Science.gov

Sample records for spinach leaf sucrose-phosphate

  1. Kinetic Characterization of Spinach Leaf Sucrose-Phosphate Synthase 1

    PubMed Central

    Amir, Jacob; Preiss, Jack

    1982-01-01

    The spinach (Spinacia oleracea) leaf sucrose-phosphate synthase was partially purified via DEAE-cellulose chromatography, and its kinetic properties were studied. Fructose-6-phosphate saturation curves were sigmoidal, while UDPglucose saturation curves were hyperbolic. At subsaturating concentrations of fructose-6-phosphate, 1,5 anhydroglucitol-6-phosphate had a stimulatory effect on enzyme activity, suggesting multiple and interacting fructose-6-phosphate sites on sucrose-phosphate synthase. The concentrations required for 50% of maximal activity were 3.0 millimolar and 1.3 millimolar, respectively, for fructose-6-phosphate and UDPglucose. The enzyme was not stimulated by divalent cations. Inorganic phosphate proved to be a potent inhibitor, particularly at low concentrations of substrate. Phosphate inhibition was competitive with UDPglucose, and its Ki was determined to be 1.75 millimolar. Sucrose phosphate, the product of the reaction, was also shown to be a competitive inhibitor towards UDPglucose concentration and had Ki of 0.4 millimolar. The kinetic results suggest that spinach leaf sucrose-phospahte synthase is a regulatory enzyme and that its activity is modulated by the concentrations of phosphate, fructose-6-phosphate, and UDPglucose occurring in the cytoplasm of the leaf cell. PMID:16662338

  2. Multisite phosphorylation of spinach leaf sucrose-phosphate synthase

    SciTech Connect

    Huber, J.L.; Huber, S.C. )

    1990-05-01

    Spinach leaf sucrose-phosphate synthase is phosphorylated both in vivo and in vitro on serine residues. Phosphorylation of SPS in vivo yields twelve major phosphopeptides after a tryptic digest and two dimensional mapping. The in vivo labeling of three of these SPS P-peptides is reduced in illuminated leaves where the extracted enzyme is activated relative to that of dark leaves. Two of these inhibitory sites are phosphorylated as well when SPS is inactivated in vitro using ({sup 32}P)ATP. In vivo phosphorylation of two other sites is enhanced during mannose feeding of the leaves (in light or dark) which produces the highest activation state of SPS. Overall, the results confirm that light-dark regulation of SPS activity occurs as a result of regulatory seryl-phosphorylation and involves a balance between phosphorylation of sites which inhibit or stimulate activity. Regulation of the SPS protein kinase that inhibits activity is relatively unaffected by phosphate but inhibited by G1c 6-P (IC{sub 50}{approx}5 mM), which may explain the control of SPS activation state by light-dark signals.

  3. Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation. [Spinacia oleracea

    SciTech Connect

    Huber, J.L. ); Huber, S.C. North Carolina State Univ., Raleigh ); Hite, D.R.C.; Outlaw, W.H. Jr. )

    1991-01-01

    Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with ({gamma}-{sup 32}P)ATP. Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25{degrees}C before assay. The spontaneous inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg{sup 2+} and was relatively insensitive to Ca{sup 2+} and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with ({sup 32}P)Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25 C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate.

  4. Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity

    SciTech Connect

    Huber, J.L.A.; Huber, S.C. )

    1989-04-01

    Protein phosphorylation has been identified as a mechanism for the light-dark regulation of spinach sucrose-phosphate synthase (SPS) activity, previously shown to involve some type of covalent modification of the enzyme. The 120 kD subunit of SPS in extracts of light-treated leaves was labeled with {sup 32}P in the presence of ({gamma}-{sup 32}P) ATP. In this in vitro system, {sup 32}P incorporation into light-activated SPS was dependent upon ATP and magnesium concentrations as well as time, and was closely paralleled by inactivation of the enzyme. The soluble protein kinase involved in the interconversion of SPS between activated and deactivated forms may be specific for SPS as it co-purifies with SPS during partial purification of the enzyme. The kinase appears not to be calcium activated and no evidence has been obtained for metabolite control of SPS phosphorylation/inactivation.

  5. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  6. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  7. Sucrose Phosphate Synthase and Sucrose Accumulation at Low Temperature 1

    PubMed Central

    Guy, Charles L.; Huber, Joan L. A.; Huber, Steven C.

    1992-01-01

    The influence of growth temperature on the free sugar and sucrose phosphate synthase content and activity of spinach (Spinacia oleracea) leaf tissue was studied. When plants were grown at 25°C for 3 weeks and then transferred to a constant 5°C, sucrose, glucose, and fructose accumulated to high levels during a 14-d period. Predawn sugar levels increased from 14- to 20-fold over the levels present at the outset of the low-temperature treatment. Sucrose was the most abundant free sugar before, during, and after exposure to 5°C. Leaf sucrose phosphate synthase activity was significantly increased by the low-temperature treatment, whereas sucrose synthase and invertases were not. Synthesis of the sucrose phosphate synthase subunit was increased during and after low-temperature exposure and paralleled an increase in the steady-state level of the subunit. The increases in sucrose and its primary biosynthetic enzyme, sucrose phosphate synthase, are discussed in relation to adjustment of metabolism to low nonfreezing temperature and freezing stress tolerance. Images Figure 1 Figure 2 Figure 3 PMID:16652990

  8. Interaction between Silver Nanoparticles and Spinach Leaf

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  9. SCREENING FOR RESISTANCE TO STEMPHYLIUM LEAF SPOT OF SPINACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf spot disease of spinach (Spinacia oleracea L.) caused by Stemphylium botryosum has continued to occur in California and six other states since 1997, posing another challenge for growers to produce high quality and defect-free products. No resistance to the pathogen has been reported in spinach....

  10. Screening for Resistance to Leaf Spot Diseases of Spinach.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf spot of spinach (Spinacia oleracea L.) caused by Stemphylium botryosum has continued to occur in California and at least six other states since 1997, posing yet another challenge for growers to produce high quality and defect-free products. Resistance to the pathogen has not been reported in sp...

  11. Population structure and association analysis of bolting, plant height, and leaf erectness in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spinach (Spinacia oleracea L.) is an important vegetable worldwide with high nutritional and health-promoting compounds. Bolting is an important trait to consider in order to grow spinach in different seasons and regions. Plant height and leaf erectness are important traits for machine-harvesting. B...

  12. Antioxidant capacity and phenolic content in leaf extracts of tree spinach (Cnidoscolus spp.).

    PubMed

    Kuti, Joseph O; Konuru, Hima B

    2004-01-14

    Total phenolic content and antioxidant capacity of two tree spinach species (Cnidoscolus chayamansa McVaugh and C. aconitifolius Miller.) were determined in raw and cooked leaf extracts. Antioxidant capacity was assessed by the oxygen radical absorbance capacity (ORAC) assay, and flavonoid glycoside composition was quantified by HPLC and identified by GC. Total phenolics and antioxidant capacity were higher in raw than in cooked leaf extracts. The ORAC values were strongly correlated with total phenolic content (r = 0.926) in all leaf extracts. The major flavonoids isolated from the leaf extracts were kaempferol-3-O-glycosides and quercetin-3-O-glycosides. C. aconitifolius leaves contained more varieties of the flavonoid glycosides than C. chayamansa. Cooking reduced antioxidant activity and phenolic content and resulted in losses of some kaempferol glycoside and quercetin glycoside residues in leaf extracts. The results of this study indicate that tree spinach leaves are a rich source of natural antioxidants for foods. PMID:14709023

  13. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes

    SciTech Connect

    Creelman, R.A.; Zeevaart, J.A.D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress rather than a chemical stress.

  14. EFFECT OF LIGHT INTENSITY, SOIL TYPE, AND LITHIUM ADDITION ON SPINACH AND MUSTARD GREENS LEAF CONSTITUENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between 14 Dec. 2005 and 17 Feb 2006 to evaluate the effect of soil type, light environment, and lithium addition on the leaf nutrients of spinach and mustard greens. Cultivars Samish (Spinacia oleracea) and...

  15. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis

    PubMed Central

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M.; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-01-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter–reporter gene analyses and quantitative real-time reverse transcription–PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period. PMID:24994761

  16. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation

    PubMed Central

    Maloney, Victoria J.; Park, Ji-Young; Unda, Faride; Mansfield, Shawn D.

    2015-01-01

    Bioinformatic analysis indicates that sucrose phosphate synthase (SPS) contains a putative C-terminal sucrose phosphate phosphatase (SPP)-like domain that may facilitates the binding of SPP. If an SPS–SPP enzyme complex exists, it may provide sucrose biosynthesis with an additional level of regulation, forming a direct metabolic channel for sucrose-6-phosphate between these two enzymes. Herein, the formation of an enzyme complex between SPS and SPP was examined, and the results from yeast two-hybrid experiments suggest that there is indeed an association between these proteins. In addition, in planta bioluminescence resonance energy transfer (BRET) was observed in Arabidopsis seedlings, providing physical evidence for a protein interaction in live cells and in real time. Finally, bimolecular fluorescence complementation (BiFC) was employed in an attempt to detect SPS–SPP interactions visually. The findings clearly demonstrated that SPS interacts with SPP and that this interaction impacts soluble carbohydrate pools and affects carbon partitioning to starch. Moreover, a fusion construct between the two genes promotes plant growth in both transgenic Arabidopsis and hybrid poplar. PMID:25873678

  17. The Path of Carbon in Photosynthesis XIX. The Identification of Sucrose Phosphate in Sugar Beet Leaves

    DOE R&D Accomplishments Database

    Buchanan, J. G.

    1952-09-01

    The recognition and characterization of a sucrose phosphate as an intermediate in sucrose by synthesis by green plants is described. A tentative structure for this phosphate is proposed and its mode of formation suggested.

  18. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  19. Photosynthesis-related infrared light transmission changes in spinach leaf segments

    SciTech Connect

    Akimoto, T.

    1985-10-01

    The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to ''red drop.'' The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to ''enhancement.'' A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light.

  20. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    SciTech Connect

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  1. Spinach leaf chloroplast CO sub 2 and NO sub 2 sup minus photoassimilations do not compete for photogenerated reductant

    SciTech Connect

    Robinson, J.M. )

    1988-12-01

    Potential competition between CO{sub 2} and NO{sub 2}{sup {minus}} photoassimilation for photogenerated reductant (e.g. reduced ferredoxin and NADPH) was examined employing isolates of mesophyll cells and intact chloroplasts derived from mature source spinach leaves. Variations in the magnitude of incident light energy were used to manipulate the supply of reductant in situ within chloroplasts. Leaf cell and plastid isolates were fed with saturating CO{sub 2} and/or NO{sub 2}{sup {minus}} to produce the highest demand for reductant by CO{sub 2} and/or NO{sub 2}{sup {minus}} assimilatory processes (enzymes). Even in the presence of CO{sub 2} fixation, NO{sub 2}{sup {minus}} reduction in intact leaf cell isolates as well as plastid isolates was maximal at light energies as low as 50 to 200 microeinsteins per second per square meter. Simultaneously, 500 to 800 microeinsteins per second per square meter were required to support maximal CO{sub 2} assimilation. Regardless of the magnitude of the incident light energy, CO{sub 2} assimilation did not repress NO{sub 2}{sup {minus}} reduction, nor were these two processes mutually repressed. These observations have been interpreted to mean that reduced ferredoxin levels in situ in the plastids of mature source leaf mesophyll cells were adequate to supply the concurrent maximal demands exerted by enzymes associated with CO{sub 2} as well as with inorganic nitrogen photoassimilation.

  2. Light/Dark Profiles of Sucrose Phosphate Synthase, Sucrose Synthase, and Acid Invertase in Leaves of Sugar Beets

    PubMed Central

    Vassey, Terry L.

    1989-01-01

    The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves. PMID:16666537

  3. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants.

    PubMed

    Lester, Gene E; Makus, Donald J; Hodges, D Mark; Jifon, John L

    2013-07-24

    Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the subarctic versus the winter solstice in the subtropics provided insight into interactions between production environment (light intensity), cultivar, and leaf age/maturity/position affecting bionutrient concentrations of vitamins (C, E, folate, K1, provitamin A), lutein, phenolics, and antioxidants. Growing spinach during the winter solstice in the subtropics resulted in increased leaf dry matter %, oxidized (dehydro) ascorbic acid (AsA), α- and γ-tocopherol, and total phenols but lower reduced (free) AsA, α-carotene, folate, and antioxidant capacity compared to summer solstice-grown spinach in the subarctic. Both cultivars had similar bionutrients, except for higher dehydroAsA, and lower α- and γ-tocopherol in 'Samish' compared to 'Lazio'. For most bionutrients measured, there was a linear, and sometimes quadratic, increase in concentrations from bottom to top canopy leaves. However, total phenolics and antioxidant capacity increased basipetally. The current study has thus demonstrated that dehydroAsA, α-tocopherol, and γ-tocopherol were substantially lower in subarctic compared to subtropical-grown spinach, whereas the opposite relationship was found for antioxidant capacity, α-carotene, and folates (vitamin B9). The observations are consistent with previously reported isolated effects of growth environment on bionutrient status of crops. The current results clearly highlight the effect of production environment (predominantly radiation capture), interacting with genetics and plant phenology to alter the bionutrient status of crops. While reflecting the effects of changing growing conditions, these results also indicate potential alterations in the nutritive value of foods with anticipated shifts in global climatic conditions. PMID:23834651

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Activation of SPS from darkened spinach leaves by an endogenous protein phosphatase

    SciTech Connect

    Huber, S.C.; Huber, J.L. )

    1990-05-01

    Sucrose-phosphate synthase from darkened spinach leaves has a low activation state but can undergo a time-dependent activation in desalted leaf extracts that is inhibited by Pi, molybdate, okadaic acid and vanadate, but stimulated by fluoride. SPS labeled in vivo with ({sup 32}P)Pi in excised leaves in the dark loses incorporated {sup 32}P with time when extracts are incubated at 25{degree}C. This loss is largely prevented by vanadate, suggesting that an endogenous protein phosphatase can use SPS as substrate. Changes in phosphorylation state are closely paralleled by changes in SPS activation state. The spontaneous activation achieved in the extracts can be reversed by addition of 2 mM MgATP. Feeding okadaic acid to darkened leaves prevents light activation of SPS suggesting that the endogenous protein phosphatase is similar to the type-1 enzyme of animal tissues. Overall, the results are consistent with the notion that light activation of SPS involves dephosphorylation of inhibitory phosphorylation site(s). Regulation of the protein phosphatase by Pi may be of physiological significance.

  6. Circadian Regulation of Sucrose Phosphate Synthase Activity in Tomato by Protein Phosphatase Activity.

    PubMed Central

    Jones, T. L.; Ort, D. R.

    1997-01-01

    Sucrose phosphate synthase (SPS), a key enzyme in sucrose biosynthesis, is regulated by protein phosphorylation and shows a circadian pattern of activity in tomato. SPS is most active in its dephosphorylated state, which normally coincides with daytime. Applying okadaic acid, a potent protein phosphatase inhibitor, prevents SPS activation. More interesting is that a brief treatment with cycloheximide, a cytoplasmic translation inhibitor, also prevents the light activation of SPS without any effect on the amount of SPS protein. Cordycepin, an inhibitor of transcript synthesis and processing, has the same effect. Both of these inhibitors also prevent the activation phase of the circadian rhythm in SPS activity. Conversely, cycloheximide and cordycepin do not prevent the decline in circadian SPS activity that normally occurs at night. These observations indicate that SPS phosphatase activity but not SPS kinase activity is controlled, directly or indirectly, at the level of gene expression. Taken together, these data imply that there is a circadian rhythm controlling the transcription of a protein phosphatase that subsequently dictates the circadian rhythm in SPS activity via effects on this enzyme's phosphorylation state. PMID:12223667

  7. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9.

    PubMed

    Lin, I Winnie; Sosso, Davide; Chen, Li-Qing; Gase, Klaus; Kim, Sang-Gyu; Kessler, Danny; Klinkenberg, Peter M; Gorder, Molly K; Hou, Bi-Huei; Qu, Xiao-Qing; Carter, Clay J; Baldwin, Ian T; Frommer, Wolf B

    2014-04-24

    Angiosperms developed floral nectaries that reward pollinating insects. Although nectar function and composition have been characterized, the mechanism of nectar secretion has remained unclear. Here we identify SWEET9 as a nectary-specific sugar transporter in three eudicot species: Arabidopsis thaliana, Brassica rapa (extrastaminal nectaries) and Nicotiana attenuata (gynoecial nectaries). We show that SWEET9 is essential for nectar production and can function as an efflux transporter. We also show that sucrose phosphate synthase genes, encoding key enzymes for sucrose biosynthesis, are highly expressed in nectaries and that their expression is also essential for nectar secretion. Together these data are consistent with a model in which sucrose is synthesized in the nectary parenchyma and subsequently secreted into the extracellular space via SWEET9, where sucrose is hydrolysed by an apoplasmic invertase to produce a mixture of sucrose, glucose and fructose. The recruitment of SWEET9 for sucrose export may have been a key innovation, and could have coincided with the evolution of core eudicots and contributed to the evolution of nectar secretion to reward pollinators. PMID:24670640

  8. Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution.

    PubMed

    Okazaki, Keiki; Oka, Norikuni; Shinano, Takuro; Osaki, Mitsuru; Takebe, Masako

    2008-02-01

    The nitrogen (N) status of a plant determines the composition of its major components (amino acids, proteins, carbohydrates and organic acids) and, directly or indirectly, affects the quality of agricultural products in terms of their calorific value and taste. Although these effects are guided by changes in metabolic pathways, no overall metabolic analysis has previously been conducted to demonstrate such effects. Here, metabolite profiling using gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of N levels on spinach tissue, comparing two cultivars that differed in their ability to use N. Wide variation in N content was observed without any distinct inhibition of growth in either cultivar. Principal component analysis (PCA) and self-organizing mapping (SOM) were undertaken to describe changes in the metabolites of mature spinach leaves. In PCA, the first component accounted for 44.5% of the total variance, the scores of which was positively correlated with the plant's N content, and a close relationship between metabolite profiles and N status was observed. Both PCA and SOM revealed that metabolites could be broadly divided into two types, correlating either positively or negatively with plant N content. The simple and co-coordinated metabolic stream, containing both general and spinach-specific aspects of plant N content, will be useful in future research on such topics as the detection of environmental effects on spinach through comprehensive metabolic profiling. PMID:18089581

  9. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  10. Summer (sub-arctic) versus winter (sub-tropical) production affects on spinach leaf bio-nutrients: Vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the sub-arctic versus the winter solstice in the sub-tropics provided insight into interactions between plant environment (day length, light intensity, ambient temperatures), cultivar and leaf...

  11. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    PubMed Central

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-01-01

    Abstract. Two-photon (2P) excitation of the second singlet (S2) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the “tissue optical window” (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S2 state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue. PMID:24967915

  12. Epidemiology and control of spinach downy mildew in coastal California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most serious threat to global fresh market spinach production is spinach downy mildew, caused by the obligate biotrophic pathogen, Peronospora effusa. Downy mildew causes yellow chlorotic lesions on spinach leaf tissue, often accompanied by abundant sporulation on the undersides of leaves. Very ...

  13. Extraction and characterization of mixed phase KNO2-KNO3 nanocrystals derived from flat-leaf green spinach

    NASA Astrophysics Data System (ADS)

    Hazarika, S.; Mohanta, D.

    2013-01-01

    Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.

  14. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    SciTech Connect

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  15. Differential effects of severe water stress on linear and cyclic electron fluxes through Photosystem I in spinach leaf discs in CO(2)-enriched air.

    PubMed

    Jia, Husen; Oguchi, Riichi; Hope, Alexander B; Barber, James; Chow, Wah Soon

    2008-10-01

    Linear and cyclic electron fluxes through Photosystem I in 1% CO(2) were quantified in spinach leaf tissue under severe water stress. Using actinic light with a peak at 697 nm for preferential light absorption by Photosystem I while also stimulating Photosystem II to improve redox poising, the cyclic electron flux after 60 s of illumination was a substantial proportion (33-44%) of the total electron flux through PSI at irradiances up to ~1,070 micromol photons m(-2) s(-1). At the maximum irradiance, the cyclic electron flux changed little with the progressive water loss from leaf tissue up to ~60%; by contrast, the linear electron flux was approximately halved. A reason for this differential effect of water stress on the capacity for cyclic and linear electron flow could be the increased crowding of soluble proteins in the stroma due to chloroplast shrinkage. Indeed the confinement of soluble proteins to a smaller chloroplast volume was indicated by cryo-scanning electron microscopy. It is known that the diffusion coefficient of large proteins is decreased when the background concentration of small proteins is raised; by contrast, the diffusion coefficient of small proteins is not affected by increasing the concentration of a large protein (Muramatsu and Minton in Proc Natl Acad Sci USA 85:2984-2988, 1988). Therefore, we suggest that linear electron flow, being coupled to the Calvin-Benson cycle, is limited by the diffusion of large macromolecules, especially the ribulose 1, 5-bisphosphate carboxylase/oxygenase complex. By contrast, cyclic electron flow, involving relatively small macromolecules such as ferredoxin, is less susceptible to inhibition by crowding in the stroma. PMID:18636271

  16. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions.

    PubMed Central

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-01-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  17. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity

    SciTech Connect

    Vassey, T.L.; Sharkey, T.D. )

    1989-04-01

    Mild water stress, on the order of {minus}1.0 megapascals xylem water potential, can reduce the rate of photosynthesis and eliminate the inhibition of photosynthesis caused by O{sub 2} in water-stress-sensitive plants such as Phaseolus vulgaris. To investigate the lack of O{sub 2} inhibition of photosynthesis, we measured stromal and cytosolic fructose-1,6-bisphosphatase, sucrose phosphate synthase, and partitioning of newly fixed carbon between starch and sucrose before, during, and after mild water stress. The extractable activity of the fructose bisphosphatases was unaffected by mild water stress. The extractable activity of SPS was inhibited by more than 60% in plants stressed to water potentials of {minus}0.9 megapascals. Water stress caused a decline in the starch/sucrose partitioning ratio indicating that starch synthesis was inhibited more than sucrose synthesis. We conclude that the reduced rate of photosynthesis during water stress is caused by stomatal closure, and that the restriction of CO{sub 2} supply caused by stomatal closure leads to a reduction in the capacity for both starch and sucrose synthesis. This causes the reduced O{sub 2} inhibition and abrupt CO{sub 2} saturation of photosynthesis.

  18. The Structure of Sucrose Phosphate Synthase from Halothermothrix orenii Reveals Its Mechanism of Action and Binding Mode

    SciTech Connect

    Chua,T.; Bujnicki, J.; Tan, T.; Huynh, F.; Patel, B.; Sivaraman, J.; Ogimoto, Y.; Miyano, K.; Sawa, H.

    2008-01-01

    Sucrose phosphate synthase (SPS) catalyzes the transfer of a glycosyl group from an activated donor sugar, such as uridine diphosphate glucose (UDP-Glc), to a saccharide acceptor D-fructose 6-phosphate (F6P), resulting in the formation of UDP and D-sucrose-6'-phosphate (S6P). This is a central regulatory process in the production of sucrose in plants, cyanobacteria, and proteobacteria. Here, we report the crystal structure of SPS from the nonphotosynthetic bacterium Halothermothrix orenii and its complexes with the substrate F6P and the product S6P. SPS has two distinct Rossmann-fold domains with a large substrate binding cleft at the interdomain interface. Structures of two complexes show that both the substrate F6P and the product S6P bind to the A-domain of SPS. Based on comparative analysis of the SPS structure with other related enzymes, the donor substrate, nucleotide diphosphate glucose, binds to the B-domain of SPS. Furthermore, we propose a mechanism of catalysis by H. orenii SPS. Our findings indicate that SPS from H. orenii may represent a valid model for the catalytic domain of plant SPSs and thus may provide useful insight into the reaction mechanism of the plant enzyme.

  19. Alternative soaking media for the FDA procedure in the detection of salmonella from tomatoes and spinach leaf using phage magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsuan; Hu, Jiajia; Wang, Fengen; Horikawa, Shin; Barbaree, James M.; Chin, Bryan A.

    2016-05-01

    Efforts were made to incorporate the phage Magnetoelastic (ME) biosensor in FDA's Spinach Soaking procedures according to FDA 2015 BAM method. Three soaking materials (Lactose broth, LB broth, and Peptone water) and various soaking times were investigated. Using merely 100 Salmonella cells spiked on the produce surfaces, the phage biosensors detected Salmonella within 5 hours when soaking tomatoes in LB broth as opposed to taking up to 24 hours. Salmonella was detected on spinach leaves within 7 hours. These phage ME biosensors provide a promising rapid detection platform using LB broth in FDA's soaking procedures while shortening the incubation period.

  20. Effect of spinach cultivar and strain variation on survival of Escherichia coli O157:H7 on spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...

  1. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    SciTech Connect

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi; Loewus, F.A. )

    1990-11-01

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on the reaction.

  2. Characterization of technetium species induced in spinach

    SciTech Connect

    Harms, A.V.; Krijger, G.C.; Elteren, J.T. van; Goeij, J.J.M. de

    1999-08-01

    Plants have the ability to accumulate the long-lived fission product {sup 99}Tc. In this work, an attempt was made to separate and characterize technetium species induced by spinach plants (Spinacia oleracea L.) grown on a TcO{sub 4}{sup {minus}} containing nutrient solution. Combination of data obtained with selective extraction and chromatography gave us insight into Tc speciation in spinach plants. The following classes of Tc species in spinach leaf homogenate were found after an incubation period of 11 d: TcO{sub 4}{sup {minus}} (ca. 7%), Tc{sup V}-cysteine (ca. 25%), Tc bound to insoluble cell-wall polysaccharides (ca. 17%), Tc bound to proteins (ca. 26%), and hydrophilic non-protein Tc species (ca. 25%). These results may yield a new insight into the metabolic pathways of Tc in plants.

  3. Leaf photosynthesis and carbohydrates of CO2-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought was imposed on 26-day old corn and grain sorghum grown in carbon dioxide (CO2) at 360 (ambient) or 720 (elevated) ppm. Midday leaf CO2 exchange rates (CER), and afternoon carbohydrate concentrations and activities of sucrose phosphate synthase (SPS) & adenosine 5’-diphosphoglucose pyrophosph...

  4. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    PubMed Central

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  5. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    PubMed

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates. PMID:19326953

  6. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  7. Physical and mechanical properties of spinach for whole-surface online imaging inspection

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin

    2011-06-01

    The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.

  8. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  9. In vitro liberation of carotenoids from spinach and Asia salads after different domestic kitchen procedures.

    PubMed

    Eriksen, Jane N; Luu, Amy Y; Dragsted, Lars O; Arrigoni, Eva

    2016-07-15

    Green-leafy vegetables are rich in nutritionally important constituents including carotenoids. Their potential health benefits depend among others on their liberation from the plant matrix. The aim of the present study was to evaluate the effect of particle size and heat treatments on lutein and β-carotene liberation from spinach and Asia salads by applying an in vitro digestion protocol and UHPLC analysis. Reduction of particle size resulted in a three- to fourfold increase in liberation of lutein and β-carotene when comparing whole leaf and puree preparations of spinach. However, this positive effect was shown to be nullified by the severe heat impact during stir-frying of minced spinach, showing that domestic treatments need to be chosen carefully to maximise carotenoid liberation. Steaming significantly improved lutein liberation from Asia salads, but had no or a negative effect in spinach samples, possibly due to differences in liberation or degradation between the two plant matrices. PMID:26948584

  10. Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: an insight into the functions of various cis-acting regulatory elements.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-05-01

    Recently, we have reported the characterization of promoter region of Sucrose phosphate synthase (SPS) gene in banana and investigated the role of some cis-elements/motifs, present in the promoter of SPS, in the transcriptional regulation of the gene. DNA-protein interaction studies have demonstrated the presence of specific trans-acting factors which showed specific interactions with ethylene, auxin, low temperature and light responsive elements in regulating SPS transcription. Transient expression analyses have demonstrated the functional significance of the various cis-acting regulatory elements present in banana SPS promoter in regulating SPS expression during ripening. (1) Here, we have further discussed the possible role of these regulatory sequences in the regulation of transcriptional network and comment on their function in relation to sucrose metabolism during banana fruit ripening. PMID:20139735

  11. Association analysis for oxalate concentration in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening and breeding low-oxalate germplasm is a major objective in spinach breeding. This research aims to conduct association analysis and identify SNP markers associated with oxalate concentration in spinach germplasm. A total of 310 spinach genotypes including 300 USDA germplasm accessions and ...

  12. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  13. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea).

    PubMed

    Shi, Ainong; Mou, Beiquan

    2016-08-01

    Leafminer (Liriomyza langei) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic, and environment-friendly method to control this pest. The objective of this research was to conduct association analysis and identify single nucleotide polymorphism (SNP) markers associated with leafminer resistance in spinach germplasm. A total of 300 USDA spinach germplasm accessions were used for the association analysis of leafminer resistance. Genotyping by sequencing (GBS) was used for genotyping and 783 SNPs from GBS were used for association analysis. The leafminer resistance showed a near normal distribution with a wide range from 1.1 to 11.7 stings per square centimeter leaf area, suggesting that the leafminer resistance in spinach is a complex trait controlled by multiple genes with minor effect in this spinach panel. Association analysis indicated that five SNP markers, AYZV02040968_7171, AYZV02076752_412, AYZV02098618_4615, AYZV02147304_383, and AYZV02271373_398, were associated with the leafminer resistance with LOD 2.5 or higher. The SNP markers may be useful for breeders to select plants and lines for leafminer resistance in spinach breeding programs through marker-assisted selection. PMID:27490441

  14. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves. PMID:26259182

  15. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property.

    PubMed

    Sawitri, Widhi Dyah; Narita, Hirotaka; Ishizaka-Ikeda, Etsuko; Sugiharto, Bambang; Hase, Toshiharu; Nakagawa, Atsushi

    2016-06-01

    Sucrose phosphate synthase (SPS) catalyses the transfer of glycosyl group of uridine diphosphate glucose to fructose-6-phosphate to form sucrose-6-phosphate. Plant SPS plays a key role in photosynthetic carbon metabolisms, which activity is modulated by an allosteric activator glucose-6-phosphate (G6P). We produced recombinant sugarcane SPS using Escherichia coli and Sf9 insect cells to investigate its structure-function relationship. When expressed in E. coli, two forms of SPS with different sizes appeared; the larger was comparable in size with the authentic plant enzyme and the shorter was trimmed the N-terminal 20 kDa region off. In the insect cells, only enzyme with the authentic size was produced. We purified the trimmed SPS and the full size enzyme from insect cells and found their enzymatic properties differed significantly; the full size enzyme was activated allosterically by G6P, while the trimmed one showed a high activity even without G6P. We further introduced a series of N-terminal truncations up to 171 residue and found G6P-independent activity was enhanced by the truncation. These combined results indicated that the N-terminal region of sugarcane SPS is crucial for the allosteric regulation by G6P and may function like a suppressor domain for the enzyme activity. PMID:26826371

  16. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening. PMID:18830708

  17. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro.

    PubMed

    Garber, M P

    1977-05-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. "Marketer") and spinach (Spinacia oleracea L. "Bloomsdale") were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light. PMID:16659980

  18. Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf microflora during co-colonization and establishment of a...

  19. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants.

    PubMed

    Brandl, Maria T; Haxo, Aileen F; Bates, Anna H; Mandrell, Robert E

    2004-02-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33 degrees C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10 degrees C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16 degrees C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10 degrees C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  20. Analysis of energy utilization in spinach processing

    SciTech Connect

    Chhinnan, M.S.; Singh, R.P.; Pedersen, L.D.; Carroad, P.A.; Rose, W.W.; Jacob, N.L.

    1980-03-01

    The equipment and methods used to monitor the electrical and thermal energy consumed in various unit operations in a spinach processing plant are described and the results of a processing plant energy audit are presented. It is concluded that it requires 6.5 MJ of natural gas and fuel oil and 0.072 MJ of electric power to process one kg of new spinach; the energy intensive operations in spinach processing are associated with exhaust boxes, blanchers, and retorts; uniform product flow through the canning line is essential to energy conservation; and design improvements are needed for the blancher, exhaust box, and retort. (LCL)

  1. Choline oxidation by intact chloroplasts isolated directly from spinach leaves

    SciTech Connect

    Weigel, P.; Hanson, A.D.

    1986-04-01

    Illuminated chloroplasts derived from spinach leaf protoplasts synthesize betaine from choline via the intermediate betaine aldehyde (BAL) (PNAS 82:3678). Photosynthetically active chloroplasts isolated directly from spinach leaves oxidized (/sup 14/C)choline in the light at rates 10 times higher (25-80 nmol/mg chl b) than protoplast-derived chloroplasts. Up to 20% of the (/sup 14/C)choline supplied during a 30 min incubation was oxidized in the light; the main product was (/sup 14/C)BAL. Rates of (/sup 14/C)choline oxidation in darkness were only 5-30% of rates in light. Light-dependent (/sup 14/C)choline oxidation was abolished by DCMU and 5 mM DTT. Pre-illumination of the chloroplasts did not promote (/sup 14/C)choline oxidation in darkness. The uncouplers nigericin and CCCP at concentrations which eliminated CO/sub 2/-dependent O/sub 2/ evolution did not affect (/sup 14/C)choline oxidation in the light. They hypothesize that (/sup 14/C)choline oxidation is not dependent upon light activation of an enzymatic system or upon the electrochemical proton gradient but requires an oxidant generated in the light.

  2. Degradation kinetics and pathways of spirotetramat in different parts of spinach plant and in the soil.

    PubMed

    Chen, Xiaojun; Meng, Zhiyuan; Zhang, Yanyan; Gu, Haotian; Ren, Yajun; Lu, Chunliang

    2016-08-01

    Spirotetramat is a new pesticide against a broad spectrum of sucking insects and exhibits a unique property with a two-way systemicity. In order to formulate a scientific rationale for a reasonable spray dose and the safe interval period of 22.4 % spirotetramat suspension concentrate on controlling vegetable pests, we analyzed degradation dynamics and pathways of spirotetramat in different parts of spinach plant (leaf, stalk, and root) and in the soil. We conducted experimental trials under field conditions and adopted a simple and reliable method (dispersive solid phase extraction) combined with liquid chromatography-triple quadrupole tandem mass spectrometry to evaluate the dissipation rates of spirotetramat residue and its metabolites. The results showed that the spirotetramat was degraded into different metabolite residues in different parts of spinach plant (leaf, stalk, and root) and in the soil. Specifically, spirotetramat was degraded into B-keto, B-glu, and B-enol in the leaf; B-glu and B-enol in the stalk; and only B-enol in the root. In the soil where the plants grew, spirotetramat followed a completely different pathway compared to the plant and degraded into B-keto and B-mono. Regardless of different degradation pathways, the dissipation dynamic equations of spirotetramat in different parts of spinach plant and in the soil were all based on the first-order reaction dynamic equations. This work provides guidelines for the safe use of spirotetramat in spinach fields, which would help prevent potential health threats to consumers. PMID:27083908

  3. Persistence of poultry associated Salmonella spp. on spinach plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Pre-harvest spinach contamination can occur via irrigation water and can influence the persistence of Salmonella on spinach leaves. Salmonella persistence on spinach plants should be evaluated as nearby poultry farms can be a critical source of contaminated water run-off. Purpose: The...

  4. THREE NEW RACES OF THE SPINACH DOWNY MILDEW PATHOGEN IDENTIFIED BY A MODIFIED SET OF SPINACH DIFFERENTIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spinach downy mildew, caused by Peronospora farinosa f. sp. spinaciae, is the most economically important disease of spinach worldwide. In the past few years, field observations in both the United States and the European Union indicated that spinach cultivars resistant to the seven previously descr...

  5. Inactivation of Escherichia Coli O157:H7 Internalized in Romaine Lettuce and Baby Spinach Leaves:Sodium Hypochlorite Wash vs. Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic bacteria which are internalized in leaf tissues are protected from the antimicrobial effects of surface treatments. Ionizing radiation is known to penetrate foods, but the efficacy of the process against internalized bacteria is unknown. Leaves of romaine lettuce and baby spinach were cut...

  6. Relative Efficacy of Sodium Hypochlorite Wash Versus Irradiation to Inactivate Escherichia coli O157:H7 Internalized in Leaves of Romaine Lettuce and Baby Spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic bacteria which are internalized in leaf tissues are protected from the antimicrobial effects of surface treatments. Ionizing radiation is known to penetrate foods, but the efficacy of the process against internalized bacteria is unknown. Leaves of romaine lettuce and baby spinach were cut...

  7. Effects of plant maturity and bacterial inoculum level on the colonization and internalization of escherichia coli 0157:H7 in growing spinach leaves.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of foodborne outbreaks linked to fresh produce has increased in the United States. Particularly noteworthy, was the 2006 Escherichia coli O157:H7 outbreak associated with pre-packaged baby spinach. The study aimed to determine whether E. coli O157:H7 would be present in the aerial leaf...

  8. Sans study of spinach CF 1-ATPase

    NASA Astrophysics Data System (ADS)

    Calmettes, P.; Girault, G.; Berger, G.; Galmiche, J. M.

    1989-01-01

    SANS experiments were performed on solutions of spinach chloroplast CF 1-ATPase in heavy water. Removal of the ɛ subunit partially activates the enzyme and further addition of dithiothreitol fully activates it. Molar masses and gyration radii values are given for these different conditions.

  9. Microtubules in Mesophyll Cells of Nonacclimated and Cold-Acclimated Spinach 1

    PubMed Central

    Bartolo, Michael E.; Carter, John V.

    1991-01-01

    Responses of cortical microtubules in spinach (Spinacia oleracea L. cv Bloomsdale) mesophyll cells to freezing, thawing, supercooling, and dehydration were assessed. Microtubules were visualized using a modified procedure for indirect immunofluorescence microscopy. Leaf sections of nonacclimated and cold-acclimated spinach were slowly frozen to various temperatures, fixed while frozen, and microtubules immunolabelled. Both nonacclimated and cold-acclimated cells exhibited nearly complete microtubule depolymerization after ice formation. After 1 hour thawing at 23°C, microtubules in both nonacclimated and cold-acclimated cells repolymerized. With time, however, microtubules in nonacclimated cells again depolymerized. Since microtubules in cells of leaf tissue frozen slowly are subjected to dehydration as well as subzero temperatures, these stresses were applied separately and their effects on microtubules noted. Supercooling induced microtubule depolymerization in both nonacclimated and cold-acclimated cells, but to a smaller extent than did freezing. Exposing leaf sections to solutions of sorbitol (a cell wall-penetrating osmoticum) or polyethylene glycol 10,000 (a nonpenetrating osmoticum) at room temperature caused microtubule depolymerization. The effects of low temperature and dehydration are roughly additive in producing the observed microtubule responses during freezing. Only small differences in microtubule stability were resolved between nonacclimated and cold-acclimated cells. ImagesFigure 2 PMID:16668366

  10. Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).

    PubMed

    Kuti, J O; Kuti, H O

    1999-01-01

    Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene). PMID:10540979

  11. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants.

    PubMed

    Asfi, Maria; Ouzounidou, Georgia; Panajiotidis, Sampson; Therios, Ioannis; Moustakas, Michael

    2012-06-01

    Olive mill-wastewater (OMW), a by-product of the olive oil extraction process, represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:10 and 1:20) on growth, photosynthesis, proline and sugar accumulation as well as on pollen morphology of spinach (Spinacia oleracea L.) plants, to evaluate the application of OMW dilutions as pretreatment technique, prior to land disposal. Biomass, height, total chlorophyll and leaf area of spinach declined progressively with decreasing OMW dilution. Since fatty acids and phenolic compounds (present in the OMW) are considered precursors in the polymerization of sporopollenin, we suggest that under OMW treatment spinach plants seem to 'direct' the excess of these substances in the production and formation of increased pollen grains. Proline did not accumulate under OMW stress, but decreased possible due to transport to pollens in response to increased demand to over-production of pollens. Both OMW dilutions resulted in a decreased efficiency of PSII functioning and an increased excitation pressure (1-q(p)). It is concluded that, higher than 1:20 OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment. PMID:22455663

  12. Rapid detection of Salmonella typhimurium on fresh spinach leaves using phage-immobilized magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Li, Suiqiong; Chai, Yating; Park, Mi-Kyung; Shen, Wen; Barbaree, James M.; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents an investigation into the use of magnetoelastic biosensors for the rapid detection of Salmonella typhimurium on fresh spinach leaves. The biosensors used in this investigation were comprised of a strip-shaped, goldcoated sensor platform (2 mm-long) diced from a ferromagnetic, amorphous alloy and a filamentous fd-tet phage which specifically binds with S. typhimurium. After surface blocking with bovine serum albumin, these biosensors were, without any preceding sample preparation, directly placed on wet spinach leaves inoculated with various concentrations of S. typhimurium. Upon contact with cells, the phage binds S. typhimurium to the sensor thereby increasing the total mass of the sensor. This change in mass causes a corresponding decrease in the sensor's resonant frequency. After 25 min, the sensors were collected from the leaf surface and measurements of the resonant frequency were performed immediately. The total assay time was less than 30 min. The frequency changes for measurement sensors (i.e., phageimmobilized) were found to be statistically different from those for control sensors (sensors without phage), down to 5 × 106 cells/ml. The detection limit may be improved by using smaller, micron-sized sensors that will have a higher probability of contacting Salmonella on the rough surfaces of spinach leaves.

  13. A Spinach molecular beacon triggered by strand displacement

    PubMed Central

    Bhadra, Sanchita; Ellington, Andrew D.

    2014-01-01

    We have re-engineered the fluorescent RNA aptamer Spinach to be activated in a sequence-dependent manner. The original Spinach aptamer was extended at its 5′- and 3′-ends to create Spinach.ST, which is predicted to fold into an inactive conformation and thus prevent association with the small molecule fluorophore DFHBI. Hybridization of a specific trigger oligonucleotide to a designed toehold leads to toehold-initiated strand displacement and refolds Spinach into the active, fluorophore-binding conformation. Spinach.ST not only specifically detects its target oligonucleotide but can discriminate readily against single-nucleotide mismatches. RNA amplicons produced during nucleic acid sequence-based amplification (NASBA) of DNA or RNA targets could be specifically detected and reported in real-time by conformational activation of Spinach.ST generated by in vitro transcription. In order to adapt any target sequence to detection by a Spinach reporter we used a primer design technique that brings together otherwise distal toehold sequences via hairpin formation. The same techniques could potentially be used to adapt common Spinach reporters to non-nucleic acid analytes, rather than by making fusions between aptamers and Spinach. PMID:24942625

  14. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach.

    PubMed

    Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min

    2016-01-01

    Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools. PMID:27148975

  15. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach

    PubMed Central

    Zhu, Wei-Min

    2016-01-01

    Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools. PMID:27148975

  16. LEAFMINER-RESISTANT SPINACH GERMPLASM 03-04-63

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, United States Department of Agriculture announces the release of a spinach (Spinacia oleracea L.) breeding line 03-04-63. 03-04-63 is a semi-flat type of spinach with dark green, semi-erect leaves. The line may be suitable for commercial production, and is suitable...

  17. Release of Spinach Germplasm With Resistance to Leafminers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, United States Department of Agriculture announces the release of a spinach (Spinacia oleracea L.) breeding line 03-04-63. 03-04-63 is a semi-flat type of spinach with dark green, semi-erect leaves. The line may be suitable for commercial production, and is suitable...

  18. Short-term and long-term effects of low total pressure on gas exchange rates of spinach.

    PubMed

    Iwabuchi, K; Kurata, K

    2003-01-01

    In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased. PMID:12580188

  19. Short-term and long-term effects of low total pressure on gas exchange rates of spinach

    NASA Astrophysics Data System (ADS)

    Iwabuchi, K.; Kurata, K.

    In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased.

  20. cDNA sequence and heterologous expression of monomeric spinach pullulanase: multiple isomeric forms arise from the same polypeptide.

    PubMed

    Renz, A; Schikora, S; Schmid, R; Kossmann, J; Beck, E

    1998-05-01

    The spinach pullulanase gene was cloned and sequenced using peptide sequences of the purified enzyme as a starting point and employing PCR techniques and cDNA library screening. Its open reading frame codes for a protein of 964 amino acids which represents a precursor of the pullulanase. The N-terminal transit peptide consists of 65 amino acids, and the mature protein, comprising 899 amino acids, has a calculated molecular mass of 99kDa. Pullulanase is a member of the alpha-amylase family. In addition to a characteristic catalytic (beta/alpha)8-barrel domain, it contains a domain, F, that is specific for branching and debranching enzymes. Pullulanase cDNA was expressed in Escherichia coli, and the purified protein was compared with the enzyme from spinach leaves. Identity of the two proteins was confirmed in terms of catalytic properties, N-terminal amino acid sequences and molecular masses. The pullulanase produced by E. coli showed the same microheterogeneity as the spinach leaf enzyme: it could be resolved into two substrate-induced forms by electrophoresis in amylopectin-containing polyacrylamide gels, and, in the absence of substrate, into several free forms (charge isomers) by isoelectric focusing or chromatofocusing. Rechromatofocusing of single free forms resulted in the originally observed pattern of molecular forms. However, heterogeneity of the protein disappeared on isoelectric focusing under completely denaturing conditions when only one protein band was observed. Post-translational modifications such as glycosylation and phosphorylation could be excluded as potential explanations for the protein heterogeneity. Therefore the microheterogeneity of spinach leaf pullulanase results from neither genetic variation nor post-translational modifications, but is a property of the single unmodified gene product. The different interconvertible forms of the pullulanase represent protein populations of different tertiary structure of the same polypeptide. PMID

  1. Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach.

    PubMed

    Coumar, M Vassanda; Parihar, R S; Dwivedi, A K; Saha, J K; Rajendiran, S; Dotaniya, M L; Kundu, S

    2016-01-01

    Introduction of heavy metals in the environment by various anthropogenic activities has become a potential treat to life. Among the heavy metals, cadmium (Cd) shows relatively high soil mobility and has high phyto-mammalian toxicity. Integration of soil remediation and ecosystem services, such as carbon sequestration in soils through organic amendments, may provide an attractive land management option for contaminated sites. The application of biochar in agriculture has recently received much attention globally due to its associated multiple benefits, particularly, long-term carbon storage in soil. However, the application of biochar from softwood crop residue for heavy metal immobilization, as an alternative to direct field application, has not received much attention. Hence, a pot experiment was conducted to study the effect of pigeon pea biochar on cadmium mobility in a soil-plant system in cadmium-spiked sandy loam soil. The biochar was prepared from pigeon pea stalk through a slow pyrolysis method at 300 °C. The experiment was designed with three levels of Cd (0, 5, and 10 mg Cd kg(-1) soil) and three levels of biochar (0, 2.5, and 5 g kg(-1) soil) using spinach as a test crop. The results indicate that with increasing levels of applied cadmium at 5 and 10 mg kg(-1) soil, the dry matter yield (DMY) of spinach leaf decreased by 9.84 and 18.29 %, respectively. However, application of biochar (at 2.5 and 5 g kg(-1) soil) significantly increased the dry matter yield of spinach leaf by 5.07 and 15.02 %, respectively, and root by 14.0 and 24.0 %, respectively, over the control. Organic carbon content in the post-harvest soil increased to 34.9 and 60.5 % due to the application of biochar 2.5 and 5 g kg(-1) soil, respectively. Further, there was a reduction in the diethylene triamine pentaacetic acid (DTPA)-extractable cadmium in the soil and in transfer coefficient values (soil to plant), as well as its concentrations in spinach leaf and root, indicating that

  2. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  3. Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation

    PubMed Central

    Carter, Michelle Q.; Xue, Kai; Brandl, Maria T.; Liu, Feifei; Wu, Liyou; Louie, Jacqueline W.; Mandrell, Robert E.; Zhou, Jizhong

    2012-01-01

    The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species. PMID:22957052

  4. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives.

    PubMed

    Roberts, Joseph L; Moreau, Régis

    2016-08-10

    Overwhelming evidence indicates that diets rich in fruits and vegetables are protective against common chronic diseases, such as cancer, obesity and cardiovascular disease. Leafy green vegetables, in particular, are recognized as having substantial health-promoting activities that are attributed to the functional properties of their nutrients and non-essential chemical compounds. Spinach (Spinacia oleracea L.) is widely regarded as a functional food due to its diverse nutritional composition, which includes vitamins and minerals, and to its phytochemicals and bioactives that promote health beyond basic nutrition. Spinach-derived phytochemicals and bioactives are able to (i) scavenge reactive oxygen species and prevent macromolecular oxidative damage, (ii) modulate expression and activity of genes involved in metabolism, proliferation, inflammation, and antioxidant defence, and (iii) curb food intake by inducing secretion of satiety hormones. These biological activities contribute to the anti-cancer, anti-obesity, hypoglycemic, and hypolipidemic properties of spinach. Despite these valuable attributes, spinach consumption remains low in comparison to other leafy green vegetables. This review examines the functional properties of spinach in cell culture, animals and humans with a focus on the molecular mechanisms by which spinach-derived non-essential phytochemicals and bioactives, such as glycolipids and thylakoids, impart their health benefits. PMID:27353735

  5. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-01

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil

  6. Biosynthesis of sucrose and mannitol as a function of leaf age in celery (Apium graveolens L. )

    SciTech Connect

    Davis, J.M.; Fellman, J.K.; Loescher, W.H.

    1988-01-01

    In celery (Apium graveolens L.), the two major translocated carbohydrates are sucrose and the acyclic polyol mannitol. Their metabolism, however, is different and their specific functions are uncertain. To compare their roles in carbon partitioning and sink-source transitions, developmental changes in /sup 14/CO/sub 2/ labeling, pool sizes, and key enzyme activities in leaf tissues were examined. The proportion of label in mannitol increased dramatically with leaf maturation whereas that in sucrose remained fairly constant. Mannitol content, however, was high in all leaves and sucrose content increased as leaves developed. Activities of mannose-6-P reductase, cytoplasmic and chloroplastic fructose-1,6-bis-phosphatases, sucrose phosphate synthase, and sucrose synthase increased with leaf maturation and decreased as leaves senesced. Ribulose bisphosphate carboxylase and nonreversible glyceraldehyde-3-P dehydrogenase activities rose as leaves developed but did not decrease. Thus, sucrose is produced in all photosynthetically active leaves whereas mannitol is synthesized primarily in mature leaves and stored in all leaves. Onset of sucrose export in celery may result from sucrose accumulation in expanding leaves, but mannitol export is clearly unrelated to mannitol concentration. Mannitol export, however, appears to coincide with increased mannitol biosynthesis. Although mannitol and sucrose arise from a common precursor in celery, subsequent metabolism and transport must be regulated separately.

  7. Novel antifungal peptides from Ceylon spinach seeds.

    PubMed

    Wang, H; Ng, T B

    2001-11-01

    Two novel antifungal peptides, designated alpha- and beta-basrubrins, respectively, were isolated from seeds of the Ceylon spinach Basella rubra. The purification procedure involved saline extraction, (NH(4))(2)SO(4) precipitation, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose and FPLC-gel filtration on Superdex peptide column. alpha- and beta-basrubrins exhibited a molecular weight of 4.3 and 5 kDa, respectively. They inhibited translation in a rabbit reticulocyte system with an IC(50) value of 400 and 100 nM, respectively. alpha- and beta-basrubrin inhibited HIV-1 reverse transcriptase by (79.4 +/- 7.8)% and (54.6 +/- 3.6)%, respectively, at a concentration of 400 microM, and (10.56 +/- 0.92)% and (2.12 +/- 0.81)%, respectively, at a concentration of 40 microM. Both alpha- and beta-basrubrins exerted potent antifungal activity toward Botrytis cinerea, Mycosphaerella arachidicola, and Fusarium oxysporum. PMID:11688973

  8. Effect of Greens and Soil Type, Sulfur Addition and Lithium Level on Leaf Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  9. 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase.

    PubMed Central

    Tai, H; Jaworski, J G

    1993-01-01

    A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals. PMID:8290632

  10. Light intensity is the main factor affecting fresh market spinach tolerance for Phenmedipham

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The few available herbicides for fresh market spinach do not provide adequate weed control, and there is need for additional herbicide tools. Phenmedipham is registered for use in processing spinach but not in fresh spinach due to its crop injury potential and short time window from application to h...

  11. Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...

  12. First report of Beet necrotic yellow vein virus infecting spinach in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2009, plants from two spinach (Spinacia oleracea) experimental fields in Monterey County and one commercial spinach field in Ventura County of California exhibited vein clearing, mottling, interveinal yellowing and stunting symptoms. For experimental fields, up to 44% of spinach plants were infec...

  13. A new endornavirus species infecting Malabar spinach (Basella alba L.).

    PubMed

    Okada, Ryo; Kiyota, Eri; Moriyama, Hiromitsu; Toshiyuki, Fukuhara; Valverde, Rodrigo A

    2014-04-01

    A putative new endornavirus was isolated from Malabar spinach (Basella alba). The viral dsRNA consisted of 14,027 nt with a single ORF that coded for a polyprotein of 4,508 aa. The genome organization was similar to that of four other endornaviruses. Conserved domains for helicase-1, capsular synthase, UDP-glucose-glycosyltransferase (UGT), and RdRp were detected. Infected plants were phenotypically undistinguishable from healthy ones. The name Basella alba endornavirus is proposed for the virus isolated from Malabar spinach. PMID:24122112

  14. Influence of Extracellular Cellulose and Colanic Acid Production on the Survival of Shiga Toxin-Producing Escherichia coli on Spinach and Lettuce after Chlorine Treatment.

    PubMed

    Lee, Chi-Ching; Chen, Jinru; Frank, Joseph F

    2016-04-01

    Shiga toxin-producing Escherichia coli (STEC) strains produce extracellular cellulose and colanic acid, which may influence stress tolerance. This study investigates the role of these extracellular polymers on the tolerance of STEC to chlorine treatment after attachment to lettuce and spinach. Four STEC strains, two wild-type cellulose-producing and their cellulose-deficient derivatives, were used. One strain pair produced colanic acid in addition to cellulose. Spinach and lettuce with attached cells were treated with chlorinated water (50 and 150 ppm of free chlorine). The production of the extracellular polymers by the planktonic cells had small, but significant, effects on the survival of the attached pathogen when subjected to chlorine treatment. On the lettuce surface, the colanic acid-producing, cellulose-negative mutant (49d) was most susceptible to the treatment, declining significantly (P < 0.05) in population by 0.9 and 1.4 log units after treatment with 50 and 150 ppm of chlorine, respectively. Chlorine treatment reduced populations of cellulose-deficient cells on the intact spinach surface 1.2 log units more than the wild type when treated with 150 ppm of chlorine (P < 0.05). However, populations of cellulose-producing cells were reduced by 1.5 log units more than their mutant counterparts when the cells also produced colanic acid (P < 0.05). A greater proportion of cells attached to the spinach leaf edge were injured by chlorine treatment compared with attached to the leaf surface. These results indicate that extracellular polymers do not generally increase the ability of STEC to survive chlorine treatment and that any effects on survival are influenced by location of attachment, type of leafy green, and concentration of chlorine. PMID:27052873

  15. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L. ) leaves

    SciTech Connect

    Luwe, M.W.F.; Takahama, Umeo; Heber, U. )

    1993-03-01

    Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L[sup [minus]1] of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm[sup [minus]2] of leaf surface area s[sup [minus]1]. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm[sup [minus]2] s[sup [minus]1]. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. Insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm[sup [minus]2] s[sup [minus]1]. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathione became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L[sup [minus]1] of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h. 30 refs., 6 figs., 1 tab.

  16. Design, Synthesis, and Application of Spinach Molecular Beacons Triggered by Strand Displacement

    PubMed Central

    Bhadra, Sanchita; Ellington, Andrew D.

    2015-01-01

    We describe design parameters for the synthesis and analytical application of a label-free RNA molecular beacon, termed Spinach.ST. The RNA aptamer Spinach fluoresces upon binding the small-molecule fluorophore DFHBI ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one). Spinach has been reengineered by extending its 5′- and 3′-ends to create Spinach.ST, which is predicted to fold into an inactive conformation that fails to bind DHFBI. Hybridization of a trigger oligonucleotide to a designed toehold on Spinach.ST initiates toehold-mediated strand displacement and restores the DFHBI-binding, fluorescence-enhancing conformation of Spinach. The versatile Spinach.ST sensor can detect DNA or RNA trigger sequences and can readily distinguish single-nucleotide mismatches in the trigger toehold. Primer design techniques are described that augment amplicons produced by enzymatic amplification with Spinach.ST triggers. Interaction between these triggers and Spinach.ST molecular beacons leads to the real-time, sequence-specific quantitation of these amplicons. The use of Spinach.ST with isothermal amplification reactions such as nucleic acid sequence-based amplification (NASBA) may enable point-of-care applications. The same design principles could also be used to adapt Spinach reporters to the assay of nonnucleic acid analytes in trans. PMID:25605388

  17. Betaine Accumulation and Betaine-Aldehyde Dehydrogenase in Spinach Leaves 1

    PubMed Central

    Pan, Shu-Mei; Moreau, Robert A.; Yu, Charles; Huang, Anthony H. C.

    1981-01-01

    Spinach leaf discs accumulated betaine when exposed to a mannitol solution of −20 bars. The accumulation was 12 micromoles per gram original fresh weight in a 24-hour period. Betaine-aldehyde dehydrogenase (EC 1.2.1.8) was assayed in various subcellular fractions prepared from spinach leaves, and it was found only in the soluble fraction. This cytosolic enzyme was purified 175-fold, and its properties were studied. The enzyme was relatively specific for betaine aldehyde as the substrate with an apparent Km value of 2.08 × 10−4 molar. It also exerted activity on other aldehyde analogs tested, but with lower Vmax and higher Km values. The enzyme was relatively specific for nicotinamide adenine dinucleotide as the coenzyme, having an apparent Km value of 9.46 × 10−6 molar; lower activities were observed when nicotinamide adenine dinucleotide phosphate or 3-acetyl pyridine adenine dinucleotide were tested as electron acceptors. The activity was enhanced by dithiothreitol and inhibited by p-chloromercuribenzoate, and the inhibition by p-chloromercuribenzoate was partially reversed by the subsequent addition of dithiothreitol. The activity was inhibited by high concentrations of NaCl and, to a lesser extent, proline. The equilibrium of the enzymic reaction was strongly in favor of betaine formation. The in vitro activity of the enzyme under optimal assay conditions was high enough to account for the amount of betaine accumulated under water stress conditions. The enzyme activity was the same in unstressed leaves and in leaves that had been water stressed for 24 hours. PMID:16661818

  18. Isolation and Characterization of Phosphatidyl Choline from Spinach Leaves.

    ERIC Educational Resources Information Center

    Devor, Kenneth A.

    1979-01-01

    This inexpensive but informative experiment for undergraduate biochemistry students involves isolating phosphatidyl choline from spinach leaves. Emphasis is on introducing students to techniques of lipid extraction, separation of lipids, identification using thin layer chromatography, and identification of fatty acids. Three periods of three hours…

  19. First report of Tobacco rattle virus in spinach in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2009 in coastal California (Santa Barbara County), commercially grown spinach (Spinacia oleracea) in two nearby fields exhibited symptoms of a previously unrecognized virus-like disease. Symptoms consisted of general chlorosis and bright yellow blotches and spots. Necrotic spots were also associa...

  20. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  1. Salt tolerance of spinach as related to seasonal climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is decreasing availability of fresh water for irrigated agriculture in semiarid regions throughout the world. Unfortunately most high value irrigated crops are relatively sensitive to salinity, mostly limiting use of saline waters for irrigation to use with low value crops. Spinach is an excep...

  2. Isolation and kinetic properties of acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) chloroplasts overexpressed in Escherichia coli.

    PubMed

    Dumas, R; Job, D; Ortholand, J Y; Emeric, G; Greiner, A; Douce, R

    1992-12-15

    Acetohydroxy acid isomeroreductase catalyses a two-step reaction, an alkyl migration and a NADPH-dependent reduction, in the assembly of the carbon skeletons of branched-chain amino acids. Detailed investigations of acetohydroxy acid isomeroreductase aimed at elucidating the biosynthetic pathway of branched-chain amino acids and at designing new inhibitors of the enzyme having herbicidal potency have so far been conducted with the enzymes isolated from bacteria. To gain more information on a plant system, the gene encoding the mature acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) leaf chloroplasts has been used to transform Escherichia coli cells and to overexpress the enzyme. A rapid protocol is described that allows the preparation of large quantities of pure spinach chloroplast acetohydroxy acid isomeroreductase. Kinetic and structural properties of the plant enzyme expressed in Escherichia coli are compared with those reported in our previous studies on the native enzymes purified from spinach chloroplasts and with those reported for the corresponding enzymes isolated from Escherichia coli and Salmonella typhimurium. Both the plant and the bacterial enzymes obey an ordered mechanism in which NADPH binds first, followed by substrate (either 2-acetolactate or 2-aceto-2-hydroxybutyrate). Inhibition studies employing an inactive substrate analogue, 2-hydroxy-2-methyl-3-oxopentanoate, showed, however, that the binding of 2-hydroxy-2-methyl-3-oxopentanoate and NADPH occurs randomly, suggestive of some flexibility of the plant enzyme active site. The observed preference of the enzyme for 2-aceto-2-hydroxybutyrate over 2-acetolactate is discussed with regard to the contribution of acetohydroxy acid isomeroreductase activity in the partitioning between isoleucine and valine biosyntheses. Moreover, the kinetic properties of the chloroplast enzyme support the notion that biosynthesis of branched-chain amino acids in plants is controlled by light. As

  3. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  4. Expression and purification of spinach nitrite reductase in E. coli

    SciTech Connect

    Bellissimo, D.; Privalle, L. )

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth were also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.

  5. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  6. Sizes of Mn-binding sites in spinach thylakoids

    SciTech Connect

    Takahashi, M.; Asada, K.

    1986-12-25

    The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.

  7. Photosynthate partitioning during flowering in relation to senescence of spinach

    SciTech Connect

    Sklensky, D.; Davies, P.J. )

    1990-05-01

    Male spinach plants are frequently cited as a counter-example to the nutrient drain hypothesis. Photosynthate partitioning in both male and female plants was examined. Leaves just below the inflorescences in plants at various stages of flowering were labelled with {sup 14}CO{sub 2} and the photosynthate allowed to partition for three hours. The leaves, flowers and stems of the inflorescence, and the other above ground vegetative tissue were harvested. These parts were combusted in a sample oxidizer for the collection of the {sup 14}CO{sub 2}. Allocation to the male and female flowers at very early stages are similar. As the flowers develop further, male flowers receive more photosynthate than do female flowers in early fruit production. Thus it is possible that nutrient drain to the flowers in male spinach plants is sufficient to account for senescence.

  8. Spinach RNA aptamer detects lead (II) with high selectivity†

    PubMed Central

    DasGupta, Saurja; Shelke, Sandip A.; Li, Nan-sheng

    2015-01-01

    Spinach RNA aptamer contains a G-quadruplex motif that serves as a platform for binding and fluorescence activation of a GFP-like fluorophore. Here we show that Pb2+ induces formation of Spinach’s G-quadruplex and activates fluorescence with high selectivity and sensitivity. This device establishes the first example of an RNA-based sensor that provides a simple and inexpensive tool for Pb2+ detection. PMID:25940073

  9. Studies of GA sub 53 oxidase from spinach

    SciTech Connect

    Wilson, T.; Zeevaart, J.A.D. )

    1990-05-01

    GA{sub 53} oxidase was purified 1,750-fold with 1% recovery of activity from spinach after exposure to 8 long days. This preparation was injected into balb/c mice and hybridomas from spleen cells were produced. Upon preliminary screening by immunoprecipitation of enzyme activity, three positive cell lines were selected. These are being cloned to select a true monoclonal antibody cell line. This antibody will be used to study the light/dark regulation of this enzyme.

  10. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. PMID:25624218

  11. Comparative uptake of enteric viruses into spinach and green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-03-01

    Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon(®). HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events. PMID:23412715

  12. Effect of Photoperiod on the Metabolism of Deuterium-Labeled Gibberellin A53 in Spinach 1

    PubMed Central

    Gianfagna, Thomas; Zeevaart, Jan A. D.; Lusk, William J.

    1983-01-01

    Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20. PMID:16662988

  13. Quantification of cyclic electron flow around Photosystem I in spinach leaves during photosynthetic induction.

    PubMed

    Fan, Da-Yong; Nie, Qin; Hope, Alexander B; Hillier, Warwick; Pogson, Barry J; Chow, Wah Soon

    2007-01-01

    The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method. PMID:17211579

  14. The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.

    2002-01-01

    The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.

  15. Localization, Purification, and Characterization of Shikimate Oxidoreductase-Dehydroquinate Hydrolyase from Stroma of Spinach Chloroplasts 1

    PubMed Central

    Fiedler, Erich; Schultz, Gernot

    1985-01-01

    The stroma of chloroplasts is probably the sole site of the shikimate pathway enzymes shikimate oxidoreductase/dehydroquinate hydrolyase (SORase/DHQase) in spinach leaves. (a) The chromatographic behavior of the bifunctional protein SORase/DHQase on several separation materials with extracts from stroma compared with leaf extracts showed only one peak of enzymic activity originating from the stroma. (b) Polyacrylamide gel electrophoresis (PAGE) of these extracts followed by specific staining resulted in the same pattern without a band of extraplastidic enzyme. (c) In protoplast fractionation experiments it was shown that SORase/DHQase was present only in the soluble chloroplast protein fraction. An improved purification procedure for SORase/DHQase from stroma of chloroplasts, yield 40%, 1600 times as pure, gave essentially one protein band on sodium dodecyl sulfate-PAGE. Our results demonstrate that both enzyme functions are carried out by a single polypeptide. Nondenaturing PAGE exhibited a pattern of four bands with SORase/DHQase showing that they differ in charge but not in their molecular weight. Molecular weight was determined to be 67 kilodaltons (gel filtration) and 59 kilodaltons (PAGE) for all four forms. It was proven they were not due to artifacts. The four forms show similar kinetic properties, their Km and pH optima differing only very slightly. Response to some metabolites is reported. Images Fig. 3 Fig. 7 PMID:16664373

  16. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeat irrigation of spinach plants with water containing Salmonella was used to determine Salmonella persistence on spinach leaves. Spinach plants were irrigated four times (biweekly) with water containing ca. 2.1 log CFU Salmonella per 100 ml water (the maximum generic E. coli MPN recommended by...

  17. Development of a qPCR assay for quantification of verticillium dahliae in spinach seed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is an important disease of lettuce and other specialty crops in the Salinas Valley of California. Although spinach is not affected by Verticillium wilt in commercial production, spinach seed infected with V. dahliae from locatio...

  18. Changes in quality, liking and purchase intent of irradiated fresh-cut spinach during storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ionizing radiation to enhance microbial safety of fresh spinach at a maximum dose of 4 kGy has been approved by the U.S. Food and Drug Administration. However, whether spinach can tolerate those high doses of radiation is unclear. Therefore, this study was conducted to investigate effect...

  19. Spinach: A new natural host of Impatiens necrotic spot virus in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impatiens necrotic spot tospovirus (INSV; family Bunyaviridae) was detected in a spinach (Spinacia oleracea) experimental field in Monterey County, CA in October of 2008. Spinach plants exhibiting severe stunting and with leaves that showed interveinal yellowing, thickening, and deformation were obs...

  20. Biofilm formation Escherichia coli O157:H7 and Salmonella on spinach harvester blades

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to leafy greens during mechanical harvesting. Harvesting of baby spinach presents an opportunity for contaminated blades to transfer bacterial foodborne pathogens to recently harvested spinach. Biofilm f...

  1. A qPCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Verticillium dahliae is the causal agent of Verticillium wilt of lettuce and other specialty crops in the Salinas Valley of California. Spinach, another major specialty crop in California, is not affected by Verticillium wilt in commercial production. However, spinach seed infected with ...

  2. Plasmolysis and vital staining reveal viable oospores of Peronospora effusa in spinach seed lots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of oospores by Peronospora effusa, the causal agent of downy mildew on spinach (Spinacia oleracea), was reported on spinach seed over three decades ago. In view of the rapid proliferation of new races of P. effusa worldwide, seed borne transmission has been suspected but methods to test ...

  3. Biodegradable PLA (polylactic acid) hinged trays keep quality of fresh-cut and cooked spinach.

    PubMed

    Botondi, Rinaldo; Bartoloni, Serena; Baccelloni, Simone; Mencarelli, Fabio

    2015-09-01

    This work examines the effects of packaging using two different polymeric trays with hinged lids, polyethylene terephthalate (PET) and polylactic acid (PLA), on fresh-cut and cooked spinach (Spinacia oleracea). Samples were stored in a cold room for 16 days at 4 °C. Chemical (total pigments, total polyphenols, ascorbic acid, antioxidant activity), physical (water activity), technological (colour evaluation), sensorial (aroma, visual appearance and water accumulation) and microbial (total aerobic mesophilic and psychrotrophic counts) parameters were tested. Both polymeric trays maintained the overall quality of fresh spinach for 6 days but spinach stored in PLA trays maintained its flavour longer. A significant increase in total polyphenols, antiradical activity, total carotenoids as well as a decrease in ascorbic acid in fresh spinach was observed in the first 3 days of storage in both samples. Unfortunately, the PLA package accumulated condensed water. The total microbial load of fresh-cut spinach reached about 6.3-7.3 log CFU g(-1) within 8 days. Cooked spinach packed in PLA and PET polymeric hinged trays showed the same behaviour as fresh spinach in terms of quality and shelf life. In conclusion, PLA plastic hinged trays can be used for packaging fresh-cut and cooked cut spinach, but the problem of condensed water must be solved. PMID:26345011

  4. Influences of lead (II) chloride on the nitrogen metabolism of spinach.

    PubMed

    Wu, Xiao; Xiao, Wu; Liu, Chao; Chao, Liu; Qu, Chunxiang; Chunxiang, Qu; Huang, Hao; Hao, Huang; Liu, Xiaoqing; Xiaoqing, Liu; Chen, Liang; Liang, Chen; Su, Mingyu; Mingyu, Su; Hong, Fashui; Fashui, Hong

    2008-03-01

    Lead (Pb(2+)) is a well-known highly toxic element. The mechanisms of the Pb(2+) toxicity are not well understood for nitrogen metabolism of higher plants. In this paper, we studied the effects of various concentrations of PbCl(2) on the nitrogen metabolism of growing spinach. The experimental results showed that Pb(2+) treatments significantly decreased the nitrate nitrogen (NO(-)(3)-N) absorption and inhibited the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase of spinach, and inhibited the synthesis of organic nitrogen compounds such as protein and chlorophyll. However, Pb(2+) treatments increased the accumulation of ammonium nitrogen NH(+)(4)-N)in spinach cell. It implied that Pb(2+) could inhibit inorganic nitrogen to be translated into organic nitrogen in spinach, thus led to the reduction in spinach growth. PMID:17955201

  5. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA.

    PubMed

    Strack, Rita L; Disney, Matthew D; Jaffrey, Samie R

    2013-12-01

    Imaging RNA in living cells is a challenging problem in cell biology. One strategy for genetically encoding fluorescent RNAs is to express them as fusions with Spinach, an 'RNA mimic of GFP'. We found that Spinach was dimmer than expected when used to tag constructs in living cells owing to a combination of thermal instability and a propensity for misfolding. Using systematic mutagenesis, we generated Spinach2 that overcomes these issues and can be used to image diverse RNAs. Using Spinach2, we detailed the dynamics of the CGG trinucleotide repeat-containing 'toxic RNA' associated with Fragile X-associated tremor/ataxia syndrome, and show that these RNAs form nuclear foci with unexpected morphological plasticity that is regulated by the cell cycle and by small molecules. Together, these data demonstrate that Spinach2 exhibits improved versatility for fluorescently labeling RNAs in living cells. PMID:24162923

  6. Effects of Growth Temperature on the Responses of Ribulose-1,5-Biphosphate Carboxylase, Electron Transport Components, and Sucrose Synthesis Enzymes to Leaf Nitrogen in Rice, and Their Relationships to Photosynthesis.

    PubMed

    Makino, A.; Nakano, H.; Mae, T.

    1994-08-01

    Effects of growth temperature on the photosynthetic gas-exchange rates and their underlying biochemical properties were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under day/night temperature regimes of 18/15[deg]C, 23/18[deg]C, and 30/23[deg]C and all photosynthetic measurements were made at a leaf temperature of 25[deg]C and an irradiance of 1800 [mu]mol quanta m-2 s-1. Growth temperature affected the photosynthetic CO2 response curve. The relative ratio of the initial slope to the CO2-saturated photosynthesis increased with rising growth temperature. This was caused mainly by an increase in CO2-limited photosynthesis for a given leaf nitrogen content with rising growth temperature. However, there was no difference in ribulose-1,5-bisphosphate carboxylase (Rubisco) content at any given leaf nitrogen content among temperature treatments. In addition, the activation state and catalytic turnover rate of Rubisco were not affected by growth temperature. The increase in CO2-limited photosynthesis with rising growth temperature was the result of an increase in the CO2 transfer conductance between the intercellular airspaces and the carboxylation sites. The amounts of total chlorophyll and light-harvesting chlorophyll a/b protein II increased for the same leaf nitrogen content with rising growth temperature, but the amounts of cytochrome f and coupling factor 1 and the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were the same between plants grown at 23/18[deg]C and those grown at 30/23[deg]C. Similarly, CO2-saturated photosynthesis was not different for the same leaf nitrogen content between these treatments. For the 18/15[deg]C-grown plants, a slight decrease in the amounts of cytochrome f and coupling factor 1 and an increase in the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were found, but these were not reflected in CO2-saturated

  7. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  8. Correlating Arsenic-Induced Morphological Change in Spinach Leaves With Leaf Spectral Characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) is a widely spread soil contaminant which can be accumulated into plant parts. The presence of As in edible portions of plants allows for potentially dangerous ingestion by humans and animals. The ability to detect As in plants is an important tool to minimize such risks. Remote sens...

  9. Metabolic Interactions between Spinach Leaf Nitrite Reductase and Ferredoxin-NADP Reductase

    PubMed Central

    Baysdorfer, Chris; Robinson, J. Michael

    1985-01-01

    Steady state rates of NADP reduction decline upon commencement of nitrite reduction in reconstituted chloroplast preparations. Similarly, steady state rates of nitrite reduction are lower, but not zero, during concurrent NADP reduction. These results imply that competition for substrate occurs and suggest that nitrite reduction can successfully compete for reduced ferredoxin, even at high rates of NADP reduction. PMID:16664050

  10. Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. [Spinacia oleracea L

    SciTech Connect

    Sakaki, Takeshi; Kondo, Noriaki; Yamada, Mitsuhiro Univ. of Tokyo )

    1990-10-01

    When the upper leaf surface of spinach (Spinacia oleracea L.) plants was treated with (1-{sup 14}C)acetate and grown for 2 days, {sup 14}C was effectively incorporated into acyl moieties of leaf lipids in ratios approximately their composition by mass. Fumigation of the plants with ozone (0.5 microliter per liter) caused a redistribution of {sup 14}C among lipid classes, i.e. a marked increase of {sup 14}C content in triacylglycerol (TG) and 1,2-diacylglycerol (1,2-DG) and a decrease of label in monogalactosyldiacylglycerol (MGDG) without affecting {sup 14}C distribution in leaf fatty acids. Label in both TG and 1,2-DG was found predominantly in their polyene molecular species. Since MGDG consists of similar polyene molecular species, the results indicate the synthesis of TG from MGDG via 1,2-DG. Label was also accumulated in tri- and tetragalactosyldiacylglycerol, products of galactolipid:galactolipid galactosyltransferase (GGGT). Moreover, there was a close relation between increases in the amounts of TG and the oligogalactolipids in ozone-treated leaves. These results indicate that MGDG was converted to 1,2-DG by GGGT and then to TG. In intact chloroplasts isolated from ozone-treated leaves, there was an enhanced production of free fatty acid (FFA), which was diminished by the addition of coenzyme A (CoA) and ATP, indicating that ozone stimulated the hydrolysis of MGDG to liberate FFA, which was in turn converted to acyl-CoA. The final step of TG synthesis, acylation of 1,2-DG with acyl-CoA, was confirmed by feeding with (1-{sup 14}C)linolenic acid in leaf discs excised from ozone-fumigated leaves; {sup 14}C was effectively incorporated into TG but not into 1,2-DG.

  11. Insect molting hormone and sterol biosynthesis in spinach

    SciTech Connect

    Grebenok, R.J.; Adler, J.H. )

    1990-05-01

    Insect molting hormones, which are produced by plants and are effective molecules in the control of insect crop pests, are biosynthesized in developing spinach leaves (Spinacia oleracea L.). The major sterols biosynthesized by spinach are avenasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,24(28)-dien-3{beta}-ol), spinasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,22-dien-3{beta}-ol), and 22-dihydrospinasterol (24{alpha}-ethyl-5{alpha}-cholest-7-en-3{beta}-ol). The major ecdysteroids biosynthesized are ecdysterone (2{beta},3{beta},14{alpha},20R,22R,25-hexahydroxy-5{beta}-cholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahycroxycholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahydroxycholest-7-en-6-one). When labeled 2-{sup 14}C-mevalonic acid was incorporated into young leaves isolated squalene, sterols and ecdysteroids contained the label. During a short (16 h) incorporation period in intact young leaves of 100 day old plants, the avenasterol has the highest specific activity in counts per minute per {mu}g of sterol followed by 22-dihydrospinasterol which is more highly labeled than spinasterol. The ecdysteroids synthesized, on an entire plant basis, account for 20% of the total steroid (sterol and ecdysteroid) isolated from the plant.

  12. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    SciTech Connect

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.

  13. Effect of photoperiod on gibberellin biosynthetic enzymes in spinach

    SciTech Connect

    Gilmour, S.J.; Bleecker, A.B.; Zeevaart, J.A.D.

    1986-04-01

    The photoperiodic control of stem elongation in spinach, a long day (LD) rosette plant, is mediated by gibberellins (GAs). The early 13-hydroxylated GA biosynthetic pathway from GA/sub 12/ to GA/sub 20/ operates in spinach: GA/sub 12/ ..-->.. GA/sub 53/ ..-->.. GA/sub 44/ ..-->.. GA/sub 19/ ..-->.. GA/sub 20/. Two enzymes of this pathway, those converting GA/sub 53/ to GA/sub 44/ (GA/sub 53/ oxidase) and GA/sub 19/ to GA/sub 20/ (GA/sub 19/ oxidase), are regulated by light. The enzyme converting GA/sub 44/ to GA/sub 19/ (GA/sub 44/ oxidase) is not light-regulated. In the light GA/sub 53/ and GA/sub 18/ oxidase activities are increased, therefore causing the GA biosynthetic pathway to be turned on. This leads to the production of an active GA in LD, which causes an increase in stem elongation. Two the enzymes, GA/sub 44/ and GA/sub 53/ oxidases, can be separated from one another by anion exchange HPLC. Estimates of the molecular weights of these two enzymes based on gel filtration HPLC will be reported.

  14. Assay, Purification, and Partial Characterization of Choline Monooxygenase from Spinach.

    PubMed Central

    Burnet, M.; Lafontaine, P. J.; Hanson, A. D.

    1995-01-01

    The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein. PMID:12228495

  15. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA

    PubMed Central

    Strack, Rita L.; Disney, Matthew D.; Jaffrey, Samie R.

    2013-01-01

    Fluorescent imaging of RNA in living cells is a technically challenging problem in cell biology. One strategy for genetically encoding fluorescent RNAs is to express them as fusions with ‘RNA mimics of GFP’. These are short aptamer tags that exhibit fluorescence upon binding otherwise nonfluorescent fluorophores that resemble those found in GFP. We find that the brightest of these aptamers, Spinach, often exhibits reduced fluorescence after it is fused to RNAs of interest. We show that a combination of thermal instability and a propensity for misfolding account for the low fluorescence of various Spinach-RNA fusions. Using systematic mutagenesis, we identified nucleotides that account for the poor folding of Spinach, and generated Spinach2, which exhibits markedly improved thermal stability and folding in cells. Furthermore, we show that Spinach2 largely retains its fluorescence when fused to various RNAs. Using Spinach2, we detail the cellular dynamics of the CGG trinucleotide-repeat containing “toxic RNA” associated with Fragile-X tremor/ataxia syndrome, and show that these RNAs form nuclear foci with unexpected morphological plasticity that is regulated by the cell cycle and by small molecules. Together, these data demonstrate that Spinach2 exhibits improved versatility for fluorescently labeling RNAs in living cells. PMID:24162923

  16. Leaf Carbohydrate Status and Enzymes of Translocate Synthesis in Fruiting and Vegetative Plants of Cucumis sativus L. 1

    PubMed Central

    Pharr, David M.; Huber, Steven C.; Sox, Harriet N.

    1985-01-01

    Carbon partitioning in the leaves of Cucumis sativus L., a stachyose translocating plant, was influenced by the presence or absence of a single growing fruit on the plant. Fruit growth was very rapid with rates of fresh weight gain as high as 3.3 grams per hour. Fruit growth was highly competitive with vegetative growth as indicated by lower fresh weights of leaf blades, petioles, stem internodes and root systems on plants bearing a single growing fruit compared to plants not bearing a fruit. Carbon exchange rates, starch accumulation rates and carbon export rates were higher in leaves of plants bearing a fruit. Dry weight loss from leaves was higher at night from fruiting plants, and morning starch levels were consistently lower in leaves of fruiting than in leaves of vegetative plants indicating rapid starch mobilization at night from the leaves of fruiting plants. Galactinol, the galactosyl donor for stachyose biosynthesis, was present in the leaves of fruit-bearing plants at consistently lower concentration than in leaves of vegetative plants. Galactinol synthase, and sucrose phosphate synthase activities were not different on a per gram fresh weight basis in leaves from the two plant types; however, stachyose synthase activity was twice as high in leaves from fruiting plants. Thus, the lower galactinol pools may be associated with an activation of the terminal step in stachyose biosynthesis in leaves in response to the high sink demand of a growing cucumber fruit. PMID:16663989

  17. Suppression effects of betaine-enriched spinach on hyperhomocysteinemia induced by guanidinoacetic acid and choline deficiency in rats.

    PubMed

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25 C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation. PMID:25250392

  18. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    PubMed Central

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation. PMID:25250392

  19. Purification and characterization of ribulose-5-phosphate kinase from spinach

    SciTech Connect

    Porter, M.A.; Milanez, S.; Stringer, C.D.; Hartman, F.C.

    1986-02-15

    An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.

  20. Influence of nutrient level on methylmercury content in water spinach.

    PubMed

    Greger, Maria; Dabrowska, Beata

    2010-08-01

    Widely consumed vegetables are often cultivated in sewage waters with high nutrient levels. They can contain high levels of methylmercury (MeHg), because they can form MeHg from inorganic Hg in their young shoots. We determined whether the MeHg uptake and the MeHg formation in the shoots of water spinach (Ipomoea aquatica) were affected by the presence of a high nutrient level in the growth medium. Water spinach shoots were rooted and pretreated in growth medium containing 7% (low) or 70% (high) Hoagland nutrient solution; thereafter, the plants were treated with either 0.02 microM MeHg or 0.2 microM HgCl2 for 3 d. Half the plants were then analyzed for total Hg and MeHg. The remaining plants were transferred to mercury-free medium with low or high nutrient levels and posttreated for 3 days before analysis of total Hg and MeHg in order to measure MeHg formation in the absence of external Hg. The results indicate that nutrient level did not influence MeHg uptake, but that a high nutrient level reduced the distribution of MeHg to the shoots 2.7-fold versus low nutrient level. After treatment with HgCl2, MeHg was found in roots and new shoots but not in old shoots. The MeHg:total-Hg ratio was higher in new shoots than in roots, being 13 times higher at high versus low nutrient levels. Thus, MeHg formation was the same in new shoots independent of inorganic Hg concentration, since the total Hg level decreased at a high nutrient level. PMID:20821626

  1. Activity of phosphatidylcholine-transfer protein from spinach (Spinacia oleracea) leaves with mitochondria and chloroplasts.

    PubMed

    Julienne, M; Vergnolle, C; Kader, J C

    1981-09-01

    A low-molecular-weight protein catalysing the transfer of phosphatidylcholine from liposomes to mitochondria and chloroplasts has been isolated from spinach (Spinacia oleracea) by chromatography on Sephadex G-75. PMID:7325986

  2. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant.

    PubMed

    Begum, Parvin; Fugetsu, Bunshi

    2012-12-01

    Carbon nanotubes (CNTs) are a novel nanomaterial with wide potential applications; however the adverse effects of CNTs following environmental exposure have recently received significant attention. Herein, we explore the systemic toxicity and potential influence of 0-1000 mg L(-1) the multi-walled CNTs on red spinach. The multi-walled CNTs exposed plants exhibited growth inhibition and cell death after 15 days of hydroponic culture. The multi-walled CNTs had adverse effects on root and leaf morphology, as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Raman spectroscopy detected the multi-walled CNTs in leaves. Biomarkers of nanoparticle toxicity, reactive oxygen species (ROS), and cell damage in the red spinach were greatly increased 15 days post-exposure to the multi-walled CNTs. These effects were reversed when the multi-walled CNTs were supplemented with ascorbic acid (AsA), suggesting a role of ROS in the multi-walled CNT-induced toxicity and that the primary mechanism of the multi-walled CNTs' toxicity is oxidative stress. PMID:23146354

  3. Spinach-associated Escherichia coli O157:H7 Outbreak, Utah and New Mexico, 2006

    PubMed Central

    Wendelboe, Aaron M.; Wendel, Arthur; Jepson, Barbara; Torres, Paul; Smelser, Chad; Rolfs, Robert T.

    2008-01-01

    In 2006, Utah and New Mexico health departments investigated a multistate cluster of Escherichia coli O157:H7. A case–control study of 22 case-patients found that consuming bagged spinach was significantly associated with illness (p<0.01). The outbreak strain was isolated from 3 bags of 1 brand of spinach. Nationally, 205 persons were ill with the outbreak strain. PMID:18826833

  4. Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model

    NASA Technical Reports Server (NTRS)

    Rutzke, Corinne J.; Glahn, Raymond P.; Rutzke, Michael A.; Welch, Ross M.; Langhans, Robert W.; Albright, Louis D.; Combs, Gerald F Jr; Wheeler, Raymond M.

    2004-01-01

    Spinach (Spinacia oleracea) cv Whitney was tested for iron bioavailabilty using an in vitro human intestinal cell culture ferritin bioassay technique previously developed. Spinach was cultured in a growth chamber for 33 days, harvested, and freeze-dried. Total iron in the samples was an average of 71 micrograms/g dry weight. Spinach was digested in vitro (pepsin and 0.1 M HCl followed by pancreatin and 0.1 M NaHCO3) with and without the addition of supplemental ascorbic acid. Caco-2 cell cultures were used to determine iron bioavailability from the spinach mixtures. Production of the iron-binding protein ferritin in the Caco-2 cells showed the supplemental ascorbic acid doubled bioavailability of iron from spinach. The data show fresh spinach is a poor source of iron, and emphasize the importance of evaluation of whole meals rather than single food items. The data support the usefulness of the in vitro/Caco-2 cell ferritin bioassay model for prescreening of space flight diets for bioavailable iron.

  5. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similarly to phytopathogens and epiphytic microorganisms, human bacterial pathogens have been shown to colonize on plant phylloplane. Along with environmental variables such as temperate, UV light, relative humidity, etc., plant cultivar and specifically the leaf blade morphological characteristics ...

  6. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts.

    PubMed

    Crozier, Louise; Hedley, Pete E; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C; Toth, Ian; Jackson, Robert W; Holden, Nicola J

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate

  7. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate

  8. Jumping mode atomic force microscopy on grana membranes from spinach.

    PubMed

    Sznee, Kinga; Dekker, Jan P; Dame, Remus T; van Roon, Henny; Wuite, Gijs J L; Frese, Raoul N

    2011-11-11

    The thylakoid membrane system is a complex membrane system that organizes and reorganizes itself to provide plants optimal chemical energy from sunlight under different and varying environmental conditions. Grana membranes are part of this system and contain the light-driven water-splitting enzyme Photosystem II (PSII) and light-harvesting antenna complexes. Here, we present a direct visualization of PSII complexes within grana membranes from spinach. By means of jumping mode atomic force microscopy in liquid, minimal forces were applied between the scanning tip and membrane or protein, allowing complexes to be imaged with high detail. We observed four different packing arrangements of PSII complexes, which occur primarily as dimers: co-linear crystalline rows, nanometric domains of straight or skewed rows, and disordered domains. Upon storing surface-adhered membranes at low temperature prior to imaging, large-scale reorganizations of supercomplexes between PSII and light-harvesting complex II could be induced. The highest resolution images show the existence of membrane domains without obvious topography extending beyond supercomplexes. These observations illustrate the possibility for diffusion of proteins and smaller molecules within these densely packed membranes. PMID:21911498

  9. Phosphoglycolate phosphatase of spinach acts as a phosphoenzyme

    SciTech Connect

    Rose, Z.B.; Seal, S.N.

    1987-05-01

    When /sup 32/P-glycolate and phosphoglycolate phosphatase from spinach are mixed, /sup 32/P is incorporated into acid precipitated protein. Properties that relate this phosphorylation to the enzyme are: The K/sub m/ value for P-glycolate is similar for protein phosphorylation and substrate hydrolysis; the /sup 32/P appearing in the phosphoenzyme is diluted by unlabeled P-glycolate or the alternative substrate, ethyl-P; the activator Cl/sup -/ enhances the effectiveness of ethyl-P as a substrate and as an inhibitor of the formation of /sup 32/P-enzyme; and /sup 32/P is lost from the enzyme when /sup 32/P-glycolate is consumed. The acid denatured phosphorylated protein is a molecule of 34,000 Da, which is half of the molecular weight of the native protein and is similar in size to the labeled band that is seen on SDS-polyacrylamide gels. The enzyme-bound phosphoryl group appears to be an acyl-phosphate from its pH stability, being quite stable at pH 1, less stable at pH 5, and very unstable above pH 5. The bond is readily hydrolyzed in acid molybdate and it is sensitive to cleavage by hydroxylamine at pH 6.8. The demonstration of enzyme phosphorylation by /sup 32/P-glycolate resolves the dilemma presented by initial rate studies in which alternative substrates appeared to have different mechanisms.

  10. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  11. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    SciTech Connect

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  12. Spinach curly top virus: A Newly Described Curtovirus Species from Southwest Texas with Incongruent Gene Phylogenies.

    PubMed

    Baliji, Surendranath; Black, Mark C; French, Roy; Stenger, Drake C; Sunter, Garry

    2004-07-01

    ABSTRACT A curtovirus associated with a disease of spinach was isolated in southwest Texas during 1996. Disease symptoms included severe stunting and chlorosis, with younger leaves curled, distorted, and dwarfed. Viral DNA was purified and an infectious clone obtained. Agroinoculation using a construct bearing full-length tandem repeats of the cloned viral genome resulted in systemic infection of species in six of seven plant families tested, indicating that the virus has a wide host range. Symptoms produced in spinach agroinoculated with cloned viral DNA were similar to those observed in the field. Viral single-stranded and double-stranded DNA forms typical of curtovirus infection were detected in host plants by Southern blot hybridization. The complete sequence of the infectious clone comprised 2,925 nucleotides, with seven open reading frames encoding proteins homologous to those of other curtoviruses. Complete genome comparisons revealed that the spinach curtovirus shared 64.2 to 83.9% nucleotide sequence identity relative to four previously characterized curtovirus species: Beet curly top virus, Beet severe curly top virus, Beet mild curly top virus, and Horseradish curly top virus. Phylogenetic analysis of individual open reading frames indicated that the evolutionary history of the three virion-sense genes was different from that of the four complementary-sense genes, suggesting that recombination among curtoviruses may have occurred. Collectively, these results indicate that the spinach curtovirus characterized here represents a newly described species of the genus Curtovirus, for which we propose the name Spinach curly top virus. PMID:18943911

  13. Pesticide residue analysis in parsley, lettuce and spinach by LC-MS/MS.

    PubMed

    Esturk, Okan; Yakar, Yasin; Ayhan, Zehra

    2014-03-01

    In this study, pesticide residues in parsley, lettuce and spinach (120 samples) were analyzed by the application of liquid chromatography-tandem mass spectrometry (LC-MS/MS). All samples of spinach, parsley or lettuce contained residues of three or more active substances. In parsley, carbendazim (100.0%), dichlorvos (100.0%), fenarimol (40.0%), pendimethalin (95.0%), in lettuce, diazinon (30.0%), dichlorvos (100.0%), pendimethalin (92.5%) phenthoate (12.5%), and in spinach, carbendazim (45.0%), cymoxanil (85.0%), dichlorvos (100.0%) and fenarimol (85.0%) were the significant active compounds. The maximum residue limits were exceeded in 28, 20 and 40 samples of parsley, lettuce and spinach, respectively. The results showed that there was a high occurrence of pesticide residues in parsley, lettuce and spinach samples from Hatay province, in which most of them were prohibited from use in Turkey for these vegetables. The contamination levels of these residues may be considered a serious public health problem according to the maximum residue limits (MRLs) of Turkey and the European Union (EU). PMID:24587520

  14. Distinct transcriptional profiles and phenotypes exhibited by Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, an outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged spinach. The likely sources of pre-harvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compa...

  15. Colonization of spinach by Verticillium dahliae and effects of pathogen localization on the efficacy of seed treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt is caused by the soilborne fungus V. dahliae on spinach (Spinacia oleracea L.) but the disease is a serious problem only in seed production fields. Spinach crops are harvested well before symptom expression, and thus, Verticillium wilt is not a significant threat in fresh and proc...

  16. Quality of fresh-cut iceberg lettuce and spinach irradiated at doses up to 4kGy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to investigate radiation tolerance of fresh-cut Iceberg lettuce and spinach. Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the sam...

  17. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasound to enhance the efficacy of selected sanitizers in reduction of Escherichia coli O157:H7 populations on spinach was investigated. Spot-inoculated spinach samples were treated with water, chlorine, acidified sodium chlorite (ASC), peroxyacetic acid (POAA), and acidic electrolyzed...

  18. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    ERIC Educational Resources Information Center

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  19. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach

    PubMed Central

    Ketterer, Simon; Fuchs, David; Weber, Wilfried; Meier, Matthias

    2015-01-01

    Fluorogenic RNAs that are based on the complex formed by 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) derivatives and the RNA aptamer named Spinach were used to engineer a new generation of in vitro and in vivo sensors for bioanalytics. With the resolved crystal structure of the RNA/small molecule complex, the engineering map becomes available, but comprehensive information regarding the thermodynamic profile of the molecule is missing. Here, we reconstructed the full thermodynamic binding and stability landscapes between DFHBI and a truncated sequence of first-generation Spinach. For this purpose, we established a systematic screening procedure for single- and double-point mutations on a microfluidic large-scale integrated chip platform for 87-nt long RNAs. The thermodynamic profile with single base resolution was used to engineer an improved fluorogenic spinach generation via a directed rather than evolutional approach. PMID:26400180

  20. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications

    PubMed Central

    Autour, Alexis; Westhof, Eric; Ryckelynck, Michael

    2016-01-01

    Using random mutagenesis and high throughput screening by microfluidic-assisted In Vitro Compartmentalization, we report the isolation of an order of magnitude times brighter mutants of the light-up RNA aptamers Spinach that are far less salt-sensitive and with a much higher thermal stability than the parent molecule. Further engineering gave iSpinach, a molecule with folding and fluorescence properties surpassing those of all currently known aptamer based on the fluorogenic co-factor 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI). We illustrate the potential of iSpinach in a new sensitive and high throughput-compatible fluorogenic assay that measures co-transcriptionally the catalytic constant (kcat) of a model ribozyme. PMID:26932363

  1. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications.

    PubMed

    Autour, Alexis; Westhof, Eric; Ryckelynck, Michael

    2016-04-01

    Using random mutagenesis and high throughput screening by microfluidic-assisted In Vitro Compartmentalization, we report the isolation of an order of magnitude times brighter mutants of the light-up RNA aptamers Spinach that are far less salt-sensitive and with a much higher thermal stability than the parent molecule. Further engineering gave iSpinach, a molecule with folding and fluorescence properties surpassing those of all currently known aptamer based on the fluorogenic co-factor 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI). We illustrate the potential of iSpinach in a new sensitive and high throughput-compatible fluorogenic assay that measures co-transcriptionally the catalytic constant (kcat) of a model ribozyme. PMID:26932363

  2. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach.

    PubMed

    Ketterer, Simon; Fuchs, David; Weber, Wilfried; Meier, Matthias

    2015-10-30

    Fluorogenic RNAs that are based on the complex formed by 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) derivatives and the RNA aptamer named Spinach were used to engineer a new generation of in vitro and in vivo sensors for bioanalytics. With the resolved crystal structure of the RNA/small molecule complex, the engineering map becomes available, but comprehensive information regarding the thermodynamic profile of the molecule is missing. Here, we reconstructed the full thermodynamic binding and stability landscapes between DFHBI and a truncated sequence of first-generation Spinach. For this purpose, we established a systematic screening procedure for single- and double-point mutations on a microfluidic large-scale integrated chip platform for 87-nt long RNAs. The thermodynamic profile with single base resolution was used to engineer an improved fluorogenic spinach generation via a directed rather than evolutional approach. PMID:26400180

  3. Postharvest handling conditions affect internalization of Salmonella in baby spinach during washing.

    PubMed

    Gómez-López, Vicente M; Marín, Alicia; Allende, Ana; Beuchat, Larry R; Gil, María I

    2013-07-01

    Internalization of foodborne pathogens in fruits and vegetables is an increasing safety concern. The aim of this research was to assess the potential for internalization of an enteric pathogen (Salmonella enterica serotype Typhimurium) in a leafy vegetable (baby spinach) during washing as influenced by three postharvest handling conditions: (i) illumination, (ii) negative temperature differential, and (iii) relative humidity (RH). To compare these potential postharvest handling conditions, leaves were exposed to different levels of illumination (0, 1,000, and 2,000 lx), temperature differential (5, 11, 14, 20, and 26°C), and RH (99, 85, and 74%) for a short time before or during washing. Washing of baby spinach was carried out in water containing green fluorescent protein-tagged Salmonella Typhimurium (6.5 log CFU/ml) at 5°C for 2 min, followed by surface disinfection with chlorine (10,000 μg/ml) for 1 min, two rinses in water for 10 s, and spin drying for 15 s. Internalization was assessed by enumerating the pathogen on Salmonella-Shigella agar and by confocal laser scanning microscopy. Illumination of spinach leaves before and during washing and a negative temperature differential during washing did not significantly (P > 0.05) increase the number of internalized bacteria. However, exposure of leaves to low-RH conditions before washing, which reduced the tissue water content, decreased internalization of Salmonella compared with internalization in baby spinach exposed to high RH (P ≤ 0.05). Green fluorescent protein-tagged Salmonella Typhimurium was visualized by confocal laser scanning microscopy at a depth of up to 30 m m beneath the surface of spinach leaves after exposure to a high inoculum level (8 log CFU/ml) for an extended time (2 h). Results show that internalization of Salmonella into baby spinach leaves can occur but can be minimized under specific postharvest handling conditions such as low RH. PMID:23834788

  4. Nutritional Composition of Water Spinach (Ipomoea aquatica Forsk.) Leaves

    NASA Astrophysics Data System (ADS)

    Umar, K. J.; Hassan, L. G.; Dangoggo, S. M.; Ladan, M. J.

    Analyses of the nutritional composition of water spinach (Ipomoea aquatica) Forsk leaves were carried out using standard methods of food analysis. The proximate composition as well as mineral elements were determined. The leaves were found on dry weight basis to have high moisture (72.83±0.29%), ash (10.83±0.80%), crude lipid (11.00±0.50%), crude fibre (17.67±0.35%) and available carbohydrate (54.20±0.68%), but low in crude protein content (6.30±0.27%). The leaves also have energy value (300.94±5.31 kcal/100 g) that is within the range reported in some Nigerian leafy vegetables. The mineral element contents were high with remarkable concentration of K (5,458.33±954.70 mg/100 g) and Fe (210.30±2.47 mg/100 g). Also the leaves content moderate concentrations of Na (135.00±2.50 mg/100 g), calcium (416.70±5.77 mg/100 g), Magnesium (301.64±12.69 mg/100 g) and P (109.29±0.55 mg/100 g), with low Cu (0.36±0.01 mg/100 g), Mn (2.14±0.22 mg/100 g) and Zn (2.47±0.27 mg/100 g) contents. Comparing the mineral content with recommended dietary allowance, it was showed that the plant leaves is good sources of K, Mn and Fe for all categories of people, while Mg is adequate enough for adult female and children. From the result, Ipomoea aquatica Forsk leaves could be used for nutritional purposes, due to the amount and diversity of nutrients it contains.

  5. Isolation of chlorophylls a and b from spinach by counter-current chromatography.

    PubMed

    Jubert, Carole; Bailey, George

    2007-01-26

    A method for the isolation of chlorophylls from spinach by counter-current chromatography was developed. An initial extraction protocol was devised to avoid the notorious sensitivity of chlorophylls to degradation by light, heat, oxygen, acids and bases. Further purification and separation of chlorophylls a and b were achieved using counter-current chromatography. Chlorophyll structures and purities were established by HPLC, fast atom bombardment mass spectrometry and nuclear magnetic resonance. Purity was estimated to be >95% (100% by HPLC). Typical yields from 30g of freeze-dried spinach were 300mg of chlorophyll a and 100mg of chlorophyll b. PMID:17164074

  6. Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway

    SciTech Connect

    Bernhard, W.R.; Thoma, S.; Botella, J.; Somerville, C.R. )

    1991-01-01

    A cDNA clone encoding a nonspecific lipid transfer protein from spinach (Spinacia oleracea) was isolated by probing a library with synthetic oligonucleotides based on the amino acid sequence of the protein. Determination of the DNA sequence indicated a 354-nucleotide open reading frame which encodes a 118-amino acid residue polypeptide. The first 26 amino acids of the open reading frame, which are not present in the mature protein, have all the characteristics of a signal sequence which is normally associated with the synthesis of membrane proteins or secreted proteins. In vitro transcription of the cDNA and translation in the presence of canine pancreatic microsomes or microsomes from cultured maize endosperm cells indicated that proteolytic processing of the preprotein to the mature form was associated with cotranslational insertion into the microsomal membranes. Because there is no known mechanism by which the polypeptide could be transferred from the microsomal membranes to the cytoplasm, the proposed role of this protein in catalyzing lipid transfer between intracellular membranes is in doubt. Although the lipid transfer protein is one of the most abundant proteins in leaf cells, the results of genomic Southern analysis were consistent with the presence of only one gene. Analysis of the level of mRNA by Northern blotting indicated that the transcript was several-fold more abundant than an actin transcript in leaf and petiole tissue, but was present in roots at less than 1% of the level in petioles.

  7. Potential anticancer effect of red spinach (Amaranthus gangeticus) extract.

    PubMed

    Sani, Huzaimah Abdullah; Rahmat, Asmah; Ismail, Maznah; Rosli, Rozita; Endrini, Susi

    2004-01-01

    The objective of this study was to determine the anti cancer effects of red spinach (Amaranthus gangeticus Linn) in vitro and in vivo. For in vitro study, microtitration cytotoxic assay was done using 3-(4,5-dimethylthiazol-2-il)-2,5-diphenil tetrazolium bromide (MTT) kit assay. Results showed that aqueous extract of A gangeticus inhibited the proliferation of liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). The IC(50) values were 93.8 mu g/ml and 98.8 mu g/ml for HepG2 and MCF-7, respectively. The inhibitory effect was also observed in colon cancer cell line (Caco-2), but a lower percentage compared to HepG2 and MCF-7. For normal cell line (Chang Liver), there was no inhibitory effect. In the in vivo study, hepatocarcinogenesis was monitored in rats according to Solt and Farber (1976) without partial hepatectomy. Assay of tumour marker enzymes such as glutathione S-transferase (GST), gamma-glutamyl transpeptidase (GGT), uridyl diphosphoglucuronyl transferase (UDPGT) and alkaline phosphatase (ALP) were carried out to determine the severity of hepatocarcinogenesis. The result found that supplementation of 5%, 7.5% and 10% of A. gangeticus aqueous extract to normal rats did not show any significant difference towards normal control (P <0.05). The exposure of the rats to chemical carcinogens diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) showed a significant increase in specific enzyme activity of GGT, GST, UDPGT and ALP compared to normal control (P <0.05). However, it was found that the supplementation of A. gangeticus aqueous extract in 5%, 7.5% and 10% to cancer-induced rats could inhibit the activity of all tumour marker enzymes especially at 10% (P <0.05). Supplementation of anti cancer drug glycyrrhizin at suggested dose (0.005%) did not show any suppressive effect towards cancer control (P <0.05). In conclusion, A. gangeticus showed anticancer potential in in vitro and in vivo studies. PMID:15563447

  8. De novo and comparative transcriptome analysis of cultivated and wild spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we performed deep transcriptome sequencing for nine spinach (Spinacia oleracea L., 2n = 2× = 12) accessions, three from cultivated S. oleracea, three from wild S. turkestanica and three from wild S. tetrandra, using the Illumina sequencing technology. A total of approximately 100 mill...

  9. Acute Effects of a Spinach Extract Rich in Thylakoids on Satiety: A Randomized Controlled Crossover Trial

    PubMed Central

    Rebello, Candida J.; Chu, Jessica; Beyl, Robbie; Edwall, Dan; Erlanson-Albertsson, Charlotte; Greenway, Frank L.

    2015-01-01

    Objective: By retarding fat digestion, thylakoids, the internal photosynthetic membrane system of green plants, promote the release of satiety hormones. This study examined the effect of consuming a single dose of concentrated extract of thylakoids from spinach on satiety, food intake, lipids, and glucose compared to a placebo. Design: Sixty overweight and obese individuals enrolled in a double-blind randomized crossover study consumed the spinach extract or placebo in random order at least a week apart. Blood was drawn for assessments of lipids and glucose before a standard breakfast meal, followed 4 hours later by a 5 g dose of the extract and a standard lunch. Visual analog scales were administered before lunch and at intervals until an ad libitum pizza dinner served 4 hours later. Two hours after lunch a second blood draw was conducted. Mixed models were used to analyze response changes. Results: Compared to placebo, consuming the spinach extract reduced hunger (p < 0.01) and longing for food over 2 hours (p < 0.01) and increased postprandial plasma glucose concentrations (p < 0.01). There were no differences in plasma lipids and energy intake at dinner, but males showed a trend toward decreased energy intake (p = 0.08). Conclusions: At this dose, the spinach extract containing thylakoids increases satiety over a 2-hour period compared to a placebo. Thylakoid consumption may influence gender-specific food cravings. PMID:26029978

  10. Polycations Globally Enhance Binding of 14-3-3 omega to Target Proteins in Spinach Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The binding of 14-3-3' to phosphorylated NR (pNR) is stimulated by cations such as Mg2+ or spermine, and decreased by 5'-AMP. In order to determine whether binding to other cellular proteins is affected similarly, Far-Western overlays of extracts prepared from light- or dark-treated spinach (Spinac...

  11. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  12. [Effect of cooking on content of nitrates, vitamin C, magnesium and iron in spinach].

    PubMed

    Astier-Dumas, M

    1975-01-01

    Cooking is known to lower the mineral and vitaminic content of foodstuffs. Recently, contaminant became to be a problem in foods, and it was proposed to use blanching or boiling to diminish contaminant residues in foods, specially vegetables. An example of this attitude is given by the use of blanching to lower nitrates levels in spinach specially prepared for baby foods. PMID:1211733

  13. Survival of Salmonella on spinach leaves treated with contaminated irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella outbreaks have been associated with the consumption of fresh produce. The produce may be contaminated with Salmonella during on-farm contact with contaminated water. Transmission of Salmonella from contaminated irrigation water to spinach plants in growth chamber settings ...

  14. Internalization of E. coli O157:H7 in spinach cultivated in soil and hydroponic media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. Previous studies that have investigated uptake of E. coli O157:H7 into leafy greens have expressed green fluorescent protein (gfp) from a plasmid, possibly limiting detecti...

  15. Responses of spinach to salinity and nutrient deficiency in growth, physiology and nutritional value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity and nutrient depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, depriv...

  16. De novo and comparative transcriptome analysis of cultivated and wild spinach.

    PubMed

    Xu, Chenxi; Jiao, Chen; Zheng, Yi; Sun, Honghe; Liu, Wenli; Cai, Xiaofeng; Wang, Xiaoli; Liu, Shuang; Xu, Yimin; Mou, Beiquan; Dai, Shaojun; Fei, Zhangjun; Wang, Quanhua

    2015-01-01

    Spinach (Spinacia oleracea L.) is an economically important green leafy vegetable crop. In this study, we performed deep transcriptome sequencing for nine spinach accessions: three from cultivated S. oleracea, three from wild S. turkestanica and three from wild S. tetrandra. A total of approximately 100 million high-quality reads were generated, which were de novo assembled into 72,151 unigenes with a total length of 46.5 Mb. By comparing sequences of these unigenes against different protein databases, nearly 60% of them were annotated and 50% could be assigned with Gene Ontology terms. A total of 387 metabolic pathways were predicted from the assembled spinach unigenes. From the transcriptome sequencing data, we were able to identify a total of ~320,000 high-quality single nucleotide polymorphisms (SNPs). Phylogenetic analyses using SNPs as well as gene expression profiles indicated that S. turkestanica was more closely related to the cultivated S. oleracea than S. tetrandra. A large number of genes involved in responses to biotic and abiotic stresses were found to be differentially expressed between the cultivated and wild spinach. Finally, an interactive online database (http://www.spinachbase.org) was developed to allow the research community to efficiently retrieve, query, mine and analyze our transcriptome dataset. PMID:26635144

  17. De novo and comparative transcriptome analysis of cultivated and wild spinach

    PubMed Central

    Xu, Chenxi; Jiao, Chen; Zheng, Yi; Sun, Honghe; Liu, Wenli; Cai, Xiaofeng; Wang, Xiaoli; Liu, Shuang; Xu, Yimin; Mou, Beiquan; Dai, Shaojun; Fei, Zhangjun; Wang, Quanhua

    2015-01-01

    Spinach (Spinacia oleracea L.) is an economically important green leafy vegetable crop. In this study, we performed deep transcriptome sequencing for nine spinach accessions: three from cultivated S. oleracea, three from wild S. turkestanica and three from wild S. tetrandra. A total of approximately 100 million high-quality reads were generated, which were de novo assembled into 72,151 unigenes with a total length of 46.5 Mb. By comparing sequences of these unigenes against different protein databases, nearly 60% of them were annotated and 50% could be assigned with Gene Ontology terms. A total of 387 metabolic pathways were predicted from the assembled spinach unigenes. From the transcriptome sequencing data, we were able to identify a total of ~320,000 high-quality single nucleotide polymorphisms (SNPs). Phylogenetic analyses using SNPs as well as gene expression profiles indicated that S. turkestanica was more closely related to the cultivated S. oleracea than S. tetrandra. A large number of genes involved in responses to biotic and abiotic stresses were found to be differentially expressed between the cultivated and wild spinach. Finally, an interactive online database (http://www.spinachbase.org) was developed to allow the research community to efficiently retrieve, query, mine and analyze our transcriptome dataset. PMID:26635144

  18. Perchlorate uptake in spinach as related to perchlorate, nitrate and chloride concentrations in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have reported on the detection of perchlorate in edible leafy vegetables irrigated with Colorado River water. However, there is no information on spinach as related to perchlorate in irrigation water nor on the effect of other anions on perchlorate uptake. A greenhouse perchlorate up...

  19. GROWTH RESPONSE IN SPINACH TO SEQUENTIAL AND SIMULTANEOUS EXPOSURE TO NO2 AND SO2

    EPA Science Inventory

    Spinach (Spinacia oleracea) was exposed intermittently to NO2 and SO2 (2 hours/week; 0.8 or 1.5ppm) in a simultaneous or sequential fashion over the 42-day growth period. Nighttime simultaneous exposure to NO2 and SO2 reduced growth and altered assimilate partitioning to the root...

  20. Multispectral fluorescence imaging for detection of bovine feces on Romaine lettuce and baby spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral fluorescence imaging with ultraviolet-A excitation was used to evaluate the feasibility of two-waveband fluorescence algorithms for the detection of bovine fecal contaminants on the abaxial and adaxial surfaces of Romaine lettuce and baby spinach leaves. Correlation analysis was used t...

  1. 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach.

    PubMed

    Rothová, Olga; Holá, Dana; Kočová, Marie; Tůmová, Lenka; Hnilička, František; Hniličková, Helena; Kamlar, Marek; Macek, Tomáš

    2014-07-01

    The aim of the work was to examine the effect of brassinosteroid (24-epibrassinolide; 24E) and ecdysteroid (20-hydroxyecdysone; 20E) on various parts of primary photosynthetic processes in maize and spinach. Additionally, the effect of steroids on gaseous exchange, pigment content and biomass accumulation was studied. The efficiency of the photosynthetic whole electron-transport chain responded negatively to the 24E or 20E treatment in both species, but there were interspecific differences regarding Photosystem (PS) II response. A positive effect on its oxygen-evolving complex and a slightly better energetical connectivity between PSII units were observed in maize whereas the opposite was true for spinach. The size of the pool of the PSI end electron acceptors was usually diminished due to 24E or 20E treatment. The treatment of plants with 24E or 20E applied individually positively influenced the content of photosynthetic pigments in maize (not in spinach). On the other hand, it did not affect gaseous exchange in maize but resulted in its reduction in spinach. Plants treated with combination of both steroids mostly did not significantly differ from the control plants. We have demonstrated for the first time that 20E applied in low (10nM) concentration can affect various parts of photosynthetic processes similarly to 24E and that brassinosteroids regulate not only PSII but also other parts of the photosynthetic electron transport chain - but not necessarily in the same way. PMID:24769061

  2. Persistence of enterohemorrhagic and non-pathogenic E. coli on spinach leaves and in rhizosphere soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness outbreaks associated with leafy greens have raised concerns about the persistence of Escherichia coli O157:H7 on fresh produce and in the cropping environment. The set of characteristics that enable the enteric bacterium E. coli O157:H7 to survive on undamaged spinach leaves, roots...

  3. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafminer (Liriomyza spp.) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic and environment-friendly method to control this pest. The objective of this research was to conduct association analysis ...

  4. Biofilm formation and bacteriophage inactivation of Escherichia coli O157:H7 on spinach harvester blades

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to leafy greens during harvest with commercial equipment. The role of this equipment should be investigated to develop mitigation strategies. Biofilm formation by Escherichia coli O157:H7 on a spinach ha...

  5. Persistence of enterohemorrhagic and non-pathogenic E. coli on spinach leaves and in rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Outbreaks associated with leafy greens have focused attention on the persistence of Escherichia coli O157:H7 on produce. Ecological interactions of E. coli O157:H7 and spinach require detailed characterization. Purpose: Survival of E. coli O157:H7 and non-pathogenic E. coli was evalua...

  6. Evaluation of Oxalate Concentration in the U.S. Spinach Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to its high nutrient content, spinach (Spinacia oleracea L.) is also known to have greater amount of oxalic acid than most crops. Oxalic acid may form crystals with minerals to reduce the bioavailability and absorption of calcium and iron in diets, and calcium oxalate may deposit in the...

  7. Generic Escherichia coli Contamination of Spinach at the Preharvest Stage: Effects of Farm Management and Environmental Factors

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Jun, Mikyoung; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Ivanek, Renata

    2013-01-01

    The objective of this study was to determine the effects of farm management and environmental factors on preharvest spinach contamination with generic Escherichia coli as an indicator of fecal contamination. A repeated cross-sectional study was conducted by visiting spinach farms up to four times per growing season over a period of 2 years (2010 to 2011). Spinach samples (n = 955) were collected from 12 spinach farms in Colorado and Texas as representative states of the Western and Southwestern United States, respectively. During each farm visit, farmers were surveyed about farm-related management and environmental factors using a questionnaire. Associations between the prevalence of generic E. coli in spinach and farm-related factors were assessed by using a multivariable logistic regression model including random effects for farm and farm visit. Overall, 6.6% of spinach samples were positive for generic E. coli. Significant risk factors for spinach contamination with generic E. coli were the proximity (within 10 miles) of a poultry farm, the use of pond water for irrigation, a >66-day period since the planting of spinach, farming on fields previously used for grazing, the production of hay before spinach planting, and the farm location in the Southwestern United States. Contamination with generic E. coli was significantly reduced with an irrigation lapse time of >5 days as well as by several factors related to field workers, including the use of portable toilets, training to use portable toilets, and the use of hand-washing stations. To our knowledge, this is the first report of an association between field workers' personal hygiene and produce contamination with generic E. coli at the preharvest level. Collectively, our findings support that practice of good personal hygiene and other good farm management practices may reduce produce contamination with generic E. coli at the preharvest level. PMID:23666336

  8. Automated immunomagnetic separation for the detection of Escherichia coli O157:H7 from spinach.

    PubMed

    Chen, Jing; Shi, Xianming; Gehring, Andrew G; Paoli, George C

    2014-06-01

    Escherichia coli O157:H7 is a major cause of foodborne illness and methods for rapid and sensitive detection of this deadly pathogen are needed to protect consumers. The use of immunomagnetic separation (IMS) for capturing and detecting foodborne pathogens has gained popularity, partially due to the introduction of automated and high throughput IMS instrumentation. Three methods for automated IMS that test different sample volumes, Kingfisher mL, Pathatrix Auto, and Pathatrix Ultra, were compared using microbiological detection of E. coli O157:H7 from buffered peptone water (BPW), in the presence of background microbial flora derived from spinach leaves, and from culture enrichments from artificially contaminated spinach leaves. The average efficiencies of capture of E. coli O157:H7 using the three methods were 32.1%, 3.7%, and 1.3%, respectively, in BPW; 43.4%, 8.8%, 2.9%, respectively, in the presence of spinach microbial flora; and 63.0%, 7.0%, and 6.3%, respectively, from artificially contaminated spinach. Despite the large differences in IMS capture efficiencies between the KingFisher and two Pathatrix methods, all three methods allowed the detection of E. coli O157:H7 from spinach that was artificially contaminated with the pathogen at relatively high (25 cfu/30 g sample) and low (1 cfu/30 g sample) levels after 4-6h of culture enrichment. The differences in capture efficiency were compensated for by the differences in sample volume used by the KingFisher mL (1 mL), Pathatrix Auto (50 mL) and Pathatrix Ultra (250 mL) instruments. Thus, despite the reduced capture efficiencies observed for the Pathatrix methods, the large increase in sample volume results in a greater number of captured cells for downstream detection resulting in improved detection sensitivity. PMID:24718031

  9. Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats

    PubMed Central

    Ko, Sang-Heui; Park, Jae-Hee; Kim, So-Yun; Lee, Seon Woo; Chun, Soon-Sil; Park, Eunju

    2014-01-01

    Increased consumption of fresh vegetables that are high in polyphenols has been associated with a reduced risk of oxidative stress-induced disease. The present study aimed to evaluate the antioxidant effects of spinach in vitro and in vivo in hyperlipidemic rats. For measurement of in vitro antioxidant activity, spinach was subjected to hot water extraction (WE) or ethanol extraction (EE) and examined for total polyphenol content (TPC), oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA), and antigenotoxic activity. The in vivo antioxidant activity of spinach was assessed using blood and liver lipid profiles and antioxidant status in rats fed a high fat-cholesterol diet (HFCD) for 6 weeks. The TPC of WE and EE were shown as 1.5±0.0 and 0.5±0.0 mg GAE/g, respectively. Increasing the concentration of the extracts resulted in increased ORAC value, CAA, and antigenotoxic activity for all extracts tested. HFCD-fed rats displayed hyperlipidemia and increased oxidative stress, as indicated by a significant rise in blood and liver lipid profiles, an increase in plasma conjugated diene concentration, an increase in liver thiobarbituric acid reactive substances (TBARS) level, and a significant decrease in manganese superoxide dismutase (Mn-SOD) activity compared with rats fed normal diet. However, administration of 5% spinach showed a beneficial effect in HFCD rats, as indicated by decreased liver TBARS level and DNA damage in leukocyte and increased plasma conjugated dienes and Mn-SOD activity. Thus, the antioxidant activity of spinach may be an effective way to ameliorate high fat and cholesterol diet-induced oxidative stress. PMID:24772405

  10. Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats.

    PubMed

    Ko, Sang-Heui; Park, Jae-Hee; Kim, So-Yun; Lee, Seon Woo; Chun, Soon-Sil; Park, Eunju

    2014-01-01

    Increased consumption of fresh vegetables that are high in polyphenols has been associated with a reduced risk of oxidative stress-induced disease. The present study aimed to evaluate the antioxidant effects of spinach in vitro and in vivo in hyperlipidemic rats. For measurement of in vitro antioxidant activity, spinach was subjected to hot water extraction (WE) or ethanol extraction (EE) and examined for total polyphenol content (TPC), oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA), and antigenotoxic activity. The in vivo antioxidant activity of spinach was assessed using blood and liver lipid profiles and antioxidant status in rats fed a high fat-cholesterol diet (HFCD) for 6 weeks. The TPC of WE and EE were shown as 1.5±0.0 and 0.5±0.0 mg GAE/g, respectively. Increasing the concentration of the extracts resulted in increased ORAC value, CAA, and antigenotoxic activity for all extracts tested. HFCD-fed rats displayed hyperlipidemia and increased oxidative stress, as indicated by a significant rise in blood and liver lipid profiles, an increase in plasma conjugated diene concentration, an increase in liver thiobarbituric acid reactive substances (TBARS) level, and a significant decrease in manganese superoxide dismutase (Mn-SOD) activity compared with rats fed normal diet. However, administration of 5% spinach showed a beneficial effect in HFCD rats, as indicated by decreased liver TBARS level and DNA damage in leukocyte and increased plasma conjugated dienes and Mn-SOD activity. Thus, the antioxidant activity of spinach may be an effective way to ameliorate high fat and cholesterol diet-induced oxidative stress. PMID:24772405

  11. Effect of γ-irradiation on the thermomechanical and morphological properties of chitosan obtained from prawn shell: Evaluation of potential for irradiated chitosan as plant growth stimulator for Malabar spinach

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed Mizanur; Kabir, Shahriar; Rashid, Taslim Ur; Nesa, Bodrun; Nasrin, Romana; Haque, Papia; Khan, Mubarak A.

    2013-01-01

    In the present study we have synthesized chitosan from waste prawn shell via γ-irradiation of chitin and subsequent alkaline treatment. The detailed experimental studies demonstrated that nonirradiated chitin deacetylated by 40% NaOH solution showed 72% degree of deacetylation (DD), however 50 kGy irradiated chitin, deacetylated by 20% NaOH demonstrated 81.5% DD. Chitosan in solid state as obtained from γ-irradiation of chitin was further irradiated by different doses (2-100 kGy) of gamma irradiation and the effects of irradiation on the molecular weight, thermo-mechanical by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and antimicrobial properties were evaluated with respect to nonirradiated chitosan sample. Gamma irradiation of chitosan with a dose of 100 kGy caused a decrease in average molecular weight from 1.9×105 to 6.5×104 Da and thus increased its solubility in water. Nonirradiated and γ-irradiated chitosan at concentration 1% (w/w) in water were prepared and used to evaluate of its potentiality for growth stimulation of Malabar spinach. The chitosan solution was sprayed on the specimen plants and neighboring soil where germinations were taken place and various plant growth parameters such as plant height, number of leaves, leaf areas, dry and wet weight of the plants and roots were investigated. The details study revealed that application of 30 kGy irradiated chitosan yielded 60% higher growth of the Malabar spinach than that obtained from nonirradiated chitosan. The data are consistent with preliminary results from field experiments and unambiguously confirms that a minor amount of chitosan has a profound effect on the growth and development of Malabar spinach.

  12. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State

    PubMed Central

    Weller, Daniel; Wiedmann, Martin

    2015-01-01

    While rain and irrigation events have been associated with an increased prevalence of foodborne pathogens in produce production environments, quantitative data are needed to determine the effects of various spatial and temporal factors on the risk of produce contamination following these events. This study was performed to quantify these effects and to determine the impact of rain and irrigation events on the detection frequency and diversity of Listeria species (including L. monocytogenes) and L. monocytogenes in produce fields. Two spinach fields, with high and low predicted risks of L. monocytogenes isolation, were sampled 24, 48, 72, and 144 to 192 h following irrigation and rain events. Predicted risk was a function of the field's proximity to water and roads. Factors were evaluated for their association with Listeria species and L. monocytogenes isolation by using generalized linear mixed models (GLMMs). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal, and 52 water) samples were collected. According to the GLMM, the likelihood of Listeria species and L. monocytogenes isolation from soil samples was highest during the 24 h immediately following an event (odds ratios [ORs] of 7.7 and 25, respectively). Additionally, Listeria species and L. monocytogenes isolates associated with irrigation events showed significantly lower sigB allele type diversity than did isolates associated with precipitation events (P = <0.001), suggesting that irrigation water may be a point source of L. monocytogenes contamination. Small changes in management practices (e.g., not irrigating fields before harvest) may therefore reduce the risk of L. monocytogenes contamination of fresh produce. PMID:26116668

  13. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State.

    PubMed

    Weller, Daniel; Wiedmann, Martin; Strawn, Laura K

    2015-09-01

    While rain and irrigation events have been associated with an increased prevalence of foodborne pathogens in produce production environments, quantitative data are needed to determine the effects of various spatial and temporal factors on the risk of produce contamination following these events. This study was performed to quantify these effects and to determine the impact of rain and irrigation events on the detection frequency and diversity of Listeria species (including L. monocytogenes) and L. monocytogenes in produce fields. Two spinach fields, with high and low predicted risks of L. monocytogenes isolation, were sampled 24, 48, 72, and 144 to 192 h following irrigation and rain events. Predicted risk was a function of the field's proximity to water and roads. Factors were evaluated for their association with Listeria species and L. monocytogenes isolation by using generalized linear mixed models (GLMMs). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal, and 52 water) samples were collected. According to the GLMM, the likelihood of Listeria species and L. monocytogenes isolation from soil samples was highest during the 24 h immediately following an event (odds ratios [ORs] of 7.7 and 25, respectively). Additionally, Listeria species and L. monocytogenes isolates associated with irrigation events showed significantly lower sigB allele type diversity than did isolates associated with precipitation events (P = <0.001), suggesting that irrigation water may be a point source of L. monocytogenes contamination. Small changes in management practices (e.g., not irrigating fields before harvest) may therefore reduce the risk of L. monocytogenes contamination of fresh produce. PMID:26116668

  14. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    PubMed Central

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.

    2011-01-01

    Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815

  15. Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonoids in different spinach genotypes were separated, identified, and quantified by a high-performance liquid chromatographic method with photodiode array and mass spectrometric detection. The antioxidant capacities of the genotypes were also measured using two antioxidant assays - oxygen radica...

  16. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2007-07-01

    The aim of this study was to investigate the use of water spinach (Ipomoea aquatica Forsk.) with N(+) ion-beam implantation for removal of nutrient species from eutrophic water. The mutated water spinach was grown on floating beds, and growth chambers were used to examine the growth of three cultivars of water spinach with ion implantation for 14 days in simulated eutrophic water at both high and low nitrogen levels. The specific weight growth rates of three cultivars of water spinach with ion implantation were significantly higher than the control, and their NO(3)-N and NH(4)-N removal efficiencies were also greater than those of the control. Furthermore, compared with the control, the nitrogen contents in the plant biomass with ion implantation were higher as well. PMID:17524443

  17. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  18. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress.

    PubMed

    Yan, Jun; Yu, Li; Xuan, Jiping; Lu, Ying; Lu, Shijun; Zhu, Weimin

    2016-01-01

    Spinach (Spinacia oleracea) has cold tolerant but heat sensitive characteristics. The spinach variety 'Island,' is suitable for summer periods. There is lack molecular information available for spinach in response to heat stress. In this study, high throughput de novo transcriptome sequencing and gene expression analyses were carried out at different spinach variety 'Island' leaves (grown at 24 °C (control), exposed to 35 °C for 30 min (S1), and 5 h (S2)). A total of 133,200,898 clean reads were assembled into 59,413 unigenes (average size 1259.55 bp). 33,573 unigenes could match to public databases. The DEG of controls vs S1 was 986, the DEG of control vs S2 was 1741 and the DEG of S1 vs S2 was 1587. Gene Ontology (GO) and pathway enrichment analysis indicated that a great deal of heat-responsive genes and other stress-responsive genes were identified in these DEGs, suggesting that the heat stress may have induced an extensive abiotic stress effect. Comparative transcriptome analysis found 896 unique genes in spinach heat response transcript. The expression patterns of 13 selected genes were verified by RT-qPCR (quantitative real-time PCR). Our study found a series of candidate genes and pathways that may be related to heat resistance in spinach. PMID:26857466

  19. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress

    PubMed Central

    Yan, Jun; Yu, Li; Xuan, Jiping; Lu, Ying; Lu, Shijun; Zhu, Weimin

    2016-01-01

    Spinach (Spinacia oleracea) has cold tolerant but heat sensitive characteristics. The spinach variety ‘Island,’ is suitable for summer periods. There is lack molecular information available for spinach in response to heat stress. In this study, high throughput de novo transcriptome sequencing and gene expression analyses were carried out at different spinach variety ‘Island’ leaves (grown at 24 °C (control), exposed to 35 °C for 30 min (S1), and 5 h (S2)). A total of 133,200,898 clean reads were assembled into 59,413 unigenes (average size 1259.55 bp). 33,573 unigenes could match to public databases. The DEG of controls vs S1 was 986, the DEG of control vs S2 was 1741 and the DEG of S1 vs S2 was 1587. Gene Ontology (GO) and pathway enrichment analysis indicated that a great deal of heat-responsive genes and other stress-responsive genes were identified in these DEGs, suggesting that the heat stress may have induced an extensive abiotic stress effect. Comparative transcriptome analysis found 896 unique genes in spinach heat response transcript. The expression patterns of 13 selected genes were verified by RT-qPCR (quantitative real-time PCR). Our study found a series of candidate genes and pathways that may be related to heat resistance in spinach. PMID:26857466

  20. Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus).

    PubMed

    Ng, Chuck Chuan; Rahman, Md Motior; Boyce, Amru Nasrulhaq; Abas, Mhd Radzi

    2016-01-01

    The growth response, metal tolerance and phytoaccumulation properties of water spinach (Ipomoea aquatica) and okra (Abelmoschus esculentus) were assessed under different contaminated spiked metals: control, 50 mg Pb/kg soil, 50 mg Zn/kg soil and 50 mg Cu/kg soil. The availability of Pb, Zn and Cu metals in both soil and plants were detected using flame atomic absorption spectrometry. The concentration and accumulation of heavy metals from soil to roots and shoots (edible parts) were evaluated in terms of translocation factor, accumulation factor and tolerance index. Okra recorded the highest accumulation of Pb (80.20 mg/kg) in its root followed by Zn in roots (35.70 mg/kg) and shoots (34.80 mg/kg) of water spinach, respectively. Different accumulation trends were observed with, Pb > Zn > Cu in okra and Zn > Pb > Cu in water spinach. Significant differences (p < 0.01) of Pb, Zn and Cu accumulation were found in both water spinach and okra cultivated among tested treatments. However, only the accumulation of Pb metal in the shoots of water spinach and okra exceeded the maximum permissible levels of the national Malaysian Food Act 1983 and Food Regulations 1985 (2006) as well as the international Codex Alimentarius Commission limits. This study has shown that both water spinach and okra have good potential as Pb and Zn phytoremediators. PMID:27119073

  1. Increasing total and biologically active chromium in wheat grain and spinach by spraying with chromium salts

    SciTech Connect

    Vicini, F.A.; Ellis, B.G.

    1981-06-01

    Recently, chromium has been shown to be necessary for glucose metabolism in man. But most plant species greatly restrict the uptake of Cr. This study was conducted to determine if both total and biologically active Cr could be increased in wheat grain or spinach by spraying the plants with either Cr/sub 2/(SO/sub 4/)/sub 3/ or Cr-EDTA. Concentrations of Cr in wheat grain were about doubled in a greenhouse experiment by spraying with either Cr source. Biologically active Cr (estimated by extraction with ethanol or NH/sub 4/OH) was increased from about 40 to greater than 50% of total Cr when wheat was sprayed with Cr salts. Total Cr in spinach leaves was increased by as much as 10-fold by spraying, with the sulfate source being more effective than the EDTA.

  2. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    NASA Astrophysics Data System (ADS)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    2016-04-01

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  3. Impact of coal mine dump contaminated soils on elemental uptake by Spinacia oleracea (spinach)

    SciTech Connect

    Chunilall, V.; Kindness, A.; Jonnalagadda, S.B.

    2006-07-01

    The elemental uptake and the growth response of Spinacia oleracea (spinach) to the soil contaminated with the South African bituminous coal mine dump soil, viz. 0%, 5%, 15%, and 25% w/w, was investigated. The contaminated soils were analyzed for pH, cation exchange capacity (CEC), soil organic matter (SOM), and concentrations of selected heavy metals. The pH, SOM, and CEC decreased with an increase in contamination indicating the acidic nature of coal mine soil and the raise in the soil binding sites. The distribution of Fe, Mn, Ni, Cd, and Pb in the roots and leaves of the plants was determined in two stages of plant growth. Spinach showed high accumulation of Fe and increased levels of Ni and Cd with an increase in contamination. No plant growth was recorded with 25% contamination.

  4. Gamma irradiation dose: Effects on spinach baby-leaf ascorbic acid, carotenoids, folate, alpha-tocopherol, and phylloquinone concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionizing radiation of fruits and vegetables, in the form of gamma rays or electron beams, is effective in overcoming quarantine barriers in trade, decontamination, disinfestation and prolonging shelf life, but a void of information persists on ionizing radiation effects of vitamin profiles in indivi...

  5. Retail display conditions of continuous light and dark on the disposition of vitamins in baby-leaf spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-health benefits from the consumption of fruits and vegetables are due to the many bioactive compounds in these foods. Many of these compounds are heavily influenced by genetics (i.e. cultivar) and the environment, especially the many pigments and vitamins that can degrade during processing an...

  6. Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach.

    PubMed

    Gourabathini, Poornima; Brandl, Maria T; Redding, Katherine S; Gunderson, John H; Berk, Sharon G

    2008-04-01

    The survival of Salmonella enterica was recently shown to increase when the bacteria were sequestered in expelled food vacuoles (vesicles) of Tetrahymena. Because fresh produce is increasingly linked to outbreaks of enteric illness, the present investigation aimed to determine the prevalence of protozoa on spinach and lettuce and to examine their interactions with S. enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Glaucoma sp., Colpoda steinii, and Acanthamoeba palestinensis were cultured from store-bought spinach and lettuce and used in our study. A strain of Tetrahymena pyriformis previously isolated from spinach and a soil-borne Tetrahymena sp. were also used. Washed protozoa were allowed to graze on green fluorescent protein- or red fluorescent protein-labeled enteric pathogens. Significant differences in interactions among the various protist-enteric pathogen combinations were observed. Vesicles were produced by Glaucoma with all of the bacterial strains, although L. monocytogenes resulted in the smallest number per ciliate. Vesicle production was observed also during grazing of Tetrahymena on E. coli O157:H7 and S. enterica but not during grazing on L. monocytogenes, in vitro and on leaves. All vesicles contained intact fluorescing bacteria. In contrast, C. steinii and the amoeba did not produce vesicles from any of the enteric pathogens, nor were pathogens trapped within their cysts. Studies of the fate of E. coli O157:H7 in expelled vesicles revealed that by 4 h after addition of spinach extract, the bacteria multiplied and escaped the vesicles. The presence of protozoa on leafy vegetables and their sequestration of enteric bacteria in vesicles indicate that they may play an important role in the ecology of human pathogens on produce. PMID:18310421

  7. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.

    PubMed

    Yao, Lixian; Li, Guoliang; Dang, Zhi; Yang, Baomei; He, Zhaohuan; Zhou, Changmin

    2010-04-01

    Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites. PMID:20821525

  8. Spinach - A software library for simulation of spin dynamics in large spin systems

    NASA Astrophysics Data System (ADS)

    Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya

    2011-02-01

    We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.

  9. Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach.

    PubMed

    Göthberg, Agneta; Greger, Maria; Holm, Karin; Bengtsson, Bengt-Erik

    2004-01-01

    In Southeast Asia the aquatic macrophyte water spinach (Ipomoea aquatica Forsk.) is a popular vegetable that is cultivated in freshwater courses. These often serve as recipients for domestic and other sorts of wastewater that often contain a variety of pollutants, such as heavy metals. In addition, fertilizers are frequently used where water spinach is cultivated commercially for the food market. To estimate the importance of ambient nutrient concentrations for accumulation of mercury (Hg), cadmium (Cd), and lead (Pb) in water spinach, plants were exposed to nutrient solutions of different strength and with varying metal concentrations. Metal-induced toxic effects, which might possibly affect the yield of the plants, were also studied. The lower the nutrient strength in the medium was, the higher the metal concentrations that accumulated in the different plant parts and the lower the metal concentration in the medium at which metal-induced toxic effects occurred. Accordingly, internal metal concentrations in the plants were correlated to toxic effects. Plants exposed to metals retained a major proportion of the metals in the roots, which had a higher tolerance than shoots for high internal metal concentrations. PMID:15254106

  10. Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants

    SciTech Connect

    Casterline, J.L. Jr.; Barnett, N.M.; Ku, Y.

    1985-06-01

    Soybean plants were grown for 90 days and spinach plants for 64 days in a mixture of sterilized greenhouse soil and sand containing 10 ppm pentachlorophenol. All plant parts and soil samples were extracted and separated into nonpolar and polar fractions. Major nonpolar and polar metabolites were identified by gas-liquid chromatography and mass spectrometry. Nonpolar fractions from both soybean and spinach plants were found to contain pentachlorophenol and its metabolites, 2,3,4,6-tetrachlorophenol, methoxytetrachlorophenol, 2,3,4,6-tetrachloroanisole, and pentachloroanisole. Cleavage of polar metabolites from the soybean plants by acid hydrolysis yielded organic solvent-extractable products. These products were identified as pentachlorophenol, 2,3,4,6-tetrachlorophenol, and methoxytetrachlorophenol. Cleavage of polar materials from spinach plants yielded only pentachlorophenol. The polar metabolites from the soybean plants were also subjected to enzymatic cleavage by beta-glucosidase. The conjugates consisted mostly of O-glucosides of the same metabolites released by acid hydrolysis. Failure of hydrolysis by aryl sulfatase indicated that very little or no sulfates were present. The metabolites found in the plants were not detected in soil samples obtained from pots immediately after the plants were harvested.

  11. Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. [Spinacia oleracea L

    SciTech Connect

    Sakaki, Takeshi; Saito, Kazuki; Kawaguchi, Akihiko; Kondo, Noriaki; Yamada, Mitsuhiro Keio Univ., Tokyo Univ. of Tokyo )

    1990-10-01

    Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglyerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas {alpha}-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozone-fumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we conducted that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves.

  12. Yellow leaf blotch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow leaf blotch occurs worldwide in temperate climates. The disease is reported from countries in Asia, Australasia, Oceania, Europe, North America, Central America, the West Indies, and South America. In the northern Great Plains of North America, it is often the major leaf disease on alfalfa....

  13. Decrease in Leaf Sucrose Synthesis Leads to Increased Leaf Starch Turnover and Decreased RuBP-limited Photosynthesis But Not Rubisco-limited Photosynthesis in Arabidopsis Null Mutants of SPSA1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SPS (Sucrose phosphate synthase) isoforms from dicots cluster into families A, B and C. In this study, we investigated the individual effect of null mutations of each of the four SPS genes in Arabidopsis (spsa1, spsa2, spsb and spsc) on photosynthesis and carbon partitioning. Null mutants spsa1 and ...

  14. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach.

    PubMed

    Altemimi, Ammar; Lightfoot, David A; Kinsel, Mary; Watson, Dennis G

    2015-01-01

    The extraction of lutein and β-carotene from spinach (Spinacia oleracea L.) leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE) of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C), extraction power (%) and extraction time (min) were studied. Thin-layer chromatography (TLC) followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v)) as the mobile phase. In this study, the combination of TLC, densitometry, and Box-Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3) and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industry. PMID:25875040

  15. Short Term Acclimation of Spinach to High Temperatures

    PubMed Central

    Weis, Engelbert

    1984-01-01

    Using intact leaves of Spinacia oleracea (L.), reversible temperature-induced changes in chlorophyll fluorescence emitted at room temperature and at 77K were studied. Interpretation of fluorescence at 77K was largely facilitated by developing a new method to minimize reabsorption artifacts (`diluted leaf-powder'). Leaves of plants grown at 15 to 20°C were exposed for several hours to different temperatures. Upon incubation at 35°C in the dark or in the light, the following changes in 77K fluorescence occurred with a half-time of less than 1 hour: (a) the initial fluorescence (F0) of photosystem I increased by 15%, while that one of photosystem II somewhat decreased; (b) although variable fluorescence declined in both photosystems, the decrease in photosystem II (40%) was more severe; (c) the changes were less significant after 480-nanometer excitation light was replaced by 430-nanometer light. The data were interpreted in terms of a reversible, temperature-induced change in thylakoid structure and related change in the distribution of the absorbed energy in favor of photosystem I, at the expense of photosystem II excitation, probably accompanied by an increase in the rate of thermal deactivation of excited states. The considerable decrease in the variable part of room temperature fluorescence gives rise to the suggestion that this transition has lowered the reduction level of plastoquinone, i.e. has increased electron flow through photosystem I, relative to photosystem II. Possible physiological and mechanistic analogies between this temperature-induced state transition and the light-dependent state 1-state 2 regulation has been discussed. PMID:16663430

  16. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  17. Leaf growth is conformal.

    PubMed

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I; Boudaoud, Arezki

    2016-01-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour. PMID:27597439

  18. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain.

    PubMed

    Castro-Ibáñez, I; Gil, M I; Tudela, J A; Ivanek, R; Allende, A

    2015-08-01

    There is a timely need to evaluate the effect agricultural factors and meteorological conditions on fresh produce contamination. This study evaluated those risk factors and described, for the first time, the distribution of indicator microorganisms (Escherichia coli, Enterococcus, coliforms, and Enterobacteriaceae) and the prevalence of foodborne pathogens (Enterohaemorrhagic E. coli, Listeria monocytogenes and Salmonella spp.) in baby spinach grown in the Southeast of Spain. A longitudinal study was conducted on three farms (2011-2013). Results obtained for E. coli highlighted soil and irrigation water as important factors affecting the microbial safety of baby spinach. Significant differences in the proportion of E. coli positive samples were found between treated (46.1%) and untreated (100%) irrigation water. However, the microbial quality of irrigation water didn't affect E. coli prevalence in produce. All E. coli positive spinach samples were detected at the highest observed temperature range suggesting that ambient temperature affects the probability and extent of spinach contamination. Salmonella spp. was detected by RT-PCR in manure, soil, irrigation water and baby spinach but only two of them (manure and irrigation water) were confirmed by isolation in culture media. Salmonella RT-PCR positive samples showed higher levels of E. coli than Salmonella negative samples. This preliminary finding supports recent identification of E. coli as a suitable parameter for the hygiene criterion at the primary production of leafy greens. PMID:25846928

  19. Effect of electrolyzed oxidizing water treatment on the reduction of nitrite levels in fresh spinach during storage.

    PubMed

    Hao, Jianxiong; Li, Huiying; Wan, Yangfang; Liu, Haijie

    2015-03-01

    Leafy vegetables are the major source of nitrite intake in the human diet, and technological processing to control nitrite levels in harvested vegetables is necessary. In the current work, the effect of electrolyzed oxidizing water (EOW) on the nitrite and nitrate levels in fresh spinach during storage was studied. EOW treatment, including slightly acidic electrolyzed water and acidic electrolyzed water, was found to effectively reduce nitrite levels in fresh spinach during storage; levels in the late period were 30 to 40% lower than that of the control. However, the nitrate levels in fresh spinach during storage were not influenced by EOW treatment. The reduction of nitrite levels in EOW-treated fresh spinach during storage can be attributed to the inactivation of nitrate reductase directly and to the reduction of bacterial populations. Our results suggest that treatment with slightly acidic electrolyzed water may be a better choice to control nitrite levels in fresh vegetables during storage. This study provided a useful method to reduce nitrite levels in fresh spinach. PMID:25719879

  20. Leaf Tissue Senescence

    PubMed Central

    Manos, Peter J.; Goldthwaite, Jonathan

    1975-01-01

    During winter, excised leaf tissue from Rumex obtusifolius degrades chlorophyll at twice the summer rate but the plant hormones, gibberellic acid and zeatin, inhibit the senescence rate by a constant percentage, regardless of season. PMID:16659225

  1. Fate of Escherichia coli O157:H7 in the presence of indigenous microorganisms on commercially packaged baby spinach as impacted by storage temperature and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effect of storage temperature and time on the survival and growth of Escherichia coli O157:H7, the growth of indigenous microorganisms, and the changes in product quality of packaged baby spinach. Commercial packages of spinach within 2 days of processing were cut at one en...

  2. Detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii) using spore traps and quantitative PCR assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Downy mildew of spinach, caused by Peronospora effusa, is a disease constraint on spinach production worldwide. The aim of this study was to develop a real-time quantitative PCR assay for detection of airborne inoculum of P. effusa in California. This type of assay may, in combination with disease-...

  3. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (Peronospora schachtii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...

  4. Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences.

    PubMed Central

    Stern, D B; Palmer, J D

    1986-01-01

    A complete physical map of the spinach mitochondrial genome has been established. The entire sequence content of 327 kilobase pairs (kb) is postulated to occur as a single circular molecule. Two directly repeated elements of approximately 6 kb, located on this "master chromosome", are proposed to participate in an intragenomic recombination event that reversibly generates two "subgenomic" circles of 93 kb and 234 kb. The positions of protein and ribosomal RNA-encoding genes, determined by heterologous filter hybridizations, are scattered throughout the genome, with duplicate 26S rRNA genes located partially or entirely within the 6 kb repeat elements. Filter hybridizations between spinach mitochondrial DNA and cloned segments of spinach chloroplast DNA reveal at least twelve dispersed regions of inter-organellar sequence homology. Images PMID:3016660

  5. Element contents and food safety of water spinach (Ipomoea aquatica Forssk.) cultivated with wastewater in Hanoi, Vietnam.

    PubMed

    Marcussen, Helle; Joergensen, Karin; Holm, Peter E; Brocca, Daniela; Simmons, Robert W; Dalsgaard, Anders

    2008-04-01

    Extensive aquatic or semi-aquatic production of water spinach (Ipomoea aquatica Forssk.) for human consumption takes place in Southeast Asia. The aim of this study was to assess the concentrations of 38 elements in soil and water spinach cultivated under different degrees of wastewater exposure in Hanoi, Vietnam. The results showed no effect of wastewater use on the overall element concentrations in soil and water spinach. Mean soil concentrations for selected potentially toxic elements at the studied field sites had the following ranges 9.11-18.7 As, 0.333-0.667 Cd, 10.8-14.5 Co, 68-122 Cr, 34.0-62.1 Cu, 29.9-52.8 Ni, 32.5-67.4 Pb, 0.578-0.765 Tl and 99-189 Zn mg kg(-1) dry weight (d.w.). In all samples Cd, Pb and Zn soil concentrations were below the Vietnamese Guideline Values (TCVN 7209-2002) for agricultural soils whereas As and Cu exceeded the guideline values. Maximum site element concentrations in water spinach were 0.139 As, 0.032 Cd, 0.135 Cr, 2.01 Cu, 39.1 Fe, 57.3 Mn, 0.16 Ni, 0.189 Pb and 6.01 Zn mg kg(-1) fresh weight (f.w.). The site and soil content of organic carbon were found to have high influence on the water spinach element concentrations whereas soil pH and the total soil element concentrations were of less importance. The estimated average daily intake of As, Cd, Cu, Fe, Pb and Zn for adult Vietnamese consumers amounts to <11% of the maximum tolerable intake proposed by FAO/WHO for each element. It is assessed that the occurrence of the investigated elements in water spinach will pose low health risk for the consumers. PMID:17593534

  6. Effect of chemical sanitizer combined with modified atmosphere packaging on inhibiting Escherichia coli O157:H7 in commercial spinach.

    PubMed

    Lee, Sun-Young; Baek, Seung-Youb

    2008-06-01

    Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage. PMID:18456113

  7. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  8. Changes in Chloroplast mRNA Stability during Leaf Development.

    PubMed Central

    Klaff, P; Gruissem, W

    1991-01-01

    During spinach leaf development, chloroplast-encoded mRNAs accumulate to different steady-state levels. Their relative transcription rates alone, however, cannot account for the changes in mRNA amount. In this study, we examined the importance of mRNA stability for the regulation of plastid mRNA accumulation using an in vivo system to measure mRNA decay in intact leaves by inhibiting transcription with actinomycin D. Decay of psbA and rbcL mRNAs was assayed in young and mature leaves. The psbA mRNA half-life was increased more than twofold in mature leaves compared with young leaves, whereas rbcL mRNA decayed with a similar relative half-life at both leaf developmental stages. The direct in vivo measurements demonstrated that differential mRNA stability in higher plant plastids can account for differences in mRNA accumulation during leaf development. The role of polysome association in mRNA decay was also investigated. Using organelle-specific translation inhibitors that force mRNAs into a polysome-bound state or deplete mRNAs of ribosomes, we measured mRNA decay in vivo in either state. The results showed that rbcL and psbA mRNAs are less stable when bound to polysomes relative to the polysome-depleted mRNAs and that their stabilities are differentially affected by binding to polysomes. The results suggested that ribosome binding and/or translation of the psbA and rbcL mRNAs may function to modulate the rate of their decay in chloroplasts. PMID:12324602

  9. Characterization of a prokaryotic topoisomerase I activity in chloroplast extracts from spinach.

    PubMed

    Siedlecki, J; Zimmermann, W; Weissbach, A

    1983-03-11

    A topoisomerase I activity has been partially purified from crude extracts of spinach chloroplasts. This activity relaxes the supercoiled covalently closed circular DNA of pBR322. The enzyme requires Mg++, but not ATP, and has an apparent molecular weight of about 115,000. It catalyzes a unit change in the linkage number of supercoiled DNA but cannot relax positive supercoiled DNA. These characteristics of the topoisomerase suggest it is of the prokaryotic type and would tend to support the endosymbiotic theory of plastid origin and evolution. PMID:6298746

  10. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  11. Damped leaf flexure hinge.

    PubMed

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage. PMID:26026549

  12. Solution Structures of Spinach Acyl Carrier Protein with Decanoate and Stearate†

    PubMed Central

    Zornetzer, Gregory A.; Fox, Brian G.; Markley, John L.

    2008-01-01

    Acyl carrier protein (ACP) is a cofactor in a variety of biosynthetic pathways, including fatty acid metabolism. Thus it is of interest to determine structures of physiologically relevant ACP-fatty acid complexes. We report here the NMR solution structures of spinach ACP with decanoate (10:0-ACP) and stearate (18:0-ACP) attached to the 4′ phosphopantetheine prosthetic group. The protein in the fatty acid complexes adopts a single conformer, unlike apo- and holo-ACP, which interconvert in solution between two major conformers. The protein component of both 10:0- and 18:0-ACP adopts the four-helix bundle topology characteristic of ACP, and a fatty acid binding cavity was identified in both structures. Portions of the protein close in space to the fatty acid and the 4′ phosphopantetheine were identified using filtered/edited NOESY experiments. A docking protocol was used to generate protein structures containing bound fatty acid for 10:0- and 18:0-ACP. In both cases, the predominant structure contained fatty acid bound down the center of the helical bundle, in agreement with the location of the fatty acid binding pockets. These structures demonstrate the conformational flexibility of spinach-ACP and suggest how the protein changes to accommodate its myriad binding partners. PMID:16618110

  13. Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage.

    PubMed

    Bergquist, Sara A M; Gertsson, Ulla E; Knuthsen, Pia; Olsson, Marie E

    2005-11-30

    The variation in flavonoid concentration and composition was investigated in baby spinach (Spinacia oleracea L.) cv. Emilia sown on three occasions, each harvested at three growth stages at 6-day intervals. After harvest, leaves were stored in polypropylene bags at 2 or 10 degrees C. Flavonoids were analyzed by reversed phase HPLC. Twelve flavonoid peaks were detected. The main flavonoid, making up on average 43% of the total flavonoid concentration, was identified as 5,3',4'-trihydroxy-3-methoxy-6:7-methylenedioxyflavone-4'-glucuronide. Four other flavonoids each contributed 7-12% of the total flavonoid content. Total flavonoid content was relatively stable during normal retail storage conditions, although some of the individual flavonoid compounds showed considerable variation. The youngest plants had the highest flavonoid concentration, indicating that by harvesting the baby spinach a few days earlier than the current commercial stage of harvest, the flavonoid concentration in the product may be increased and the content of potentially health-promoting compounds enhanced. PMID:16302762

  14. Effects of Pb2+ on energy distribution and photochemical activity of spinach chloroplast.

    PubMed

    Wu, Xiao; Hong, Fashui; Liu, Chao; Su, Mingyu; Zheng, Lei; Gao, Fengqing; Yang, Fan

    2008-03-01

    Lead (Pb(2+)) is a well-known highly toxic element. The mechanisms of the Pb(2+) toxicity are not well understood for photosynthesis. In this paper, we reported the effect of Pb(2+) on light absorption, distribution and conversion of spinach chloroplast by spectroscopy, and photochemical reaction activities. Several effects of Pb(2+) were observed: (1) the absorption peak intensity of chloroplast obviously decreased in red and blue region and produced optical flattering; (2) fluorescence quantum yield nearby 680 nm of chloroplast greatly declined; (3) the excitation band nearby 440 nm of chloroplast significantly descended; (4) Pb(2+) treatments reduced of the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution, but the photoreduction activities of PSI were little changed. Together, the studies of the experiments showed that Pb(2+) decreased absorption of light on spinach chloroplast and inhibited excitation energy to be absorbed by LHCII and transferred to PSII, then reduced the conversion from light energy to electron energy, and decelerated electron transport, water photolysis and oxygen evolution. PMID:17602861

  15. Polypeptide profiles of chlorophyll . protein complexes and thylakoid membranes of spinach chloroplasts.

    PubMed

    Wessels, J S; Borchert, M T

    1978-07-01

    In addition to the major chlorophyll . protein complexes I and II, two minor chlorophyll proteins have been observed in sodium dodecyl sulfate (SDS))-polyacrylamide gels of spinach chloroplast membranes. These minor pigmented zones appeared to be derived from the light-harvesting chlorophyll a/b . protein and from the reaction centre complex of Photosystem II. Data are presented on the polypeptide profiles of purified digitonin-subschloroplast particles, with special regard to the effect of solubilization temperature and extraction of lipids. The results are compared with the SDS-polypeptide pattern of spinach thylakoids obtained under exactly the same conditions with respect to electrophoresis technique, solubilization method and presence of lipid. In addition, the effects of temperature and lipid extraction on the distinct chlorophyll . protein complexes appearing in SDS gel electrophoretograms of chloroplast membranes were studied by slicing the chlorophyll-containing regions and subjecting them to a second run with or without heating or extraction with acetone. By supplementing these data with an examination of the polypeptide composition of cytochrome f and coupling factor, it has been possible to identify most of the major chloroplast membrane polypeptides. PMID:667027

  16. Participation of β-carotene in reactivation of PSI of heptane-extracted spinach chloroplasts.

    PubMed

    Tukendorf, A; Subczynski, W K; Baszynski, T

    1981-09-01

    A carotenoid requirement for photosystem I activity in spinach chloroplasts using extraction-reconstitution technique has been investigated. The transfer of electron from N,N,N',N'-tetramethyl-p-phenylene diamine through the chloroplast photosystem to methyl viologen dye or to NADP(+) was used as an assay of photosystem I activity. Extraction of lyophilized spinach chloroplasts with heptane at near 0°C removed almost all β-carotene and reduced photochemical activities associated with photosystem I to a low level (about 15% of the original activity). Reconstitution of the extracted chloroplasts with β-carotene completely restored photosystem I activity. The maximum rate of methyl viologen photoreduction in reconstituted chloroplasts occurred at an β-carotene/chlorophyll molar ratio of 0.5. Cyclic phosphorylation mediated by phenazine methosulphate was partially restored. Xanthophylls (lutein, neoxanthin, violaxanthin), as components of chloroplast membranes, were not able to replace β-carotene in reconstitution of chloroplasts and had essentially no effect on restoring photoreactions. On the basis of the P700/total chlorophyll ratio it can be assumed that extraction of lyophilized chloroplasts with heptane do not affect photosystem I reaction centre. Therefore it is possible that β-carotene, removed during heptane extraction and belonging mainly to the antenna pigment pool of photosystem I, is effective in the restoration of photosystem I activity. PMID:24470228

  17. Topological studies of spinach 22 kDa protein of Photosystem II.

    PubMed

    Kim, S; Pichersky, E; Yocum, C F

    1994-12-30

    An intrinsic 22 kDa polypeptide is associated with the O2-evolving Photosystem II core complex in a variety of green plants, although it does not appear to be required for O2 evolution. Digestion of thylakoid membranes and isolated Photosystem II preparations with trypsin, followed by immunoblotting using spinach anti-22 kDa antibodies, leads to two observations: (1) the domain between the 2nd and 3rd transmembrane helices of the 22 kDa protein is stromally exposed, and (2) only in a reaction center complex preparation, lacking the chlorophyll a/b-light harvesting complex II, is there extensive proteolytic cleavage of the 22 kDa protein. We also found that after, but not prior to, selective extraction of the 22 and 10 kDa proteins from Photosystem II membranes, the chlorophyll a/b-light harvesting complex II can be separated from the Photosystem II reaction center core by precipitation with MgCl2. This result suggests that the 22 kDa polypeptide is located between the Photosystem II reaction center polypeptides and light-harvesting complex II; it is possible that the protein serves as a link between the two protein complexes. The presence of the 22 kDa protein in several species was also examined by immunoblotting with polyclonal spinach anti-22 kDa antibodies. PMID:7803450

  18. Effects of Pb 2+ on energy distribution and photochemical activity of spinach chloroplast

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Hong, Fashui; Liu, Chao; Su, Mingyu; Zheng, Lei; Gao, Fengqing; Yang, Fan

    2008-03-01

    Lead (Pb 2+) is a well-known highly toxic element. The mechanisms of the Pb 2+ toxicity are not well understood for photosynthesis. In this paper, we reported the effect of Pb 2+ on light absorption, distribution and conversion of spinach chloroplast by spectroscopy, and photochemical reaction activities. Several effects of Pb 2+ were observed: (1) the absorption peak intensity of chloroplast obviously decreased in red and blue region and produced optical flattering; (2) fluorescence quantum yield nearby 680 nm of chloroplast greatly declined; (3) the excitation band nearby 440 nm of chloroplast significantly descended; (4) Pb 2+ treatments reduced of the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution, but the photoreduction activities of PSI were little changed. Together, the studies of the experiments showed that Pb 2+ decreased absorption of light on spinach chloroplast and inhibited excitation energy to be absorbed by LHCII and transferred to PSII, then reduced the conversion from light energy to electron energy, and decelerated electron transport, water photolysis and oxygen evolution.

  19. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate

    SciTech Connect

    Igarashi, Y.; McFadden, B.A.; el-Gul, T.

    1985-07-16

    (TH) Diethyl pyrocarbonate was synthesized from (TH) ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM MgS , and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with earlier experiments, suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources.

  20. Effects of Mg 2+on spectral characteristics and photosynthetic functions of spinach photosystem II

    NASA Astrophysics Data System (ADS)

    Liang, Chen; Xiao, Wu; Hao, Huang; Xiaoqing, Liu; Chao, Liu; Lei, Zheng; Fashui, Hong

    2009-03-01

    In the present paper we report the results obtained with the photosystem II (PSII) isolated from spinach treated by MgCl 2, and studied the effect of Mg 2+ on spectral characteristics and photosynthetic functions of PSII. The results showed that Mg 2+ treatment at a suitable concentration could significantly increase the absorption intensity of PSII and the intensity ratio of Soret band to Q band of chlorophyll-a. The treatment also elevated the excited peak intensity at 230, 278 and 343 nm, and the emitted peak intensity at 304 and 682 nm, and the ratio of F278/ F230, respectively. The results implied that Mg 2+ increased absorbance for visible light, improving energy transfer among amino acids within PSII protein complex and accelerating energy transport from tyrosine residue to chlorophyll-a. The photochemical activity and oxygen evolving rate of PSII were also enhanced by Mg 2+. This is viewed as evidence that Mg 2+ can promote energy transfer and oxygen evolution in PSII of spinach.

  1. Bioactive compounds during storage of fresh-cut spinach: the role of endogenous ascorbic acid in the improvement of product quality.

    PubMed

    Bottino, Antonella; Degl'Innocenti, Elena; Guidi, Lucia; Graziani, Giulia; Fogliano, Vincenzo

    2009-04-01

    Spinach is rich in bioactive constituents such as vitamin C, flavonoids and phenolic acids. In this work, the biochemical modifications occurring during one week of storage at 4 degrees C were evaluated both in intact and in fresh-cut spinach. Results showed that vitamin C concentration is less affected by storage in fresh-cut spinach with respect to intact spinach. MS/MS analysis showed that the main flavonoids are not modified during storage in intact leaves, while some of them increased significantly during storage in the fresh-cut samples. Fresh-cut spinach did not show color alteration even if PPO activity increased significantly during storage. This finding was related to the high ascorbic acid content, which delays the subsequent polymerization events. This finding was confirmed by the unaltered concentration of phenolic compounds in fresh-cut spinach during storage. In conclusion, data about nutritional content and visual performance concurrently suggest that spinach is a suitable species for marketing as a fresh-cut product. PMID:19253961

  2. Escherichia coli O157:H7 in Feral Swine Near Spinach Fields and Cattle, Central California Coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated involvement of feral swine in contamination of agriculture fields and surface waterways with Escherichia coli O157:H7 after a nationwide outbreak traced to bagged spinach from California. Isolates from feral swine, cattle, surface water, sediment, and soil at 1 ranch were matched to ...

  3. Quality of fresh-cut Iceberg lettuce and spinach irradiated at doses up to 4 kGy

    NASA Astrophysics Data System (ADS)

    Fan, Xuetong; Guan, Wenqiang; Sokorai, Kimberly J. B.

    2012-08-01

    Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22-40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality.

  4. Use of Spinach, Radish, and Perennial Ryegrass to Assess the Availability of Metals in Waste Foundry Sands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant uptake is a major pathway by which potentially toxic metals can enter the food chain. In this laboratory study we grew spinach, radish, and perennial ryegrass in sand blends containing 50% waste foundry sand (WFS) to assess the availability of Al, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn,...

  5. Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effect of biosurfactants on the populations of Escherichia coli O157:H7 in suspension and on spinach leaves. Eight surfactants including four soybean oil-based biosurfactants, sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan monooleate (Tween 80), sopho...

  6. Comparative survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Murine Norovirus on spinach plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Outbreaks resulting from the consumption of leafy greens contaminated with E. coli O157:H7, Salmonella spp., and norovirus have occurred. It is unclear how the stress response factor rpoS in E. coli O157:H7 and Salmonella spp. affects their survival on spinach. Purpose: A comparison ...

  7. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  8. Survival and transfer of murine norovirus 1, a surrogate for human noroviruses, during the production process of deep-frozen onions and spinach.

    PubMed

    Baert, Leen; Uyttendaele, Mieke; Vermeersch, Mattias; Van Coillie, Els; Debevere, Johan

    2008-08-01

    The reduction of murine norovirus 1 (MNV-1) on onions and spinach by washing was investigated as was the risk of contamination during the washing procedure. To decontaminate wash water, the industrial sanitizer peracetic acid (PAA) was added to the water, and the survival of MNV-1 was determined. In contrast to onions, spinach undergoes a heat treatment before freezing. Therefore, the resistance of MNV-1 to blanching of spinach was examined. MNV-1 genomic copies were detected with a real-time reverse transcription PCR assay in PAA-treated water and blanched spinach, and PFUs (representing infectious MNV-1 units) were determined with a plaque assay. A < or = 1-log reduction in MNV-1 PFUs was achieved by washing onion bulbs and spinach leaves. More than 3 log PFU of MNV-1 was transmitted to onion bulbs and spinach leaves when these vegetables were washed in water containing approximately 5 log PFU/ml. No decline of MNV-1 occurred in used industrial spinach wash water after 6 days at room temperature. A concentration of 20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70) resulted in reductions of 2.88 +/- 0.25 and 2.41 +/- 0.18 log PFU, respectively, after 5 min of exposure, but no decrease in number of genomic copies was observed. No reduction of MNV-1 PFUs was observed on frozen onions or spinach during storage for 6 months. Blanching spinach (80 degrees C for 1 min) resulted in at least 2.44-log reductions of infectious MNV-1, but many genomic copies were still present. PMID:18724752

  9. Raspberry leaf curl virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry leaf curl virus (RLCV) is limited to hosts in the genus Rubus and is transmitted persistently by the small raspberry aphid, Aphis rubicola Oestlund. It is found only in North America, principally in the northeastern United States and southeastern Canada and in the Rocky Mountain regions of...

  10. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  11. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  12. E-Beam irradiation of bagged, ready-to-eat spinach leaves (Spinacea oleracea): an engineering approach.

    PubMed

    Gomes, C; Moreira, R G; Castell-Perez, M E; Kim, J; Da Silva, P; Castillo, A

    2008-03-01

    We experimentally assessed the efficacy of electron beam irradiation to ensure the safety and quality of ready-to-eat spinach leaves using a 2-MeV Van de Graff accelerator. Spinach leaves (approximately 8 g) inside petri dishes were irradiated up to 1 kGy and stored at 4 degrees C for 15 d. Nonirradiated samples served as controls. Color, texture, vitamin C, total carotenoids, and chlorophyll content were measured using standard methods. Sensory analysis was performed by 15 untrained panelists using a 9-point hedonic scale. Color of control and irradiated samples showed slight variation throughout storage. Firmness of all samples changed significantly (P < 0.05) by half the storage time; however, exposure to radiation did not cause significant differences by the end of shelf life. Irradiation did not affect the chlorophyll and total carotenoid content, though it produced samples with significantly lower (P < 0.05) vitamin C content. For all treatments, chlorophyll content decreased by day 15 while total carotenoids remained constant. Although, by the end of refrigerated storage, all the irradiated samples received slightly lower odor scores, sensory analysis revealed that irradiation had little or no effect on the overall quality of spinach leaves. We also simulated the dose distribution within a bag of spinach leaves irradiated using a 10-MeV linear accelerator (0.3 to 1 kGy) to quantify the problem of nonuniform dose absorbed at different parts of the bag and predict death of a pathogen such as Escherichia coli O157:H7. The simulation results confirmed that it is feasible to irradiate baby spinach leaves (up to 1 kGy) to eliminate E. coli 0157:H7 while maintaining the overall quality of the produce. PMID:18298731

  13. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. PMID:26001524

  14. Gibberellin A[sub 1] is required for stem elongation in spinach

    SciTech Connect

    Zeevaart, J.A.D.; Gage, D.A.; Talon, M. )

    1993-08-01

    The effects of the growth retardants 2'-isopropyl-4'-(trimethylammonium chloride)-5'-methylphenyl piperidine-1-carboxylate (AMO-1618) and calcium 3,5-dioxo-4-propionylcyclohexanecarboxylate (BX-112) on stem elongation were investigated in the rosette plant spinach (Spinacia oleracea L.) under long-day (LD) conditions. Stem growth induced by a LD treatment was prevented by both retardants. The inhibition caused by AMO-1618 was reversed by gibberellin A[sub 1] (GA[sub 1]) and GA[sub 20], whereas the effects of BX-112 were reversed by GA[sub 1] only. Six GAs (GA[sub 53], GA[sub 44], GA[sub 19], GA[sub 20], GA[sub 1], and GA[sub 8]) were quantified by gas chromatography-selected ion monitoring using internal standards. Plants treated with BX-112 had reduced levels of GA[sub 1], and GA[sub 8] and accumulated GA[sub 53], GA[sub 44], GA[sub 19], and GA[sub 20]. The relative levels of four additional GAs (3-epi-GA[sub 1], GA[sub 29], GA[sub 60], and GA[sub 81]) were compared by ion intensities only. Relative to GA[sub 81], the level of GA[sub 29] was decreased by BX-112, whereas the levels of GA[sub 6] and 3-epi-GA[sub 1] were increased. Transfer of spinach from short-day conditions to LD conditions caused an increase in all identified GAs of the early 13-hydroxylation pathway with GA[sub 20], GA[sub 1], and GA[sub 8] showing the largest increases. These findings support the position that, of the GA[sub s] belonging to the early 13-hydroxylation pathway, GA[sub 1] is the primary GA active per se for stem elongation in spinach. The increase in endogenous GA[sub 1] in plants in LD conditions is most likely the primary factor for stem elongation. 23 refs., 7 figs., 3 tabs.

  15. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin.

    PubMed

    Winget, G D; Kanner, N; Racker, E

    1977-06-01

    The energy-linked ATPase complex has been isolated from spinach chloroplasts. This protein complex contained all the subunits of the chloroplast coupling factor (CF1) as well as several hydrophobic compoenents. When the activated complex was reconstituted with added soybean phospholipids, it catalyzed the exchange of radioactive inorganic phosphate with ATP. Sonication of the complex into proteoliposomes together with bacteriorhodopsin yield vesicles that catalyzed light-dependent ATP formation. Both the 32Pi-ATP exchange reactions and ATP formation were sensitive to uncouplers such as 3-tert-butyl-5,2'-dichloro-4'-nitrosalicylanilide, bis-(hexafluoroacetonyl)acetone and carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone, that act to dissipate a proton gradient. The energy transfer inhibitors dicyclohexylcarbodiimide, triphenyltin chloride and 2-beta-D-glucopyranosyl-4,6'-dihydroxydihydrochalcone were also effective inhibitors of both reactions. PMID:141938

  16. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.

    PubMed

    Kikuchi, Nanami; Kolpashchikov, Dmitry M

    2016-09-01

    Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures. PMID:27305425

  17. Investigation of Detergent Effects on the Solution Structure of Spinach Light Harvesting Complex II

    SciTech Connect

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T; O'Neill, Hugh Michael

    2010-01-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-{beta}-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  18. Fast isolation of highly active photosystem II core complexes from spinach.

    PubMed

    Wang, Zhao-Gai; Xu, Tian-Hua; Liu, Cheng; Yang, Chun-Hong

    2010-09-01

    Purification of photosystem II (PSII) core complexes is a time-consuming and low-efficiency process. In order to isolate pure and active PSII core complexes in large amounts, we have developed a fast method to isolate highly active monomeric and dimeric PSII core complexes from spinach leaves by using sucrose gradient ultracentrifugation. By using a vertical rotor the process was completed significantly faster compared with a swing-out rotor. In order to keep the core complexes in high activity, the whole isolation procedure was performed in the presence of glycine betain and pH at 6.3. The isolated pigment-protein complexes were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, absorption spectroscopy, 77 K fluorescence spectroscopy and high performance liquid chromatography. Our results show that this method is a better choice for quick and efficient isolation of functionally active PSII core complexes. PMID:20738723

  19. Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes.

    PubMed

    Sengupta, D; Mondal, B; Mukherjee, K

    2015-09-01

    Herein, chlorophyll and betalain dyes are extracted from fresh spinach leaves and beetroots. Fourier transform infrared spectra are used to identify the characteristic peaks of the extracted dyes. UV-vis light absorption characteristics of the dyes and their mixed counterpart are investigated by varying their pH and temperature. These dyes are used as photo sensitizer for fabrication of zinc oxide photo-anode based dye sensitized solar cells (DSSCs). The photo-voltaic characteristics of the developed DSSCs are measured under simulated solar light (power of incident light 100 mW cm(-2) from Air Mass 1.5G). The solar to electric conversion efficiencies for the chlorophyll, betalain and mixed dye based solar cells are estimated as 0.148%, 0.197% and 0.294% respectively. The highest conversion efficiency for mixed dye based solar cell is attributed due to the absorption of wider range of solar spectrum. PMID:25875029

  20. Polypeptide composition of the purified photosystem II pigment-protein complex from spinach.

    PubMed

    Satoh, K

    1979-04-11

    The Photosystem II pigment-protein complex, the chlorophyll alpha-protein comprising the reaction center of Photosystem II, was prepared from EDTA-treated spinach chloroplasts by digitonin extraction, sucrose-gradient centrifugation, DEAE-cellulose column chromatography, and isoelectrofocussing on Ampholine. The dissociated pigment-protein complex exhibits two polypeptide subunits that migrate in SDS-polyacrylamide gel with electrophoretic mobilities corresponding to molecular weights of approximately 43,000 and 27,000. the chlorophyll was always found in the free pigment zone at the completion of the electrophoresis. Heat-treatment of the sample (100 degrees C, 90 s) for electrophoresis caused association of the two polypeptides into large aggregates. It is concluded that these two polypeptides, 43,000 and 27,000, are valid structural or functional components of Photosystem II pigment-protein complex. PMID:444494

  1. Electron spin resonance studies of urea-ferricyanide inactivated spinach photosystem I particles

    SciTech Connect

    Golbeck, J.H.; Warden, J.T.

    1981-09-01

    The photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea-ferricyanide. The chemical analysis of iron and sulfur and the ESR properties of centers A, B, and X are consistent with the participation of three iron-sulfur centers in photosystem I. A differential decrease in centers A, B, and X is observed under conditions which induce S= ..-->.. S/sup 0/ conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center X is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in photosystem I does not occur sequentially from X ..-->.. B ..-->.. A since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X.

  2. Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I

    SciTech Connect

    Rustandi, R.R.; Snyder, S.W.; Feezel, L.L.; Michalski, T.J.; Norris, J.R.; Thurnauer, M.C.; Biggins, J. )

    1990-09-04

    The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1.

  3. Characterization of elemental sulfur in isolated intact spinach chloroplasts. [Spinacia oleracea L

    SciTech Connect

    Joyard, J.; Douce, R. ); Forest, E. ); Blee, E. )

    1988-12-01

    Incubation of intact spinach (Spinacia oleracea L.) chloroplasts in the presence of {sup 35}SO{sub 4}{sup 2{minus}} resulted in the light-dependent formation of a chloroform-soluble sulfur-containing compound distinct from sulfolipid. The authors have identified this compound as the most stable form (S{sub 8}) of elemental sulfur (S{sup 0}, valence state for S = O) by mass spectrometry. It is possible that elemental sulfur (S{sup 0}) was formed by oxidation of bound sulfide, i.e. after the photoreduction of sulfate to sulfide by intact chloroplasts, and released as S{sub 8} under the experimental conditions used for analysis.

  4. Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II

    NASA Astrophysics Data System (ADS)

    Cardoso, Mateus B.; Smolensky, Dmitriy; Heller, William T.; O'Neill, Hugh

    2010-11-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-β-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  5. Temperature dependent steady state and picosecond kinetic fluorescence measurements of a photosystem I preparation from spinach

    SciTech Connect

    Mukerji, I.; Sauer, K.

    1988-08-01

    The fluorescence properties of a photosystem I (PSI) preparation from spinach containing approximately 200 chlorophyll (Chl) per reaction center were investigated. The preparation, characterized both spectroscopically and biochemically, contained the peripheral light harvesting antenna associated with PSI. In this study steady state fluorescence measurements were performed as a function of temperature. An emission maximum at 690 nm and a long wavelength shoulder from 710 to 740 nm were observed. The fluorescence yield at 690 nm is temperature independent, while the yield of the long wavelength shoulder increases dramatically with decreasing temperature. Additionally, kinetic measurements using the technique of single photon counting were done at room temperature and 77K. At 295K a four component fit was needed to describe the fluorescence decay; whereas at 77K, an additional 40-50 ps rise component indicative of fluorescence induction was necessary. 28 refs., 13 figs., 1 tab.

  6. Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Mondal, B.; Mukherjee, K.

    2015-09-01

    Herein, chlorophyll and betalain dyes are extracted from fresh spinach leaves and beetroots. Fourier transform infrared spectra are used to identify the characteristic peaks of the extracted dyes. UV-vis light absorption characteristics of the dyes and their mixed counterpart are investigated by varying their pH and temperature. These dyes are used as photo sensitizer for fabrication of zinc oxide photo-anode based dye sensitized solar cells (DSSCs). The photo-voltaic characteristics of the developed DSSCs are measured under simulated solar light (power of incident light 100 mW cm-2 from Air Mass 1.5G). The solar to electric conversion efficiencies for the chlorophyll, betalain and mixed dye based solar cells are estimated as 0.148%, 0.197% and 0.294% respectively. The highest conversion efficiency for mixed dye based solar cell is attributed due to the absorption of wider range of solar spectrum.

  7. Fabrication of Organic Light-Emitting Diodes Using Photosynthetic Pigments Extracted from Spinach

    NASA Astrophysics Data System (ADS)

    Ohtani, Naoki; Kitagawa, Natsuko; Matsuda, Takashi

    2011-01-01

    We fabricated organic light-emitting diodes (OLEDs) containing chlorophylls in the active region, which were extracted from spinach using a chemical method. Photoluminescence (PL) cannot be observed in the thin film of the extracted chlorophylls owing to concentration quenching. To overcome the concentration quenching, a host material, poly[(m-phenylenevinylene)-alt-(2,5-dihexyloxy-p-phenylenevinylene)] (PPV) was added in the active region. This leads to the observaton of electroluminescence (EL) signals originating from chlorophyll a. We also evaluated the lifetime of the PL and EL. Consequently, the OLEDs containing carotenoids in the active region exhibit the light-emission much longer time than that without carotenoidos. This is assigned to the antioxidant activities of carotenoids. OLEDs containing a large amount of carotenoids are resistant to the oxidation damage.

  8. Probing the donor side of photosystem II in spinach chloroplasts and algae using electron paramagnetic resonance

    SciTech Connect

    Boska, M.D.

    1985-11-01

    this work concerns electron transfer reactions in photosystem II (PS II). Investigations carried out in this work examine the redox reaction rates in PS II using EPR. In Tris-washed PS II preparations from spinach, it is observed that the oxidation kinetics of S II/sub f/, the EPR signal formed by Z/sup +/ after deactivation of oxygen evolution, mirror the reduction kinetics of P680/sup +/ seen by EPR in samples poised at a variety of pH's. These data agree with previous data on the optically measured reduction kinetics of P680/sup +/. The oxidation kinetics of S II/sub vf/, the EPR transient seen from Z/sup +/ in samples active in O/sub 2/ evolving samples, were instrument limited (t/sub 1/2/ less than 4 ..mu..s) and thus could not be directly measured. These results taken together support a model where Z donates electrons directly to P680/sup +/. The examination of the oxidation and reduction kinetics of S II in monovalent and divalent salt-washed PS II preparations from spinach correlated most of the change of Z oxidation and re-reduction kinetics seen upon Tris-treatment with the loss of a 33 kDa polypeptide associated with the donor side of PS II. These data coupled with observations of stead-state light-induced amplitude changes in S II give evidence for the existance of an electron carrier between the water-splitting enzyme and Z. Observation of S II amplitude and kinetics in highly resolved PS II protein complexes from Synechoccus sp., consisting of either a 5 polypeptide PS II core complex (E-1) or a 4 polypeptide PS II core complex (CP2b), localize Z and P680 within the 4 polypeptide complex. 187 refs., 17 figs., 7 tabs.

  9. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  10. Bioconversion of spinach beta-carotene to vitamin A in Chinese children with normal or marginal vitamin A status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the vitamin A conversion value of spinach beta-carotene (beta -C) in healthy school children with normal or marginal vitamin A status, we recruited 32 school children aged 7-9 y (7.8 ± 0.6 y) with serum retinol '30 mug/dL or <30mug/dL. Subjects were given 5 gram cooked and pureed deut...

  11. Interactions of plant zinc and plant species on the bioavailability of plant cadmium to Japanese quail fed lettuce and spinach

    SciTech Connect

    McKenna, I.M.; Keach, R.M. Jr; Williams, F.M. ); Chaney, R.L. Dept. of Agriculture, Beltsville, MD ); Tao, Shyy-Hwa )

    1992-02-01

    Many cadmium-contaminated environments contain high levels of zinc. The effects of plant Zn and plant species on plant Cd bioavailability were tested in Japanese quail fed lettuce and spinach. Four groups of birds received 10% of their diets as lettuce or spinach leaves intrinsically labeled with {sup 109}Cd and containing low or high intrinsic Zn. Two other groups were fed control diets containing {sup 109}Cd as CdSO{sub 4} and low or high Zn as ZnCO{sub 3}. Cadmium concentrations in diets ranged from 0.857 to 1.05 {mu}g/g dry wt. Zinc concentrations in low-Zn diets ranged from 21.2 to 22.8, and in high-Zn diets from 56.0 to 63.3 {mu}g/g dry wt. Increased lettuce and spinach Zn decreased plant Cd retention in kidney, liver, and jejunum-ileum of Japanese quail. Spinach Cd was less absorbed than lettuce Cd at both Zn levels. Inorganic Zn produced a lesser decrease in Cd retention in kidney, liver, and jejunum-ileum than did plant Zn. The authors conclude that (1) crops that transport Zn and Cd readily into edible tissues show lower Cd bioavailability when grown in Zn-Cd contaminated environments than in Cd-only polluted sites, (2) plant species differ in Cd bioavailability for identical concentrations of Zn and Cd in edible tissues, and (3) toxicological studies with animals exposed to Cd salts and Zn supplements do not assess Cd bioavailability of Zn-Cd contaminated crops.

  12. Characterization of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability.

    PubMed

    Keown, Jeremy R; Pearce, Frederick Grant

    2014-12-15

    Most plants contain two isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a chloroplast protein that maintains the activity of Rubisco during photosynthesis. The longer (α-) Rca isoform has previously been shown to regulate the activity of Rubisco in response to both the ADP:ATP ratio and redox potential via thioredoxin-f. We have characterized the arrangement of the different spinach (Spinacia oleracea) isoforms in solution, and show how the presence of nucleotides changes the oligomeric state. Although the shorter (β-) isoform from both tobacco (Nicotiana tabacum) and spinach tend to form a range of oligomers in solution, the size of which are relatively unaffected by the addition of nucleotide, the spinach α-isoform assembles as a hexamer in the presence of adenosine 5'-[γ-thio]triphosphate (ATPγS). These hexamers have significantly higher heat stability, and may play a role in optimizing photosynthesis at higher temperatures. Hexamers were also observed for mixtures of the two isoforms, suggesting that the α-isoform can act as a structural scaffold for hexamer formation by the β-isoform. Additionally, it is shown that a variant of the tobacco β-isoform acts in a similar fashion to the α-isoform of spinach, forming thermally stable hexamers in the presence of ATPγS. Both isoforms had similar rates of ATP hydrolysis, suggesting that a propensity for hexamer formation may not necessarily be correlated with activity. Modelling of the hexameric structures suggests that although the N-terminus of Rca forms a highly dynamic, extended structure, the C-terminus is located adjacent to the intersubunit interface. PMID:25247706

  13. Leaf development: a cellular perspective

    PubMed Central

    Kalve, Shweta; De Vos, Dirk; Beemster, Gerrit T. S.

    2014-01-01

    Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana. PMID:25132838

  14. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture...

  15. Differences in responses of summer and winter spinach to elevated UV-B at varying soil NPK levels.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2014-05-01

    Seasonal variations in response of spinach to elevated ultraviolet-B (UV-B) during summer and winter were assessed with respect to growth, biomass, yield, NPK uptake and NPK use efficiencies at varying NPK levels. The nutrient amendments were recommended NPK (RNPK) and 1.5 times recommended NPK (1.5 RNPK). Season significantly affected the measured parameters except the number of leaves. Under ambient UV-B, the growth performance of summer spinach was better in both the NPK levels, higher being at 1.5 RNPK leading to higher nutrient uptake. However, more reduction in biomass under elevated UV-B in 1.5 RNPK was recorded during summer, while during winter in RNPK. Reduction in biomass under elevated UV-B was accompanied by the modification in its partitioning with more biomass allocation to root during summer compared to winter at both the NPK levels. NPK uptake was higher in summer, while NPK use efficiencies were higher during winter. At higher than recommended NPK level, better NPK use efficiencies were displayed during both the seasons. Increased NPK supply during winter enabled spinach to capitalize light more efficiently and hence increased biomass accumulation. Strategies for surviving elevated UV-B in winter differ from those that provided protection from the same stress when it occurs in summer. PMID:24474564

  16. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.

    PubMed

    Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu

    2010-03-15

    A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. PMID:19875230

  17. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    PubMed Central

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique. PMID:16535579

  18. The artificial leaf.

    PubMed

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a

  19. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism

    PubMed Central

    2010-01-01

    Background Evolution of unisexual flowers entails one of the most extreme changes in plant development. Cultivated spinach, Spinacia oleracea L., is uniquely suited for the study of unisexual flower development as it is dioecious and it achieves unisexually by the absence of organ development, rather than by organ abortion or suppression. Male staminate flowers lack fourth whorl primordia and female pistillate flowers lack third whorl primordia. Based on theoretical considerations, early inflorescence or floral organ identity genes would likely be directly involved in sex-determination in those species in which organ initiation rather than organ maturation is regulated. In this study, we tested the hypothesis that sexual dimorphism occurs through the regulation of B class floral organ gene expression by experimentally knocking down gene expression by viral induced gene silencing. Results Suppression of B class genes in spinach resulted in the expected homeotic transformation of stamens into carpels but also affected the number of perianth parts and the presence of fourth whorl. Phenotypically normal female flowers developed on SpPI-silenced male plants. Suppression of the spinach C class floral organ identity gene, SpAG, resulted in loss of reproductive organ identity, and indeterminate flowers, but did not result in additional sex-specific characteristics or structures. Analysis of the genomic sequences of both SpAP3 and SpPI did not reveal any allelic differences between males and females. Conclusion Sexual dimorphism in spinach is not the result of homeotic transformation of established organs, but rather is the result of differential initiation and development of the third and fourth whorl primordia. SpAG is inferred to have organ identity and meristem termination functions similar to other angiosperm C class genes. In contrast, while SpPI and SpAP3 resemble other angiosperms in their essential functions in establishing stamen identity, they also appear to have

  20. Exserohilum Leaf Spot on Tigergrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tigergrass (Thysanolaena maxima (Roxb.) Kuntze ) is a popular ornamental grass grown throughout landscapes in South Florida. In the summer of 2006, a leaf spot was observed on tigergrass in the landscape and a commercial nursery in Homestead, FL. The causal agent of the leaf spot was isolated, cha...

  1. How to pattern a leaf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, an...

  2. Efficient Photoelectrochemical Energy Conversion using Spinach Photosystem II (PSII) in Lipid Multilayer Films.

    PubMed

    Zhang, Yun; Magdaong, Nikki M; Shen, Min; Frank, Harry A; Rusling, James F

    2015-04-01

    The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment-protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm(-2) under light intensity 40 mW cm(-2). The PSII-DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm(-2). Part of this large output is related to a five-unit anode-cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII-DMPC films in small portable power conversion devices. PMID:25969807

  3. Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides.

    PubMed Central

    Blee, E.; Joyard, J.

    1996-01-01

    Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell. PMID:12226196

  4. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.

    PubMed

    Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien

    2008-06-01

    Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater. PMID:18471856

  5. Efficient Photoelectrochemical Energy Conversion using Spinach Photosystem II (PSII) in Lipid Multilayer Films

    PubMed Central

    Zhang, Yun; Magdaong, Nikki M; Shen, Min; Frank, Harry A; Rusling, James F

    2015-01-01

    The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices. PMID:25969807

  6. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    SciTech Connect

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  7. Defining the Far-Red Limit of Photosystem II in Spinach[C][W

    PubMed Central

    Thapper, Anders; Mamedov, Fikret; Mokvist, Fredrik; Hammarström, Leif; Styring, Stenbjörn

    2009-01-01

    The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn4 cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S2-, S3-, and S0-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results. PMID:19700631

  8. Sub-plastidial localization of two different phage-type RNA polymerases in spinach chloroplasts

    PubMed Central

    Azevedo, Jacinthe; Courtois, Florence; Lerbs-Mache, Silva

    2006-01-01

    Plant plastids contain a circular genome of ∼150 kb organized into ∼35 transcription units. The plastid genome is organized into nucleoids and attached to plastid membranes. This relatively small genome is transcribed by at least two different RNA polymerases, one being of the prokaryotic type and plastid-encoded (PEP), the other one being of the phage-type and nucleus-encoded (NEP). The presumed localization of a second phage-type RNA polymerase in plastids is still questionable. There is strong evidence for a sequential action of NEP and PEP enzymes during plant development attributing a prevailing role of NEP during early plant and plastid development, although NEP is present in mature chloroplasts. In the present paper, we have analysed two different NEP enzymes from spinach with respect to subcellular and intra-plastidial localization in mature chloroplasts with the help of specific antibodies. Results show the presence of the two different NEP enzymes in mature chloroplasts. Both enzymes are entirely membrane bound but, unlike previously thought, this membrane binding is not mediated via DNA. This finding indicates that NEP enzymes are not found as elongating transcription complexes on the template DNA in mature chloroplasts and raises the question of their function in mature chloroplasts. PMID:16421271

  9. The organization and evolution of the spinach stress 70 molecular chaperone gene family.

    PubMed Central

    Guy, C L; Li, Q B

    1998-01-01

    The stress 70 molecular chaperones of plants are localized and function in all of the major subcellular compartments of the cell. Collectively, all of the various forms are encoded by a multigene family in the nucleus. At least 12 members of this family have been found, and sequence and DNA blot analyses provide an emerging description of the diversity of gene structure organization for this family of evolutionarily conserved proteins in spinach. They exhibit not only structural diversity in the organization of coding and noncoding regions but also distinct expression patterns for different tissues and abiotic conditions. The results of phylogenetic analyses are concordant with at least four major evolutionary events that gave rise to stress 70 molecular chaperones in each of four major subcellular compartments of plant cells: the plastid, mitochondrion, cytoplasm, and endoplasmic reticulum. The varied expression patterns also illustrate the complexity of effectively interpreting the role of any one of these stress-related proteins in response to abiotic stress in the absence of context to the other members of the family. PMID:9548981

  10. Formation of electrical field accompanying temperature jump in isolated spinach chloroplasts.

    PubMed

    Shimizu, M; Nishimura, M

    1977-03-11

    Temperature-jump-induced absorbance changes of spinach chloroplasts in the dark were studied. After the temperature rise, a fast absorbance decrease and a succeeding slow absorbance increase were observed at the wavelength of 515 nm. The spectrum of the fast phase had positive maxima (increase in absorbance) at 430, 470 and 673 nm and a negative maxima (decrease in absorbance) at 525 nm. Permeant ions, tetraphenylboron-, tetraphenylarsonium+, and tetraphenylphosphonium+, decreased the extent of the fast absorbance change and increased the rate of slow recovery. Additions of inorganic potassium salts had a similar effect. Valinomycin, added in the presence of potassium ion, also increased the rate of slow recovery. These ions and ionophore had a parallel effect also on the recovery of flash-induced 515-nm absorbance change in chloroplasts. Electroneutral nigerericin did not affect the temperature-jump-induced absorbanc change. These results suggest the formation of electrical field across the thylakoid membrane in the dark accompanying the temperature rise. A possible involvement of the movement of water molecules (thermo-osmosis) in the observed absorbance changes is also discussed. PMID:849433

  11. Survival of Salmonella enterica in Dried Turkey Manure and Persistence on Spinach Leaves.

    PubMed

    Oni, Ruth A; Sharma, Manan; Buchanan, Robert L

    2015-10-01

    Concerns about the microbiological safety of fresh produce have attracted attention in the past three decades due to multiple foodborne outbreaks. Animal manure contaminated with enteric pathogens has been identified as an important preharvest pathogen source. This study investigated the survival of Salmonella enterica in dust particles of dehydrated turkey manure and how association with manure dust may enhance the survival of salmonellae on leafy greens in the field. The survival of a cocktail of multiple Salmonella serotypes in the dried fecal material of various particle sizes (125 to 500 μm) was examined at varying moisture contents (5, 10, and 15%). Survival times of the pathogen were inversely related to moisture content and particle size of manure dust, with viable Salmonella still detectable for up to 291 days in the smallest particle size (125 μm) with 5% moisture. Association with manure dust particles increased the survival of Salmonella when subjected to UV light both under laboratory conditions and on the surface of spinach leaves in a greenhouse setting. The results of this study suggest that aerosolized manure particles could be a potential vehicle for Salmonella dispersal to leafy greens if the microorganism is present in the dry manure. PMID:26408127

  12. Preparation and multiple antitumor properties of AuNRs/spinach extract/PEGDA composite hydrogel.

    PubMed

    Wang, Yunlong; Zhang, Buchang; Zhu, Lin; Li, Yanjie; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2014-09-10

    In this study, a novel composite hydrogel that contains spinach extract (SE), gold nanorods (AuNRs), and poly(ethylene glycol) double acrylates (PEGDA) is prepared through a one-step in situ photopolymerization under noninvasive 660 nm laser irradiation for localized antitumor activity. SE plays a role as a photoinitiator for initiating the formation of the PEGDA hydrogel and as an excellent photosensitizer for generating cytotoxic singlet oxygen ((1)O2) with oxygen to kill tumor cells. AuNRs can be used as a photoabsorbing agent to generate heat from optical energy. Moreover, the introduction of AuNRs is conducive to the formation of the hydrogel and accelerates the rate of (1)O2 generation. The composite hydrogel shell, which has good biocompatibility on tumor cells, can prevent the photosensitizer from migrating to normal tissue and maintains a high concentration on lesions, thereby enhancing the curative effect. The combination of NIR light-triggered mild photothermal heating of AuNRs, the photodynamic treatment using SE, and localized gelation by photopolymerization exhibits a synergistic effect for the destruction of cancer cells. PMID:25111567

  13. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea) Grown in a Controlled Environment

    PubMed Central

    Alia, Naz; Sardar, Khan; Said, Muhammad; Salma, Khalid; Sadia, Alam; Sadaf, Siddique; Toqeer, Ahmed; Miklas, Scholz

    2015-01-01

    The impact of heavy metal toxicity on the shoot and root lengths, total protein, fiber characteristics, moisture content and nutrient composition of spinach (Spinacia oleracea) was evaluated. Plants were grown in pots containing soil and treated with different concentrations (mg/kg) of lead (Pb; 300, 400 and 500), cadmium (Cd; 0.5, 1 and 1.5) and zinc (Zn; 250, 500, and 700) as well as mixtures of Cd and Pb (0.5/300, 1/400, 1.5/500), Cd and Zn (0.5/250, 1/500, 1.5/700), and Pb and Zn (300/250, 400/500, 500/700). Soil contaminated by long-term irrigation with wastewater containing heavy metals was simulated. An increase in concentrations of heavy metals both individually and as mixtures significantly (p < 0.05) reduced the growth parameters and nutrient contents of S. oleracea. The uptake patterns of heavy metals in mixtures showed antagonistic impacts on each other. The toxicities of the mixtures Cd and Pb, Cd and Zn as well as Pb and Zn were higher than those observed in separate heavy metal applications but less than their additive sums. The toxicity caused by individual heavy metals was the highest for Cd followed by Pb and Zn. The highest toxicity was observed in plants grown in soil contaminated by Cd and Pb. PMID:26133131

  14. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea) Grown in a Controlled Environment.

    PubMed

    Alia, Naz; Sardar, Khan; Said, Muhammad; Salma, Khalid; Sadia, Alam; Sadaf, Siddique; Toqeer, Ahmed; Miklas, Scholz

    2015-07-01

    The impact of heavy metal toxicity on the shoot and root lengths, total protein, fiber characteristics, moisture content and nutrient composition of spinach (Spinacia oleracea) was evaluated. Plants were grown in pots containing soil and treated with different concentrations (mg/kg) of lead (Pb; 300, 400 and 500), cadmium (Cd; 0.5, 1 and 1.5) and zinc (Zn; 250, 500, and 700) as well as mixtures of Cd and Pb (0.5/300, 1/400, 1.5/500), Cd and Zn (0.5/250, 1/500, 1.5/700), and Pb and Zn (300/250, 400/500, 500/700). Soil contaminated by long-term irrigation with wastewater containing heavy metals was simulated. An increase in concentrations of heavy metals both individually and as mixtures significantly (p < 0.05) reduced the growth parameters and nutrient contents of S. oleracea. The uptake patterns of heavy metals in mixtures showed antagonistic impacts on each other. The toxicities of the mixtures Cd and Pb, Cd and Zn as well as Pb and Zn were higher than those observed in separate heavy metal applications but less than their additive sums. The toxicity caused by individual heavy metals was the highest for Cd followed by Pb and Zn. The highest toxicity was observed in plants grown in soil contaminated by Cd and Pb. PMID:26133131

  15. Isolation and quantitation of. beta. -D-glucoNyranosyl abscisate from leaves of Xanthium and spinach

    SciTech Connect

    Boyer, G.L.; Zeevaart, J.A.D.

    1982-07-01

    Xanthium leaves are known to contain a high level of alkali-hydrolyzable conjugated abscisic acid. This abscisic acid conjugate has been isolated and identified by mass spectrometry, nuclear magnetic resonance, and chemical and enzymic degradation techniques, as the glucosyl ester of abscisic acid, ..beta..-D-glucopyranosyl abscisate. The glucosyl ester of abscisic acid was the only abscisic acid conjugate found in Xanthium leaves. It was also isolated from spinach leaves. An insignificant amount of the glucosyl ester of abscisic acid partitioned into diethyl ether, whereas 12% partitioned into ethyl acetate. Consequently, removal of absicsic acid by partitioning with ethyl acetate will result in considerable losses of the glucosyl ester of abscisic acid from the aqueous phase. Diethyl ether is, therefore, recommended for separation of abscisic acid and the glucosyl ester of abscisic acid by solvent partitioning. A method for quantitation of the glucosyl ester of abscisic acid as the tetraacetate derivative by gas-liquid chromatography with an electron capture detector was developed. The level of ..beta..-D-glycopyranosyl abscisate in Xanthium leaves increased from 3.6 nanomoles per gram fresh weight in turgid leaves to 22.9 nanomoles in leaves from plants subjected to seven wilting-recovery cycles. ..beta..-D-glycopyranosyl abscisate in Xanthium leaves may be a stable end product of abscisic acid metabolism.

  16. Isolation of Photosystem I Complexes from Octyl Glucoside/Sodium Dodecyl Sulfate Solubilized Spinach Thylakoids 1

    PubMed Central

    Dunahay, Terri G.; Staehelin, L. Andrew

    1985-01-01

    We have used the nonionic detergent octyl-β-d-glucopyranoside in combination with sodium dodecyl sulfate to isolate two novel Photosystem I (PSI) complexes from spinach (Spinacea oleracea L.) thylakoid membranes. These complexes have been characterized as to their spectral properties, content of PSI reaction center chlorophyll P700, and protein composition. PSI-B, purified from solubilized membranes by sucrose density gradient centrifugation, is a putative native PSI complex. PSI-B contains four polypeptides between 21 and 25 kilodaltons in addition to the components of the PSI antenna complex (LHCI); three of these polypeptides have not previously been associated with PSI. A second complex, CPI*, is purified from octyl glucoside/sodium dodecyl sulfate solubilized thylakoids by two cycles of preparative gel electrophoresis under mildly denaturing conditions. Electrophoresis under these conditions releases a discrete set of polypeptides from PSI producing a complex composed only of the PSI reaction center and the LHCI antenna. In addition, the PSI reaction center complex CPI isolated from preparative gels and PSI-B were reconstituted into lecithin liposomes for structural analysis using freeze-fracture electron microscopy. The results suggest that the native PSI complex produces 12- to 13-nanometer particles, while the PSI reaction center, depleted of LHCI and peripheral proteins, produces particles with an average diameter of 10 nanometers. Images Fig. 1 Fig. 2 Fig. 5 Fig. 6 Fig. 7 PMID:16664291

  17. CARBONIC ANHYDRASE ACTIVITY OF INTEGRAL-FUNCTIONAL COMPLEXES OF THYLAKOID MEMBRANES OF SPINACH CHLOROPLASTS.

    PubMed

    Semenihin, A V; Zolotareva, O K

    2015-01-01

    Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1) within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA) activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1 Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase. PMID:26502699

  18. Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea).

    PubMed

    Lehtimäki, Nina; Shunmugam, Sumathy; Jokela, Jouni; Wahlsten, Matti; Carmel, Dalton; Keränen, Mika; Sivonen, Kaarina; Aro, Eva-Mari; Allahverdiyeva, Yagut; Mulo, Paula

    2011-04-15

    The bloom-forming cyanobacterium Nodularia spumigena produces toxic compounds, including nodularin, which is known to have adverse effects on various organisms. We monitored the primary effects of nodularin exposure on physiological parameters in Spinachia oleracea. We present the first evidence for the uptake of nodularin by a terrestrial plant, and show that the exposure of spinach to cyanobacterial crude water extract from nodularin-producing strain AV1 results in inhibition of growth and bleaching of the leaves. Despite drastic effects on phenotype and survival, nodularin did not disturb the photosynthetic performance of plants or the structure of the photosynthetic machinery in the chloroplast thylakoid membrane. Nevertheless, the nodularin-exposed plants suffered from oxidative stress, as evidenced by a high level of oxidative modifications targeted to various proteins, altered levels of enzymes involved in scavenging of reactive oxygen species (ROS), and increased levels of α-tocopherol, which is an important antioxidant. Moreover, the high level of cytochrome oxidase (COX II), a typical marker for mitochondrial respiratory protein complexes, suggests that the respiratory capacity is increased in the leaves of nodularin-exposed plants. Actively respiring plant mitochondria, in turn, may produce ROS at high rates. Although the accumulation of ROS and induction of the ROS scavenging network enable the survival of the plant upon toxin exposure, the upregulation of the enzymatic defense system is likely to increase energetic costs, reducing growth and the ultimate fitness of the plants. PMID:21093957

  19. Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide.

    PubMed

    Pineau, B; Dubertret, G; Joyard, J; Douce, R

    1986-07-15

    At 77 K, under excitation at 440 nm, two major fluorescence emission peaks were observed in envelope membranes from spinach chloroplasts at 636 and 680 nm. A narrow range of wavelengths around 440 nm and a wider range of wavelengths between 390 and 440 nm, respectively, were responsible for excitation of the 636 and 680 nm fluorescence emissions which, in marked contrast with thylakoid fluorescence emission, were devoid of any exciting components between 460 and 500 nm. In acetonic extract of envelope membranes, two fluorescence emission peaks were observed at 635 and 675 nm. After extraction of the acetonic solution by nonpolar solvents (petroleum ether or hexane), the 675 nm fluorescence emission was partitioned between the polar and nonpolar phases whereas the 635 nm fluorescence emission was solely recovered in the polar phase. All together, the results obtained suggest that envelope membranes contain low amounts of pigments having the absorption and fluorescence spectroscopic properties, together with the behavior in polar/nonpolar solvents, of protochlorophyllide and chlorophyllide. In addition, modulation of the level of fluorescence at 636 and 680 nm could be obtained by addition of NADPH to envelope membranes under illumination. The presence of protochlorophyllide in chloroplast envelope membranes together with its possible photoconversion into chlorophyllide could have major implication for the understanding of chlorophyll biosynthesis in mature chloroplasts. PMID:3722197

  20. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach.

    PubMed

    Lilley, R M; Walker, D A

    1975-06-01

    The relationship between rate of photosynthesis and CO(2) concentration has been reinvestigated using isolated spinach (Spinacia oleracea) chloroplasts. The apparently low CO(2) concentration required for half-maximal photosynthesis is shown to result partly from a ceiling imposed by electron transport. In double reciprocal plots of rate against CO(2) concentration, this ceiling results in departures from linearity at high CO(2) concentrations. If these rate limitations are disregarded in extrapolation the "true" CO(2) concentration required for half maximal carboxylation by intact chloroplasts is approximately 46 mum (CO(2)).When assayed under comparable conditions, ribulose bisphosphate carboxylase from these chloroplasts also shows an apparent Km (CO(2)) of approximately 46 mum, suggesting that its characteristics are not modified by extraction. An improved assay for ribulose bisphosphate carboxylase yielded rates of carboxylation considerably higher than those previously reported, the highest maximal velocities recorded approaching 1000 mumoles CO(2) fixed mg(-1) chlorophyll hr(-1) at 20 C. With such Km and V(max), values the carboxylase would be able to achieve, at concentrations of CO(2) less than atmospheric, rates of CO(2) fixation equal to those displayed by the parent tissue or by the average plant under favorable conditions in its natural environment. PMID:16659216

  1. Compositional characteristics of a chloroform/methanol soluble protein fraction from spinach chloroplast membranes.

    PubMed

    Henriques, F; Park, R B

    1976-05-14

    Extraction of an aqueous suspension of spinach chloroplast lamellae with a chloroform/methanol mixture leads to solubilization of about 1/3 of the total membrane protein. Amino acid analysis of the chloroform/methanol-soluble protein shows that this fraction is largely enriched in the hydrophobic residues proline, leucine, alanine and phenylalanine and considerably depleted in polar amino acids, namely lysine and arginine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the solubilized material reveals the presence of a variety of low molecular weight polypeptides (molecular weight less than or equal to 25 000), with more than 50% of the total fraction being contributed by a 25 000 dalton band. This band, which accounts for about 25% of the total chloroplast lamellar protein, has recently been identified as the main component of the light-harvesting chlorophyll-protein complex. The physiological role of most of the chloroform/methanol-soluble protein fraction is not known at present. From its chemical properties and apparent biological inertness, we propose that it plays mainly a structural role in situ, interacting with the lipid moiety of the chloroplast membrane. The material insoluble in the aqueous chloroform/methanol mixture is largely enriched in manganese, iron, cytochrome and water-soluble proteins, such as chloroplast coupling factor and ribulose diphosphate carboxylase. PMID:179588

  2. Spectral characterization in a supersonic beam of neutral chlorophyll a evaporated from spinach leaves

    NASA Astrophysics Data System (ADS)

    Shafizadeh, N.; Ha-Thi, M. H.; Soep, B.; Gaveau, M. A.; Piuzzi, F.; Pothier, C.

    2011-09-01

    The observation of the light absorption of neutral biomolecules has been made possible by a method implemented for their preparation in the gas phase, in supersonically cooled molecular beams, based upon the work of Focsa et al. [C. Mihesan, M. Ziskind, B. Chazallon, E. Therssen, P. Desgroux, S. Gurlui, and C. Focsa, Appl. Surf. Sci. 253, 1090 (2006)], 10.1016/j.apsusc.2006.01.082. The biomolecules diluted in frozen water solutions are entrained in the gas plume of evaporated ice generated by an infrared optical parametric oscillators (OPO) laser tuned close to its maximum of absorption, at ˜3 μm. The biomolecules are then picked up in the flux of a supersonic expansion of argon. The method was tested with indole dissolved in water. The excitation spectrum of indole was found cold and large clusters of indole with water were observed up to n = 75. Frozen spinach leaves were examined with the same method to observe the chlorophyll pigments. The Qy band of chlorophyll a has been observed in a pump probe experiment. The Qy bands of chlorophyll a is centred at 647 nm, shifted by 18 nm from its position in toluene solutions. The ionization threshold could also be determined as 6.1 ± 0.05 eV.

  3. Effects of inorganic phosphate on the light dependent thylakoid energization of intact spinach chloroplasts

    SciTech Connect

    Heineke, D.; Heldt, H.W. ); Stitt, M. )

    1989-09-01

    The light dependent energization of the thylakoid membrane was analyzed in isolated intact spinach (Spinacia oleracea L.) chloroplasts incubated with different concentrations of inorganic phosphate (Pi). Two independent methods were used: (a) the accumulation of ({sup 14}C)5,5-dimethyl-2,4-oxazolidinedione and ({sup 14}C)methylamine; (b) the energy dependent chlorophyll fluorescence quenching. The inhibition of CO{sub 2} fixation by superoptimal medium Pi or by adding glyceraldehyde - an inhibitor of the Calvin cycle - leads to an increased energization of the thylakoid membrane; however, the membrane energization decreases when chloroplasts are inhibited by suboptimal Pi. This specific low phosphate effect could be partially reversed by adding oxaloacetate, which regenerates the electron acceptor NADP{sup +} and stimulates linear electron transport. The energization seen in low Pi is, however, always lower than in superoptimal Pi, even in the presence of oxaloacetate. Energization recovers in the presence of low amounts of N,N{prime}-dicyclohexylcarbodiimide, which reacts with proton channels including the coupling factor 1 ATP synthase. N,N{prime}-Dicyclohexylcarbodiimide has no effect on energization of chloroplasts in superoptimal Pi. These results suggest there is a specific low phosphate proton leak in the thylakoids, and its origin is discussed.

  4. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution.

    PubMed

    Wei, Xuepeng; Su, Xiaodong; Cao, Peng; Liu, Xiuying; Chang, Wenrui; Li, Mei; Zhang, Xinzheng; Liu, Zhenfeng

    2016-06-01

    During photosynthesis, the plant photosystem II core complex receives excitation energy from the peripheral light-harvesting complex II (LHCII). The pathways along which excitation energy is transferred between them, and their assembly mechanisms, remain to be deciphered through high-resolution structural studies. Here we report the structure of a 1.1-megadalton spinach photosystem II-LHCII supercomplex solved at 3.2 Å resolution through single-particle cryo-electron microscopy. The structure reveals a homodimeric supramolecular system in which each monomer contains 25 protein subunits, 105 chlorophylls, 28 carotenoids and other cofactors. Three extrinsic subunits (PsbO, PsbP and PsbQ), which are essential for optimal oxygen-evolving activity of photosystem II, form a triangular crown that shields the Mn4CaO5-binding domains of CP43 and D1. One major trimeric and two minor monomeric LHCIIs associate with each core-complex monomer, and the antenna-core interactions are reinforced by three small intrinsic subunits (PsbW, PsbH and PsbZ). By analysing the closely connected interfacial chlorophylls, we have obtained detailed insights into the energy-transfer pathways between the antenna and core complexes. PMID:27251276

  5. Partial purification of gibberellin oxidases from spinach leaves. [Spinacia oleracea L

    SciTech Connect

    Gilmour, S.J.; Bleecker, A.B.; Zeevaart, J.A.D.

    1987-09-01

    Four enzyme activities catalyzing the following oxidative steps in the gibberellin (GA) biosynthetic pathway have been extracted from spinach (Spinacia oleracea L.) leaves after exposure to 8 long days: GA/sub 12/ ..-->.. GA/sub 53/ ..-->.. GA/sub 44/ ..-->.. GA/sub 19/ ..-->.. GA/sub 20/. Two of these, GA/sub 53/ oxidase and GA/sup 19/ oxidase, were separable from the other two, GA/sub 44/ oxidase and GA/sub 12/ 13-hydroxylase, by anion exchange high performance liquid chromatography (HPLC). Apparent molecular weights of the four enzymes as determined by gel filtration HLPL are: GA/sub 12/ 13-hydroxylase, 28,400; GA/sub 43/ oxidase, 42,500; GA/sub 44/ oxidase, 38,100; GA/sub 19/ oxidase, 39,500. GA/sub 44/ oxidase was purified approximately 100-fold in 0.3% yield by a combination of ammonium sulfate fractionation, anion exchange HPLC, phenyl-Sepharose chromatography and gel filtration HLPC.

  6. beta. -carotene synthesis in spinach chloroplasts is tightly linked to photosynthetic carbon metabolism

    SciTech Connect

    Schulze-Siebert, D.; Schultz, G.

    1987-04-01

    When purified, highly intact spinach chloroplasts were illuminated in the presence of NaH/sup 14/CO/sub 3/, the largest portion of acetate derived compounds formed was ..beta..-carotene and not fatty acids (20 and 2.5 natoms C incorporated/mg chlorophyll x h when 5 mM NaH /sup 14/CO/sub 3/ was used). From isotopic dilution experiments applying glyceraldehyde 3-P, dihydroxyacetone-P, 3-phosphoglycerate (3-PGA), 2-PGA, phosphoenolpyruvate (PEP) and pyruvate, respectively, evidence was obtained that acetyl-CoA to form isopentenyl-PP (IPP) originates from a low capacity but highly effective flow from photosynthetic CO/sub 2/-fixation via 3-PGA - 2-PGA - PEP - pyruvate. Phosphoglycerate mutase in chloroplasts, of which the presence hitherto was not unequivocally proven, was detected by (i) latency technique and (ii) feeding/1-/sup 14/C/glycerate and following 3-PGA, 2-PGA, PEP and pyruvate level in chloroplasts and suspension medium. From highly effective synthesis of ..beta..-carotene from CO/sub 2/ conclusion may be drawn that pathways for both, acetyl compounds and IPP, to form isoprenoids must exist in chloroplasts.

  7. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    SciTech Connect

    Andrews, J.C. |

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  8. Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase

    SciTech Connect

    Omnaas, J.; Porter, M.A.; Hartman, F.C.

    1985-02-01

    Ribulose-5-phosphate kinase from spinach was rapidly inactivated by N-bromoacetylethanolamine phosphate in a bimolecular fashion with a k2 of 2.0 m s at 2C and pH 8.0. Ribulose 5-phosphate had little effect on the rate of inactivation, whereas complete protection was afforded by ADP or ATP. The extent of incorporation as determined with UC-labeled reagent was about 1 molar equivalent per subunit in the presence of ATP with full retention of enzymatic activity, and about 2 molar equivalents per subunit in the completely inactivated enzyme. Amino acid analyses of enzyme derivatized with UC-labeled reagent reveal that all of the covalently incorporated reagent was associated with cysteinyl residues. Hence, two sulfhydryls are reactive, but the inactivation correlates with alkylation of one cysteinyl residue at or near the enzyme's nucleotide binding site. The kinase was also extremely sensitive to the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide. The reactive sulfhydryl groups are likely to be those generated by reduction of a disulfide during activation. 20 references, 3 figures, 2 tables.

  9. Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs

    PubMed Central

    Saeki, Kazuhiro; Matsumoto, Kazuya; Kinoshita, Mikio; Suzuki, Iwane; Tasaka, Yasushi; Kano, Koichiro; Taguchi, Yoshitomo; Mikami, Koji; Hirabayashi, Masumi; Kashiwazaki, Naomi; Hosoi, Yoshihiko; Murata, Norio; Iritani, Akira

    2004-01-01

    Linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) are polyunsaturated fatty acids that are essential for mammalian nutrition, because mammals lack the desaturases required for synthesis of Δ12 (n-6) and n-3 fatty acids. Many plants can synthesize these fatty acids and, therefore, to examine the effects of a plant desaturase in mammals, we generated transgenic pigs that carried the fatty acid desaturation 2 gene for a Δ12 fatty acid desaturase from spinach. Levels of linoleic acid (18:2n-6) in adipocytes that had differentiated in vitro from cells derived from the transgenic pigs were ≈10 times higher than those from wild-type pigs. In addition, the white adipose tissue of transgenic pigs contained ≈20% more linoleic acid (18:2n-6) than that of wild-type pigs. These results demonstrate the functional expression of a plant gene for a fatty acid desaturase in mammals, opening up the possibility of modifying the fatty acid composition of products from domestic animals by transgenic technology, using plant genes for fatty acid desaturases. PMID:15067141

  10. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:24521269

  11. Analytical method for 44 pesticide residues in spinach using multi-plug-filtration cleanup based on multiwalled carbon nanotubes with liquid chromatography and tandem mass spectrometry detection.

    PubMed

    Qin, Yuhong; Huang, Baoyong; Zhang, Jingru; Han, Yongtao; Li, Yanjie; Zou, Nan; Yang, Jianguo; Pan, Canping

    2016-05-01

    Spinach is one of the most commonly planted vegetables worldwide. A high chlorophyll content makes spinach a complicated matrix in pesticide residue analysis. In this study, a rapid clean-up method was developed for the analysis of pesticide multi-residues in spinach followed by liquid chromatography with tandem mass spectrometry. A modified QuEChERS method with multiwalled carbon nanotubes and carbon material was adopted in the multi-Plug Filtration Cleanup procedure. This method was validated for 44 representative pesticides spiked at two concentration levels of 10 and 100 μg/kg. The pesticides of different physicochemical properties were registered on spinach in China. The recoveries were between 76 and 114% for major pesticides with relative standard deviations of less than 15%, except for quizalofop-P-ethyl, pyrimethanil, and carbendazim. Matrix-matched calibration curves were performed with the coefficients of determination higher than 0.995 for the studied pesticides for concentration levels of 10-500 μg/kg. The limits of quantitation ranged from 2 to 10 μg/kg. The developed method was successfully applied to determine pesticide residues in Chinese market spinach samples. PMID:26968118

  12. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  13. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-01

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. PMID:24012489

  14. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  15. Regulation of Compound Leaf Development

    PubMed Central

    Wang, Yuan; Chen, Rujin

    2013-01-01

    Leaf morphology is one of the most variable, yet inheritable, traits in the plant kingdom. How plants develop a variety of forms and shapes is a major biological question. Here, we discuss some recent progress in understanding the development of compound or dissected leaves in model species, such as tomato (Solanum lycopersicum), Cardamine hirsuta and Medicago truncatula, with an emphasis on recent discoveries in legumes. We also discuss progress in gene regulations and hormonal actions in compound leaf development. These studies facilitate our understanding of the underlying regulatory mechanisms and put forward a prospective in compound leaf studies. PMID:27135488

  16. Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Pandey, A.; Singh, K. P.; Singh, V. P.; Mishra, R. K.; Singh, D.

    2012-08-01

    Back propagation artificial natural network (BPANN) is a well known and widely used machine learning methodology in the field of remote sensing. In this paper an attempt is made to retrieve the spinach crop parameters like biomass, leaf area index, average plant height and soil moisture content by using the X-band scattering coefficients with BPANN at different growth stages of this crop. The maturity age of this crop was found to be 45 days from the date of sowing. After 45 days from the date of sowing, this crop was cut at a certain height for production. Then, it is a point of interest to investigate the microwave response of variation in production. Significant variations in all the crop parameters were observed after cutting the crop and consequently made the problem more critical. Our work confirms the utility of BPANN in handling such a non-linear data set. The BPANN is essentially a network of simple processing nodes arranged into different layers as input, hidden and the output. The input layer propagates components of a particular input vector after weighting these with synaptic weights to each node in the hidden layer. At each node, these weighted input vector components are added. Each hidden layer computes output corresponding to these weighted sum through a non-linear/linear function (e.g. LOGSIG, TANSIG and PURLIN). These functions are known as transfer functions. Thus, each of the hidden layer nodes compute output values, which become inputs to the nodes of the output layer. At nodes of output layer also a weighted sum of outputs of previous layer (hidden layer) are obtained and processed through a transfer function. Thus, the output layer nodes compute the network output for the particular input vector. In this paper, output nodes use linear transfer function. Different transfer functions e.g. TANSIG, LOGSIG and PURELIN were used and the performance of the ANN was optimized by changing the number of neurons in the hidden layers. The present

  17. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface...

  18. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  19. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  20. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  1. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface...

  2. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  3. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems.

    PubMed

    Babb, V M; Haigler, C H

    2001-11-01

    Based on work with cotton fibers, a particulate form of sucrose (Suc) synthase was proposed to support secondary wall cellulose synthesis by degrading Suc to fructose and UDP-glucose. The model proposed that UDP-glucose was then channeled to cellulose synthase in the plasma membrane, and it implies that Suc availability in cellulose sink cells would affect the rate of cellulose synthesis. Therefore, if cellulose sink cells could synthesize Suc and/or had the capacity to recycle the fructose released by Suc synthase back to Suc, cellulose synthesis might be supported. The capacity of cellulose sink cells to synthesize Suc was tested by analyzing the Suc phosphate synthase (SPS) activity of three heterotrophic systems with cellulose-rich secondary walls. SPS is a primary regulator of the Suc synthesis rate in leaves and some Suc-storing, heterotrophic organs, but its activity has not been previously correlated with cellulose synthesis. Two systems analyzed, cultured mesophyll cells of Zinnia elegans L. var. Envy and etiolated hypocotyls of kidney beans (Phaseolus vulgaris), contained differentiating tracheary elements. Cotton (Gossypium hirsutum L. cv Acala SJ-1) fibers were also analyzed during primary and secondary wall synthesis. SPS activity rose in all three systems during periods of maximum cellulose deposition within secondary walls. The Z. elegans culture system was manipulated to establish a tight linkage between the timing of tracheary element differentiation and rising SPS activity and to show that SPS activity did not depend on the availability of starch for degradation. The significance of these findings in regard to directing metabolic flux toward cellulose will be discussed. PMID:11706202

  4. Element concentrations in water spinach (Ipomoea aquatica Forssk.), fish and sediment from a wetland production system that receives wastewater from Phnom Penh, Cambodia.

    PubMed

    Marcussen, Helle; Dalsgaard, Anders; Holm, Peter E

    2009-01-01

    The Cheung Ek Lake, which is located south of Phnom Penh, Cambodia, receives most of the industrial and domestic wastewater that is produced in the city. The lake is used for fishing and production of water spinach (Ipomoea aquatica Forssk). Concentrations of 35 elements were determined in water spinach and sediment that were collected along transects of two wastewater inlets in the lake, at the lake outlet, and in a non-wastewater exposed pond. Elevated concentrations of the potentially toxic elements (PTEs) Cd, Cu, Ni, Pb, Sb, and Zn were found in the water spinach and sediment samples collected near the wastewater inlets. The highest determined PTE concentrations in water spinach were, in mg kg(- 1) fresh weight (f.w.), As 0.19, Cd 0.022, Cu 2.95, Fe 251, Pb 0.206 and Zn 9.08. For an adult person in Phnom Penh, the maximum intake of PTEs from consumption of water spinach harvested near the wastewater inlets amounts to 5.7% As, 1.4% Cd, 0.4% Cu, 20.5% Fe, 3.8% Pb and 0.6% Zn of the maximum tolerable intake set by the Codex Alimentarious Commission. Arsenic, Cd and Pb concentrations in the liver, skin, and muscle of three fish species caught in the lake were below or near the detection limits, except for a high accumulation of the three elements in the skin of the blackskin catfish. In conclusion, the consumption of water spinach and fish from Cheung Ek Lake constitutes a low food safety risk with respect to PTEs. PMID:19085597

  5. Multifactorial Effects of Ambient Temperature, Precipitation, Farm Management, and Environmental Factors Determine the Level of Generic Escherichia coli Contamination on Preharvested Spinach

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Ivanek, Renata

    2015-01-01

    A repeated cross-sectional study was conducted to identify farm management, environment, weather, and landscape factors that predict the count of generic Escherichia coli on spinach at the preharvest level. E. coli was enumerated for 955 spinach samples collected on 12 farms in Texas and Colorado between 2010 and 2012. Farm management and environmental characteristics were surveyed using a questionnaire. Weather and landscape data were obtained from National Resources Information databases. A two-part mixed-effect negative binomial hurdle model, consisting of a logistic and zero-truncated negative binomial part with farm and date as random effects, was used to identify factors affecting E. coli counts on spinach. Results indicated that the odds of a contamination event (non-zero versus zero counts) vary by state (odds ratio [OR] = 108.1). Odds of contamination decreased with implementation of hygiene practices (OR = 0.06) and increased with an increasing average precipitation amount (mm) in the past 29 days (OR = 3.5) and the application of manure (OR = 52.2). On contaminated spinach, E. coli counts increased with the average precipitation amount over the past 29 days. The relationship between E. coli count and the average maximum daily temperature over the 9 days prior to sampling followed a quadratic function with the highest bacterial count at around 24°C. These findings indicate that the odds of a contamination event in spinach are determined by farm management, environment, and weather factors. However, once the contamination event has occurred, the count of E. coli on spinach is determined by weather only. PMID:25636850

  6. Temperature and pH effects on chloroplastic respiration of glucose and fructose in spinach

    SciTech Connect

    Singh, K.K.; Gibbs, M. )

    1993-05-01

    Respiration was monitored principally as CO[sub 2] release in the darkened intact spinach chloroplast supplied with [sup 14]C-glucose and [sup 14]C-fructose. The rate of flucose respiration, optimum pH 7.5, increased from 15[degrees]C up to 40[degrees]C and then decreased in the presence of added ATP. In the absence of ATP, the optimum temperature for CO[sub 2] release was 25 [degrees]C and then decreased. At optimum pH 8.5, both in the absence and presence of ATP, the rate increased up to 25[degrees]C and then decreased. The negative effect of high temperature was not reversed when the chloroplast was returned to 25[degrees]C. Higher temperature (40[degrees]C vs 15[degrees]C) and higher pH (8.5 vs 7.5) increased radioactivity into starch and decreased radioactivity in CO[sub 2]. The rate of fructose respiration, optimum pH 7.5 but also at pH 8.5, increased CO[sub 2] release from 15[degrees]C to 40[degrees]C and then decreased both in the absence and presence of externally supplied ATP. Temperature and pH has no effect on radioactivity in starch and CO[sub 2] when fructose was substrate. The difference in results between glucose and fructose may reflect the localization of fructokinase in the stroma and glucokinase both in the stroma and cytosolic side of the outer chloroplastic membrane. It may be also reflect the equilibrium of phosphohexose isomerase favoring fructose-6-P.

  7. Electron nuclear double resonance evidence supporting a monomeric nature for P700 in spinach chloroplasts.

    PubMed

    O'malley, P J; Babcock, G T

    1984-02-01

    Proton electron nuclear double resonance (ENDOR) spectra of P700(+) in spinach chloroplasts and in photosystem I particles have been obtained and compared with the corresponding ENDOR spectrum of monomeric chlorophyl a(+) (Chla(+)) cation radical. The hyperfine couplings for P700(+) can be interpreted in terms of those expected for a monomer Chla(+) radical. The reduction in alpha-carbon spin densities observed for the in vivo species when compared to the in vitro radical is attributed to differences in the composition of the ground-state orbital for the two systems. For P700(+), a mixture of 75% D(0)/25% D(1), in which D(0) and D(1) represent the ground-and first excited-state orbitals calculated by Petke et al. for Chla(+) [Petke, J. D., Maggiora, G. M., Shipman, L. L. & Christoffersen, R. E. (1980) Photochem. Photobiol. 31, 243-257], gives good agreement between calculated and experimental spin-density reduction factors. Interaction of the pigment ion with its protein environment such as through ligation of the central Mg atom, hydrogen bonding to the 9-keto-carbonyl group, and electrostatic interactions with charged amino acid residues are proposed as factors responsible for the lowering in energy of the D(1) level in vivo. Combined with similar previous proposals for P680(+) of photosystem II, the data suggest that both primary donor cation radicals of green plant photosynthesis can be viewed as monomeric Chla(+) species in which the D(1) orbital makes a significant contribution to the spin-density distribution. PMID:16593417

  8. Formation of the Fe-S cluster of ferredoxin in lysed spinach chloroplasts. [Spinacia oleracea

    SciTech Connect

    Takahashi, Yasuhiro; Mitsui, Akira; Matsubara, Hiroshi )

    1991-01-01

    In vitro formation of the {sup 35}S-labeled Fe-S cluster of ferredoxin (Fd) has been achieved by incubating apo-Fd and ({sup 35}S)cysteine with osmotically lysed chloroplasts of spinach (Spinacia oleracea). Correct integration of the {sup 35}S-labeled Fe-S cluster into Fd was verified on the basis of the following: (a) Under nondenaturing conditions, {sup 35}S-labeled holo-Fd showed the same electrophoretic mobility as authentic holo-Fd; (b) {sup 35}S-labeled holo-Fd showed an ability to bind Fd-NADP{sup +} reductase; (c) the {sup 35}S-labeled moiety was removed from the Fd polypeptide by TCA treatment but not by 2-mercaptoethanol treatment; (d) externally added pea II apo-Fd was converted to {sup 35}S-labeled holo-Fd. This reconstitution was dependent on both ATP and light, and formation of the {sup 35}S-labeled Fe-S cluster was observed upon addition of ATP or when an ATP generation-system was constructed in the light. In contrast, ATP-consuming systems abolished the Fe-S cluster formation. A non-hydrolyzable ATP analog was unable to serve as an ATP substitute, indicating the requirement of ATP hydrolysis for cluster formation. GTP was able to substitute for ATP, but CTP and UTP were less effective. Fe-S cluster formation in lysed chloroplasts was stimulated by light even in the presence of added ATP. Light stimulation was inhibited by DCMU or methyl viologen but not by NH{sub 4}{sup +}. NADPH was able to substitute for light, indicating that light energy is required for the production of reducing compounds such as NADPH in addition to the generation of ATP.

  9. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  10. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  11. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yang, Linzhang

    Different nitrogen (N) treatments of four common green-leafy vegetable varieties with different leaf color: lettuce ( Lactuca sativa L. var. crispa L.) with yellow green leaves, pakchoi ( Brassica chinensis L.) var. aijiaohuang in Chinese (AJH) with middle green leaves, spinach ( Spinacia oleracea L.) with green leaves and pakchoi ( B. chinensis L.) var. shanghaiqing in Chinese (SHQ) with dark green leaves, were carried out to achieve a wide range of chlorophyll content. The relationship of vegetable leaf hyperspectral response to its chlorophyll content was examined in this study. Almost all reported successful leaf chlorophyll indices in the literature were evaluated for their ability to predict the chlorophyll content in vegetable leaves. Some new indices based on the first derivative curve were also developed, and compared with the chlorophyll indices published. The results showed that most of the indices showed a strong relation with leaf chlorophyll content. In general, modified indices with the blue or near red edge wavelength performed better than their simple counterpart without modification, ratio indices performed a little better than normalized indices when chlorophyll expressed on area basis and reversed when chlorophyll expressed on fresh weight basis. A normalized derivative difference ratio (BND: (D722-D700)/(D722+D700) calibrated by Maire et al. [Maire, G., Francois, C., Dufrene, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89 (1), 1-28]) gave the best results among all published indices in this study (RMSE=22.1 mg m -2), then the mSR-like indices with the RMSE between 22.6 and 23.0 mg m -2. The new indices EBAR (ratio of the area of red and blue, ∑ dRE/∑ dB), EBFN (normalized difference of the amplitude of red and blue, (dRE-dB)/(dRE+dB)) and EBAN (normalized difference of the area of red and blue, (∑ dRE-∑ dB)/(∑ d

  12. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress

  13. Natural Occurrence of Tomato leaf curl New Delhi virus in Iranian Cucurbit Crops

    PubMed Central

    Yazdani-Khameneh, Sara; Aboutorabi, Samaneh; Shoori, Majid; Aghazadeh, Azin; Jahanshahi, Parastoo; Golnaraghi, Alireza; Maleki, Mojdeh

    2016-01-01

    The main areas for field-grown vegetable production in Iran were surveyed during the years of 2012–2014 to determine the occurrence of begomoviruses infecting these crops. A total of 787 leaf samples were collected from vegetables and some other host plants showing virus-like symptoms and tested by an enzyme-linked immunosorbent assay (ELISA) using polyclonal antibodies produced against Tomato yellow leaf curl virus (TYLCV). According to the ELISA results, 81 samples (10.3%) positively reacted with the virus antibodies. Begomovirus infections were confirmed by polymerase chain reaction (PCR) using previously described TYLCV-specific primer pair TYLCV-Sar/TYLCV-Isr or universal primer pair Begomo-F/Begomo-R. The PCR tests using the primer pair TYLCV-Sar/TYLCV-Isr resulted in the amplification of the expected fragments of ca. 0.67-kb in size for ELISA-positive samples tested from alfalfa, pepper, spinach and tomato plants, confirming the presence of TYLCV. For one melon sample, having a week reaction in ELISA and no reaction in PCR using TYLCV-specific primers, the PCR reaction using the primer pair Begomo-F/Begomo-R resulted in the amplification fragments of the expected size of ca. 2.8 kb. The nucleotide sequences of the DNA amplicons derived from the isolate, Kz-Me198, were determined and compared with other sequences available in GenBank. BLASTN analysis confirmed the begomovirus infection of the sample and showed 99% identities with Tomato leaf curl New Delhi virus (ToLCNDV); phylogenetic analysis supported the results of the database searches. This study reports the natural occurrence of TYLCV in different hosts in Iran. Our results also reveal the emergence of ToLCNDV in Iranian cucurbit crops. PMID:27298595

  14. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage.

    PubMed

    Santos, J; Oliveira, M B P P; Ibáñez, E; Herrero, M

    2014-01-31

    Ready-to-eat baby-leaf vegetables market has been growing and offering to consumers convenient, healthy and appealing products, which may contain interesting bioactive compounds. In this work, the composition and the evolution of the phenolic compounds from different baby-leaf vegetables during refrigerated storage was studied. The phenolic compounds were extracted using pressurized liquid extraction (PLE) and the phenolic profile of each sample was analyzed and quantified by using LC-MS and LC-DAD methods, respectively, at the beginning and at the end of a 10-day storage period. The baby-leaf vegetables studied included green lettuce, ruby red lettuce, swiss chard, spinach, pea shoots, watercress, garden cress, mizuna, red mustard, wild rocket and spearmint samples and a total of 203 phenolic compounds were tentatively identified and quantified. The main naturally phenolic compounds identified correspond to glycosylated flavonoids, with exception of green lettuce and spearmint leaves which had a higher content of hydroxycinnamic acids. Quantification of the main compounds showed a 10-fold higher content of total phenolic content of ruby red lettuce (483mgg(-1)) in relation to the other samples, being the lowest values found in the garden cress (12.8mgg(-1)) and wild rocket leaves (8.1mgg(-1)). The total phenolic content only showed a significant change (p<0.05) after storage in the green lettuce (+17.5%), mizuna (+7.8%), red mustard (-23.7%) and spearmint (-13.8%) leaves. Within the different classes of phenolic compounds monitored, the flavonols showed more stable contents than the hydroxycinnamic and hydroxybenzoic acids, although the behavior of each compound varied strongly among samples. PMID:24438834

  15. Natural Occurrence of Tomato leaf curl New Delhi virus in Iranian Cucurbit Crops.

    PubMed

    Yazdani-Khameneh, Sara; Aboutorabi, Samaneh; Shoori, Majid; Aghazadeh, Azin; Jahanshahi, Parastoo; Golnaraghi, Alireza; Maleki, Mojdeh

    2016-06-01

    The main areas for field-grown vegetable production in Iran were surveyed during the years of 2012-2014 to determine the occurrence of begomoviruses infecting these crops. A total of 787 leaf samples were collected from vegetables and some other host plants showing virus-like symptoms and tested by an enzyme-linked immunosorbent assay (ELISA) using polyclonal antibodies produced against Tomato yellow leaf curl virus (TYLCV). According to the ELISA results, 81 samples (10.3%) positively reacted with the virus antibodies. Begomovirus infections were confirmed by polymerase chain reaction (PCR) using previously described TYLCV-specific primer pair TYLCV-Sar/TYLCV-Isr or universal primer pair Begomo-F/Begomo-R. The PCR tests using the primer pair TYLCV-Sar/TYLCV-Isr resulted in the amplification of the expected fragments of ca. 0.67-kb in size for ELISA-positive samples tested from alfalfa, pepper, spinach and tomato plants, confirming the presence of TYLCV. For one melon sample, having a week reaction in ELISA and no reaction in PCR using TYLCV-specific primers, the PCR reaction using the primer pair Begomo-F/Begomo-R resulted in the amplification fragments of the expected size of ca. 2.8 kb. The nucleotide sequences of the DNA amplicons derived from the isolate, Kz-Me198, were determined and compared with other sequences available in GenBank. BLASTN analysis confirmed the begomovirus infection of the sample and showed 99% identities with Tomato leaf curl New Delhi virus (ToLCNDV); phylogenetic analysis supported the results of the database searches. This study reports the natural occurrence of TYLCV in different hosts in Iran. Our results also reveal the emergence of ToLCNDV in Iranian cucurbit crops. PMID:27298595

  16. Escherichia coli O157:H7 biofilm formation and internalization on lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated and internalized pathogens are relatively resistant to chemical treatments, but little is known about the response of these protected pathogens to irradiation. Leaves of Romaine l...

  17. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: Effects of cultivar, leaf size, and storage duration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-health benefits derived from consumption of fruits and vegetables are due to the many bioactive compounds found in produce. The concentrations of these bioactive compounds are heavily influenced by genetics (i.e. cultivar) and environment, especially the many pigments and vitamins that can ch...

  18. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.).

    PubMed

    Qiu, Junlang; Chen, Guosheng; Xu, Jianqiao; Luo, Erlun; Liu, Yan; Wang, Fuxin; Zhou, Hong; Liu, Yuan; Zhu, Fang; Ouyang, Gangfeng

    2016-10-01

    An in vivo uptake and elimination tracing study based on solid phase microextraction (SPME) was conducted to investigate the accumulation, persistence and distribution of organochloride pesticides (OCPs) and organophosphorus pesticides (OPPs) in malabar spinach (Basella alba L.) plants. Uptake and elimination of the pesticides were traced in leaves, stems and roots of living malabar spinach plants. Root concentration factor (RCF), distribution concentration factor (DCF) and transpiration stream concentration factor (TSCF) were calculated based on the in vivo tracing data. The tracing data showed that the OCPs were much more accumulative and persistent than the OPPs in roots, while they were similarly accumulative and persistent in leaves and stems. RCF values of the OPPs or OCPs were likely to increase with the increase in LogKow values except fenthion. Obtained DCF values indicated that OPPs and OCPs were more accumulative in the organs containing more lipids. TSCF values showed that the translocation of OPPs and OCPs from roots to foliage was firstly dependent on the hydrophobicity of the compounds, but also significantly affected by the water solubility. This is the first study of generating RCF, DCF and TSCF data in living plants by in vivo sampling method, which provides a foundation to promote the application of in vivo SPME and improve understanding of contaminant behaviors in living plants. PMID:27209519

  19. Translocation analysis and safety assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations.

    PubMed

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Liu, Aiqun; Zhou, Wenjing; Liao, Kebing

    2014-10-01

    A pot experiment was conducted to investigate the translocation of cadmium (Cd) and lead (Pb) and assess the safety of edible parts in two cultivars of water spinach (Ipomoea aquatica Forsk.) contrasting in shoot Cd and Pb concentrations. A low-Cd-Pb cultivar (QLQ) and a high-Cd-Pb cultivar (T308) were grown in five soils with different concentrations of Cd and Pb. The results showed that QLQ had lower Cd and Pb concentrations in stems and leaves and higher root Cd concentration than T308 did. Root Pb concentration of T308 dramatically increased with increasing soil Pb concentration and was higher than that of QLQ in the highest Pb treatment. The root-to-stem Cd translocation ability in T308 was 2.3-3.0-fold higher than that in QLQ. Nevertheless, there was no significant difference in root-to-stem Pb translocation between QLQ and T308. The bioconcentration factors (BCFs) for Cd and Pb in the two cultivars remained stable in different Cd or Pb treatments, which were attributable to the homeostatic control mechanisms of Cd and Pb in water spinach. PMID:25028323

  20. Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery

    PubMed Central

    Raza, Shan-e-Ahmed; Smith, Hazel K.; Clarkson, Graham J. J.; Taylor, Gail; Thompson, Andrew J.; Clarkson, John; Rajpoot, Nasir M.

    2014-01-01

    Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales. PMID:24892284

  1. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples. PMID:20352941

  2. Synthesis of thylakoid membrane proteins by chloroplasts isolated from spinach. Cytochrome b559 and P700-chlorophyll a-protein.

    PubMed

    Zielinski, R E; Price, C A

    1980-05-01

    Intact chloroplasts, purified from spinach leaves by sedimentation in density gradients of colloidal silica, incorporate labeled amino acids into at least 16 different polypeptides of the thylakoid membranes, using light as the only source of energy. The thylakoid products of chloroplast translation were visualized by subjecting membranes purified from chloroplasts labeled with [35S]methionine to electrophoresis in high-resolution, SDS-containing acrylamide gradient slab gels and autoradiography. The apparent mol wt of the labeled products ranged from less than 10,000 to greater than 70,000. One of the labeled products is the apoprotein of the P700-chlorophyll a-protein (CPI). The CPI apoprotein is assembled into a pigment-protein complex which is electrophoretically indistinguishable from the native CPI complex. Isolated spinach chloroplasts also incorporate [3H]leucine and [35S]methionine into cytochrome b559. The radioactive label remains with the cytochrome through all stages of purification: extraction of the thylakoid membranes with Triton X-100 and urea, adsorption of impurities on DEAE cellulose, two cycles of electrophoresis in Triton-containing polyacrylamide gels and electrophoresis in SDS-containing gradient gels. Cytochrome b559 becomes labeled with both [3H]leucine and [35S]methionine and accounts for somewhat less than 1% of the total isotopic incorporation into thylakoid protein. The lipoprotein appears to be fully assembled during the time-course of our labeling experiments. PMID:7372715

  3. Research of the relationship between delayed fluorescence and net photosynthesis rate in spinach under NaCl stress

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da

    2006-09-01

    Under NaCl stress conditions, the relationship between delayed fluorescence (DF) and net photosynthesis rate (Pn) in detached leaves of spinach (Spinacia oleracea L.) was surveyed. Results showed that the changes in DF intensity of the spinach leaves directly exposed to different NaCl concentrations demonstrated considerably high consistency with that in Pn. Incubation of the leaves in 200mmol/L NaCl induced a gradual increase and subsequent decline of the DF intensity and Pu, whereas incubation of the leaves in 300mmol/L NaCl induced a continuous decline of the DF intensity and Pn, suggesting that DF bad the same response to duration of treatment of different NaC1 concentrations with Pn. Both DF and Pn showed maximal Ca 2+ antagonism effects on stress of high concentration NaC1 when the concentration of CaC1 II reached l5mmolfL. All the results demonstrated that DF has an excellent correlation with Pn and can be used as a sensitive test for the state of photosynthetic apparatus under salt stress physiology.

  4. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    SciTech Connect

    Singh, K.K.; Changguo Chen; Gibbs, M. )

    1993-04-01

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of [sup 14]CO[sub 2] from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [[sup 14]C]glucose and [[sup 14]C]fructose, respectively. CO[sub 2] release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m[sup [minus]2]. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO[sub 2] release was relatively rapid compared to the restoration of CO[sub 2] release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO[sub 2] from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs.

  5. Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery.

    PubMed

    Raza, Shan-e-Ahmed; Smith, Hazel K; Clarkson, Graham J J; Taylor, Gail; Thompson, Andrew J; Clarkson, John; Rajpoot, Nasir M

    2014-01-01

    Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales. PMID:24892284

  6. Molecular characterization of PsbW, a nuclear-encoded component of the photosystem II reaction center complex in spinach.

    PubMed Central

    Lorković, Z J; Schröder, W P; Pakrasi, H B; Irrgang, K D; Herrmann, R G; Oelmüller, R

    1995-01-01

    We describe the isolation and characterization of cDNAs encoding the precursor polypeptide of the 6.1-kDa polypeptide associated with the reaction center core of the photosystem II complex from spinach. PsbW, the gene encoding this polypeptide, is present in a single copy per haploid genome. The mature polypeptide with 54 amino acid residues is characterized by a hydrophobic transmembrane segment, and, although an intrinsic membrane protein, it carries a bipartite transit peptide of 83 amino acid residues which directs the N terminus of the mature protein into the chloroplast lumen. Thylakoid integration of this polypeptide does not require a delta pH across the membrane, nor is it azide-sensitive, suggesting that the polypeptide chain inserts spontaneously in an as yet unknown way. The PsbW mRNA levels are light regulated. Similar to cytochrome b559 and PsbS, but different from the chlorophyll-complexing polypeptides D1, D2, CP43, and CP47 of photosystem II, PsbW is present in etiolated spinach seedlings. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 PMID:7568046

  7. Functional relationships of leafing intensity to plant height, growth form and leaf habit

    NASA Astrophysics Data System (ADS)

    Yan, En-Rong; Milla, Rubén; Aarssen, Lonnie W.; Wang, Xi-Hua

    2012-05-01

    Leafing intensity, i.e. the number of leaves per unit of stem volume or mass, is a common developmental correlate of leaf size. However, the ecological significance and the functional implications of variation in leafing intensity, other than its relation to leaf size, are unknown. Here, we explore its relationships with plant height, growth form, leaf size, and leaf habit to test a series of corollaries derived from the leafing intensity premium hypothesis. Volume-based leafing intensities and plant heights were recorded for 109 woody species from the subtropical evergreen broadleaf forests of eastern China. In addition, we compiled leafing intensity data from published literature, and combined it with our data to form a 398 species dataset, to test for differences of leafing intensity between plant growth forms (i.e. herbaceous and woody) and leaf habits (i.e. deciduous and evergreens). Leafing intensity was negatively correlated with plant height and individual leaf mass. Volume-based leafing intensities were significantly higher in herbaceous species than in woody species, and also higher in deciduous than in evergreen woody species. In conclusion, leafing intensity relates strongly to plant height, growth form, leaf size, and leaf habit in directions generally in accordance to the leafing intensity premium hypothesis. These results can be interpreted in terms of the evolution of adaptive strategies involving response to herbivory, competitive ability for light and reproductive economy.

  8. How to pattern a leaf.

    PubMed

    Bolduc, N; O'Connor, D; Moon, J; Lewis, M; Hake, S

    2012-01-01

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, and function, all leaves initiate in the same manner: from the flanks of a meristem. The maize leaf is useful for analysis of patterning due to the wealth of mutants and the distinct tissues along the proximal distal axis. The blade is distal, the sheath is proximal, and the ligule forms at the blade/sheath boundary. Establishment of this boundary involves the transcription factors LIGULELESS1 and LIGULELESS2 and the kinase LIGULELESS NARROW. The meristem-specific protein KNOTTED1 (KN1) binds and modulates the lg2 gene. Given the localization of KN1 at the proximal end of the leaf from the time of inception, we hypothesize that KN1 has a role in establishing the very proximal end of the leaf, whereas an auxin maximum guides the growing distal tip. PMID:23174765

  9. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand.

    PubMed

    Göthberg, Agneta; Greger, Maria; Bengtsson, Bengt-Erik

    2002-09-01

    The aquatic plant water spinach (Ipomoea aquatica), either wild or cultivated, is found throughout Southeast Asia and is a widely consumed vegetable in the region. Many of the waters where I. aquatica grows serve as recipients for domestic and other types of wastewater. Because these waters contain not only nutrients, but often also a wide variety of pollutants such as heavy metals from various human activities, many people risk intoxication. To estimate the accumulation of lead (Pb), cadmium (Cd), total mercury (total Hg), and methylmercury in I. aquatica and the potential hazard to human health via consumption, nine sites for cultivation of I. aquatica in the greater Bangkok region of Thailand were sampled. At seven of the sites, I. aquatica was cultivated for the local food market. The concentrations of methylmercury, total Hg, Pb, and Cd in I. aquatica were 0.8 to 221, 12 to 2,590, 40 to 530, and < or = 10 to 123 microg/kg dry weight, respectively. At all sites at least one element showed relatively high concentrations and no reference site could be established. From threshold values for highest tolerable intake of these metals by humans and information about consumption of I. aquatica among local people, Pb and Cd concentrations in I. aquatica do not seem to be a direct threat to human health. However, concentrations of Hg were very high at some sites, and were higher in leaves (highest mean value: 1,440 microg/kg dry wt) than in stems (highest mean value: 422 microg/kg dry wt). This might be a threat, especially to children and fetuses, because Hg in I. aquatica was composed of methylmercury, partly or totally, at most sites to 11% or less and at one site from 50 to 100%. At the latter site, I. aquatica was not cultivated for the food market. Because other food sources, such as fish, may have high concentrations of methylmercury, these results indicate a need for monitoring of Hg, especially methylmercury, in different foodstuffs in the region. PMID:12206434

  10. Roles of ATP and NADPH in formation of the fe-s cluster of spinach ferredoxin.

    PubMed

    Takahashi, Y; Mitsui, A; Fujita, Y; Matsubara, H

    1991-01-01

    Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [(35)S]cysteine, in which [(35)S]sulfide and iron are incorporated into Fd to build up the (35)S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [(35)S]sulfide or iron, or in Fe-S cluster formation itself. [(35)S]Sulfide was liberated from [(35)S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [(35)S]cysteine occurred before the formation of the (35)S-labeled Fe-S cluster, and the amount of radioactivity in [(35)S]sulfide was greater than that in (35)S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na(2)S) inhibited competitively formation of the (35)S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [(35)S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster

  11. Photosynthetic Oxygen Reduction in Isolated Intact Chloroplasts and Cells in Spinach 1

    PubMed Central

    Marsho, Thomas V.; Behrens, Paul W.; Radmer, Richard J.

    1979-01-01

    The time course of light-induced O2 exchange by isolated intact chloroplasts and cells from spinach was determined under various conditions using isotopically labeled O2 and a mass spectrometer. In dark-adapted chloroplasts and cells supplemented with saturating amounts of bicarbonate, O2 evolution began immediately upon illumination. However, this initial rate of O2 evolution was counterbalanced by a simultaneous increase in the rate of O2 uptake, so that little net O2 was evolved or consumed during the first ∼ 1 minute of illumination. After this induction (lag) phase, the rate of O2 evolution increased 3- to 4-fold while the rate of O2 uptake diminished to a very low level. Inhibition of the Calvin cycle, e.g. with dl-glyceraldehyde or iodoacetamide, had negligible effects on the initial rate of O2 evolution or O2 uptake; both rates were sutained for several minutes, and about balanced so that no net O2 was produced. Uncouplers had an effect similar to that observed with Calvin cycle inhibitors, except that rates of O2 evolution and photoreduction were stimulated 40 to 50%. These results suggest that higher plant phostosynthetic preparations which retain the ability to reduce CO2 also have a significant capacity to photoreduce O2. With near-saturating light and sufficient CO2, O2 reduction appears to take place primarily via a direct interaction between O2 and reduced electron transport carriers, and occurs principally when CO2-fixation reactions are suboptimal, e.g. during induction or in the presence of Calvin cycle inhibitors. The inherent maximum endogenous rate of O2 reduction is approximately 25 to 50% of the maximum rate of noncyclic electron transport coupled to CO2 fixation. Although the photoreduction of O2 is coupled to ion transport and/or phosphorylation, this process does not appear to supply significant amounts of ATP directly during steady-state CO2 fixation in strong light. PMID:16661027

  12. The efficacy of sanitizer and ultrasound combined treatments on reduction of Escherichia coli O157:H7 surrogate population on spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent outbreak of Escherichia coli O157:H7 infections on bagged spinach reaffirmed the importance and challenges of produce safety. Current washing processes in industrial scale operations can only achieve 1- to 2-log CFU/g reduction in microbial populations. More effective post-harvest interve...

  13. Inhibition of E. coli O157:H7 on the surface of Fresh Spinach by bacteriophage ECP-100 and Modified Atmosphere Packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last multistate Escherichia coli O157:H7 (EHEC) outbreak linked to bagged spinach in 2006 has raised concerns about the safety of ready-to-eat vegetables. Since washing alone or in combination with chemicals has been ineffective in completely killing EHEC, there is an urgent need for more effect...

  14. Effect of gamma radiation on the reduction of Salmonella strains, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli and sensory evaluation of minimally processed spinach (Tetragonia expansa).

    PubMed

    Rezende, Ana Carolina B; Igarashi, Maria Crystina; Destro, Maria Teresa; Franco, Bernadette D G M; Landgraf, Mariza

    2014-10-01

    This study evaluated the effects of irradiation on the reduction of Shiga toxin-producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10 -values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry. PMID:25285495

  15. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. A Tn7-based plasmid vector was used to insert the green fluorescent protein (gfp) gene into the attTn7 site in the E. coli chromosome. Three gfp-labeled E. coli inocula, O157:H7 strains ...

  16. Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.).

    PubMed

    Khan, Imran; Iqbal, Muhammad; Ashraf, Muhammad Yasin; Ashraf, Muhammad Arslan; Ali, Shafaqat

    2016-11-01

    The spinach was tested in the present studies for its phytoextraction potential. Furthermore, the study assessed whether organic chelants could reduce oxidative stress, and thus enhance growth of spinach plants under 2.42 and 4.83mM Pb regimes. Different organic chelates viz. ethylenediamine tetra acetic acid, (EDTA), citric acid (CA), oxalic acid (OA), tartaric acid (TA) and malic acid (MA) were applied separately in addition to control (without chelating agents) under different Pb regimes. The low (2.42mM) Pb regime increased biological yield (kgha(-1)). All the chelates except OA increased biological yield under low Pb regime. In contrast, TA caused less decrease in biomass under high (4.83mM) Pb regime. The chelate-assisted rise in the antioxidant activities substantially contributed to reactive oxygen species (ROS) neutralization. Of the chelates, TA was the most effective in improving Pb uptake and its root to shoot translocation. Overall, the chelate-assisted buildup of Pb in the spinach did not exhibit inhibitory effects on the plant growth possibly due to their potential to decrease Pb-induced oxidative damage. The results elaborated the potential of TA in increasing root to shoot translocation of Pb, biomass, and thus suggested its use for phytoextraction of Pb using spinach in Pb contaminated environments. PMID:27318732

  17. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  18. Effect of Nd{sup 3+} ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach

    SciTech Connect

    Liu Chao; Hong Fashui . E-mail: Hongfsh_cn@sina.com; Wu Kang; Ma, Hong-bing; Zhang Xueguang; Hong Chengjiao; Wu Cheng; Gao Fengqing; Yang Fan; Zheng Lei; Wang Xuefeng; Liu Tao; Xie Yaning; Xu Jianhua; Li Zhongrui

    2006-03-31

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.

  19. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment

    NASA Astrophysics Data System (ADS)

    Proietti, Simona; Moscatello, Stefano; Giacomelli, Gene A.; Battistelli, Alberto

    2013-09-01

    The effects of the factorial combination of two light intensities (200 and 800 μmol m-2 s-1) and two CO2 concentrations (360 and 800 ppm) were studied on the productivity and nutritional quality of spinach (Spinacia oleracea L.) grown under controlled environment. After 6 weeks within a growth chamber, spinach plants were sampled and analyzed for productivity and quality. There were no statistically significant interactions between the effects of light and CO2 for all of the variables studied, except for the nitrate and oxalic acid content of the leaves. High light and high CO2 independently one from the other, promoted spinach productivity, and the accumulation of ascorbic acid, while their interactive effect limited the accumulation of nitrate and oxalic acid in the spinach leaves. The results highlight the importance of considering the effects of the interaction among environmental variables on maximizing production and the nutritional quality of the food when cultivating and modeling the plant response in controlled environment systems such as for bioregenerative life support.

  20. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    SciTech Connect

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.; Larimer, F.W.

    1998-09-01

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

  1. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Zero-valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Purpose: To evaluate the use of ZVI-filtration in decontaminating E. coli O157:H12 in irrigation water and on spinach plants in a small, field-scale...

  2. Isolation of Campylobacter from feral swine (Sus scrofa) on the ranch associated with the 2006 Escherichia coli O157:H7 spinach outbreak investigation in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the isolation of Campylobacter species from the same population of feral swine that was investigated in San Benito County, California during the 2006 spinach-related Escherichia coli O157:H7 outbreak. This is the first survey of Campylobacter in a free-ranging feral swine population in the...

  3. The effect of total organic carbon content and repeated irrigation on the persistence of E. coli O157:H7 on baby spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Contaminated fresh-cut spinach and other leafy greens have caused foodborne illness in the United States. In response, growers are adopting recommendations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population of 126 Most Probable Nu...

  4. The Effect of Repeated Irrigation with Water Containing Varying Levels of Total Organic Carbon on the Persistence of Escherichia coli O157:H7 on Baby Spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 Most Probable Number (MPN) generic E. coli/100ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of...

  5. The effect of repeated irrigation with varying total organic carbon content on the persistence of E. coli O157:H7 on baby spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to U.S. foodborne illnesses caused by contaminated spinach, growers have adopted regulations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population mean of 126 Most Probable Number (MPN) generic E. coli per 100 ml irrigation water. These...

  6. Biophysical control of leaf temperature

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  7. Respiration of sugars in spinach (Spinacia oleraces), maize (Zea mays), and Chlamydomonas reinhardtii F-60 chloroplasts with emphasis on the hexose kinases

    SciTech Connect

    Singh, K.K.; Chen, C.; Epstein, D.K.; Gibbs, M. )

    1993-06-01

    The role of hexokinase in carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of [sup 14]CO[sub 2] from darkened spinach (Spinacia oleracea), maize (Zea mays) mesophyll, and Chlamydomonas reinhardtii chloroplasts externally supplied with [sup 14]C-labeled fructose, glucose, mannose, galactose, maltose, and ribose. Glucose and ribose were the preferred substrates with the Chlamydomonas and maize chloroplasts, respectively. The rate of CO[sub 2] release from fructose was about twice that from glucose in the spinach chloroplast. externally supplied ATP stimulated the rate of CO[sub 2] release. The pH optimum for CO[sub 2] release was 7.5 with ribose and fructose and 8.5 with glucose as substrates. Probing the outer membrane polypeptides of the intact spinach chloroplast with two proteases, trypsin and thermolysin, decreased [sup 14]CO[sub 2] release from glucose about 50% but had little effect when fructose was the substrate. Tryptic digestion decreased CO[sub 2] release from glucose in the Chlamydomonas chloroplast about 70%. [sup 14]CO[sub 2] evolution from [1-[sup 14]C]-glucose-6-phosphate in both chloroplasts was unaffected by treatment with trypsin. Enzymic analysis of the supernatant (stroma) of the lysed spinach chloroplast indicated a hexokinase active primarily with fructose but with some affinity for glucose. The pellet (membranal fraction) contained a hexokinase utilizing both glucose and fructose but with considerably less total activity than the stormal enzyme. Treatment with trypsin and thermolysin eliminated more than 50% of the glucokinase activity but had little effect on fructokinase activity in the spinach chloroplast. Tryptic digestion of the Chlamydomonas chloroplast resulted in a loss of about 90% of glucokinase activity. 34 refs., 2 figs., 6 tabs.

  8. Behavior of Leaf Meristems and Their Modification

    PubMed Central

    Ichihashi, Yasunori; Tsukaya, Hirokazu

    2015-01-01

    A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution. PMID:26648955

  9. Relationships between sugarcane leaf hyperspectral reflectance, leaf nitrogen content, and yield components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf spectral reflectance has been used to estimate crop leaf chemical composition and other physiological characters. Leaf reflectance of sugarcane (Saccharum spp.) may be of use in evaluating genotypes. The objectives of this study were: (1) to identify sugarcane genotypic variation in leaf hypers...

  10. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato. PMID:26867616

  11. Exobasidium leaf and fruit spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past five or so years blueberry growers in south Mississippi have discovered the disease Exobasidium leaf and fruit spot on some of their blueberry plants. In the past this disease was considered to be of minor importance occurring infrequently on isolated farms. But in recent years it ...

  12. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by...

  13. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  14. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  15. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  16. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  17. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  18. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  19. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  20. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  1. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  2. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  3. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  4. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  5. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  6. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  7. Tree branch angle: maximizing effective leaf area.

    PubMed

    Honda, H; Fisher, J B

    1978-02-24

    In a computer simulation of branching pattern and leaf cluster in Terminalia catappa, right and left branch angles were varied, and the effective leaf surface areas were calculated. Theoretical branch angles that result in maximum effective leaf area are close to the values observed in nature. PMID:17757590

  8. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  9. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526...

  10. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529...

  11. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022...

  12. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277...

  13. Comparison of half and full-leaf shape feature extraction for leaf classification

    NASA Astrophysics Data System (ADS)

    Sainin, Mohd Shamrie; Ahmad, Faudziah; Alfred, Rayner

    2016-08-01

    Shape is the main information for leaf feature that most of the current literatures in leaf identification utilize the whole leaf for feature extraction and to be used in the leaf identification process. In this paper, study of half-leaf features extraction for leaf identification is carried out and the results are compared with the results obtained from the leaf identification based on a full-leaf features extraction. Identification and classification is based on shape features that are represented as cosines and sinus angles. Six single classifiers obtained from WEKA and seven ensemble methods are used to compare their performance accuracies over this data. The classifiers were trained using 65 leaves in order to classify 5 different species of preliminary collection of Malaysian medicinal plants. The result shows that half-leaf features extraction can be used for leaf identification without decreasing the predictive accuracy.

  14. Use of graphitic carbon black and primary secondary amine for determination of 17 organophosphorus pesticide residues in spinach.

    PubMed

    Li, Li; Li, Wei; Ge, Jing; Wu, Yijun; Jiang, Shuren; Liu, Fengmao

    2008-10-01

    Graphitized carbon black (GCB) and primary secondary amine (PSA) as dispersive-SPE sorbents were applied to optimize the method for the determination of 17 organophosphorus pesticides in spinach which contained so many pigments using GC with flame photometric detector (FPD). The sample was extracted with ACN, and an aliquot of the extract was concentrated to near dryness. Ethyl acetate or acetone was chosen as the dissolving solvent. Subsequently, dispersive-SPE was used for cleanup, and the type and quantity of sorbents (GCB, PSA and activated carbon) were tested in the experiments. The best results were when acetone was used to dissolve and 30 mg each of GCB and PSA for cleanup. In this condition, recoveries of pesticides analyzed were between 52-117% with RSD below 10%, and LOQ ranged from 10 to 20 microg/kg. This method was simple, effective and efficient, and can protect the GC system to some extent. PMID:18972520

  15. Biochemical and proton NMR characterization of the isolated functional beta-subunit of coupling factor one from spinach chloroplasts

    SciTech Connect

    Roux-Fromy, M.; Neumann, J.M.; Andre, F.; Berger, G.; Girault, G.; Galmiche, J.M.; Remy, R.

    1987-04-29

    Beta subunits have been dissociated from CF1 of spinach chloroplasts, purified by HPLC and characterized by two-dimensional electrophoresis and fluorescence emission. The solutions of isolated beta subunits are able to hydrolyze MgATP; this ATPase activity is an intrinsic property of the beta molecule. From proton NMR at 300 and 500 MHz, it is shown that the preparations are fully reproducible and that beta subunits remain monomeric with 75% aliphatic protons associated with rigid parts of the molecule. The other 25% give rise to separate resonances and belong to mobile side-chains and/or to flexible regions. The measurement of the transverse relaxation times T2 has permitted a detailed characterization of the molecular dynamics of the isolated beta subunits.

  16. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth... injury tolerance. C2L Fine Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth, oily... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  17. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth... injury tolerance. C2L Fine Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth, oily... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  18. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth... injury tolerance. C2L Fine Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth, oily... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  19. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth... injury tolerance. C2L Fine Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth, oily... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  20. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  1. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  2. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  3. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  4. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  5. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  6. Transcriptional analysis of complementary sense genes in Spinach curly top virus and functional role of C2 in pathogenesis.

    PubMed

    Baliji, Surendranath; Sunter, Janet; Sunter, Garry

    2007-02-01

    Spinach curly top virus (SCTV), the fifth characterized Curtovirus species belonging to the family Geminiviridae, is an agriculturally significant plant pathogen representing an emerging disease threat in the southern United States. The SCTV genome comprises a single DNA chromosome of approximately 3.0 kb, with the potential to code for seven proteins larger than 10 kDa but which relies extensively on the host for replication and transcription of its genome. In this study, we have identified viral and complementary sense transcripts in SCTV-infected plants, confirming a bidirectional transcription strategy for SCTV. The most abundant RNA maps to the virion sense (1.1-kb transcript) and is comparable in size and location to that observed in Beet curly top virus (BCTV). Two complementary sense transcripts (1.7 and 0.7 kb) were identified in SCTV-infected plants. The large, 1.7-kb transcript is comparable in size and position to that identified in BCTV and several begomoviruses and most likely encodes the C1 protein. Both complementary sense RNAs could potentially direct expression of C2 and C3 from polycistronic mRNAs. A mutation in the C2 gene of SCTV results in expression of a truncated protein of 38 amino acids that is capable of interacting with two cellular kinases, AKIN11 and ADK2, and the resulting mutant virus remains highly infectious. A second mutant virus can only express the first three amino acids of the C2 protein and is unable to interact with the same kinases. However, this mutant virus still remains infectious, although a reduction in infectivity and symptom severity was seen in both Arabidopsis and spinach. A possible relationship between the interaction of C2 with AKIN11 and ADK2 and disease severity is presented. PMID:17313170

  7. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach

    PubMed Central

    Leonard, Susan R.; Mammel, Mark K.; Lacher, David W.

    2015-01-01

    Culture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producing Escherichia coli (STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such as Pseudomonas, Pantoea, and Exiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection. PMID:26386062

  8. Application of metagenomic sequencing to food safety: detection of Shiga Toxin-producing Escherichia coli on fresh bagged spinach.

    PubMed

    Leonard, Susan R; Mammel, Mark K; Lacher, David W; Elkins, Christopher A

    2015-12-01

    Culture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producing Escherichia coli (STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such as Pseudomonas, Pantoea, and Exiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection. PMID:26386062

  9. Influence of different planting seasons of six leaf vegetables on residues of five pesticides.

    PubMed

    Fan, Sufang; Deng, Kailin; Yu, Chuanshan; Zhao, Pengyue; Bai, Aijuan; Li, Yanjie; Pan, Canping; Li, Xuesheng

    2013-09-25

    To investigate the influence of different planting seasons on the dissipation of pesticides, field experiments of thiophanate-methyl, metalaxyl, fluazifop-P-butyl, chlorpyrifos, and λ-cyhalothrin on six crops including pakchoi, rape, crown daisy, amaranth, spinach, and lettuce were designed and conducted. In this study, a high-performance liquid chromatography and electrospray ionization-tandem mass spectrometer with multiple reaction monitoring was used to simultaneously determine thiophanate-methyl and its metabolite carbendazim, metalaxyl, and fluazifop-P-butyl in various samples; gas chromatography with an electron capture detector was used to detect chlorpyrifos and λ-cyhalothrin. The limits of quantitation (LOQs) of these six pesticides were in the range of 0.001-0.01 mg kg(-1) for all samples, and the average recoveries of all pesticides ranged from 60.1 to 119.1% at 0.01 and 0.1 mg kg(-1) spiked levels. The relative standard deviation (RSD) ranged from 1.1 to 13.9%. All maximal concentrations of the six pesticides in six leaf vegetables in autumn were higher than in summer in Beijing. For most pesticides half-lives in autumn were longer than in summer. The results showed that the initial concentration, maximal concentration, and half-lives of pesticides were influenced not only by environmental factors such as light, heat, moisture, and rainy climate but also by plant matrices. PMID:23978278

  10. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics

    PubMed Central

    Xiong, Dongliang; Chen, Jia; Yu, Tingting; Gao, Wanlin; Ling, Xiaoxia; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-01-01

    Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems. PMID:26303807

  11. Leaf physiognomy and climate: A multivariate analysis

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Taylor, S. E.

    1980-11-01

    Research has demonstrated that leaf physiognomy is representative of the local or microclimate conditions under which plants grow. The physiognomy of leaf samples from Oregon, Michigan, Missouri, Tennessee, and the Panama Canal Zone has been related to the microclimate using Walter diagrams and Thornthwaite water-budget data. A technique to aid paleoclimatologists in identifying the nature of the microclimate from leaf physiognomy utilizes statistical procedures to classify leaf samples into one of six microclimate regimes based on leaf physiognomy information available from fossilized samples.

  12. Hormonal regulation of leaf senescence in Lilium.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers. PMID:22854182

  13. Leaf herbivory and nutrients increase nectar alkaloids.

    PubMed

    Adler, Lynn S; Wink, Michael; Distl, Melanie; Lentz, Amanda J

    2006-08-01

    Correlations between traits may constrain ecological and evolutionary responses to multispecies interactions. Many plants produce defensive compounds in nectar and leaves that could influence interactions with pollinators and herbivores, but the relationship between nectar and leaf defences is entirely unexplored. Correlations between leaf and nectar traits may be mediated by resources and prior damage. We determined the effect of nutrients and leaf herbivory by Manduca sexta on Nicotiana tabacum nectar and leaf alkaloids, floral traits and moth oviposition. We found a positive phenotypic correlation between nectar and leaf alkaloids. Herbivory induced alkaloids in nectar but not in leaves, while nutrients increased alkaloids in both tissues. Moths laid the most eggs on damaged, fertilized plants, suggesting a preference for high alkaloids. Induced nectar alkaloids via leaf herbivory indicate that species interactions involving leaf and floral tissues are linked and should not be treated as independent phenomena in plant ecology or evolution. PMID:16913940

  14. The relationship of leaf photosynthetic traits - V cmax and J max - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study.

    PubMed

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-08-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting. PMID:25473475

  15. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study

    PubMed Central

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-01-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting. PMID:25473475

  16. Nutrient Value of Leaf vs. Seed

    PubMed Central

    Edelman, Marvin; Colt, Monica

    2016-01-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin, and mineral concentrations and omega 6/omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables, and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on “So why do we eat mainly seeds?” PMID:27493937

  17. Nutrient Value of Leaf vs. Seed.

    PubMed

    Edelman, Marvin; Colt, Monica

    2016-01-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin, and mineral concentrations and omega 6/omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables, and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on "So why do we eat mainly seeds?" PMID:27493937

  18. Leaf Senescence by Magnesium Deficiency

    PubMed Central

    Tanoi, Keitaro; Kobayashi, Natsuko I.

    2015-01-01

    Magnesium ions (Mg2+) are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency. PMID:27135350

  19. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement.

    PubMed

    Maloof, Julin N; Nozue, Kazunari; Mumbach, Maxwell R; Palmer, Christine M

    2013-01-01

    High throughput phenotyping (phenomics) is a powerful tool for linking genes to their functions (see review and recent examples). Leaves are the primary photosynthetic organ, and their size and shape vary developmentally and environmentally within a plant. For these reasons studies on leaf morphology require measurement of multiple parameters from numerous leaves, which is best done by semi-automated phenomics tools. Canopy shade is an important environmental cue that affects plant architecture and life history; the suite of responses is collectively called the shade avoidance syndrome (SAS). Among SAS responses, shade induced leaf petiole elongation and changes in blade area are particularly useful as indices. To date, leaf shape programs (e.g. SHAPE, LAMINA, LeafAnalyzer, LEAFPROCESSOR) can measure leaf outlines and categorize leaf shapes, but can not output petiole length. Lack of large-scale measurement systems of leaf petioles has inhibited phenomics approaches to SAS research. In this paper, we describe a newly developed ImageJ plugin, called LeafJ, which can rapidly measure petiole length and leaf blade parameters of the model plant Arabidopsis thaliana. For the occasional leaf that required manual correction of the petiole/leaf blade boundary we used a touch-screen tablet. Further, leaf cell shape and leaf cell numbers are important determinants of leaf size. Separate from LeafJ we also present a protocol for using a touch-screen tablet for measuring cell shape, area, and size. Our leaf trait measurement system is not limited to shade-avoidance research and will accelerate leaf phenotyping of many mutants and screening plants by leaf phenotyping. PMID:23380664

  20. Inactivation of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and spinach with the new affinity label 2-bromo-1,5-dihydroxy-3-pentanone 1,5-bisphosphate

    SciTech Connect

    Donnelly, M.I.; Hartman, F.C.

    1981-11-16

    In an attempt to identify the active-site base believed to initiate catalysis by ribulosebisphosphate carboxylase, we have synthesized 2-bromo-1, 5-dihydroxy-3-pentanone 1,5-bisphosphate, a reactive analogue of a postulated intermediate of carboxylation. Although highly unstable, this compound can be shown to inactivate the carboxylases from both Rhodospirillum rubrum and spinach rapidly and irreversibly. Inactivation follows pseudo first-order kinetics, shows rate saturation and is greatly reduced by saturating amounts of the competitive inhibitor, 2-carboxyribitol 1,5-bisphosphate. The incorporation of reagent, quantified by reducing the modified carboxylases with (/sup 3/H)NaBH/sub 4/, shows that inactivation results from the modification of approximately one residue per catalytic subunit of the Rhodospirillum rubrum enzyme and less than one residue per protomeric unit of the spinach enzyme.

  1. Intergeneric recombination between a new, spinach-infecting curtovirus and a new geminivirus belonging to the genus Becurtovirus: first New World exemplar.

    PubMed

    Hernández-Zepeda, Cecilia; Varsani, Arvind; Brown, Judith K

    2013-11-01

    A novel curtovirus, spinach severe curly top virus (SSCTV), was associated with symptomatic spinach plants collected from a commercial field in south-central Arizona during 2009. In addition, a second viral molecule of about 2.9 kb from the same spinach plants was amplified, cloned and sequenced. The latter isolate, herein named spinach curly top Arizona virus (SCTAV), was found to share 77 % pairwise sequence identity with beet curly top Iran virus (BCTIV), a leafhopper-transmitted geminivirus that has been assigned to the new genus Becurtovirus. The SCTAV genome encodes three viral-sense genes, V1, V2, and V3, and two complementary-sense genes, C1 and C2. There was no evidence for the presence of either a C3 or C4 ORF in the genome sequence. The genome organization of SCTAV is not like that of New World curtoviruses but instead is similar to that of BCTIV, which, to date, is only known to be present in Iran. Consistent with this observation, SCTAV and BCTIV both contain the unusual nonanucleotide TAAGATT/CC and a replication-associated protein, Rep (or C1), that is more closely related to the mastrevirus Rep than to those of curtoviruses reported to date. Both SSCTV and SCTAV were found to have a recombinant genome containing sequences (AY548948) derived from ancestral SCTV sequences in the virion-sense portions of the genome. Agroinoculation of Nicotiana benthamiana (Domin) plants with the cloned genome of SCTAV resulted in infection of 95 % of the plants and the development of severe curling symptoms, whereas only 20 % of the SSCTV-inoculated plants were infected, developing only mild curling symptoms. When plants were co-inoculated with both viruses, the frequency of infection remained higher for SCTAV than for SSCTV (80 % vs. 20 %), indicating no evidence of synergistic effects between the two viruses with respect to efficiency of infection. PMID:23708296

  2. Reduction of Escherichia coli O157:H7 in Fresh Spinach, using lactic acid bacteria and chlorine as a multihurdle intervention.

    PubMed

    Gragg, S E; Brashears, M M

    2010-02-01

    A 12-day shelf life study was conducted at 7 degrees C to determine whether Escherichia coli O157:H7 on spinach can be controlled effectively by selected strains of lactic acid bacteria (LAB) alone or in combination with chlorine as a multihurdle intervention. The multihurdle intervention consisted of both LAB and chlorine and was applied to spinach as a rinse and evaluated in comparison to LAB alone and chlorine and water rinses. Reductions achieved by all treatments also were compared with those observed for an inoculated control. The spinach was inoculated by submersion in a solution containing an E. coli O157:H7 cocktail at 1.0 x 10(6) CFU/ml. LAB were applied postharvest at a concentration of 2.0 x 10(8) CFU/ml, and 200 ppm of chlorine was used for the chlorine rinse. All spinach samples were packaged in commercial packaging, held in a retail display case, and tested for E. coli O157:H7 on days 0, 1, 3, 6, 9, and 12 using the Neo-Grid filtration system and CHROMagar. Survival of LAB throughout the shelf life also was determined. Significant reductions in pathogen populations were achieved by water (P = 0.0008), LAB (P < 0.0001), chlorine (P < 0.0001), and multihurdle (P < 0.0001) treatments when compared with controls. The multihurdle treatment produced the greatest reduction from control populations, a reduction of 1.91 log CFU/ml. This reduction was significantly greater than that achieved with water (P < 0.0001), LAB (P = 0.0025), and chlorine (P < 0.0001) alone, indicating that the application of chlorine and LAB is most effective as a combination treatment. The results obtained from this study indicate that the industry standard chlorine wash may be more effective when applied in combination with LAB. PMID:20132683

  3. Effect of repeated irrigation with water containing varying levels of total organic carbon on the persistence of Escherichia coli O157:H7 on baby spinach.

    PubMed

    Ingram, David T; Patel, Jitu; Sharma, Manan

    2011-05-01

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 most-probable-number (MPN) Escherichia coli per 100 ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of total organic carbon (TOC) was used to determine the epiphytic survival of E. coli O157:H7. Three irrigation treatments (0 ppm of TOC, 12 or 15 ppm of TOC, and 120 or 150 ppm of TOC) were prepared with bovine manure containing E. coli O157:H7 at either low (0 to 1 log CFU/100 ml) or high (5 to 6 log CFU/100 ml) populations, and sprayed onto baby spinach plants in growth chambers by using a fine-mist airbrush. MPN and direct plating techniques were used to determine the E. coli O157:H7 populations on the aerial plant tissue. Plants irrigated with high E. coli O157:H7 populations, regardless of TOC levels, showed a 3-log reduction within the first 24 h. Low levels of E. coli O157:H7 were observed for up to 16 days on all TOC treatments, ranging from 76.4 MPN per plant (day 1) to 0.40 MPN per plant (day 16). No viable cells were detected on spinach tissue 24 h after irrigation with water containing fewer than 126 CFU/100 ml E. coli O157:H7. Under growth chamber conditions in this study, E. coli O157:H7 populations in irrigation water that complies with the LGMA standards will not persist for more than 24 h when applied onto foliar surfaces of spinach plants. PMID:21549040

  4. Glutathione reductase: Comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes

    SciTech Connect

    Vanoni, M.A.; Wong, K.K.; Ballou, D.P.; Blanchard, J.S. )

    1990-06-19

    Kinetic parameters for NADPH and NADH have been determined at pH 8.1 for spinach, yeast, and E. coli glutathione reductases. NADPH exhibited low Km values for all enzymes (3-6 microM), while the Km values for NADH were 100 times higher (approximately 400 microM). Under our experimental conditions, the percentage of maximal velocities with NADH versus those measured with NADPH were 18.4, 3.7, and 0.13% for the spinach, yeast, and E. coli enzymes, respectively. Primary deuterium kinetic isotope effects were independent of GSSG concentration between Km and 15Km levels, supporting a ping-pong kinetic mechanism. For each of the three enzymes, NADPH yielded primary deuterium kinetic isotope effects on Vmax only, while NADH exhibited primary deuterium kinetic isotope effects on both V and V/K. The magnitude of DV/KNADH at pH 8.1 is 4.3 for the spinach enzyme, 2.7 for the yeast enzyme, and 1.6 for the E. coli glutathione reductase. The experimentally determined values of TV/KNADH of 7.4, 4.2, and 2.2 for the spinach, yeast, and E. coli glutathione reductases agree well with those calculated from the corresponding DV/KNADH using the Swain-Schaad expression. This suggests that the intrinsic primary kinetic isotope effect on NADH oxidation is fully expressed. In order to confirm this conclusion, single-turnover experiments have been performed. The measured primary deuterium kinetic isotope effects on the enzyme reduction half-reaction using NADH match those measured in the steady state for each of the three glutathione reductases.

  5. Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157:H7 on baby spinach.

    PubMed

    Huang, Yaoxin; Ye, Mu; Chen, Haiqiang

    2012-02-15

    Aerosolization was investigated as a potential way to apply allyl isothiocyanate (AIT), hydrogen peroxide (H(2)O(2)), acetic acid (AA) and lactic acid (LA) on fresh baby spinach to control Escherichia coli O157:H7 during refrigeration storage. In this study, baby spinach leaves were dip-inoculated with E. coli O157:H7 to a level of 6 log CFU/g and stored at 4°C for 24 h before treatment. Antimicrobials were atomized into fog-like micro-particles by an ultrasonic nebulizer and routed into a jar and a scale-up model system where samples were treated. Samples were stored at 4°C for up to 10 days before the survival of the cells was determined. A 2-min treatment with 5% AIT resulted in a >5-log reduction of E. coli O157:H7 on spinach after 2 days refrigeration regardless if the samples were pre-washed or not; however, this treatment impaired the sensory quality of leaves. Addition of LA to AIT improved the antimicrobial efficacy of AIT. In the jar system, washing with 3% H(2)O(2) followed by a 2-min treatment of 2.5% LA+1% AIT or 2.5% LA+2% AIT reduced E. coli O157:H7 population by 4.7 and >5 log CFU/g, respectively, after 10 days refrigeration. In the scale-up system, up to 4-log reduction of bacterial population was achieved for the same treatments without causing noticeable adverse effect on the appearance of leaves. Thus, this study demonstrates the potential of aerosolized AIT+LA as a new post-washing intervention strategy to control E. coli O157:H7 on baby spinach during refrigeration storage. PMID:22177228

  6. Leaf P increase outpaces leaf N in an Inner Mongolia grassland over 27 years.

    PubMed

    Mi, Zhaorong; Huang, Yuanyuan; Gan, Huijie; Zhou, Wenjia; Flynn, Dan F B; He, Jin-Sheng

    2015-01-01

    The dynamics of leaf nitrogen (N) and phosphorus (P) have been intensively explored in short-term experiments, but rarely at longer timescales. Here, we investigated leaf N : P stoichiometry over a 27-year interval in an Inner Mongolia grassland by comparing leaf N : P concentration of 2006 with that of 1979. Across 80 species, both leaf N and P increased, but the increase in leaf N lagged behind that of leaf P, leading to a significant decrease in the N : P ratio. These changes in leaf N : P stoichiometry varied among functional groups. For leaf N, grasses increased, woody species tended to increase, whereas forbs showed no change. Unlike leaf N, leaf P of grasses and forbs increased, whereas woody species showed no change. Such changes may reflect N deposition and P release induced by soil acidification over the past decades. The interannual effect of precipitation may somewhat have reduced the soil available N, leading to the more modest increase of leaf N than of leaf P. Thus, leaf N : P stoichiometry significantly responded to long-term environmental changes in this temperate steppe, but different functional groups responded differently. Our results indicate that conclusions of plant stoichiometry under short-term N fertilization should be treated with caution when extrapolating to longer timescales. PMID:25589490

  7. Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves

    PubMed Central

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-01-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  8. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves.

    PubMed

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-11-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  9. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach.

    PubMed

    Ji, Sang-Hye; Choi, Ki-Hong; Pengkit, Anchalee; Im, Jun Sup; Kim, Ju Sung; Kim, Yong Hee; Park, Yeunsoo; Hong, Eun Jeong; Jung, Sun Kyung; Choi, Eun-Ha; Park, Gyungsoon

    2016-09-01

    In this study, we analyzed seed germination, seedling growth, and physiological aspects after treatment with high voltage nanosecond pulsed plasma and micro DBD plasma in spinach (Spinacia oleracea L.), a green leafy vegetable known to have low germination rate. Both germination and dry weight of seedlings increased after high voltage pulse shots were applied to spinach seeds. However seeds treated with many shots (10 shots) showed a decrease in germination rate and seedling growth. Seeds treated with air DBD plasma exhibited slightly higher germination and subsequent seedling growth than those treated with N2 plasma. Seed surface was degenerated after treated with high voltage pulsed plasma and micro DBD plasma but no significant difference in the degree of degeneration was observed among micro DBD plasma treatment time. Level of GA3 hormone and mRNA expression of an amylolytic enzyme-related gene in seeds were elevated 1 day after treatment with high voltage pulsed plasma. The relative amount of chlorophyll and total polyphenols in spinach seedlings grown from seeds treated with air DBD plasma was increased in 30 s, 1 min, and 3 min treatments. Taken together, our results suggest a possibility that plasma can enhance seed germination by triggering biochemical processes in seeds. PMID:26944552

  10. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. [Phaseolus vulgaris L. ; Spinacia oleracea L

    SciTech Connect

    Saito, Kazumi; Nick, J.A.; Loewus, F.A. )

    1990-11-01

    D-(6-{sup 14}C)Glucosone that had been prepared enzymically from D-(6-{sup 14}C)glucose was used to compare relative efficiencies of these two sugars for L-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, {sup 14}C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from (6-{sup 14}C)glucose underwent considerable redistribution during AA formation, whereas {sup 14}C from (6-{sup 14}C)glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, L-(U-{sup 14}C)sorbosone was found to be equivalent to (6-{sup 14}C)glucose as a source of {sup 14}C for AA. In the presence of 0.1% D-glucosone, conversion of (6-{sup 14}C) glucose into labeled AA was greatly repressed. In a comparable experiment with L-sorbosone replacing D-glucosone, the effect was much less. The experiments described here give substance to the proposal that D-glucosone and L-sorbosone are putative intermediates in the conversion of D-glucose to AA in higher plants.

  11. Classification and quantification of leaf curvature

    PubMed Central

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-01-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533

  12. Leaf Shape Recognition using Centroid Contour Distance

    NASA Astrophysics Data System (ADS)

    Hasim, Abdurrasyid; Herdiyeni, Yeni; Douady, Stephane

    2016-01-01

    This research recognizes the leaf shape using Centroid Contour Distance (CCD) as shape descriptor. CCD is an algorithm of shape representation contour-based approach which only exploits boundary information. CCD calculates the distance between the midpoint and the points on the edge corresponding to interval angle. Leaf shapes that included in this study are ellips, cordate, ovate, and lanceolate. We analyzed 200 leaf images of tropical plant. Each class consists of 50 images. The best accuracy is obtained by 96.67%. We used Probabilistic Neural Network to classify the leaf shape. Experimental results demonstrated the effectiveness of the proposed approach for shape recognition with high accuracy.

  13. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  14. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  15. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  16. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  17. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  18. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  19. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  20. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  1. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  2. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  3. 7 CFR 28.466 - Leaf Grade 6.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented...

  4. 7 CFR 28.464 - Leaf Grade 4.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented...

  5. 7 CFR 28.465 - Leaf Grade 5.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented...

  6. 7 CFR 28.462 - Leaf Grade 2.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented...

  7. 7 CFR 28.463 - Leaf Grade 3.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented...

  8. 7 CFR 28.467 - Leaf Grade 7.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented...

  9. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented...

  10. Efficacy of UV, acidified sodium hypochlorite, and mild heat for decontamination of surface and infiltrated Escherichia coli O157:H7 on green onions and baby spinach.

    PubMed

    Durak, M Zeki; Churey, John J; Worobo, Randy W

    2012-07-01

    Produce-associated foodborne illnesses outbreaks have highlighted the need for more effective decontamination methods to ensure the safety of fresh produce. The main objective of this study was to evaluate the individual and combined efficacies of germicidal UV light (12.5 to 500 mJ/cm(2)), acidified sodium hypochlorite (ASC 10 to 200 ppm), and mild heat (40 to 50°C) for decontaminating green onions and baby spinach infected with Escherichia coli O157:H7. Samples were inoculated by spot and dip inoculation methods to mimic surface and infiltrated E. coli O157:H7 contamination, respectively. In green onions and baby spinach, the individual efficacies of UV, ASC, and mild-heat treatments varied based on the produce type and contamination method. Following analysis of the efficacies of the single treatments, a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 50°C was selected for spot-inoculated green onions, and a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 20°C was selected for spot- and dip-inoculated baby spinach. While a >5-log reduction was achieved with the combination treatment for spot-inoculated green onions with an initial contamination level of 7.2 log CFU per spot, the same treatment reduced E. coli O157:H7 populations below the detection limit (<1 log) on green onions spot inoculated at a lower contamination level (4.3 log CFU per spot). On spot- and dip-inoculated baby spinach, the combined treatment reduced E. coli O157:H7 populations by 2.8 log CFU per spot and 2.6 log CFU/g, respectively. The combined treatment of 500 mJ/cm(2) UV and 200 ppm of ASC at 50°C selected for the decontamination of dip-inoculated green onions resulted in a 2.2-log CFU/g reduction. These findings suggest that when foodborne pathogens contaminate produce and subsequently infiltrate, attach to, or become localized into protected areas, the individual or combined applications of UV, ASC, and mild-heat treatments have limited decontamination

  11. Wind-induced leaf transpiration

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Wei; Chu, Chia-Ren; Hsieh, Cheng-I.; Palmroth, Sari; Katul, Gabriel G.

    2015-12-01

    While the significance of leaf transpiration (fe) on carbon and water cycling is rarely disputed, conflicting evidence has been reported on how increasing mean wind speed (U) impacts fe from leaves. Here, conditions promoting enhancement or suppression of fe with increasing U for a wide range of environmental conditions are explored numerically using leaf-level gas exchange theories that combine a stomatal conductance model based on optimal water use strategies (maximizing the 'net' carbon gain at a given fe), energy balance considerations, and biochemical demand for CO2. The analysis showed monotonic increases in fe with increasing U at low light levels. However, a decline in modeled fe with increasing U were predicted at high light levels but only in certain instances. The dominant mechanism explaining this decline in modeled fe with increasing U is a shift from evaporative cooling to surface heating at high light levels. New and published sap flow measurements for potted Pachira macrocarpa and Messerschmidia argentea plants conducted in a wind tunnel across a wide range of U (2 - 8 m s-1) and two different soil moisture conditions were also employed to assess how fe varies with increasing U. The radiative forcing imposed in the wind tunnel was only restricted to the lower end of expected field conditions. At this low light regime, the findings from the wind tunnel experiments were consistent with the predicted trends.

  12. Chloroplast Response to Low Leaf Water Potentials

    PubMed Central

    Keck, R. W.; Boyer, J. S.

    1974-01-01

    Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation. PMID:16658727

  13. If the antibody fails – a mass Western approach

    PubMed Central

    Lehmann, Ute; Wienkoop, Stefanie; Tschoep, Hendrik; Weckwerth, Wolfram

    2008-01-01

    Sucrose-phosphate synthase (SPS) has attracted the interest of plant scientists for decades. It is the key enzyme in sucrose metabolism and is under investigation in various plant species, e.g. spinach, tobacco, poplar, resurrection plants, maize, rice, kiwi and Arabidopsis thaliana. In A. thaliana, there are four distinct SPS isoforms. Their expression is thought to depend on environmental conditions and plant tissue. However, these data were derived from mRNA expression levels only. No data on SPS protein identification from crude extracts have been available until now. An antibody approach failed to distinguish the four isoforms. Therefore, we developed a method for SPS quantification and isoform-specific identification in A. thaliana complex protein samples. Samples were separated on SDS-PAGE, digested and directly applied to liquid chromatography/triple-stage quadrupole mass spectrometry (LC/TSQ-MS). In this approach, known as mass Western, samples were analysed in multi-reaction monitoring (MRM) mode, so that all four SPS isoforms could be measured in one experiment. In addition to the relative quantification, stable isotope-labelled internal peptide standards allowed absolute quantification of SPS proteins. Protein extracts from various plant tissues, samples harvested during the day or the night, and cold-stressed plants were analysed. The stress-specific SPS5a isoform showed increased concentrations in cold-stressed leaf material. PMID:18485062

  14. “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness

    PubMed Central

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    “Microscopic leaf wetness” means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past. PMID:24167510

  15. Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny.

    PubMed

    Aasamaa, Krõõt; Niinemets, Ulo; Sõber, Anu

    2005-11-01

    Leaf hydraulic conductance (K(leaf)) and several characteristics of hydraulic architecture and physiology were measured during the first 10 weeks of leaf ontogeny in Populus tremula L. saplings growing under control, mild water deficit or elevated temperature conditions. During the initial 3 weeks of leaf ontogeny, most measured characteristics rapidly increased. Thereafter, a gradual decrease in K(leaf) was correlated with a decrease in leaf osmotic potential under all conditions, and with increases in leaf dry mass per area and bulk modulus of elasticity under mild water deficit and control conditions. From about Week 3 onward, K(leaf) was 33% lower in trees subjected to mild water deficit and 33% higher in trees held at an elevated temperature relative to control trees. Mild water deficit and elevated temperature treatment had significant and opposite effects on most of the other characteristics measured. The ontogenetic maximum in K(leaf) was correlated positively with the width of xylem conduits in the midrib, but negatively with the overall width of the midrib xylem, number of lateral ribs, leaf dry mass per area and bulk modulus of elasticity. The ontogenetic maximum in K(leaf) was also correlated positively with the proportion of intercellular spaces and leaf osmotic potential, but negatively with leaf thickness, volume of mesophyll cells and epidermis and number of cells per total mesophyll cell volume, the closest relationships being between leaf osmotic potential and number of cells per total mesophyll cell volume. It was concluded that differences in protoplast traits are more important than differences in xylem or parenchymal cell wall traits in determining the variability in K(leaf) among leaves growing under different environmental conditions. PMID:16105808

  16. Translocation of the potato 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase into isolated spinach chloroplasts

    SciTech Connect

    Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M. )

    1990-05-01

    A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised against the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.

  17. Erythromycin and 5S rRNA binding properties of the spinach chloroplast ribosomal protein CL22.

    PubMed Central

    Carol, P; Rozier, C; Lazaro, E; Ballesta, J P; Mache, R

    1993-01-01

    The spinach chloroplast ribosomal protein (r-protein) CL22 contains a central region homologous to the Escherichia coli r-protein L22 plus long N- and C-terminal extensions. We show in this study that the CL22 combines two properties which in E. coli ribosome are split between two separate proteins. The CL22 which binds to the 5S rRNA can also be linked to an erythromycin derivative added to the 50S ribosomal subunit. This latter property is similar to that of the E. coli L22 and suggests a similar localization in the 50S subunit. We have overproduced the r-protein CL22 and deleted forms of this protein in E. coli. We show that the overproduced CL22 binds to the chloroplast 5S rRNA and that the deleted protein containing the N- and C-terminal extensions only has lost the 5S rRNA binding property. We suggest that the central homologous regions of the CL22 contains the RNA binding domain. Images PMID:8441674

  18. Transmembrane topology of the Rieske Fe/S protein of the cytochrome b6/f complex from spinach chloroplasts.

    PubMed

    Karnauchov, I; Herrmann, R G; Klösgen, R B

    1997-05-19

    The topology of the Rieske protein of the cytochrome b6/f complex in thylakoids from spinach chloroplasts was examined by protease protection experiments as well as polypeptide extraction assays using solutions of chaotropic salts or alkaline pH. While neither thermolysin nor trypsin cleave any of the Rieske protein when added to the stromal side of the thylakoid membrane, proteinase K is capable of removing approximately four residues from its NH2-terminus. The protein is resistant to membrane extraction by 0.1 M Na2CO3 or 2 M NaBr but is quantitatively released by 0.1 M NaOH. Treatment of thylakoids with 2 M NaSCN leads to extraction of variable amounts of the protein, depending on the presence or absence of sucrose in the medium which apparently stabilizes the cytochrome complex. From these results we conclude that the Rieske protein is an integral component of the cytochrome complex which spans the thylakoid membrane with a single hydrophobic segment and is anchored predominantly by electrostatic interactions. PMID:9187368

  19. Comparison of the levels of six endogenous gibberellins in roots and shoots of spinach in relation to photoperiod

    SciTech Connect

    Metzger, J.D.; Zeevaart, J.A.D.

    1980-10-01

    This communication describes the distribution of gibberellins (GAs) in roots and shoots of spinach in relation to photoperiod. From previous work shoots were known to contain GA/sub 53/, GA/sub 44/, GA/sub 19/, GA/sub 17/, GA/sub 20/, and GA/sub 29/. We now show by combined gas chromatography-mass spectrometry that roots contain gas chromatography-selected ion current monitoring. Neither GA/sub 17/ nor GA/sub 20/ were detected in root extracts. Analysis by the d-5 corn bioassay also showed no effect of photoperiodic treatment on the levels of GA-like substances in root extracts. Both phloem and xylem exudates had patterns of GA-like activity similar to those found in shoots and roots, respectively. Moreover, foliar application of (/sup 3/H)GA/sub 20/ resulted in the transport of label from the shoot to the roots. Over half of the label in the roots represented unmetabolized (/sup 3/H)GA/sub 20/, indicating that part of the GA/sub 20/ in the phloem is transported to the roots. Consequently, if GA/sub 20/ is made in, or transported to the roots, it is rapidly metabolized in that organ. This is a clear indication that regulation of GA metabolism is greatly different in roots and shoots.

  20. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry.

    PubMed

    Rinalducci, Sara; Larsen, Martin R; Mohammed, Shabaz; Zolla, Lello

    2006-04-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumination at 100 micromol m(-2) s(-1), two novel phosphopeptides belonging to the N-terminal region of Lhcb1 light-harvesting protein were detected: NVSSGS(p)PWYGPDR and T(p)VQSSSPWYGPDR. Moreover, three new threonine residues in CP43 (Thr-6, Thr-8, and Thr-346) and, for the first time, two amino acid residues of the N-terminus of Rieske Fe-S protein of the cytochrome b(6)f complex (Thr-2 and Ser-3) were revealed to be phosphorylated. Since Lhcb1 and CP43 have been reported as mobile proteins, it may be suggested that illumination derived phosphorylation, and consequently the addition of negatively charged groups to the protein, is a necessary condition to induce a significant protein structural change. PMID:16602705

  1. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes1[OPEN

    PubMed Central

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; Sznee, Kinga; Heinnickel, Mark L.; Dekker, Jan P.; Frese, Raoul N.; Prinz, Fritz B.; Grossman, Arthur R.

    2015-01-01

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies. PMID:26220954

  2. Evidence for a cytochrome f-Rieske protein subcomplex in the cytochrome b6f system from spinach chloroplasts.

    PubMed

    el-Demerdash, M; Salnikow, J; Vater, J

    1988-01-01

    The cytochrome b6f complex of spinach chloroplasts was prepared with minor modification according to the method of E. Hurt and G. Hauska (1981) Eur. J. Biochem. 117, 591-599) replacing, however, the final ultracentrifugation step by hydroxyapatite chromatography as suggested by M. F. Doyle and C.-A Yu (1985) Biochem. Biophys. Res. Commun. 131, 700-706). The purified complex was partially dissociated by treatment with 4 M urea or 0.1% sodium dodecyl sulfate (SDS) in the absence of reducing agents. A binary subcomplex consisting of cytochrome f and the Rieske iron-sulfur protein was observed under these conditions by three different methods: (a) hydroxyapatite chromatography; (b) extraction with an isopropanol/water/trifluoroacetic acid mixture; and (c) gel filtration in the presence of low SDS concentrations. The subcomplex dissociated into its components by treatment with mercaptoethanol. These results suggest a close interaction of the cytochrome f with the Rieske protein involving SH groups which under reducing conditions leads to complete dissociation of the subcomplex. PMID:3277532

  3. Partial purification of a spinach thylakoid protein kinase that can phosphorylate light-harvesting chlorophyll a/b proteins

    SciTech Connect

    Clark, R.D.; Hind, G.; Bennett, J.

    1985-01-01

    Protein phosphorylation in plant tissues is particularly marked in chloroplasts, protein kinase activity being associated with the outer envelope, the soluble stromal fraction, and the thylakoid membrane. Furthermore, thylakoid-bound activity probably includes several distinct kinases, as suggested by studies of divalent cation specificity and thermal lability carried out with intact thylakoids and by subfractionation of solubilized membranes. Illumination of thylakoids, particularly with red light, promotes the rapid and extensive phosphorylation of the light-harvesting chlorophyll a/b complex (LHCII) on a threonine residue near the amino terminus of the protein. This phosphorylation is thought to be involved in regulating the distribution of absorbed quanta between photosystems II and I and is modulated by the redox state of the thylakoid plastoquinone pool. Neither of the thylakoid kinases reported to date was capable of phosphorylating purified LHCII in vitro or of incorporating phosphate into threonyl residues of exogenous substrates, that some LHCII phosphorylation was catalyzed by a preliminary fraction led workers to suggest that at least one other kinase remained to be isolated. Here, the authors report the solubilization and partial purification of a protein kinase from spinach thylakoids that is capable of phosphorylating LHCII in vitro, and they show that the specific site of phosphorylation is very nearly the same as, if not identical with, the site phosphorylated in organello.

  4. Rapid, enhanced detection of Salmonella Typhimurium on fresh spinach leaves using micron-scale, phage-coated magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Vaglenov, Kiril A.; Gerken, Dana M.; Chai, Yating; Park, Mi-Kyung; Li, Suiqiong; Petrenko, Valery A.; Chin, Bryan A.

    2012-05-01

    In order to cost-effectively and rapidly detect bacterial food contamination in the field, the potential usefulness of phage-coated magnetoelastic (ME) biosensors has been recently reported. These biosensors are freestanding, mass-sensitive biosensors that can be easily batch-fabricated, thereby reducing the fabrication cost per sensor to a fraction of a cent. In addition, the biosensors can be directly placed on fresh produce surfaces and used to rapidly monitor possible bacterial food contamination without any preceding sample preparation. Previous investigations showed that the limit of detection (LOD) with millimeter-scale ME biosensors was fairly low for fresh produce with smooth surfaces (e.g., tomatoes and shell eggs). However, the LOD is anticipated to be dependent on the size of the biosensors as well as the topography of produce surfaces of interest. This paper presents an investigation into the use of micron-scale, phage-coated ME biosensors for the enhanced detection of Salmonella Typhimurium on fresh spinach leaves.

  5. Complementary nutrient effects of separately collected human faeces and urine on the yield and nutrient uptake of spinach (Spinacia oleracea).

    PubMed

    Kutu, Funso R; Muchaonyerwa, Pardon; Mnkeni, Pearson N S

    2011-05-01

    A glasshouse experiment was conducted to evaluate the combined use of separately collected human faeces and urine as fertilizer for spinach (Spinacia oleracea) production. Seven human faeces N : urine N combinations (1 : 7 to 7 : 1) each supplying 200 kg N ha(-1) were evaluated along with sole human faeces, sole urine, inorganic fertilizer and an unamended control. Complementary application of the two resources, human faeces and urine, increased fresh and dry matter yields only in treatments having high proportions of urine. Nitrogen uptake followed the same trend but the opposite trend occurred for P uptake indicating that urine was a better source of N whereas human faeces were the better source of P. Potassium uptake was not influenced by the two resources. The minimal improvement observed in the fertilizer value of human faeces when co-applied with urine suggested that co-application of the two resources may not give an added yield advantage when compared with sole human faeces. PMID:20601403

  6. Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells

    NASA Astrophysics Data System (ADS)

    Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, Dhayalan

    2015-03-01

    Nanocrystalline TiO2 thin films have been prepared by sol-gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (101) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 25 and 33 nm for the films annealed at 400, 450 and 500 °C. The structure of the TiO2 nanocrystalline thin films have been examined by high-resolution transmission electron microscope, Raman spectroscopy and FTIR spectroscopy. TiO2 thin films were sensitized by natural dyes extracted from basella alba rubra spinach. It was found that the absorption peak of basella alba rubra extract is at about 665 nm. The dye-sensitized TiO2-based solar cell sensitized using basella alba rubra exhibited a J sc of 4.35 mA cm-2, V oc of 0.48 V, FF of 0.35 and efficiency of 0.70 %. Natural dyes as sensitizers for dye-sensitized solar cells are promising because of their environmental friendliness, low-cost production and fully biodegradable.

  7. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  8. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  9. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  10. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  11. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  12. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  13. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  14. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  15. Evolutionary and Environmental Forces Sculpting Leaf Development.

    PubMed

    Chitwood, Daniel H; Sinha, Neelima R

    2016-04-01

    Leaf shape is spectacularly diverse. As a major component of plant architecture and an interface for light capture, gas exchange, and thermoregulation, the potential contributions of leaves to plant fitness are innumerable. Particularly because of their intimate association and interaction with the surrounding environment, both the plasticity of leaf shape during the lifetime of a plant and the evolution of leaf shape over geologic time are revealing with respect to leaf function. Leaf shapes arise within a developmental context that constrains both their evolution and environmental plasticity. Quantitative models capturing genetic diversity, developmental context, and environmental plasticity will be required to fully understand the evolution and development of leaf shape and its response to environmental pressures. In this review, we discuss recent literature demonstrating that distinct molecular pathways are modulated by specific environmental inputs, the output of which regulates leaf dissection. We propose a synthesis explaining both historical patterns in the paleorecord and conserved plastic responses in extant plants. Understanding the potential adaptive value of leaf shape, and how to molecularly manipulate it, will prove to be invaluable in designing crops optimized for future climates. PMID:27046820

  16. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  17. Leaf litter decomposition in three Adirondack lakes

    SciTech Connect

    Francis, A.J.; Quinby, H.L.; Hendrey, G.R.; Hoogendyk, C.G.

    1983-04-01

    Decomposition of terrestrial leaf litter in three Adirondack lakes with water pH values approximately 5, 6, and 7 was studied. Litter bags containing leaves of American beech, sugar maple, red maple, leather leaf, and red spruce were placed in the lakes. Samples were removed periodically over a 3-year period and analyzed for loss in weight, changes in leaf surface area, carbon, nitrogen, and bacterial populations. The rate of decomposition of litter depended on the leaf species tested as well as on the lake water in which they were incubated. Of the five leaf species tested, red maple decomposed much faster and red spruce more slowly, i.e., red maple > sugar maple > beech > leather leaf > red spruce. Further, the data indicated that the rate of decomposition of the leaves differed among the lakes in the order Woods (pH approx. 5) < Sagamore (pH approx. 6) < Panther (pH approx. 7), and that the microbial colonization of some leaf species was affected. Accumulations of leaf litter in acid lakes due to reduction in microbial decomposition may affect nutrient recycling in lake ecosystems. 8 references, 4 tables.

  18. Leaf Histology--Two Modern Methods.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1984-01-01

    Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)

  19. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  20. Inferring climate from angiosperm leaf venation networks.

    PubMed

    Blonder, Benjamin; Enquist, Brian J

    2014-10-01

    Leaf venation networks provide an integrative linkage between plant form, function and climate niche, because leaf water transport underlies variation in plant performance. Here, we develop theory based on leaf physiology that uses community-mean vein density to predict growing season temperature and atmospheric CO2 concentration. The key assumption is that leaf water supply is matched to water demand in the local environment. We test model predictions using leaves from 17 temperate and tropical sites that span broad climatic gradients. We find quantitative agreement between predicted and observed climate values. We also highlight additional leaf traits that may improve predictions. Our study provides a novel approach for understanding the functional linkages between functional traits and climate that may improve the reconstruction of paleoclimate from fossil assemblages. PMID:24725225

  1. Relating Stomatal Conductance to Leaf Functional Traits

    PubMed Central

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES

  2. A model for leaf initiation

    PubMed Central

    Abraham-Shrauner, Barbara; Pickard, Barbara G

    2011-01-01

    A biophysical model is proposed for how leaf primordia are positioned on the shoot apical
    meristem in both spiral and whorl phyllotaxes. Primordia are initiated by signals that propagate
    in the epidermis in both azimuthal directions away from the cotyledons or the most recently
    specified primordia. The signals are linear waves as inferred from the spatial periodicity of the
    divergence angle and a temporal periodicity. The periods of the waves, which represent actively
    transported auxin, are much smaller than the plastochron interval. Where oppositely directed
    waves meet at one or more angular positions on the periphery of the generative circle, auxin
    concentration builds and as in most models this stimulates local movement of auxin to
    underlying cells, where it promotes polarized cell division and expansion. For higher order
    spirals the wave model requires asymmetric function of auxin transport; that is, opposite wave
    speeds differ. An algorithm for determination of the angular positions of leaves in common leaf
    phyllotaxic configurations is proposed. The number of turns in a pattern repeat, number of leaves
    per level and per pattern repeat, and divergence angle are related to speed of auxin transport and
    radius of the generative circle. The rule for composition of Fibonacci or Lucas numbers
    associated with some phyllotaxes is discussed. A subcellular model suggests how the shoot
    meristem might specify either symmetric or asymmetric transport of auxin away from the
    forming primordia that produce it. Biological tests that could make or break the mathematical
    and molecular hypotheses are proposed. PMID:22212121

  3. Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns-10 s time scale.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B

    2015-08-01

    The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11-25 % semiquinone (with reduced [Formula: see text]) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123-3132, 2005; Belyaeva et al. Photosynth Res 98:105-119, 2008, Plant Physiol Biochem 77:49-59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid (3)Car(t) population is the main NPQ regulator decaying in the time interval of 6-8 μs. So the SFITFY increase up to the maximum level [Formula: see text]/F 0 (at ~50 μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the (3)Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680(+) reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from [Formula: see text] slower in alga as compared to leaf samples was elucidated by the dynamics of [Formula: see text] fractions to fit SFITFY data. Low membrane energization after the 10 ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20 mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1

  4. Antimicrobial effect of Pistacia atlantica leaf extract

    PubMed Central

    Ali Roozegar, Mohamad; Azizi Jalilian, Farid; Reza Havasian, Mohamad; Panahi, Jafar; Pakzad, Iraj

    2016-01-01

    The antimicrobial effect of the mastic tree (Pistacia atlantica) under in vitro conditions has been reported. Therefore, it is of interest to evaluate the effect of the plant leaf extract (aqueous) on bacterial load in mouth and saliva. The leaf of the Pistacia atlantica plant was collected and cleaned, dried at 40⁰c and then powdered. The extraction was carried out using the maceration method in vacuum with the rotary evaporator device. Bacterial inhibition (Streptococcus species) by the leaf extract was studied using the disc diffusion and embedding sink diffusion methods. The values of MIC and MBC were determined. The collected data was further analyzed using t-test and repeated measure statistical tests. The disc diffusion technique showed a significant inhibitory effect for Pistacia atlantica leaf extract on S. mutans (ATCC 35668) and S. mitis (ATCC 49456) with inhibition zones of 19 and 25 millimeters, respectively. This is for the highest leaf extract concentration used in this study (p<0.01). The values of MIC and MBC for S.mutans was 60, 90 μg/ml and for S. mitis was 75, 110 μg/ml (p<0.01 significance). The leaf extract has no significant effect on S. salivarius (ATCC 13419). Thus, the antimicrobial properties of the aqueous leaf extract from Pistacia atlantica is demonstrated in this study. PMID:27212840

  5. Leaf wetness distribution within a potato crop

    NASA Astrophysics Data System (ADS)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  6. Lipidomics of tobacco leaf and cigarette smoke.

    PubMed

    Dunkle, Melissa N; Yoshimura, Yuta; t'Kindt, Ruben; Ortiz, Alexia; Masugi, Eri; Mitsui, Kazuhisa; David, Frank; Sandra, Pat; Sandra, Koen

    2016-03-25

    Detailed lipidomics experiments were performed on the extracts of cured tobacco leaf and of cigarette smoke condensate (CSC) using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS). Following automated solid-phase extraction (SPE) fractionation of the lipid extracts, over 350 lipids could be annotated. From a large-scale study on 22 different leaf samples, it was determined that differentiation based on curing type was possible for both the tobacco leaf and the CSC extracts. Lipids responsible for the classification were identified and the findings were correlated to proteomics data acquired from the same tobacco leaf samples. Prediction models were constructed based on the lipid profiles observed in the 22 leaf samples and successfully allowed for curing type classification of new tobacco leaves. A comparison of the leaf and CSC data provided insight into the lipidome changes that occur during the smoking process. It was determined that lipids which survive the smoking process retain the same curing type trends in both the tobacco leaf and CSC data. PMID:26585203

  7. Antimicrobial effect of Pistacia atlantica leaf extract.

    PubMed

    Ali Roozegar, Mohamad; Azizi Jalilian, Farid; Reza Havasian, Mohamad; Panahi, Jafar; Pakzad, Iraj

    2016-01-01

    The antimicrobial effect of the mastic tree (Pistacia atlantica) under in vitro conditions has been reported. Therefore, it is of interest to evaluate the effect of the plant leaf extract (aqueous) on bacterial load in mouth and saliva. The leaf of the Pistacia atlantica plant was collected and cleaned, dried at 40⁰c and then powdered. The extraction was carried out using the maceration method in vacuum with the rotary evaporator device. Bacterial inhibition (Streptococcus species) by the leaf extract was studied using the disc diffusion and embedding sink diffusion methods. The values of MIC and MBC were determined. The collected data was further analyzed using t-test and repeated measure statistical tests. The disc diffusion technique showed a significant inhibitory effect for Pistacia atlantica leaf extract on S. mutans (ATCC 35668) and S. mitis (ATCC 49456) with inhibition zones of 19 and 25 millimeters, respectively. This is for the highest leaf extract concentration used in this study (p<0.01). The values of MIC and MBC for S.mutans was 60, 90 μg/ml and for S. mitis was 75, 110 μg/ml (p<0.01 significance). The leaf extract has no significant effect on S. salivarius (ATCC 13419). Thus, the antimicrobial properties of the aqueous leaf extract from Pistacia atlantica is demonstrated in this study. PMID:27212840

  8. An Apparent Anomaly in Peanut Leaf Conductance

    PubMed Central

    Pallas, James E.

    1980-01-01

    Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces. Images PMID:16661294

  9. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  10. Farm Management, Environment, and Weather Factors Jointly Affect the Probability of Spinach Contamination by Generic Escherichia coli at the Preharvest Stage

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-01-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination. PMID:24509926

  11. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress.

    PubMed

    Xu, Huini; Zhao, Xiuling; Guo, Chuanlong; Chen, Limei; Li, Kunzhi

    2016-09-01

    To investigate the function of 14-3-3 protein in response to excess nitrate stress, a 14-3-3 protein, designated as So14-3-3, was isolated from spinach. Phylogenetic analysis demonstrated that So14-3-3 belongs to non-ε group of 14-3-3 superfamily. Real time-quantitative RT-PCR and western blot analysis showed that So14-3-3 was induced by excess nitrate stress in spinach roots and leaves. After nitrate treatment, the phosphorylated H(+)-ATPase and nitrate reductase (NR) increased and decreased respectively. Co-Immunoprecipitation (Co-IP) suggested that the interaction of So14-3-3 with the phosphorylated H(+)-ATPase enhanced, but reduced with phosphorylated NR in spinach roots after nitrate treatment. Besides, 5 proteins interacted with So14-3-3 were found by Co-IP and LC-MS/MS analysis. So14-3-3 overexpressing transgenic tobacco plants showed enhanced tolerance to nitrate treatment at the germination and young seedlings stage. The transgenic plants showed longer root length, lower malondialdehyde (MDA), H2O2, protein carbonyl contents, relatively higher soluble sugar and protein contents, than the WT plants after nitrate treatment. The phosphorylation levels of H(+)-ATPase in transgenic plants were higher than the WT plants after nitrate treatment, whereas NR were lower. Additionally, in transgenic plants, the interaction of So14-3-3 with phosphorylated H(+)-ATPase and NR increased and decreased more than the WT plants under nitrate stress, leading to higher H(+)-ATPase and NR activities in transgenic plants. These data suggested that So14-3-3 might be involved in nitrate stress response by interacting with H(+)-ATPase and NR. PMID:27161584

  12. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage.

    PubMed

    Park, Sangshin; Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-04-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination. PMID:24509926

  13. High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts.

    PubMed Central

    Roughan, P G; Slack, C R; Holland, R

    1976-01-01

    Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate. PMID:985452

  14. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water.

    PubMed

    Guentzel, Jane L; Liang Lam, Kang; Callan, Michael A; Emmons, Stuart A; Dunham, Valgene L

    2008-02-01

    Food safety issues and increases in food borne illnesses have promulgated the development of new sanitation methods to eliminate pathogenic organisms on foods and surfaces in food service areas. Electrolyzed oxidizing water (EO water) shows promise as an environmentally friendly broad spectrum microbial decontamination agent. EO water is generated by the passage of a dilute salt solution ( approximately 1% NaCl) through an electrochemical cell. This electrolytic process converts chloride ions and water molecules into chlorine oxidants (Cl(2), HOCl/ClO(-)). At a near-neutral pH (pH 6.3-6.5), the predominant chemical species is the highly biocidal hypochlorous acid species (HOCl) with the oxidation reduction potential (ORP) of the solution ranging from 800 to 900mV. The biocidal activity of near-neutral EO water was evaluated at 25 degrees C using pure cultures of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Treatment of these organisms, in pure culture, with EO water at concentrations of 20, 50, 100, and 120ppm total residual chlorine (TRC) and 10min of contact time resulted in 100% inactivation of all five organisms (reduction of 6.1-6.7log(10)CFU/mL). Spray treatment of surfaces in food service areas with EO water containing 278-310ppm TRC (pH 6.38) resulted in a 79-100% reduction of microbial growth. Dip (10min) treatment of spinach at 100 and 120ppm TRC resulted in a 4.0-5.0log(10)CFU/mL reduction of bacterial counts for all organisms tested. Dipping (10min) of lettuce at 100 and 120ppm TRC reduced bacterial counts of E. coli by 0.24-0.25log(10)CFU/mL and reduced all other organisms by 2.43-3.81log(10)CFU/mL. PMID:17993375

  15. Roles of ATP and NADPH in formation of the Fe-S cluster of spinach ferredoxin. [Spinacia oleracea

    SciTech Connect

    Takahashi, Yasuhiro; Mitsui, Akira; Fujita, Yuichi; Matsubara, Hiroshi )

    1991-01-01

    The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of ({sup 35}S)sulfide or iron, or in Fe-S cluster formation itself. ({sup 35}S)Sulfide was liberated from ({sup 35}S)cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of ({sup 35}S)cysteine occurred before the formation of the {sup 35}S-labeled Fe-S cluster, and the amount of radioactivity in ({sup 35}S)sulfide was greater than that in {sup 35}S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na{sub 2}S) inhibited competitively formation of the {sup 35}S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of ({sup 35}S)sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster formation are discussed.

  16. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.).

    PubMed

    Wang, Junli; Yuan, Jiangang; Yang, Zhongyi; Huang, Baifei; Zhou, Yihui; Xin, Junliang; Gong, Yulian; Yu, Hui

    2009-10-14

    To reduce the influx of cadmium (Cd), a toxic heavy metal, into the human food chain through vegetable intake, a pot experiment for the selection of a pollution-safe cultivar (PSC) of water spinach (Ipomoea aquatica Forsk.) was carried out. The experiment with 30 tested cultivars revealed that the maximum differences in Cd concentration between the cultivars containing the highest and the lowest Cd were 3.0-3.9-fold under low-Cd treatment (soil Cd = 0.593 mg kg(-1)), 2.7-3.5-fold under middle-Cd treatment (soil Cd = 1.091 mg kg(-1)), and 2.6-2.7-fold under high-Cd treatment (soil Cd = 1.824 mg kg(-1)), large enough to define the Cd-PSCs. Concentrations of Cd in edible parts of six cultivars, cv. Daxingbaigu, Huifengqing, Qiangkunbaigu, Qiangkunqinggu, Shenniuliuye, and Xingtianqinggu, were lower than 0.2 mg kg(-1), the maximum level (ML) of Cd allowed by the Codex Alimentarius Commission (CAC) standard, even under middle-Cd treatment. Accordingly, these cultivars were treated as typical Cd-PSCs. Four cultivars, cv. Jieyangbaigeng, Xianggangdaye, Sannongbaigeng, and Taiwan 308, contained Cd in edible parts exceeding the ML even under low-Cd treatment, and they were defined as typical non-Cd-PSCs. The correlations of the Cd concentrations among the tested cultivars between the three treatments were significant at the p < 0.05 level. A conspicuous difference in Cd subcellular distribution in hydroponic plant tissues between cv. Qiangkunqinggu (a typical Cd-PSC) and cv. Taiwan 308 (a typical non-Cd-PSC) were observed. Cd absorbed by cv. Qiangkunqinggu seemed to be well-compartmentalized in root and in cell wall fragment, which may be one of the mechanisms leading to its low Cd accumulating property. The results indicated that water spinach, a leafy vegetable, could be easily polluted by soils contaminated with Cd, as 80% of the tested cultivars had exceeded the ML of Cd according to the CAC standard even under the middle-Cd treatment. Much of the evidence obtained from

  17. The function and properties of the iron-sulfur center in spinach ferredoxin: Thioredoxin reductase: A new biological role for iron-sulfur clusters

    SciTech Connect

    Staples, C.R.; Ameyibor, E.; Fu, Weiguang; Johnson, M.K.

    1996-09-03

    Thioredoxin reduction in chloroplasts in catalyzed by a unique class of disulfide reductases which use a [2Fe-2S]{sup 2+/+} ferredoxin as the electron donor and contain an Fe-S cluster as the sole prosthetic group in addition to the active-site disulfide. The nature, properties, and function of the Fe-S cluster in spinach ferredoxin: thioredoxin reductase (FTR) have been investigated by the combination of UV/visible absorption, variable-temperature magnetic circular dichroism (MCD), EPR, and resonance Raman (RR) spectroscopies. 66 refs., 5 figs., 1 tab.

  18. Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce.

    PubMed

    Poimenidou, Sofia V; Bikouli, Vasiliki C; Gardeli, Chryssavgi; Mitsi, Christina; Tarantilis, Petros A; Nychas, George-John; Skandamis, Panagiotis N

    2016-03-01

    Aqueous extract of Origanum vulgare (oregano), sodium hypochlorite (60 and 300 ppm of free chlorine), Citrox® (containing citric acid and phenolic compounds [bioflavonoids] as active ingredients), vinegar, lactic acid, and double combinations of Citrox, lactic acid and oregano were evaluated against Escherichia coli O157:H7 and total mesophilic microbiota on fresh-cut spinach and lettuce and for their impact on color of treated vegetables. Spinach and lettuce leaves were inoculated with E. coli O157:H7 to a level of 5-6 log CFU/g and immersed in washing solutions for 2 or 5 min at 20 °C, followed by rinsing with ice water (30s). Bacterial populations on vegetables were enumerated immediately after washing and after storage of the samples at 5 °C for 7 days under 20% CO2: 80% N2. No significant post-washing microbial reductions were achieved by chlorinated water, whereas after storage total microbiota was increased by 2.4 log CFU/g on lettuce. Vinegar wash was the most effective treatment causing E. coli O157:H7 reductions of 1.8-4.3 log CFU/g. During storage, pathogen was further decreased to below the detection limit level (<2 log CFU/g) and total microbiota exhibited the highest reductions compared to other treatments. Lactic acid reduced pathogen by 1.6-3.7 log CFU/g after washing; however levels of total microbiota increased by up to 2 log CFU/g on packaged lettuce during storage. Washing lettuce samples with oregano for 2 min resulted in 2.1 log CFU/g reduction of E. coli O157:H7. When Citrox was combined with oregano, 3.7-4.0 log CFU/g reduction was achieved on spinach and lettuce samples, with no significant effect on color parameters. Additionally, rinsing with ice water after decontamination treatments contributed to maintenance of color of the treated vegetables. In conclusion, the results indicated that vinegar, lactic acid or oregano aqueous extract alone or in combination, as alternative washing solutions to chlorine, may be effectively used to

  19. Key Proliferative Activity in the Junction between the Leaf Blade and Leaf Petiole of Arabidopsis1[W][OA

    PubMed Central

    Ichihashi, Yasunori; Kawade, Kensuke; Usami, Takeshi; Horiguchi, Gorou; Takahashi, Taku; Tsukaya, Hirokazu

    2011-01-01

    Leaves are the most important, fundamental units of organogenesis in plants. Although the basic form of a leaf is clearly divided into the leaf blade and leaf petiole, no study has yet revealed how these are differentiated from a leaf primordium. We analyzed the spatiotemporal pattern of mitotic activity in leaf primordia of Arabidopsis (Arabidopsis thaliana) in detail using molecular markers in combination with clonal analysis. We found that the proliferative zone is established after a short interval following the occurrence of a rod-shaped early leaf primordium; it is separated spatially from the shoot apical meristem and seen at the junction region between the leaf blade and leaf petiole and produces both leaf-blade and leaf-petiole cells. This proliferative region in leaf primordia is marked by activity of the ANGUSTIFOLIA3 (AN3) promoter as a whole and seems to be differentiated into several spatial compartments: activities of the CYCLIN D4;2 promoter and SPATULA enhancer mark parts of it specifically. Detailed analyses of the an3 and blade-on-petiole mutations further support the idea that organogenesis of the leaf blade and leaf petiole is critically dependent on the correct spatial regulation of the proliferative region of leaf primordia. Thus, the proliferative zone of leaf primordia is spatially differentiated and supplies both the leaf-blade and leaf-petiole cells. PMID:21880932

  20. Studies on 17,24 kD Depleted Photosystem II Membranes : I. Evidences for High and Low Affinity Calcium Sites in 17,24 kD Depleted PSII Membranes from Wheat versus Spinach.

    PubMed

    Cammarata, K V; Cheniae, G M

    1987-07-01

    Analyses were made of the effects of extraction of the 17,24 kilodalton extrinsic proteins from spinach versus wheat photosystem II (PSII) membranes on Ca abundance and O(2) evolution capacity determined in the absence and presence of either Cl(-) or Ca(2+). Extraction of these proteins from spinach PSII routinely diminished steady state O(2) evolution by about 70% when assayed in the presence of sufficient Cl(-). Additionally, O(2) evolution of 17,24 kilodalton-less spinach PSII membranes showed about 2-fold more enhancement by Ca(2+) than by Cl(-) during assay. When the same extraction and assay procedures were applied to wheat PSII membranes, we observed, in contrast to 17,24 kilodalton-less spinach PSII, only about 50% inhibition of O(2) evolution and about 2-fold greater enhancement by Cl(-) than by Ca(2+). Irrespective of differences in the magnitude of enhancement of O(2) evolution by Ca(2+)versus Cl(-) in spinach versus wheat, the K(m) values for Cl(-) (about 1.7 millimolar) and Ca(2+) (about 1.5 millimolar) were similar for both type preparations. The abundance of Ca specifically associated with fully functional PSII (about 2 and about 3 Ca/200 chlorophyll for spinach and wheat, respectively) was diminished to about 1 per 200 chlorophyll upon 17.24 kilodalton protein depletion. Further treatment of wheat 17,24 kilodalton-less PSII in darkness with 2 molar NaCl/1 millimolar ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid/20 micromolar A23187(2) made O(2) evolution highly dependent on Ca(2+) addition, much like the 17,24 kilodalton-less spinach PSII. Analyses of this Ca(2+) effect on O(2) evolution revealed both high (K(m) about 65 micromolar) and low (K(m) about 1.5 millimolar) affinity Ca(2+) sites in wheat 17,24 kilodalton-less PSII. The results suggest that during 17,24 kilodalton extraction by NaCl, spinach PSII is more susceptible than wheat PSII to loss of high affinity Ca and irreversible inhibition of O(2) evolution. PMID:16665485