes the orogens at low to moderately high obliquities. This result is entirely consistent with the rotation of stresses and reversal in principal stress order associated with the transition from an essentially convergent orogen with some margin-parallel shear to transpression with dominant strike-slip, as described by various authors. This marked change in tectonic style and orogen shape at about 60° obliquity is accompanied by a change in the distribution of shear within the model. In normal convergence, there is no margin-parallel shear to be accommodated, so it is everywhere equal to zero. Margin-normal shortening is accommodated across the orogen, but, as taper is maintained, it occurs most rapidly near the deformation front (at left). In no case is there extension in these purely frictional models, unlike the case with a ductile layer at depth. At non-zero obliquities, there is also margin-parallel shear to be distributed across the margin. In addition to a broad zone centered on the topographic high (over the tip of the backstop), that shear is distributed across the prowedge, where it is accommodated in the
The role of aerothermochemistry in double cone and double wedge flows
NASA Astrophysics Data System (ADS)
Swantek, Andrew
In this work, hypervelocity flows over double cone and double wedge geometries are studied. The flow configurations established over the double cone/double wedge models are extremely sensitive to thermochemistry, and thus serve as ideal benchmarks for validating chemical models. The goals of this research are: i) to investigate the coupling between the fluid mechanics and thermochemistry in these flow fields by varying freestream flow composition and enthalpy, ii) to implement a diagnostic suite for time-resolved surface and freestream measurements, iii) to investigate the nature of flow field unsteadiness across various test conditions, and lastly iv) to extend the experimental database for shock wave boundary/layer interactions. An expansion tube is used to generate flows with enthalpies ranging from 2.2-8.0 MJ/kg (2-4 km/s) and Mach numbers from 4-7. The expansion tube is a novel impulse facility for accelerating a test gas to these velocities, while maintaining a minimally dissociated freestream. Additionally, the facility allows variation of the freestream composition (between nitrogen and air), while maintaining freestream test parameters (Mach number, density, enthalpy) to within 0.5%. Two models are used: a 25-55 degree double cone model and a 30-55 degree double wedge. There are four diagnostic components to this research which aim to enable a better understanding of these canonical flow fields. Single frame, high resolution schlieren photography is used to visualize various flow features including: the separation zone formed in the corner, the triple point interaction, and a supersonic shear layer. From these images, a separation zone length scaling parameter is determined. This parameter, derived for wedge geometries, is successfully applied to conical geometries by using a judicious choice of flow properties for scaling. In the wedge image series, nitrogen test conditions exhibit a distinct increase in bow shock standoff distance. Additionally, aft
NASA Astrophysics Data System (ADS)
Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.
Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.
The matching of wedge transmission factors across six multi-energy linear accelerators.
Weston, S J; Thompson, R C A; Morgan, A M
2007-01-01
Elekta Precise linear accelerators create a wedged isodose distribution using a single, fixed, motorized wedge with a nominal wedge angle of 60 degrees. Wedge angles of less than 60 degrees can be produced by varying the proportion of open and wedge monitor units for a given exposure. The fixed wedge can be replaced with a mobile wedge, the position of which can be moved in order to adjust the wedge transmission factor (WTF). Using the original fixed wedges installed in our fleet of six Elekta accelerators, we found a range of 4% in measured wedge transmission factor for 6 MV beams. Results are presented which demonstrate that by using the mobile wedge it is possible to match the wedge transmission factors to within 1% for the six linear accelerators over three energies. PMID:17267473
Large displacement spherical joint
Bieg, Lothar F.; Benavides, Gilbert L.
2002-01-01
A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.
Recent Progress on Spherical Torus Research
Ono, Masayuki; Kaita, Robert
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Scalar and vector spherical harmonic spectral equations of rotating magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Ivers, D. J.; Phillips, C. G.
2008-12-01
Vector spherical harmonic analyses have been used effectively to solve laminar and mean-field magnetohydrodynamic dynamo problems with product interactions, such as magnetic induction, anisotropic alpha-effect and anisotropic magnetic diffusion, that are difficult to analyse spectrally in spherical geometries. Spectral forms of the non-linear rotating, Boussinesq and anelastic, momentum, magnetic induction and heat equations are derived for spherical geometries from vector spherical harmonic expansions of the velocity, magnetic induction, vorticity, electrical current and gravitational acceleration and from scalar spherical harmonic expansions of the pressure and temperature. By combining the vector spherical harmonic spectral forms of the momentum equation and the magnetic induction equation with poloidal-toroidal representations of the velocity and the magnetic field, non-linear spherical harmonic spectral equations are also derived for the poloidal-toroidal potentials of the velocity or the momentum density in the anelastic approximation and the magnetic field. Both compact and spectral interaction expansion forms are given. Vector spherical harmonic spectral forms of the linearized rotating magnetic induction, momentum and heat equations for a general basic state can be obtained by linearizing the corresponding non-linear spectral equations. Similarly, the spherical harmonic spectral equations for the poloidal-toroidal potentials of the velocity and the magnetic field may be linearized. However, for computational applications, new alternative hybrid linearized spectral equations are derived. The algorithmically simpler hybrid equations depend on vector spherical harmonic expansions of the velocity, magnetic field, vorticity, electrical current and gravitational acceleration of the basic state and scalar spherical harmonic expansions of the poloidal-toroidal potentials of the perturbation velocity, magnetic field and temperature. The spectral equations derived
The effect of a compliant accretionary wedge on earthquake rupture and tsunamigenesis
NASA Astrophysics Data System (ADS)
Lotto, Gabriel; Jeppson, Tamara; Dunham, Eric; Tobin, Harold
2016-04-01
The 11 March 2011 Tohoku megathrust earthquake ruptured through the shallowest part of the subduction zone boundary, resulting in tens of meters of displacement at the seafloor. This extreme shallow slip generated a devastating tsunami. The elastic properties of off-fault materials have an important role in determining slip along a fault. Laboratory ultrasonic velocity measurements performed on samples of rock obtained from the area surrounding the Tohoku earthquake principal fault zone during the Japan Trench Fast Drilling Project (JFAST) have shown that shallow off-fault materials are extremely compliant - P-wave velocities of 2.0-2.4 km/s, S-wave velocities of 0.7-1.0 km/s, and shear moduli ranging from 1.0-2.2 GPa. Seismic imaging around the JFAST drill site corroborates the presence of a compliant, low-velocity frontal prism at the toe of the hanging wall. This compliant wedge is likely a fairly robust feature across the horizontal extent of the Japan Trench and may have contributed to the large amount of displacement recorded. In order to investigate the impact of compliant off fault materials on earthquake rupture and tsunamigenesis, we employ a 2-D finite difference method that models the full seismic and tsunami wavefield associated with dynamic rupture on a dipping fault in a heterogeneous medium. Our numerical method rigorously couples the elastodynamic response of the solid Earth to that of a compressible ocean in the presence of gravity. Idealized models of subduction zone earthquakes show that the presence of a compliant wedge leads to increased slip, greater seafloor displacement, and a larger tsunami. However, preliminary results for a representative Tohoku geometry were not so simple; the compliant wedge enhanced slip and seafloor deformation but only in a localized zone, and tsunami height was not significantly affected. This surprising result indicates that the details of geometry and material structure we observe in real subduction zones are
Random walks, diffusion limited aggregation in a wedge, and average conformal maps.
Sander, Leonard M; Somfai, Ellák
2005-06-01
We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average, that of the conformal maps associated with random clusters, yields a nontrivial shape which is also not far from the Saffman-Taylor finger. However, we have previously demonstrated that the same average of DLA in a channel geometry is not the Saffman-Taylor finger. This casts doubt on the idea that the average of noisy diffusion-limited growth is governed by a simple transcription of noise-free results. PMID:16035911
Characterizing human retinotopic mapping with conformal geometry: a preliminary study
NASA Astrophysics Data System (ADS)
Ta, Duyan; Shi, Jie; Barton, Brian; Brewer, Alyssa; Lu, Zhong-Lin; Wang, Yalin
2014-03-01
Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. Here we test whether VFMs V1 and V2 obey the least restrictive of all geometric mappings; that is, whether they are anglepreserving and therefore maintain conformal mapping. We measured retinotopic organization in individual subjects using standard traveling-wave fMRI methods. Visual stimuli consisted of black and white, drifting checkerboards comprising rotating wedges and expanding rings to measure the cortical representations of polar angle and eccentricity, respectively. These representations were then projected onto a 3D cortical mesh of each hemisphere. By generating a mapped unit disk that is conformal of the VFMs using spherical stereographic projection and computing the parameterized coordinates of the eccentricity and polar angle gradients, we computed Beltrami coefficients to check whether the mapping from the visual field to the V1 and V2 cortical representations is conformal. We find that V1 and V2 exhibit local conformality. Our analysis of the Beltrami coefficient shows that selected regions of V1 and V2 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex. These results suggest that such a mathematical model can be used to characterize the early VFMs in human visual cortex.
An experimental investigation of supersonic flow past a wedge-cylinder configuration
NASA Technical Reports Server (NTRS)
Barnette, D. W.
1976-01-01
An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested, it was found that, while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions), the weaker, Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge. Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the "bow" shock wave). A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e., near the wing root). Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations.
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walter; Grassberger, Peter
2005-06-01
Lattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of two-dimensional site animals on square and triangular lattices in nontrivial geometries. The simulations are done with the pruned-enriched Rosenbluth method (PERM) algorithm, which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent θ (ZN˜μNN-θ) . In particular, we studied animals grafted to the tips of wedges with a wide range of angles α , to the tips of cones (wedges with the sides glued together), and to branching points of Riemann surfaces. The latter can either have k sheets and no boundary, generalizing in this way cones to angles α>360° , or can have boundaries, generalizing wedges. We find conformal invariance behavior, θ˜1/α , only for small angles (α≪2π) , while θ≈const-α/2π for α≫2π . These scalings hold both for wedges and cones. A heuristic (nonconformal) argument for the behavior at large α is given, and comparison is made with critical percolation.
NASA Astrophysics Data System (ADS)
Morgan, Julia K.
2015-05-01
Particle-based numerical simulations of cohesive contractional wedges can yield important perspectives on the formation and evolution of fold and thrust belts, offering particular insights into the mechanical evolution of the systems. Results of several discrete element method simulations are presented here, demonstrating the stress and strain evolution of systems with different initial cohesive strengths. Particle assemblages consolidated under gravity, and bonded to impart cohesion, are pushed from the left at a constant velocity above a weak, unbonded décollement surface. Internal thrusting causes horizontal shortening and vertical thickening, forming wedge geometries. The mean wedge taper is similar for all simulations, consistent with their similar residual and basal sliding friction values. In all examples presented here, both forethrusts and back thrusts occur, but forethrusts accommodate most of the shortening. Fault spacing and offset increase with increasing cohesion. Significant tectonic volume strain also occurs, with the greatest incremental volume strain occurring just outboard of the deformation front. This diffuse shortening serves to strengthen the unfaulted domain in front of the deformed wedge, preconditioning these materials for brittle (dilative) failure. The reach of this volumetric strain and extent of décollement slip increase with cohesive strength, defining the extent of stress transmission. Stress paths for elements tracked through the simulations demonstrate systematic variations in shear stress in response to episodes of both décollement slip and thrust fault activity, providing a direct explanation for stress fluctuations during convergence.
Refined numerical solution of the transonic flow past a wedge
NASA Technical Reports Server (NTRS)
Liang, S.-M.; Fung, K.-Y.
1985-01-01
A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.
Recirculating wedges for metal-vapor plasma tubes
Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.
1994-01-01
A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.
Recirculating wedges for metal-vapor plasma tubes
Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.
1994-06-28
A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.
Octave spanning wedge dispersive mirrors with low dispersion oscillations.
Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir
2016-05-01
A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth. PMID:27137538
NASA Astrophysics Data System (ADS)
Stover, E.; Berger, G.; Wendel, M.; Petter, J.
2015-10-01
A method for non-contact 3D form testing of aspheric surfaces including determination of decenter and wedge errors and lens thickness is presented. The principle is based on the absolute measurement capability of multi-wavelength interferometry (MWLI). The approach produces high density 3D shape information and geometric parameters at high accuracy in short measurement times. The system allows inspection of aspheres without restrictions in terms of spherical departures, of segmented and discontinuous optics. The optics can be polished or ground and made of opaque or transparent materials.
NASA Astrophysics Data System (ADS)
Ge, Wenjun; Modest, Michael F.; Roy, Somesh P.
2016-03-01
The high-order spherical harmonics (PN) method for 2-D Cartesian domains is extracted from the 3-D formulation. The number of equations and intensity coefficients reduces to (N + 1)2 / 4 in the 2-D Cartesian formulation compared with N(N + 1) / 2 for the general 3-D PN formulation. The Marshak boundary conditions are extended to solve problems with nonblack and mixed diffuse-specular surfaces. Additional boundary conditions for specified radiative wall flux, for symmetry/specular reflection boundaries have also been developed. The mathematical details of the formulations and their implementation in the OpenFOAM finite volume based CFD software platform are presented. The accuracy and computational cost of the 2-D Cartesian PN are compared with that of the 3-D PN solver and a Photon Monte Carlo solver for a square enclosure, as well as a 45° wedge geometry with variable radiative properties. The new boundary conditions have been applied for both test cases, and the boundary condition for mixed diffuse-specular surfaces is further illustrated by numerical examples of a rectangular geometry enclosed by walls with different surface characteristics.
Substorm current wedge composition by wedgelets
NASA Astrophysics Data System (ADS)
Liu, Jiang; Angelopoulos, V.; Chu, Xiangning; Zhou, Xu-Zhi; Yue, Chao
2015-03-01
Understanding how a substorm current wedge (SCW) is formed is crucial to comprehending the substorm phenomenon. One SCW formation scenario suggests that the substorm time magnetosphere is coupled to the ionosphere via "wedgelets," small building blocks of an SCW. Wedgelets are field-aligned currents (FACs) carried by elemental flux transport units known as dipolarizing flux bundles (DFBs). A DFB is a magnetotail flux tube with magnetic field stronger than that of the ambient plasma. Its leading edge, known as a "dipolarization front" or "reconnection front," is a product of near-Earth reconnection. Dipolarizing flux bundles, and thus wedgelets, are localized—each is only <3 RE wide. How these localized wedgelets combine to become large-scale (several hours of magnetic local time) region-1-sense SCW FACs is unclear. To determine how this occurs, we investigated wedgelets statistically using Time History of Events and Macroscale Interactions during Substorms (THEMIS) data. The results show wedgelet asymmetries: in the dawn (dusk) sector of the magnetotail, a wedgelet has more FAC toward (away from) the Earth than away from (toward) the Earth, so the net FAC is toward (away from) the Earth. The combined effect of many wedgelets is therefore the same as that of large-scale region-1-sense SCW, supporting the idea that they comprise the SCW.
Applications of Differential Geometry to Cartography
ERIC Educational Resources Information Center
Benitez, Julio; Thome, Nestor
2004-01-01
This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…
Quantifying the effects of material properties on analog models of critical taper wedges
NASA Astrophysics Data System (ADS)
Hofmann, F.; Rosenau, M.; Schreurs, G.; Friedrich, A. M.
2012-04-01
Analogue models are inherently handmade and reflect their creator's shaping character. For example, sieving style in combination with grain geometry and distribution have been claimed to influence bulk material properties and the outcome of analogue experiments. Few studies exist that quantify these effects and here we aim at investigating the impact of bulk properties of granular materials on the structural development of convergent brittle wedges in analogue experiments. In a systematic fashion, natural sands as well as glass beads of different grain size and size distribution were sieved by different persons from different heights and the resulting bulk density was measured. A series of analogue experiments in both the push and pull setup were performed. The differences in the outcome of experiments were analyzed based on sidewall pictures and 3D laserscanning of the surface. A new high-resolution approach to measuring surface slope automatically is introduced and applied to the evaluation of images and profiles. This procedure is compared to manual methods of determining surface slope. The effect of sidewall friction was quantified by measuring lateral changes in surface slope. The resulting dataset is used to identify the main differences between pushed and pulled wedge experiments in the light of critical taper theory. The bulk density of granular material was found to be highly dependent on sieve height. Sieve heights of less than 50 cm produced a bulk density that was up to 10% less than the maximum bulk density; an effect equally shown for different people sieving the material. Glass beads were found to produce a more regular structure of in-sequence-thrusts in both, space and time, than sands while displaying less variability. Surface slope was found to be highly transient for pushed wedge experiments, whereas it reached and attained a stable value in pulled experiments. Pushed wedges are inferred to develop into a supercritical state because they exceed
Spherical geodesic mesh generation
Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
Propagation in an elastic wedge using the virtual source technique.
Abawi, Ahmad T; Porter, Michael B
2007-03-01
The virtual source technique, which is based on the boundary integral method, provides the means to impose boundary conditions on arbitrarily shaped boundaries by replacing them by a collection of sources whose amplitudes are determined from the boundary conditions. In this paper the virtual source technique is used to model propagation of waves in a range-dependent ocean overlying an elastic bottom with arbitrarily shaped ocean-bottom interface. The method is applied to propagation in an elastic Pekeris waveguide, an acoustic wedge, and an elastic wedge. In the case of propagation in an elastic Pekeris waveguide, the results agree very well with those obtained from the wavenumber integral technique, as they do with the solution of the parabolic equation (PE) technique in the case of propagation in an acoustic wedge. The results for propagation in an elastic wedge qualitatively agree with those obtained from an elastic PE solution. PMID:17407873
The crack and wedging problem for an orthotropic strip
NASA Technical Reports Server (NTRS)
Cinar, A.; Erdogan, F.
1982-01-01
The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.
The crack and wedging problem for an orthotropic strip
NASA Technical Reports Server (NTRS)
Cinar, A.; Erdogan, F.
1983-01-01
The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707
Stress singularities at the vertex of a cylindrically anisotropic wedge
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.; Boduroglu, H.
1980-01-01
The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.
Wedge Heat-Flux Indicators for Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2003-01-01
Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.
49 CFR 215.113 - Defective plain bearing wedge.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...
49 CFR 215.113 - Defective plain bearing wedge.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...
49 CFR 215.113 - Defective plain bearing wedge.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...
49 CFR 215.113 - Defective plain bearing wedge.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...
49 CFR 215.113 - Defective plain bearing wedge.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components... car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...
VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...
VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING NORTH - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA
VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...
VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING SOUTHEAST - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA
DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...
DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING EAST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA
DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...
DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING NORTHWEST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA
Single-photon cooling in a wedge billiard
Choi, S.; Sundaram, B.; Raizen, M. G.
2010-09-15
Single-photon cooling (SPC), noted for its potential as a versatile method for cooling a variety of atomic species, has recently been demonstrated experimentally. In this paper, we study possible ways to improve the performance of SPC by applying it to atoms trapped inside a wedge billiard. The main feature of the wedge billiard for atoms, also experimentally realized recently, is that the nature of atomic trajectories within it changes from stable periodic orbit to random chaotic motion with the change in wedge angle. We find that a high cooling efficiency is possible in this system with a relatively weak dependence on the wedge angle and that chaotic dynamics, rather than a regular orbit, is more desirable for enhancing the performance of SPC.
Geophysical Surveys for Detecting Distribution and Shape of Ice Wedges
NASA Astrophysics Data System (ADS)
Watanabe, T.; Matsuoka, N.; Ikeda, A.
2006-12-01
Recent development of applied geophysical methods has shown detailed structure in various periglacial features. However, these methods have been rarely applied to studies in ice wedges. Thus, we attempted to display distribution and shape of ice wedges using a ground penetrating radar (GPR) and a direct current (DC) resistivity meter. The surveys were performed at a comprehensive monitoring site of ice-wedging in Adventdalen, Svalbard, where troughs and small cracks form polygonal patterns on the ground. Unknown structure below such new cracks is also focused in this study. We obtained 37 GPR profiles using 250 MHz signal. 2-D resistivity surveys were also performed along 14 GPR profiles. The electrodes were placed at 1 m intervals and their combination followed the Wenner array. In addition, shallow boreholes were dug across 5 troughs/cracks to estimate the width of ice wedge. The analyzed results show parabolic patterns formed by the multiple radar waveforms and largely increasing gradients of DC resistivity below the troughs and small cracks. The strong reflections of the radar signals and the starting zones of the increasing resistivity lay about 1 m deep, which corresponded to the top of ice wedges (0.7-0.9 m deep) revealed by the drilling. In the GPR profiles, a relatively flat pattern of the reflection was sandwiched by a pair of parabolic patterns below each well-developed trough, whereas a sharp parabolic pattern was detected below each small crack. These results mean that the presence of narrow ice wedges is detectable by the GPR method and the top of a parabolic pattern roughly corresponds to one edge of an ice wedge table. In the DC resistivity profiles, a high resistivity core exists below each trough and crack. The high resistivity probably resulted from ice having lower unfrozen water content than the surrounding silt materials. The heights of the cores indicate that the ice wedges were formed at least between 1 m and 3 m deep. The cores are, however
Seismicity of the forearc marginal wedge (accrertionary prism)
Chen, A.T.; Frohlich, C.; Latham, G.V.
1982-05-10
Three different types of seismic data have been examined for seismic events occurring within the zone called the accreted wedge or forearc marginal wedge that underlies the inner trench wall of some arcs. These types of data are (1) teleseismically recorded earthquakes that have been reported in the literature as occurring in major arc-trench regions; these events fail to demonstrate that earthquakes occur within the accreted wedge because the uncertainty of focal depth usually exceeds the depth dimension of the accreted wedge; these data include many tsunamigenic earthquakes, (2) local earthquakes located by combined ocean bottom seismograph and land networks in the arc-trench region in the New Hebrides and the central and eastern Aleutian Trench; none of the more reliable of these hypocenters lies within the accreted wedge; (3) S-P intervals measured at stations on islands located on the outer ridge or at ocean bottom seismograph stations on the forearc marginal wedge; these data do not show the existence of events occurring within the accreted wedge; e.g., from 18 ocean bottom seismograph stations with a cumulative operation time of about 1 year, the smallest S-P time is about 2.5 s for events in the New Hebrides and about 4 s for events in the Adak and Kodiak regions. We found no S-P time smaller than 2 s from 6 years of seismograms recorded at Middleton Island, Alaska, and no S-P time smaller than 4 s from 25 years of seismograms recorded on Barbados. All of the events could have occured outside the forearc marginal wedge.
Optical refractometry based on Fresnel diffraction from a phase wedge.
Tavassoly, M Taghi; Saber, Ahad
2010-11-01
A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises. PMID:21042389
Kumar, Rajesh; Kar, D C; Sharma, S D; Mayya, Y S
2012-01-01
A universal wedge filter of 15W × 20 cm(2) and 60° nominal wedge angle is designed and placed between the collimating jaws and penumbra trimmers inside the treatment head. A pneumatically driven actuating mechanism toggles the wedge between the wedge IN position and wedge OUT position. The effective wedge angles were determined using an analytical formula. An accumulated wedge profile at a depth of 10 cm which was measured using a 2D profiler and dose values at depths of 10 cm and 20 cm for the same experimental setup were used as input parameters in the formula used for determining effective wedge angles. The relationship between the wedge beam weight and effective wedge angle was established. The planned wedge angles were compared with the measured wedge angles and the differences are found to be less than 2° throughout the range of field sizes. Planned doses for various field sizes and wedge angles were measured for verification and the differences were found to be less than 1.8%. This study established that the relationship between the beam weights and effective wedge angles implemented for the motorized wedge filter of medical linacs is not directly applicable for the motorized wedge filter of Telecobalt. PMID:21486704
NASA Astrophysics Data System (ADS)
Santimano, Tasca; Rosenau, Matthias; Oncken, Onno
2015-06-01
Analogue models are not perfectly reproducible even under controlled boundary conditions which make their interpretation and application not always straight forward. As any scientific experiment they include some random component which can be influenced both by intrinsic (inherent processes) and extrinsic (boundary conditions, material properties) sources. In order to help in the assessment of analogue model results, we discriminate and quantify the intrinsic versus extrinsic variability of results from "sandbox" models of accretionary wedges that were repeated in a controlled environment. The extrinsic source of variability, i.e. the parameter varied is the nature of the décollement (material, friction and thickness). Experiment observables include geometric properties of the faults (lifetime, spacing, dip) as well as wedge geometry (height, slope, length). For each variable we calculated the coefficient of variance (CV) and quantified the variability as a symmetric distribution (Normal, Laplacian) or asymmetric distribution (Gamma) using a Chi squared test (χ2). Observables like fault dip/back thrust dip (CV = 0.6-0.7/0.2-0.6) are less variable and decrease in magnitude with decreasing basal friction. Variables that are time dependent like fault lifetime (CV = 0.19-0.56) and fault spacing (CV = 0.12 - 0.36) have a higher CV consequently affecting the variability of wedge slope (CV = 0.12-0.33). These observables also increase in magnitude with increasing basal friction. As the mechanical complexity of the evolving wedge increases over time so does the CV and asymmetry of the distribution. In addition, we confirm the repeatability of experiments using an ANOVA test. Through the statistical analysis of results from repeated experiments we present a tool to quantify variability and an alternative method to gaining better insights into the dynamic mechanics of deformation in analogue sand wedges.
Hollow spherical supramolecular dendrimers.
Percec, Virgil; Peterca, Mihai; Dulcey, Andrés E; Imam, Mohammad R; Hudson, Steven D; Nummelin, Sami; Adelman, Peter; Heiney, Paul A
2008-10-01
The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures. PMID:18771261
NASA Technical Reports Server (NTRS)
Hall, L. G.
1969-01-01
Radial focusing of electrons in ion source produces greater ion densities, resulting in higher resolution and focus capability for a given source volume. Electron beam is focused near exit aperture by spherical fields. High density ions allow focusing ion beam to high density at echo, allowing high current through small aperture.
Retroreflector spherical satellite
NASA Astrophysics Data System (ADS)
Akentyev, A. S.; Vasiliev, V. P.; Sadovnikov, M. A.; Sokolov, A. L.; Shargorodskiy, V. D.
2015-10-01
Specific features of spherical retroreflector arrays for high-precision laser ranging are considered, and errors in distance measurements are analyzed. A version of a glass retroreflector satellite with a submillimeter "target error" is proposed. Its corner cube reflectors are located in depressions to reduce the working angular aperture, and their faces have a dielectric interference coating.
NASA Technical Reports Server (NTRS)
Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)
2011-01-01
A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.
Rotating convection in elliptical geometries
NASA Astrophysics Data System (ADS)
Evonuk, M.
2014-12-01
Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.
Close packing of rods on spherical surfaces
NASA Astrophysics Data System (ADS)
Smallenburg, Frank; Löwen, Hartmut
2016-04-01
We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.
Close packing of rods on spherical surfaces.
Smallenburg, Frank; Löwen, Hartmut
2016-04-28
We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets. PMID:27131565
Crack problems in cylindrical and spherical shells
NASA Technical Reports Server (NTRS)
Erdogan, F.
1976-01-01
Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.
Frequency domain photothermal radiometry with spherical solids
Wang, Chinhua; Liu, Yue; Mandelis, Andreas; Shen, Jun
2007-04-15
Motivated by increasing practical and industrial applications of photothermal techniques in the measurement of materials of various shapes with curvature, we extend the applications of photothermal diagnostics to solid spheres, in which both theoretical and experimental photothermal radiometry studies on spherical geometries and thermal diffusivity of the sample are discussed. Based on the Green function method, a full thermal-wave field distribution of a spherical solid is obtained. The characteristics of the thermal-wave field with respect to thermophysical properties of the material, the diameter of the solid, the size of the incident laser beam, and the measurement angle are discussed. Experimental results with steel spheres of different diameters exhibit good agreement between the theory and the experiments.
Colloidal cholesteric liquid crystal in spherical confinement.
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia
2016-01-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545
Colloidal cholesteric liquid crystal in spherical confinement
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia
2016-01-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545
Using cyclic steps on drift wedges to amend established models of carbonate platform slopes
NASA Astrophysics Data System (ADS)
Betzler, Christian; Lindhorst, Sebastian; Eberli, Gregor; Reijmer, John; Lüdmann, Thomas
2015-04-01
Hydroacoustic and sedimentological data of the western flank of Great Bahama Bank and Cay Sal Bank document how the interplay of offbank sediment export, along-slope transport, and erosion together shape facies and thickness distribution of slope deposits. The integrated data set depicts the combined product of these processes and allows formulating a comprehensive model of a periplatform drift that significantly amends established models of carbonate platform slope facies distribution and geometry. The basinward thinning wedge of the periplatform drift at the foot of the escarpment of Great Bahama Bank displays along- and down-slope variations in sedimentary architecture. Sediments consist of periplatform ooze, i.e. carbonate mud and muddy carbonate sand, coarsening basinward. In zones of lower contour current speed, depth related facies belts develop. In the upper part of the periplatform drift wedge in a water depth of 180 to 300 m and slope angles of 6° - 9° the seafloor displays a smooth surface. Parasound data indicate that this facies is characterized by a parallel layering. Basinward, the slope shows a distinct break at which the seafloor inclination diminishes to 1° to 2°. Downslope of this break, the drift wedge has a 3 - 4 km wide pervasive cover of bedforms down to a water depth of around 500 m. The steep flanks and internal stratification of the wavy bedforms face upslope, indicating upstream migration; the bedforms therefore share all the characteristics of cyclic step sedimentation. This is the first description of cyclic step sedimentation patterns in carbonate slope depositional systems. This new slope sedimentation model aids in understanding the complexity of carbonate slope sedimentation models with facies belts perpendicular and parallel to the platform margin. The new model sharply contrasts with existing slope facies models in which facies belts are solely positioned parallel to the platform margin.
NASA Astrophysics Data System (ADS)
Pollyea, R.; Van Dusen, E.; Fischer, M. P.
2014-12-01
In recent years, investigators have revisited the problem of basin-scale fluid flow with an emphasis on depth-dependent permeability, which is a frequently observed geological phenomenon that is seldom accounted for in basin-scale flow models. These recent investigations have shown that depth-dependent permeability at the basin scale strongly influences the relationship between sub-basin and regional-scale flow paths. Here, we revisit topography driven fluid flow within a foreland basin using a numerical modeling experiment designed to assess first-order fluid system behavior when permeability decreases systematically with depth. Critical taper theory is invoked to define two-dimensional basin geometry, and three sub-aerially exposed orogenic wedge models are presented with critical taper angles of 2°, 4°, and 10°. To assess the combined influence of topographic slope and depth-dependent permeability, a constant rate infiltration is applied at the wedge surface and a transient simulation is performed within each model for 500,000 years. Our results suggest that fluid system structure within the narrowly tapering orogenic wedge (2°) is explained by recent investigations applying depth-decaying permeability to the classic Tóth basin; however, increasing topographic slope beyond 3° results in a fundamentally different fluid system architecture. As topographic slope increases, fluid system structure is characterized by (1) dominant regional flow paths and little, if any, sub-basin scale fluid circulation, (2) shallow meteoric water penetration, (3) a stratified distribution of groundwater residence time without pronounced stagnation points. Moreover, for a given detachment slope, these effects become more pronounced as topographic gradient increases.
Predicting orogenic wedge styles as a function of analogue erosion law and material softening
NASA Astrophysics Data System (ADS)
Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.
2013-10-01
The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.
Seismic reflection images of the accretionary wedge of Costa Rica
Shipley, T.H.; Stoffa, P.L. ); McIntosh, K.; Silver, E.A. )
1990-05-01
The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement, the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.
Aligning Optical Fibers by Means of Actuated MEMS Wedges
NASA Technical Reports Server (NTRS)
Morgan, Brian; Ghodssi, Reza
2007-01-01
Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.
Geometry of area without length
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Inami, Takeo
2016-01-01
To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.
Du, Jun; Zheng, Guang-Ying; Wen, Cheng-Lin; Zhang, Xiao-Fang; Zhu, Yu
2016-01-01
AIM To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA) and best corrected distance visual acuities (BCVA), pre- and post-operation astigmatism, spherical equivalent (SE), safety and complications were evaluated. RESULTS Ten eyes (10 patients) were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo). The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000) and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000). The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310). The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601). Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable. PMID:27366685
ul Haq, Muhammad Noaman; Saeed, R.; Shah, Asif
2010-08-15
The propagation of ion acoustic shock waves in cylindrical and spherical geometries has been investigated. The plasma system consists of cold ions, Boltzmannian electrons and positrons. Spherical, cylindrical Korteweg-de Vries-Burger equations have been derived by reductive perturbation technique and their shock behavior is studied by employing finite difference method. Our main emphasis is on the behavior of shock as it moves toward and away from center of spherical and cylindrical geometries. It is noticed, that the shock wave strength and steepness accrues with time as it moves toward the center and shock enervates as it moves away from center. The strength of shock in spherical geometry is found to dominate over shock strength in cylindrical geometry. Positron concentration, kinematic viscosity are also found to have significant effect on the shock structure and propagation. The results may have relevance in the inertial confinement fusion plasmas.
Five questions to consider before conducting a stepped wedge trial.
Hargreaves, James R; Copas, Andrew J; Beard, Emma; Osrin, David; Lewis, James J; Davey, Calum; Thompson, Jennifer A; Baio, Gianluca; Fielding, Katherine L; Prost, Audrey
2015-01-01
Researchers should consider five questions before starting a stepped wedge trial. Why are you planning one? Researchers sometimes think that stepped wedge trials are useful when there is little doubt about the benefit of the intervention being tested. However, if the primary reason for an intervention is to measure its effect, without equipoise there is no ethical justification for delaying implementation in some clusters. By contrast, if you are undertaking pragmatic research, where the primary reason for rolling out the intervention is for it to exert its benefits, and if phased implementation is inevitable, a stepped wedge trial is a valid option and provides better evidence than most non-randomized evaluations. What design will you use? Two common stepped wedge designs are based on the recruitment of a closed or open cohort. In both, individuals may experience both control and intervention conditions and you should be concerned about carry-over effects. In a third, continuous-recruitment, short-exposure design, individuals are recruited as they become eligible and experience either control or intervention condition, but not both. How will you conduct the primary analysis? In stepped wedge trials, control of confounding factors through secular variation is essential. 'Vertical' approaches preserve randomization and compare outcomes between randomized groups within periods. 'Horizontal' approaches compare outcomes before and after crossover to the intervention condition. Most analysis models used in practice combine both types of comparison. The appropriate analytic strategy should be considered on a case-by-case basis. How large will your trial be? Standard sample size calculations for cluster randomized trials do not accommodate the specific features of stepped wedge trials. Methods exist for many stepped wedge designs, but simulation-based calculations provide the greatest flexibility. In some scenarios, such as when the intracluster correlation coefficient is
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Diffusion induced flow on a wedge-shaped obstacle
NASA Astrophysics Data System (ADS)
Zagumennyi, Ia V.; Dimitrieva, N. F.
2016-08-01
In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium.
Thrust wedges and fluid overpressures: Sandbox models involving pore fluids
NASA Astrophysics Data System (ADS)
Mourgues, R.; Cobbold, P. R.
2006-05-01
The well-known model for the critical taper of an accretionary wedge includes overpressure as a first-order parameter. Fluid overpressures reduce frictional resistance at the base of a wedge but they also act as body forces on all material particles of the wedge, in addition to that of gravity. By means of sandbox modeling, many workers have tried to verify the predictions of the critical taper model, but few of them have so far incorporated true fluid pressures. We have used scaled experiments, in which compressed air flows through sand packs, so as to model the deformation of overpressured wedges. A new apparatus provides for a horizontally varying fluid pressure, for example, a linear variation, as in the critical taper model. We have done three series of experiments, involving horizontal shortening of homogeneous or multilayered sand models for various gradients of fluid pressure. As predicted by the critical taper model, the apical angle of the resulting wedge depends on the overpressure gradient. In homogeneous sand at a high overpressure gradient, deformation becomes diffuse and looks ductile. In multilayered models, detachments form beneath layers of low permeability, so that thrusts propagate rapidly toward the undeformed foreland. The efficiency of a detachment and its ability to propagate depend not only on the fluid pressure but also on the permeability ratios between the various layers.
Polymer wedge for perfectly vertical light coupling to silicon
NASA Astrophysics Data System (ADS)
Schrauwen, J.; Scheerlinck, S.; Van Thourhout, D.; Baets, R.
2009-02-01
We present the design and fabrication of a refractive polymer wedge that allows perfectly vertical coupling of light into a silicon waveguide, which is of interest for flip-chip bonding of vertical cavity emitting light sources on a silicon integrated circuit. The structure includes a conventional diffractive grating coupler that requires off-normal incidence to avoid second order Bragg reflections. The polymer wedge is thus used to refract vertically impinging light into an off-normal wave that couples into the underlying grating. The fabrication involves two steps: mold fabrication and imprint replication. Firstly negative wedge-shaped craters are etched into a quartz mold by Focused-ion-beam milling. Secondly the mold is used to imprint a UV-curable polymer onto a silicon chip containing waveguides and grating couplers, and so replicating the wedges. The characterization setup consisted of a fiber-to-fiber transmission measurement of a silicon waveguide equipped with a pair of grating couplers and polymer wedges. The obtained fiber coupling efficiency was equal to the efficiency of regular grating couplers and fiber positioned at an off-normal angle. The proposed fabrication method enables low cost integration of vertical cavity emitting light sources on silicon integrated photonic circuits.
Spherical nitroguanidine process
Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.
1990-01-01
A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.
Spherical nitroguandine process
Sanchez, J.A.; Roemer, E.L.; Stretz, L.A.
1990-10-30
A process of preparing spherical high bulk density nitroguanidine by dissolving low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is presented. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.
Recent progress on spherical torus research
Ono, Masayuki; Kaita, Robert
2015-04-15
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R{sub 0}/a) reduced to A ∼ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ∼ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Recent progress on spherical torus research
NASA Astrophysics Data System (ADS)
Ono, Masayuki; Kaita, Robert
2015-04-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ˜ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ˜ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Density functional study of complete, first-order and critical wedge filling transitions.
Malijevský, Alexandr; Parry, Andrew O
2013-07-31
We present numerical studies of complete, first-order and critical wedge filling transitions, at a right angle corner, using a microscopic fundamental measure density functional theory. We consider systems with short-ranged, cut-off Lennard-Jones, fluid-fluid forces and two types of wall-fluid potential: a purely repulsive hard wall and also a long-ranged potential with three different strengths. For each of these systems we first determine the wetting properties occurring at a planar wall, including any wetting transition and the dependence of the contact angle on temperature. The hard wall corner is completely filled by vapour on approaching bulk coexistence and the numerical results for the growth of the meniscus thickness are in excellent agreement with effective Hamiltonian predictions for the critical exponents and amplitudes, at leading and next-to-leading order. In the presence of the attractive wall-fluid interaction, the corresponding planar wall-fluid interface exhibits a first-order wetting transition for each of the interaction strengths considered. In the right angle wedge geometry the two strongest interactions produce first-order filling transitions while for the weakest interaction strength, for which wetting and filling occur closest to the bulk critical point, the filling transition is second-order. For this continuous transition the critical exponent describing the divergence of the meniscus thickness is found to be in good agreement with effective Hamiltonian predictions. PMID:23836779
Single crystal metal wedges for surface acoustic wave propagation
Fisher, Edward S.
1982-01-01
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Reverse wedge osteotomy of the distal radius in Madelung's deformity.
Mallard, F; Jeudy, J; Rabarin, F; Raimbeau, G; Fouque, P-A; Cesari, B; Bizot, P; Saint-Cast, Y
2013-06-01
Madelung's deformity results from a growth defect in the palmar and ulnar region of the distal radius. It presents as an excessively inclined radial joint surface, inducing "spontaneous progressive palmar subluxation of the wrist". The principle of reverse wedge osteotomy (RWO) consists in the reorientation of the radial joint surface by taking a circumferential bone wedge, the base of which is harvested from the excess of the radial and dorsal cortical bone of the distal radius, then turning it over and putting back this reverse wedge into the osteotomy so as to obtain closure on the excess and opening on the deficient cortical bone. RWO corrects the palmar subluxation of the carpus and improves distal radio-ulnar alignment. All five bilaterally operated patients were satisfied, esthetically and functionally. Its corrective power gives RWO a place apart among the surgical techniques currently available in Madelung's deformity. PMID:23622863
Single crystal metal wedges for surface acoustic wave propagation
Fisher, E.S.
1980-05-09
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.
2011-11-01
We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we
LOVEL: a low-velocity aerodynamic heating code for flat-plates, wedges, and cones
Thornton, A.L.
1981-12-01
The LOVEL computer program calculates the boundary-layer edge conditions for subsonic and supersonic flow over flat-plate, wedge, and cone geometries for freestream Mach conditions (M/sub infinity/ < 3. Cold-wall heat-transfer calculations use reference temperature correlations based on boundary-layer edge Mach number to compute fluid properties. The first part of this report describes the theory used in the computation of the cold-wall heat-transfer rates; the second part describes in detail the input/output format for the LOVEL computer program. Outputs include freestream conditions, boundary-layer edge conditions, cold-wall heat-transfer rates, plots of heating rates, and punched-card output for use in ablation and in-depth transient heat-conduction computer codes.
Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors
NASA Technical Reports Server (NTRS)
Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.
1981-01-01
The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.
Soft spherical nanostructures with a dodecagonal quasicrystal-like order.
Rochal, S B; Konevtsova, O V; Shevchenko, I A; Lorman, V L
2016-01-28
We develop a theory which predicts curvature-related structural peculiarities of soft spherical nanostructures with a dodecagonal local arrangement of subunits. Spherical templates coated with a thin film of a soft quasicrystal (QC)-forming material constitute the most promising direction to realize these nanostructures. Disordered and perfect spherical nanostructures are simulated using two approaches. The first of them models a random QC-like spherical nanostructure with extended curvature-induced topological defects similar to scars in colloidal spherical crystals. The second approach is inspired by the physics of viral capsids. It deals with the most regular spherical nanostructures with a local QC-like order derived from three well-known planar dodecagonal tilings. We explain how the additional QC-like degrees of freedom assist the nanostructure stabilization and determine the point defect number and location without extended scar formation. Unusual for nanoassemblies snub cube geometry is shown to be the most energetically favorable global organization of these spherical QC nanostructures. PMID:26592422
Ultrasonic radiation from wedges of cubic profile: Experimental results.
Anderson, Brian E; Remillieux, Marcel C; Le Bas, Pierre-Yves; Ulrich, T J; Pieczonka, Lukasz
2015-12-01
This paper presents experimental results demonstrating the increase in ultrasonic radiation obtained from a wedge of cubic profile relative to a plate of uniform thickness. The wedge of cubic profile provides high efficiency sound radiation matching layer from a mounted piezoelectric transducer into the surrounding air. Previous research on structures with indentations of power-law profile has focused on vibration mitigation using the so called "acoustic black-hole" effect, whereas here such structures are used to enhance ultrasonic radiation. The work provides experimental verification of the numerical results of Remillieux et al. (2014). PMID:26166628
Wedge absorber design and simulation for MICE Step IV
Rogers, C.T.; Snopok, P.; Coney, L.; Hanson, G.; /UC, Riverside
2011-03-01
In the Muon Ionization Cooling Experiment (MICE), muons are cooled by passing through material, then through RF cavities to compensate for the energy loss; which reduces the transverse emittance. It is planned to demonstrate longitudinal emittance reduction via emittance exchange in MICE by using a solid wedge absorber in Step IV. Based on the outcome of previous studies, the shape and material of the wedge were chosen. We address here further simulation efforts for the absorber of choice as well as engineering considerations in connection with the absorber support design.
NASA Technical Reports Server (NTRS)
Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.
Asymptotics for spherical needlets
NASA Astrophysics Data System (ADS)
Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D.
We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This property is used to derive CLT and functional CLT convergence results for polynomial functionals of the needlet coefficients: here the asymptotic theory is considered in the high-frequency sense. Our proposals emerge from strong empirical motivations, especially in connection with the analysis of cosmological data sets.
NASA Astrophysics Data System (ADS)
Milazzo, Flavio; Storti, Fabrizio; Nestola, Yago; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Salvi, Francesca
2016-04-01
Crustal mechanical stratigraphy i.e. alternating mechanically weaker and stronger layers within the crust, plays a key role in determining how contractional deformations are accommodated at convergent plate boundaries. In the upper crust, evaporites typically provide preferential décollement layers for fault localization and foreland ward propagation, thus significantly influencing evolution of thrust-fold belts in terms of mechanical balance, geometries, and chronological sequences of faulting. Evaporites occur at the base of many passive margin successions that underwent positive inversion within orogenic systems. They typically produce salient geometries in deformation fronts, as in the Jura in the Northern Alps, the Salakh Arch in the Oman Mountains, or the Ainsa oblique thrust-fold belt in the Spanish Pyrenees. Evaporites frequently occur also in foredeep deposits, as in the Apennines, the Pyrenees, the Zagros etc. causing development of additional structural complexity. Low-friction décollement layers also occur within sedimentary successions involved in thrust-fold belts and they contribute to the development of staircase fault trajectories. The role of décollement layers in thrust wedge evolution has been investigated in many experimental works, particularly by sandbox analogue experiments that have demonstrated the impact of basal weak layers on many first order features of thrust wedges, including the dominant fold vergence, the timing of fault activity, and the critical taper. Some experiments also investigated on the effects of weak layers within accreting sedimentary successions, showing how this triggers kinematic decoupling of the stratigraphy above and below the décollements, thus enhancing disharmonic deformation. However, at present a systematic experimental study of the deformation modes of an upper crustal mechanical stratigraphy consisting of both low-friction and viscous décollement layers is still missing in the specific literature. In
Ramp initiation in a thrust wedge.
Panian, John; Wiltschko, David
2004-02-12
Collisional mountain belts are characterized by fold and thrust belts that grow through sequential stacking of thrust sheets from the interior (hinterland) to the exterior (foreland) of the mountain belt. Each of these sheets rides on a fault that cuts up through the stratigraphic section on inclined ramps that join a flat basal fault at depth. Although this stair-step or ramp-flat geometry is well known, there is no consensus on why a particular ramp forms where it does. Perturbations in fault shape, stratigraphy, fluid pressure, folding, and surface slope have all been suggested as possible mechanisms. Here we show that such pre-existing inhomogeneities, though feasible causes, are not required. Our computer simulations show that a broad foreland-dipping plastic strain band forms at the surface near the topographic inflection produced by the previous ramp. This strain band then migrates towards the rigid base, where the plastic strain is preferentially concentrated in a thrust ramp. Subsequent ramps develop toward the foreland in a similar fashion. Syntectonic erosion and deposition may strongly control the location of thrust ramps by enhancing or removing the surface point of initiation. PMID:14961118
Automated semi-spherical irradiance meter
NASA Astrophysics Data System (ADS)
Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Escobedo-Alatorre, J.; Cabello-Ruiz, R.; Varona, J.
2011-09-01
In this semi-spherical meter, a single detector is used to realize all measurements, which is located on the extreme of a rectangular ring (assumed as joined two mobile branches in order to compensate the weights), describing half-meridians from 0° up to 170°. The illumination source under test is located at the center of the mobile support, which can rotate 360° horizontally. The two combined movements allow us to obtain a semi-spherical geometry. The number of measurement points is determined by the two step-motors located under the mobile support of the luminary and on one of the two fixed arms, which support the mobile rectangular ring, respectively. The mechanical arrangement has the enough rigidity to support the precision required for the acquisition stage, based on a dsPIC. The main advantages of this arrange are: Its low costs (using recyclable materials only such as "electronic waste"), a reliable detection based on a single photo-detector, with an integrated amplification stage, and the mechanical design. The received power by the detector is useful to obtain the irradiance profile of the lighting sources under test. The semi-spherical geometry of the meter makes it useful for the analysis of directive and non directive sources, in accordance with the angle described by the mobile ring. In this work, special attention is given to LED lamps due to its impact in several sceneries of the daily life. A comparison between the irradiance patterns of two LED lamps is also given.
NASA Astrophysics Data System (ADS)
Webb, A. G.; Yu, H.; Hendershott, Z.
2010-12-01
Orogenic wedges are standard elements of collisional plate tectonics, from accretionary prisms to retro-arc basins. Recent study of orogenic wedge development has focused on links between mechanisms of internal deformation and surface processes. Models of orogenic wedges are commonly presented in the cross-section plane, which is generally effective as wedges largely develop via plane strain. The 3rd dimension can be utilized to explore effects of differences in controlling parameters on wedge evolution. We are investigating a stretch of the western Himalayan orogenic wedge that has two prominent changes in along-strike morphology: (1) a tectonic window (the Kullu Window) that appears to be strongly influenced by erosion along the 3rd largest river in the Himalayan system, the Sutlej River and (2) the Kangra Re-entrant, the largest re-entrant along the Himalayan arc. In addition to the along-strike heterogeneity, a key advantage of the proposed study area is its rich stratigraphy, with the most known diversity in the Himalayan arc. The stratigraphic wealth, combined with the along-strike heterogeneity in exposure level, offers a high resolution view of regional structural geometry. Our preliminary reconstructions suggest that the Sutlej River erosion increases the exposure depth and shortening budget across a narrow segment of the orogen, strongly warping the Kullu Window. Previous models have suggested that the out-of-sequence Munsiari thrust is the main structure associated with Kullu window formation, while our work suggests that most of this uplift and warping is accomplished by antiformal stacking of basement thrust horses. Late Miocene ages (U-Pb ages of zircons and Th-Pb ages of monazites) from a leucogranite in the core of the Kullu Window along the Sutlej River further suggests that this segment of the orogen represents a middle ground between plane strain orogenic wedge development and a tectonic aneurysm model. We have constructed a palinspastic
NASA Astrophysics Data System (ADS)
Koegelenberg, C.; Kisters, A. F. M.
2014-09-01
Structural complexities in the Mesoproterozoic Karagwe-Ankole fold belt in northwest Tanzania have led to conflicting interpretations of regional kinematics and the geodynamic significance of the belt. Structural mapping of an eastern portion of the belt indicates that the regional-scale (>100 km) Mugera-Nyakahura basement inlier may be considered a forethrusted tectonic wedge. Tectonic wedging in the frontal parts of the belt occurred during top-to-the southeast thick-skinned thrusting of the gneissic Archaean basement. The diagnostic feature of tectonic wedging is the reversal of vergence directions of kinematic fabrics on either side of the basement wedge, resulting in hinterland-directed, top-to-the northwest kinematics in front and on top of the wedge. Strain is localised into the often graphitic metapelitic rocks of the Upper Muyaga Group. The mainly coarse-grained clastic Mesoproterozoic sediments of the Bukoba Group represent the foreland, molasse-type deposits of the Karagwe-Ankole fold belt. The only gently folded Bukoba Group is separated from the underthrusted, highly deformed Muyaga Group by a passive roof thrust. This corresponds to the regional-scale asymmetry of the synclinal structure of the Bukoba basin in the frontal parts of the belt. The gentle folding is the result of the underthrusting and lifting of the Bukoba sediments above the basement wedge creating a triangle zone. The kinematics and geometry of the frontal parts of the Karagwe-Ankole belt described here confirm the belt to represent a top-to-the-east and -southeast verging foreland fold-and-thrust belt. The actual timing of deformation is, at present, unknown, but regional-scale kinematics and the metamorphic zonation are compatible with an origin of the belt during convergence between the Congo and Tanzania Cratons in the west.
NASA Astrophysics Data System (ADS)
Koge, Hiroaki; Fujiwara, Toshiya; Kodaira, Shuichi; Sasaki, Tomoyuki; Kameda, Jun; Kitamura, Yujin; Hamahashi, Mari; Fukuchi, Rina; Yamaguchi, Asuka; Hamada, Yohei; Ashi, Juichiro; Kimura, Gaku
2014-12-01
The 2011 Tohoku-Oki earthquake (Mw 9.0) produced a fault rupture that extended to the toe of the Japan Trench. The deformation and frictional properties beneath the forearc are keys that can help to elucidate this unusual event. In the present study, to investigate the frictional properties of the shallow part of the plate boundary, we applied the critically tapered Coulomb wedge theory to the Japan Trench and obtained the effective coefficient of basal friction and Hubbert-Rubey pore fluid pressure ratio (λ) of the wedge beneath the lower slope. We extracted the surface slope angle and décollement dip angle (which are the necessary topographic parameters for applying the critical taper theory) from seismic reflection and refraction survey data at 12 sites in the frontal wedges of the Japan Trench. We found that the angle between the décollement and back-stop interface generally decreases toward the north. The measured taper angle and inferred effective friction coefficient were remarkably high at three locations. The southernmost area, which had the highest coefficient of basal friction, coincides with the area where the seamount is colliding offshore of Fukushima. The second area with a high effective coefficient of basal friction coincides with the maximum slip location during the 2011 Tohoku-Oki earthquake. The area of the 2011 earthquake rupture was topographically unique from other forearc regions in the Japan Trench. The strain energy accumulation near the trench axis may have proceeded because of the relatively high friction, and later this caused a large slip and collapse of the wedge. The location off Sanriku, where there are neither seamount collisions nor rupture propagation, also has a high coefficient of basal friction. The characteristics of the taper angle, effective coefficient of basal friction, and pore fluid pressure ratio along the Japan Trench presented herein may contribute to the understanding of the relationship between the geometry of
49 CFR 230.104 - Driving box shoes and wedges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS...
Interfacial shear-stress effects on transient capillary wedge flow
NASA Astrophysics Data System (ADS)
Su, Song-Kai; Lai, Chun-Liang
2004-06-01
The effects on the transient capillary flow in a wedge due to the interfacial shear-stress distribution S along the flow direction z is studied theoretically. With the assumptions of a slender liquid column and negligible gravitational and inertia effects, the problem is reduced to finding the axial velocity distribution at any cross section. The propagation of the liquid column h(z,t) and the tip location l(t) are then solved with the aid of the continuity equation. When the half-wedge angle α, the contact angle θ, and the shear-stress distribution on the free surface S are constant, analytic solutions exist. Otherwise, numerical simulation has to be applied. The results indicate that when S(z) is acting in the flow direction, the flow is strengthened and the liquid column propagates faster. When S(z) is opposing the flow direction, reverse flow may exist near the free surface and the propagation speed of the liquid column is reduced. Moreover, for a capillary flow in a wedge with constant α, θ, and S, both the analytic solutions and the numerical simulation predict that l(t)∝t3/5 for the constant-flow-rate stage and l(t)∝t1/2 for the constant-height flow stage. When S is a function of the flow direction z, the above functional relationship between l and t becomes no longer valid; it varies as the liquid column propagates along the wedge.
Thrusting and wedge growth, Southern Alps of Lombardia (Italy)
NASA Astrophysics Data System (ADS)
Roeder, Dietrich
1992-06-01
A south-vergent fold-thrust belt of Miocene-Recent age accompanies the south slope of the Lombardian Alps and is partly buried beneath Plio-Pleistocene Po Valley basin fill. The belt is probably detached along a trans-crustal thrust, named Main South Alpine Thrust (MSAT), with an estimated dip slip of 70-100 km. Transport on this thrust piggybacks the Adamello pluton of Late Eocene age, pre-Adamello folds, and Oligocene-Miocene Insubric strike-slip structures, by ramping up through 12-15 km of Austro-Alpine (Adria) crust and through 8-10 km of Triassic to Eocene sediments. Folds in the Front Ranges are ascribed to MSAT ramping, not to pre-Adamello compression. The MSAT soles upward in a blind thrust beneath 3-4 km of Oligocene-Pliocene foredeep fill. Initial regional failure along the MSAT implies substantial and pre-existing topographic relief near the Insubric line. An average of 25% wedge thickening during MSAT transport is consistent with the requirement of Coulomb critical taper. Progression of the south-Alpine detachment from the MSAT to the base of the foreland sediments has added a thickness of 6-12 km in footwall imbrications to the base and the toe of the thrust wedge. This addition in wedge volume is consistent with wedge dynamics only if a mid-Miocene or younger spike of excess Alpine topography is admitted.
Hypersonic, nonequilibrium flow over a cylindrically blunted 6 deg wedge
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
1993-01-01
The numerical simulation of hypersonic flow in chemical nonequilibrium over cylindrically blunted 6 degree wedge is described. The simulation was executed on a Cray C-90 with Program LAURA 92-vl. Code setup procedures and sample results, including grid refinement studies and variations of species number are discussed. This simulation relates to a study of wing leading edge heating on transatmospheric vehicles.
Can vertical compaction within wedges promote accretion by backthrusts?
NASA Astrophysics Data System (ADS)
McBeck, J.; Cooke, M. L.; Herbert, J. W.; Madden, E. H.
2014-12-01
In natural subduction zones, frontal accretion dominantly occurs via the propagation of forethrusts, whereas accretion via backthrusts has been observed in only a few active subduction zones, including the Cascadia margin. Similarly, in most analog experiments of accretionary wedges deformation is accommodated by forethrusts or backthrust/forethrust pairs, except for some experiments with a layer of silicone below sand, which can produce accretionary backthrusts. Vertical deflection of the detachment caused by the lateral flow of the silicone layer could promote the propagation of backthrusts in these analog experiments. Alternatively, the high Holocene sediment input in parts of the Cascadia margin could produce vertical compaction deep within the wedge that promotes backthrusting. To explore the effect of vertical compaction and deflection of the detachment on fault development in accretionary prisms we use the Boundary Element Method modeling tool Growth by Optimization of Work (GROW) to predict the vergence of faults in a deforming wedge. GROW predicts fault growth by propagating faults in the direction that maximizes the efficiency of the system, or minimizes the external work of the system. We simulate vertical compaction with compliant elements and observe that the addition of these elements deep in the wedge or along the detachment promotes backthrusting rather than forethrusts. Similarly, local downward deflection of the detachment promotes backthrust development over that of forethrusts. These numerical model results suggest that vertical compaction or local deflection of the megathrust may account for backthrust development in parts of the Cascadia margin.
Magnetic and structural instabilities of ultrathin Fe(100) wedges
Bader, S.D.; Li, Dongqi; Qiu, Z.Q.
1994-05-01
An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.
How important is randomisation in a stepped wedge trial?
Hargreaves, James R; Prost, Audrey; Fielding, Katherine L; Copas, Andrew J
2015-01-01
In cluster randomised trials, randomisation increases internal study validity. If enough clusters are randomised, an unadjusted analysis should be unbiased. If a smaller number of clusters are included, stratified or matched randomisation can increase comparability between trial arms. In addition, an adjusted analysis may be required; nevertheless, randomisation removes the possibility for systematically biased allocation and increases transparency. In stepped wedge trials, clusters are randomised to receive an intervention at different start times ('steps'), and all clusters eventually receive it. In a recent study protocol for a 'modified stepped wedge trial', the investigators considered randomisation of the clusters (hospital wards), but decided against it for ethical and logistical reasons, and under the assumption that it would not add much to the rigour of the evaluation. We show that the benefits of randomisation for cluster randomised trials also apply to stepped wedge trials. The biggest additional issue for stepped wedge trials in relation to parallel cluster randomised trials is the need to control for secular trends in the outcome. Analysis of stepped wedge trials can in theory be based on 'horizontal' or 'vertical' comparisons. Horizontal comparisons are based on measurements taken before and after the intervention is introduced in each cluster, and are unbiased if there are no secular trends. Vertical comparisons are based on outcome measurements from clusters that have switched to the intervention condition and those from clusters that have yet to switch, and are unbiased under randomisation since at any time point, which clusters are in intervention and control conditions will have been determined at random. Secular outcome trends are a possibility in many settings. Many stepped wedge trials are analysed with a mixed model, including a random effect for cluster and fixed effects for time period to account for secular trends, thereby combining both
Yang, Si-Zhong; Jin, Hui-Jun; Wen, Xi; Luo, Dong-Liang; Yu, Shao-Peng
2009-11-01
Ice-wedge is an indicator of paleoclimate change. The delta18 O concentration in different layers could reflect the change of paleotemperature during ice-wedge growth. In the late 1980s, inactive ice wedges were found in Yitulihe, Northeast China, which were the south-most ones so far and were important in climatic and environmental research. In this paper, the delta18 O concentration and microbial number in the inactive ice-wedges were analyzed by using stable isotope, fluorescence microscopy counting, and flow cytometer (FCM). During the ice-wedge growth in Yitulihe area, there were three short-term paleotemperature fluctuation, and three times of fluctuation in microbial amount in different ice-wedge layer. Correlation analysis indicated that there was a converging relationship between the temperature change and microbial amount in the ice-wedges. The lower the temperature when ice-wedge layer formed, the less the microbes survived in the layer. PMID:20136017
Geometry and groups for cosmic topology
Kramer, Peter
2011-03-21
The Cosmic Microwave Background is measured by satellite observation with great precision. It offers insight into its origin in early states of the universe. Unexpected low multipole amplitudes of the incoming CMB radiation may be due to a multiply connected topology of cosmic 3-space. We present and analyze the geometry and homotopy for the family of Platonic spherical 3-manifolds, provide their harmonic analysis, and formulate topological selection rules.
The foreground wedge and 21-cm BAO surveys
NASA Astrophysics Data System (ADS)
Seo, Hee-Jong; Hirata, Christopher M.
2016-03-01
Redshifted H I 21 cm emission from unresolved low-redshift large-scale structure is a promising window for ground-based baryon acoustic oscillations (BAO) observations. A major challenge for this method is separating the cosmic signal from the foregrounds of Galactic and extra-Galactic origins that are stronger by many orders of magnitude than the former. The smooth frequency spectrum expected for the foregrounds would nominally contaminate only very small k∥ modes; however, the chromatic response of the telescope antenna pattern at this wavelength to the foreground introduces non-smooth structure, pervasively contaminating the cosmic signal over the physical scales of our interest. Such contamination defines a wedged volume in Fourier space around the transverse modes that is inaccessible for the cosmic signal. In this paper, we test the effect of this contaminated wedge on the future 21-cm BAO surveys using Fisher information matrix calculation. We include the signal improvement due to the BAO reconstruction technique that has been used for galaxy surveys and test the effect of this wedge on the BAO reconstruction as a function of signal to noises and incorporate the results in the Fisher matrix calculation. We find that the wedge effect expected at z = 1-2 is very detrimental to the angular diameter distances: the errors on angular diameter distances increased by 3-4.4 times, while the errors on H(z) increased by a factor of 1.5-1.6. We conclude that calibration techniques that clean out the foreground `wedge' would be extremely valuable for constraining angular diameter distances from intensity-mapping 21-cm surveys.
Spherical harmonic expansion of the Levitus Sea surface topography
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.
A Spherical Earth Solution for TOA Lightning Location Retrieval
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.
1999-01-01
The problem of retrieving ligntning, ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered, It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (e.g., minimization). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A summary of a quasi-analytic extension of the spherical Earth solution to an oblate spheroid Earth geometry is also provided.
Strongly localized image states of spherical graphitic particles.
Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula
2014-01-01
We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube. PMID:24587747
Strongly Localized Image States of Spherical Graphitic Particles
Gumbs, Godfrey
2014-01-01
We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube. PMID:24587747
ERIC Educational Resources Information Center
Cukier, Mimi; Asdourian, Tony; Thakker, Anand
2012-01-01
Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…
ERIC Educational Resources Information Center
Kuntz, Gilles
The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…
Spherical grating spectrometers
NASA Astrophysics Data System (ADS)
O'Donoghue, Darragh; Clemens, J. Christopher
2014-07-01
We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.
Spherically Symmetric Gravitational Fields
NASA Astrophysics Data System (ADS)
Vargas Moniz, P.
The purpose of this paper is to investigate the quantum vacua directly implied by the wave function of a gravitational configuration characterized by the presence of an apparent horizon, namely the Vaidya space-time solution. Spherical symmetry is a main feature of this configuration, with a scalar field constituting a source [a Klein-Gordon geon or Berger-Chitre-Moncrief-Nutku (BCMN) type model]. The subsequent analysis requires solving a Wheeler-DeWitt equation near the apparent horizon (following the guidelinesintroduced by A. Tomimatsu,18; M. Pollock, 19 and developed by A. Hosoya and I. Oda20,21) with the scalar field herein expanded in terms of S2 spherical harmonics: midisuperspace quantization. The main results present in this paper are as follows. It is found that the mass function characteristic of the Vaidya metric is positive definite within this quantum approach. Furthermore, the inhomogeneous matter sector determines a descrip-tion in terms of open quantum (sub)systems, namely in the form of an harmonic oscillator whose frequency depends on the mass function. For this open (sub)system, a twofold approach is employed. On the one hand, an exact invariant observable is obtained from the effective Hamiltonian for the inhomogeneous matter modes. It is shown that this invariant admits a set of discrete eigenvalues which depend on the mass function. The corresponding set of eigenstates is constructed from a particular vacuum state. On the other hand, exact solutions are found for the Schrädinger equation associated with the inhomogeneous matter modes. This paper is concluded with a discussion, where two other issues are raised: (i) the possible application to realistic black hole dynamics of the results obtained for a simplified (BCMN) model and (ii) whether such vacuum states could be related with others defined instead within scalar field theories constructed in classical backgrounds.
Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand
NASA Astrophysics Data System (ADS)
Henrys, S.; Barker, D.; Sutherland, R.; Bannister, S.
2009-04-01
We use 2800 line km of seismic-reflection data to map the offshore character and three-dimensional geometry of the Hikurangi subduction thrust and outer forearc wedge to depths of c. 15 km. Several first order subduction characteristics vary systematically north to south over relatively short along-strike distances on the Hikurangi margin, for example, convergence rate (60 mm/a in the north to <30 mm/a in the south), apparent plate locking, margin seafloor morphology. For 200 km along-strike south of Hawke Bay, the offshore subduction thrust is relatively smooth, shallow-dipping, and the wedge is characterised by accretion of young sediment and topographic slopes of < 3°. The resultant low wedge taper (approximately 4°) in this region is typical of high pore pressure, low permeability thrust wedges with fluids channelled along a weak basal décollement. The inner wedge region of the central Hikurangi margin is characterised by splay faults and out-of-sequence thrusting, which thicken the wedge behind the deformation front and maintain its mechanical stability. Also in Hawke Bay and north for 200 km, a kink in the subduction thrust is apparent, with a down-dip increase in dip to angles greater than 8° at depths of 10-15 km; there is a corresponding steepening of the outer wedge topographic slope to > 3° outboard of the kink and the wedge is characterised by lithified sedimentary rock and slope failure. The kink in the subduction thrust is a locus of inherent weakness in the subducting slab; we suggest its occurrence relates to a northward increase in subduction rate that controls initial slab dehydration and fluid release rates and hence intra-slab deformation patterns. The subduction thrust geometry, in combination with a northward increase in subducting plate roughness and decrease in the amount of sediment accreted, causes the observed spatial change in character of the subduction thrust and forearc wedge. We speculate that the mechanical behaviour and
Heuristic Approach to the Schwarzschild Geometry
NASA Astrophysics Data System (ADS)
Visser, Matt
In this article I present a simple Newtonian heuristic for motivating a weak-field approximation for the spacetime geometry of a point particle. The heuristic is based on Newtonian gravity, the notion of local inertial frames (the Einstein equivalence principle), plus the use of Galilean coordinate transformations to connect the freely falling local inertial frames back to the "fixed stars." Because of the heuristic and quasi-Newtonian manner in which the specific choice of spacetime geometry is motivated, we are at best justified in expecting it to be a weak-field approximation to the true spacetime geometry. However, in the case of a spherically symmetric point mass the result is coincidentally an exact solution of the full vacuum Einstein field equations — it is the Schwarzschild geometry in Painlevé-Gullstrand coordinates. This result is much stronger than the well-known result of Michell and Laplace whereby a Newtonian argument correctly estimates the value of the Schwarzschild radius — using the heuristic presented in this article one obtains the entire Schwarzschild geometry. The heuristic also gives sensible results — a Riemann flat geometry — when applied to a constant gravitational field. Furthermore, a subtle extension of the heuristic correctly reproduces the Reissner-Nordström geometry and even the de Sitter geometry. Unfortunately the heuristic construction is not truly generic. For instance, it is incapable of generating the Kerr geometry or anti-de Sitter space. Despite this limitation, the heuristic does have useful pedagogical value in that it provides a simple and direct plausibility argument (not a derivation) for the Schwarzschild geometry — suitable for classroom use in situations where the full power and technical machinery of general relativity might be inappropriate. The extended heuristic provides more challenging problems — suitable for use at the graduate level.
Learning Geometry through Dynamic Geometry Software
ERIC Educational Resources Information Center
Forsythe, Sue
2007-01-01
In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…
Double slotted socket spherical joint
Bieg, Lothar F.; Benavides, Gilbert L.
2001-05-22
A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Experimental investigation of sound absorption of acoustic wedges for anechoic chambers
NASA Astrophysics Data System (ADS)
Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.
2015-09-01
The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.
Wedge spectrometer concepts for space IR remote sensing
NASA Astrophysics Data System (ADS)
Jeter, James W.; Blasius, Karl R.
1999-10-01
Wedge Imaging Spectrometer (WIS) technology promises advantages in lower size, cost, and sensor complexity but requires consideration of the effects of non-simultaneous collection of spectral information. Space applications appear particularly matched to the characteristics of this technology. Examples of WIS imagery collected by airborne acquisition systems have been used to assess the utility of WIS space imagery. Recent hardware development efforts have produced sensor components amenable to hyperspectral space applications in the Visible-Near-Infrared, Short Wavelength Infrared, Short-Mid Wavelength Infrared, and Long Wavelength Infrared bands. These components demonstrate excellent performance and provide the basis for space instrument concepts that utilize the inherent simplicity, compactness, and economy of the wedge spectrometer technology.
Hyperspectral data collections with the new wedge imaging spectrometer
Jeter, J.W.; Hartshorne, R.; Thunen, J.G.
1996-11-01
The Wedge Imaging Spectrometer (WIS) applies a unique technology to hyperspectral imaging systems, allowing flexibility and high performance in a very compact package. This innovation is based on the use of a linear spectral wedge filter mated directly to an area detector array, avoiding the use of bulky and complex optics required for imaging spectrometers based on gratings or prism concepts. The technology was realized in an earlier flight demonstration system as previously reported. Second generation VNIR and SWIR instruments have now been developed, each with two filters whose spectral bandwidths are optimized for specific spectral features. The SWIR instrument can be extended to operate in the 3-5 PM mid-wave spectral region. The new instrument is currently completing its integration and test phase. Preliminary results indicate excellent performance potential for a wide range of applications. 2 figs., 1 tab.
Wedge-Local Fields in Integrable Models with Bound States
NASA Astrophysics Data System (ADS)
Cadamuro, Daniela; Tanimoto, Yoh
2015-12-01
Recently, large families of two-dimensional quantum field theories with factorizing S-matrices have been constructed by the operator-algebraic methods, by first showing the existence of observables localized in wedge-shaped regions. However, these constructions have been limited to the class of S-matrices whose components are analytic in rapidity in the physical strip. In this work, we construct candidates for observables in wedges for scalar factorizing S-matrices with poles in the physical strip and show that they weakly commute on a certain domain. We discuss some technical issues concerning further developments, especially the self-adjointness of the candidate operators here and strong commutativity between them.
Shock wave reflection over convex and concave wedge
NASA Astrophysics Data System (ADS)
Kitade, M.; Kosugi, T.; Yada, K.; Takayama, Kazuyoshi
2001-04-01
It is well known that the transition criterion nearly agrees with the detachment criterion in the case of strong shocks, two-dimensional, and pseudosteady flow. However, when the shock wave diffracts over a wedge whose angle is below the detachment criterion, that is, in the domain of Mach reflection, precursory regular reflection (PRR) appears near the leading edge and as the shock wave propagates, the PRR is swept away by the overtaking corner signal (cs) that forces the transition to Mach reflection. It is clear that viscosity and thermal conductivity influences transition and the triple point trajectory. On the other hand, the reflection over concave and convex wedges is truly unsteady flow, and the effect of viscosity and thermal conductivity on transition and triple point trajectory has not been reported. This paper describes that influence of viscosity over convex and concave corners investigated both experiments and numerical simulations.
Gravity inversion in spherical coordinates using tesseroids
NASA Astrophysics Data System (ADS)
Uieda, Leonardo; Barbosa, Valeria C. F.
2014-05-01
Satellite observations of the gravity field have provided geophysicists with exceptionally dense and uniform coverage of data over vast areas. This enables regional or global scale high resolution geophysical investigations. Techniques like forward modeling and inversion of gravity anomalies are routinely used to investigate large geologic structures, such as large igneous provinces, suture zones, intracratonic basins, and the Moho. Accurately modeling such large structures requires taking the sphericity of the Earth into account. A reasonable approximation is to assume a spherical Earth and use spherical coordinates. In recent years, efforts have been made to advance forward modeling in spherical coordinates using tesseroids, particularly with respect to speed and accuracy. Conversely, traditional space domain inverse modeling methods have not yet been adapted to use spherical coordinates and tesseroids. In the literature there are a range of inversion methods that have been developed for Cartesian coordinates and right rectangular prisms. These include methods for estimating the relief of an interface, like the Moho or the basement of a sedimentary basin. Another category includes methods to estimate the density distribution in a medium. The latter apply many algorithms to solve the inverse problem, ranging from analytic solutions to random search methods as well as systematic search methods. We present an adaptation for tesseroids of the systematic search method of "planting anomalous densities". This method can be used to estimate the geometry of geologic structures. As prior information, it requires knowledge of the approximate densities and positions of the structures. The main advantage of this method is its computational efficiency, requiring little computer memory and processing time. We demonstrate the shortcomings and capabilities of this approach using applications to synthetic and field data. Performing the inversion of gravity and gravity gradient
Buckling of spherical capsules.
Knoche, Sebastian; Kierfeld, Jan
2011-10-01
We investigate buckling of soft elastic capsules under negative pressure or for reduced capsule volume. Based on nonlinear shell theory and the assumption of a hyperelastic capsule membrane, shape equations for axisymmetric and initially spherical capsules are derived and solved numerically. A rich bifurcation behavior is found, which is presented in terms of bifurcation diagrams. The energetically preferred stable configuration is deduced from a least-energy principle both for prescribed volume and prescribed pressure. We find that buckled shapes are energetically favorable already at smaller negative pressures and larger critical volumes than predicted by the classical buckling instability. By preventing self-intersection for strongly reduced volume, we obtain a complete picture of the buckling process and can follow the shape from the initial undeformed state through the buckling instability into the fully collapsed state. Interestingly, the sequences of bifurcations and stable capsule shapes differ for prescribed volume and prescribed pressure. In the buckled state, we find a relation between curvatures at the indentation rim and the bending modulus, which can be used to determine elastic moduli from experimental shape analysis. PMID:22181297
Immunomodulatory spherical nucleic acids
Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.
2015-01-01
Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582
Harte, J.
1985-01-01
Consider a Spherical Cow describes relatively simple mathematical methods for developing quantitative answers to often complex environmental problems. Early chapters provide systematic insights into problem solving and identifying mathematical tools and models that lead to back of the envelope answers. Subsequent chapters treat increasingly complex problems. Solutions are sought at different levels, e.g., informed guesses, quantitative solutions based on detailed analytical models, and ultimately, critical evaluation of the consequences of removing simplifying assumptions from the models. The vehicle employed is a collection of 44 challenging problems, with clearly worked out solutions, plus ample exercises. The book, though directed at environmentalists, should appeal to chemists. Many of the problems are rooted in chemistry, including acid rain, the CO/sub 2/ greenhouse effect, chemical contamination, and the disturbing of cyclical chemical balances. Readers feeling a civic responsibility to think and speak more clearly on environmental issues will find the essential modeling and quantitative approaches valuable assets beyond the help provided by the usual courses in science and mathematics. In fact, the techniques of problem solving have broad applicability beyond the specific environmental examples covered in this text.
A relativistic spherical vortex
Pekeris, C. L.
1976-01-01
This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745
Wedge Prism for Direction Resolved Speckle Correlation Interferometry
Pechersky, M.J.
1999-01-20
The role of a wedge prism for strain sign determination and enhancing the sensitivity for sub-fringe changes is emphasized. The design and incorporation aspects for in-plane sensitive interferometers have been described in detail. Some experimental results dealing with stress determination by laser annealing and speckle corelation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry.
Mechanism of Hot Finger Formation in Mantle Wedge
NASA Astrophysics Data System (ADS)
Matsuo, M. Y.; Tamura, Y.; Sakaguchi, H.
2013-12-01
Processes of mantle melting and volcanic eruptions along subduction zones are often illustrated by the use of two-dimensional cross-section models of convergent margins. However, Quaternary volcanoes in the NE Japan arc could be grouped into ten volcano clusters striking transverse to the arc; these have an average width of ~ 50 km, and are separated by parallel gaps 30-75 km wide (Tamura et al., 2002). Moreover, the structure of the mantle wedge and arc crust beneath the NE Japan arc and the Izu-Bonin-Mariana arc, respectively, suggest that the third dimension, lying along the strike of the arc, is necessary to understand the actual production of magmas in subduction zones (e.g., Nakajima et al., 2001; Hasegawa & Nakajima, 2004; Kodaira et al., 2007; Kodaira et al., 2008). Common periodic structural variations, having wavelengths of 80-100 km, can be observed in both areas. This grouping of volcanoes and the structural variations may be related to locally developed hot regions within the mantle wedge that have the form of inclined, 50 km-wide fingers (hot fingers). The 'hot fingers' models (Tamura et al., 2002) may play an important role in linking the 3D structures within the mantle wedge and overlying arc crust to volcanic eruptions at the surface. To explore a physical and mathematical mechanism to produce a hot finger pattern, we develop a hydrodynamic model of mantle convection in mantle wedge. A hypothesis incorporated in our model is a double diffusive mechanism of mantle materials; diffusion of composition of mantle materials is much weaker than temperature diffusion. We show that our model shows a spatiotemporal pattern in a mantle material composition, temperature, and velocity that are similar to the spatiotemporal patterns observed in the NE Japan arc.
Generating Single-sided Subduction with Parameterized Mantle Wedge
NASA Astrophysics Data System (ADS)
Lin, C. J.; Tan, E.; Ma, K. F.
2015-12-01
Subduction on Earth is one-sided, where one oceanic plate sinks beneath the overriding plate. However, subduction zones in most numerical models tends to develop two-sided subduction, where both plates sink to the mantle. In this study, we use numerical model to find out how the existence of low viscosity wedge (LVW) can enable single-sided subduction and affects the flow in the subduction system.At the mantle wedge, water released from dehydrated oceanic crust serpentinized the mantle, which forms the LVW. LVW is an important part of the subduction system and provides efficient lubricant between the subducting slab and overriding lithosphere. Single-sided subduction can be generated in numerical models by different techniques, including prescribed plate velocity, non-Newtonian rheology, and free surface. These techniques either requires kinematic boundary condition, which produce mantle flow inconsistent with the buoyancy, or costs great amount of computational resources when solving nonlinear equations. In this study, we tried to generating single-sided subduction with Newtonian viscosity and free slip surface. A set of tracers representing hydrated oceanic crust are placed near the surface. As the tracers subducted with the lithosphere, we assume that the oceanic crust becomes dehydrated and serpentinizes the mantle wedge above. A parameterized LVW is placed above the subducted tracers in the models. We test with different upper/lower depth limits of the LVW and the viscosity of the LVW. Both overriding plate and subducting plate's surface velocity relative to the trench is calculated in order to determine whether the subduction is one-sided.Results of our numerical models show that not only the low viscosity wedge above the slab is essential for the formation of one-side subduction, a low viscosity layer in between two tectonic plates is also needed to provide the slab efficient lubricant after the subduction started. On the other hand, the plate's age, which
Quantitative comparisons of numerical models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Buiter, Susanne
2010-05-01
Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin
Wedge prism for direction resolved speckle correlation interferometry
Vikram, C.S.; Pechersky, M.J.
1999-10-01
The role of a wedge prism for strain sign determination and to enhance the sensitivity for subfringe changes is presented. The design and incorporation aspects for in-plane sensitive interferometers are described in detail. Some experimental results dealing with stress determination by laser annealing and speckle correlation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry. {copyright} {ital 1999 Society of Photo-Optical Instrumentation Engineers.}
Opening- and Closing-Wedge Distal Femoral Osteotomy
Chahla, Jorge; Mitchell, Justin J.; Liechti, Daniel J.; Moatshe, Gilbert; Menge, Travis J.; Dean, Chase S.; LaPrade, Robert F.
2016-01-01
Background: Lateral compartment osteoarthritis of the knee can be a challenging pathology in the younger, active population due to limited treatment options and high patient expectations. Distal femoral osteotomy (DFO) has been reported to be a potential treatment option. Purpose: To perform a systematic review on the survival, outcomes, and complications of DFO for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee. Study Design: Systematic review; Level of evidence, 4. Methods: A systematic review of the literature was performed using the Cochrane Database of Systematic Reviews, the Cochrane Central Registry of Controlled Trials, PubMed, and MEDLINE from 1980 to present. Inclusion criteria were as follows: outcomes of opening- and closing-wedge DFOs performed for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee, English language, minimum 2-year follow-up, and human studies. Data abstracted from the selected studies included type of osteotomy (opening vs closing), survival rate, patient-reported and radiographic outcomes, and complications. Results: Fourteen studies met the inclusion criteria and were considered for the review. A total of 9 closing-wedge and 5 opening-wedge DFO studies were included. All were retrospective studies and reported good to excellent patient-reported outcomes after DFO. Survival decreased with increasing time from surgery, with 1 study reporting a 100% survival rate at 6.5 years, compared with 21.5% at 20 years in another study. A low rate of complications was reported throughout the review. Conclusion: Highly heterogeneous literature exists for both opening- and closing-wedge DFOs for the treatment of isolated lateral compartment osteoarthritis with valgus malalignment. A mean survival rate of 80% at 10-year follow-up was reported, supporting that this procedure can be a viable treatment option to delay or reduce the need for joint arthroplasty. A low
[Sensitometry of Mammographic Screen-film System Using Bootstrap Aluminum Step-Wedge.].
Abe, Shinji; Imada, Ryou; Terauchi, Takashi; Fujisaki, Tatsuya; Monma, Masahiko; Nishimura, Katsuyuki; Saitoh, Hidetoshi; Mochizuki, Yasuo
2005-01-01
Recently, a few types of step-wedges for bootstrap sensitometry with a mammographic screen-film system have been proposed. In this study, the bootstrap sensitometry with the mammographic screen-film system was studied for two types of aluminum step-wedges. Characteristic X-ray energy curves were determined using mammographic and general radiographic aluminum step-wedges devised to prevent scattered X-rays generated from one step penetrating into the region of another one, and dependence of the characteristic curves on the wedges was also discussed. No difference was found in the characteristic curves due to the difference in the step-wedges for mammography and general radiography although there was a slight difference in shape at the shoulder portion for the two types of step-wedges. Therefore, it was concluded that aluminum step-wedges for mammography and general radiography could be employed in bootstrap sensitometry with the mammographic screen-film system. PMID:16479054
NASA Astrophysics Data System (ADS)
Yamada, Y.; Nagamura, N.; Baba, K.; Matsuoka, T.
2006-12-01
Seamount sudbuction is a common feature at convergent plate margins and several examples can also be seen at the Nankai wedge, but its impact on methane hydrate accumulation has not fully described. In order to understand the accumulation mechanism of methane hydrate, the key issue would be the fluid flow within the sediments. The fluid flow can be classified into two types; the diffusive flow by intergranular porosity and the focused flow along faults (Baba and Yamada, 2004). The diffusive flow can be modeled by conventional reservoir simulator type of approaches, but the focused flow along faults may be difficult. One possible scenario was suggested by Sibson (1995) that fluid may migrate along a fault surface when it slipped (breakage of seal). Following the idea, the focused fluid flow can be evaluated by fault activity that can be modeled and examined by analogue experiments and numerical simulations (Yamada et al., submitted). This research employed analogue experiments that used granular materials (dry sand and glass beads) and numerical simulations that approximate the geologic body as particles (distinct element method). The analogue model results are further analyzed by optical image correlation technique, PIV, to extract faulting events in detail. By using the same tectonic model of sea mount subduction to an accretionary prism, we examined the deformation process particularly the faulting by these two techniques. The results of the analogue experiments and numerical simulations are basically the same, apart from the reproducibility of small structures influenced by the particle size. The models suggest that a sea mount subduction causes segmentation of wedge formation. The segmentation of wedge also produces two types of fault systems; one formed before sea mount subduction and the other afterward. The geometry of these faults illustrates that the fluid from the deeper segment of the sedimentary pile may focus on the faults that formed after sudbuction
Washing wedges: a capillary instability in a gradient of confinement
NASA Astrophysics Data System (ADS)
Keiser, Ludovic; Herbaut, Remy; Bico, Jose; Reyssat, Etienne
2015-11-01
When a drop of oil is introduced into a gradient of confinement (two glass plates forming a sharp wedge) capillary forces drive it toward the most confined regions, where the solid-fluid contact area is maximal. A surfactant solution subsequently introduced into the wedge undergoes the same movement until it reaches the oil previously added. If the aqueous phase wets the solid better than the oil, a complex exchange process between both phases occurs. The water-oil interface destabilizes, oil fingers grow in the water phase, pinch-off and lead to the formation of droplets that migrate away from the tip of the wedge. The whole oil phase is eventually extracted. A linear stability analysis of the interface is presented and captures the size of the oil droplets. The dynamics of the system is however not perfectly explained by a simple Poiseuille flow. Indeed, more refined models should account for the dissipation in meniscii and lubrication films. Finally, we suggest that our model experiment may constitute a useful tool to select optimal systems for oil recovery processes.
Wedge-filtering of geomorphologic terrestrial laser scan data.
Panholzer, Helmut; Prokop, Alexander
2013-01-01
Terrestrial laser scanning is of increasing importance for surveying and hazard assessments. Digital terrain models are generated using the resultant data to analyze surface processes. In order to determine the terrain surface as precisely as possible, it is often necessary to filter out points that do not represent the terrain surface. Examples are vegetation, vehicles, and animals. Filtering in mountainous terrain is more difficult than in other topography types. Here, existing automatic filtering solutions are not acceptable, because they are usually designed for airborne scan data. The present article describes a method specifically suitable for filtering terrestrial laser scanning data. This method is based on the direct line of sight between the scanner and the measured point and the assumption that no other surface point can be located in the area above this connection line. This assumption is only true for terrestrial laser data, but not for airborne data. We present a comparison of the wedge filtering to a modified inverse distance filtering method (IDWMO) filtered point cloud data. Both methods use manually filtered surfaces as reference. The comparison shows that the mean error and root-mean-square-error (RSME) between the results and the manually filtered surface of the two methods are similar. A significantly higher number of points of the terrain surface could be preserved, however, using the wedge-filtering approach. Therefore, we suggest that wedge-filtering should be integrated as a further parameter into already existing filtering processes, but is not suited as a standalone solution so far. PMID:23429548
Shcherbina, M. A. Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Moeller, M.; Chvalun, S. N.
2012-03-15
The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.
NASA Astrophysics Data System (ADS)
Holdsworth, Robert E.
1989-12-01
In the ductile regions of orogenic wedges, late "brittle" structures formed at shallow crustal depths have received little attention. However, they are important as they of ten record the final stages in deformational history during uplift and erosion of the orogen. In the Moine rocks of Sutherland, late Caledonian brittle folds and low-angle faults post-date ductile structures formed during WNW-NW-directed thrust movements earlier in the same orogenic event. In the western Moine Nappe, the late structures display geometries which indicate that they formed during regionally ESE-directed extensional movements, down the dip of the pre-existing regional foliation. These late structures are correlated with similar, WNW-directed extensional low-angle faults recognised in the Moine Thrust Zone south of the Assynt culmination. Both are thought to have formed in response to late Caledonian gravity-induced thinning of the Moine Thrust wedge, and both pre-date Devonian extension associated with the formation of the West Orkney Basin. Along-strike changes in the location and sense of extensional movements, north and south of the Assynt culmination, are explained by changes in the pre-existing structural geometry of the Caledonian ductile thrust nappes within the Moine. Hence, earlier deformation patterns are thought to exert important controls over later events in an evolving orogenic wedge.
Constraints on a spherically symmetric 5-d braneworld
NASA Astrophysics Data System (ADS)
Capistrano, A. J. S.
2013-12-01
We study the effect of the extrinsic curvature within the context of braneworld with constant curvature and the restrictions on a spherically symmetric geometry embedded in a 5-d bulk. As a counterexample, we recover the Schwarzschild-de Sitter black hole but with umbilical points. In a second case we find the correct geometrical structure of a black hole but the Newtonian gravity cannot be restored implying that a higher dynamical embedding must be considered.
Plasma viscosity in spherical ICF implosion simulations
NASA Astrophysics Data System (ADS)
Vold, E.; Joglekar, A.; Ortega, M.; Moll, R.; Fenn, D.; Molvig, K.
2016-05-01
Inertial confinement fusion (ICF) hydrodynamic codes often ignore the effects of viscosity though recent research indicates plasma viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. A Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport, and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation, is used to study differences between ICF implosions with and without plasma viscosity and to examine the role of artificial viscosity in a Lagrangian implosion simulation. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, fuel compression, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and this study suggests that artificial viscosity may provide an unphysical stability in implosion simulations.
Combinatorial Geometry Printer Plotting.
Energy Science and Technology Software Center (ESTSC)
1987-01-05
Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.
NASA Astrophysics Data System (ADS)
Taylor, Marika
2006-03-01
Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.
ERIC Educational Resources Information Center
McDonald, Nathaniel J.
2001-01-01
Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…
NASA Astrophysics Data System (ADS)
Lottero, Richard E.; Wortman, John D.
1990-09-01
Hydrodynamic computer code simulations of the interaction of a non-decaying Mach 2.12 shock wave with wedges of various angles are presented. Techniques for simulating this interaction with the HULL and SHARC hydrocodes are evaluated by running the codes in various geometric configurations commonly used to simulate Mach reflection. Fluid dynamics aspects of each geometry are evaluated and discussed. The codes are also run with systematic variations in differencing method and artificial viscosity options. Most of these variations done in the SHARC also includes the option of using half hydrodynamic and half rigid flow field cells to simulate a smooth wedge surface in a rectangular finite difference grid. These computations are based on experimental and computational work performed at the Ernst Mach Institute, Freiburg, Federal Republic of Germany.
Underground thermo-erosion of ice wedges: numerical simulation of tunnel freeze- back
NASA Astrophysics Data System (ADS)
Kim, K.; Fortier, D.
2008-12-01
On Bylot Island in the Eastern Canadian Arctic archipelago, Fortier et al. (2007) observed and characterized the formation and development of tunnels initiated by the process of underground thermo-erosion of ice wedges networks. These tunnels often collapsed during the course of one or two summers and developed into gullies. However, observations of such tunnels in permafrost exposures indicate that they can be preserved in the permafrost record. The objective of this study is to estimate the freeze-back time of tunnels filled with water and slurry in cold and warm permafrost conditions. Ultimately, the goal is to evaluate time the tunnels remain "open"" for groundwater flow. We used numerical thermal modeling to conduct simple simulations of the conductive heat transfer during freeze-back of the tunnels. The thermal analyses were performed using the GeoslopeTM unsteady finite element heat conduction model TEMP/W. We used Bylot Island, Nunavut, Canada (Mean air temperature around -15 C) as a cold permafrost study case and Beaver Creek, Yukon Territory, Canada (Mean annual air temperature around -5.5C) as a warm permafrost study case. The air temperature was converted to ground surface temperature by the n-factor method. Zero heat flux was applied at the vertical and bottom boundaries due to the permafrost which is several tens to hundreds of meters thick. Based on previous studies, we simulated tunnels partly cut in ice-wedges and in the adjacent permafrost. The syngenetic permafrost of the case studies was assumed to be fully saturated with 110% gravimetric water content. The geometry of the tunnels was based on field measurements on Bylot Island. We considered three scenarios for the slurry filling the tunnels: 1) 100% water; 2) fully saturated sand with 30% gravimetric water content; and 3) an air layer at the top of the tunnel with water and saturated sands partly filling the bottom of the tunnel. We used three water/slurry temperatures: 1) 0.5C which simulates
NASA Astrophysics Data System (ADS)
ten Brink, U. S.; Marshak, S.; Granja Bruna, J.
2008-12-01
Thrust belts develop on both sides of island arcs at several localities around the world, such as southern Indonesia, Vanuatu, Panama, and the northeastern Caribbean. In all cases, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, an inactive arc (Hispaniola and Puerto Rico) is bordered by a north-verging accretionary prism and the Puerto Rico trench on the north, and by the south-verging Muertos thrust belt and the Muertos trough on the south. There are three models to explain such bivergent thrusting: (1) Bivergent thrusting develops where a reversal of the polarity of subduction is underway and the backarc thrust system overlies an incipient subduction zone; (2) Compression of the backarc region due to trenchward traction, applied at the base of the overriding plate by the subduction process; and (3) The arc and both thrust systems constitute a bivergent thrust wedge, whose development is driven entirely by crustal-level forces applied at a single subduction zone. The third model implies that island arc bivergent thrusting is analogous to that which develops during continent-continent collisions. Observations of deformational features from the Muertos thrust belt together with inferences from regional geometry of island arcs and simple sandbox kinematic models, lead to the conclusion that such island arcs are best explained as crustal bivergent thrust wedges. Modeling suggests, in particular, that an imbricate thrust wedge in the backarc region develops only if the arc behaves as a relatively rigid block that can transmit compressive stresses to the backarc region. In such circumstances, the strike-slip component of oblique convergence is accommodated entirely in the forearc and arc, and the backarc is a frontal (dip-slip) thrust system. The rigid block behavior of the arc may be explained by its mafic composition.
NASA Astrophysics Data System (ADS)
MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.
2014-05-01
Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc
Cylindrical and Spherical Positron-Acoustic Shock Waves in Nonthermal Electron-Positron-Ion Plasmas
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Alam, M. S.; Mamun, A. A.
2015-06-01
The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas.
Modes of continental extension in a crustal wedge
NASA Astrophysics Data System (ADS)
Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo
2015-07-01
We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.
Newtonian wormholes with spherical symmetry and tidal forces on test particles
NASA Astrophysics Data System (ADS)
Luz, Paulo; Lemos, José P. S.
2015-06-01
A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.
Spherical crystal imaging spectrometer (SCIS) for cosmic x-ray spectroscopy.
Schnopper, H W; Taylor, P O
1980-10-01
The application of a spherically bent crystal x-ray spectrometer to cosmic x-ray problems is discussed. This is the only geometry whose diffraction properties are preserved under all rotations of the spacecraft. The combination of Bragg reflection and spherical aberration provides for stigmatic imaging of extended sources and minimum spatial and/or spectral resolution loss arising from source extent and spacecraft pointing errors. The sensitivity of the instrument is discussed in the context of a Spacelab mission. PMID:20234612
Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers.
Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Donatan, Senem; Volodkin, Dmitry V; Tessarolo, Francesco; Antolini, Renzo; Möhwald, Helmuth; Skirtach, Andre G
2014-09-15
We fabricated calcium carbonate particles with spherical, elliptical, star-like and cubical morphologies by varying relative salt concentrations and adding ethylene glycol as a solvent to slow down the rate of particle formation. The loading capacity of particles of different isotropic (spherical and cubical) and anisotropic (elliptical and star-like) geometries is investigated, and the surface area of such carriers is analysed. Potential applications of such drug delivery carriers are highlighted. PMID:25044943
Milking the spherical cow - on aspherical dynamics in spherical coordinates
NASA Astrophysics Data System (ADS)
Pontzen, Andrew; Read, Justin I.; Teyssier, Romain; Governato, Fabio; Gualandris, Alessia; Roth, Nina; Devriendt, Julien
2015-08-01
Galaxies and the dark matter haloes that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealized calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are `maximally stable', i.e. that do not evolve at first order when external potentials (which arise from baryons, large-scale tidal fields or infalling substructure) are applied. We show that a spherically symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstrate that: (a) observational analyses that falsely assume spherical symmetry are made more accurate by imposing a strong prior preference for near-isotropic velocity dispersions in the centre of spheroids; (b) numerical simulations that use an idealized spherically symmetric setup can yield misleading results and should be avoided where possible; and (c) triaxial dark matter haloes (formed in collisionless cosmological simulations) nearly attain our maximally stable limit, but their evolution freezes out before reaching it.
Diffraction-geometry refinement in the DIALS framework.
Waterman, David G; Winter, Graeme; Gildea, Richard J; Parkhurst, James M; Brewster, Aaron S; Sauter, Nicholas K; Evans, Gwyndaf
2016-04-01
Rapid data collection and modern computing resources provide the opportunity to revisit the task of optimizing the model of diffraction geometry prior to integration. A comprehensive description is given of new software that builds upon established methods by performing a single global refinement procedure, utilizing a smoothly varying model of the crystal lattice where appropriate. This global refinement technique extends to multiple data sets, providing useful constraints to handle the problem of correlated parameters, particularly for small wedges of data. Examples of advanced uses of the software are given and the design is explained in detail, with particular emphasis on the flexibility and extensibility it entails. PMID:27050135
Diffraction-geometry refinement in the DIALS framework
Waterman, David G.; Winter, Graeme; Gildea, Richard J.; Parkhurst, James M.; Brewster, Aaron S.; Sauter, Nicholas K.; Evans, Gwyndaf
2016-01-01
Rapid data collection and modern computing resources provide the opportunity to revisit the task of optimizing the model of diffraction geometry prior to integration. A comprehensive description is given of new software that builds upon established methods by performing a single global refinement procedure, utilizing a smoothly varying model of the crystal lattice where appropriate. This global refinement technique extends to multiple data sets, providing useful constraints to handle the problem of correlated parameters, particularly for small wedges of data. Examples of advanced uses of the software are given and the design is explained in detail, with particular emphasis on the flexibility and extensibility it entails. PMID:27050135
Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube
2016-01-01
Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended. PMID:27221838
Numerical and Experimental Investigation of Oblique Shock Wave Reflection from a Water Wedge
NASA Astrophysics Data System (ADS)
Wan, Qian; Jeon, Hongjoo; Eliasson, Veronica
2015-11-01
Shock wave interaction with solid wedges at different inclination angles has been an area of much research studied in the past, but not many results have been obtained for shock wave reflection from liquid wedges. To find the transition angle from regular to irregular reflection of shock wave reflection over liquid wedges - both Newtonian and non-Newtonian liquids - we used a combination of experimental and numerical methods. In experiments, an inclined shock tube with adjustable inclination angle and a test section filled with the liquid of interest was used. Simulations were performed using a collection of CFD and CSD solvers to simulate the same situation as in the experiments. Results show that the transition angles for liquid wedges is different from smooth solid wedges, but agree fairly well if one assumes a certain surface roughness of the solid wedge.
Medial Closing-Wedge Distal Femoral Osteotomy: Fixation With Proximal Tibial Locking Plate.
Tírico, Luís Eduardo Passarelli; Demange, Marco Kawamura; Bonadio, Marcelo Batista; Helito, Camilo Partezani; Gobbi, Riccardo Gomes; Pécora, José Ricardo
2015-12-01
Distal femoral varus osteotomy is a well-established procedure for the treatment of lateral compartment cartilage lesions and degenerative disease, correcting limb alignment and decreasing the progression of the pathology. Surgical techniques can be performed with a lateral opening-wedge or medial closing-wedge correction of the deformity. Fixation methods for lateral opening-wedge osteotomies are widely available, and there are various types of implants that can be used for fixation. However, there are currently only a few options of implants for fixation of a medial closing-wedge osteotomy on the market. This report describes a medial, supracondylar, V-shaped, closing-wedge distal femoral osteotomy using a locked anterolateral proximal tibial locking plate that fits anatomically to the medial side of the distal femur. This is a great option as a stable implant for a medial closing-wedge distal femoral osteotomy. PMID:26870647
Assessment of tennis elbow using the Marcy Wedge-Pro.
Smith, R W; Mani, R; Cawley, M I; Englisch, W; Eckenberger, P
1993-01-01
The Marcy Wedge-Pro (MWP), a device used in training by tennis players, was employed in the assessment of tennis elbow. The MWP was used to measure the ability of patients to perform wrist extension exercises, since pain resulting from this specific activity is a prominent symptom of the condition. The MWP results were compared with clinical measures and found to identify accurately patients who responded to treatment (P < 0.05). This study illustrates the potential of the MWP to assess tennis elbow quantitatively. Images Figure 1 PMID:8130959
Nonlinear Instability of Hypersonic Flow past a Wedge
NASA Technical Reports Server (NTRS)
Seddougui, Sharon O.; Bassom, Andrew P.
1991-01-01
The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.
Structure of an oblique detonation wave induced by a wedge
NASA Astrophysics Data System (ADS)
Liu, Y.; Liu, Y.-S.; Wu, D.; Wang, J.-P.
2016-03-01
The structure of an oblique detonation wave (ODW) induced by a wedge is investigated via numerical simulations and Rankine-Hugoniot analysis. The two-dimensional Euler equations coupled with a two-step chemical reaction model are solved. In the numerical results, four configurations of the Chapman-Jouguet (CJ) ODW reflection (overall Mach reflection, Mach reflection, regular reflection, and non-reflection) are observed to take place sequentially as the inflow Mach number increases. According to the numerical and analytical results, the change of the CJ ODW reflection configuration results from the interaction among the ODW, the CJ ODW, and the centered expansion wave.
Liquid bridges in complex geometries: Equilibrium shape metamorphosis using electrowetting
NASA Astrophysics Data System (ADS)
Baratian, Davood; Cavalli, Andrea; van den Ende, Dirk; Mugele, Frieder
2015-11-01
The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. We investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, prior to filling the wedge corner, at a position that is determined by the drop volume and the contact angle. At this position, the net force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss it as well. We elegantly show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation. The Netherlands Organization for Scientific Research (NWO).
NASA Astrophysics Data System (ADS)
Roger, Michel; Moreau, Stéphane; Kucukcoskun, Korcan
2016-02-01
Exact analytical solutions for the scattering of sound by the edge of a rigid half-plane and by a rigid corner in the presence of a uniform flow are considered in this work, for arbitrary source and observer locations. Exact Green's functions for the Helmholtz equation are first reviewed and implemented in a quiescent propagation space from reference expressions of the literature. The effect of uniform fluid motion is introduced in a second step and the properties of the field are discussed for point dipoles and quadrupoles. The asymptotic regime of a source close to the scattering edge/wedge and of an observer far from it in terms of acoustic wavelengths is derived in both cases. Its validity limits are assessed by comparing with the exact solutions. Typically the asymptotic directivity is imposed by Green's function but not by the source itself. This behaviour is associated with a strong enhancement of the radiation with respect to what the source would produce in free field. The amplification depends on the geometry, on the source type and on the source distance to the edge/wedge. Various applications in aeroacoustics of wall-bounded flows are addressed, more specifically dealing with high-lift device noise mechanisms, such as trailing-edge or flap side-edge noise. The asymptotic developments are used to highlight trends that are believed to play a role in airframe noise.
Urrutia, Ignacio
2015-06-28
Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions.
Urrutia, Ignacio
2015-06-28
Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions. PMID:26133452
Late Holocene ice wedges near Fairbanks, Alaska, USA: environmental setting and history of growth.
Hamilton, T.D.; Ager, T.A.; Robinson, S.W.
1983-01-01
Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The history of ice-wedge growth shows that wedges can form and grow to more than 1m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5oC) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8oC in the zone of continuous permafrost is invalid.-from Authors
A depth dependence determination of the wedge transmission factor for 4-10 MV photon beams.
McCullough, E C; Gortney, J; Blackwell, C R
1988-01-01
The depth dependence (up to 25 cm) of the in-phantom wedge transmission factor (WTF) has been determined for three medical linear accelerator x-ray beams with energies of 4, 6, and 10 MV containing 15 degrees-60 degrees (nominal) brass wedges. All measurements were made with a cylindrical ionization chamber in water, for a field size of 10 X 10 cm2 with a source-skin distance of 80 or 100 cm. We conclude that, for the accelerators studied, the WTF factor at depth is less than 2% different from that determined at dmax (for the nominal wedge angles and photon energies studied) unless the depth of interest is greater than 10 cm. Up to the maximum depth studied (25 cm) the relative wedge factor--that is, wedge factor at depth compared to that determined at dmax--was about equal to or less than 1.02 for the 15 degrees and 30 degrees wedges and any of the photon beam energies studied. For the seldom utilized combination of a nominal wedge angle in excess of 45 degrees with a depth greater than 10 cm, the WTF at depth can differ from the WTF determined at dmax, by up to 5%. Since the wedge transmission factor is reflective of relative percent dose data, our results also indicate that it is in error to use open field percent depth doses for certain combinations of wedge angle, photon energy, and depth. PMID:3211057
Cylindrical and spherical electron acoustic solitary waves with nonextensive hot electrons
Pakzad, Hamid Reza
2011-08-15
Nonlinear propagation of cylindrical and spherical electron-acoustic solitons in an unmagnetized plasma consisting cold electron fluid, hot electrons obeying a nonextensive distribution and stationary ions, are investigated. For this purpose, the standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation, which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and nonextensive hot electrons on the behavior of cylindrical and spherical electron acoustic solitons are also studied by numerical simulations.
Partially coherent electromagnetic beams propagating through double-wedge depolarizers
NASA Astrophysics Data System (ADS)
de Sande, J. Carlos G.; Piquero, Gemma; Santarsiero, Massimo; Gori, Franco
2014-03-01
The irradiance and polarization characteristics of quasi-monochromatic partially coherent electromagnetic beams are analyzed when they propagate after passing through a deterministic linear optical element, i.e., an optical element that can be represented by a Jones matrix. A class of such optical elements, which includes double-wedge depolarizers and polarization gratings, is defined and studied in detail. Analytical expressions are obtained for the case of double-wedge depolarizers and examples are given for an incident Gaussian Schell-model beam. For such an input beam, the effects on the irradiance and degree of polarization of the field propagating beyond the optical element are investigated in detail. A rich variety of behaviors is obtained by varying the beam size, coherence width and polarization state of the input field. The results not only provide a mathematical extension of well-known results to the domain of partial coherence, but they also exemplify mixing between coherence and polarization, which is, of course, not possible if, for example, fully spatially coherent fields are analyzed.
Flow rate limitation in open wedge channel under microgravity
NASA Astrophysics Data System (ADS)
Wei, YueXing; Chen, XiaoQian; Huang, YiYong
2013-08-01
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.
Mass stranding of wedge-tailed shearwater chicks in Hawaii.
Work, T M; Rameyer, R A
1999-07-01
Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies. PMID:10479083
Dying Flow Bursts as Generators of the Substorm Current Wedge
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
2016-07-01
Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.
Substorm Current Wedge as a Combined Effect of Wedgelets
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.
2014-12-01
Understanding how the substorm current wedge (SCW) is formed is crucial to solving the substorm mystery. One recent idea on the SCW formation is the "wedgelets" picture, which proposes that dipolarizing flux bundles (DFBs) are the building elements of an SCW. (A DFB is a ~1-3 RE wide flux tube with stronger magnetic field than the ambient plasma in the magnetotail; its leading edge is known as a "dipolarization front", or "reconnection front", the product of near-Earth reconnection). Although each DFB carries field-aligned currents (FACs) in similar configuration to an SCW, it is unclear how the DFBs combine to become the large-scale (several magnetic local times wide) region-1-sense (towards Earth at the dawn sector of the magnetotail and away from Earth at the dusk sector) FACs of the SCW. To answer this question, we investigate the FACs of DFBs statistically using THEMIS data. Our results suggest that at the dawn (dusk) sector of the magnetotail, a DFB has more FAC towards (away from) Earth than away from (towards) Earth, so that the net FAC is towards (away from) Earth. The combined effect of many DFBs is therefore the same as the large-scale region-1-sense SCW, supporting the idea that "wedgelets" comprise the large scale substorm current wedge.
Predicting Run Distances for a Modified Wedge Test
NASA Astrophysics Data System (ADS)
Dorgan, Robert J.; Lee, Richard; Sutherland, Gerrit
2012-03-01
Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture.
Predicting Run Distances for a Modified Wedge Test
NASA Astrophysics Data System (ADS)
Dorgan, Robert; Lee, Richard; Sutherland, Gerrit
2011-06-01
Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture. DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0053)
Mass stranding of wedge-tailed shearwater chicks in Hawaii
Work, T.M.; Rameyer, R.A.
1999-01-01
Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.
An automated optical wedge calibrator for Dobson ozone spectrophotometers
NASA Technical Reports Server (NTRS)
Evans, R. D.; Komhyr, W. D.; Grass, R. D.
1994-01-01
The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.
Numerical solution of the radiation transport equation in disk geometry
NASA Technical Reports Server (NTRS)
Spagna, George F., Jr.; Leung, Chun Ming
1987-01-01
An efficient numerical method for solving the problem of radiation transport in a dusty medium with two dimensional (2-D) disk geometry is described. It is a generalization of the one-dimensional quasi-diffusion method in which the transport equation is cast in diffusion form and then solved as a boundary value problem. The method should be applicable to a variety of astronomical sources, the dynamics of which are angular-momentum dominated and hence not accurately treated by spherical geometry, e.g., protoplanetary nebulae, circumstellar disks, interstellar molecular clouds, accretion disks, and disk galaxies. The computational procedure and practical considerations for implementing the method are described in detail. To illustrate the effects of 2-D radiation transport, some model results (dust temperature distributions and IR flux spectra) for externally heated, interstellar dust clouds with spherically symmetric and disk geometry are compared.
Analytical expression for the sheath edge around wedge-shaped cathodes
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2008-03-01
The sheath is the boundary layer separating a quasi-neutral plasma from a material electrode. Understanding the sheath is important for numerous applications, including plasma-based ion implantation, plasma etching of semiconductors, plasma assisted electrostatic cleaning, and Langmuir probes. In a 1D planar geometry, the Child-Langmuir (CL) law describes the sheath when the bias on a negative electrode, i.e., a cathode, is much greater than the electron temperature. In this case, the sheath width s is an eigenvalue of the problem. In 2D, the sheath edge is an unknown line (an ``eigen-boundary") which is determined by a set of coupled, nonlinear, partial differential equations. I have found an expression for the sheath edge around a 2D wedge-shaped cathode with included angle θw. In polar coordinates (r,θ), the sheath edge is a solution of r(aθ)=as where s is the planar sheath width far from the corner and θw=2π- π/a, so that a=1/2 gives a knife edge, while a=2/3 gives a square corner. This result is verified by comparison with the numerical solutions of Watterson [P. A. Watterson, J. Phys. D 22, 1300 (1989)].
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone
Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael
2016-01-01
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.
Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael
2016-01-01
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676
Is the Mexican Fold-and-Thrust Belt a (Heterogeneous) Frictional and Erosive Coulomb Wedge?
NASA Astrophysics Data System (ADS)
Cruz, L.; Fitz, E.; Hudleston, P. J.
2011-12-01
Crustal heterogeneities and surface processes are controlling factors in the evolution of fold-and-thrust belts (FTB). Variations of these parameters affect the internal and external characteristics of FTB (i.e. structural style, orogenic width, topography, and total shortening). In this contribution, we use numerical simulations, based on the Gale numerical code, to quantify the effect of spatial variations on the internal friction and topographic erodibility (K) in the evolution and structural style of FTB. In these models, surfaces are eroded according to a rule in which mass removal is limited by the rate of fluvial bedrock incision. We also model the evolution of the MFTB (Mexican fold-and-thrust belt) where crustal heterogeneities and the structure of the fold-and-thrust belt are well constrained based on field and laboratory data. Increasing internal friction facilitates basal sliding of relatively coherent blocks, producing an increase in fold amplitude. In contrast, areas with low internal friction deform throughout the wedge and along its base. Erosion enhances the deformation style leading to both localized and distributed deformation depending on the initial style, and may change it when low-friction units are close to the backstop. Additionally, erosion increases the total shortening and decreases the width of the orogen. The evolution of the MFTB requires a rheologically heterogeneous crust but only limited erosion to explain the geometries and total shortening constrained by field observations and interpretations.
Thermodynamic and fracture mechanical processes in the context of frost wedging in ice shelves
NASA Astrophysics Data System (ADS)
Plate, Carolin; Müller, Ralf; Humbert, Angelika; Gross, Dietmar
2015-04-01
Ice shelves, the link between ice shields or glaciers and the ocean are sensitive elements of the polar environment. The ongoing break up and disintegration of huge ice shelf parts or entire ice shelf demands for an explication of the underlying processes. The first analyses of crack growth and break up events in ice shelves date back to more than half a century. Nevertheless, the mechanisms that trigger and influence the collapse of whole ice shelf parts are not yet fully understood. Popular presumptions link ice shelf disintegration to surface meltwater and hydro fracturing, explaining break up events in warm polar seasons. Fracture events during colder seasons are possibly triggered by more complex mechanisms. A well-documented break up event at the Wilkins Ice Shelf bridge inspires the possibility of frost wedging as disintegration cause. The present study shows a two-dimensional thermo-dynamical model simulating the growth of an ice lid in a water-filled crevasse for measured surface temperatures. The influence of the crevasse geometry and the ice shelf temperature are shown. The resulting lid thickness is then used for the linear elastic fracture mechanical analysis. The maximum crack depth is estimated by comparing the computed stress intensity factors to critical values KIc obtained from literature. The thermodynamic as well as the fracture mechanical simulation are performed using the commercial finite element code COMSOL. The computation of KI follows in post processing routines in MATLAB exploiting the benefits of the concept of configurational forces.
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone
NASA Astrophysics Data System (ADS)
Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael
2016-07-01
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.
GGADT: Generalized Geometry Anomalous Diffraction Theory
NASA Astrophysics Data System (ADS)
Hoffman, John; Tarczon, Michael; Draine, Bruce T.
2015-10-01
GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.
The surface geometry of exotic nuclei
Carlson, B. V.; Baldini-Neto, E.; Hirata, D.; Peru-Desenfants, S.; Berger, J.-F.; Chamon, L. C.
2007-02-12
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data.
Geometry-induced protein pattern formation
Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin
2016-01-01
Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in Δ EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems. PMID:26739566
Ice wedge growth in the Fox Permafrost Tunnel dates to marine isotope stage II?
NASA Astrophysics Data System (ADS)
Lachniet, M. S.; Sloat, A. R.; Lawson, D. E.
2011-12-01
We dated a Pleistocene ice wedge (wedge 50S) and its host sediments from the CRREL Fox Permafrost Tunnel near Fairbanks, Alaska with twenty radiocarbon analyses on wood, dispersed organic material, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC). The age of a wood fragment within the host sediments is 35,570 ± 340 14C yr BP and is thus a maximum age of wedge growth. Previous 14C ages of dispersed organic matter within the ice wedge returned ages from 28 to 31 14C ka, and the wedge is overlain by sediment in which a wood fragment returned an age of 30,090 ± 300 14C yr BP, thus suggesting an age of between 28-35 14C ka BP. Such an age is surprising because it occurs during Marine Isotope Stage (MIS) III, not the colder intervals of MIS II. To constrain better the wedge age for paleoclimatic analysis, we determined DIC and DOC age pairs within four ice blocks subsampled from the wedge. Our new DIC/DOC dates are up to 8000 years younger than dispersed organic material in the wedge. The DIC/DOC age pairs return divergent ages, which suggest fluctuating proportions of carbon dioxide and organic carbon with variable radiocarbon ages entrapped within the ice wedge. Because the organic matter ages are older than the DIC/DOC ages, we conclude that they represent 'detrital' maximum ages for the ice wedge and represent the timing of permafrost aggradation prior to wedge growth. Based on the assumption that the ice ages can only be contaminated by old 'detrital' carbon associated with the stratigraphically older host sediments, the youngest dates likely provide the best estimate of when the ice wedge was last active. The youngest age we determined is 21,600 ± 140 14C yr BP (on DOC) recovered from inclined folia that parallel the outer wedge margin at ca. 3.25 cm from the left-most edge, which corresponds to a calendar age of 25.7 cal ka. This sample location corresponds to the stratigraphically-oldest ice according to standard ice wedge growth models. We
Compressible inviscid instability of rapidly expanding spherical material interfaces
NASA Astrophysics Data System (ADS)
Mankbadi, Mina R.; Balachandar, S.
2012-03-01
A high-order weighted essentially non-oscillatory scheme is employed to investigate the stability of a rapidly expanding material interface produced by a spherical shock tube. The flow structure is characterized by a forward moving primary shock, a backward moving secondary shock, and a spherical contact interface in-between. We consider herein the linear inviscid regime and focus on the development of the three-dimensional perturbations around the contact interface by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the effects of the contact interface's density discontinuity on the growth of the disturbances for various spherical wave numbers. In a spherical shock tube the instability is influenced by various mechanisms which include classical Rayleigh-Taylor (RT) effects, Bell-Plesset or geometry/curvature effects, the effects of impulsively accelerating the interface, and compressibility effects. Henceforth, the present instability will be referred to as non-classical RT instability to distinguish it from classical RT instability. For an extended intermediate time period, it can be shown that the small disturbances grow exponentially as in the classical RT instability. During this stage, the exponential growth rate increases with the spherical wave number, until it saturates for very large wave numbers due to the finite thickness limitation of the numerical representation of the contact interface. The results compare favorably with previous theoretical models; but indicate that in addition to compressibility, the space-time evolution of the contact interface's thickness plays a significant role. A parametric study is performed that varies the pressure and density ratios of the initial spherical container. The characteristics of the contact interface and the applicability of various instability theories is investigated for these regimes. Furthermore, varying the pressure and density ratios aids
Localization and vector spherical harmonics
NASA Astrophysics Data System (ADS)
von Brecht, James H.
2016-01-01
This paper establishes the following localization property for vector spherical harmonics: a wide class of non-local, vector-valued operators reduce to local, multiplication-type operations when applied to a vector spherical harmonic. As localization occurs in a very precise, quantifiable and explicitly computable fashion, the localization property provides a set of useful formulae for analyzing vector-valued fractional diffusion and non-local differential equations defined on S d - 1. As such analyses require a detailed understanding of operators for which localization occurs, we provide several applications of the result in the context of non-local differential equations.
Basketballs as spherical acoustic cavities
NASA Astrophysics Data System (ADS)
Russell, Daniel A.
2010-06-01
The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, M.; Cottingham, J.G.
1994-12-31
A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces, respectively between the housing and adjacent coils, the interpole spaces each extending in a direction generally parallel to the housing axis. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends defining the slit to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. Preferably, the spring retainer and wedge are self-locking wherein wedge is fabricated from a material softer than a material the retainer spring is fabricated from, so that the wedge is securely retained in the slit. The retainer spring is generally triangular shaped to fit within the interpole space and fabricated from berryllium-copper alloy, and the wedge is generally T-shaped and fabricated from aluminum. Alternatively, a wedge and spring assembly includes a wedge having divergent sloped surfaces in which each surface and the respective juxtaposed ends of the retainer spring are angled relative to one another so that the wedge is securely retained in the slit by friction existing between its sloped surfaces and the juxtaposed ends of the retaining spring.
ERIC Educational Resources Information Center
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Geometry of multihadron production
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
ERIC Educational Resources Information Center
Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem
2009-01-01
Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…
Euclidean Geometry via Programming.
ERIC Educational Resources Information Center
Filimonov, Rossen; Kreith, Kurt
1992-01-01
Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…
ERIC Educational Resources Information Center
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
Collective neutrino oscillations in nonspherical geometry
Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg
2008-08-01
The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.
Spherical microwave confinement and ball lightning
NASA Astrophysics Data System (ADS)
Robinson, William Richard
This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal
Comparison of weak-shock reflection factors for wedges, cylinders and blast waves
Reichenbach, H.; Kuhl, A.L.
1992-07-01
Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach`s discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called {open_quotes}von Neumann reflection{close_quotes} for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson`s definition, shocks with a Mach number of M{sub 0} < 1.56 in air or with an overpressure of {Delta}p{sub I} < 25 psi (1.66 bar) under normal ambient conditions are called weak.
Comparison of weak-shock reflection factors for wedges, cylinders and blast waves
Reichenbach, H. , Freiburg im Breisgau ); Kuhl, A.L. )
1992-07-01
Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach's discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called [open quotes]von Neumann reflection[close quotes] for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson's definition, shocks with a Mach number of M[sub 0] < 1.56 in air or with an overpressure of [Delta]p[sub I] < 25 psi (1.66 bar) under normal ambient conditions are called weak.
Tritanium acetabular wedge augments: short-term results
Restrepo, Camilo; Heller, Snir
2016-01-01
Background Reconstruction of acetabular defects in total hip arthroplasty (THA) presents a great challenge to orthopaedic surgeons. Previous studies have reported on the use and outcomes of trabecular metal acetabular augments for the reconstruction of acetabular defects. However, no study has been conducted evaluating the short-term results of tritanium acetabular wedge augments for the reconstruction of acetabular defects in THA. Methods A retrospective study was conducted using a prospective database at a single institution including primary and revision THA patients from January 2013 to December 2014. Patients were included if they received a tritanium acetabular wedge augment system and had a minimum of 2-year follow-up (average 2.2 years ±0.3, range, 2–2.6 years). Demographic data and outcomes data [Harris Hip Score—HHS and Short Form (SF)-36] was collected. Radiographic data was also collected on THA revision cases (Paprosky classification), developmental dysplasia of the hip (DDH) cases (Crowe classification), and radiographic follow-up using DeLee and Charnley’s classification system. Results There were 4 revision THA patients, 3 DDH patients, and 1 patient with posttraumatic arthritis. At the latest radiographic follow-up, there were no lucent lines in DeLee and Charnley Zones I, II or III. During the follow-up period, there was no open revision surgery. The SF-36 physical score significantly improved from preoperative measurement (29.6±2.2) to postoperative measurement (52.2±8.7, P=0.003), and the SF-36 mental score also significantly improved from preoperative assessment (34.5±4.5) to postoperative assessment (52.2±7.5, P=0.003). Total HHS scores also significantly improved postoperatively (P=0.02), with significant improvements in both the pain score (P=0.01) and function score (P=0.02). Conclusions Tritanium acetabular wedge augments in this short follow-up case series exhibit high clinical outcome scores, no radiographic lucency, and no
Photoelectric sheath formation around small spherical objects in space
NASA Astrophysics Data System (ADS)
Misra, Shikha; Mishra, S. K.; Sodha, M. S.
2015-04-01
The formation of a photoelectron sheath around positively charged small (˜cm) spherical objects roaming in near earth space due to the solar radiation (with continuous spectrum) and the solar wind plasma has been investigated. The sheath structure has been derived, taking into account anisotropic photoelectron flux with the Poisson equation, spherical geometry of the object, and half Fermi Dirac distribution of photoelectron velocities. Two cases, viz., when the object is illuminated by (i) isotropic or (ii) unidirectional (parallel beam) radiation, have been analyzed. The analysis predicts a spherically symmetric sheath in case of isotropic illumination, while a symmetry in sheath about a θ = π / 4 is seen in case of parallel beam illumination; θ is the angle of incidence which is the angle made by the normal to a surface element with the direction of incidence of solar radiation. The radial and angular profiles of the electric potential and electron density in the photoelectron sheath have been evaluated and illustrated graphically; the dependence of the sheath structure on the solar wind plasma parameters, material properties of the spherical object, and its size have been discussed.
Photoelectric sheath formation around small spherical objects in space
Misra, Shikha Sodha, M. S.; Mishra, S. K.
2015-04-15
The formation of a photoelectron sheath around positively charged small (∼cm) spherical objects roaming in near earth space due to the solar radiation (with continuous spectrum) and the solar wind plasma has been investigated. The sheath structure has been derived, taking into account anisotropic photoelectron flux with the Poisson equation, spherical geometry of the object, and half Fermi Dirac distribution of photoelectron velocities. Two cases, viz., when the object is illuminated by (i) isotropic or (ii) unidirectional (parallel beam) radiation, have been analyzed. The analysis predicts a spherically symmetric sheath in case of isotropic illumination, while a symmetry in sheath about a θ=π/4 is seen in case of parallel beam illumination; θ is the angle of incidence which is the angle made by the normal to a surface element with the direction of incidence of solar radiation. The radial and angular profiles of the electric potential and electron density in the photoelectron sheath have been evaluated and illustrated graphically; the dependence of the sheath structure on the solar wind plasma parameters, material properties of the spherical object, and its size have been discussed.
Pauchard, Yves; Ivanov, Todor G; McErlain, David D; Milner, Jaques S; Giffin, J Robert; Birmingham, Trevor B; Holdsworth, David W
2015-03-01
compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design. PMID:25363041
16 CFR Figure 1 to Part 1508 - Crib Slat Loading Wedge
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Crib Slat Loading Wedge 1 Figure 1 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... Wedge EC03OC91.061 (Secs. 2(f)(1)(D), (q)(1)(A), (s), 3(e)(1), 74 Stat. 372, 374, 375, as amended,...
Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology
NASA Astrophysics Data System (ADS)
Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella
2016-04-01
Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.
Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Mann, P. J.; Dowdy, K. L.; Davydova, A.; Davydov, S. P.; Zimov, N.; Spencer, R. G. M.; Bulygina, E. B.; Eglinton, T. I.; Holmes, R. M.
2013-09-01
Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved and highly biologically available (biolabile) upon thaw. A better understanding of the processes regulating Yedoma degradation is important to improve estimates of the response and magnitude of permafrost carbon feedbacks to climate warming. In this study, we examine the composition of ice wedges and the influence of ice wedge thaw on the biolability of Yedoma OM. Incubation assays were used to assess OM biolability, fluorescence spectroscopy to characterize the OM composition, and potential enzyme activity rates to examine the controls and regulation of OM degradation. We show that increasing amounts of ice wedge melt water in Yedoma-leached incubations enhanced the loss of dissolved OM over time. This may be attributed to the presence of low-molecular weight compounds and low initial phenolic content in the OM of ice wedges, providing a readily available substrate that promotes the degradation of Yedoma OC. The physical vulnerability of ice wedges upon thaw (causing irreversible collapse), combined with the composition of ice wedge-engrained OM (co-metabolizing old OM), underlines the particularly strong potential of Yedoma to generate a positive feedback to climate warming relative to other forms of non-ice wedge permafrost.
Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.
Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C
2016-03-01
It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole. PMID:26979900
NASA Technical Reports Server (NTRS)
Maiden, D. L.
1976-01-01
A wind tunnel investigation has been conducted to determine the aeropropulsion performance (thrust minus drag) of an isolated, two-dimensional wedge nozzle with a simulated variable-wedge mechanism and a fixed cowl. The investigation was conducted statically and at Mach numbers from 0.60 to 1.20 in the Langley 16-foot transonic tunnel and at a Mach number of 2.01 in the Langley 4-foot supersonic pressure tunnel. The ratio of exhaust jet total pressure to free-stream static pressure was varied up to 27 depending on free-stream Mach number. The results indicate that the aeropropulsion performance of the two-dimensional fixed-cowl variable-wedge nozzle is slightly lower (0.7 to 1.4 percent of ideal thrust) than that achieved for a two-dimensional wedge nozzle with a translating shroud, although part of the difference in performance is attributed to internal-performance differences. The effects of cowl boattail angle, internal expansion area ratio, and wedge half-angle on the performance of the two-dimensional wedge nozzle are discussed.
The Cimmerian accretionary wedge of Anarak, Central Iran
NASA Astrophysics Data System (ADS)
Zanchi, Andrea; Malaspina, Nadia; Zanchetta, Stefano; Berra, Fabrizio; Benciolini, Luca; Bergomi, Maria; Cavallo, Alessandro; Javadi, Hamid Reza; Kouhpeyma, Meyssam
2015-04-01
The occurrence in Iran of several ophiolite belts dating between Late Palaeozoic to Triassic poses several questions on the possible existence of various sutures marking the closure of the Palaeotethys ocean between Eurasia and this Gondwana-derived microplate. In this scenario, the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted, as: (1) relict of an accretionary wedge developed at the Eurasia margin during the Palaeotethys subduction as part of the Cimmerian suture zone of NE Iran, displaced to Central Iran by a large counter-clockwise rotation of the central Iranian blocks; (2) autochthonous unit forming a secondary branch of the main suture zone. Our structural, petrographic and geochemical data indicate that the AMC consists of several metamorphic units also including dismembered "ophiolites" which display different tectono-metamorphic evolutions. Three main ductile deformational events can be distinguished in the AMC. The Morghab and Chah Gorbeh complexes preserve a different M1 metamorphism, characterized by blueschist relics in the S1 foliation of the former unit, and greenschist assemblages in the latter. They share a subsequent similar D2 deformational and M2 metamorphic history, showing a prograde metamorphism with syn- to post-deformation growth of blueschist facies mineral assemblages on pre-existing greenschist facies associations. High pressure, low temperature (HP/LT) metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the contact between the Chah Gorbeh Complex and serpentinites. Evidence of HP/LT metamorphism also occurs in glaucophane-bearing meta-pillow lavas and serpentinites, which contain antigorite and form most of the "ophiolites" within the AMC. Structural relationships show that the
Numerical investigation of shedding partial cavities over a sharp wedge
NASA Astrophysics Data System (ADS)
Budich, B.; Neuner, S.; Schmidt, S. J.; Adams, N. A.
2015-12-01
In this contribution, we examine transient dynamics and cavitation patterns of periodically shedding partial cavities by numerical simulations. The investigation reproduces reference experiments of the cavitating flow over a sharp wedge. Utilizing a homogeneous mixture model, full compressibility of the two-phase flow of water and water vapor is taken into account by the numerical method. We focus on inertia-dominated mechanisms, thus modeling the flow as inviscid. Based on the assumptions of thermodynamic equilibrium and barotropic flow, the thermodynamic properties are computed from closed-form analytical relations. Emphasis is put on a validation of the employed numerical approach. We demonstrate that computed shedding dynamics are in agreement with the references. Complex flow features observed in the experiments, including cavitating hairpin and horse-shoe vortices, are also predicted by the simulations. Furthermore, a condensation discontinuity occurring during the collapse phase at the trailing portion of the partial cavity is equally obtained.
Defect dynamics in a smectic Grandjean-Cano wedge.
Blanc, Christophe; Zuodar, Nadia; Lelidis, Ioannis; Kleman, Maurice; Martin, Jean-Luc
2004-01-01
An array of edge dislocation forms spontaneously in a Grandjean-Cano wedge filled by a smectic liquid crystal. In the vicinity of the smectic A to smectic C transition, these defects are visible under the microscope [R. B. Meyer, B. Stebler, and S. T. Lagerwall, Phys. Rev. Lett. 41, 1393 (1978)]. This paper deals with their dynamics under controlled deformation (dilation and compression). First, we characterize several regimes of dislocation mobility occurring with increasing strain epsilon or strain rate epsilon;. We relate these regimes to the interactions between screw and edge dislocations. We also show that screw dislocations give rise to loops of edge dislocations under sufficient strain, which strengthens the model of loop nucleation by helical instability of screw dislocations. Lastly, we discuss several models for the microscopic origin of the interactions between defects. PMID:14995638
Defect dynamics in a smectic Grandjean-Cano wedge
NASA Astrophysics Data System (ADS)
Blanc, Christophe; Zuodar, Nadia; Lelidis, Ioannis; Kleman, Maurice; Martin, Jean-Luc
2004-01-01
An array of edge dislocation forms spontaneously in a Grandjean-Cano wedge filled by a smectic liquid crystal. In the vicinity of the smectic A to smectic C transition, these defects are visible under the microscope [R. B. Meyer, B. Stebler, and S. T. Lagerwall, Phys. Rev. Lett. 41, 1393 (1978)]. This paper deals with their dynamics under controlled deformation (dilation and compression). First, we characterize several regimes of dislocation mobility occurring with increasing strain ɛ or strain rate ɛ˙. We relate these regimes to the interactions between screw and edge dislocations. We also show that screw dislocations give rise to loops of edge dislocations under sufficient strain, which strengthens the model of loop nucleation by helical instability of screw dislocations. Lastly, we discuss several models for the microscopic origin of the interactions between defects.
Aberration analysis of a wedge-plate display system.
Cheng, Yi-Kai; Chung, Sen-Nien; Chern, Jyh-Long
2007-08-01
The aberration characteristics of a wedge-plate display optical system are analyzed. The study shows that a kink-like feature is inherent in the ray-intercept curve due to either the onset of the dark zone in imaging or the coincidence of the ray direction with the vertex. Third-order aberration coefficients are deduced, and the total amount of aberration is investigated to illustrate the basic limitations of image quality in this type of display. The issue of design optimization is also investigated based on the aberration characteristics. A numerical example of a 50 in. display with a 1:10 thickness and a diagonal screen length ratio is also provided. PMID:17621338
Coupled mode propagation in an elastic oceanic wedge
NASA Astrophysics Data System (ADS)
Abawi, Ahmad T.
2002-11-01
The elastic version of the one-way coupled mode propagation model [Abawi, J. Acoust. Soc. Am. 111, 160-167 (2002)] is used to compute the propagation of waves in an ocean overlaying a shear-supporting wedge-shaped bottom. The range-dependent ocean is approximated by a set of stair-step elastic waveguides. The elastic modes are obtained from the solution of the equations of motion in each stair-step and the solution of the range-dependent problem is obtained by solving a set of coupled differential equations for the mode amplitudes as a function of range. Various field quantities such as the scalar and shear potentials, the compressional and shear pressures, and the displacements are computed and the results are compared with those obtained from the fast field propagation model, OASES.
Magnetic quantum well states in ultrathin film and wedge structures
Li, D.; Bader, S.D.
1996-04-01
Magnetic quantum-well (QW) states are probed with angle- and spin-resolved photoemission to address critical issues pertaining to the origin of the giant magnetoresistance (GMR) optimization and oscillatory coupling of magnetic multilayers. Two epitaxial systems are highlighted: Cu/Co(wedge)/Cu(100) and Cr/Fe(100)-whisker. The confinement of Cu sp-QW states by a Co barrier requires a characteristic Co thickness of 2.2 {+-} 0.6 {angstrom}, which is consistent with the interfacial Co thickness reported to optimize the GMR of permalloy-Cu structures. The controversial k-space origin of the 18-{angstrom} long period oscillation in Fe/Cr multilayers is identified by the vector that spans the d-derived lens feature of the Cr Fermi surface, based on the emergence of QW states with 17 {+-} 2 {angstrom} periodicity in this region.
Spherically symmetric high-velocity plasma expansions into background gases
NASA Technical Reports Server (NTRS)
Tan, T.-H.; Borovsky, J. E.
1986-01-01
Spherically symmetric plasmas with high expansion velocities have been produced by irradiating targets with eight beams from the Helios CO2 laser in the presence of gases at various pressures. Attention was given to the properties of the target-emitted ions in order to obtain information about the ion-acceleration mechanisms in plasma expansions. Photoionization of the ambient gases by the soft X-ray emission from the laser-irradiated targets produced background plasmas, permitting plasma counterstreaming experiments to be performed in spherical geometry. Successful laser-target coupling in the presence of back-ground gases is obtained; modification of the ion acceleration in accordance with isothermal-expansion models is observed; and an absence of collective coupling between collisionless counterstreaming plasmas is found.
The Substorm Current Wedge: Further Insights from MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.
2015-01-01
Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.
Distribution of strain rates in the Taiwan orogenic wedge
NASA Astrophysics Data System (ADS)
Mouthereau, F.; Fillon, C.; Ma, K.-F.
2009-07-01
To constrain the way Eurasian crust is accreted to the Taiwan orogenic wedge we investigate the present-day 3D seismogenic deformation field using the summation of 1129 seismic moment tensors of events ( Mw > 4) covering a period of 11 years (1995 to 2005). Based on the analysis of the principal strain-rate field, including dilatation and maximum shear rates, we distinguish four domains. Domain I comprises the Coastal Plain and the Western Foothills. It is mainly contractional in both the horizontal plane and in cross-section. Domain II comprises the eastern Western Foothills, the Hsuehshan Range and the Backbone Range. It is characterized by the highest contraction rates of 10 - 6 yr - 1 in association with area expansion in cross-section and area contraction in the horizontal plane. Domain III corresponds to the Central Range. It is characterized by area contraction in cross-section and area expansion in the horizontal plane. The maximum contractional axis is typically low and plunges ~ 30°E. Extension is larger, horizontal and strikes parallel to the axis of the mountain range. Domain IV corresponding to the Coastal Range and offshore Luzon Arc shows deformation patterns similar to domain II. This seismogenic strain-rate field, which is found in good agreement with the main features of the geodetic field, supports shortening within a thick wedge whose basal décollement is relatively flat and located in the middle-to-lower crust > 20 km. The east plunges of maximum strain-rate axes below the Central Range argue for the development of top-to-the-east transport of rocks resulting from the extrusion of the whole crust along west-dipping crustal-scale shear zones. The study of seismogenic strain rates argues that the initiation of subduction reversal has already started in the Taiwan collision domain.
Wedge imaging spectrometer: application to drug and pollution law enforcement
NASA Astrophysics Data System (ADS)
Elerding, George T.; Thunen, John G.; Woody, Loren M.
1991-08-01
The Wedge Imaging Spectrometer (WIS) represents a novel implementation of an imaging spectrometer sensor that is compact and rugged and, therefore, suitable for use in drug interdiction and pollution monitoring activities. With performance characteristics equal to comparable conventional imaging spectrometers, it would be capable of detecting and identifying primary and secondary indicators of drug activities and pollution events. In the design, a linear wedge filter is mated to an area array of detectors to achieve two-dimensional sampling of the combined spatial/spectral information passed by the filter. As a result, the need for complex and delicate fore optics is avoided, and the size and weight of the instrument are approximately 50% that of comparable sensors. Spectral bandwidths can be controlled to provide relatively narrow individual bandwidths over a broad spectrum, including all visible and infrared wavelengths. This sensor concept has been under development at the Hughes Aircraft Co. Santa Barbara Research Center (SBRC), and hardware exists in the form of a brassboard prototype. This prototype provides 64 spectral bands over the visible and near infrared region (0.4 to 1.0 micrometers ). Implementation issues have been examined, and plans have been formulated for packaging the sensor into a test-bed aircraft for demonstration of capabilities. Two specific areas of utility to the drug interdiction problem are isolated: (1) detection and classification of narcotic crop growth areas and (2) identification of coca processing sites, cued by the results of broad-area survey and collateral information. Vegetation stress and change-detection processing may also be useful in detecting active from dormant airfields. For pollution monitoring, a WIS sensor could provide data with fine spectral and spatial resolution over suspect areas. On-board or ground processing of the data would isolate the presence of polluting effluents, effects on vegetation caused by
Periodic nanostructures from self assembled wedge-type block-copolymers
Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot
2015-06-02
The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, Melvin; Cottingham, James G.
1996-03-12
A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.
Yoo, Won-gyu
2016-01-01
[Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females.
The propagation of particles and fields in wormhole geometries
NASA Astrophysics Data System (ADS)
Sarbach, Olivier; Zannias, Thomas
2012-08-01
We discuss several properties of static, spherically symmetric wormholes with particular emphasis on the behavior of causal geodesics and the propagation of linear fields. We show there always exist null geodesics which are trapped in a region close to the throat. Depending upon the detailed structure of the wormhole geometry, these trapped geodesics can be stable, unlike the case of the Schwarzschild black hole. We also show that test scalar fields propagating on such wormholes are stable. However, when a mixture of ghost and Klein-Gordon scalar fields is used as a source of the Einstein equations we prove that the resulting static, spherically symmetric wormhole configurations are linearly unstable.
ERIC Educational Resources Information Center
Emenaker, Charles E.
1999-01-01
Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)
ERIC Educational Resources Information Center
Chern, Shiing-Shen
1990-01-01
Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)
Noncommutative Geometry and Physics
NASA Astrophysics Data System (ADS)
Connes, Alain
2006-11-01
In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.
Proof in Transformation Geometry
ERIC Educational Resources Information Center
Bell, A. W.
1971-01-01
The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)
Energy Science and Technology Software Center (ESTSC)
2005-01-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less
NASA Astrophysics Data System (ADS)
Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.
2014-06-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Gauge Measures Large Spherical Bearing Surfaces
NASA Technical Reports Server (NTRS)
Davis, George L.
1992-01-01
Radius of spherical portion of surface computed from reading of depth gauge. Measuring tool calibrated by applying it to reference spherical surface of known radius. Used onsite, so unnecessary to ship bearings to laboratory for examination by computerized test equipment.
Electromagnetic decay modes in a spherical sample of two-level atoms
NASA Astrophysics Data System (ADS)
Friedberg, Richard; Manassah, Jamal T.
2008-11-01
We find the eigenmodes of the Lienard-Wiechert kernel for a spherical geometry. We show that these consist of two series corresponding to the classical electrodynamics multipole electric and magnetic series. The electric series possesses “anomalous modes”, absent in both the magnetic series and the “scalar photon” theory.
Hyper-extended continental crust deformation in the light of Coulomb critical wedge theory
NASA Astrophysics Data System (ADS)
Nirrengarten, Michael; Manatschal, Gianreto; Yuan, Xiaoping; Kusznir, Nick; Maillot, Bertrand
2016-04-01
The rocks forming the wedge shape termination of hyper-extended continental crust are deformed in the frictional field during the last stage of continental rifting due to cooling and hydration. Seismic interpretation and field evidence show that the basal boundary of the wedge is a low frictional décollement level. The wedge shape, the frictional deformation and the basal décollement correspond to the requirements of the critical Coulomb wedge (CCW) theory which describes the stability limit of a frictional wedge over a décollement. In a simple shear separation model the upper-plate margin (in the hangingwall of the detachment fault) corresponds to a tectonic extensional wedge whereas the lower plate (in the footwall of the detachment fault) is a gravitational wedge. This major difference causes the asymmetry of conjugate hyper-extended rifted margins. We measure a dataset of upper and lower hyper-extended wedge and compare it to the stability envelope of the CCW theory for serpentine and clay friction. We find a good fit by adjusting fluid pressure. The main results of our analysis are that the crustal wedges of lower plate margins are close to the critical shape, which explains their low variability whereas upper plate wedges can be critical, sub- or sup- critical due to the detachment evolution during rifting. On the upper plate side, according to the Coulomb tectonic extensional wedge, faults should be oriented toward the continent. Observations showed some continentward faults in the termination of the continental crust but there are also oceanward faults. This can be explained by two processes, first continentward faults are created only over the detachment, therefore if part of the hyper-extended upper plate crust is not directly over the detachment it will not be part of the wedge. Secondly the tip block of the wedge can be detached creating an extensional allochthon induced by the flattening of the detachment near the surface, therefore continentward
Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia
NASA Astrophysics Data System (ADS)
Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.
2016-04-01
Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in
Modal testing variability of spherical marine floats.
Robertson, A. N.; Hemez, F. M.; Salazar, I. F.; Duffey, T. A.
2004-01-01
This study investigates the variability in modal data obtained from testing a set of hollow, almost spherical marine floats. Four sources of variability are investigated: unit-to -unit variability, operator-to-operator variability, test repetition, and accelerometer placement. Because moving the accelerometers implies a test setup reconfiguration, it is expected that variability due to accelerometer placement should encompass variability due to test repetition. Similarly, the unit-to-unit variability should encompass both accelerometer placement variability and test-to -test variability. Impulse and frequency response functions are estimated from the measured excitation and response of the marine floats. A series of techniques are then used to assess the variation of the modal properties between each test, including: a measure of the spread of the frequency response functions in each test group; the variation of the temporal moments, spectral moments, and principal components; and the variability of resonant frequencies and modal damping ratios extracted from the data. The effects of mass and geometry on variability are also investigated. A strong correlation between the frequency and mass is found for the fundamental mode only. The main conclusion is that the majority of analysis techniques find the unit-to-unit variability to be the largest by a significant margin. The second largest is the variability caused by accelerometer placement. Next are the operator-to-operator variability and test-to -test variability.
Spherically Symmetric Solutions of Light Galileon
NASA Astrophysics Data System (ADS)
Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.
2016-02-01
We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.
Fresnel diffraction by spherical obstacles
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.
Viscosity in spherically symmetric accretion
NASA Astrophysics Data System (ADS)
Ray, Arnab K.
2003-10-01
The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.
Solutocapillary convection in spherical shells
NASA Astrophysics Data System (ADS)
Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry
2005-01-01
A linear stability study of solutocapillary driven Marangoni instabilities in small spherical shells is presented. The shells contain a binary fluid with an evaporating solvent. The viscosity is a strong function of the solvent concentration, the inner surface of the shell is assumed impermeable and stress free, while nonlinear boundary conditions are modeled and prescribed at the receding outer boundary. A time-dependent diffusive state is possible and may lose stability through the Marangoni mechanism due to surface tension dependence on solvent concentration (buoyant forces are negligible in this microscale problem). A frozen-time or quasisteady state linear stability analysis is performed to compute the critical Reynolds number and degree of surface harmonics, as well as the maximum growth rate of perturbations at specified parameters. The development of maximum growth rates in time was also computed by solving the initial value problem with random initial conditions. Results from both approaches are in good agreement except at short times where there is dependence on initial conditions. The physical problem models the manufacturing of spherical shells used as targets in inertial confinement fusion experiments where perfect sphericity is demanded for efficient fusion ignition. It is proposed that the Marangoni instability might be the source of observed surface roughness. Comparisons with the available experiments are made with reasonable qualitative and quantitative agreement.
Spectral sharpening by spherical sampling.
Finlayson, Graham D; Vazquez-Corral, Javier; Süsstrunk, Sabine; Vanrell, Maria
2012-07-01
There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading "von Kries adaptation": the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called "sharp sensors." In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art. PMID:22751384
Theoretical Study of a Spherical Plasma Focus
NASA Astrophysics Data System (ADS)
Ay, Yasar
A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic
Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing
Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi
2016-01-01
[Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775
Inferring the spatial variation of the wedge strength based on a modified critical taper model
NASA Astrophysics Data System (ADS)
Yang, C.; Liu, H.; Hsieh, Y.; Dong, J.
2013-12-01
Critical taper wedge theory has been widely applied to evaluate the strength of the detachment fault and the wedge by measuring taper angle. Traditional taper model, which incorporated constant cohesion and friction angle, fails to explain the lateral variation of the taper angle. A modified critical taper model adopting nonlinear Hoek-Brown failure criterion is proposed accordingly. The fold-and-thrust belt of central Taiwan was studied. Based on the field works and laboratory tests, the geological strength index (GSI) and the uniaxial compressive strength were obtained and the wedge strength can be estimated accordingly. The GSI values from investigation are decreased from the west to the east along the cross section due to the wedge strength heterogeneity. The uniaxial compressive strength of intact rock varies from the age of formation and lithology. The estimated wedge strength exhibits a strong spatial variation. The strength of the detachment fault was derived from rotary shear tests using fault gouge materials under different velocities and normal stresses. General speaking, the steady-state friction coefficient are about 0.29-0.46 when the shear velocity less than 0.1 m/s. The friction coefficient is not sensitive to the normal stress. Consequently, the lateral variation of the taper angle, which calculated by modified critical taper model, is mainly dominated by the wedge strength heterogeneity and the thickening of the wedge from the west to the east.
Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics
NASA Astrophysics Data System (ADS)
Cable, William; Romanovsky, Vladimir; Busey, Robert
2016-04-01
Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not
Role of Hydrogen in stagnant slabs and big mantle wedge
NASA Astrophysics Data System (ADS)
Ohtani, E.; Zhao, D.
2008-12-01
Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath
Hydrodynamic interactions of cilia on a spherical body
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2015-11-01
The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.
Two brittle ductile transitions in subduction wedges, as revealed by topography
NASA Astrophysics Data System (ADS)
Thissen, C.; Brandon, M. T.
2013-12-01
Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth
Depth dependence determination of the wedge transmission factor for 4--10 MV photon beams
McCullough, E.C.; Gortney, J.; Blackwell, C.R.
1988-07-01
The depth dependence (up to 25 cm) of the in-phantom wedge transmission factor (WTF) has been determined for three medical linear accelerator x-ray beams with energies of 4, 6, and 10 MV containing 15/sup 0/--60/sup 0/ (nominal) brass wedges. All measurements were made with a cylindrical ionization chamber in water, for a field size of 10 x 10 cm/sup 2/ with a source--skin distance of 80 or 100 cm. We conclude that, for the accelerators studied, the WTF factor at depth is less than 2% different from that determined at d/sub max/ (for the nominal wedge angles and photon energies studied) unless the depth of interest is greater than 10 cm. Up to the maximum depth studied (25 cm) the relative wedge factor: that is, wedge factor at depth compared to that determined at d/sub max/ : was about equal to or less than 1.02 for the 15/sup 0/ and 30/sup 0/ wedges and any of the photon beam energies studied. For the seldom utilized combination of a nominal wedge angle in excess of 45/sup 0/ with a depth greater than 10 cm, the WTF at depth can differ from the WTF determined at d/sub max/, by up to 5%. Since the wedge transmission factor is reflective of relative percent dose data, our results also indicate that it is in error to use open field percent depth doses for certain combinations of wedge angle, photon energy, and depth.
Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies
NASA Technical Reports Server (NTRS)
Johnston, Patrick J.
1959-01-01
A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.
NASA Astrophysics Data System (ADS)
Oh, Seungtaik; Seo, Hoyong; Hwang, Chi-Young; Lee, Beom-Ryeol; Son, Wookho
2013-05-01
We present a new method to record and reconstruct a diffracted object wave field in all directions. For this, we are going to use spherically-arranged holograms instead of a single spherical hologram. Our spherically-arranged holograms are constructed to store all components of plane waves propagating in all directions. One can use the well-known efficient FFT-based diffraction formulae such as Fresnel transform and angular spectrum method in generation and reconstruction of our spherically-arranged holograms. It is possible to synthesize a new hologram with an arbitrary position and orientation without the geometry of the object. Numerical experiments are presented to show the effectiveness of our method.
Metastable olivine wedge beneath northeast China and its applications
NASA Astrophysics Data System (ADS)
Jiang, G.; Zhao, D.; Zhang, G.
2013-12-01
When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few
Gravito-inertial waves in a differentially rotating spherical shell
NASA Astrophysics Data System (ADS)
Mirouh, G. M.; Baruteau, C.; Rieutord, M.; Ballot, J.
2016-08-01
The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating spherical shell are analysed using the Boussinesq approximation. The wave properties are examined by computing paths of characteristics in the non-dissipative limit, and by solving the full dissipative eigenvalue problem using a high-resolution spectral method. Gravito-inertial waves are found to obey a mixed-type second-order operator and to be often focused around short-period attractors of characteristics or trapped in a wedge formed by turning surfaces and boundaries. We also find eigenmodes that show a weak dependence with respect to viscosity and heat diffusion just like truly regular modes. Some axisymmetric modes are found unstable and likely destabilized by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical layer (or corotation resonance) can turn unstable at sufficiently low diffusivities. In all cases, the instability is driven by the differential rotation. For many modes of the spectrum, neat power laws are found for the dependence of the damping rates with diffusion coefficients, but the theoretical explanation for the exponent values remains elusive in general. The eigenvalue spectrum turns out to be very rich and complex, which lets us suppose an even richer and more complex spectrum for rotating stars or planets that own a differential rotation driven by baroclinicity.
Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers
Livingston, P.M.; Bullock, D.L.
1980-07-01
The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry--Perot cavity.
Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.
Livingston, P M; Bullock, D L
1980-07-01
The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity. PMID:19693204
Polymeric carriers: role of geometry in drug delivery
Simone, Eric A; Dziubla, Thomas D; Muzykantov, Vladimir R
2009-01-01
The unique properties of synthetic nanostructures promise a diverse set of applications as carriers for drug delivery, which are advantageous in terms of biocompatibility, pharmacokinetics, targeting and controlled drug release. Historically, more traditional drug delivery systems have focused on spherical carriers. However, there is a growing interest in pursuing non-spherical carriers, such as elongated or filamentous morphologies, now available due to novel formulation strategies. Unique physiochemical properties of these supramolecular structures offer distinct advantages as drug delivery systems. In particular, results of recent studies in cell cultures and lab animals indicate that rational design of carriers of a given geometry (size and shape) offers an unprecedented control of their longevity in circulation and targeting to selected cellular and subcellular locations. This article reviews drug delivery aspects of non-spherical drug delivery systems, including material selection and formulation, drug loading and release, biocompatibility, circulation behavior, targeting and subcellular addressing. PMID:19040392
Alpine tectonic wedging and crustal delamination in the Cantabrian Mountains (NW Spain)
NASA Astrophysics Data System (ADS)
Gallastegui, Jorge; Pulgar, Javier A.; Gallart, Josep
2016-07-01
The Cantabrian Mountains have been interpreted as a Paleozoic basement block uplifted during an Alpine deformation event that led to the partial closure of the Bay of Biscay and the building of the Pyrenean range in the Cenozoic. A detailed interpretation of deep seismic reflection profile ESCIN-2 and the two-dimensional seismic modelling of the data allowed us to construct a N-S geological cross section along the southern border of the Cantabrian Mountains and the transition to the Duero Cenozoic foreland basin, highlighting the Alpine structure. The proposed geological cross section has been constrained by all geophysical data available, including a 2-D gravity model constructed for this study as well as refraction and magnetotelluric models from previous studies. A set of south-vergent thrusts dipping 30 to 36° to the north, cut the upper crust with a ramp geometry and sole in the boundary with the middle crust. These thrusts are responsible for the uplift and the main Alpine deformation in the Cantabrian Mountains. A conspicuous reflective Moho shows that the crust thickens northwards from the Duero basin, where subhorizontal Moho is 32 km deep, to 47 km in the northernmost end of ESCIN-2, where Moho dips to the north beneath the Cantabrian Mountains. Further north, out of the profile, Moho reaches a maximum depth of 55 km, according to wide-angle/refraction data. ESCIN-2 indicates the presence of a tectonic wedge of the crust of the Cantabrian margin beneath the Cantabrian Mountains, which is indented from north to south into the delaminated Iberian crust, forcing its northward subduction.
Predicting translational deformity following opening-wedge osteotomy for lower limb realignment.
Barksfield, Richard C; Monsell, Fergal P
2015-11-01
An opening-wedge osteotomy is well recognised for the management of limb deformity and requires an understanding of the principles of geometry. Translation at the osteotomy is needed when the osteotomy is performed away from the centre of rotation of angulation (CORA), but the amount of translation varies with the distance from the CORA. This translation enables proximal and distal axes on either side of the proposed osteotomy to realign. We have developed two experimental models to establish whether the amount of translation required (based on the translation deformity created) can be predicted based upon simple trigonometry. A predictive algorithm was derived where translational deformity was predicted as 2(tan α × d), where α represents 50 % of the desired angular correction, and d is the distance of the desired osteotomy site from the CORA. A simulated model was developed using TraumaCad online digital software suite (Brainlab AG, Germany). Osteotomies were simulated in the distal femur, proximal tibia and distal tibia for nine sets of lower limb scanograms at incremental distances from the CORA and the resulting translational deformity recorded. There was strong correlation between the distance of the osteotomy from the CORA and simulated translation deformity for distal femoral deformities (correlation coefficient 0.99, p < 0.0001), proximal tibial deformities (correlation coefficient 0.93-0.99, p < 0.0001) and distal tibial deformities (correlation coefficient 0.99, p < 0.0001). There was excellent agreement between the predictive algorithm and simulated translational deformity for all nine simulations (correlation coefficient 0.93-0.99, p < 0.0001). Translational deformity following corrective osteotomy for lower limb deformity can be anticipated and predicted based upon the angular correction and the distance between the planned osteotomy site and the CORA. PMID:26395502
Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6
NASA Technical Reports Server (NTRS)
Jones, Michelle L.
2013-01-01
The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.
Exact Relativistic Newtonian Representation of Gravitational static Spacetime Geometries
NASA Astrophysics Data System (ADS)
Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava
2016-09-01
We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite useful in studying a wide range of astrophysical phenomena, especially in strong field gravity.
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Influence of intermolecular forces at critical-point wedge filling
NASA Astrophysics Data System (ADS)
Malijevský, Alexandr; Parry, Andrew O.
2016-04-01
We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.
Transonic flow past a wedge profile with detached bow wave
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Wagoner, Cleo B
1952-01-01
A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.
A Spherical Aerial Terrestrial Robot
NASA Astrophysics Data System (ADS)
Dudley, Christopher J.
This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.
Superradiance in spherical layered nanostructures
NASA Astrophysics Data System (ADS)
Goupalov, S. V.
2016-06-01
We propose a design of a spherically symmetric nanostructure consisting of alternate concentric semiconductor and dielectric layers. The exciton states in different semiconductor layers of such a structure interact via the common electromagnetic field of light. We show that, if the exciton states in N semiconductor layers are in resonance with one another, then a superradiant state emerges under optical excitation of such a structure. We discuss the conditions under which superradiance can be observed and show that they strongly depend on the valence-band structure of the semiconductor layers.
Electronic switching spherical array antenna
NASA Technical Reports Server (NTRS)
Stockton, R.
1978-01-01
This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.
APPARATUS FOR GRINDING SPHERICAL BODIES
Burch, R.F. Jr.
1963-09-24
A relatively inexpensive device is described for grinding rough ceramic bodies into accurate spherical shapes using a conventional drill press and a belt sander. A horizontal disk with an abrasive-surfaced recess in its lower face is mounted eccentrically on a vertical shaft which is forced downward against a stop by a spring. Bodies to be ground are placed in the recess and are subjected to the abrasive action of the belt sander as the disk is rotated by the drill press. (AEC)
Physics of Spherical Torus Plasmas
Peng, Yueng Kay Martin
2000-01-01
Broad and important progress in plasma tests, theory, new experiments, and future visions of the spherical torus (ST, or very low aspect ratio tokamaks) have recently emerged. These have substantially improved our understanding of the potential properties of the ST plasmas, since the preliminary calculation of the ST magnetohydrodynamic equilibria more than a decade ago. Exciting data have been obtained from concept exploration level ST experiments of modest capabilities (with major radii up to 35 cm), making important scientific contributions to toroidal confinement in general. The results have helped approval and construction of new and/or more powerful ST experiments, and stimulated an increasing number of theoretical calculations of interest to magnetic fusion energy. Utilizing the broad knowledge base from the successful tokamak and advanced tokamak research, a wide range of new ST physics features has been suggested. These properties of the ST plasma will be tested at the 1 MA level with major radius up to similar to 80 cm in the new proof of principle devices National Spherical Torus Experiment (NSTX, U.S.) [M. Peng , European Conf. Abst. 22C, 451 (1998); S. M. Kaye , Fusion Technol. 36, 16 (1999); M. Ono , "Exploration of Spherical Torus Physics in the NSTX Device," 17th IAEA Fusion Energy Conf., paper IAEA-CN-69/ICP/01 (R), Yokohama, Japan (1998)], Mega Ampere Spherical Tokamak (MAST, U.K.) [A. C. Darke , Fusion Technol. 1, 799 (1995); Q. W. Morris , Proc. Int. Workshop on ST (Ioffe Inst., St. Petersburg, 1997), Vol. 1, p. 290], and Globus-M (R.F.) [V. K. Gusev , European Conf. Abst. 22C, 576 (1998)], which have just started full experimental operation. New concept exploration experiments, such as Pegasus (University of Wisconsin) [R. Fonck and the PEGASUS Team, Bull. Am. Phys. Soc. 44, 267 (1999)], Helicity Injected Tokamak-II (HIT-II, University of Washington) [T. R. Jarboe , Phys. Plasmas 5, 1807 (1998)], and Current Drive Experiment-Upgrade (CDX
Three-dimensional spherical analyses of cosmological spectroscopic surveys
NASA Astrophysics Data System (ADS)
Nicola, Andrina; Refregier, Alexandre; Amara, Adam; Paranjape, Aseem
2014-09-01
Spectroscopic redshift surveys offer great prospects for constraining the dark sector in cosmology. Future surveys will however be both deep and wide and will thus require an analysis in three-dimensional spherical geometry. We review and compare several methods which have been proposed in the literature for this purpose, focusing in particular on implementations of the spherical harmonic tomography (SHT) power spectrum Clij and the spherical Fourier Bessel (SFB) power spectrum Cl(k ,k'). Using a Fisher analysis, we compare the forecasted constraints on cosmological parameters using these statistics. These constraints typically rely on approximations such as the Limber approximation and make specific choices in the numerical implementation of each statistic. Using a series of toy models, we explore the applicability of these approximations and study the sensitivity of the SHT and SFB statistics to the details of their implementation. In particular, we show that overlapping redshift bins may improve cosmological constraints using the SHT statistic when the number of bins is small, and that the SFB constraints are quite robust to changes in the assumed distance-redshift relation. We also find that the SHT can be tailored to be more sensitive to modes at redshifts close to the survey boundary, while the SFB appears better suited to capture information beyond the smooth shape of the power spectrum. In this context, we discuss the pros and cons of the different techniques and their impact on the design and analysis of future wide field spectroscopic surveys.
Performance of Spherically Focused Air-Coupled Ultrasonic Transducers
NASA Astrophysics Data System (ADS)
Chimenti, D. E.; Song, Junho
2007-03-01
This paper reports the development, testing, and performance evaluation of spherically focused capacitive air-coupled ultrasonic transducers 1 and 5 cm in diameter. A flexible micro-machined copper/polyimide backplate permits a conformal fit to a spherically shaped fixture, forming the rear capacitor plate. A spherically deformed 6-μm aluminized Mylar foil forms the front capacitor plate, completing the transducer. The device's frequency spectrum is centered near 800 kHz with -6dB points at about 400 and 1200 kHz. The device's focal-plane behavior is successfully modeled theoretically as a focused piston radiator. The imaging and defect detection capabilities of the new transducer are demonstrated in a series of critical tests: a 250-μm wire is easily imaged in a confocal geometry with a second device. Composite, honeycomb, and wood samples are imaged in through-transmission C-scans, showing internal defects. A printed circuit board is imaged, showing features as small as 200-μm.
Nonlinear thermoelastic stress analysis of spherically curved solar panels
Vallabhan, C.V.G.; Vungutur, K.; Selvam, R.P.
1984-10-01
Spherically curved glass panels are used to concentrate solar energy onto a line focus in fixed mirror distributed focus type solar collectors. These solar panels consists of thin flat glass plates bent to form a spherical surface, glued onto a paper honeycomb backing, and covered with steel plate at the back and with plastic strips on the sides. Stresses are produced in the glass plates as they are formed into spherical surfaces. In addition, when the solar receiver is not in focus relative to the bowl and the sun, a mirror hot spot condition is developed, resulting in large thermally induced stresses within glass plates. The curved glass panel is modeled as a plate on elastic foundation in order to represent the behavior of the plate in relation to other panel components. Since lateral deflections of these plates are large compared to their thickness, nonlinear von Karman plate equations are used in the analysis. A computer model has been prepared to assist in the nonlinear analysis of stresses using finite difference method. The model has flexibility to analyze a variety of rectangular plate geometries subjected to thermal and other applied loads.
Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes
NASA Astrophysics Data System (ADS)
Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.
2015-11-01
We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.
ERIC Educational Resources Information Center
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
ERIC Educational Resources Information Center
Case, Christine L.
1991-01-01
Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
ERIC Educational Resources Information Center
Hartz, Viggo
1981-01-01
Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
ERIC Educational Resources Information Center
KLIER, KATHERINE M.
PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
ERIC Educational Resources Information Center
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
Model of a wedge-electrode corona discharge under saturation: Exact solutions
NASA Astrophysics Data System (ADS)
Boltachev, G. Sh.; Zubarev, N. M.; Zubareva, O. V.
2014-03-01
Analytical solutions for the distributions of the electric field potential and electric charge density are derived for the outer region of a steady-state unipolar corona discharge from an ideal wedge-shaped electrode under the conditions of space-charge-limited current. Two situations are considered: a corona is initiated only from the edge of the wedge and from the entire surface of the electrode. In the former case, general solutions are obtained by sewing together exact cylindrically symmetric solutions in the drift space and plane symmetric solutions in space-charge-free regions. In the latter case, the field distribution near the edge turns out to be self-similar, i.e., invariant under extensions in the cross-sectional plane of the wedge, with the center at the top of the wedge. For both models, the dependences of the saturation current per edge's unit length on the apex angle and applied potential difference are obtained.
Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges
NASA Astrophysics Data System (ADS)
Xiang, Gaoxiang; Wang, Chun; Teng, Honghui; Yang, Yang; Jiang, Zonglin
2016-06-01
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically. A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.
Crustal wedge deformation in an internally-driven, numerical subduction model
NASA Astrophysics Data System (ADS)
van Dinther, Ylona; Morra, Gabriele; Funiciello, Francesca; Rossetti, Federico; Faccenna, Claudio
2010-05-01
The Earth's active convergent margins are characterized by dynamic feedback mechanisms that interact to form an intricate system in which a crustal wedge is shaped and metamorphosed at the will of two large, converging plates. This framework is accompanied by complicated processes, such as seismogenesis and the exhumation of high pressure rocks. To honor the dynamic interaction between different entities and advance on these persisting issues, we model the interaction between the subducting and overriding lithospheres, the mantle and the crustal wedge explicitly, and observe how a crustal wedge evolves in detail within a set of rigid, internally-driven boundary conditions. We model crustal wedge evolution in an intra-oceanic subduction setting by using a plane-strain implicit solid-mechanical Finite Element Model, in which the mechanical conservation equations are solved using the software package ABAQUS. The crustal wedge is modeled as a thick-skinned accretionary wedge of inter-mediate thickness with a linear visco-elastic bulk rheology. The dynamic interaction between the subducting plate, the overriding plate, and crustal wedge is implemented using a Coulomb frictional algorithm. The interaction with the mantle is incorporated using a computationally favorable mantle drag formulation that simulates induced three-dimensional mantle flow. This results in a quasi-static framework with a freely moving slab, trench, and fault, where a weaker wedge deforms in response to self-regulating, rigid boundary conditions formed by single, frictional bounding faults. The self-regulating evolution of crustal wedge architecture follows three phases; 1) initial vertical growth, 2) coeval compression and extension leading to internal corner flow, and 3) a steady-state taper with continuous corner flow. Particle trajectories show that, as shortening continues throughout the second phase, wedge material is constantly forced upward against the backstop, while extension and ocean
Testing the critical Coulomb wedge theory on hyper-extended rifted margins
NASA Astrophysics Data System (ADS)
Nirrengarten, Michael; Manatschal, Gianreto; Kusznir, Nick
2015-04-01
Deformation of hyper-extended continental crust and its relationship with the underlying mantle is a key process in the evolution of rifted margins. Recent studies have focused on hyper-extension in rifted margins using different approaches such as numerical modelling, seismic interpretation, potential field methods and field observations. However many fundamental questions about the observed structures and their evolution during the formation of hyper-extended margins are still debated. In this study an observation driven approach has been used to characterise geometrical and physical attributes of the continental crust termination, considered as a hyper-extended wedge, in order to test the applicability of critical Coulomb wedge theory to hyper-extended margins. The Coulomb wedge theory was first developed on accretionary prisms and on fold and thrust belts, but it has also been applied in extensional settings. Coulomb wedge theory explains the evolution of the critical aperture angle of the wedge as a function of basal sliding without deformation in the overlying wedge. This critical angle depends on the frictional parameters of the material, the basal friction, the surface slope, the basal dip and the fluid pressure. If the evolution of hyper-extended wedges could be described by the critical Coulomb wedge theory, it would have a major impact in the understanding of the structural and physical evolution of rifted domains during the hyper-extension processes. On seismic reflection lines imaging magma-poor hyper-extended margins, the continental crust termination is often shown to form a hyper-extended wedge. ODP Sites 1067, 900 and 1068 on the Iberian margin as well as field observations in the Alps give direct access to the rocks forming the hyper-extended wedge, which are typically composed of highly deformed and hydrated continental rocks underlain by serpentinised mantle. The boundary between the hydrated continental and mantle rocks corresponds to a
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Why is the Cascadia subduction zone backarc hot? Numerical tests of mantle wedge flow
NASA Astrophysics Data System (ADS)
Currie, C. A.; Wang, K.; Hyndman, R. D.; He, J.
2003-12-01
Understanding mantle wedge processes is critical for constraining thermal and petrological controls on in-slab earthquakes and the behaviour of the deep subduction thrust fault. Observational constraints indicate that the mantle wedge at the northern Cascadia subduction zone is extremely hot. Below the volcanic arc, temperatures greater than 1300° C are required for magma generation. In the backarc, surface heat flow, seismic velocities, thermal isostasy and xenolith studies suggest temperatures of 1200° C at 60 km depth for a distance of 500 km. The landward limit of the backarc is the abrupt contact with the thick, cold North America craton, making high backarc temperatures even more surprising. An initial compilation of thermal data shows that most other backarcs are similarly hot. Finite element thermal models are used to investigate the backarc mantle flow structure that maintains these high temperatures. Two principle driving forces for flow are: traction along the top of the subducting slab and buoyancy forces due to lateral thermal heterogeneities, such as cooling by the slab and Rayleigh instabilities. In this study, we primarily deal with traction-driven flow, using Cascadia subduction parameters. A thick (>200 km) lithosphere was introduced at the landward backarc boundary, consistent with the presence of the North America craton root. For an isoviscous mantle, the craton deflects hot material from depth into the wedge, resulting in a warmer wedge than models without a craton, although the temperatures are 150-300° C lower than inferred from observations. Decoupling of the wedge from the over-riding plate increases the backarc Moho temperature by over 100° C; temperatures below the arc are relatively unaffected. With a more realistic stress- and temperature-dependent viscosity, high velocity flow originates from great depths along the landward boundary, even without a craton. Flow is strongly focussed into the wedge corner, leading to much higher sub
Salt-wedge propagation in a Mediterranean micro-tidal river mouth
NASA Astrophysics Data System (ADS)
Haralambidou, Kiriaki; Sylaios, Georgios; Tsihrintzis, Vassilios A.
2010-12-01
The dynamics of a seasonally formed salt-wedge propagating along the micro-tidal channel of Strymon River estuary, Northern Greece, and its consequences on river water quality, are thoroughly studied through intensive sampling campaigns. The wedge is developed at the downstream river part, under the summer limited freshwater discharge conditions ( Q < 30 m 3/s). The geometric features of the wedge (length and thickness) appeared directly related to Strymon River discharge. A maximum intrusion length of 4.7 km along Strymon River estuary was observed under minimum river discharge of almost 6 m 3/s. Relations produced from in situ data illustrate that limited river flow expands the wedge horizontally, reducing its vertical dimension, while higher flows lead to increased wedge thickness. Estuarine flushing time ranges between 0.2 and 1.5 days, exponentially dependent on Strymon River discharge. Wedge velocities depicted tidal asymmetry between tidal phases, with consistent inward motion, even under the ebb tidal stage. Strong vertical stratification prevails throughout the tidal cycle, proving the limited vertical mixing between the two layers, although higher interfacial stresses are produced in ebb. Bottom topography plays an interesting role in wedge propagation, as the presence of an underwater sill either prevents saline intrusion during flood or isolates the front of the wedge from its core at the ebb. Ecological consequences of salt-wedge propagation in Strymon River estuary are the frequent evidence of bottom hypoxic conditions and the increased TSS levels, leading to the occurrence of a turbidity maximum at the tip of the salt-wedge. Higher BOD and ammonium levels were mostly observed at the river end, associated to point and non-point pollution sources. Nitrates and silicates were found associated with freshwater fluxes, while ammonia levels were related to saline intrusions. The reduced phosphorus freshwater fluxes, resulting from phosphorus uptake at the
Development of tectono-sedimentary mélanges in accretionary wedges: Insights from analog modeling
NASA Astrophysics Data System (ADS)
Genti, M.; Malavieille, J.; Molli, G.; Dominguez, S.; Taboada, A.; Vitale-Brovarone, A.
2012-04-01
Orogenic wedges locally present chaotic tectonostratigraphic units that contain exotic blocks of various size, origin, age and lithology, embedded in a sedimentary matrix. The occurrence of ophiolitic blocks, sometimes huge, in such "mélanges" raises questions on i) the mechanisms responsible for the incorporation of oceanic basement rocks into an accretionary wedge and ii) the mechanisms allowing exhumation and possibly redeposition of these exotic elements in "mélanges" during wedge growth. The tectonic evolution of the back part of doubly vergent accretionary wedges is mainly controled by backthrusting. The retrowedge is characterized by steep slopes that are prone to gravitational instabilities. We assume that these steep slopes trigger submarine landslides playing a major erosional role and therefore inducing huge mass transfers. This erosion allows exhumation of the ophiolitic fragments formerly accreted at the base of the wedge and then reworked as tectono-sedimentary "mélanges" redeposited in proximal basins located at the base of the retrowedge slope. These basin deposits are then continuously involved in backthrusting-induced deformation. In this study, we present the results of a series of analog experiments performed to characterize the processes and parameters responsible for accretion, exhumation and final tectonosedimentary reworking of oceanic basement lithosphere fragments in an accretionary wedge. The experimental setup is designed to simulate the interaction between tectonics, erosion and sedimentation. Different configurations are applied to study the impact of various parameters, such as irregular oceanic floor due to structural inheritance, or the presence of layers with contrasted rheology that can affect deformation partitioning in the wedge (frontal accretion vs basal accretion) influencing its growth. The experimental results are then compared with observations on ophiolite-bearing mélanges in the Taïwan (Lichi mélange) and northern
Collective Motion of Spherical Bacteria
Rabani, Amit; Ariel, Gil; Be'er, Avraham
2013-01-01
A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature. PMID:24376741
A feasibility study for the spherical torus experiment
Lazarus, E; Peng, Yueng Kay Martin
1985-10-01
Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to a conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.
An introduction to Minkowski geometries
NASA Astrophysics Data System (ADS)
Farnsworth, David L.
2016-07-01
The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.
Focusing of surface phonon-polaritons along conical and wedge polar nanostructures
NASA Astrophysics Data System (ADS)
Gluchko, Sergei; Ordonez-Miranda, Jose; Tranchant, Laurent; Antoni, Thomas; Volz, Sebastian
2015-08-01
Focusing of surface phonon-polaritons propagating toward the tip of a cone and the edge of a wedge is theoretically analyzed and compared. Based on Maxwell's equations, explicit expressions for the dispersion relations in each structure are determined and solved numerically for a propagation parameter driving the surface phonon-polariton energy density. For conical and wedge structures of SiO2, it is found that: (1) the cone (wedge) supports the polariton focusing only for aperture angles in the interval 18 ° - 68 ° ( 21 ° - 51 ° ), and within the range of excitation frequencies from 32.1 THz (31.5 THz) to 33.9 THz (33.9 THz). In this frequency interval, the real part of the SiO2 permittivity is negative and the presence of polaritons is significant. (2) The polariton focusing efficiency of both the cone and wedge reaches its maximum values at the critical frequency f cr = 33.6 THz and at different aperture angles of about α opt = 45 ° and α opt = 30 ° , respectively. (3) When the polaritons travel from 100 nm to 5 nm toward the tip of the cone with this optimum angle, their Poynting vector increases by a factor of 12, which is about four times larger than the corresponding one provided by the wedge and indicates that the cone is more efficient than the wedge for the focusing of surface phonon-polaritons.
Provenance of the Middle Ordovician Blount clastic wedge, Georgia and Tennessee
NASA Astrophysics Data System (ADS)
Mack, Greg H.
1985-04-01
Convergent tectonism along the Appalachian continental margin in Middle Ordovician time resulted in cratonward-prograding clastic wedges. Detrital modes of 52 sandstones of the Blount clastic wedge in Georgia and Tennessee are dominated by monocrystalline quartz (68%), feldspar (10%, plagioclase >K-feldspar), and pelitic rock fragments (10%), with lesser amounts of polycrystalline quartz (6%), chert (2%), low-grade metamorphic rock fragments (2%), and quartzofeldspathic rock fragments (0.3%). The primary source rocks were sedimentary; subordinate contributions were from low-grade metamorphic and plagioclase-rich plutonic and/or gneissic rocks. The composition of sandstones from the Martinsburg clastic wedge, based on point-counting 18 samples from the collection of McBride, and from the Taconic clastic wedge, based on data of Hiscott, is similar to the Blount clastic wedge except that Martinsburg and Taconic sandstones have additional evidence of derivation from intermediate or mafic volcanic and deep-water sedimentary source rocks, which were lacking in the Blount source terrane. The differences in provenance among the clastic wedges may indicate along-strike variations in tectonic style, or variations in the distribution of rock types, or differences in the level of erosion within orogenic terranes of similar origin.
Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge
NASA Astrophysics Data System (ADS)
Cao, Guiming; Liu, Weihua; Cao, Meng; Li, Xin; Zhang, Anping; Wang, Xiaoli; Chen, Bangdao
2016-07-01
The transport property of a graphene wedge channel is studied theoretically and its leakage current through field emission is estimated when considering the effect of the internal electric field. The transconductance of the graphene transistor is improved from 0.016 to 0.321 μS μm‑1 when the graphene is folded into a wedge (with angle of wedge π/6 and radius curvature 2.7 nm at the tip), while the wedge height is much smaller than the space between the top-gate and the channel. The improved transconductance is due to the locally enhanced electric field, which results in a potential well and causes electron accumulation at the wedge tip. The leakage current through field emission J FE shows a super-linear increase with the channel conductive current J DS, where overall the electron supply for the field emission at the wedge tip is improved by the channel bias voltage V DS.
Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.
McKay, Jack A
2002-03-20
The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal. PMID:11921807
Dosimetric verification of enhanced dynamic wedges by a 2D ion chamber array
NASA Astrophysics Data System (ADS)
Oh, Se An; Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Kim, Eng Chan
2013-12-01
Wedge filters are commonly used to achieve dose uniformity in the target volume in radiotherapy and can be categorized as physical wedges (PWs) and enhanced dynamic wedges (EDWs). The EDW generates PW-like dose profiles while moving the upper jaw in the Y directions with a varying dose rate in the treatment beams. Task Group 53 of the AAPM (American Association of Physicists in Medicine) recommended that the dynamic wedge be verified before implementation in the radiation treatment planning (RTP) system. The aim of this study was to use the I'mRT MatriXX to verify the dose profiles of the EDWs manufactured by Varian. We used Pencil Beam Convolution algorithms (eclipse 8.6) for the calculation and I'mRT MatriXX with Plastic Water® phantom MULTICube for dose measurements. The gamma indices of the calculations and the measurements for the EDWs were 84.84% and 86.54% in 2%/2 mm tolerance, and 99.47% and 99.64% in 3%/3 mm tolerance for wedge angles of 15°, 30°, 45° and 60°, respectively. The dose distributions differed between the calculations using the system and the measurements in the penumbra and the outer beam regions of the wedge fields. We confirmed that the dosimetric verifications of the EDW were acceptable when using the criterion for external beam dose calculations of Task Group 53.
The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.
Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori
2015-12-01
The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint. PMID:26252560
Effect of lateral versus supine wedged position on development of spinal blockade and hypotension.
Hartley, H; Seed, P T; Ashworth, H; Kubli, M; O'Sullivan, G; Reynolds, F
2001-07-01
Aortocaval compression may not be completely prevented by the supine wedged or tilted positions. It is commonly believed, however, that the unmodified full lateral position after induction of spinal anaesthesia might allow excessive spread of the block. We therefore compared baseline arterial pressures in the supine wedged, sitting, tilted and full lateral positions in 40 women who were about to undergo elective caesarean section. They were then given spinal anaesthesia in the left lateral position and randomised to be turned to the right lateral or the supine wedged position, after which speed of onset and spread of blockade to cold sensation were measured every 2 min for 10 min and mean arterial pressure and ephedrine requirement were recorded every minute for 20 min. Baseline mean arterial pressure was 9 mmHg (95% CI 3 to 14) lower in the left lateral (measured in the upper arm) than in the sitting position; those in the supine wedged and tilted positions were intermediate. Following spinal anaesthesia, hypotension (defined as a reading wedged group, but there was no significant difference between the groups in maximum fall or ephedrine requirement. The upper level of block rose more rapidly in the supine wedged than in the lateral group and showed less variability. There is therefore no reason to fear the unmodified lateral group position, which may offer better protection against hypotension. PMID:15321608
Reeder, D Benjamin
2016-01-01
The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001
Formation of Graphene p n Superlattices on Pb Quantum Wedged Islands
Zhu, Wenguang; Chen, Hua; Bevan, Kirk H; Zhang, Zhenyu
2011-01-01
On the basis of first-principles calculations within density functional theory, we report on a novel scheme to create graphene p n superlattices on Pb wedged islands with quantum stability. Pb(111) wedged islands grown on vicinal Si(111) extend over several Si steps, forming a wedged structure with atomically flat tops. The monolayer thickness variation due to the underlying substrate steps is a sizable fraction of the total thickness of the wedged islands and gives rise to a bilayer oscillation in the work function of Pb(111) due to quantum size effects. Here, we demonstrate that when a graphene sheet is placed on the surface of such a Pb wedged island, the spatial work function oscillation on the Pb wedged island surface caused by the underlying steps results in an oscillatory shift in the graphene Dirac point with respect to the Fermi level. Furthermore, by applying an external electric field of 0.5 V/ in the surface normal direction, the Fermi level of the system can be globally tuned to an appropriate position such that the whole graphene layer becomes a graphene p n superlattice of seamless junctions, with potentially exotic physical properties and intriguing applications in nanoelectronics.
Axi-symmetric patterns of active polar filaments on spherical and composite surfaces
NASA Astrophysics Data System (ADS)
Srivastava, Pragya; Rao, Madan
2014-03-01
Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.
The Seismic Structure of the Mantle Wedge under Cascade Volcanoes
NASA Astrophysics Data System (ADS)
Levander, A.; Liu, K.; Porritt, R. W.; Allen, R. M.
2011-12-01
Under a number of Cascade volcanoes we have identified a characteristic seismic signature in individual station Ps receiver functions and in Ps CCP image volumes made from USArray Transportable Array and Flexible Array stations. In the mantle wedge, the CCP images and the RFs show a strong negative event just below the Moho, paired with a weak to moderate positive event between 50-70 km, and a strong slab event. At most of these volcanoes, a strong negative signal also appears between 15 and 25 km depth in the crust. The signature is particularly clear under Mt. Lassen and Mt. Shasta in data from FAME (Flexible Array Mendocino Experiment), where instruments were close to the volcanic centers. Comparing the average Cascadia volcano signature to those of stations throughout the western U.S. and specifically those of the Cascadia backarc region, shows that this signal is unique to the Cascadia volcanoes. Joint inversion of the Ps receiver functions and ambient noise Rayleigh wave phase velocities (Porritt et al., 2011; Liu et al., submitted) for those volcanoes with the paired events provides 1D shear velocity profiles having common characteristics. A strong sub-Moho low velocity zone from 5 to 15 km thick gives rise to the paired negative-positive signals in the receiver functions. The sub-Moho low velocity zones, with velocities of 3.7 < Vs < 4.0 km/s, are evident in 15 of the 22 stations we examined. Stations not exhibiting this pattern also show a characteristic seismic structure: There is no abrupt velocity increase at Moho depths, instead Vs increases gradually from the lower crust to as deep as ~70 km, forming a thick, relatively high velocity layer (4.0 < Vs <4.5 km/s). This project was initiated as part of the CIDER 2011 summer program.
Investigation of Acoustical Shielding by a Wedge-Shaped Airframe
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John
2004-01-01
Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.
Investigation of Acoustical Shielding by a Wedge-Shaped Airframe
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John
2006-01-01
Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.
Discrete dislocation plasticity analysis of the wedge indentation of films
NASA Astrophysics Data System (ADS)
Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.
2006-11-01
The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].
Flow Pattern relative to the Substorm Current Wedge
NASA Astrophysics Data System (ADS)
Chu, X.; McPherron, R. L.; Hsu, T.
2013-12-01
Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.
Saline Fluids in Subduction Channels and Mantle Wedge
NASA Astrophysics Data System (ADS)
Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.
2015-12-01
Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.
Grounding zone wedges, Kveithola Trough (NW Barents Sea)
NASA Astrophysics Data System (ADS)
Rebesco, Michele; Urgeles, Roger; Özmaral, Asli; Hanebuth, Till; Caburlotto, Andrea; Hörner, Tanja; Lantzsch, Hendrik; LLopart, Juame; Lucchi, Renata; Skøtt Nicolaisen, Line; Giacomo, Osti; Sabbatini, Anna; Camerlenghi, Angelo
2014-05-01
Swath bathymetry within Kveithola Trough (NW Barents Sea) shows a seafloor characterized by E-W trending megascale glacial lineations (MSGLs) overprinted by transverse Grounding Zone Wedges (GZWs), which give the trough a stair profile (Rebesco et al., 2011). GZWs are formed by deposition of subglacial till at temporarily stable ice-stream fronts in between successive episodic retreats (Rüther et al., 2012; Bjarnadóttir et al., 2012). Sub-bottom data show that present-day morphology is largely inherited from palaeo-seafloor topography of GZWs, which is draped by a deglacial to early Holocene glaciomarine sediments (about 15 m thick). The ice stream that produced such subglacial morphology was flowing from East to West inside Kveithola Trough during Last Glacial Maximum. Its rapid retreat was likely associated with progressive lift-offs, and successive rapid melting of the grounded ice, induced by the eustatic sea-level rise (Lucchi et al., 2013). References: Bjarnadóttir, L.R., Rüther, D.C., Winsborrow, M.C.M., Andreassen, K., 2012. Grounding-line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy. Boreas, 42, 84-107. Lucchi R.G., et al. 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola TMFs: impact of extreme glacimarine sedimentation. Global and Planetary Change, 111, 309-326. Rebesco, M., et al. 2011. Deglaciation of the Barents Sea Ice Sheet - a swath bathymetric and subbottom seismic study from the Kveitehola Trough. Marine Geology, 279, 141-14. Rüther, D.C., Bjarnadóttir, L.R., Junttila, J., Husum, K., Rasmussen, T.L., Lucchi, R.G., Andreassen, K., 2012. Pattern and timing of the north-western Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition. Boreas 41, 494-512.
Plasma instability in fast spherical discharge induced by a preionization
Antsiferov, P. S.; Dorokhin, L. A.
2015-04-07
As it was shown earlier, fast discharge (dI/dt ∼ 10{sup 12 }A/s and I{sub max} ≈ 40 kA) in a spherical cavity (Al{sub 2}O{sub 3}, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.
Plasma instability in fast spherical discharge induced by a preionization
NASA Astrophysics Data System (ADS)
Antsiferov, P. S.; Dorokhin, L. A.
2015-04-01
As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.
Geometry and mechanics of thin growing bilayers.
Pezzulla, Matteo; Smith, Gabriel P; Nardinocchi, Paola; Holmes, Douglas P
2016-05-11
We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion of their top surface, which may represent several stimuli such as nonuniform heating, local swelling and differential growth. Inspired by geometry, an analytical model is presented that rationalizes how the shape of the disk influences morphing, from the initial spherical bending to the final isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of both thickness and plate shape. We find that the mean curvature of the isometric state is three fourths the natural curvature, which we verify by numerics and experiments. We finally investigate the emergence of a preferred direction of bending in the isometric state, guided by numerical analyses. The scalability of our model suggests that it is suitable to describe the morphing of sheets spanning several orders of magnitude. PMID:27098344
Geometry and Mechanics of Thin Growing Bilayers
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Smith, Gabriel; Nardinocchi, Paola; Holmes, Douglas
We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion of their top surface, which may represent several stimuli such as nonuniform heating, local swelling and differential growth. Inspired by geometry, an analytical model is presented that rationalizes how the shape of the disk influences morphing, from the initial spherical bending to the final isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of both thickness and plate shape. We find that the mean curvature of the isometric state is three fourth's the natural curvature, which we verify by numerics and experiments. We finally investigate the emergence of a preferred direction of bending in the isometric state, guided by numerical analyses. The scalability of our model suggests that it is suitable to describe the morphing of sheets spanning several orders of magnitude. NSF Grant CMMI-1300860.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L.; Schroeder, John E.
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L.; Schroeder, John E.
2011-11-15
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
NASA Astrophysics Data System (ADS)
Souriau, Jean-Marie
1983-01-01
Differential geometry, the contemporary heir of the infinitesimal calculus of the 17th century, appears today as the most appropriate language for the description of physical reality. This holds at every level: The concept of “connexion,” for instance, is used in the construction of models of the universe as well as in the description of the interior of the proton. Nothing is apparently more contrary to the wisdom of physicists; all the same, “it works.” The pages that follow show the conceptual role played by this geometry in some examples—without entering into technical details. In order to achieve this, we shall often have to abandon the complete mathematical rigor and even full definitions; however, we shall be able to give a precise description of the connection of ideas thanks to some elements of group theory.
NASA Astrophysics Data System (ADS)
Smania, Daniel
2007-07-01
We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.
Failures of information geometry
NASA Astrophysics Data System (ADS)
Skilling, John
2015-01-01
Information H is a unique relationship between probabilities, based on the property of independence which is central to scientific methodology. Information Geometry makes the tempting but fallacious assumption that a local metric (conventionally based on information) can be used to endow the space of probability distributions with a preferred global Riemannian metric. No such global metric can conform to H, which is "from-to" asymmetric whereas geometrical length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required structure of the very distributions which are supposedly being triangulated. It follows that probabilities do not form a metric space. We give counter-examples in which alternative formulations of information, and the use of information geometry, lead to unacceptable results.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Measuring Spherical Harmonic Coefficients on a Sphere
Pollaine, S; Haan, S W
2003-05-16
The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.
Archimedes' floating bodies on a spherical Earth
NASA Astrophysics Data System (ADS)
Rorres, Chris
2016-01-01
Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.
MUSCLE: MUltiscale Spherical-ColLapse Evolution
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.
2016-05-01
MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.
Freezing in confined geometries
NASA Technical Reports Server (NTRS)
Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.
Atomic and molecular effects on spherically convergent ion flow. I. Single atomic species
Emmert, G. A.; Santarius, J. F.
2010-01-15
A formalism for analyzing the effect of ion-neutral gas interactions on the flow of ions between nearly transparent electrodes in spherical geometry has been developed for atomic ions in a weakly ionized plasma, so that the important atomic effects are charge exchange and ion impact ionization. The formalism is applied to spherical, gridded, inertial-electrostatic confinement (IEC) devices. The formalism yields detailed information about the energy spectra of the ions and fast neutral atoms, and the resulting fusion rate for {sup 3}He ions in a background {sup 3}He gas. The results are illustrated with an example calculation for the Wisconsin IEC device operating on {sup 3}He.
On the finite-size scalling equation for the spherical model
Brankov, J.G.; Tonchev, N.S. )
1988-07-01
The mean spherical model with an arbitrary interaction potential, the Fourier transform of which has a long-wavelength exponent {sigma}, 0 < {sigma} {<=} 2, is considered under periodic boundary conditions and fully finite geometry in d dimensions, when {sigma} < d < 2{sigma}. A new form of the finite-size scaling equation for the spherical field in the critical region is derived, which relates the temperature shift to Madelung-type lattice constants. The method of derivation makes use of the Poisson summation formula and a Laplace transformation of the momentum-space correlation function.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less
Emergent Complex Network Geometry
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-05-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.
Emergent Complex Network Geometry
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-01-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280